Sample records for semiempirical shell model

  1. Shell Corrections Stabilizing Superheavy Nuclei and Semi-spheroidal Atomic Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poenaru, Dorin N.

    2008-01-24

    The macroscopic-microscopic method is used to illustrate the shell effect stabilizing superheavy nuclei and to study the stability of semi-spheroidal clusters deposited on planar surfaces. The alpha decay of superheavy nuclei is calculated using three models: the analytical superasymmetric fission model; the universal curve, and the semiempirical formula taking into account the shell effects. Analytical relationships are obtained for the energy levels of the new semi-spheroidal harmonic oscillator (SSHO) single-particle model and for the surface and curvature energies of the semi-spheroidal clusters. The maximum degeneracy of the SSHO is reached at a super-deformed prolate shape for which the minimum ofmore » the liquid drop model energy is also attained.« less

  2. Determination of natural line widths of Kα X-ray lines for some elements in the atomic range 50≤Z≤65 at 59.5 keV

    NASA Astrophysics Data System (ADS)

    Kündeyi, Kadriye; Aylıkcı, Nuray Küp; Tıraşoǧlu, Engin; Kahoul, Abdelhalim; Aylıkcı, Volkan

    2017-02-01

    The semi-empirical determination of natural widths of Kα X-ray lines (Kα1 and Kα2) were performed for Sn, Sb, Te, I, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd and Tb. For the semi-empirical determination of the line widths, K shell fluorescence yields of elements were measured. The samples were excited by 59.5 keV γ rays from a 241Am annular radioactive source in order to measure the K shell fluorescence yields. The emitted K X-rays from the samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The measured K shell fluorescence yields were used for the calculation of K shell level widths. Finally, the natural widths of K X-ray lines were determined as the sums of levels which involved in the transition. The obtained values were compared with earlier studies.

  3. Evaluation of semi-empirical analyses for tank car puncture velocity, part II : correlations with engineering analyses

    DOT National Transportation Integrated Search

    2001-11-01

    This report is the second in a series focusing on methods to determine the puncture velocity of railroad tank car shells. In this context, puncture velocity refers to the impact velocity at which a coupler will completely pierce the shell and punctur...

  4. Evaluation of semi-empirical analyses for railroad tank car puncture velocity, part 2 : correlations with engineering analysis

    DOT National Transportation Integrated Search

    2001-11-01

    This report is the second in a series focusing on methods to determine the puncture velocity of railroad tank car shells. In this : context, puncture velocity refers to the impact velocity at which a coupler will completely pierce the shell and punct...

  5. Laws of attenuation of axially symmetrical shock waves in shells of detonating extended charges

    NASA Astrophysics Data System (ADS)

    Kuzin, E. N.; Zagarskih, V. I.; Efanov, V. V.

    2016-12-01

    The procedure and algorithms are proposed for an experimental and computational estimate of attenuation of radial shock waves occurring in shells of detonating extended charges during glancing detonation of their ammunition (explosives). Based on results of experimental, the semiempirical dependence characterizing the attenuation law for such waves is obtained.

  6. Transport of Light Ions in Matter

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Tai, H.; Shinn, J. L.; Chun, S. Y.; Tripathi, R. K.; Sihver, L.

    1998-01-01

    A recent set of light ion experiments are analyzed using the Green's function method of solving the Boltzmann equation for ions of high charge and energy (the GRNTRN transport code) and the NUCFRG2 fragmentation database generator code. Although the NUCFRG2 code reasonably represents the fragmentation of heavy ions, the effects of light ion fragmentation requires a more detailed nuclear model including shell structure and short range correlations appearing as tightly bound clusters in the light ion nucleus. The most recent NTJCFRG2 code is augmented with a quasielastic alpha knockout model and semiempirical adjustments (up to 30 percent in charge removal) in the fragmentation process allowing reasonable agreement with the experiments to be obtained. A final resolution of the appropriate cross sections must await the full development of a coupled channel reaction model in which shell structure and clustering can be accurately evaluated.

  7. MULTI-SHELL MAGNETIC TWISTERS AS A NEW MECHANISM FOR CORONAL HEATING AND SOLAR WIND ACCELERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murawski, K.; Srivastava, A. K.; Dwivedi, B. N.

    2015-07-20

    We perform numerical simulations of impulsively generated Alfvén waves in an isolated photospheric flux tube and explore the propagation of these waves along such magnetic structure that extends from the photosphere, where these waves are triggered, to the solar corona, and we analyze resulting magnetic shells. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical model and specifying the curved magnetic field lines that constitute the magnetic flux tube that is rooted in the solar photosphere. The evolution of the solar atmosphere is described by 3D, ideal MHD equations that are numerically solvedmore » by the FLASH code. Our numerical simulations reveal, based on the physical properties of the multi-shell magnetic twisters and the amount of energy and momentum associated with them, that these multi-shell magnetic twisters may be responsible for the observed heating of the lower solar corona and for the formation of solar wind. Moreover, it is likely that the existence of these twisters can be verified by high-resolution observations.« less

  8. β decays of the heaviest N =Z -1 nuclei and proton instability of 97In

    NASA Astrophysics Data System (ADS)

    Park, J.; Krücken, R.; Lubos, D.; Gernhäuser, R.; Lewitowicz, M.; Nishimura, S.; Ahn, D. S.; Baba, H.; Blank, B.; Blazhev, A.; Boutachkov, P.; Browne, F.; Čeliković, I.; de France, G.; Doornenbal, P.; Faestermann, T.; Fang, Y.; Fukuda, N.; Giovinazzo, J.; Goel, N.; Górska, M.; Grawe, H.; Ilieva, S.; Inabe, N.; Isobe, T.; Jungclaus, A.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Lorusso, G.; Moschner, K.; Murai, D.; Nishizuka, I.; Patel, Z.; Rajabali, M. M.; Rice, S.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Sinclair, L.; Söderström, P.-A.; Steiger, K.; Sumikama, T.; Suzuki, H.; Takeda, H.; Wang, Z.; Watanabe, H.; Wu, J.; Xu, Z. Y.

    2018-05-01

    We report on new or more precise half-lives, β -decay endpoint energies, and β -delayed proton emission branching ratios of 91Pd, 95Cd, 97In, and 99Sn. The measured values are consistent with known mirror transitions in lighter Tz=-1 /2 nuclei, shell-model calculations, and various mass models. In addition to the β -decaying (9 /2+) ground state, circumstantial evidence for a short-lived, proton-emitting isomer with spin (1 /2-) was found in 97In. Based on the experimental data, a semiempirical theory on proton emission, and shell-model calculations, the proton separation energy of the 97In ground state was determined to be -0.10 ±0.19 MeV. The existence of the short-lived, proton-unstable (1 /2-) isomer in 97In establishes 96Cd as an r p -process waiting point.

  9. Investigation of 14-15 MeV ( n, t) Reaction Cross-sections by Using New Evaluated Empirical and Semi-empirical Systematic Formulas

    NASA Astrophysics Data System (ADS)

    Tel, E.; Aydın, A.; Kaplan, A.; Şarer, B.

    2008-09-01

    In the hybrid reactor, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of ( n, t) reaction cross-sections are of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study we have investigated asymmetry term effect for the ( n, t) reaction cross-sections at 14-15 neutron incident energy. It has been discussed the odd-even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross-sections formulas ( n, t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even-even, even-odd and odd-even for ( n, t) reactions cross-sections. The obtained empirical and semi-empirical formulas by fitting two parameter for ( n, t) reactions were given. All calculated results have been compared with the experimental data and the other semi-empirical formulas.

  10. Evaluation of semi-empirical analyses for railroad tank car puncture velocity, part 1 : correlations with experimental data

    DOT National Transportation Integrated Search

    2001-11-01

    This report is the first in a two-part series that focuses on methodologies to determine the puncture velocity of tank car shells. In this context, puncture velocity refers to the impact velocity at which a coupler will puncture the tank. In this rep...

  11. α -decay chains of the superheavy nuclei Rg-350255

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Nithya, C.

    2017-05-01

    The decay modes and half-lives of 96 isotopes of the superheavy element roentgenium (Rg) within the range of 255 ≤A ≤350 come under investigation in the present paper. The isotopes which lie beyond the proton drip line are identified by calculating the one-proton and two-proton separation energies. The α -decay half-lives are calculated using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). For a theoretical comparison the α half-lives are also evaluated using the Viola-Seaborg semiempirical relation, the universal curve of Poenaru et al., the analytical formula of Royer, and the universal decay law of Qi et al. Spontaneous fission half-lives are computed with the shell-effect-dependent formula of Santhosh and Nithya and the semiempirical formula of Xu et al. The decay modes are predicted by comparing the α -decay half-lives within the CPPMDN with the corresponding spontaneous fission half-lives computed by the shell-effect-dependent formula of Santhosh and Nithya. In our paper it is seen that the isotopes 255-271,273Rg lie beyond the proton drip line and hence decay through proton emission. The isotopes 272,274-277Rg exhibit long α chains. Three α chains are predicted from the isotopes Rg-282278. The isotopes Rg-345283 decay through spontaneous fission. The isotopes Rg-350346 are found to be stable against α decay. The theoretical results are compared with the available experimental results and are seen to be matching well. We hope that our predictions will be useful in future experimental investigations.

  12. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  13. Calculation of K-shell fluorescence yields for low-Z elements

    NASA Astrophysics Data System (ADS)

    Nekkab, M.; Kahoul, A.; Deghfel, B.; Aylikci, N. Küp; Aylikçi, V.

    2015-03-01

    The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (ωK) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (ωK) of elements in the range of 11≤Z≤30. The experimental data are interpolated by using the famous analytical function (ωk/(1 -ωk)) 1 /q (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the results of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.

  14. Semiempirical modeling of Ag nanoclusters: New parameters for optical property studies enable determination of double excitation contributions to plasmonic excitation

    DOE PAGES

    Gieseking, Rebecca L.; Ratner, Mark A.; Schatz, George C.

    2016-06-03

    Quantum mechanical studies of Ag nanoclusters have shown that plasmonic behavior can be modeled in terms of excited states where collectivity among single excitations leads to strong absorption. However, new computational approaches are needed to provide understanding of plasmonic excitations beyond the single-excitation level. We show that semiempirical INDO/CI approaches with appropriately selected parameters reproduce the TD-DFT optical spectra of various closed-shell Ag clusters. The plasmon-like states with strong optical absorption comprise linear combinations of many singly excited configurations that contribute additively to the transition dipole moment, whereas all other excited states show significant cancellation among the contributions to themore » transition dipole moment. The computational efficiency of this approach allows us to investigate the role of double excitations at the INDO/SDCI level. The Ag cluster ground states are stabilized by slight mixing with doubly excited configurations, but the plasmonic states generally retain largely singly excited character. The consideration of double excitations in all cases improves the agreement of the INDO/CI absorption spectra with TD-DFT, suggesting that the SDCI calculation effectively captures some of the ground-state correlation implicit in DFT. Furthermore, these results provide the first evidence to support the commonly used assumption that single excitations are in many cases sufficient to describe the optical spectra of plasmonic excitations quantum mechanically.« less

  15. Structural transition of (InSb)n clusters at n = 6-10

    NASA Astrophysics Data System (ADS)

    Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De

    2016-10-01

    An optimization strategy combining global semi-empirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (InSb)n clusters with n = 6-10. A new structural growth pattern of the clusters was observed. The lowest energy structures of (InSb)6 and (InSb)8 were different from that of previously reported results. Competition existed between core-shell and cage-like structures of (InSb)8. The structural transition of (InSb)n clusters occurred at size n = 8-9. For (InSb)9 and (InSb)10 clusters, core-shell structure were more energetically favorable than the cage. The corresponding electronic properties were investigated.

  16. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.

    PubMed

    Huang, Ming; Giese, Timothy J; York, Darrin M

    2015-07-05

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic probes, was problematic for all of the models considered. Analysis of the strengths and weakness of the models suggests that the creation of robust next-generation models should emphasize the improvement of relative conformational energies and barriers, and nonbonded interactions. © 2015 Wiley Periodicals, Inc.

  17. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    PubMed Central

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2016-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (NDDO) and self-consistent density-functional tight-binding (SCC-DFTB) semiempirical models are evaluated against high-level quantum mechanical benchmark calculations for seven biologically important data sets. The data sets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling “modified divide-and-conquer” model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles within the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic probes, was problematic for all of the models considered. Analysis of the strengths and weakness of the models suggest that the creation of robust next-generation models should emphasize the improvement of relative conformational energies and barriers, and nonbond interactions. PMID:25943338

  18. The tightly bound nuclei in the liquid drop model

    NASA Astrophysics Data System (ADS)

    Sree Harsha, N. R.

    2018-05-01

    In this paper, we shall maximise the binding energy per nucleon function in the semi-empirical mass formula of the liquid drop model of the atomic nuclei to analytically prove that the mean binding energy per nucleon curve has local extrema at A ≈ 58.6960, Z ≈ 26.3908 and at A ≈ 62.0178, Z ≈ 27.7506. The Lagrange method of multipliers is used to arrive at these results, while we have let the values of A and Z take continuous fractional values. The shell model that shows why 62Ni is the most tightly bound nucleus is outlined. A brief account on stellar nucleosynthesis is presented to show why 56Fe is more abundant than 62Ni and 58Fe. We believe that the analytical proof presented in this paper can be a useful tool to the instructors to introduce the nucleus with the highest mean binding energy per nucleon.

  19. Supercomputer modelling of an electronic structure for KCl nanocrystal with edge dislocation with the use of semiempirical and nonempirical models

    NASA Astrophysics Data System (ADS)

    Timoshenko, Yu K.; Shunina, V. A.; Shashkin, A. I.

    2018-03-01

    In the present work we used semiempirical and non-empirical models for electronic states of KCl nanocrystal containing edge dislocation for comparison of the obtained results. Electronic levels and local densities of states were calculated. As a result we found a reasonable qualitative correlation of semiempirical and non-empirical results. Using the results of computer modelling we discuss the problem of localization of electronic states near the line of edge dislocation.

  20. Interpretation of atomic mass systematics in terms of the valence shells and a simple scheme for predicting masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.; Brenner, D.S.; Casten, R.F.

    1988-07-01

    A new semiempirical method that significantly simplifies atomic mass systematics and which provides a method for making mass predictions by linear interpolation is discussed in the context of the nuclear valence space. In certain regions complicated patterns of mass systematics in traditional plots versus Z, N, or isospin are consolidated and transformed into linear ones extending over long isotopic and isotonic sequences.

  1. Application of a BOSS – Gaussian Interface for QM/MM Simulations of Henry and Methyl Transfer Reactions

    PubMed Central

    Vilseck, Jonah Z.; Kostal, Jakub; Tirado-Rives, Julian; Jorgensen, William L.

    2015-01-01

    Hybrid quantum mechanics and molecular mechanics (QM/MM) computer simulations have become an indispensable tool for studying chemical and biological phenomena for systems too large to treat with quantum mechanics alone. For several decades, semi-empirical QM methods have been used in QM/MM simulations. However, with increased computational resources, the introduction of ab initio and density function methods into on-the-fly QM/MM simulations is being increasingly preferred. This adaptation can be accomplished with a program interface that tethers independent QM and MM software packages. This report introduces such an interface for the BOSS and Gaussian programs, featuring modification of BOSS to request QM energies and partial atomic charges from Gaussian. A customizable C-shell linker script facilitates the inter-program communication. The BOSS–Gaussian interface also provides convenient access to Charge Model 5 (CM5) partial atomic charges for multiple purposes including QM/MM studies of reactions. In this report, the BOSS–Gaussian interface is applied to a nitroaldol (Henry) reaction and two methyl transfer reactions in aqueous solution. Improved agreement with experiment is found by determining free-energy surfaces with MP2/CM5 QM/MM simulations than previously reported investigations employing semiempirical methods. PMID:26311531

  2. Application of a BOSS-Gaussian interface for QM/MM simulations of Henry and methyl transfer reactions.

    PubMed

    Vilseck, Jonah Z; Kostal, Jakub; Tirado-Rives, Julian; Jorgensen, William L

    2015-10-15

    Hybrid quantum mechanics and molecular mechanics (QM/MM) computer simulations have become an indispensable tool for studying chemical and biological phenomena for systems too large to treat with QM alone. For several decades, semiempirical QM methods have been used in QM/MM simulations. However, with increased computational resources, the introduction of ab initio and density function methods into on-the-fly QM/MM simulations is being increasingly preferred. This adaptation can be accomplished with a program interface that tethers independent QM and MM software packages. This report introduces such an interface for the BOSS and Gaussian programs, featuring modification of BOSS to request QM energies and partial atomic charges from Gaussian. A customizable C-shell linker script facilitates the interprogram communication. The BOSS-Gaussian interface also provides convenient access to Charge Model 5 (CM5) partial atomic charges for multiple purposes including QM/MM studies of reactions. In this report, the BOSS-Gaussian interface is applied to a nitroaldol (Henry) reaction and two methyl transfer reactions in aqueous solution. Improved agreement with experiment is found by determining free-energy surfaces with MP2/CM5 QM/MM simulations than previously reported investigations using semiempirical methods. © 2015 Wiley Periodicals, Inc.

  3. Adiabatic model and design of a translating field reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intrator, T. P.; Siemon, R. E.; Sieck, P. E.

    We apply an adiabatic evolution model to predict the behavior of a field reversed configuration (FRC) during decompression and translation, as well as during boundary compression. Semi-empirical scaling laws, which were developed and benchmarked primarily for collisionless FRCs, are expected to remain valid even for the collisional regime of FRX-L experiment. We use this approach to outline the design implications for FRX-L, the high density translated FRC experiment at Los Alamos National Laboratory. A conical theta coil is used to accelerate the FRC to the largest practical velocity so it can enter a mirror bounded compression region, where it mustmore » be a suitable target for a magnetized target fusion (MTF) implosion. FRX-L provides the physics basis for the integrated MTF plasma compression experiment at the Shiva-Star pulsed power facility at Kirtland Air Force Research Laboratory, where the FRC will be compressed inside a flux conserving cylindrical shell.« less

  4. Physical re-examination of parameters on a molecular collisions-based diffusion model for diffusivity prediction in polymers.

    PubMed

    Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo

    2011-12-29

    Molecular collisions, which are the microscopic origin of molecular diffusive motion, are affected by both the molecular surface area and the distance between molecules. Their product can be regarded as the free space around a penetrant molecule defined as the "shell-like free volume" and can be taken as a characteristic of molecular collisions. On the basis of this notion, a new diffusion theory has been developed. The model can predict molecular diffusivity in polymeric systems using only well-defined single-component parameters of molecular volume, molecular surface area, free volume, and pre-exponential factors. By consideration of the physical description of the model, the actual body moved and which neighbor molecules are collided with are the volume and the surface area of the penetrant molecular core. In the present study, a semiempirical quantum chemical calculation was used to calculate both of these parameters. The model and the newly developed parameters offer fairly good predictive ability. © 2011 American Chemical Society

  5. Surface properties for α-cluster nuclear matter

    NASA Astrophysics Data System (ADS)

    Castro, J. J.; Soto, J. R.; Yépez, E.

    2013-03-01

    We introduce a new microscopic model for α-cluster matter, which simulates the properties of ordinary nuclear matter and α-clustering in a curved surface of a large but finite nucleus. The model is based on a nested icosahedral fullerene-like multiple-shell structure, where each vertex is occupied by a microscopic α-particle. The novel aspect of this model is that it allows a consistent description of nuclear surface properties from microscopic parameters to be made without using the leptodermous expansion. In particular, we show that the calculated surface energy is in excellent agreement with the corresponding coefficient of the Bethe-Weizäcker semi-empirical mass formula. We discuss the properties of the surface α-cluster state, which resembles an ultra cold bosonic quantum gas trapped in an optical lattice. By comparing the surface and interior states we are able to estimate the α preformation probability. Possible extensions of this model to study nuclear dynamics through surface vibrations and departures from approximate sphericity are mentioned.

  6. Symmetry energies for A =24 and 48 and the USD and KB3 shell model Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kingan, A.; Neergârd, K.; Zamick, L.

    2017-12-01

    Calculations in the sd and pf shells reported some time ago by Satuła et al. [Phys. Lett. B 407, 103 (1997), 10.1016/S0370-2693(97)00711-9] are redone for an extended analysis of the results. As in the original work, we do calculations for one mass number in each shell and consider in each case the sequence of lowest energies for isospins 0, 2, and 4, briefly the symmetry spectrum. Following further the original work, we study how this spectrum changes when parts of the two-nucleon interaction are turned off. The variation of its width is explored in detail. A differential combination ɛW of the three energies was taken in the original work as a measure of the so-called Wigner term in semiempirical mass formulas, and it was found to decrease drastically when the two-nucleon interaction in the channel of zero isospin is turned off. Our analysis shows that the width of the symmetry spectrum experiences an equally drastic decrease, which can be explained qualitatively in terms of schematic approximations. We therefore suggest that the decrease of ɛW be seen mainly as a side effect of a narrowing of the symmetry spectrum rather than an independent manifestation of the two-nucleon interaction in the channel of zero isospin.

  7. Equatorial distributions of energetic ion moments in Saturn's magnetosphere using Cassini/MIMI measurements

    NASA Astrophysics Data System (ADS)

    Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.; Hamilton, D. C.

    2016-12-01

    We use kappa distribution fits to combined Charge Energy Mass Spectrometer (CHEMS, 3 to 236 keV/e), Low Energy Magnetosphere Measurements System (LEMMS, 0.024 < E < 18 MeV), and Ion Neutral Camera (INCA, 5.2 to >220 keV for H+) proton and singly ionized energetic ion spectra to calculate the >20 keV energetic ion moments inside Saturn's magnetosphere. Using a realistic magnetic field model (Khurana et al. 2007) and data from the entire Cassini mission to date (2004-2016), we map the ion measurements to the equatorial plane and via the modeled kappa distribution spectra we produce the equatorial distributions of all ion integral moments, focusing on partial density, integral intensity, partial pressure, integral energy intensity; as well as the characteristic energy (EC=IE/In), Temperature and κ-index of these ions as a function of Local Time (00:00 to 24:00 hrs) and L-Shell (5-20). A modified version of the semi-empirical Roelof and Skinner [2000] model is then utilized to retrieve the equatorial H+ and O+ pressure, density and temperature in Saturn's magnetosphere in both local time and L-shell. We find that a) although the H+ and O+ partial pressures and densities are nearly comparable, the >20 keV protons have higher number and energy intensities at all radial distances (L>5) and local times; b) the 12

  8. Werner Brandt legacy to PIXE: Past and present perspectives

    NASA Astrophysics Data System (ADS)

    Lapicki, Gregory

    2014-01-01

    Inner-shell ionization cross sections used in Particle-Induced X-ray Elemental (PIXE) analyses are routinely calculated in the ECPSSR [W. Brandt, G. Lapicki, Phys. Rev. A 23 (1981) 1717-1729] theory and/or semiempirical formulas scaled to that theory. Thirty years after the passing of Werner Brandt, with recognition of his seminal contributions to other research on positron physics and stopping power problems, the work and articles that progressed into the ECPSSR theory for inner-shell ionization by protons and heavier ions are recalled as Brandt's past legacy to the PIXE community. Applications of the ECPSSR and its evolution into the ECUSAR [G. Lapicki, Nucl. Instr. Meth. B 189 (2002) 8-20] theory over the last three decades are reviewed with perspectives on Brandt's present legacy.

  9. Normalization of time-series satellite reflectance data to a standard sun-target-sensor geometry using a semi-empirical model

    NASA Astrophysics Data System (ADS)

    Zhao, Yongguang; Li, Chuanrong; Ma, Lingling; Tang, Lingli; Wang, Ning; Zhou, Chuncheng; Qian, Yonggang

    2017-10-01

    Time series of satellite reflectance data have been widely used to characterize environmental phenomena, describe trends in vegetation dynamics and study climate change. However, several sensors with wide spatial coverage and high observation frequency are usually designed to have large field of view (FOV), which cause variations in the sun-targetsensor geometry in time-series reflectance data. In this study, on the basis of semiempirical kernel-driven BRDF model, a new semi-empirical model was proposed to normalize the sun-target-sensor geometry of remote sensing image. To evaluate the proposed model, bidirectional reflectance under different canopy growth conditions simulated by Discrete Anisotropic Radiative Transfer (DART) model were used. The semi-empirical model was first fitted by using all simulated bidirectional reflectance. Experimental result showed a good fit between the bidirectional reflectance estimated by the proposed model and the simulated value. Then, MODIS time-series reflectance data was normalized to a common sun-target-sensor geometry by the proposed model. The experimental results showed the proposed model yielded good fits between the observed and estimated values. The noise-like fluctuations in time-series reflectance data was also reduced after the sun-target-sensor normalization process.

  10. Quantum Dots' Photo-luminescence Line Shape Modeling

    NASA Astrophysics Data System (ADS)

    Hua, Muchuan; Decca, Ricardo

    Two usual phenomena observed in quantum dots (QDs) photo-luminescence (PL) spectra are line broadening and energy shift between absorption and emission peaks. They have been attributed to electron-phonon coupling and surface trapping during the PL process. Although many qualitative work describing these phenomena has been carried out, quantitative results are far less common. In this work, a semi-empirical model is introduced to simulate steady state QDs' PL processes at room temperature. It was assumed that the vast majority of radiative recombination happens from surface trapped states. Consequently, the PL line shape should be highly modulated by transition rates between states in the conduction band and between them and surface trapping states. CdSe/ZnS (core/shell) colloidal QD samples with different sizes were used to examine the model. The model was able to successfully reproduce the PL spectra of these samples even when the excitation happens within the emission spectra, giving raise to up-conversion events. This model might help understand and make more precise predictions of QDs' PL spectra and could also aid on the design of QDs' optical devices.

  11. Installation to Production of a Large-Scale General Purpose Graphics Processing Unit (GPGPU) Cluster at the U.S. Army Research Laboratory: Thufir

    DTIC Science & Technology

    2014-09-01

    semiempirical and ray-optical models. For example, the semiempirical COST-Walfisch- Ikegami model (3) estimates the received power predominantly on the...Books: Philadelphia, PA, 1965. 2. Rick, T .; Mathur, R. Fast Edge-Diffraction-Based Radio Wave Propagation Model for Graphics Hardware. Proceedings of

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekkab, M., E-mail: mohammed-nekkab@yahoo.com; LESIMS laboratory, Physics Department, Faculty of Sciences, University of Setif 1, 19000 Setif; Kahoul, A.

    The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (ω{sub K}) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (ω{sub K}) of elements in the range of 11≤Z≤30. The experimental data are interpolated by using the famous analytical function (ω{sub k}/(1−ω{sub k})){sup 1/q} (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the resultsmore » of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.« less

  13. A semi-empirical analysis of strong-motion peaks in terms of seismic source, propagation path, and local site conditions

    NASA Astrophysics Data System (ADS)

    Kamiyama, M.; Orourke, M. J.; Flores-Berrones, R.

    1992-09-01

    A new type of semi-empirical expression for scaling strong-motion peaks in terms of seismic source, propagation path, and local site conditions is derived. Peak acceleration, peak velocity, and peak displacement are analyzed in a similar fashion because they are interrelated. However, emphasis is placed on the peak velocity which is a key ground motion parameter for lifeline earthquake engineering studies. With the help of seismic source theories, the semi-empirical model is derived using strong motions obtained in Japan. In the derivation, statistical considerations are used in the selection of the model itself and the model parameters. Earthquake magnitude M and hypocentral distance r are selected as independent variables and the dummy variables are introduced to identify the amplification factor due to individual local site conditions. The resulting semi-empirical expressions for the peak acceleration, velocity, and displacement are then compared with strong-motion data observed during three earthquakes in the U.S. and Mexico.

  14. Successive smoothing algorithm for constructing the semiempirical model developed at ONERA to predict unsteady aerodynamic forces. [aeroelasticity in helicopters

    NASA Technical Reports Server (NTRS)

    Petot, D.; Loiseau, H.

    1982-01-01

    Unsteady aerodynamic methods adopted for the study of aeroelasticity in helicopters are considered with focus on the development of a semiempirical model of unsteady aerodynamic forces acting on an oscillating profile at high incidence. The successive smoothing algorithm described leads to the model's coefficients in a very satisfactory manner.

  15. Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V.

    2018-03-01

    The internal resistance of a PEM fuel cell depends on the operation conditions and on the current delivered by the cell. This work's goal is to obtain a semiempirical model able to reproduce the effect of the operation current on the internal resistance of an individual cell of a commercial PEM fuel cell stack; and to perform a statistical analysis in order to study the effect of the operation temperature and the inlet humidities on the parameters of the model. First, the internal resistance of the individual fuel cell operating in different operation conditions was experimentally measured for different DC currents, using the high frequency intercept of the impedance spectra. Then, a semiempirical model based on Springer and co-workers' model was proposed. This model is able to successfully reproduce the experimental trends. Subsequently, the curves of resistance versus DC current obtained for different operation conditions were fitted to the semiempirical model, and an analysis of variance (ANOVA) was performed in order to determine which factors have a statistically significant effect on each model parameter. Finally, a response surface method was applied in order to obtain a regression model.

  16. On the unification of nuclear-structure theory: A response to Bortignon and Broglia

    NASA Astrophysics Data System (ADS)

    Cook, Norman D.

    2016-09-01

    Nuclear-structure theory is unusual among the diverse fields of quantum physics. Although it provides a coherent description of all known isotopes on the basis of a quantum-mechanical understanding of nucleon states, nevertheless, in the absence of a fundamental theory of the nuclear force acting between nucleons, the prediction of all ground-state and excited-state nuclear binding energies is inherently semi-empirical. I suggest that progress can be made by returning to the foundational work of Eugene Wigner from 1937, where the mathematical symmetries of nucleon states were first defined. Those symmetries were later successfully exploited in the development of the independent-particle model ( IPM ˜ shell model , but the geometrical implications noted by Wigner were neglected. Here I review how the quantum-mechanical, but remarkably easy-to-understand geometrical interpretation of the IPM provides constraints on the parametrization of the nuclear force. The proposed "geometrical IPM" indicates a way forward toward the unification of nuclear-structure theory that Bortignon and Broglia have called for.

  17. Atomic Data for the K-vacancy States of Fe XXIV

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Mendoza, C.; Kallman, T. R.; Palmeri, P.

    2003-01-01

    As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of atomic data for K-vacancy states in Fe XXIV. The data sets include: (i) energy levels, line wavelengths, radiative and Auger rates; (ii) inner-shell electron impact excitation rates and (iii) fine structure inner-shell photoionization cross sections. The calculations of energy levels and radiative and Auger rates have involved a detailed study of orbital representations, core relaxation, configuration interaction, relativistic corrections, cancellation effects and semi-empirical corrections. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%. The calculations of collisional excitation and photoionization cross sections take into account the effects of radiation and spectator Auger dampings. In the former, these effects cause significant attenuation of resonances leading to a good agreement with a simpler method where resonances are excluded. In the latter, resonances converging to the K threshold display symmetric profiles of constant width that causes edge smearing.

  18. Atomic Data for the K-Vacancy States of Fe XXIV

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Mendoza, C.; Kallman, T. R.; Palmeri, P.

    2002-01-01

    As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of atomic data for K-vacancy states in Fe XXIV. The data sets include: (i) energy levels, line wavelengths, radiative and Auger rates; (ii) inner-shell electron impact excitation rates and (iii) fine structure inner-shell photoionization cross sections. The calculations of energy levels and radiative and Auger rates have involved a detailed study of orbital representations, core relaxation, configuration interaction, relativistic corrections, cancellation effects and semi-empirical corrections. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%. The calculations of collisional excitation and photoionization cross sections take into account the effects of radiation and spectator Auger dampings. In the former, these effects cause significant attenuation of resonances leading to a good agreement with a simpler method where resonances are excluded. In the latter, resonances converging to the K threshold display symmetric profiles of constant width that causes edge smearing.

  19. [Crop geometry identification based on inversion of semiempirical BRDF models].

    PubMed

    Huang, Wen-jiang; Wang, Jin-di; Mu, Xi-han; Wang, Ji-hua; Liu, Liang-yun; Liu, Qiang; Niu, Zheng

    2007-10-01

    Investigations have been made on identification of erective and horizontal varieties by bidirectional canopy reflected spectrum and semi-empirical bidirectional reflectance distribution function (BRDF) models. The qualitative effect of leaf area index (LAI) and average leaf angle (ALA) on crop canopy reflected spectrum was studied. The structure parameter sensitive index (SPEI) based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso), was defined in the present study for crop geometry identification. However, the weights associated with the kernels of semi-empirical BRDF model do not have a direct relationship with measurable biophysical parameters. Therefore, efforts have focused on trying to find the relation between these semi-empirical BRDF kernel weights and various vegetation structures. SPEI was proved to be more sensitive to identify crop geometry structures than structural scattering index (SSI) and normalized difference f-index (NDFI), SPEI could be used to distinguish erective and horizontal geometry varieties. So, it is feasible to identify horizontal and erective varieties of wheat by bidirectional canopy reflected spectrum.

  20. Modeling Alkyl p-Methoxy Cinnamate (APMC) as UV absorber based on electronic transition using semiempirical quantum mechanics ZINDO/s calculation

    NASA Astrophysics Data System (ADS)

    Salmahaminati; Azis, Muhlas Abdul; Purwiandono, Gani; Arsyik Kurniawan, Muhammad; Rubiyanto, Dwiarso; Darmawan, Arif

    2017-11-01

    In this research, modeling several alkyl p-methoxy cinnamate (APMC) based on electronic transition by using semiempirical mechanical quantum ZINDO/s calculation is performed. Alkyl cinnamates of C1 (methyl) up to C7 (heptyl) homolog with 1-5 example structures of each homolog are used as materials. Quantum chemistry-package software Hyperchem 8.0 is used to simulate the drawing of the structure, geometry optimization by a semiempirical Austin Model 1 algorithm and single point calculation employing a semiempirical ZINDO/s technique. ZINDO/s calculations use a defined criteria that singly excited -Configuration Interaction (CI) where a gap of HOMO-LUMO energy transition and maximum degeneracy level are 7 and 2, respectively. Moreover, analysis of the theoretical spectra is focused on the UV-B (290-320 nm) and UV-C (200-290 nm) area. The results show that modeling of the compound can be used to predict the type of UV protection activity depends on the electronic transition in the UV area. Modification of the alkyl homolog relatively does not change the value of wavelength absorption to indicate the UV protection activity. Alkyl cinnamate compounds are predicted as UV-B and UV-C sunscreen.

  1. New residence times of the Holocene reworked shells on the west coast of Bohai Bay, China

    NASA Astrophysics Data System (ADS)

    Shang, Zhiwen; Wang, Fu; Li, Jianfen; Marshall, William A.; Chen, Yongsheng; Jiang, Xingyu; Tian, Lizhu; Wang, Hong

    2016-01-01

    Shelly cheniers and shell-rich beds found intercalated in near-shore marine muds and sandy sediments can be used to indicate the location of ancient shorelines, and help to estimate the height of sea level. However, dating the deposition of material within cheniers and shell-rich beds is not straightforward because much of this material is transported and re-worked, creating an unknown temporal off-set, i.e., the residence time, between the death of a shell and its subsequent entombment. To quantify the residence time during the Holocene on a section of the northern Chinese coastline a total 47 shelly subsamples were taken from 17 discrete layers identified on the west coast of Bohai Bay. This material was AMS 14C dated and the calibrated ages were systematically compared. The subsamples were categorized by type as articulated and disarticulated bivalves, gastropod shells, and undifferentiated shell-hash. It was found that within most individual layers the calibrated ages of the subsamples got younger relative to the amount of apparent post-mortem re-working the material had been subject to. For examples, the 14C ages of the bivalve samples trended younger in this order: shell-hash → split shells → articulated shells. We propose that the younger subsample age determined within an individual layer will be the closest to the actual depositional age of the material dated. Using this approach at four Holocene sites we find residence times which range from 100 to 1260 cal yrs, with two average values of 600 cal yrs for the original 14C dates older than 1 ka cal BP and 100 cal yrs for the original 14C dates younger than 1 ka cal BP, respectively. Using this semi-empirical estimation of the shell residence times we have refined the existing chronology of the Holocene chenier ridges on the west coast of Bohai Bay.

  2. An efficient implementation of semiempirical quantum-chemical orthogonalization-corrected methods for excited-state dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Thiel, Walter

    2018-04-01

    We present an efficient implementation of configuration interaction with single excitations (CIS) for semiempirical orthogonalization-corrected OMx methods and standard modified neglect of diatomic overlap (MNDO)-type methods for the computation of vertical excitation energies as well as analytical gradients and nonadiabatic couplings. This CIS implementation is combined with Tully's fewest switches algorithm to enable surface hopping simulations of excited-state nonadiabatic dynamics. We introduce an accurate and efficient expression for the semiempirical evaluation of nonadiabatic couplings, which offers a significant speedup for medium-size molecules and is suitable for use in long nonadiabatic dynamics runs. As a pilot application, the semiempirical CIS implementation is employed to investigate ultrafast energy transfer processes in a phenylene ethynylene dendrimer model.

  3. An efficient implementation of semiempirical quantum-chemical orthogonalization-corrected methods for excited-state dynamics.

    PubMed

    Liu, Jie; Thiel, Walter

    2018-04-21

    We present an efficient implementation of configuration interaction with single excitations (CIS) for semiempirical orthogonalization-corrected OMx methods and standard modified neglect of diatomic overlap (MNDO)-type methods for the computation of vertical excitation energies as well as analytical gradients and nonadiabatic couplings. This CIS implementation is combined with Tully's fewest switches algorithm to enable surface hopping simulations of excited-state nonadiabatic dynamics. We introduce an accurate and efficient expression for the semiempirical evaluation of nonadiabatic couplings, which offers a significant speedup for medium-size molecules and is suitable for use in long nonadiabatic dynamics runs. As a pilot application, the semiempirical CIS implementation is employed to investigate ultrafast energy transfer processes in a phenylene ethynylene dendrimer model.

  4. Comparisons of cross-section predictions for relativistic iron and argon beams with semiempirical fragmentation models

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Tripathi, Ram K.; Khan, Ferdous

    1993-01-01

    Cross-section predictions with semi-empirical nuclear fragmentation models from the Langley Research Center and the Naval Research Laboratory are compared with experimental data for the breakup of relativistic iron and argon projectile nuclei in various targets. Both these models are commonly used to provide fragmentation cross-section inputs into galactic cosmic ray transport codes for shielding and exposure analyses. Overall, the Langley model appears to yield better agreement with the experimental data.

  5. Semi-empirical airframe noise prediction model

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Putnam, T. W.; Lasagna, P. L.; Burcham, F. W., Jr.

    1976-01-01

    A semi-empirical maximum overall sound pressure level (OASPL) airframe noise model was derived. The noise radiated from aircraft wings and flaps was modeled by using the trailing-edge diffracted quadrupole sound theory derived by Ffowcs Williams and Hall. The noise radiated from the landing gear was modeled by using the acoustic dipole sound theory derived by Curle. The model was successfully correlated with maximum OASPL flyover noise measurements obtained at the NASA Dryden Flight Research Center for three jet aircraft - the Lockheed JetStar, the Convair 990, and the Boeing 747 aircraft.

  6. Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Joonam; Appiah, Williams Agyei; Byun, Seoungwoo; Jin, Dahee; Ryou, Myung-Hyun; Lee, Yong Min

    2017-10-01

    To overcome the limitation of simple empirical cycle life models based on only equivalent circuits, we attempt to couple a conventional empirical capacity loss model with Newman's porous composite electrode model, which contains both electrochemical reaction kinetics and material/charge balances. In addition, an electrolyte depletion function is newly introduced to simulate a sudden capacity drop at the end of cycling, which is frequently observed in real lithium-ion batteries (LIBs). When simulated electrochemical properties are compared with experimental data obtained with 20 Ah-level graphite/LiFePO4 LIB cells, our semi-empirical model is sufficiently accurate to predict a voltage profile having a low standard deviation of 0.0035 V, even at 5C. Additionally, our model can provide broad cycle life color maps under different c-rate and depth-of-discharge operating conditions. Thus, this semi-empirical model with an electrolyte depletion function will be a promising platform to predict long-term cycle lives of large-format LIB cells under various operating conditions.

  7. Modeling Optical Spectra of Large Organic Systems Using Real-Time Propagation of Semiempirical Effective Hamiltonians.

    PubMed

    Ghosh, Soumen; Andersen, Amity; Gagliardi, Laura; Cramer, Christopher J; Govind, Niranjan

    2017-09-12

    We present an implementation of a time-dependent semiempirical method (INDO/S) in NWChem using real-time (RT) propagation to address, in principle, the entire spectrum of valence electronic excitations. Adopting this model, we study the UV/vis spectra of medium-sized systems such as P3B2 and f-coronene, and in addition much larger systems such as ubiquitin in the gas phase and the betanin chromophore in the presence of two explicit solvents (water and methanol). RT-INDO/S provides qualitatively and often quantitatively accurate results when compared with RT- TDDFT or experimental spectra. Even though we only consider the INDO/S Hamiltonian in this work, our implementation provides a framework for performing electron dynamics in large systems using semiempirical Hartree-Fock Hamiltonians in general.

  8. Modeling Optical Spectra of Large Organic Systems Using Real-Time Propagation of Semiempirical Effective Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Soumen; Andersen, Amity; Gagliardi, Laura

    2017-08-16

    We present an implementation of a time-dependent semiempirical method (INDO/S) in NWChem using real-time (RT) propagation to address, in principle, the entire spectrum of valence electronic excitations. Adopting this model, we study the UV-visible spectra of medium-sized systems like P3B2, f-coronene, and in addition much larger systems like ubiquitin in the gas phase and the betanin chromophore in the presence of two explicit solvents (water and methanol). RT-INDO/S provides qualitatively and indeed often quantitatively accurate results when compared with RT- TDDFT or experimental spectra. While demonstrated here for INDO/S in particular, our implementation provides a framework for performing electron dynamicsmore » in large systems using semiempirical Hartree-Fock (HF) Hamiltonians in general.« less

  9. Soil Moisture Estimate Under Forest Using a Semi-Empirical Model at P-Band

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Saatchi, Sassan; Jaruwatanadilok, Sermsak

    2013-01-01

    Here we present the result of a semi-empirical inversion model for soil moisture retrieval using the three backscattering coefficients: sigma(sub HH), sigma(sub VV) and sigma(sub HV). In this paper we focus on the soil moisture estimate and use the biomass as an ancillary parameter estimated automatically from the algorithm and used as a validation parameter, We will first remind the model analytical formulation. Then we will sow some results obtained with real SAR data and compare them to ground estimates.

  10. A comparison of three radiation models for the calculation of nozzle arcs

    NASA Astrophysics Data System (ADS)

    Dixon, C. M.; Yan, J. D.; Fang, M. T. C.

    2004-12-01

    Three radiation models, the semi-empirical model based on net emission coefficients (Zhang et al 1987 J. Phys. D: Appl. Phys. 20 386-79), the five-band P1 model (Eby et al 1998 J. Phys. D: Appl. Phys. 31 1578-88), and the method of partial characteristics (Aubrecht and Lowke 1994 J. Phys. D: Appl.Phys. 27 2066-73, Sevast'yanenko 1979 J. Eng. Phys. 36 138-48), are used to calculate the radiation transfer in an SF6 nozzle arc. The temperature distributions computed by the three models are compared with the measurements of Leseberg and Pietsch (1981 Proc. 4th Int. Symp. on Switching Arc Phenomena (Lodz, Poland) pp 236-40) and Leseberg (1982 PhD Thesis RWTH Aachen, Germany). It has been found that all three models give similar distributions of radiation loss per unit time and volume. For arcs burning in axially dominated flow, such as arcs in nozzle flow, the semi-empirical model and the P1 model give accurate predictions when compared with experimental results. The prediction by the method of partial characteristics is poorest. The computational cost is the lowest for the semi-empirical model.

  11. A Semiempirical Model for Sigma-Phase Precipitation in Duplex and Superduplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Ferro, P.; Bonollo, F.

    2012-04-01

    Sigma phase is known to reduce the mechanical properties and corrosion resistance of duplex and superduplex stainless steels. Therefore, heat treatments and welding must be carefully performed so as to avoid the appearance of such a detrimental phase, and clearly, models suitable to faithfully predict σ-phase precipitation are very useful tools. Most fully analytical models are based on thermodynamic calculations whose agreement with experimental results is not always good, so that such models should be used for qualitative purposes only. Alternatively, it is possible to exploit semiempirical models, where time-temperature-transformation (TTT) diagrams are empirically determined for a given alloy and the continuous-cooling-transformation (CCT) diagram is calculated from the TTT diagram. In this work, a semiempirical model for σ-phase precipitation in duplex and superduplex stainless steels, under both isothermal and unisothermal conditions, is proposed. Model parameters are calculated from empirical data and CCT diagrams are obtained by means of the additivity rule, whereas experimental measurements for model validation are taken from the literature. This model gives a satisfactory estimation of σ-phase precipitates during both isothermal aging and the continuous cooling process.

  12. Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Kaza, Krishna Rao V.

    1992-01-01

    A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

  13. Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

    NASA Technical Reports Server (NTRS)

    Mahajan, A. J.; Kaza, K. R. V.; Dowell, E. H.

    1993-01-01

    A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

  14. SEASONAL AND REGIONAL VARIATIONS OF PRIMARY AND SECONDARY ORGANIC AEROSOLS OVER THE CONTINENTAL UNITED STATES: SEMI-EMPIRICAL ESTIMATES AND MODEL EVALUATION

    EPA Science Inventory

    Seasonal and regional variations of primary (OCpri) and secondary (OCsec) organic carbon aerosols across the continental U.S. for the year 2001 were examined by a semi-empirical technique using observed OC and elemental carbon (EC) data from 142 routine moni...

  15. NUCFRG2: An evaluation of the semiempirical nuclear fragmentation database

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Cucinotta, F. A.; Shinn, J. L.; Badavi, F. F.; Chun, S. Y.; Norbury, J. W.; Zeitlin, C. J.; Heilbronn, L.; Miller, J.

    1995-01-01

    A semiempirical abrasion-ablation model has been successful in generating a large nuclear database for the study of high charge and energy (HZE) ion beams, radiation physics, and galactic cosmic ray shielding. The cross sections that are generated are compared with measured HZE fragmentation data from various experimental groups. A research program for improvement of the database generator is also discussed.

  16. Estimation of Boreal Forest Biomass Using Spaceborne SAR Systems

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan; Moghaddam, Mahta

    1995-01-01

    In this paper, we report on the use of a semiempirical algorithm derived from a two layer radar backscatter model for forest canopies. The model stratifies the forest canopy into crown and stem layers, separates the structural and biometric attributes of the canopy. The structural parameters are estimated by training the model with polarimetric SAR (synthetic aperture radar) data acquired over homogeneous stands with known above ground biomass. Given the structural parameters, the semi-empirical algorithm has four remaining parameters, crown biomass, stem biomass, surface soil moisture, and surface rms height that can be estimated by at least four independent SAR measurements. The algorithm has been used to generate biomass maps over the entire images acquired by JPL AIRSAR and SIR-C SAR systems. The semi-empirical algorithms are then modified to be used by single frequency radar systems such as ERS-1, JERS-1, and Radarsat. The accuracy. of biomass estimation from single channel radars is compared with the case when the channels are used together in synergism or in a polarimetric system.

  17. New Evaluated Semi-Empirical Formula Using Optical Model for 14-15 MeV ( n, t) Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aydın, A.; Bölükdemir, M. H.; Kaplan, A.; Okuducu, Ş.

    2009-12-01

    In the next century the world will face the need for new energy sources. Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Achieving acceptable performance for a fusion power system in the areas of economics, safety and environmental acceptability, is critically dependent on performance of the blanket and diverter systems which are the primary heat recovery, plasma purification, and tritium breeding systems. Tritium self-sufficiency must be maintained for a commercial power plant. The hybrid reactor is a combination of the fusion and fission processes. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So working out the systematics of ( n, t) reaction cross-sections are of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study, we have calculated non-elastic cross-sections by using optical model for ( n, t) reactions at 14-15 MeV energy. We have investigated the excitation function character and reaction Q-values depending on the asymmetry term effect for the ( n, t) reaction cross-sections. We have obtained new coefficients for the ( n, t) reaction cross-sections. We have suggested semi-empirical formulas including optical model nonelastic effects by fitting two parameters for the ( n, t) reaction cross-sections at 14-15 MeV. We have discussed the odd-even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross-sections formulas ( n, t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even-even, even-odd and odd-even for ( n, t) reactions cross-sections. The obtained cross-section formulas with new coefficients have been discussed and compared with the available experimental data.

  18. Measurement of the equilibrium charge state distributions of Ni, Co, and Cu beams in Mo at 2 MeV/u: Review and evaluation of the relevant semi-empirical models

    NASA Astrophysics Data System (ADS)

    Gastis, P.; Perdikakis, G.; Robertson, D.; Almus, R.; Anderson, T.; Bauder, W.; Collon, P.; Lu, W.; Ostdiek, K.; Skulski, M.

    2016-04-01

    Equilibrium charge state distributions of stable 60Ni, 59Co, and 63Cu beams passing through a 1 μm thick Mo foil were measured at beam energies of 1.84 MeV/u, 2.09 MeV/u, and 2.11 MeV/u respectively. A 1-D position sensitive Parallel Grid Avalanche Counter detector (PGAC) was used at the exit of a spectrograph magnet, enabling us to measure the intensity of several charge states simultaneously. The number of charge states measured for each beam constituted more than 99% of the total equilibrium charge state distribution for that element. Currently, little experimental data exists for equilibrium charge state distributions for heavy ions with 19 ≲Zp,Zt ≲ 54 (Zp and Zt, are the projectile's and target's atomic numbers respectively). Hence the success of the semi-empirical models in predicting typical characteristics of equilibrium CSDs (mean charge states and distribution widths), has not been thoroughly tested at the energy region of interest. A number of semi-empirical models from the literature were evaluated in this study, regarding their ability to reproduce the characteristics of the measured charge state distributions. The evaluated models were selected from the literature based on whether they are suitable for the given range of atomic numbers and on their frequent use by the nuclear physics community. Finally, an attempt was made to combine model predictions for the mean charge state, the distribution width and the distribution shape, to come up with a more reliable model. We discuss this new ;combinatorial; prescription and compare its results with our experimental data and with calculations using the other semi-empirical models studied in this work.

  19. Predictions on the modes of decay of even Z superheavy isotopes within the range 104 ≤ Z ≤ 136

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Nithya, C.

    2018-01-01

    The decay modes and half lives of all the even Z isotopes of superheavy elements within the range 104 ≤ Z ≤ 136 have been predicted by comparing the alpha decay half-lives with the spontaneous fission half-lives. The Coulomb and proximity potential model for deformed nuclei (CPPMDN) and the shell-effect-dependent formula of Santhosh et al. are used to calculate the alpha half-lives and spontaneous fission half-lives respectively. For theoretical comparison the alpha decay half-lives are also calculated using Coulomb and proximity potential model (CPPM), the Viola-Seaborg-Sobiczewski semi-empirical (VSS) relation, the universal (UNIV) curve of Poenaru et al., the analytical formula of Royer and the universal decay law (UDL) of Qi et al. Another tool used for the evaluation of spontaneous fission half-lives is the semi-empirical formula of Xu et al. The nuclei with alpha decay half-lives less than spontaneous fission half-lives will survive fission and hence decay through alpha emission. The predicted half lives and decay modes are compared with the available experimental results. The one-proton and two-proton separation energies of all the isotopes are calculated to find nuclei which lie beyond the proton drip line. Among 1119 even Z nuclei within the range 104 ≤ Z ≤ 136, 164 nuclei show sequential alpha emission followed by subsequent spontaneous fission. Since the isotopes decay through alpha decay chain and the half-lives are in measurable range, these isotopes are predicted to be synthesized and detected in laboratory via alpha decay. 2 nuclei will decay by alpha decay followed by proton emission, 54 nuclei show full alpha chains, 642 nuclei will decay through spontaneous fission, 166 nuclei exhibit proton decay and 91 isotopes are found to be stable against alpha decay. All the isotopes are tabulated according to their decay modes. The study is intended to enhance further experimental investigations in superheavy region.

  20. Prediction of Very High Reynolds Number Compressible Skin Friction

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1998-01-01

    Flat plate skin friction calculations over a range of Mach numbers from 0.4 to 3.5 at Reynolds numbers from 16 million to 492 million using a Navier Stokes method with advanced turbulence modeling are compared with incompressible skin friction coefficient correlations. The semi-empirical correlation theories of van Driest; Cope; Winkler and Cha; and Sommer and Short T' are used to transform the predicted skin friction coefficients of solutions using two algebraic Reynolds stress turbulence models in the Navier-Stokes method PAB3D. In general, the predicted skin friction coefficients scaled well with each reference temperature theory though, overall the theory by Sommer and Short appeared to best collapse the predicted coefficients. At the lower Reynolds number 3 to 30 million, both the Girimaji and Shih, Zhu and Lumley turbulence models predicted skin-friction coefficients within 2% of the semi-empirical correlation skin friction coefficients. At the higher Reynolds numbers of 100 to 500 million, the turbulence models by Shih, Zhu and Lumley and Girimaji predicted coefficients that were 6% less and 10% greater, respectively, than the semi-empirical coefficients.

  1. Analysis of an unswept propfan blade with a semiempirical dynamic stall model

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Kaza, K. R. V.

    1989-01-01

    The time history response of a propfan wind tunnel model with dynamic stall is studied analytically. The response obtained from the analysis is compared with available experimental data. The governing equations of motion are formulated in terms of blade normal modes which are calculated using the COSMIC-NASTRAN computer code. The response analysis considered the blade plunging and pitching motions. The lift, drag and moment coefficients for angles of attack below the static stall angle are obtained from a quasi-steady theory. For angles above static stall angles, a semiempirical dynamic stall model based on a correction to angle of attack is used to obtain lift, drag and moment coefficients. Using these coefficients, the aerodynamic forces are calculated at a selected number of strips, and integrated to obtain the total generalized forces. The combined momentum-blade element theory is used to calculate the induced velocity. The semiempirical stall model predicted a limit cycle oscillation near the setting angle at which large vibratory stresses were observed in an experiment. The predicted mode and frequency of oscillation also agreed with those measured in the experiment near the setting angle.

  2. SPECTRAL data-based estimation of soil heat flux

    USGS Publications Warehouse

    Singh, Ramesh K.; Irmak, A.; Walter-Shea, Elizabeth; Verma, S.B.; Suyker, A.E.

    2011-01-01

    Numerous existing spectral-based soil heat flux (G) models have shown wide variation in performance for maize and soybean cropping systems in Nebraska, indicating the need for localized calibration and model development. The objectives of this article are to develop a semi-empirical model to estimate G from a normalized difference vegetation index (NDVI) and net radiation (Rn) for maize (Zea mays L.) and soybean (Glycine max L.) fields in the Great Plains, and present the suitability of the developed model to estimate G under similar and different soil and management conditions. Soil heat fluxes measured in both irrigated and rainfed fields in eastern and south-central Nebraska were used for model development and validation. An exponential model that uses NDVI and Rn was found to be the best to estimate G based on r2 values. The effect of geographic location, crop, and water management practices were used to develop semi-empirical models under four case studies. Each case study has the same exponential model structure but a different set of coefficients and exponents to represent the crop, soil, and management practices. Results showed that the semi-empirical models can be used effectively for G estimation for nearby fields with similar soil properties for independent years, regardless of differences in crop type, crop rotation, and irrigation practices, provided that the crop residue from the previous year is more than 4000 kg ha-1. The coefficients calibrated from particular fields can be used at nearby fields in order to capture temporal variation in G. However, there is a need for further investigation of the models to account for the interaction effects of crop rotation and irrigation. Validation at an independent site having different soil and crop management practices showed the limitation of the semi-empirical model in estimating G under different soil and environment conditions.

  3. Semiempirical Quantum Chemistry Model for the Lanthanides: RM1 (Recife Model 1) Parameters for Dysprosium, Holmium and Erbium

    PubMed Central

    Filho, Manoel A. M.; Dutra, José Diogo L.; Rocha, Gerd B.; Simas, Alfredo M.; Freire, Ricardo O.

    2014-01-01

    Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes’ coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models. PMID:24497945

  4. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Bannwarth, Christoph

    2016-08-07

    The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the wellmore » established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first benchmarked for vertical excitation energies of open- and closed-shell systems in comparison to other semi-empirical methods and applied to exemplary problems in electronic spectroscopy. As side products of the development, a robust and efficient valence electron TB method for the accurate determination of atomic charges as well as a more accurate calculation scheme of dipole rotatory strengths within the Tamm-Dancoff approximation is proposed.« less

  5. THE CHROMOSPHERIC SOLAR LIMB BRIGHTENING AT RADIO, MILLIMETER, SUB-MILLIMETER, AND INFRARED WAVELENGTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De la Luz, V.

    2016-07-10

    Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the autoconsistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-local thermodynamic equilibrium was computed for hydrogen, electron density, and H{sup −}. In order to solve the radiative transfermore » equation, a three-dimensional (3D) geometry was employed to determine the ray paths, and Bremsstrahlung, H{sup −}, and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high-resolution observations at the limb obtained by Clark. We found that there are differences between the observed and computed solar radii of 12,000 km at 20 GHz, 5000 km at 100 GHz, and 1000 km at 3 THz for both semi-empirical models. A difference of 8000 km in the solar radii was found when comparing our results against the heights obtained from H α observations of spicules-off at the solar limb. We conclude that the solar radii cannot be reproduced by VALC and C7 semi-empirical models at radio—infrared wavelengths. Therefore, the structures in the high chromosphere provide a better measurement of the solar radii and their limb brightening as shown in previous investigations.« less

  6. Temperature-driven global sea-level variability in the Common Era.

    PubMed

    Kopp, Robert E; Kemp, Andrew C; Bittermann, Klaus; Horton, Benjamin P; Donnelly, Jeffrey P; Gehrels, W Roland; Hay, Carling C; Mitrovica, Jerry X; Morrow, Eric D; Rahmstorf, Stefan

    2016-03-15

    We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0-700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000-1400 CE is associated with ∼ 0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability [Formula: see text]) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely ([Formula: see text]) that 20th century GSL would have risen by less than 51% of the observed [Formula: see text] cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change's Fifth Assessment Report.

  7. A semi-empirical model for the estimation of maximum horizontal displacement due to liquefaction-induced lateral spreading

    USGS Publications Warehouse

    Faris, Allison T.; Seed, Raymond B.; Kayen, Robert E.; Wu, Jiaer

    2006-01-01

    During the 1906 San Francisco Earthquake, liquefaction-induced lateral spreading and resultant ground displacements damaged bridges, buried utilities, and lifelines, conventional structures, and other developed works. This paper presents an improved engineering tool for the prediction of maximum displacement due to liquefaction-induced lateral spreading. A semi-empirical approach is employed, combining mechanistic understanding and data from laboratory testing with data and lessons from full-scale earthquake field case histories. The principle of strain potential index, based primary on correlation of cyclic simple shear laboratory testing results with in-situ Standard Penetration Test (SPT) results, is used as an index to characterized the deformation potential of soils after they liquefy. A Bayesian probabilistic approach is adopted for development of the final predictive model, in order to take fullest advantage of the data available and to deal with the inherent uncertainties intrinstiic to the back-analyses of field case histories. A case history from the 1906 San Francisco Earthquake is utilized to demonstrate the ability of the resultant semi-empirical model to estimate maximum horizontal displacement due to liquefaction-induced lateral spreading.

  8. Temperature-driven global sea-level variability in the Common Era

    PubMed Central

    Kopp, Robert E.; Kemp, Andrew C.; Bittermann, Klaus; Horton, Benjamin P.; Donnelly, Jeffrey P.; Gehrels, W. Roland; Hay, Carling C.; Mitrovica, Jerry X.; Morrow, Eric D.; Rahmstorf, Stefan

    2016-01-01

    We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0–700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000–1400 CE is associated with ∼0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability P≥0.95) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely (P=0.95) that 20th century GSL would have risen by less than 51% of the observed 13.8±1.5 cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report. PMID:26903659

  9. The rate of bubble growth in a superheated liquid in pool boiling

    NASA Astrophysics Data System (ADS)

    Abdollahi, Mohammad Reza; Jafarian, Mehdi; Jamialahmadi, Mohammad

    2017-12-01

    A semi-empirical model for the estimation of the rate of bubble growth in nucleate pool boiling is presented, considering a new equation to estimate the temperature history of the bubble in the bulk of liquid. The conservation equations of energy, mass and momentum have been firstly derived and solved analytically. The present analytical model of the bubble growth predicts that the radius of the bubble grows as a function of √{t}.{\\operatorname{erf}}( N√{t}) , while so far the bubble growth rate has been mainly correlated to √{t} in the previous studies. In the next step, the analytical solutions were used to develop a new semi-empirical equation. To achieve this, firstly the analytical solution were non-dimensionalised and then the experimental data, available in the literature, were applied to tune the dimensionless coefficients appeared in the dimensionless equation. Finally, the reliability of the proposed semi-empirical model was assessed through comparison of the model predictions with the available experimental data in the literature, which were not applied in the tuning of the dimensionless parameters of the model. The comparison of the model predictions with other proposed models in the literature was also performed. These comparisons show that this model enables more accurate predictions than previously proposed models with a deviation of less than 10% in a wide range of operating conditions.

  10. On the bathochromic shift of the absorption by astaxanthin in crustacyanin: a quantum chemical study

    NASA Astrophysics Data System (ADS)

    Durbeej, Bo; Eriksson, Leif A.

    2003-06-01

    The structural origin of the bathochromic shift assumed by the electronic absorption spectrum of protein-bound astaxanthin, the carotenoid that upon binding to crustacyanin is responsible for the blue colouration of lobster shell, is investigated by means of quantum chemical methods. The calculations suggest that the bathochromic shift is largely due to one of the astaxanthin C4 keto groups being hydrogen-bonded to a histidine residue of the surrounding protein, and that the effect of this histidine is directly dependent on its protonation state. Out of the different methodologies (CIS, TD-DFT, and ZINDO/S) employed to calculate wavelengths of maximum absorption, the best agreement with experimental data is obtained using the semiempirical ZINDO/S method.

  11. Non-empirical Prediction of the Photophysical and Magnetic Properties of Systems with Open d- and f-Shells Based on Combined Ligand Field and Density Functional Theory (LFDFT).

    PubMed

    Daul, Claude

    2014-09-01

    Despite the important growth of ab initio and computational techniques, ligand field theory in molecular science or crystal field theory in condensed matter offers the most intuitive way to calculate multiplet energy levels arising from systems with open shells d and/or f electrons. Over the past decade we have developed a ligand field treatment of inorganic molecular modelling taking advantage of the dominant localization of the frontier orbitals within the metal-sphere. This feature, which is observed in any inorganic coordination compound, especially if treated by Density Functional Theory calculation, allows the determination of the electronic structure and properties with a surprising good accuracy. In ligand field theory, the theoretical concepts consider only a single atom center; and treat its interaction with the chemical environment essentially as a perturbation. Therefore success in the simple ligand field theory is no longer questionable, while the more accurate molecular orbital theory does in general over-estimate the metal-ligand covalence, thus yields wave functions that are too delocalized. Although LF theory has always been popular as a semi-empirical method when dealing with molecules of high symmetry e.g. cubic symmetry where the number of parameters needed is reasonably small (3 or 5), this is no more the case for molecules without symmetry and involving both an open d- and f-shell (# parameters ∼90). However, the combination of LF theory and Density Functional (DF) theory that we introduced twenty years ago can easily deal with complex molecules of any symmetry with two and more open shells. The accuracy of these predictions from 1(st) principles achieves quite a high accuracy (<5%) in terms of states energies. Hence, this approach is well suited to predict the magnetic and photo-physical properties arbitrary molecules and materials prior to their synthesis, which is the ultimate goal of each computational chemist. We will illustrate the performance of LFDFT for the design of phosphors that produces light similar to our sun and predict the magnetic anisotropy energy of single ion magnets.

  12. Semi-Empirical Model to Estimate the Solubility of CO2 NaCl Brine in Conditions Representative of CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Mohammadian, E.; Hamidi, H.; Azdarpour, A.

    2018-05-01

    CO2 sequestration is considered as one of the most anticipated methods to mitigate CO2 concentration in the atmosphere. Solubility mechanism is one of the most important and sophisticated mechanisms by which CO2 is rendered immobile while it is being injected into aquifers. A semi-empirical, easy to use model was developed to calculate the solubility of CO2 in NaCl brines with thermodynamic conditions (pressure, temperature) and salinity gradients representative CO2 sequestration in the Malay basin. The model was compared to the previous more sophisticated models and a good consistency was found among the data obtained using the two models. A Sensitivity analysis was also conducted on the model to test its performance beyond its limits.

  13. The SOA formation model combined with semiempirical quantum chemistry for predicting UV-Vis absorption of secondary organic aerosols.

    PubMed

    Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R

    2012-07-07

    A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.

  14. Semi-Empirical Modeling of SLD Physics

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Potapczuk, Mark G.

    2004-01-01

    The effects of supercooled large droplets (SLD) in icing have been an area of much interest in recent years. As part of this effort, the assumptions used for ice accretion software have been reviewed. A literature search was performed to determine advances from other areas of research that could be readily incorporated. Experimental data in the SLD regime was also analyzed. A semi-empirical computational model is presented which incorporates first order physical effects of large droplet phenomena into icing software. This model has been added to the LEWICE software. Comparisons are then made to SLD experimental data that has been collected to date. Results will be presented for the comparison of water collection efficiency, ice shape and ice mass.

  15. Ionization of biomolecular targets by ion impact: input data for radiobiological applications

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2013-06-01

    In this work we review and further develop a semiempirical model recently proposed for the ion impact ionization of complex biological media. The model is based on the dielectric formalism, and makes use of a semiempirical parametrization of the optical energy-loss function of bioorganic compounds, allowing the calculation of single and total ionization cross sections and related quantities for condensed biological targets, such as liquid water, DNA and its components, proteins, lipids, carbohydrates or cell constituents. The model shows a very good agreement with experimental data for water, adenine and uracil, and allows the comparison of the ionization efficiency of different biological targets, and also the average kinetic energy of the ejected secondary electrons.

  16. The microwave propagation and backscattering characteristics of vegetation. [wheat, sorghum, soybeans and corn fields in Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Wilson, E. A.

    1984-01-01

    A semi-empirical model for microwave backscatter from vegetation was developed and a complete set of canope attenuation measurements as a function of frequency, incidence angle and polarization was acquired. The semi-empirical model was tested on corn and sorghum data over the 8 to 35 GHz range. The model generally provided an excellent fit to the data as measured by the correlation and rms error between observed and predicted data. The model also predicted reasonable values of canopy attenuation. The attenuation data was acquired over the 1.6 to 10.2 GHz range for the linear polarizations at approximately 20 deg and 50 deg incidence angles for wheat and soybeans. An attenuation model is proposed which provides reasonable agreement with the measured data.

  17. Semiempirical models of H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, C.E.; Redi, M.; Boyd, D.

    1985-05-01

    The H-mode transition can lead to a rapid increase in tokamak plasma confinement. A semiempirical transport model was derived from global OH and L-mode confinement scalings and then applied to simulation of H-mode discharges. The radial diffusivities in the model also depend on local density and pressure gradients and satisfy an appropriate dimensional constraint. Examples are shown of the application of this and similar models to the detailed simulation of two discharges which exhibit an H-mode transition. The models reproduce essential features of plasma confinement in the ohmic heating, low and high confinement phases of these discharges. In particular, themore » evolution of plasma energy content through the H-mode transition can be reproduced without any sudden or ad hoc modification of the plasma transport formulation.« less

  18. Semi-empirical "leaky-bucket" model of laser-driven x-ray cavities

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Landen, O. L.; Divol, L.; LePape, S.; Michel, P.; Town, R. P. J.; Hall, G.; Widmann, K.; Moore, A.

    2017-04-01

    A semi-empirical analytical model is shown to approximately describe the energy balance in a laser-driven x-ray cavity, such as a hohlraum, for general laser pulse-shapes. Agreement between the model and measurements relies on two scalar parameters, one characterizes the efficiency of x-ray generation for a given laser power and the other represents a characteristic power-loss rate. These parameters, once obtained through estimation or optimization for a particular hohlraum design, can be used to predict either the x-ray flux or the coupled laser power time-history in terms of other quantities for similar hohlraum designs. The value of the model is that it can be used as an approximate "first-look" at hohlraum energy balance prior to a more detailed radiation hydrodynamic modeling.

  19. Neural network identification of aircraft nonlinear aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Egorchev, M. V.; Tiumentsev, Yu V.

    2018-02-01

    The simulation problem for the controlled aircraft motion is considered in the case of imperfect knowledge of the modeling object and its operating conditions. The work aims to develop a class of modular semi-empirical dynamic models that combine the capabilities of theoretical and neural network modeling. We consider the use of semi-empirical neural network models for solving the problem of identifying aerodynamic characteristics of an aircraft. We also discuss the formation problem for a representative set of data characterizing the behavior of a simulated dynamic system, which is one of the critical tasks in the synthesis of ANN-models. The effectiveness of the proposed approach is demonstrated using a simulation example of the aircraft angular motion and identifying the corresponding coefficients of aerodynamic forces and moments.

  20. Semiempirical Dissipation Source Functions for Ocean Waves. Part 1: Definition, Calibration, and Validation

    DTIC Science & Technology

    2010-09-01

    REPORT DATE (DD-MM- YYYY) 02-03-2011 2. REPORT TYPE Journal Article 3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE Semiempirical Dissipation...Spectral wave modeling has been performed for the "£_ <• , r. , r , r M> l . en • .u u i .• rll ;imi nl .K. •ihr (l’ last...wind output). The nonlinear scattering term Sn\\ repre- sents all processes that lead to an exchange of wave en - ergy between the different spectral

  1. A semi-empirical model for the complete orientation dependence of the growth rate for vapor phase epitaxy - Chloride VPE of GaAs

    NASA Technical Reports Server (NTRS)

    Seidel-Salinas, L. K.; Jones, S. H.; Duva, J. M.

    1992-01-01

    A semi-empirical model has been developed to determine the complete crystallographic orientation dependence of the growth rate for vapor phase epitaxy (VPE). Previous researchers have been able to determine this dependence for a limited range of orientations; however, our model yields relative growth rate information for any orientation. This model for diamond and zincblende structure materials is based on experimental growth rate data, gas phase diffusion, and surface reactions. Data for GaAs chloride VPE is used to illustrate the model. The resulting growth rate polar diagrams are used in conjunction with Wulff constructions to simulate epitaxial layer shapes as grown on patterned substrates. In general, this model can be applied to a variety of materials and vapor phase epitaxy systems.

  2. Computational Validation of a Two-Dimensional Semi-Empirical Model for Inductive Coupling in a Conical Pulsed Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.

  3. Semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow

    NASA Astrophysics Data System (ADS)

    Cao, M.-H.; Jiang, H.-K.; Chin, J.-S.

    1982-04-01

    An improved flat-fan spray model is used for the semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow. The model assumes that, due to the aerodynamic force of the high-velocity cross air flow, the injected fuel immediately forms a flat-fan liquid sheet perpendicular to the cross flow. Once the droplets have been formed, the trajectories of individual droplets determine fuel distribution downstream. Comparison with test data shows that the proposed model accurately predicts liquid fuel distribution at any point downstream of a plain orifice injector under high-velocity, low-temperature uniform cross-stream air flow over a wide range of conditions.

  4. Parametrization of an Orbital-Based Linear-Scaling Quantum Force Field for Noncovalent Interactions

    PubMed Central

    2015-01-01

    We parametrize a linear-scaling quantum mechanical force field called mDC for the accurate reproduction of nonbonded interactions. We provide a new benchmark database of accurate ab initio interactions between sulfur-containing molecules. A variety of nonbond databases are used to compare the new mDC method with other semiempirical, molecular mechanical, ab initio, and combined semiempirical quantum mechanical/molecular mechanical methods. It is shown that the molecular mechanical force field significantly and consistently reproduces the benchmark results with greater accuracy than the semiempirical models and our mDC model produces errors twice as small as the molecular mechanical force field. The comparisons between the methods are extended to the docking of drug candidates to the Cyclin-Dependent Kinase 2 protein receptor. We correlate the protein–ligand binding energies to their experimental inhibition constants and find that the mDC produces the best correlation. Condensed phase simulation of mDC water is performed and shown to produce O–O radial distribution functions similar to TIP4P-EW. PMID:24803856

  5. Optical Spectrum of the Compact Planetary Nebula IC 5117

    NASA Technical Reports Server (NTRS)

    Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.; Lee, Seong-Jae; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    High resolution spectroscopic data of the very compact planetary nebula IC 5117 are obtained in the optical wavelengths, 3700A - 10050A, with the Hamilton Echelle Spectrograph at Lick Observatory, and which have been analyzed along with the International Ultraviolet Explorer (IUE) UV archive data. Although a diagnostic diagram shows significant density and temperature fluctuations, our analysis indicates that the nebular gas may be represented by a homogeneous shell of extremely high density gas, N(sub epsilon) approx. 90 000 /cu cm. The average electron temperatures, e.g. indicated by the [OIII] diagnostics, are around 12 000 K. We construct a photoionization model to represent most of the observed line intensities, and the physical condition of this compact nebulosity. Based on the semi-empirical ionization correction approach, and model indications, we derived the elemental abundances: He, C, N, O, Ne, and Ar appear to be normal or marginally depleted compared to the average planetary nebula, while the remaining elements, S, Cl, and K appear to be enhanced. IC 5117 is perhaps a very young compact planetary nebula, slightly more evolved than the other well-known compact planetary nebula IC 4997. The central stellar temperature is likely to be around 120 000 K, evolved from a C-rich AGB progenitor.

  6. Developing a Suitable Model for Water Uptake for Biodegradable Polymers Using Small Training Sets.

    PubMed

    Valenzuela, Loreto M; Knight, Doyle D; Kohn, Joachim

    2016-01-01

    Prediction of the dynamic properties of water uptake across polymer libraries can accelerate polymer selection for a specific application. We first built semiempirical models using Artificial Neural Networks and all water uptake data, as individual input. These models give very good correlations (R (2) > 0.78 for test set) but very low accuracy on cross-validation sets (less than 19% of experimental points within experimental error). Instead, using consolidated parameters like equilibrium water uptake a good model is obtained (R (2) = 0.78 for test set), with accurate predictions for 50% of tested polymers. The semiempirical model was applied to the 56-polymer library of L-tyrosine-derived polyarylates, identifying groups of polymers that are likely to satisfy design criteria for water uptake. This research demonstrates that a surrogate modeling effort can reduce the number of polymers that must be synthesized and characterized to identify an appropriate polymer that meets certain performance criteria.

  7. Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing Platform.

    PubMed

    Wu, Xin; Koslowski, Axel; Thiel, Walter

    2012-07-10

    In this work, we demonstrate that semiempirical quantum chemical calculations can be accelerated significantly by leveraging the graphics processing unit (GPU) as a coprocessor on a hybrid multicore CPU-GPU computing platform. Semiempirical calculations using the MNDO, AM1, PM3, OM1, OM2, and OM3 model Hamiltonians were systematically profiled for three types of test systems (fullerenes, water clusters, and solvated crambin) to identify the most time-consuming sections of the code. The corresponding routines were ported to the GPU and optimized employing both existing library functions and a GPU kernel that carries out a sequence of noniterative Jacobi transformations during pseudodiagonalization. The overall computation times for single-point energy calculations and geometry optimizations of large molecules were reduced by one order of magnitude for all methods, as compared to runs on a single CPU core.

  8. Application of the Semi-Empirical Force-Limiting Approach for the CoNNeCT SCAN Testbed

    NASA Technical Reports Server (NTRS)

    Staab, Lucas D.; McNelis, Mark E.; Akers, James C.; Suarez, Vicente J.; Jones, Trevor M.

    2012-01-01

    The semi-empirical force-limiting vibration method was developed and implemented for payload testing to limit the structural impedance mismatch (high force) that occurs during shaker vibration testing. The method has since been extended for use in analytical models. The Space Communications and Navigation Testbed (SCAN Testbed), known at NASA as, the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT), project utilized force-limiting testing and analysis following the semi-empirical approach. This paper presents the steps in performing a force-limiting analysis and then compares the results to test data recovered during the CoNNeCT force-limiting random vibration qualification test that took place at NASA Glenn Research Center (GRC) in the Structural Dynamics Laboratory (SDL) December 19, 2010 to January 7, 2011. A compilation of lessons learned and considerations for future force-limiting tests is also included.

  9. Small field detector correction factors kQclin,Qmsr (fclin,fmsr) for silicon-diode and diamond detectors with circular 6 MV fields derived using both empirical and numerical methods.

    PubMed

    O'Brien, D J; León-Vintró, L; McClean, B

    2016-01-01

    The use of radiotherapy fields smaller than 3 cm in diameter has resulted in the need for accurate detector correction factors for small field dosimetry. However, published factors do not always agree and errors introduced by biased reference detectors, inaccurate Monte Carlo models, or experimental errors can be difficult to distinguish. The aim of this study was to provide a robust set of detector-correction factors for a range of detectors using numerical, empirical, and semiempirical techniques under the same conditions and to examine the consistency of these factors between techniques. Empirical detector correction factors were derived based on small field output factor measurements for circular field sizes from 3.1 to 0.3 cm in diameter performed with a 6 MV beam. A PTW 60019 microDiamond detector was used as the reference dosimeter. Numerical detector correction factors for the same fields were derived based on calculations from a geant4 Monte Carlo model of the detectors and the Linac treatment head. Semiempirical detector correction factors were derived from the empirical output factors and the numerical dose-to-water calculations. The PTW 60019 microDiamond was found to over-respond at small field sizes resulting in a bias in the empirical detector correction factors. The over-response was similar in magnitude to that of the unshielded diode. Good agreement was generally found between semiempirical and numerical detector correction factors except for the PTW 60016 Diode P, where the numerical values showed a greater over-response than the semiempirical values by a factor of 3.7% for a 1.1 cm diameter field and higher for smaller fields. Detector correction factors based solely on empirical measurement or numerical calculation are subject to potential bias. A semiempirical approach, combining both empirical and numerical data, provided the most reliable results.

  10. The effects of time-varying observation errors on semi-empirical sea-level projections

    DOE PAGES

    Ruckert, Kelsey L.; Guan, Yawen; Bakker, Alexander M. R.; ...

    2016-11-30

    Sea-level rise is a key driver of projected flooding risks. The design of strategies to manage these risks often hinges on projections that inform decision-makers about the surrounding uncertainties. Producing semi-empirical sea-level projections is difficult, for example, due to the complexity of the error structure of the observations, such as time-varying (heteroskedastic) observation errors and autocorrelation of the data-model residuals. This raises the question of how neglecting the error structure impacts hindcasts and projections. Here, we quantify this effect on sea-level projections and parameter distributions by using a simple semi-empirical sea-level model. Specifically, we compare three model-fitting methods: a frequentistmore » bootstrap as well as a Bayesian inversion with and without considering heteroskedastic residuals. All methods produce comparable hindcasts, but the parametric distributions and projections differ considerably based on methodological choices. In conclusion, our results show that the differences based on the methodological choices are enhanced in the upper tail projections. For example, the Bayesian inversion accounting for heteroskedasticity increases the sea-level anomaly with a 1% probability of being equaled or exceeded in the year 2050 by about 34% and about 40% in the year 2100 compared to a frequentist bootstrap. These results indicate that neglecting known properties of the observation errors and the data-model residuals can lead to low-biased sea-level projections.« less

  11. The effects of time-varying observation errors on semi-empirical sea-level projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckert, Kelsey L.; Guan, Yawen; Bakker, Alexander M. R.

    Sea-level rise is a key driver of projected flooding risks. The design of strategies to manage these risks often hinges on projections that inform decision-makers about the surrounding uncertainties. Producing semi-empirical sea-level projections is difficult, for example, due to the complexity of the error structure of the observations, such as time-varying (heteroskedastic) observation errors and autocorrelation of the data-model residuals. This raises the question of how neglecting the error structure impacts hindcasts and projections. Here, we quantify this effect on sea-level projections and parameter distributions by using a simple semi-empirical sea-level model. Specifically, we compare three model-fitting methods: a frequentistmore » bootstrap as well as a Bayesian inversion with and without considering heteroskedastic residuals. All methods produce comparable hindcasts, but the parametric distributions and projections differ considerably based on methodological choices. In conclusion, our results show that the differences based on the methodological choices are enhanced in the upper tail projections. For example, the Bayesian inversion accounting for heteroskedasticity increases the sea-level anomaly with a 1% probability of being equaled or exceeded in the year 2050 by about 34% and about 40% in the year 2100 compared to a frequentist bootstrap. These results indicate that neglecting known properties of the observation errors and the data-model residuals can lead to low-biased sea-level projections.« less

  12. [Crop geometry identification based on inversion of semiempirical BRDF models].

    PubMed

    Zhao, Chun-jiang; Huang, Wen-jiang; Mu, Xu-han; Wang, Jin-diz; Wang, Ji-hua

    2009-09-01

    With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.

  13. HZETRN: Description of a free-space ion and nucleon transport and shielding computer program

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Cucinotta, Francis A.; Shinn, Judy L.; Badhwar, Gautam D.; Silberberg, R.; Tsao, C. H.; Townsend, Lawrence W.; Tripathi, Ram K.

    1995-01-01

    The high-charge-and energy (HZE) transport computer program HZETRN is developed to address the problems of free-space radiation transport and shielding. The HZETRN program is intended specifically for the design engineer who is interested in obtaining fast and accurate dosimetric information for the design and construction of space modules and devices. The program is based on a one-dimensional space-marching formulation of the Boltzmann transport equation with a straight-ahead approximation. The effect of the long-range Coulomb force and electron interaction is treated as a continuous slowing-down process. Atomic (electronic) stopping power coefficients with energies above a few A MeV are calculated by using Bethe's theory including Bragg's rule, Ziegler's shell corrections, and effective charge. Nuclear absorption cross sections are obtained from fits to quantum calculations and total cross sections are obtained with a Ramsauer formalism. Nuclear fragmentation cross sections are calculated with a semiempirical abrasion-ablation fragmentation model. The relation of the final computer code to the Boltzmann equation is discussed in the context of simplifying assumptions. A detailed description of the flow of the computer code, input requirements, sample output, and compatibility requirements for non-VAX platforms are provided.

  14. Gas Generator Feedline Orifice Sizing Methodology: Effects of Unsteadiness and Non-Axisymmetric Flow

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; West, Jeffrey S.

    2011-01-01

    Engine LH2 and LO2 gas generator feed assemblies were modeled with computational fluid dynamics (CFD) methods at 100% rated power level, using on-center square- and round-edge orifices. The purpose of the orifices is to regulate the flow of fuel and oxidizer to the gas generator, enabling optimal power supply to the turbine and pump assemblies. The unsteady Reynolds-Averaged Navier-Stokes equations were solved on unstructured grids at second-order spatial and temporal accuracy. The LO2 model was validated against published experimental data and semi-empirical relationships for thin-plate orifices over a range of Reynolds numbers. Predictions for the LO2 square- and round-edge orifices precisely match experiment and semi-empirical formulas, despite complex feedline geometry whereby a portion of the flow from the engine main feedlines travels at a right-angle through a smaller-diameter pipe containing the orifice. Predictions for LH2 square- and round-edge orifice designs match experiment and semi-empirical formulas to varying degrees depending on the semi-empirical formula being evaluated. LO2 mass flow rate through the square-edge orifice is predicted to be 25 percent less than the flow rate budgeted in the original engine balance, which was subsequently modified. LH2 mass flow rate through the square-edge orifice is predicted to be 5 percent greater than the flow rate budgeted in the engine balance. Since CFD predictions for LO2 and LH2 square-edge orifice pressure loss coefficients, K, both agree with published data, the equation for K has been used to define a procedure for orifice sizing.

  15. Structure, ferroelectric ordering, and semiempirical quantum calculations of lanthanide based metal-organic framework: [Nd(C4H5O6)(C4H4O6)][3H2O

    NASA Astrophysics Data System (ADS)

    Ahmad, Bhat Zahoor; Want, Basharat

    2016-04-01

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C4H5O6)(C4H4O6)][3H2O]. X-ray crystal structure analyses reveal that it crystallizes in the P41212 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O ≈ 2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau- Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.

  16. A table of semiempirical gf values. Part 1: Wavelengths: 5.2682 nm to 272.3380 nm. [to calculate line-blanketed model atmospheres for solar and stellar spectra

    NASA Technical Reports Server (NTRS)

    Kurucz, R. L.; Peytremann, E.

    1975-01-01

    The gf values for 265,587 atomic lines selected from the line data used to calculate line-blanketed model atmospheres are tabulated. These data are especially useful for line identification and spectral synthesis in solar and stellar spectra. The gf values are calculated semiempirically by using scaled Thomas-Fermi-Dirac radial wavefunctions and eigenvectors found through least-squares fits to observed energy levels. Included in the calculation are the first five or six stages of ionization for sequences up through nickel. Published gf values are included for elements heavier than nickel. The tabulation is restricted to lines with wavelengths less than 10 micrometers.

  17. Application of a semi-empirical model for the evaluation of transmission properties of barite mortar.

    PubMed

    Santos, Josilene C; Tomal, Alessandra; Mariano, Leandro; Costa, Paulo R

    2015-06-01

    The aim of this study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. A semi-empirical model was used for the evaluation of transmission properties of this material. Since ambient dose equivalent, H(⁎)(10), is the radiation quantity adopted by IAEA for dose assessment, the variation of the H(⁎)(10) as a function of barite mortar thickness was calculated using primary experimental spectra. A CdTe detector was used for the measurement of these spectra. The resulting spectra were adopted for estimating the optimized thickness of protective barrier needed for shielding an area in an X-ray imaging facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    NASA Technical Reports Server (NTRS)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  19. A semi-empirical model for the formation and depletion of the high burnup structure in UO 2

    DOE PAGES

    Pizzocri, D.; Cappia, F.; Luzzi, L.; ...

    2017-01-31

    In the rim zone of UO 2 nuclear fuel pellets, the combination of high burnup and low temperature drives a microstructural change, leading to the formation of the high burnup structure (HBS). In this work, we propose a semi-empirical model to describe the formation of the HBS, which embraces the polygonisation/recrystallization process and the depletion of intra-granular fission gas, describing them as inherently related. To this end, we per-formed grain-size measurements on samples at radial positions in which the restructuring was incomplete. Moreover, based on these new experimental data, we assume an exponential reduction of the average grain size withmore » local effective burnup, paired with a simultaneous depletion of intra-granular fission gas driven by diffusion. The comparison with currently used models indicates the applicability of the herein developed model within integral fuel performance codes.« less

  20. Influence of the Atmospheric Model on Hanle Diagnostics

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryohko; Uitenbroek, Han; Goto, Motoshi; Iida, Yusuke; Tsuneta, Saku

    2018-05-01

    We clarify the uncertainty in the inferred magnetic field vector via the Hanle diagnostics of the hydrogen Lyman-α line when the stratification of the underlying atmosphere is unknown. We calculate the anisotropy of the radiation field with plane-parallel semi-empirical models under the nonlocal thermal equilibrium condition and derive linear polarization signals for all possible parameters of magnetic field vectors based on an analytical solution of the atomic polarization and Hanle effect. We find that the semi-empirical models of the inter-network region (FAL-A) and network region (FAL-F) show similar degrees of anisotropy in the radiation field, and this similarity results in an acceptable inversion error ( e.g., {˜} 40 G instead of 50 G in field strength and {˜} 100° instead of 90° in inclination) when FAL-A and FAL-F are swapped. However, the semi-empirical models of FAL-C (averaged quiet-Sun model including both inter-network and network regions) and FAL-P (plage regions) yield an atomic polarization that deviates from all other models, which makes it difficult to precisely determine the magnetic field vector if the correct atmospheric model is not known ( e.g., the inversion error is much larger than 40% of the field strength; {>} 70 G instead of 50 G). These results clearly demonstrate that the choice of model atmosphere is important for Hanle diagnostics. As is well known, one way to constrain the average atmospheric stratification is to measure the center-to-limb variation of the linear polarization signals. The dependence of the center-to-limb variations on the atmospheric model is also presented in this paper.

  1. Semiempirical methods for computing turbulent flows

    NASA Technical Reports Server (NTRS)

    Belov, I. A.; Ginzburg, I. P.

    1986-01-01

    Two semiempirical theories which provide a basis for determining the turbulent friction and heat exchange near a wall are presented: (1) the Prandtl-Karman theory, and (2) the theory utilizing an equation for the energy of turbulent pulsations. A comparison is made between exact numerical methods and approximate integral methods for computing the turbulent boundary layers in the presence of pressure, blowing, or suction gradients. Using the turbulent flow around a plate as an example, it is shown that, when computing turbulent flows with external turbulence, it is preferable to construct a turbulence model based on the equation for energy of turbulent pulsations.

  2. The Hugoniot adiabat of crystalline copper based on molecular dynamics simulation and semiempirical equation of state

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Maklashova, I. V.; Mel'nikov, I. N.

    2018-01-01

    The molecular dynamics (MD) method was used for prediction of properties of copper under shock-wave compression and clarification of the melting region of crystal copper. The embedded atom potential was used for the interatomic interaction. Parameters of Hugonoit adiabats of solid and liquid phases of copper calculated by the semiempirical Grüneisen equation of state are consistent with the results of MD simulations and experimental data. MD simulation allows to visualize the structure of cooper on the atomistic level. The analysis of the radial distribution function and the standard deviation by MD modeling allows to predict the melting area behind the shock wave front. These MD simulation data are required to verify the wide-range equation of state of metals. The melting parameters of copper based on MD simulations and semiempirical equations of state are consistent with experimental and theoretical data, including the region of the melting point of copper.

  3. Component-based model to predict aerodynamic noise from high-speed train pantographs

    NASA Astrophysics Data System (ADS)

    Latorre Iglesias, E.; Thompson, D. J.; Smith, M. G.

    2017-04-01

    At typical speeds of modern high-speed trains the aerodynamic noise produced by the airflow over the pantograph is a significant source of noise. Although numerical models can be used to predict this they are still very computationally intensive. A semi-empirical component-based prediction model is proposed to predict the aerodynamic noise from train pantographs. The pantograph is approximated as an assembly of cylinders and bars with particular cross-sections. An empirical database is used to obtain the coefficients of the model to account for various factors: incident flow speed, diameter, cross-sectional shape, yaw angle, rounded edges, length-to-width ratio, incoming turbulence and directivity. The overall noise from the pantograph is obtained as the incoherent sum of the predicted noise from the different pantograph struts. The model is validated using available wind tunnel noise measurements of two full-size pantographs. The results show the potential of the semi-empirical model to be used as a rapid tool to predict aerodynamic noise from train pantographs.

  4. Modeling and Real-Time Process Monitoring of Organometallic Chemical Vapor Deposition of III-V Phosphides and Nitrides at Low and High Pressure

    NASA Technical Reports Server (NTRS)

    Bachmann, K. J.; Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Sukidi, N.; McCall, S.

    1999-01-01

    The purpose of this paper is to review modeling and real-time monitoring by robust methods of reflectance spectroscopy of organometallic chemical vapor deposition (OMCVD) processes in extreme regimes of pressure. The merits of p-polarized reflectance spectroscopy under the conditions of chemical beam epitaxy (CBE) and of internal transmission spectroscopy and principal angle spectroscopy at high pressure are assessed. In order to extend OMCVD to materials that exhibit large thermal decomposition pressure at their optimum growth temperature we have designed and built a differentially-pressure-controlled (DCP) OMCVD reactor for use at pressures greater than or equal to 6 atm. We also describe a compact hard-shell (CHS) reactor for extending the pressure range to 100 atm. At such very high pressure the decomposition of source vapors occurs in the vapor phase, and is coupled to flow dynamics and transport. Rate constants for homogeneous gas phase reactions can be predicted based on a combination of first principles and semi-empirical calculations. The pressure dependence of unimolecular rate constants is described by RRKM theory, but requires variational and anharmonicity corrections not included in presently available calculations with the exception of ammonia decomposition. Commercial codes that include chemical reactions and transport exist, but do not adequately cover at present the kinetics of heteroepitaxial crystal growth.

  5. Mathematical and computational modeling simulation of solar drying Systems

    USDA-ARS?s Scientific Manuscript database

    Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...

  6. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    PubMed

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  7. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  8. The importance of radiation for semiempirical water-use efficiency models

    NASA Astrophysics Data System (ADS)

    Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus

    2017-06-01

    Water-use efficiency (WUE) is a fundamental property for the coupling of carbon and water cycles in plants and ecosystems. Existing model formulations predicting this variable differ in the type of response of WUE to the atmospheric vapor pressure deficit of water (VPD). We tested a representative WUE model on the ecosystem scale at 110 eddy covariance sites of the FLUXNET initiative by predicting evapotranspiration (ET) based on gross primary productivity (GPP) and VPD. We found that introducing an intercept term in the formulation increases model performance considerably, indicating that an additional factor needs to be considered. We demonstrate that this intercept term varies seasonally and we subsequently associate it with radiation. Replacing the constant intercept term with a linear function of global radiation was found to further improve model predictions of ET. Our new semiempirical ecosystem WUE formulation indicates that, averaged over all sites, this radiation term accounts for up to half (39-47 %) of transpiration. These empirical findings challenge the current understanding of water-use efficiency on the ecosystem scale.

  9. A semiempirical correlation between enthalpy of vaporization and saturation concentration for organic aerosol.

    PubMed

    Epstein, Scott A; Riipinen, Ilona; Donahue, Neil M

    2010-01-15

    To model the temperature-induced partitioning of semivolatile organics in laboratory experiments or atmospheric models, one must know the appropriate heats of vaporization. Current treatments typically assume a constant value of the heat of vaporization or else use specific values from a small set of surrogate compounds. With published experimental vapor-pressure data from over 800 organic compounds, we have developed a semiempirical correlation between the saturation concentration (C*, microg m(-3)) and the heat of vaporization (deltaH(VAP), kJ mol(-1)) for organics in the volatility basis set. Near room temperature, deltaH(VAP) = -11 log(10)C(300)(*) + 129. Knowledge of the relationship between C* and deltaH(VAP) constrains a free parameter in thermodenuder data analysis. A thermodenuder model using our deltaH(VAP) values agrees well with thermal behavior observed in laboratory experiments.

  10. Semiempirical UNO-CAS and UNO-CI: method and applications in nanoelectronics.

    PubMed

    Dral, Pavlo O; Clark, Timothy

    2011-10-20

    Unrestricted Natural Orbital-Complete Active Space Configuration Interaction, abbreviated as UNO-CAS, has been implemented for NDDO-based semiempirical molecular-orbital (MO) theory. A computationally more economic technique, UNO-CIS, in which we use a configuration interaction (CI) calculation with only single excitations (CIS) to calculate excited states, has also been implemented and tested. The class of techniques in which unrestricted natural orbitals (UNOs) are used as the reference for CI calculations is denoted UNO-CI. Semiempirical UNO-CI gives good results for the optical band gaps of organic semiconductors such as polyynes and polyacenes, which are promising materials for nanoelectronics. The results of these semiempirical UNO-CI techniques are generally in better agreement with experiment than those obtained with the corresponding conventional semiempirical CI methods and comparable to or better than those obtained with far more computationally expensive methods such as time-dependent density-functional theory. We also show that symmetry breaking in semiempirical UHF calculations is very useful for predicting the diradical character of organic compounds in the singlet spin state.

  11. Combined semi-empirical screening and design of experiments (DOE) approach to identify candidate formulations of a lyophilized live attenuated tetravalent viral vaccine candidate.

    PubMed

    Patel, Ashaben; Erb, Steven M; Strange, Linda; Shukla, Ravi S; Kumru, Ozan S; Smith, Lee; Nelson, Paul; Joshi, Sangeeta B; Livengood, Jill A; Volkin, David B

    2018-05-24

    A combination experimental approach, utilizing semi-empirical excipient screening followed by statistical modeling using design of experiments (DOE), was undertaken to identify stabilizing candidate formulations for a lyophilized live attenuated Flavivirus vaccine candidate. Various potential pharmaceutical compounds used in either marketed or investigative live attenuated viral vaccine formulations were first identified. The ability of additives from different categories of excipients, either alone or in combination, were then evaluated for their ability to stabilize virus against freeze-thaw, freeze-drying, and accelerated storage (25°C) stresses by measuring infectious virus titer. An exploratory data analysis and predictive DOE modeling approach was subsequently undertaken to gain a better understanding of the interplay between the key excipients and stability of virus as well as to determine which combinations were interacting to improve virus stability. The lead excipient combinations were identified and tested for stabilizing effects using a tetravalent mixture of viruses in accelerated and real time (2-8°C) stability studies. This work demonstrates the utility of combining semi-empirical excipient screening and DOE experimental design strategies in the formulation development of lyophilized live attenuated viral vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. CHARACTERIZING THE DISPERSIVE STATE OF CONVECTIVE BOUNDARY LAYERS FOR APPLIED DISPERSION MODELING

    EPA Science Inventory

    Estimates from semiempirical models that characterize surface heat flux, mixing depth, and profiles of temperature, wind, and turbulence are compared with observations from atmospheric field Studies conducted in Colorado, Illinois, Indiana, and Minnesota. In addition, for wind an...

  13. Analysis of the Structures and Properties of (GaSb)n (n = 4-9) Clusters through Density Functional Theory.

    PubMed

    Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De; Wan, Jian Guo

    2016-07-07

    An optimization strategy combining global semiempirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (GaSb)n clusters up to n = 9. The growth pattern of the clusters differed from those of previously reported group III-V binary clusters. A cagelike configuration was found for cluster sizes n ≤ 7. The structure of (GaSb)6 deviated from that of other III-V clusters. Competition existed between core-shell and hollow cage structures of (GaSb)7. Novel noncagelike structures were energetically preferred over the cages for the (GaSb)8 and (GaSb)9 clusters. Electronic properties, such as vertical ionization potential, adiabatic electron affinities, HOMO-LUMO gaps, and average on-site charges on Ga or Sb atoms, as well as binding energies, were computed.

  14. ON HIGHLY CLUMPED MAGNETIC WIND MODELS FOR COOL EVOLVED STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, G. M.

    2010-09-10

    Recently, it has been proposed that the winds of non-pulsating and non-dusty K and M giants and supergiants may be driven by some form of magnetic pressure acting on highly clumped wind material. While many researchers believe that magnetic processes are responsible for cool evolved stellar winds, existing MHD and Alfven wave-driven wind models have magnetic fields that are essentially radial and tied to the photosphere. The clumped magnetic wind scenario is quite different in that the magnetic flux is also being carried away from the star with the wind. We test this clumped wind hypothesis by computing continuum radiomore » fluxes from the {zeta} Aur semiempirical model of Baade et al., which is based on wind-scattered line profiles. The radio continuum opacity is proportional to the electron density squared, while the line scattering opacity is proportional to the gas density. This difference in proportionality provides a test for the presence of large clumping factors. We derive the radial distribution of clump factors (CFs) for {zeta} Aur by comparing the nonthermal pressures required to produce the semiempirical velocity distribution with the expected thermal pressures. The CFs are {approx}5 throughout the sub-sonic inner wind region and then decline outward. These implied clumping factors lead to excess radio emission at 2.0 cm, while at 6.2 cm it improves agreement with the smooth unclumped model. Smaller clumping factors of {approx}2 lead to better overall agreement but also increase the discrepancy at 2 cm. These results do not support the magnetic clumped wind hypothesis and instead suggest that inherent uncertainties in the underlying semiempirical model probably dominate uncertainties in predicted radio fluxes. However, new ultraviolet line and radio continuum observations are needed to test the new generations of inhomogeneous magnetohydrodynamic wind models.« less

  15. A semi-empirical model for estimating surface solar radiation from satellite data

    NASA Astrophysics Data System (ADS)

    Janjai, Serm; Pattarapanitchai, Somjet; Wattan, Rungrat; Masiri, Itsara; Buntoung, Sumaman; Promsen, Worrapass; Tohsing, Korntip

    2013-05-01

    This paper presents a semi-empirical model for estimating surface solar radiation from satellite data for a tropical environment. The model expresses solar irradiance as a semi-empirical function of cloud index, aerosol optical depth, precipitable water, total column ozone and air mass. The cloud index data were derived from MTSAT-1R satellite, whereas the aerosol optical depth data were obtained from MODIS/Terra satellite. The total column ozone data were derived from OMI/AURA satellite and the precipitable water data were obtained from NCEP/NCAR. A five year period (2006-2010) of these data and global solar irradiance measured at four sites in Thailand namely, Chiang Mai (18.78 °N, 98.98 °E), Nakhon Pathom (13.82 °N, 100.04 °E), Ubon Ratchathani (15.25 °N, 104.87 °E) and Songkhla (7.20 °N, 100.60 °E), were used to derive the coefficients of the model. To evaluate its performance, the model was used to calculate solar radiation at four sites in Thailand namely, Phisanulok (16.93 °N, 100.24 °E), Kanchanaburi (14.02 °N, 99.54 °E), Nongkhai (17.87 °N, 102.72 °E) and Surat Thani (9.13 °N, 99.15 °E) and the results were compared with solar radiation measured at these sites. It was found that the root mean square difference (RMSD) between measured and calculated values of hourly solar radiation was in the range of 25.5-29.4%. The RMSD is reduced to 10.9-17.0% for the case of monthly average hourly radiation. The proposed model has the advantage in terms of the simplicity for applications and reasonable accuracy of the results.

  16. Semiempirical and ab initio Calculations of Charged Species Used in the Physical Organic Chemistry Course.

    ERIC Educational Resources Information Center

    Gilliom, Richard D.

    1989-01-01

    Concentrates on the semiempirical methods MINDO/3, MNDO, and AMI available in the program AMPAC from the Quantum Chemistry Program Exchange at Indiana University. Uses charged ions in the teaching of computational chemistry. Finds that semiempirical methods are accurate enough for the general use of the bench chemist. (MVL)

  17. Near transferable phenomenological n-body potentials for noble metals

    NASA Astrophysics Data System (ADS)

    Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David

    2017-09-01

    We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.

  18. Near transferable phenomenological n-body potentials for noble metals.

    PubMed

    Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David

    2017-09-06

    We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.

  19. Atmospheric lifetimes and ozone depletion potentials of methyl bromide (CH3Br) and dibromomethane (CH2Br2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellouki, A.; Talukdar, R.K.; Schmoltner, A.

    The rate coefficients for the reactions of OH radical with CH3Br and CH2Br2 were measured as functions of temperature using the laser photolysis - laser induced fluorescence method. This data was incorporated into a semiempirical model (Solomon et al., 1992) and a 2D model to calculate the steady-state ozone depletion potentials (ODP) and atmospheri lifetimes, tau, with greatly improved accuracy as compared to earlier studies. The calculated ODPs and tau are 0.65 and 1.7 years and 0.17 and 0.41 years for CH3Br and CH2Br2, respectively, using the semiempirical model. These lifetimes agree well with those calculated using a 2D model.more » This study better quantifies the ODPs and tau of these species which are needed inputs for discussion of possible regulation of human emissions currently under international considerations. 29 refs.« less

  20. Prediction of Particle Concentration using Traffic Emission Model

    NASA Astrophysics Data System (ADS)

    He, Hong-di; Lu, Jane Wei-zhen

    2010-05-01

    Vehicle emission is regarded as one of major sources of air pollution in urban area. Much attention has been addressed on it especially at traffic intersection. At intersection, vehicles frequently stop with idling engine during the red time and speed-up rapidly in the green time, which result in a high velocity fluctuation and produce extra pollutants to the surrounding air. To deeply understand such process, a semi-empirical model for predicting the changing effect of traffic flow patterns on particulate concentrations is proposed. The performance of the model is evaluated using the correlation coefficient and other parameters. From the results, the correlation coefficients in morning and afternoon data were found to be 0.86 an 0.73 respectively, which implies that the semi-empirical model for morning and afternoon data are 86% and 73% error free. Due to less affected by possible factors such as traffic volume and movement of pedestrian, the dispersion of the particulate matter in the morning is smaller and then contributes to higher performance than that in the afternoon.

  1. Modeling the influence of variable pH on the transport of zinc in a contaminated aquifer using semiempirical surface complexation models

    USGS Publications Warehouse

    Kent, D.B.; Abrams, R.H.; Davis, J.A.; Coston, J.A.; LeBlanc, D.R.

    2000-01-01

    Land disposal of sewage effluent resulted in contamination of a sand and gravel aquifer (Cape Cod, Massachusetts) with zinc (Zn). The distribution of Zn was controlled by pH‐dependent adsorption; the Zn extended 15 m into the 30‐m‐thick sewage plume within approximately 100 m of the source but only 2–4 m into the plume between 100 and 400 m downgradient. A two‐dimensional vertical cross section model coupling groundwater flow with solute transport and equilibrium adsorption is used to simulate the influence of pH on Zn transport. Adsorption is described using semiempirical surface complexation models (SCM) by writing chemical reactions between dissolved Zn and mineral surface sites. SCM parameters were determined in independent laboratory experiments. A 59‐year simulation with a one‐site SCM describes the influence of pH on Zn transport well, with greater mobility at the low pH values near the upper sewage plume boundary than at the higher pH values deeper in the sewage‐contaminated zone. Simulation with a two‐site SCM describes both the sharpness and approximate location of the leading edge of the Zn‐contaminated region. Temporal variations in pH of incoming groundwater can result in large increases in Zn concentration and mobility. The influence of spatial and temporal variability in pH on adsorption and transport of Zn was accomplished much more easily with the semiempirical SCM approach than could be achieved with distribution coefficients or adsorption isotherms.

  2. Structure and electronic absorption spectra of nematogenic alkoxycinnamic acids - a comparative study based on semiempirical and DFT methods.

    PubMed

    Praveen, Pogula Lakshmi; Ojha, Durga Prasad

    2012-04-01

    Structure of nematogenic p-n-Alkoxy cinnamic acids (nOCAC) with various alkyl chain carbon atoms (n = 2, 4, 6, 8) has been optimized using density functional B3LYP with 6-31+G (d) basis set using crystallographic geometry as input. Using the optimized geometry, electronic structure of the molecules has been evaluated using the semiempirical methods and DFT calculations. Molecular charge distribution and phase stability of these systems have been analyzed based on Mulliken and Löwdin population analysis. The electronic absorption spectra of nOCAC molecules have been simulated by employing DFT method, semiempirical CNDO/S and INDO/S parameterizations. Two types of calculations have been performed for model systems containing single and double molecules of nOCAC. UV-Visible spectra have been calculated for all single molecules. The UV stability of the molecules has been discussed in light of the electronic transition oscillator strength (f). The dimer complexes of higher homologues (n = 6, 8) have also been reported to enable the comparison between single and double molecules.

  3. a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images

    NASA Astrophysics Data System (ADS)

    Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei

    2018-04-01

    Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.

  4. Monthly hydroclimatology of the continental United States

    NASA Astrophysics Data System (ADS)

    Petersen, Thomas; Devineni, Naresh; Sankarasubramanian, A.

    2018-04-01

    Physical/semi-empirical models that do not require any calibration are of paramount need for estimating hydrological fluxes for ungauged sites. We develop semi-empirical models for estimating the mean and variance of the monthly streamflow based on Taylor Series approximation of a lumped physically based water balance model. The proposed models require mean and variance of monthly precipitation and potential evapotranspiration, co-variability of precipitation and potential evapotranspiration and regionally calibrated catchment retention sensitivity, atmospheric moisture uptake sensitivity, groundwater-partitioning factor, and the maximum soil moisture holding capacity parameters. Estimates of mean and variance of monthly streamflow using the semi-empirical equations are compared with the observed estimates for 1373 catchments in the continental United States. Analyses show that the proposed models explain the spatial variability in monthly moments for basins in lower elevations. A regionalization of parameters for each water resources region show good agreement between observed moments and model estimated moments during January, February, March and April for mean and all months except May and June for variance. Thus, the proposed relationships could be employed for understanding and estimating the monthly hydroclimatology of ungauged basins using regional parameters.

  5. A simple semi-empirical technique for apportioning the impact of roadways on air quality in an urban neighbourhood

    NASA Astrophysics Data System (ADS)

    Elangasinghe, M. A.; Dirks, K. N.; Singhal, N.; Costello, S. B.; Longley, I.; Salmond, J. A.

    2014-02-01

    Air pollution from the transport sector has a marked effect on human health, so isolating the pollutant contribution from a roadway is important in understanding its impact on the local neighbourhood. This paper proposes a novel technique based on a semi-empirical air pollution model to quantify the impact from a roadway on the air quality of a local neighbourhood using ambient records of a single air pollution monitor. We demonstrate the proposed technique using a case study, in which we quantify the contribution from a major highway with respect to the local background concentration in Auckland, New Zealand. Comparing the diurnal variation of the model-separated background contribution with real measurements from a site upwind of the highway shows that the model estimates are reliable. Amongst all of the pollutants considered, the best estimations of the background were achieved for nitrogen oxides. Although the multi-pronged approach worked well for predominantly vehicle-related pollutants, it could not be used effectively to isolate emissions of PM10 due to the complex and less predictable influence of natural sources (such as marine aerosols). The proposed approach is useful in situations where ambient records from an upwind background station are not available (as required by other techniques) and is potentially transferable to situations such as intersections and arterial roads. Applying this technique to longer time series could help to understand the changes in pollutant concentrations from the road and background sources for different emission scenarios, for different years or seasons. Modelling results also show the potential of such a hybrid semi-empirical models to contribute to our understanding of the physical parameters determining air quality and to validate emissions inventory data.

  6. Comparing two-zone models of dust exposure.

    PubMed

    Jones, Rachael M; Simmons, Catherine E; Boelter, Fred W

    2011-09-01

    The selection and application of mathematical models to work tasks is challenging. Previously, we developed and evaluated a semi-empirical two-zone model that predicts time-weighted average (TWA) concentrations (Ctwa) of dust emitted during the sanding of drywall joint compound. Here, we fit the emission rate and random air speed variables of a mechanistic two-zone model to testing event data and apply and evaluate the model using data from two field studies. We found that the fitted random air speed values and emission rate were sensitive to (i) the size of the near-field and (ii) the objective function used for fitting, but this did not substantially impact predicted dust Ctwa. The mechanistic model predictions were lower than the semi-empirical model predictions and measured respirable dust Ctwa at Site A but were within an acceptable range. At Site B, a 10.5 m3 room, the mechanistic model did not capture the observed difference between PBZ and area Ctwa. The model predicted uniform mixing and predicted dust Ctwa up to an order of magnitude greater than was measured. We suggest that applications of the mechanistic model be limited to contexts where the near-field volume is very small relative to the far-field volume.

  7. Prediction of PM 10 concentrations at urban traffic intersections using semi-empirical box modelling with instantaneous velocity and acceleration

    NASA Astrophysics Data System (ADS)

    He, Hong-di; Lu, Wei-Zhen; Xue, Yu

    2009-12-01

    At urban traffic intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly during the green-light period. The changes of driving patterns (i.e., idle, acceleration, deceleration and cruising patterns) generally produce uncertain emission. Additionally, the movement of pedestrians and the influence of wind further result in the random dispersion of pollutants. It is, therefore, too complex to simulate the effects of such dynamics on the resulting emission using conventional deterministic causal models. For this reason, a modified semi-empirical box model for predicting the PM 10 concentrations on roadsides is proposed in this paper. The model constitutes three parts, i.e., traffic, emission and dispersion components. The traffic component is developed using a generalized force traffic model to obtain the instantaneous velocity and acceleration when vehicles move through intersections. Hence the distribution of vehicle emission in street canyon during the green-light period is calculated. Then the dispersion component is investigated using a semi-empirical box model combining average wind speed, box height and background concentrations. With these considerations, the proposed model is applied and evaluated using measured data at a busy traffic intersection in Mong Kok, Hong Kong. In order to test the performance of the model, two situations, i.e., the data sets within a sunny day and between two sunny days, were selected to examine the model performance. The predicted values are generally well coincident with the observed data during different time slots except several values are overestimated or underestimated. Moreover, two types of vehicles, i.e., buses and petrol cars, are separately taken into account in the study. Buses are verified to contribute most to the emission in street canyons, which may be useful in evaluating the impact of vehicle emissions on the ambient air quality when there is a significant change in a specific vehicular population.

  8. A table of semiempirical gf values. Part 2. Wavelengths: 272. 3395 nm to 599. 3892 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurucz, R.L.; Peytremann, E.

    1975-02-14

    The gf values for 265,587 atomic lines selectedfrom the line data used to calculate line blanketed model atmospheres are tabulated. These data are especially useful for line identification and spectral synthesis in solar and stellar spectra. The gf values are calculated semiempirically by using scaled Thomas--Fermi--Dirac radial wave functions and eigenvectors found through least-squares fits to observed energy levels. Included in the calculation are the first five or six stages of ionization for sequences up through nickel. Published gf values are included for elements heavier than nickel. The tabulation is restricted to lines with wavelengths less than 10 micrometers. (auth)

  9. Experimental and theoretical study of skylight polarization transmitted through Snell's window of a flat water surface.

    PubMed

    Sabbah, Shai; Barta, András; Gál, József; Horváth, Gábor; Shashar, Nadav

    2006-08-01

    The celestial polarization pattern may be scrambled by refraction at the air-water interface. This polarization pattern was examined in shallow waters with a submersible polarimeter, and it was calculated by using land measurements ('semiempirical predictions') and models of the skylight polarization. Semiempirically predicted and measured e-vector orientations were significantly similar. Conversely, predicted percent polarization was correlated but lower than measurements. Percent polarization depended on wavelength, where at high sun altitudes maximal percent polarization generally appeared in the UV and red spectral regions. The wavelength dependency of polarization may lead to differential spectral sensitivity in polarization-sensitive animals according to time and type of activity.

  10. A new calibration of the semi-empirical photometric theory for Halley and other comets

    NASA Technical Reports Server (NTRS)

    Newburn, R. L., Jr.

    1984-01-01

    The semiempirical photometric theory of gas and dust production in comets (Newburn, 1979, 1981, and 1982) is recalibrated on the basis of the 17-comet compilation of spectrophotometric data of Newburn and Spinrad (1984). The results are presented in graphs and tables, and it is shown that no corrections are required for the constant R and the function delta, but that the mixing ratios (obtained as functions of heliocentric distance) can be improved, with implications for the visual-photometric comet model. Recently calculated light curves for comet Halley are compared, and the use of the nearly identical curves of Bortle and Morris (1984) and Marcus (1983) is recommended.

  11. Predicting overload-affected fatigue crack growth in steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorupa, M.; Skorupa, A.; Ladecki, B.

    1996-12-01

    The ability of semi-empirical crack closure models to predict the effect of overloads on fatigue crack growth in low-alloy steels has been investigated. With this purpose, the CORPUS model developed for aircraft metals and spectra has been checked first through comparisons between the simulated and observed results for a low-alloy steel. The CORPUS predictions of crack growth under several types of simple load histories containing overloads appeared generally unconservative which prompted the authors to formulate a new model, more suitable for steels. With the latter approach, the assumed evolution of the crack opening stress during the delayed retardation stage hasmore » been based on experimental results reported for various steels. For all the load sequences considered, the predictions from the proposed model appeared to be by far more accurate than those from CORPUS. Based on the analysis results, the capability of semi-empirical prediction concepts to cover experimentally observed trends that have been reported for sequences with overloads is discussed. Finally, possibilities of improving the model performance are considered.« less

  12. The importance of radiation for semiempirical water-use efficiency models

    DOE PAGES

    Boese, Sven; Jung, Martin; Carvalhais, Nuno; ...

    2017-06-22

    Water-use efficiency (WUE) is a fundamental property for the coupling of carbon and water cycles in plants and ecosystems. Existing model formulations predicting this variable differ in the type of response of WUE to the atmospheric vapor pressure deficit of water (VPD). We tested a representative WUE model on the ecosystem scale at 110 eddy covariance sites of the FLUXNET initiative by predicting evapotranspiration (ET) based on gross primary productivity (GPP) and VPD. We found that introducing an intercept term in the formulation increases model performance considerably, indicating that an additional factor needs to be considered. We demonstrate that thismore » intercept term varies seasonally and we subsequently associate it with radiation. Replacing the constant intercept term with a linear function of global radiation was found to further improve model predictions of ET. Our new semiempirical ecosystem WUE formulation indicates that, averaged over all sites, this radiation term accounts for up to half (39–47 %) of transpiration. These empirical findings challenge the current understanding of water-use efficiency on the ecosystem scale.« less

  13. Conference on the Ionosphere and Radio Wave Propagation, 3rd, University of Sydney, Australia, February 11-15, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Cole, D. G.; McNamara, L. F.

    1985-12-01

    Various papers on the ionosphere and radio wave propagation are presented. The subjects discussed include: day-to-day variability in foF2 at low latitudes over a solar cycle; semiempirical, low-latitude ionospheric model; remote sensing with the Jindalee skywave radar; photographic approach to irregularities in the 80-100 km region; interference of radio waves in a CW system; study of the F-region characteristics at Waltair; recent developments in the international reference ionosphere; research-oriented ionosonde with directional capabilities; and ionospheric forecasting for specific applications. Also addressed are: experimental and theoretical techniques for the equatorial F region; empirical models of ionospheric electron concentration; the Jindalee ionospheric sounding system; a semiempirical midlatitude ionospheric model; Es structure using an HF radar; short-term variations in f0F2 and IEC; nonreciprocity in Omega propagation observed at middle latitudes; propagation management for no acknowledge HF links; new techniques in ionospheric sounding and studies; and lunar effects in the ionospheric F region.

  14. SnO as a potential oxide thermoelectric candidate

    DOE PAGES

    Miller, Samuel A.; Gorai, Prashun; Aydemir, Umut; ...

    2017-08-08

    Here we search for new thermoelectric materials, high-throughput calculations using a combination of semiempirical models and first principles density functional theory present a path to screen large numbers of compounds for the most promising candidates.

  15. Water interactions with hydrophobic groups: Assessment and recalibration of semiempirical molecular orbital methods

    NASA Astrophysics Data System (ADS)

    Marion, Antoine; Monard, Gérald; Ruiz-López, Manuel F.; Ingrosso, Francesca

    2014-07-01

    In this work, we present a study of the ability of different semiempirical methods to describe intermolecular interactions in water solution. In particular, we focus on methods based on the Neglect of Diatomic Differential Overlap approximation. Significant improvements of these methods have been reported in the literature in the past years regarding the description of non-covalent interactions. In particular, a broad range of methodologies has been developed to deal with the properties of hydrogen-bonded systems, with varying degrees of success. In contrast, the interactions between water and a molecule containing hydrophobic groups have been little analyzed. Indeed, by considering the potential energy surfaces obtained using different semiempirical Hamiltonians for the intermolecular interactions of model systems, we found that none of the available methods provides an entirely satisfactory description of both hydrophobic and hydrophilic interactions in water. In addition, a vibrational analysis carried out in a model system for these interactions, a methane clathrate cluster, showed that some recent methods cannot be used to carry out studies of vibrational properties. Following a procedure established in our group [M. I. Bernal-Uruchurtu, M. T. C. Martins-Costa, C. Millot, and M. F. Ruiz-López, J. Comput. Chem. 21, 572 (2000); W. Harb, M. I. Bernal-Uruchurtu, and M. F. Ruiz-López, Theor. Chem. Acc. 112, 204 (2004)], we developed new parameters for the core-core interaction terms based on fitting potential energy curves obtained at the MP2 level for our model system. We investigated the transferability of the new parameters to describe a system, having both hydrophilic and hydrophobic groups, interacting with water. We found that only by introducing two different sets of parameters for hydrophilic and hydrophobic hydrogen atom types we are able to match the features of the ab initio calculated properties. Once this assumption is made, a good agreement with the MP2 reference is achieved. The results reported in this work provide therefore a direction for future developments of semiempirical approaches that are still required to investigate chemical processes in biomolecules and in large disordered systems.

  16. Semi-empirical fragmentation model of meteoroid motion and radiation during atmospheric penetration

    NASA Astrophysics Data System (ADS)

    Revelle, D. O.; Ceplecha, Z.

    2002-11-01

    A semi-empirical fragmentation model (FM) of meteoroid motion, ablation, and radiation including two types of fragmentation is outlined. The FM was applied to observational data (height as function of time and the light curve) of Lost City, Innisfree and Benešov bolides. For the Lost City bolide we were able to fit the FM to the observed height as function of time with ±13 m and to the observed light curve with ±0.17 magnitude. Corresponding numbers for Innisfree are ±25 m and ±0.14 magnitude, and for Benešov ±46 m and ±0.19 magnitude. We also define apparent and intrinsic values of σ, K, and τ. Using older results and our fit of FM to the Lost City bolide we derived corrections to intrinsic luminous efficiencies expressed as functions of velocity, mass, and normalized air density.

  17. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard

    2014-03-01

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain.

  18. Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes

    NASA Astrophysics Data System (ADS)

    Heubner, C.; Seeba, J.; Liebmann, T.; Nickol, A.; Börner, S.; Fritsch, M.; Nikolowski, K.; Wolter, M.; Schneider, M.; Michaelis, A.

    2018-03-01

    A simple semi-empirical master curve concept, describing the rate capability of porous insertion electrodes for lithium-ion batteries, is proposed. The model is based on the evaluation of the time constants of lithium diffusion in the liquid electrolyte and the solid active material. This theoretical approach is successfully verified by comprehensive experimental investigations of the rate capability of a large number of porous insertion electrodes with various active materials and design parameters. It turns out, that the rate capability of all investigated electrodes follows a simple master curve governed by the time constant of the rate limiting process. We demonstrate that the master curve concept can be used to determine optimum design criteria meeting specific requirements in terms of maximum gravimetric capacity for a desired rate capability. The model further reveals practical limits of the electrode design, attesting the empirically well-known and inevitable tradeoff between energy and power density.

  19. Semi-empirical and phenomenological instrument functions for the scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Feuchtwang, T. E.; Cutler, P. H.; Notea, A.

    1988-08-01

    Recent progress in the development of a convenient algorithm for the determination of a quantitative local density of states (LDOS) of the sample, from data measured in the STM, is reviewd. It is argued that the sample LDOS strikes a good balance between the information content of a surface characteristic and effort required to obtain it experimentally. Hence, procedures to determine the sample LDOS as directly and as tip-model independently as possible are emphasized. The solution of the STM's "inverse" problem in terms of novel versions of the instrument (or Green) function technique is considered in preference to the well known, more direct solutions. Two types of instrument functions are considered: Approximations of the basic tip-instrument function obtained from the transfer Hamiltonian theory of the STM-STS. And, phenomenological instrument functions devised as a systematic scheme for semi-empirical first order corrections of "ideal" models. The instrument function, in this case, describes the corrections as the response of an independent component of the measuring apparatus inserted between the "ideal" instrument and the measured data. This linear response theory of measurement is reviewed and applied. A procedure for the estimation of the consistency of the model and the systematic errors due to the use of an approximate instrument function is presented. The independence of the instrument function techniques from explicit microscopic models of the tip is noted. The need for semi-empirical, as opposed to strictly empirical or analytical determination of the instrument function is discussed. The extension of the theory to the scanning tunneling spectrometer is noted, as well as its use in a theory of resolution.

  20. Modeling of anomalous electron mobility in Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koo, Justin W.; Boyd, Iain D.

    Accurate modeling of the anomalous electron mobility is absolutely critical for successful simulation of Hall thrusters. In this work, existing computational models for the anomalous electron mobility are used to simulate the UM/AFRL P5 Hall thruster (a 5 kW laboratory model) in a two-dimensional axisymmetric hybrid particle-in-cell Monte Carlo collision code. Comparison to experimental results indicates that, while these computational models can be tuned to reproduce the correct thrust or discharge current, it is very difficult to match all integrated performance parameters (thrust, power, discharge current, etc.) simultaneously. Furthermore, multiple configurations of these computational models can produce reasonable integrated performancemore » parameters. A semiempirical electron mobility profile is constructed from a combination of internal experimental data and modeling assumptions. This semiempirical electron mobility profile is used in the code and results in more accurate simulation of both the integrated performance parameters and the mean potential profile of the thruster. Results indicate that the anomalous electron mobility, while absolutely necessary in the near-field region, provides a substantially smaller contribution to the total electron mobility in the high Hall current region near the thruster exit plane.« less

  1. Fischer and Schrock Carbene Complexes: A Molecular Modeling Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2015-01-01

    An exercise in molecular modeling that demonstrates the distinctive features of Fischer and Schrock carbene complexes is presented. Semi-empirical calculations (PM3) demonstrate the singlet ground electronic state, restricted rotation about the C-Y bond, the positive charge on the carbon atom, and hence, the electrophilic nature of the Fischer…

  2. Modeling of Ammonia Dry Deposition to a Pocosin Landscape Downwind of a Large Poultry Facility

    EPA Science Inventory

    A semi-empirical bi-directional flux modeling approach is used to estimate NH3 air concentrations and dry deposition fluxes to a portion of the Pocosin Lakes National Wildlife Refuge (PLNWR) downwind of a large poultry facility. Meteorological patterns at PLNWR are such that som...

  3. Fast, accurate semiempirical molecular orbital calculations for macromolecules

    NASA Astrophysics Data System (ADS)

    Dixon, Steven L.; Merz, Kenneth M., Jr.

    1997-07-01

    A detailed review of the semiempirical divide-and-conquer (D&C) method is given, including a new approach to subsetting, which involves dual buffer regions. Comparisons are drawn between this method and other semiempirical macromolecular schemes. D&C calculations are carried out using a basic 32 Mbyte memory workstation on a variety of peptide systems, including proteins containing up to 1960 atoms. Aspects of storage and SCF convergence are addressed, and parallelization of the D&C algorithm is discussed.

  4. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  5. A model of tungsten anode x-ray spectra.

    PubMed

    Hernández, G; Fernández, F

    2016-08-01

    A semiempirical model for x-ray production in tungsten thick-targets was evaluated using a new characterization of electron fluence. Electron fluence is modeled taking into account both the energy and angular distributions, each of them adjusted to Monte Carlo simulated data. Distances were scaled by the CSDA range to reduce the energy dependence. Bremsstrahlung production was found by integrating the cross section with the fluence in a 1D penetration model. Characteristic radiation was added using a semiempirical law whose validity was checked. The results were compared the experimental results of Bhat et al., with the SpekCalc numerical tool, and with mcnpx simulation results from the work of Hernandez and Boone. The model described shows better agreement with the experimental results than the SpekCalc predictions in the sense of area between the spectra. A general improvement of the predictions of half-value layers is also found. The results are also in good agreement with the simulation results in the 50-640 keV energy range. A complete model for x-ray production in thick bremsstrahlung targets has been developed, improving the results of previous works and extending the energy range covered to the 50-640 keV interval.

  6. SU-F-T-144: Analytical Closed Form Approximation for Carbon Ion Bragg Curves in Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuomanen, S; Moskvin, V; Farr, J

    2016-06-15

    Purpose: Semi-empirical modeling is a powerful computational method in radiation dosimetry. A set of approximations exist for proton ion depth dose distribution (DDD) in water. However, the modeling is more complicated for carbon ions due to fragmentation. This study addresses this by providing and evaluating a new methodology for DDD modeling of carbon ions in water. Methods: The FLUKA, Monte Carlo (MC) general-purpose transport code was used for simulation of carbon DDDs for energies of 100–400 MeV in water as reference data model benchmarking. Based on Thomas Bortfeld’s closed form equation approximating proton Bragg Curves as a basis, we derivedmore » the critical constants for a beam of Carbon ions by applying models of radiation transport by Lee et. al. and Geiger to our simulated Carbon curves. We hypothesized that including a new exponential (κ) residual distance parameter to Bortfeld’s fluence reduction relation would improve DDD modeling for carbon ions. We are introducing an additional term to be added to Bortfeld’s equation to describe fragmentation tail. This term accounts for the pre-peak dose from nuclear fragments (NF). In the post peak region, the NF transport will be treated as new beams utilizing the Glauber model for interaction cross sections and the Abrasion- Ablation fragmentation model. Results: The carbon beam specific constants in the developed model were determined to be : p= 1.75, β=0.008 cm-1, γ=0.6, α=0.0007 cm MeV, σmono=0.08, and the new exponential parameter κ=0.55. This produced a close match for the plateau part of the curve (max deviation 6.37%). Conclusion: The derived semi-empirical model provides an accurate approximation of the MC simulated clinical carbon DDDs. This is the first direct semi-empirical simulation for the dosimetry of therapeutic carbon ions. The accurate modeling of the NF tail in the carbon DDD will provide key insight into distal edge dose deposition formation.« less

  7. ESTIMATION OF CHEMICAL SPECIFIC PARAMETERS WITHIN PHYSIOLOGICALLY BASED PHARMACOKINETIC/PHARMACODYNAMIC MODELS

    EPA Science Inventory

    While relationships between chemical structure and observed properties or activities (QSAR - quantitative structure activity relationship) can be used to predict the behavior of unknown chemicals, this method is semiempirical in nature relying on high quality experimental data to...

  8. Dust cyclone research in the 21st century

    USDA-ARS?s Scientific Manuscript database

    Research to meet the demand for ever more efficient dust cyclones continues after some eighty years. Recent trends emphasize design optimization through computational fluid dynamics (CFD) and testing design subtleties not modeled by semi-empirical equations. Improvements to current best available ...

  9. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity

    NASA Astrophysics Data System (ADS)

    Li, Qian; Matula, Thomas J.; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-01

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  10. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.

    PubMed

    Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-21

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  11. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.

    2014-05-01

    Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM)more » program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.« less

  12. Multibody dynamic analysis using a rotation-free shell element with corotational frame

    NASA Astrophysics Data System (ADS)

    Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen

    2018-03-01

    Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.

  13. Flow Control of Flexible Structures

    DTIC Science & Technology

    2017-09-06

    energy systems (e.g. wind turbines or ocean energy devices), air vehicle aerodynamics and engines, or even medical flows (blood flow, respiration...stall model for wind turbine airfoils. Journal of Fluids and Structures, (23):959982, 2007. J. G. Leishman and T. S. Beddoes. A semi-empirical model for...Subsonic Wind Tunnel, USAFA . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 Low-Speed Research Wind Tunnel, UCB

  14. Equivalent crystal theory of alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Equivalent Crystal Theory (ECT) is a new, semi-empirical approach to calculating the energetics of a solid with defects. The theory has successfully reproduced surface energies in metals and semiconductors. The theory of binary alloys to date, both with first-principles and semi-empirical models, has not been very successful in predicting the energetics of alloys. This procedure is used to predict the heats of formation, cohesive energy, and lattice parameter of binary alloys of Cu, Ni, Al, Ag, Au, Pd, and Pt as functions of composition. The procedure accurately reproduces the heats of formation versus composition curves for a variety of binary alloys. The results are then compared with other approaches such as the embedded atom and lattice parameters of alloys from pure metal properties more accurately than Vegard's law is presented.

  15. Dynamic analysis of rotor flex-structure based on nonlinear anisotropic shell models

    NASA Astrophysics Data System (ADS)

    Bauchau, Olivier A.; Chiang, Wuying

    1991-05-01

    In this paper an anisotropic shallow shell model is developed that accommodates transverse shearing deformations and arbitrarily large displacements and rotations, but strains are assumed to remain small. Two kinematic models are developed, the first using two DOF to locate the direction of the normal to the shell's midplane, the second using three. The latter model allows for an automatic compatibility of the shell model with beam models. The shell model is validated by comparing its predictions with several benchmark problems. In actual helicopter rotor blade problems, the shell model of the flex structure is shown to give very different results shown compared to beam models. The lead-lag and torsion modes in particular are strongly affected, whereas flapping modes seem to be less affected.

  16. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    PubMed

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-04-10

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  17. Measurement and Estimation of Riverbed Scour in a Mountain River

    NASA Astrophysics Data System (ADS)

    Song, L. A.; Chan, H. C.; Chen, B. A.

    2016-12-01

    Mountains are steep with rapid flows in Taiwan. After installing a structure in a mountain river, scour usually occurs around the structure because of the high energy gradient. Excessive scouring has been reported as one of the main causes of failure of river structures. The scouring disaster related to the flood can be reduced if the riverbed variation can be properly evaluated based on the flow conditions. This study measures the riverbed scour by using an improved "float-out device". Scouring and hydrodynamic data were simultaneously collected in the Mei River, Nantou County located in central Taiwan. The semi-empirical models proposed by previous researchers were used to estimate the scour depths based on the measured flow characteristics. The differences between the measured and estimated scour depths were discussed. Attempts were then made to improve the estimating results by developing a semi-empirical model to predict the riverbed scour based on the local field data. It is expected to setup a warning system of river structure safety by using the flow conditions. Keywords: scour, model, float-out device

  18. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model

    DOE PAGES

    Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco; ...

    2018-03-15

    Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less

  19. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco

    Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less

  20. The Study of ( n, d) Reaction Cross Sections for New Evaluated Semi-Empirical Formula Using Optical Model

    NASA Astrophysics Data System (ADS)

    Bölükdemir, M. H.; Tel, E.; Okuducu, Ş.; Aydın, A.

    2009-12-01

    Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. The neutron scattering cross sections data have a critical importance on fusion reactor (and in the fusion-fission hybrid) reactors. So, the study of the systematic of ( n, d) etc., reaction cross sections is of great importance in the definition of the excitation function character for reaction taking place on various nuclei at energies up to 20 MeV. In this study, non-elastic cross-sections have been calculated by using optical model for ( n, d) reactions at 14-15 MeV energy. The excitation function character and reaction Q-values depending on the asymmetry term effect for the ( n, d) reaction have been investigated. New coefficients have been obtained and the semi-empirical formulas including optical model non-elastic effects by fitting two parameters for the ( n, d) reaction cross-sections have been suggested. The obtained cross-section formulas with new coefficients have been compared with the available experimental data and discussed.

  1. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.

    PubMed

    Li, Zuoping; Kindig, Matthew W; Kerrigan, Jason R; Untaroiu, Costin D; Subit, Damien; Crandall, Jeff R; Kent, Richard W

    2010-01-19

    The purpose of this study was to investigate whether using a finite-element (FE) mesh composed entirely of hexahedral elements to model cortical and trabecular bone (all-hex model) would provide more accurate simulations than those with variable thickness shell elements for cortical bone and hexahedral elements for trabecular bone (hex-shell model) in the modeling human ribs. First, quasi-static non-injurious and dynamic injurious experiments were performed using the second, fourth, and tenth human thoracic ribs to record the structural behavior and fracture tolerance of individual ribs under anterior-posterior bending loads. Then, all-hex and hex-shell FE models for the three ribs were developed using an octree-based and multi-block hex meshing approach, respectively. Material properties of cortical bone were optimized using dynamic experimental data and the hex-shell model of the fourth rib and trabecular bone properties were taken from the literature. Overall, the reaction force-displacement relationship predicted by both all-hex and hex-shell models with nodes in the offset middle-cortical surfaces compared well with those measured experimentally for all the three ribs. With the exception of fracture locations, the predictions from all-hex and offset hex-shell models of the second and fourth ribs agreed better with experimental data than those from the tenth rib models in terms of reaction force at fracture (difference <15.4%), ultimate failure displacement and time (difference <7.3%), and cortical bone strains. The hex-shell models with shell nodes in outer cortical surfaces increased static reaction forces up to 16.6%, compared to offset hex-shell models. These results indicated that both all-hex and hex-shell modeling strategies were applicable for simulating rib responses and bone fractures for the loading conditions considered, but coarse hex-shell models with constant or variable shell thickness were more computationally efficient and therefore preferred. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

  3. THREE-DIMENSIONAL MODELING OF THE DYNAMICS OF THERAPEUTIC ULTRASOUND CONTRAST AGENTS

    PubMed Central

    Hsiao, Chao-Tsung; Lu, Xiaozhen; Chahine, Georges

    2010-01-01

    A 3-D thick-shell contrast agent dynamics model was developed by coupling a finite volume Navier-Stokes solver and a potential boundary element method flow solver to simulate the dynamics of thick-shelled contrast agents subjected to pressure waves. The 3-D model was validated using a spherical thick-shell model validated by experimental observations. We then used this model to study shell break-up during nonspherical deformations resulting from multiple contrast agent interaction or the presence of a nearby solid wall. Our simulations indicate that the thick viscous shell resists the contrast agent from forming a re-entrant jet, as normally observed for an air bubble oscillating near a solid wall. Instead, the shell thickness varies significantly from location to location during the dynamics, and this could lead to shell break-up caused by local shell thinning and stretching. PMID:20950929

  4. The Investigation and Semi-Empirical Modeling of Thermoacoustic Phase Relationships in a Lean Premixed Prevapourized Combustor at Elevated Pressure

    NASA Astrophysics Data System (ADS)

    Cirtwill, Joseph Daniel Maxim

    This document presents an investigation of the self-excited coupling mechanisms that occur to produce both low-amplitude intermittent, as well as high-amplitude limit-cycle pressure oscillations in an aeronautical gas turbine combustor. Measurements of a lean premixed prevapourized combustor at elevated pressure were conducted using OH* chemiluminescence, pressure transducers, stereoscopic particle image velocimetry and droplet laser scattering. Analysis of the spectra and phase relationships between the measured variables is performed to determine and describe the coupling mechanisms. A semi-empirical model is presented to explain differences in the limit-cycle pressure amplitudes observed under nominally identical operating conditions. Evidence suggests that an oscillating flux of fuel into the combustor is responsible for both intermittent and limit-cycle oscillations, though different coupling relationships are observed in each case. The final amplitude of limit-cycle oscillations is shown to be correlated with changes in the phase difference between the fuel oscillations and the pressure.

  5. A semiempirical linear model of indirect, flat-panel x-ray detectors.

    PubMed

    Huang, Shih-Ying; Yang, Kai; Abbey, Craig K; Boone, John M

    2012-04-01

    It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV∕0.1-mm Sn, 65 kV∕0.2-mm Cu, 85 kV∕1.5-mm Al, and 95 kV∕0.05-mm Ag. The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r(2) of signal mean to kV: 0.91, 0.93, 0.86, and 0.99 for 0.1-mm Sn, 0.2-mm Cu, 1.5-mm Al, and 0.05-mm Ag, respectively; r(2) of signal variance to kV: 0.99 for all four filters). The comparison of the signal and noise (mean, variance, and NPS) between the simulated and measured air scan images suggested that this model was reasonable in predicting accurate signal statistics of air scan images using absolute percent error. Overall, the model was found to be accurate in estimating signal statistics and spatial correlation between the detector elements of the images acquired with indirect, flat-panel x-ray detectors. The semiempirical linear model of the indirect, flat-panel x-ray detectors was described and validated with images of air scans. The model was found to be a useful tool in understanding the signal and noise transfer within indirect, flat-panel x-ray detector systems.

  6. Analytical Investigation and Improvement of Performance of a Proton Exchange Membrane (Pem) Fuel Cell in Mobile Applications

    NASA Astrophysics Data System (ADS)

    Khazaee, I.

    2015-05-01

    In this study, the performance of a proton exchange membrane fuel cell in mobile applications is investigated analytically. At present the main use and advantages of fuel cells impact particularly strongly on mobile applications such as vehicles, mobile computers and mobile telephones. Some external parameters such as the cell temperature (Tcell ) , operating pressure of gases (P) and air stoichiometry (λair ) affect the performance and voltage losses in the PEM fuel cell. Because of the existence of many theoretical, empirical and semi-empirical models of the PEM fuel cell, it is necessary to compare the accuracy of these models. But theoretical models that are obtained from thermodynamic and electrochemical approach, are very exact but complex, so it would be easier to use the empirical and smi-empirical models in order to forecast the fuel cell system performance in many applications such as mobile applications. The main purpose of this study is to obtain the semi-empirical relation of a PEM fuel cell with the least voltage losses. Also, the results are compared with the existing experimental results in the literature and a good agreement is seen.

  7. Integral Model of Noise of an Engine-Propeller Power Plant

    NASA Astrophysics Data System (ADS)

    Moshkov, P. A.; Samokhin, V. F.

    2018-03-01

    A semiempirical model is proposed for estimation of the noise levels produced by aircraft piston power plants in the far acoustic field, which takes account of the main sources of noise. The acoustic field is considered as a superposition of fields formed by the radiations from a propeller and a piston engine. For calculation estimation of the levels of tonal noise of the propeller, it is proposed that a semiempirical method developed by the authors earlier be used. To determine the levels of vortex propeller noise which is presumably dominant in the broad-band noise of tractor propellers, it is proposed that one analytical model of trailing-edge noise be used. An empirical model of noise is proposed for calculation of the acoustic characteristics of a piston engine. Good agreement is shown between calculated and experimental data on the noise of power plants with tractor propellers. The data have been derived in acoustic testing of light aircraft of the An-2, Yak-18T, MAI-223M, and F30 type under static conditions at the aviabase of the Moscow Aviation Institute. Lines of further research are formulated for improvement of this procedure and expansion of the field of its application.

  8. Integral Model of Noise of an Engine-Propeller Power Plant

    NASA Astrophysics Data System (ADS)

    Moshkov, P. A.; Samokhin, V. F.

    2018-05-01

    A semiempirical model is proposed for estimation of the noise levels produced by aircraft piston power plants in the far acoustic field, which takes account of the main sources of noise. The acoustic field is considered as a superposition of fields formed by the radiations from a propeller and a piston engine. For calculation estimation of the levels of tonal noise of the propeller, it is proposed that a semiempirical method developed by the authors earlier be used. To determine the levels of vortex propeller noise which is presumably dominant in the broad-band noise of tractor propellers, it is proposed that one analytical model of trailing-edge noise be used. An empirical model of noise is proposed for calculation of the acoustic characteristics of a piston engine. Good agreement is shown between calculated and experimental data on the noise of power plants with tractor propellers. The data have been derived in acoustic testing of light aircraft of the An-2, Yak-18T, MAI-223M, and F30 type under static conditions at the aviabase of the Moscow Aviation Institute. Lines of further research are formulated for improvement of this procedure and expansion of the field of its application.

  9. Aircraft directional stability and vertical tail design: A review of semi-empirical methods

    NASA Astrophysics Data System (ADS)

    Ciliberti, Danilo; Della Vecchia, Pierluigi; Nicolosi, Fabrizio; De Marco, Agostino

    2017-11-01

    Aircraft directional stability and control are related to vertical tail design. The safety, performance, and flight qualities of an aircraft also depend on a correct empennage sizing. Specifically, the vertical tail is responsible for the aircraft yaw stability and control. If these characteristics are not well balanced, the entire aircraft design may fail. Stability and control are often evaluated, especially in the preliminary design phase, with semi-empirical methods, which are based on the results of experimental investigations performed in the past decades, and occasionally are merged with data provided by theoretical assumptions. This paper reviews the standard semi-empirical methods usually applied in the estimation of airplane directional stability derivatives in preliminary design, highlighting the advantages and drawbacks of these approaches that were developed from wind tunnel tests performed mainly on fighter airplane configurations of the first decades of the past century, and discussing their applicability on current transport aircraft configurations. Recent investigations made by the authors have shown the limit of these methods, proving the existence of aerodynamic interference effects in sideslip conditions which are not adequately considered in classical formulations. The article continues with a concise review of the numerical methods for aerodynamics and their applicability in aircraft design, highlighting how Reynolds-Averaged Navier-Stokes (RANS) solvers are well-suited to attain reliable results in attached flow conditions, with reasonable computational times. From the results of RANS simulations on a modular model of a representative regional turboprop airplane layout, the authors have developed a modern method to evaluate the vertical tail and fuselage contributions to aircraft directional stability. The investigation on the modular model has permitted an effective analysis of the aerodynamic interference effects by moving, changing, and expanding the available airplane components. Wind tunnel tests over a wide range of airplane configurations have been used to validate the numerical approach. The comparison between the proposed method and the standard semi-empirical methods available in literature proves the reliability of the innovative approach, according to the available experimental data collected in the wind tunnel test campaign.

  10. A model of tungsten anode x-ray spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández, G.; Fernández, F., E-mail: fdz@usal.es

    2016-08-15

    Purpose: A semiempirical model for x-ray production in tungsten thick-targets was evaluated using a new characterization of electron fluence. Methods: Electron fluence is modeled taking into account both the energy and angular distributions, each of them adjusted to Monte Carlo simulated data. Distances were scaled by the CSDA range to reduce the energy dependence. Bremsstrahlung production was found by integrating the cross section with the fluence in a 1D penetration model. Characteristic radiation was added using a semiempirical law whose validity was checked. The results were compared the experimental results of Bhat et al., with the SpekCalc numerical tool, andmore » with MCNPX simulation results from the work of Hernandez and Boone. Results: The model described shows better agreement with the experimental results than the SpekCalc predictions in the sense of area between the spectra. A general improvement of the predictions of half-value layers is also found. The results are also in good agreement with the simulation results in the 50–640 keV energy range. Conclusions: A complete model for x-ray production in thick bremsstrahlung targets has been developed, improving the results of previous works and extending the energy range covered to the 50–640 keV interval.« less

  11. The History of the Study of Detonation

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    In this article we reviewed the main concepts of detonative combustion. Concepts of slow and fast combustion, of detonation adiabat are introduced. Landmark works on experimental and semi-empirical detonation study are presented. We reviewed Chapman-Jouguet stationary detonation and spin detonation. Various mathematical model of detonation wave…

  12. Computational Analysis of Stereospecificity in the Cope Rearrangement

    ERIC Educational Resources Information Center

    Glish, Laura; Hanks, Timothy W.

    2007-01-01

    The Cope rearrangement is a highly stereospecific, concerted reaction of considerable synthetic utility. Experimental product distributions from the reaction of disubstituted 1,5-hexadienes can be readily understood by computer modeling of the various possible transitions states. Semi-empirical methods give relative energies of transition states…

  13. Predictions on the modes of decay of odd Z superheavy isotopes within the range 105 ≤ Z ≤ 135

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Nithya, C.

    2018-05-01

    The decay modes of 1051 odd Z superheavy nuclei within the range 105 ≤ Z ≤ 135, and their daughter nuclei are studied by comparing the alpha decay half-lives with the spontaneous fission half-lives. The alpha decay half-lives are calculated using the Coulomb and proximity potential model for deformed nuclei (CPPMDN) proposed by Santhosh et al. (2011) and the spontaneous fission half-lives are obtained with the shell-effect dependent formula of Santhosh et al. (Santhosh and Nithya, 2016). For a theoretical comparison, the alpha decay half-lives are also computed with the Coulomb and proximity potential model (CPPM), Viola-Seaborg-Sobiczewski semi-empirical relation (VSS), Universal curve of Poenaru et al. (UNIV), the analytical formula of Royer, and the Universal decay law of Qi et al. (UDL). The predicted decay modes and half-lives were compared with the available experimental results. The proton and neutron separation energies are calculated to identify those nuclei, which decay through proton and neutron emission. From the entire study of odd Z superheavy elements, it is seen that among 1051 nuclei, 233 nuclei exhibit proton emission and 18 nuclei exhibit neutron emission. 56 nuclei are stable against alpha decay with negative Q value for the decay. 92 nuclei show alpha decay followed by spontaneous fission and 9 nuclei show alpha decay followed by proton emission. 39 nuclei decay through full alpha chain and 595 nuclei decay through spontaneous fission. We hope that the study will be very useful for the future experimental investigations in this field.

  14. Analysis of repeated signals during shell fights in the hermit crab Pagurus bernhardus

    PubMed Central

    Briffa, M.; Elwood, R. W.; Dick, J. T. A.

    1998-01-01

    Shell exchanges between hermit crabs may occur after a period of shell rapping, when the initiating or attacking crab brings its shell rapidly and repeatedly into contact with the shell of the non-initiator or defender, in a series of bouts. There are two opposing models of hermit crab shell exchange and the function of shell rapping. The negotiation model views shell exchange as a mutualistic activity, in which the initiator supplies information about the quality of its shell via the fundamental frequency of the rapping sound. The aggression model views shell rapping as either detrimental to the defending crab, or as providing it with information about the initiator's ability or motivation to continue, or both. The negotiation model makes no predictions about the temporal pattern of rapping, but under the aggression model it would be expected that crabs that rapped more vigorously would be more likely to effect an exchange. Repeating the signal could be expected under either model. Crabs that achieve an exchange rap more vigorously, rapping is more persistent when a clear gain in shell quality may be achieved, and the vigour is greater when the relative resource-holding potential (or 'fighting ability') is high. These findings support the aggression model rather than the negotiation model. Contrary to the predictions of game theory, crabs that do not effect an exchange appear to signal that they are about to give up. The data suggest that rapping is performed repeatedly because the accumulation of all of the performances acts as a signal of stamina.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Bhat Zahoor; Want, Basharat, E-mail: bawant@kashmiruniversity.ac.in

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C{sub 4}H{sub 5}O{sub 6})(C{sub 4}H{sub 4}O{sub 6})][3H{sub 2}O]. X-ray crystal structure analyses reveal that it crystallizes in the P4{sub 1}2{sub 1}2 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O ≈ 2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed tomore » the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau– Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.« less

  16. Resource Letter NSM-1: New insights into the nuclear shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, David Jarvis; Hamilton, J. H.

    2011-01-01

    This Resource Letter provides a guide to the literature on the spherical shell model as applied to nuclei. The nuclear shell model describes the structure of nuclei starting with a nuclear core developed by the classical neutron and proton magic numbers N,Z=2,8,20,28,50,82, 126, where gaps occur in the single-particle energies as a shell is filled, and the interactions of valence nucleons that reside beyond that core. Various modern extensions of this model for spherical nuclei are likewise described. Significant extensions of the nuclear shell model include new magic numbers for spherical nuclei and now for deformed nuclei as well. Whenmore » both protons and neutrons have shell gaps at the same spherical or deformed shapes, they can reinforce each other to give added stability to that shape and lead to new magic numbers. The vanishings of the classical spherical shell model energy gaps and magic numbers in new neutron-rich nuclei are described. Spherical and deformed shell gaps are seen to be critical for the existence of elements with Z > 100.« less

  17. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

    PubMed

    Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg

    2011-06-16

    We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society

  18. Semi-Empirical, First-Principles, and Hybrid Modeling of the Thermosphere to Enhance Data Assimilation

    DTIC Science & Technology

    2015-10-27

    CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Eric K. Sutton 5d. PROJECT NUMBER 3001 5e. TASK NUMBER PPM00018035...principal components, hybrid model, helium model, neutral composition, low-Earth orbit 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...difficult force to determine and predict, in the orbit propagation model of low earth orbiting satellites [36]. The drag acceleration vector, ~a

  19. The analysis of magnesium oxide hydration in three-phase reaction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xiaojia; Guo, Lin; Chen, Chen

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phasemore » system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.« less

  20. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vakili, Hajar; Rahvar, Sohrab; Kroupa, Pavel, E-mail: vakili@physics.sharif.edu

    Shell galaxies are understood to form through the collision of a dwarf galaxy with an elliptical galaxy. Shell structures and kinematics have been noted to be independent tools to measure the gravitational potential of the shell galaxies. We compare theoretically the formation of shells in Type I shell galaxies in different gravity theories in this work because this is so far missing in the literature. We include Newtonian plus dark halo gravity, and two non-Newtonian gravity models, MOG and MOND, in identical initial systems. We investigate the effect of dynamical friction, which by slowing down the dwarf galaxy in themore » dark halo models limits the range of shell radii to low values. Under the same initial conditions, shells appear on a shorter timescale and over a smaller range of distances in the presence of dark matter than in the corresponding non-Newtonian gravity models. If galaxies are embedded in a dark matter halo, then the merging time may be too rapid to allow multi-generation shell formation as required by observed systems because of the large dynamical friction effect. Starting from the same initial state, the observation of small bright shells in the dark halo model should be accompanied by large faint ones, while for the case of MOG, the next shell generation patterns iterate with a specific time delay. The first shell generation pattern shows a degeneracy with the age of the shells and in different theories, but the relative distance of the shells and the shell expansion velocity can break this degeneracy.« less

  2. Full f-p Shell Calculation of {sup 51}Ca and {sup 51}Sc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novoselsky, A.; Vallieres, M.; Laadan, O.

    The spectra and the electromagnetic transitions of the nuclei {sup 51}Ca and {sup 51}Sc with 11 nucleons in the {ital f-p} shell are described in the nuclear shell-model approach by using two different two-body effective interactions. The full {ital f-p} shell basis functions are used with no truncation. The new parallel shell-model computer code DUPSM (Drexel University parallel shell model), that we recently developed, has been used. The calculations have been done on the MOSIX parallel machine at the Hebrew University of Jerusalem. {copyright} {ital 1997} {ital The American Physical Society}

  3. The limits of hamiltonian structures in three-dimensional elasticity, shells, and rods

    NASA Astrophysics Data System (ADS)

    Ge, Z.; Kruse, H. P.; Marsden, J. E.

    1996-01-01

    This paper uses Hamiltonian structures to study the problem of the limit of three-dimensional (3D) elastic models to shell and rod models. In the case of shells, we show that the Hamiltonian structure for a three-dimensional elastic body converges, in a sense made precise, to that for a shell model described by a one-director Cosserat surface as the thickness goes to zero. We study limiting procedures that give rise to unconstrained as well as constrained Cosserat director models. The case of a rod is also considered and similar convergence results are established, with the limiting model being a geometrically exact director rod model (in the framework developed by Antman, Simo, and coworkers). The resulting model may or may not have constraints, depending on the nature of the constitutive relations and their behavior under the limiting procedure. The closeness of Hamiltonian structures is measured by the closeness of Poisson brackets on certain classes of functions, as well as the Hamiltonians. This provides one way of justifying the dynamic one-director model for shells. Another way of stating the convergence result is that there is an almost-Poisson embedding from the phase space of the shell to the phase space of the 3D elastic body, which implies that, in the sense of Hamiltonian structures, the dynamics of the elastic body is close to that of the shell. The constitutive equations of the 3D model and their behavior as the thickness tends to zero dictates whether the limiting 2D model is a constrained or an unconstrained director model. We apply our theory in the specific case of a 3D Saint Venant-Kirchhoff material and derive the corresponding limiting shell and rod theories. The limiting shell model is an interesting Kirchhoff-like shell model in which the stored energy function is explicitly derived in terms of the shell curvature. For rods, one gets (with an additional inextensibility constraint) a one-director Kirchhoff elastic rod model, which reduces to the well-known Euler elastica if one adds an additional single constraint that the director lines up with the Frenet frame.

  4. Effects of cluster-shell competition and BCS-like pairing in 12C

    NASA Astrophysics Data System (ADS)

    Matsuno, H.; Itagaki, N.

    2017-12-01

    The antisymmetrized quasi-cluster model (AQCM) was proposed to describe α-cluster and jj-coupling shell models on the same footing. In this model, the cluster-shell transition is characterized by two parameters, R representing the distance between α clusters and Λ describing the breaking of α clusters, and the contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α-cluster model wave function. Not only the closure configurations of the major shells but also the subclosure configurations of the jj-coupling shell model can be described starting with the α-cluster model wave functions; however, the particle-hole excitations of single particles have not been fully established yet. In this study we show that the framework of AQCM can be extended even to the states with the character of single-particle excitations. For ^{12}C, two-particle-two-hole (2p2h) excitations from the subclosure configuration of 0p_{3/2} corresponding to a BCS-like pairing are described, and these shell model states are coupled with the three α-cluster model wave functions. The correlation energy from the optimal configuration can be estimated not only in the cluster part but also in the shell model part. We try to pave the way to establish a generalized description of the nuclear structure.

  5. Canadian Field Soils IV: Modeling Thermal Conductivity at Dryness and Saturation

    NASA Astrophysics Data System (ADS)

    Tarnawski, V. R.; McCombie, M. L.; Leong, W. H.; Coppa, P.; Corasaniti, S.; Bovesecchi, G.

    2018-03-01

    The thermal conductivity data of 40 Canadian soils at dryness (λ _{dry}) and at full saturation (λ _{sat}) were used to verify 13 predictive models, i.e., four mechanistic, four semi-empirical and five empirical equations. The performance of each model, for λ _{dry} and λ _{sat}, was evaluated using a standard deviation ( SD) formula. Among the mechanistic models applied to dry soils, the closest λ _{dry} estimates were obtained by MaxRTCM (it{SD} = ± 0.018 Wm^{-1}\\cdot K^{-1}), followed by de Vries and a series-parallel model (S-{\\vert }{\\vert }). Among the semi-empirical equations (deVries-ave, Advanced Geometric Mean Model (A-GMM), Chaudhary and Bhandari (C-B) and Chen's equation), the closest λ _{dry} estimates were obtained by the C-B model (± 0.022 Wm^{-1}\\cdot K^{-1}). Among the empirical equations, the top λ _{dry} estimates were given by CDry-40 (± 0.021 Wm^{-1}\\cdot K^{-1} and ± 0.018 Wm^{-1}\\cdot K^{-1} for18-coarse and 22-fine soils, respectively). In addition, λ _{dry} and λ _{sat} models were applied to the λ _{sat} database of 21 other soils. From all the models tested, only the maxRTCM and the CDry-40 models provided the closest λ _{dry} estimates for the 40 Canadian soils as well as the 21 soils. The best λ _{sat} estimates for the 40-Canadian soils and the 21 soils were given by the A-GMM and the S-{\\vert }{\\vert } model.

  6. Steady state model for the thermal regimes of shells of airships and hot air balloons

    NASA Astrophysics Data System (ADS)

    Luchev, Oleg A.

    1992-10-01

    A steady state model of the temperature regime of airships and hot air balloons shells is developed. The model includes three governing equations: the equation of the temperature field of airships or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the integral equation for the natural convective heat exchange between the shell and the internal gas. In the model the following radiative fluxes on the shell external surface are considered: the direct and the earth reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical iterative procedure is developed. The model and the numerical procedure are used for the simulation study of the temperature fields of an airship shell under the forced and the natural convective heat transfer.

  7. Microscopic Shell Model Calculations for sd-Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Shirokov, Andrey M.; Smirnova, Nadya A.; Vary, James P.

    Several techniques now exist for performing detailed and accurate calculations of the structure of light nuclei, i.e., A ≤ 16. Going to heavier nuclei requires new techniques or extensions of old ones. One of these is the so-called No Core Shell Model (NCSM) with a Core approach, which involves an Okubo-Lee-Suzuki (OLS) transformation of a converged NCSM result into a single major shell, such as the sd-shell. The obtained effective two-body matrix elements can be separated into core and single-particle (s.p.) energies plus residual two-body interactions, which can be used for performing standard shell-model (SSM) calculations. As an example, an application of this procedure will be given for nuclei at the beginning ofthe sd-shell.

  8. Calculation and Identification of the Aerodynamic Parameters for Small-Scaled Fixed-Wing UAVs.

    PubMed

    Shen, Jieliang; Su, Yan; Liang, Qing; Zhu, Xinhua

    2018-01-13

    The establishment of the Aircraft Dynamic Model(ADM) constitutes the prerequisite for the design of the navigation and control system, but the aerodynamic parameters in the model could not be readily obtained especially for small-scaled fixed-wing UAVs. In this paper, the procedure of computing the aerodynamic parameters is developed. All the longitudinal and lateral aerodynamic derivatives are firstly calculated through semi-empirical method based on the aerodynamics, rather than the wind tunnel tests or fluid dynamics software analysis. Secondly, the residuals of each derivative are proposed to be identified or estimated further via Extended Kalman Filter(EKF), with the observations of the attitude and velocity from the airborne integrated navigation system. Meanwhile, the observability of the targeted parameters is analyzed and strengthened through multiple maneuvers. Based on a small-scaled fixed-wing aircraft driven by propeller, the airborne sensors are chosen and the model of the actuators are constructed. Then, real flight tests are implemented to verify the calculation and identification process. Test results tell the rationality of the semi-empirical method and show the improvement of accuracy of ADM after the compensation of the parameters.

  9. Investigation of the Fe{sup 3+} centers in perovskite KMgF{sub 3} through a combination of ab initio (density functional theory) and semi-empirical (superposition model) calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emül, Y.; Department of Software Engineering, Cumhuriyet University, 58140 Sivas; Erbahar, D.

    2015-08-14

    Analyses of the local crystal and electronic structure in the vicinity of Fe{sup 3+} centers in perovskite KMgF{sub 3} crystal have been carried out in a comprehensive manner. A combination of density functional theory (DFT) and a semi-empirical superposition model (SPM) is used for a complete analysis of all Fe{sup 3+} centers in this study for the first time. Some quantitative information has been derived from the DFT calculations on both the electronic structure and the local geometry around Fe{sup 3+} centers. All of the trigonal (K-vacancy case, K-Li substitution case, and normal trigonal Fe{sup 3+} center case), FeF{sub 5}Omore » cluster, and tetragonal (Mg-vacancy and Mg-Li substitution cases) centers have been taken into account based on the previously suggested experimental and theoretical inferences. The collaboration between the experimental data and the results of both DFT and SPM calculations provides us to understand most probable structural model for Fe{sup 3+} centers in KMgF{sub 3}.« less

  10. Double differential cross sections for proton induced electron emission from molecular analogues of DNA constituents for energies in the Bragg peak region

    NASA Astrophysics Data System (ADS)

    Rudek, Benedikt; Bennett, Daniel; Bug, Marion U.; Wang, Mingjie; Baek, Woon Yong; Buhr, Ticia; Hilgers, Gerhard; Champion, Christophe; Rabus, Hans

    2016-09-01

    For track structure simulations in the Bragg peak region, measured electron emission cross sections of DNA constituents are required as input for developing parameterized model functions representing the scattering probabilities. In the present work, double differential cross sections were measured for the electron emission from vapor-phase pyrimidine, tetrahydrofuran, and trimethyl phosphate that are structural analogues to the base, the sugar, and the phosphate residue of the DNA, respectively. The range of proton energies was from 75 keV to 135 keV, the angles ranged from 15° to 135°, and the electron energies were measured from 10 eV to 200 eV. Single differential and total electron emission cross sections are derived by integration over angle and electron energy and compared to the semi-empirical Hansen-Kocbach-Stolterfoht (HKS) model and a quantum mechanical calculation employing the first Born approximation with corrected boundary conditions (CB1). The CB1 provides the best prediction of double and single differential cross section, while total cross sections can be fitted with semi-empirical models. The cross sections of the three samples are proportional to their total number of valence electrons.

  11. Calculation and Identification of the Aerodynamic Parameters for Small-Scaled Fixed-Wing UAVs

    PubMed Central

    Shen, Jieliang; Su, Yan; Liang, Qing; Zhu, Xinhua

    2018-01-01

    The establishment of the Aircraft Dynamic Model (ADM) constitutes the prerequisite for the design of the navigation and control system, but the aerodynamic parameters in the model could not be readily obtained especially for small-scaled fixed-wing UAVs. In this paper, the procedure of computing the aerodynamic parameters is developed. All the longitudinal and lateral aerodynamic derivatives are firstly calculated through semi-empirical method based on the aerodynamics, rather than the wind tunnel tests or fluid dynamics software analysis. Secondly, the residuals of each derivative are proposed to be identified or estimated further via Extended Kalman Filter (EKF), with the observations of the attitude and velocity from the airborne integrated navigation system. Meanwhile, the observability of the targeted parameters is analyzed and strengthened through multiple maneuvers. Based on a small-scaled fixed-wing aircraft driven by propeller, the airborne sensors are chosen and the model of the actuators are constructed. Then, real flight tests are implemented to verify the calculation and identification process. Test results tell the rationality of the semi-empirical method and show the improvement of accuracy of ADM after the compensation of the parameters. PMID:29342856

  12. Improvement of Progressive Damage Model to Predicting Crashworthy Composite Corrugated Plate

    NASA Astrophysics Data System (ADS)

    Ren, Yiru; Jiang, Hongyong; Ji, Wenyuan; Zhang, Hanyu; Xiang, Jinwu; Yuan, Fuh-Gwo

    2018-02-01

    To predict the crashworthy composite corrugated plate, different single and stacked shell models are evaluated and compared, and a stacked shell progressive damage model combined with continuum damage mechanics is proposed and investigated. To simulate and predict the failure behavior, both of the intra- and inter- laminar failure behavior are considered. The tiebreak contact method, 1D spot weld element and cohesive element are adopted in stacked shell model, and a surface-based cohesive behavior is used to capture delamination in the proposed model. The impact load and failure behavior of purposed and conventional progressive damage models are demonstrated. Results show that the single shell could simulate the impact load curve without the delamination simulation ability. The general stacked shell model could simulate the interlaminar failure behavior. The improved stacked shell model with continuum damage mechanics and cohesive element not only agree well with the impact load, but also capture the fiber, matrix debonding, and interlaminar failure of composite structure.

  13. Cooling tower plume - model and experiment

    NASA Astrophysics Data System (ADS)

    Cizek, Jan; Gemperle, Jiri; Strob, Miroslav; Nozicka, Jiri

    The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.

  14. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.

    PubMed

    Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B

    2012-09-11

    In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

  15. Application of the Shell/3D Modeling Technique for the Analysis of Skin-Stiffener Debond Specimens

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; O'Brien, T. Kevin; Minguet, Pierre J.

    2002-01-01

    The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/13D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.

  16. Mesoscale Particle-Based Model of Electrophoresis

    DOE PAGES

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...

    2015-07-31

    Here, we develop and evaluate a semi-empirical particle-based model of electrophoresis using extensive mesoscale simulations. We parameterize the model using only measurable quantities from a broad set of colloidal suspensions with properties that span the experimentally relevant regime. With sufficient sampling, simulated diffusivities and electrophoretic velocities match predictions of the ubiquitous Stokes-Einstein and Henry equations, respectively. This agreement holds for non-polar and aqueous solvents or ionic liquid colloidal suspensions under a wide range of applied electric fields.

  17. Mesoscale Particle-Based Model of Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.

    Here, we develop and evaluate a semi-empirical particle-based model of electrophoresis using extensive mesoscale simulations. We parameterize the model using only measurable quantities from a broad set of colloidal suspensions with properties that span the experimentally relevant regime. With sufficient sampling, simulated diffusivities and electrophoretic velocities match predictions of the ubiquitous Stokes-Einstein and Henry equations, respectively. This agreement holds for non-polar and aqueous solvents or ionic liquid colloidal suspensions under a wide range of applied electric fields.

  18. Semiempirical photospheric models of a solar flare on May 28, 2012

    NASA Astrophysics Data System (ADS)

    Andriets, E. S.; Kondrashova, N. N.

    2015-02-01

    The variation of the photosphere physical state during the decay phase of SF/B6.8-class solar flare on May 28, 2012 in active region NOAA 11490 is studied. We used the data of the spectropolarimetric observations with the French-Italian solar telescope THEMIS (Tenerife, Spain). Semi-empirical model atmospheres are derived from the inversion with SIR (Stokes Inversion based on Response functions) code. The inversion was based on Stokes profiles of six photospheric lines. Each model atmosphere has a two-component structure: a magnetic flux tube and non-magnetic surroundings. The Harvard Smithsonian Reference Atmosphere (HSRA) has been adopted for the surroundings. The macroturbulent velocity and the filling factor were assumed to be constant with the depth. The optical depth dependences of the temperature, magnetic field strength, and line-of-sight velocity are obtained from inversion. According to the received model atmospheres, the parameters of the magnetic field and the thermodynamical parameters changed during the decay phase of the flare. The model atmospheres showed that the photosphere remained in a disturbed state during observations after the maximum of the flare. There are temporal changes in the temperature and the magnetic field strength optical depth dependences. The temperature enhancement in the upper photospheric layers is found in the flaring atmospheres relative to the quiet-Sun model. The downflows are found in the low and upper photosphere at the decay phase of the flare.

  19. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications

    PubMed Central

    2016-01-01

    Semiempirical (SE) methods can be derived from either Hartree–Fock or density functional theory by applying systematic approximations, leading to efficient computational schemes that are several orders of magnitude faster than ab initio calculations. Such numerical efficiency, in combination with modern computational facilities and linear scaling algorithms, allows application of SE methods to very large molecular systems with extensive conformational sampling. To reliably model the structure, dynamics, and reactivity of biological and other soft matter systems, however, good accuracy for the description of noncovalent interactions is required. In this review, we analyze popular SE approaches in terms of their ability to model noncovalent interactions, especially in the context of describing biomolecules, water solution, and organic materials. We discuss the most significant errors and proposed correction schemes, and we review their performance using standard test sets of molecular systems for quantum chemical methods and several recent applications. The general goal is to highlight both the value and limitations of SE methods and stimulate further developments that allow them to effectively complement ab initio methods in the analysis of complex molecular systems. PMID:27074247

  20. Comparative molecular field analysis of artemisinin derivatives: Ab initio versus semiempirical optimized structures

    NASA Astrophysics Data System (ADS)

    Tonmunphean, Somsak; Kokpol, Sirirat; Parasuk, Vudhichai; Wolschann, Peter; Winger, Rudolf H.; Liedl, Klaus R.; Rode, Bernd M.

    1998-07-01

    Based on the belief that structural optimization methods, producing structures more closely to the experimental ones, should give better, i.e. more relevant, steric fields and hence more predictive CoMFA models, comparative molecular field analyses of artemisinin derivatives were performed based on semiempirical AM1 and HF/3-21G optimized geometries. Using these optimized geometries, the CoMFA results derived from the HF/3-21G method are found to be usually but not drastically better than those from AM1. Additional calculations were performed to investigate the electrostatic field difference using the Gasteiger and Marsili charges, the electrostatic potential fit charges at the AM1 level, and the natural population analysis charges at the HF/3-21G level of theory. For the HF/3-21G optimized structures no difference in predictability was observed, whereas for AM1 optimized structures such differences were found. Interestingly, if ionic compounds are omitted, differences between the various HF/3-21G optimized structure models using these electrostatic fields were found.

  1. Chemical Explosion Experiments to Improve Nuclear Test Monitoring [Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    DOE PAGES

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; ...

    2013-07-02

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poormore » performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.« less

  2. Estimating the Octanol/Water Partition Coefficient for Aliphatic Organic Compounds Using Semi-Empirical Electrotopological Index

    PubMed Central

    Souza, Erica Silva; Zaramello, Laize; Kuhnen, Carlos Alberto; Junkes, Berenice da Silva; Yunes, Rosendo Augusto; Heinzen, Vilma Edite Fonseca

    2011-01-01

    A new possibility for estimating the octanol/water coefficient (log P) was investigated using only one descriptor, the semi-empirical electrotopological index (ISET). The predictability of four octanol/water partition coefficient (log P) calculation models was compared using a set of 131 aliphatic organic compounds from five different classes. Log P values were calculated employing atomic-contribution methods, as in the Ghose/Crippen approach and its later refinement, AlogP; using fragmental methods through the ClogP method; and employing an approach considering the whole molecule using topological indices with the MlogP method. The efficiency and the applicability of the ISET in terms of calculating log P were demonstrated through good statistical quality (r > 0.99; s < 0.18), high internal stability and good predictive ability for an external group of compounds in the same order as the widely used models based on the fragmental method, ClogP, and the atomic contribution method, AlogP, which are among the most used methods of predicting log P. PMID:22072945

  3. Estimating the octanol/water partition coefficient for aliphatic organic compounds using semi-empirical electrotopological index.

    PubMed

    Souza, Erica Silva; Zaramello, Laize; Kuhnen, Carlos Alberto; Junkes, Berenice da Silva; Yunes, Rosendo Augusto; Heinzen, Vilma Edite Fonseca

    2011-01-01

    A new possibility for estimating the octanol/water coefficient (log P) was investigated using only one descriptor, the semi-empirical electrotopological index (I(SET)). The predictability of four octanol/water partition coefficient (log P) calculation models was compared using a set of 131 aliphatic organic compounds from five different classes. Log P values were calculated employing atomic-contribution methods, as in the Ghose/Crippen approach and its later refinement, AlogP; using fragmental methods through the ClogP method; and employing an approach considering the whole molecule using topological indices with the MlogP method. The efficiency and the applicability of the I(SET) in terms of calculating log P were demonstrated through good statistical quality (r > 0.99; s < 0.18), high internal stability and good predictive ability for an external group of compounds in the same order as the widely used models based on the fragmental method, ClogP, and the atomic contribution method, AlogP, which are among the most used methods of predicting log P.

  4. Recent Progress in Treating Protein-Ligand Interactions with Quantum-Mechanical Methods.

    PubMed

    Yilmazer, Nusret Duygu; Korth, Martin

    2016-05-16

    We review the first successes and failures of a "new wave" of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of "enhanced", dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects.

  5. Theoretical investigation of the molecular structure of the isoquercitrin molecule

    NASA Astrophysics Data System (ADS)

    Cornard, J. P.; Boudet, A. C.; Merlin, J. C.

    1999-09-01

    Isoquercitrin is a glycosilated flavonoid that has received a great deal of attention because of its numerous biological effects. We present a theoretical study on isoquercitrin using both empirical (Molecular Mechanics (MM), with MMX force field) and quantum chemical (AM1 semiempirical method) techniques. The most stable structures of the molecule obtained by MM calculations have been used as input data for the semiempirical treatment. The position and orientation of the glucose moiety with regard to the remainder of the molecule have been investigated. The flexibility of isoquercitrin principally lies in rotations around the inter-ring bond and the sugar link. In order to know the structural modifications generated by the substitution by a sugar, geometrical parameters of quercetin (aglycon) and isoquercitrin have been compared. The good accordance between theoretical and experimental electronic spectra permits to confirm the reliability of the structural model.

  6. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    NASA Astrophysics Data System (ADS)

    Minakov, D. V.; Levashov, P. R.; Khishchenko, K. V.; Fortov, V. E.

    2014-06-01

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.

  7. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minakov, D. V.; Khishchenko, K. V.; Fortov, V. E.

    2014-06-14

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density,more » particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.« less

  8. Corrigendum to "A semi-empirical airfoil stall noise model based on surface pressure measurements" [J. Sound Vib. 387 (2017) 127-162

    NASA Astrophysics Data System (ADS)

    Bertagnolio, Franck; Madsen, Helge Aa.; Fischer, Andreas; Bak, Christian

    2018-06-01

    In the above-mentioned paper, two model formulae were tuned to fit experimental data of surface pressure spectra measured in various wind tunnels. They correspond to high and low Reynolds number flow scalings, respectively. It turns out that there exist typographical errors in both formulae numbered (9) and (10) in the original paper. There, these formulae read:

  9. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    ERIC Educational Resources Information Center

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  10. Nuclear Structure in China 2010

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Bo; Meng, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    2011-08-01

    Personal view on nuclear physics research / Jie Meng -- High-spin level structures in [symbol]Zr / X. P. Cao ... [et al.] -- Constraining the symmetry energy from the neutron skin thickness of tin isotopes / Lie-Wen Chen ... [et al.] -- Wobbling rotation in atomic nuclei / Y. S. Chen and Zao-Chun Gao -- The mixing of scalar mesons and the possible nonstrange dibaryons / L. R. Dai ... [et al.] -- Net baryon productions and gluon saturation in the SPS, RHIC and LHC energy regions / Sheng-Qin Feng -- Production of heavy isotopes with collisions between two actinide nuclides / Z. Q. Feng ... [et al.] -- The projected configuration interaction method / Zao-Chun Gao and Yong-Shou Chen -- Applications of Nilsson mean-field plus extended pairing model to rare-earth nuclei / Xin Guan ... [et al.] -- Complex scaling method and the resonant states / Jian-You Guo ... [et al.] -- Probing the equation of state by deep sub-barrier fusion reactions / Hong-Jun Hao and Jun-Long Tian -- Doublet structure study in A[symbol]105 mass region / C. Y. He ... [et al.] -- Rotational bands in transfermium nuclei / X. T. He -- Shape coexistence and shape evolution [symbol]Yb / H. Hua ... [et al.] -- Multistep shell model method in the complex energy plane / R. J. Liotta -- The evolution of protoneutron stars with kaon condensate / Ang Li -- High spin structures in the [symbol]Lu nucleus / Li Cong-Bo ... [et al.] -- Nuclear stopping and equation of state / QingFeng Li and Ying Yuan -- Covariant description of the low-lying states in neutron-deficient Kr isotopes / Z. X. Li ... [et al.] -- Isospin corrections for superallowed [symbol] transitions / HaoZhao Liang ... [et al.] -- The positive-parity band structures in [symbol]Ag / C. Liu ... [et al.] -- New band structures in odd-odd [symbol]I and [symbol]I / Liu GongYe ... [et al.] -- The sd-pair shell model and interacting boson model / Yan-An Luo ... [et al.] -- Cross-section distributions of fragments in the calcium isotopes projectile fragmentation at the intermediate energy / C. W. Ma ... [et al.].Systematic study of spin assignment and dynamic moment of inertia of high-j intruder band in [symbol]In / K. Y. Ma ... [et al.] -- Signals of diproton emission from the three-body breakup channel of [symbol]Al and [symbol]Mg / Ma Yu-Gang ... [et al.] -- Uncertainties of Th/Eu and Th/Hf chronometers from nucleus masses / Z. M. Niu ... [et al.] -- The chiral doublet bands with [symbol] configuration in A[symbol]100 mass region / B. Qi ... [et al.] -- [symbol] formation probabilities in nuclei and pairing collectivity / Chong Qi -- A theoretical prospective on triggered gamma emission from [symbol]Hf[symbol] isomer / ShuiFa Shen ... [et al.] -- Study of nuclear giant resonances using a Fermi-liquid method / Bao-Xi Sun -- Rotational bands in doubly odd [symbol]Sb / D. P. Sun ... [et al.] -- The study of the neutron N=90 nuclei / W. X. Teng ... [et al.] -- Dynamical modes and mechanisms in ternary reaction of [symbol]Au+[symbol]Au / Jun-Long Tian ... [et al.] -- Dynamical study of X(3872) as a D[symbol] molecular state / B. Wang ... [et al.] -- Super-heavy stability island with a semi-empirical nuclear mass formula / N. Wang ... [et al.] -- Pseudospin partner bands in [symbol]Sb / S. Y. Wang ... [et al.] -- Study of elastic resonance scattering at CIAE / Y. B. Wang ... [et al.] -- Systematic study of survival probability of excited superheavy nuclei / C. J. Xia ... [et al.] -- Angular momentum projection of the Nilsson mean-field plus nearest-orbit pairing interaction model / Ming-Xia Xie ... [et al.] -- Possible shape coexistence for [symbol]Sm in a reflection-asymmetric relativistic mean-field approach / W. Zhang ... [et al.] -- Nuclear pairing reduction due to rotation and blocking / Zhen-Hua Zhang -- Nucleon pair approximation of the shell model: a review and perspective / Y. M. Zhao ... [et al.] -- Band structures in doubly odd [symbol]I / Y. Zheng ... [et al.] -- Lifetimes of high spin states in [symbol]Ag / Y. Zheng ... [et al.] -- Effect of tensor interaction on the shell structure of superheavy nuclei / Xian-Rong Zhou ... [et al.].

  11. A reappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function.

    PubMed

    Kosmidis, Kosmas; Argyrakis, Panos; Macheras, Panos

    2003-07-01

    To verify the Higuchi law and study the drug release from cylindrical and spherical matrices by means of Monte Carlo computer simulation. A one-dimensional matrix, based on the theoretical assumptions of the derivation of the Higuchi law, was simulated and its time evolution was monitored. Cylindrical and spherical three-dimensional lattices were simulated with sites at the boundary of the lattice having been denoted as leak sites. Particles were allowed to move inside it using the random walk model. Excluded volume interactions between the particles was assumed. We have monitored the system time evolution for different lattice sizes and different initial particle concentrations. The Higuchi law was verified using the Monte Carlo technique in a one-dimensional lattice. It was found that Fickian drug release from cylindrical matrices can be approximated nicely with the Weibull function. A simple linear relation between the Weibull function parameters and the specific surface of the system was found. Drug release from a matrix, as a result of a diffusion process assuming excluded volume interactions between the drug molecules, can be described using a Weibull function. This model, although approximate and semiempirical, has the benefit of providing a simple physical connection between the model parameters and the system geometry, which was something missing from other semiempirical models.

  12. Electronic transport properties of inner and outer shells in near ohmic-contacted double-walled carbon nanotube transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian

    2014-06-14

    We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combiningmore » Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.« less

  13. Propagation of flexural and membrane waves with fluid loaded NASTRAN plate and shell elements

    NASA Technical Reports Server (NTRS)

    Kalinowski, A. J.; Wagner, C. A.

    1983-01-01

    Modeling of flexural and membrane type waves existing in various submerged (or in vacuo) plate and/or shell finite element models that are excited with steady state type harmonic loadings proportioned to e(i omega t) is discussed. Only thin walled plates and shells are treated wherein rotary inertia and shear correction factors are not included. More specifically, the issue of determining the shell or plate mesh size needed to represent the spatial distribution of the plate or shell response is of prime importance towards successfully representing the solution to the problem at hand. To this end, a procedure is presented for establishing guide lines for determining the mesh size based on a simple test model that can be used for a variety of plate and shell configurations such as, cylindrical shells with water loading, cylindrical shells in vacuo, plates with water loading, and plates in vacuo. The procedure for doing these four cases is given, with specific numerical examples present only for the cylindrical shell case.

  14. Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment

    NASA Astrophysics Data System (ADS)

    Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.

    2009-11-01

    The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.

  15. Spectroscopy and high-spin structure of 210Fr: Isomerism and potential evidence for configuration mixing

    NASA Astrophysics Data System (ADS)

    Margerin, V.; Lane, G. J.; Dracoulis, G. D.; Palalani, N.; Smith, M. L.; Stuchbery, A. E.

    2016-06-01

    The structure of 210Fr has been established up to an excitation energy of ˜5.5 MeV and spins of ˜25 ℏ , via time-correlated γ -ray spectroscopy and using the 197Au(18O,5 n )210Fr reaction with pulsed beams at an energy of 97 MeV. A significantly different level scheme has been obtained compared to previous publications. Several isomers are reported here, including a Jπ=(23) +,τ =686 (9 ) -ns state at 4417 keV and a 10-, 29.8(11)-ns state at 1113 keV. The former isomer has been associated with the π (h9/2 3i13/2 2) ν (p1/2 -2f5/2 -1) configuration and decays via proposed E 3 transitions with strengths of 8.4(3) and 21.2(8) W.u. There are only very few known cases of a high-spin isomer decaying via two parallel E 3 transitions. Indeed, this is not seen in other Fr nuclei, and consequently these strengths differ from related decays in the neighboring isotopes. However, by examining the systematics of E 3 transitions in trans-lead nuclei, we suggest that the weaker of the two transitions decays to a mixed 20- state. Systematics of the 10- isomer are also discussed. Comparisons are made between the observed spectrum of states and those predicted from semiempirical shell-model calculations.

  16. Experimental analysis and numerical modeling of mollusk shells as a three dimensional integrated volume.

    PubMed

    Faghih Shojaei, M; Mohammadi, V; Rajabi, H; Darvizeh, A

    2012-12-01

    In this paper, a new numerical technique is presented to accurately model the geometrical and mechanical features of mollusk shells as a three dimensional (3D) integrated volume. For this purpose, the Newton method is used to solve the nonlinear equations of shell surfaces. The points of intersection on the shell surface are identified and the extra interior parts are removed. Meshing process is accomplished with respect to the coordinate of each point of intersection. The final 3D generated mesh models perfectly describe the spatial configuration of the mollusk shells. Moreover, the computational model perfectly matches with the actual interior geometry of the shells as well as their exterior architecture. The direct generation technique is employed to generate a 3D finite element (FE) model in ANSYS 11. X-ray images are taken to show the close similarity of the interior geometry of the models and the actual samples. A scanning electron microscope (SEM) is used to provide information on the microstructure of the shells. In addition, a set of compression tests were performed on gastropod shell specimens to obtain their ultimate compressive strength. A close agreement between experimental data and the relevant numerical results is demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Structures of 38-atom gold-platinum nanoalloy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atomsmore » are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.« less

  18. A Method for Quantifying, Visualising, and Analysing Gastropod Shell Form

    PubMed Central

    Liew, Thor-Seng; Schilthuizen, Menno

    2016-01-01

    Quantitative analysis of organismal form is an important component for almost every branch of biology. Although generally considered an easily-measurable structure, the quantification of gastropod shell form is still a challenge because many shells lack homologous structures and have a spiral form that is difficult to capture with linear measurements. In view of this, we adopt the idea of theoretical modelling of shell form, in which the shell form is the product of aperture ontogeny profiles in terms of aperture growth trajectory that is quantified as curvature and torsion, and of aperture form that is represented by size and shape. We develop a workflow for the analysis of shell forms based on the aperture ontogeny profile, starting from the procedure of data preparation (retopologising the shell model), via data acquisition (calculation of aperture growth trajectory, aperture form and ontogeny axis), and data presentation (qualitative comparison between shell forms) and ending with data analysis (quantitative comparison between shell forms). We evaluate our methods on representative shells of the genera Opisthostoma and Plectostoma, which exhibit great variability in shell form. The outcome suggests that our method is a robust, reproducible, and versatile approach for the analysis of shell form. Finally, we propose several potential applications of our methods in functional morphology, theoretical modelling, taxonomy, and evolutionary biology. PMID:27280463

  19. A shell-neutral modeling approach yields sustainable oyster harvest estimates: a retrospective analysis of the Louisiana state primary seed grounds

    USGS Publications Warehouse

    Soniat, Thomas M.; Klinck, John M.; Powell, Eric N.; Cooper, Nathan; Abdelguerfi, Mahdi; Hofmann, Eileen E.; Dahal, Janak; Tu, Shengru; Finigan, John; Eberline, Benjamin S.; La Peyre, Jerome F.; LaPeyre, Megan K.; Qaddoura, Fareed

    2012-01-01

    A numerical model is presented that defines a sustainability criterion as no net loss of shell, and calculates a sustainable harvest of seed (<75 mm) and sack or market oysters (≥75 mm). Stock assessments of the Primary State Seed Grounds conducted east of the Mississippi from 2009 to 2011 show a general trend toward decreasing abundance of sack and seed oysters. Retrospective simulations provide estimates of annual sustainable harvests. Comparisons of simulated sustainable harvests with actual harvests show a trend toward unsustainable harvests toward the end of the time series. Stock assessments combined with shell-neutral models can be used to estimate sustainable harvest and manage cultch through shell planting when actual harvest exceeds sustainable harvest. For exclusive restoration efforts (no fishing allowed), the model provides a metric for restoration success-namely, shell accretion. Oyster fisheries that remove shell versus reef restorations that promote shell accretion, although divergent in their goals, are convergent in their management; both require vigilant attention to shell budgets.

  20. Open source integrated modeling environment Delta Shell

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.

    2012-04-01

    In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.

  1. Computational techniques in tribology and material science at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Bozzolo, G. H.

    1992-01-01

    Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented.

  2. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    ERIC Educational Resources Information Center

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  3. A model for prediction of STOVL ejector dynamics

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.

    1989-01-01

    A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration.

  4. Current Results and Proposed Activities in Microgravity Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Polezhaev, V. I.

    1996-01-01

    The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.

  5. Influence of corneal thickness on the intraocular pressure readings for Maklakoff's tonometer of different weight

    NASA Astrophysics Data System (ADS)

    Franus, D. V.

    2018-05-01

    Research is conducted into variation in the stress-strain state of the corneoscleral shell of the human eye under loading by a flat base stamp of varying weight. A three-dimensional finite-element model of the contact problem of loading of the corneoscleral shell in the ANSYS program package is presented. Cornea and sclera are modeled as conjugated transversely isotropic spherical shells. The cornea is modeled as a multilayer shell with variable thickness in which all modeled layers have their own individual elastic properties. The research deals with the numerical calculation of the diameter of the contact zone between the shell and the stamp. Values of correction coefficients for intraocular pressure are obtained depending on the thickness of the corneal shell in its center, allowing the true intraocular pressure to be determined more accurately.

  6. Modeling of the strong ground motion of 25th April 2015 Nepal earthquake using modified semi-empirical technique

    NASA Astrophysics Data System (ADS)

    Lal, Sohan; Joshi, A.; Sandeep; Tomer, Monu; Kumar, Parveen; Kuo, Chun-Hsiang; Lin, Che-Min; Wen, Kuo-Liang; Sharma, M. L.

    2018-05-01

    On 25th April, 2015 a hazardous earthquake of moment magnitude 7.9 occurred in Nepal. Accelerographs were used to record the Nepal earthquake which is installed in the Kumaon region in the Himalayan state of Uttrakhand. The distance of the recorded stations in the Kumaon region from the epicenter of the earthquake is about 420-515 km. Modified semi-empirical technique of modeling finite faults has been used in this paper to simulate strong earthquake at these stations. Source parameters of the Nepal aftershock have been also calculated using the Brune model in the present study which are used in the modeling of the Nepal main shock. The obtained value of the seismic moment and stress drop is 8.26 × 1025 dyn cm and 10.48 bar, respectively, for the aftershock from the Brune model .The simulated earthquake time series were compared with the observed records of the earthquake. The comparison of full waveform and its response spectra has been made to finalize the rupture parameters and its location. The rupture of the earthquake was propagated in the NE-SW direction from the hypocenter with the rupture velocity 3.0 km/s from a distance of 80 km from Kathmandu in NW direction at a depth of 12 km as per compared results.

  7. Semi-empirical proton binding constants for natural organic matter

    NASA Astrophysics Data System (ADS)

    Matynia, Anthony; Lenoir, Thomas; Causse, Benjamin; Spadini, Lorenzo; Jacquet, Thierry; Manceau, Alain

    2010-03-01

    Average proton binding constants ( KH,i) for structure models of humic (HA) and fulvic (FA) acids were estimated semi-empirically by breaking down the macromolecules into reactive structural units (RSUs), and calculating KH,i values of the RSUs using linear free energy relationships (LFER) of Hammett. Predicted log KH,COOH and log KH,Ph-OH are 3.73 ± 0.13 and 9.83 ± 0.23 for HA, and 3.80 ± 0.20 and 9.87 ± 0.31 for FA. The predicted constants for phenolic-type sites (Ph-OH) are generally higher than those derived from potentiometric titrations, but the difference may not be significant in view of the considerable uncertainty of the acidity constants determined from acid-base measurements at high pH. The predicted constants for carboxylic-type sites agree well with titration data analyzed with Model VI (4.10 ± 0.16 for HA, 3.20 ± 0.13 for FA; Tipping, 1998), the Impermeable Sphere model (3.50-4.50 for HA; Avena et al., 1999), and the Stockholm Humic Model (4.10 ± 0.20 for HA, 3.50 ± 0.40 for FA; Gustafsson, 2001), but differ by about one log unit from those obtained by Milne et al. (2001) with the NICA-Donnan model (3.09 ± 0.51 for HA, 2.65 ± 0.43 for FA), and used to derive recommended generic values. To clarify this ambiguity, 10 high-quality titration data from Milne et al. (2001) were re-analyzed with the new predicted equilibrium constants. The data are described equally well with the previous and new sets of values ( R2 ⩾ 0.98), not necessarily because the NICA-Donnan model is overparametrized, but because titration lacks the sensitivity needed to quantify the full binding properties of humic substances. Correlations between NICA-Donnan parameters are discussed, but general progress is impeded by the unknown number of independent parameters that can be varied during regression of a model fit to titration data. The high consistency between predicted and experimental KH,COOH values, excluding those of Milne et al. (2001), gives faith in the proposed semi-empirical structural approach, and its usefulness to assess the plausibility of proton stability constants derived from simulations of titration data.

  8. Optical model calculations of 14.6A GeV silicon fragmentation cross sections

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Khan, Ferdous; Tripathi, Ram K.

    1993-01-01

    An optical potential abrasion-ablation collision model is used to calculate hadronic dissociation cross sections for a 14.6 A GeV(exp 28) Si beam fragmenting in aluminum, tin, and lead targets. The frictional-spectator-interaction (FSI) contributions are computed with two different formalisms for the energy-dependent mean free path. These estimates are compared with experimental data and with estimates obtained from semi-empirical fragmentation models commonly used in galactic cosmic ray transport studies.

  9. Mathematical Models and Calculation of the Coefficients of Heat and Mass Transfer in the Packings of Mechanical-Draft Towers

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Lapteva, E. A.

    2017-05-01

    Semiempirical expressions for calculating the average coefficients of heat and mass transfer in the blocks of film-type sprayers are considered. The equations of the Chilton-Colburn hydrodynamic analogy, Prandtl model, generalizations of the hydrodynamic analogy, as well as dimensionless expressions and experimental data of various authors have been used. It is shown that the best agreement with experiment is provided by equations obtained with the aid of the hydrodynamic analogy and Prandtl model.

  10. DARPA Helicopter Quieting Program W911NF0410424

    DTIC Science & Technology

    2009-05-01

    Leishman , J. G. and Beddoes , T. S., “A Semi-Empirical Model for Dynamic Stall ,” Journal of the American Heli- copter Society, Vol. 34, No. 3, July 1989...of physical phenomena that include transonic and compressibility effects on the advancing blade, dynamic stall on the retreating blades and the...research approach is that even the most advanced models of a given discipline, e.g., comprehensive structural or flight dynamics codes , concentrate on a very

  11. Regimes of Micro-bubble Formation Using Gas Injection into Ladle Shroud

    NASA Astrophysics Data System (ADS)

    Chang, Sheng; Cao, Xiangkun; Zou, Zongshu

    2018-03-01

    Gas injection into a ladle shroud is a practical approach to produce micro-bubbles in tundishes, to promote inclusion removal from liquid steel. A semi-empirical model was established to characterize the bubble formation considering the effect of shearing action combined with the non-fully bubble break-up by turbulence. The model shows a good accuracy in predicting the size of bubbles formed in complex flow within the ladle shroud.

  12. Regimes of Micro-bubble Formation Using Gas Injection into Ladle Shroud

    NASA Astrophysics Data System (ADS)

    Chang, Sheng; Cao, Xiangkun; Zou, Zongshu

    2018-06-01

    Gas injection into a ladle shroud is a practical approach to produce micro-bubbles in tundishes, to promote inclusion removal from liquid steel. A semi-empirical model was established to characterize the bubble formation considering the effect of shearing action combined with the non-fully bubble break-up by turbulence. The model shows a good accuracy in predicting the size of bubbles formed in complex flow within the ladle shroud.

  13. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Downs, R. L.; Ebner, M. A.; Nolen, R. L., Jr.

    1981-01-01

    Highly-uniform, hollow glass spheres (shells), which are used for inertial confinement fusion targets, were formed from metal-organic gel powder feedstock in a vertical furnace. As a result of the rapid pyrolysis caused by the furnace, the gel is transformed to a shell in five distinct stages: (a) surface closure of the porous gel; (b) generation of a closed-cell foam structure in the gel; (c) spheridization of the gel and further expansion of the foam; (d) coalescence of the closed-cell foam to a single-void shell; and (e) fining of the glass shell. The heat transfer from the furnace to the falling gel particle was modeled to determine the effective heating rate of the gel. The model predicts the temperature history for a particle as a function of mass, dimensions, specific heat, and absorptance as well as furnace temperature profile and thermal conductivity of the furnace gas. A model was developed that predicts the gravity-induced degradation of shell concentricity in falling molten shells as a function of shell characteristics and time.

  14. Doped polycyclic aromatic hydrocarbons as building blocks for nanoelectronics: a theoretical study.

    PubMed

    Dral, Pavlo O; Kivala, Milan; Clark, Timothy

    2013-03-01

    Density functional theory (DFT) and semiempirical UHF natural orbital configuration interaction (UNO-CI) calculations are used to investigate the effect of heteroatom substitution at the central position of a model polycyclic aromatic hydrocarbon. The effects of the substitution on structure, strain, electronic and spectral properties, and aromaticity of the compounds are discussed.

  15. Isothermal Circumstellar Dust Shell Model for Teaching

    ERIC Educational Resources Information Center

    Robinson, G.; Towers, I. N.; Jovanoski, Z.

    2009-01-01

    We introduce a model of radiative transfer in circumstellar dust shells. By assuming that the shell is both isothermal and its thickness is small compared to its radius, the model is simple enough for students to grasp and yet still provides a quantitative description of the relevant physical features. The isothermal model can be used in a…

  16. Geodynamic Modeling of Planetary Ice-Oceans: Evolution of Ice-Shell Thickness in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2016-12-01

    Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.

  17. Finite Rotation Analysis of Highly Thin and Flexible Structures

    NASA Technical Reports Server (NTRS)

    Clarke, Greg V.; Lee, Keejoo; Lee, Sung W.; Broduer, Stephen J. (Technical Monitor)

    2001-01-01

    Deployable space structures such as sunshields and solar sails are extremely thin and highly flexible with limited bending rigidity. For analytical investigation of their responses during deployment and operation in space, these structures can be modeled as thin shells. The present work examines the applicability of the solid shell element formulation to modeling of deployable space structures. The solid shell element formulation that models a shell as a three-dimensional solid is convenient in that no rotational parameters are needed for the description of kinematics of deformation. However, shell elements may suffer from element locking as the thickness becomes smaller unless special care is taken. It is shown that, when combined with the assumed strain formulation, the solid shell element formulation results in finite element models that are free of locking even for extremely thin structures. Accordingly, they can be used for analysis of highly flexible space structures undergoing geometrically nonlinear finite rotations.

  18. Semiempirical studies of atomic structure. Progress report, 1 July 1991--1 October 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, L.J.

    1993-10-01

    Atomic structure/properties of highly ionized many-electron systems are studied using sensitive semiempirical data systematization, experiment, and theory. Measurements are made using fast ion beams, combined with data from laser- and tokamak-produced plasmas, astrophysical sources, and light sources. Results during this 3-y period are discussed under the following headings: Invited review article (decay rates in systems of negative ions to very heavy one-electron ions), fast ion beam lifetime measurements (Pt sequence, neutral carbon, Na sequence), multiplexed decay curve measurements, multiplexed decay curve measurements (lifetimes of alkali-like resonance transitions, spin-forbidden intercombination lines), lifetimes in Ne sequence, lifetimes for H and He sequences,more » data-based semiempirical formulations, calculations, and accelerator studies.« less

  19. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.

    PubMed

    Doinikov, Alexander A; Haac, Jillian F; Dayton, Paul A

    2009-02-01

    A general theoretical approach to the development of zero-thickness encapsulation models for contrast microbubbles is proposed. The approach describes a procedure that allows one to recast available rheological laws from the bulk form to a surface form which is used in a modified Rayleigh-Plesset equation governing the radial dynamics of a contrast microbubble. By the use of the proposed procedure, the testing of different rheological laws for encapsulation can be carried out. Challenges of existing shell models for lipid-encapsulated microbubbles, such as the dependence of shell parameters on the initial bubble radius and the "compression-only" behavior, are discussed. Analysis of the rheological behavior of lipid encapsulation is made by using experimental radius-time curves for lipid-coated microbubbles with radii in the range 1.2-2.5 microm. The curves were acquired for a research phospholipid-coated contrast agent insonified with a 20 cycle, 3.0 MHz, 100 kPa acoustic pulse. The fitting of the experimental data by a model which treats the shell as a viscoelastic solid gives the values of the shell surface viscosity increasing from 0.30 x 10(-8) kg/s to 2.63 x 10(-8) kg/s for the range of bubble radii, indicated above. The shell surface elastic modulus increases from 0.054 N/m to 0.37 N/m. It is proposed that this increase may be a result of the lipid coating possessing the properties of both a shear-thinning and a strain-softening material. We hypothesize that these complicated rheological properties do not allow the existing shell models to satisfactorily describe the dynamics of lipid encapsulation. In the existing shell models, the viscous and the elastic shell terms have the linear form which assumes that the viscous and the elastic stresses acting inside the lipid shell are proportional to the shell shear rate and the shell strain, respectively, with constant coefficients of proportionality. The analysis performed in the present paper suggests that a more general, nonlinear theory may be more appropriate. It is shown that the use of the nonlinear theory for shell viscosity allows one to model the "compression-only" behavior. As an example, the results of the simulation for a 2.03 microm radius bubble insonified with a 6 cycle, 1.8 MHz, 100 kPa acoustic pulse are given. These parameters correspond to the acoustic conditions under which the "compression-only" behavior was observed by de Jong et al. [Ultrasound Med. Biol. 33 (2007) 653-656]. It is also shown that the use of the Cross law for the modeling of the shear-thinning behavior of shell viscosity reduces the variance of experimentally estimated values of the shell viscosity and its dependence on the initial bubble radius.

  20. Analysis and design of a calcium-based sulfur sorbent for applications in integrated gasification combined cycle energy systems

    NASA Astrophysics Data System (ADS)

    Hasler, David Johann Ludwig

    The reactivity of various Ca-based sorbent materials in pelletized form with H2S or CO2 was investigated at high temperatures (750--880°C). An extensive study was conducted to compare the performance of sorbent pellets derived from plaster of Paris and limestone. Multicycle absorption and regeneration tests showed that plaster-based pellets out performed the limestone-based pellets primarily due to a higher surface area and mesoporosity. The effect of pore-modifiers on the reactivity of limestone with H 2S was investigated by incorporating additives such as cornstarch, graphite and polyvinylalcohol (PVA) in the sorbent. Multicycle sulfidation and regeneration tests of the modified sorbent showed that starch did not improve the reactivity of the limestone, graphite reduced the reactivity, while PVA improved it. The effect of the chemical additives MgO and SrO on the performance of CaO-based sorbent pellets was investigated. The effect of MgO was tested by starting with materials that contained MgCO3 in a natural form, such as dolomite. The effect of SrO was tested by starting with SrCO 3 either co-precipitated with CaCO3 or by wet-mixing SrCO 3 with limestone in slurry form. The MgO was found to improve the thermal stability of the CaO-based sorbent but lowered the overall absorption capacity of the material when reacted with CO2 or H2S, while SrO decreased the thermal stability of the sorbent when it was reacted with CO2; no absorption tests were run with H2S. A study of the performance of pelletized CaO-based cores coated with a refractory material such as alumina and limestone or alumina and kaolin was conducted. The reactivity of the core and shell pellets with H2S was determined. The strength and durability of the pellets were determined by using crushing strength analysis and abrasion resistance tests. Pellets coated with either alumina and limestone or alumina and kaolin proved to be strong and adequate for use in industrial reactors. A semi-empirical mathematical model was developed to represent the reaction of H2S with a sorbent pellet. The model was based on the well-known shrinking core model and it was applied successfully for the analysis of both pellet cores and core and shell pellets reacting with H2S.

  1. Verification of Orthogrid Finite Element Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.

    1996-01-01

    The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.

  2. Holocene sea level, a semi-empirical contemplation

    NASA Astrophysics Data System (ADS)

    Bittermann, K.; Kemp, A.; Vermeer, M.; Rahmstorf, S.

    2017-12-01

    Holocene eustatic sea level from approximately -10,000-1800 CE was characterized by an increase of about 60m, with the rate progressively slowing down until sea level almost stabilizes between 500-1800 CE. Global and northern-hemisphere temperatures rose from the last glacial termination until the `Holocene Optimum'. From ­­there, up to the start of the recent anthropogenic rise, they almost steadily decline. How are the sea-level and temperature evolutions linked? We investigate this with semi-empirical sea-level models. We found that, due to the nature of Milankovitch forcing, northern-hemisphere temperature (we used the Greenland temperature by Vinther et al., 2009) is a better model driver than global mean temperature because the evolving mass of northern-hemisphere land ice was the dominant cause of Holocene global sea-level trends. The adjustment timescale for this contribution is 1200 years (900-1500 years; 90% confidence interval). To fit the observed sea-level history, the model requires a small additional constant rate (Bittermann 2016). This rate turns out to be of the same order of magnitude as reconstructions of Antarctic sea-level contributions (Briggs et al. 2014, Golledge et al. 2014). In reality this contribution is unlikely to be constant but rather has a dominant timescale that is large compared to the time considered. We thus propose that Holocene sea level can be described by a linear combination of a temperature driven rate, which becomes negative in the late Holocene (as Northern Hemisphere ice masses are diminished), and a positive, approximately constant term (possibly from Antarctica), which starts to dominate from the middle of the Holocene until the start of industrialization. Bibliography: Bittermann, K. 2016. Semi-empirical sea-level modelling. PhD Thesis University of Potsdam. Briggs, R.D., et al. 2014. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quaternary science reviews, 103, 91-115. Golledge, N.R., et al. 2014. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nature communications, 5, 5107. Vinther, B.M., et al. 2009. Holocene thinning of the Greenland ice sheet. Nature, 461(7262), 385-388.

  3. A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part II: impact modeling

    NASA Astrophysics Data System (ADS)

    Pigazzini, M. S.; Bazilevs, Y.; Ellison, A.; Kim, H.

    2017-11-01

    In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on isogeometric analysis, where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum damage mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.

  4. A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part I: basic theory and modeling of delamination and transverse shear

    NASA Astrophysics Data System (ADS)

    Bazilevs, Y.; Pigazzini, M. S.; Ellison, A.; Kim, H.

    2017-11-01

    In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on Isogeometric Analysis (IGA), where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum Damage Mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.

  5. Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals.

    PubMed

    Gamsjäger, Ernst; Wiessner, Manfred

    2018-01-01

    Thermodynamic data of various crystalline solids are assessed from low temperature heat capacity measurements, i.e., from almost absolute zero to 300 K by means of semi-empirical models. Previous studies frequently present fit functions with a large amount of coefficients resulting in almost perfect agreement with experimental data. It is, however, pointed out in this work that special care is required to avoid overfitting. Apart from anomalies like phase transformations, it is likely that data from calorimetric measurements can be fitted by a relatively simple Debye-Einstein integral with sufficient precision. Thereby, reliable values for the heat capacities, standard enthalpies, and standard entropies at T  = 298.15 K are obtained. Standard thermodynamic functions of various compounds strongly differing in the number of atoms in the formula unit can be derived from this fitting procedure and are compared to the results of previous fitting procedures. The residuals are of course larger when the Debye-Einstein integral is applied instead of using a high number of fit coefficients or connected splines, but the semi-empiric fit coefficients keep their meaning with respect to physics. It is suggested to use the Debye-Einstein integral fit as a standard method to describe heat capacities in the range between 0 and 300 K so that the derived thermodynamic functions are obtained on the same theory-related semi-empiric basis. Additional fitting is recommended when a precise description for data at ultra-low temperatures (0-20 K) is requested.

  6. Error estimates for (semi-)empirical dispersion terms and large biomacromolecules.

    PubMed

    Korth, Martin

    2013-10-14

    The first-principles modeling of biomaterials has made tremendous advances over the last few years with the ongoing growth of computing power and impressive developments in the application of density functional theory (DFT) codes to large systems. One important step forward was the development of dispersion corrections for DFT methods, which account for the otherwise neglected dispersive van der Waals (vdW) interactions. Approaches at different levels of theory exist, with the most often used (semi-)empirical ones based on pair-wise interatomic C6R(-6) terms. Similar terms are now also used in connection with semiempirical QM (SQM) methods and density functional tight binding methods (SCC-DFTB). Their basic structure equals the attractive term in Lennard-Jones potentials, common to most force field approaches, but they usually use some type of cutoff function to make the mixing of the (long-range) dispersion term with the already existing (short-range) dispersion and exchange-repulsion effects from the electronic structure theory methods possible. All these dispersion approximations were found to perform accurately for smaller systems, but error estimates for larger systems are very rare and completely missing for really large biomolecules. We derive such estimates for the dispersion terms of DFT, SQM and MM methods using error statistics for smaller systems and dispersion contribution estimates for the PDBbind database of protein-ligand interactions. We find that dispersion terms will usually not be a limiting factor for reaching chemical accuracy, though some force fields and large ligand sizes are problematic.

  7. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  8. Basis material decomposition in spectral CT using a semi-empirical, polychromatic adaption of the Beer-Lambert model.

    PubMed

    Ehn, S; Sellerer, T; Mechlem, K; Fehringer, A; Epple, M; Herzen, J; Pfeiffer, F; Noël, P B

    2017-01-07

    Following the development of energy-sensitive photon-counting detectors using high-Z sensor materials, application of spectral x-ray imaging methods to clinical practice comes into reach. However, these detectors require extensive calibration efforts in order to perform spectral imaging tasks like basis material decomposition. In this paper, we report a novel approach to basis material decomposition that utilizes a semi-empirical estimator for the number of photons registered in distinct energy bins in the presence of beam-hardening effects which can be termed as a polychromatic Beer-Lambert model. A maximum-likelihood estimator is applied to the model in order to obtain estimates of the underlying sample composition. Using a Monte-Carlo simulation of a typical clinical CT acquisition, the performance of the proposed estimator was evaluated. The estimator is shown to be unbiased and efficient according to the Cramér-Rao lower bound. In particular, the estimator is capable of operating with a minimum number of calibration measurements. Good results were obtained after calibration using less than 10 samples of known composition in a two-material attenuation basis. This opens up the possibility for fast re-calibration in the clinical routine which is considered an advantage of the proposed method over other implementations reported in the literature.

  9. Basis material decomposition in spectral CT using a semi-empirical, polychromatic adaption of the Beer-Lambert model

    NASA Astrophysics Data System (ADS)

    Ehn, S.; Sellerer, T.; Mechlem, K.; Fehringer, A.; Epple, M.; Herzen, J.; Pfeiffer, F.; Noël, P. B.

    2017-01-01

    Following the development of energy-sensitive photon-counting detectors using high-Z sensor materials, application of spectral x-ray imaging methods to clinical practice comes into reach. However, these detectors require extensive calibration efforts in order to perform spectral imaging tasks like basis material decomposition. In this paper, we report a novel approach to basis material decomposition that utilizes a semi-empirical estimator for the number of photons registered in distinct energy bins in the presence of beam-hardening effects which can be termed as a polychromatic Beer-Lambert model. A maximum-likelihood estimator is applied to the model in order to obtain estimates of the underlying sample composition. Using a Monte-Carlo simulation of a typical clinical CT acquisition, the performance of the proposed estimator was evaluated. The estimator is shown to be unbiased and efficient according to the Cramér-Rao lower bound. In particular, the estimator is capable of operating with a minimum number of calibration measurements. Good results were obtained after calibration using less than 10 samples of known composition in a two-material attenuation basis. This opens up the possibility for fast re-calibration in the clinical routine which is considered an advantage of the proposed method over other implementations reported in the literature.

  10. Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas

    NASA Astrophysics Data System (ADS)

    Balthazar, Vincent; Vanacker, Veerle; Lambin, Eric F.

    2012-08-01

    A topographic correction of optical remote sensing data is necessary to improve the quality of quantitative forest cover change analyses in mountainous terrain. The implementation of semi-empirical correction methods requires the calibration of model parameters that are empirically defined. This study develops a method to improve the performance of topographic corrections for forest cover change detection in mountainous terrain through an iterative tuning method of model parameters based on a systematic evaluation of the performance of the correction. The latter was based on: (i) the general matching of reflectances between sunlit and shaded slopes and (ii) the occurrence of abnormal reflectance values, qualified as statistical outliers, in very low illuminated areas. The method was tested on Landsat ETM+ data for rough (Ecuadorian Andes) and very rough mountainous terrain (Bhutan Himalayas). Compared to a reference level (no topographic correction), the ATCOR3 semi-empirical correction method resulted in a considerable reduction of dissimilarities between reflectance values of forested sites in different topographic orientations. Our results indicate that optimal parameter combinations are depending on the site, sun elevation and azimuth and spectral conditions. We demonstrate that the results of relatively simple topographic correction methods can be greatly improved through a feedback loop between parameter tuning and evaluation of the performance of the correction model.

  11. A model of the relationship between weedy rice seed-bank dynamics and rice-crop infestation and damage in Jiangsu Province, China.

    PubMed

    Zhang, Zheng; Dai, Weimin; Song, Xiaoling; Qiang, Sheng

    2014-05-01

    A heavy infestation of weedy rice leading to no harvested rice has never been predicted in China due to a lack of knowledge about the weedy rice seed bank. We studied the seed-bank dynamics of weedy rice for three consecutive years and analyzed the relationship between seed-bank density and population density in order to predict future weedy rice infestations of direct-seeded rice at six sites along the Yangtze River in Jiangsu Province, China. The seed-bank density of weedy rice in all six sites displayed an increasing trend with seasonal fluctuations. Weedy rice seeds found in the 0-10 cm soil layer contributed most to seedling emergence. An exponential curve expressed the relationship between cultivated rice yield loss and adult weedy rice density. Based on data collected during the weedy rice life-cycle, a semi-empirical mathematic model was developed that fits well with the experimental data in a way that could be used to predict seed-bank dynamics. By integrating the semi-empirical model and the exponential curve, weedy rice infestation levels and crop losses can be predicted based on the seed-bank dynamics so that a practical control can be adopted before rice planting. © 2013 Society of Chemical Industry.

  12. Equilibrium charge state distributions of Ni, Co, and Cu beams in molybdenum foil at 2 MeV/u

    NASA Astrophysics Data System (ADS)

    Gastis, Panagiotis; Perdikakis, George; Robertson, Daniel; Bauder, Will; Skulski, Michael; Collon, Phillipe; Anderson, Tyler; Ostdiek, Karen; Aprahamian, Ani; Lu, Wenting; Almus, Robert

    2015-10-01

    The charge states of heavy-ions are important for the study of nuclear reactions in inverse kinematics when electromagnetic recoil mass spectrometers are used. The passage of recoil products through a material, like the windows of gas cells or charge state boosters, results a charge state distribution (CSD) in the exit. This distribution must be known for the extraction of any cross section since only few charge-state can be transmitted through a magnetic separator separator for a given setting. The calculation of CSDs for heavy ions is challenging. Currently we rely on semi-empirical models with unknown accuracy for ion/target combinations in the Z > 20 region. In the present study were measured the CSDs of the stable 60Ni, 59Co, and 63Cu beams while passing through a 1 μm molybdenum foil. The beam energies were 1.84 MeV/u, 2.09 MeV/u, and 2.11 MeV/u for the 60Ni, 59Co, and 63Cu respectively. The results of this study mainly check the accuracy of the semi-empirical models used by the program LISE++, on calculating CSDs for ion/target combinations of Z > 20. In addition, other empirical models on calculating mean charge states were compared and checked.

  13. Analysis of Composite Skin-Stiffener Debond Specimens Using a Shell/3D Modeling Technique and Submodeling

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin (Technical Monitor); Krueger, Ronald; Minguet, Pierre J.

    2004-01-01

    The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to tension and three-point bending was studied. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to model the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlation of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents. In addition, the application of the submodeling technique for the simulation of skin/stringer debond was also studied. Global models made of shell elements and solid elements were studied. Solid elements were used for local submodels, which extended between three and six specimen thicknesses on either side of the delamination front to model the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from the simulations using the submodeling technique were not in agreement with results obtained from full solid models.

  14. Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations.

    PubMed

    Kahnert, Michael; Nousiainen, Timo; Lindqvist, Hannakaisa; Ebert, Martin

    2012-04-23

    Light scattering by light absorbing carbon (LAC) aggregates encapsulated into sulfate shells is computed by use of the discrete dipole method. Computations are performed for a UV, visible, and IR wavelength, different particle sizes, and volume fractions. Reference computations are compared to three classes of simplified model particles that have been proposed for climate modeling purposes. Neither model matches the reference results sufficiently well. Remarkably, more realistic core-shell geometries fall behind homogeneous mixture models. An extended model based on a core-shell-shell geometry is proposed and tested. Good agreement is found for total optical cross sections and the asymmetry parameter. © 2012 Optical Society of America

  15. Isospin symmetry breaking and large-scale shell-model calculations with the Sakurai-Sugiura method

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Kaneko, Kazunari; Sun, Yang; Tazaki, Shigeru

    2015-05-01

    Recently isospin symmetry breaking for mass 60-70 region has been investigated based on large-scale shell-model calculations in terms of mirror energy differences (MED), Coulomb energy differences (CED) and triplet energy differences (TED). Behind these investigations, we have encountered a subtle problem in numerical calculations for odd-odd N = Z nuclei with large-scale shell-model calculations. Here we focus on how to solve this subtle problem by the Sakurai-Sugiura (SS) method, which has been recently proposed as a new diagonalization method and has been successfully applied to nuclear shell-model calculations.

  16. Symplectic no-core shell-model approach to intermediate-mass nuclei

    NASA Astrophysics Data System (ADS)

    Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.

    2014-03-01

    We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.

  17. Monte Carlo simulations of nematic and chiral nematic shells

    NASA Astrophysics Data System (ADS)

    Wand, Charlie R.; Bates, Martin A.

    2015-01-01

    We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness. Chiral nematic (cholesteric) shells are investigated by including a chiral term in the potential. Decreasing the pitch of the chiral nematic leads to a twisted bipolar (chiral boojum) configuration with the director twist increasing from the inner to the outer surface.

  18. Deriving the nuclear shell model from first principles

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.

    2014-09-01

    The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under Grants Nos. DESC0008485 and DE-FG02-87ER40371, the Higher Education Council of Turkey(YOK), and the Ministry of Education and Science of Russian Fed. under contracts P521 and 14.v37.21.1297.

  19. Modeling of the phase equilibria of polystyrene in methylcyclohexane with semi-empirical quantum mechanical methods I.

    PubMed

    Wilczura-Wachnik, Hanna; Jónsdóttir, Svava Osk

    2003-04-01

    A method for calculating interaction parameters traditionally used in phase-equilibrium computations in low-molecular systems has been extended for the prediction of solvent activities of aromatic polymer solutions (polystyrene+methylcyclohexane). Using ethylbenzene as a model compound for the repeating unit of the polymer, the intermolecular interaction energies between the solvent molecule and the polymer were simulated. The semiempirical quantum chemical method AM1, and a method for sampling relevant internal orientations for a pair of molecules developed previously were used. Interaction energies are determined for three molecular pairs, the solvent and the model molecule, two solvent molecules and two model molecules, and used to calculated UNIQUAC interaction parameters, a(ij) and a(ji). Using these parameters, the solvent activities of the polystyrene 90,000 amu+methylcyclohexane system, and the total vapor pressures of the methylcyclohexane+ethylbenzene system were calculated. The latter system was compared to experimental data, giving qualitative agreement. Figure Solvent activities for the methylcylcohexane(1)+polystyrene(2) system at 316 K. Parameters aij (blue line) obtained with the AM1 method; parameters aij (pink line) from VLE data for the ethylbenzene+methylcyclohexane system. The abscissa is the polymer weight fraction defined as y2(x1)=(1mx1)M2/[x1M1+(1mx1)M2], where x1 is the solvent mole fraction and Mi are the molecular weights of the components.

  20. Semi-empirical calculations for the ranges of fast ions in silicon

    NASA Astrophysics Data System (ADS)

    Belkova, Yu. A.; Teplova, Ya. A.

    2018-04-01

    A semi-empirical method is proposed to calculate the ion ranges in energy region E = 0.025-10 MeV/nucleon. The dependence of ion ranges on the projectile nuclear charge, mass and velocity is analysed. The calculations presented for ranges of ions with nuclear charges Z = 2-10 in silicon are compared with SRIM results and experimental data.

  1. Semi-empirical and empirical L X-ray production cross sections for elements with 50 ⩽ Z ⩽ 92 for protons of 0.5 3.0 MeV

    NASA Astrophysics Data System (ADS)

    Nekab, M.; Kahoul, A.

    2006-04-01

    We present in this contribution, semi-empirical production cross sections of the main X-ray lines Lα, Lβ and Lγ for elements from Sn to U and for protons with energies varying from 0.5 to 3.0 MeV. The theoretical X-ray production cross sections are firstly calculated from the theoretical ionization cross sections of the L i ( i = 1, 2, 3) subshell within the ECPSSR theory. The semi-empirical Lα, Lβ and Lγ cross sections are then deduced by fitting the available experimental data normalized to their corresponding theoretical values and give the better representation of the experimental data in some cases. On the other hand, the experimental data are directly fitted to deduce the empirical L X-ray production cross sections. A comparison is made between the semi-empirical cross sections, the empirical cross sections reported in this work and the empirical ones reported by Reis and Jesus [M.A. Reis, A.P. Jesus, Atom. Data Nucl. Data Tables 63 (1996) 1] and those of Strivay and Weber [Strivay, G. Weber, Nucl. Instr. and Meth. B 190 (2002) 112].

  2. Thin Shell Model for NIF capsule stagnation studies

    NASA Astrophysics Data System (ADS)

    Hammer, J. H.; Buchoff, M.; Brandon, S.; Field, J. E.; Gaffney, J.; Kritcher, A.; Nora, R. C.; Peterson, J. L.; Spears, B.; Springer, P. T.

    2015-11-01

    We adapt the thin shell model of Ott et al. to asymmetric ICF capsule implosions on NIF. Through much of an implosion, the shell aspect ratio is large so the thin shell approximation is well satisfied. Asymmetric pressure drive is applied using an analytic form for ablation pressure as a function of the x-ray flux, as well as time-dependent 3D drive asymmetry from hohlraum calculations. Since deviations from a sphere are small through peak velocity, we linearize the equations, decompose them by spherical harmonics and solve ODE's for the coefficients. The model gives the shell position, velocity and areal mass variations at the time of peak velocity, near 250 microns radius. The variables are used to initialize 3D rad-hydro calculations with the HYDRA and ARES codes. At link time the cold fuel shell and ablator are each characterized by a density, adiabat and mass. The thickness, position and velocity of each point are taken from the thin shell model. The interior of the shell is filled with a uniform gas density and temperature consistent with the 3/2PV energy found from 1D rad-hydro calculations. 3D linked simulations compare favorably with integrated simulations of the entire implosion. Through generating synthetic diagnostic data, the model offers a method for quickly testing hypothetical sources of asymmetry and comparing with experiment. Prepared by LLNL under Contract DE-AC52-07NA27344.

  3. HR Del REMNANT ANATOMY USING TWO-DIMENSIONAL SPECTRAL DATA AND THREE-DIMENSIONAL PHOTOIONIZATION SHELL MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moraes, Manoel; Diaz, Marcos

    2009-12-15

    The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H{alpha}, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structuremore » seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10{sup -4} M {sub sun} is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.« less

  4. Shell effects in a multinucleon transfer process

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Wen, Pei-Wei; Lin, Cheng-Jian; Bao, Xiao-Jun; Su, Jun; Li, Cheng; Guo, Chen-Chen

    2018-04-01

    The shell effects in multinucleon transfer process are investigated in the systems 136Xe + 198Pt and 136Xe + 208Pb within the dinuclear system (DNS) model. The temperature dependence of shell corrections on potential energy surface is taken into account in the DNS model and remarkable improvement for description of experimental data is noticed. The reactions 136Xe + 186W and 150Nd + 186W are also studied. It is found that due to shell effects the projectile 150Nd is more promising for producing transtarget nuclei rather than 136Xe with neutron shell closure.

  5. Estimating forest ecosystem evapotranspiration at multiple temporal scales with a dimension analysis approach

    Treesearch

    Guoyi Zhou; Ge Sun; Xu Wang; Chuanyan Zhou; Steven G. McNulty; James M. Vose; Devendra M. Amatya

    2008-01-01

    It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi-empirical ET modeled using a dimension analysis method that...

  6. Robust categorization of microfacet BRDF models to enable flexible application-specific BRDF adaptation

    NASA Astrophysics Data System (ADS)

    Butler, Samuel D.; Marciniak, Michael A.

    2014-09-01

    Since the development of the Torrance-Sparrow bidirectional re ectance distribution function (BRDF) model in 1967, several BRDF models have been created. Previous attempts to categorize BRDF models have relied upon somewhat vague descriptors, such as empirical, semi-empirical, and experimental. Our approach is to instead categorize BRDF models based on functional form: microfacet normal distribution, geometric attenua- tion, directional-volumetric and Fresnel terms, and cross section conversion factor. Several popular microfacet models are compared to a standardized notation for a microfacet BRDF model. A library of microfacet model components is developed, allowing for creation of unique microfacet models driven by experimentally measured BRDFs.

  7. Heat Transfer in Adhesively Bonded Honeycomb Core Panels

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2001-01-01

    The Swann and Pittman semi-empirical relationship has been used as a standard in aerospace industry to predict the effective thermal conductivity of honeycomb core panels. Recent measurements of the effective thermal conductivity of an adhesively bonded titanium honeycomb core panel using three different techniques, two steady-state and one transient radiant step heating method, at four laboratories varied significantly from each other and from the Swann and Pittman predictions. Average differences between the measurements and the predictions varied between 17 and 61% in the temperature range of 300 to 500 K. In order to determine the correct values of the effective thermal conductivity and determine which set of the measurements or predictions were most accurate, the combined radiation and conduction heat transfer in the honeycomb core panel was modeled using a finite volume numerical formulation. The transient radiant step heating measurements provided the best agreement with the numerical results. It was found that a modification of the Swann and Pittman semi-empirical relationship which incorporated the facesheets and adhesive layers in the thermal model provided satisfactory results. Finally, a parametric study was conducted to investigate the influence of adhesive thickness and thermal conductivity on the overall heat transfer through the panel.

  8. Static Light Scattering from Concentrated Protein Solutions, I: General Theory for Protein Mixtures and Application to Self-Associating Proteins

    PubMed Central

    Minton, Allen P.

    2007-01-01

    Exact expressions for the static light scattering of a solution containing up to three species of point-scattering solutes in highly nonideal solutions at arbitrary concentration are obtained from multicomponent scattering theory. Explicit expressions for thermodynamic interaction between solute molecules, required to evaluate the scattering relations, are obtained using an equivalent hard particle approximation similar to that employed earlier to interpret scattering of a single protein species at high concentration. The dependence of scattering intensity upon total protein concentration is calculated for mixtures of nonassociating proteins and for a single self-associating protein over a range of concentrations up to 200 g/l. An approximate semiempirical analysis of the concentration dependence of scattering intensity is proposed, according to which the contribution of thermodynamic interaction to scattering intensity is modeled as that of a single average hard spherical species. Simulated data containing pseudo-noise comparable in magnitude to actual experimental uncertainty are modeled using relations obtained from the proposed semiempirical analysis. It is shown that by using these relations one can extract from the data reasonably reliable information about underlying weak associations that are manifested only at very high total protein concentration. PMID:17526566

  9. Van Allen Probes Observations of Plasmasphere Refilling Inside and Outside the Plasmapause

    NASA Astrophysics Data System (ADS)

    De Pascuale, S.; Kletzing, C.; Kurth, W. S.; Jordanova, V. K.

    2017-12-01

    We survey several geomagnetic storms observed by the Van Allen Probes to determine the rate of plasmasphere refilling following the initial erosion of the plasmapause region. The EMFISIS instrument on board the spacecraft provides near-equatorial in situ electron density measurements, which are accurate to 10% error in the detectable range 2 < L < 6. Two-dimensional plasmasphere density simulations, providing global context of local observations, are driven by the incident solar wind electric field as a proxy for geomagnetic activity. The simulations utilize a semi-empirical model of convection and a semi-empirical model of ionospheric outflow to dynamically evolve plasmaspheric densities. We find that at high L the plasmasphere undergoes orders of magnitude density depletion (from 100s - 10s cm-3) in response to a geomagnetic event and recovers to pre-storm levels over many days. At low L ( 1000s cm-3), and within the plasmapause, the plasmasphere loses density by a factor of 2 to 3 (from 3000 - 1000 cm-3) producing a depletion that can persist over weeks during sustained geomagnetic activity. We describe the impact of these results on the challenge of defining a saturated quiet state of the plasmasphere.

  10. Semi-empirical models of the wind in cool supergiant stars

    NASA Technical Reports Server (NTRS)

    Kuin, N. P. M.; Ahmad, Imad A.

    1988-01-01

    A self-consistent semi-empirical model for the wind of the supergiant in zeta Aurigae type systems is proposed. The damping of the Alfven waves which are assumed to drive the wind is derived from the observed velocity profile. Solution of the ionization balance and energy equation gives the temperature structure for given stellar magnetic field and wave flux. Physically acceptable solutions of the temperature structure place limits on the stellar magnetic field. A crude formula for a critical mass loss rate is derived. For a mass loss rate below the critical value the wind cannot be cool. Comparison between the observed and the critical mass loss rate suggests that the proposed theory may provide an explanation for the coronal dividing line in the Hertzsprung-Russell diagram. The physical explanation may be that the atmosphere has a cool wind, unless it is physically impossible to have one. Stars which cannot have a cool wind release their nonthermal energy in an outer atmosphere at coronal temperatures. It is possible that in the absence of a substantial stellar wind the magnetic field has less incentive to extend radially outward, and coronal loop structures may become more dominant.

  11. Hydrogen bonding in malonaldehyde: a density functional and reparametrized semiempirical approach

    NASA Astrophysics Data System (ADS)

    Kovačević, Goran; Hrenar, Tomica; Došlić, Nadja

    2003-08-01

    Intramolecular proton transfer in malonaldehyde (MA) has been investigated by density functional theory (DFT). The DFT results were used for the construction of a high quality semiempirical potential energy surface with a reparametrized PM3 Hamiltonian. A two-step reparameterization procedure is proposed in which (i) the PM3-MAIS core-core functions for the O-H and H-H interactions were used and a new functional form for the O-O correction function was proposed and (ii) a set of specific reaction parameters (SRP) has been obtained via genetic algorithm optimization. The quality of the reparametrized semiempirical potential energy surfaces was tested by calculating the tunneling splitting of vibrational levels and the anharmonic vibrational frequencies of the system. The applicability to multi-dimensional dynamics in large molecular systems is discussed.

  12. Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.

    PubMed

    Zhang, Dawei; Liu, Chungen

    2016-04-12

    The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems.

  13. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles

    PubMed Central

    Doinikov, Alexander A.; Haac, Jillian F.; Dayton, Paul A.

    2009-01-01

    A general theoretical approach to the development of zero-thickness encapsulation models for contrast microbubbles is proposed. The approach describes a procedure that allows one to recast available rheological laws from the bulk form to a surface form which is used in a modified Rayleigh-Plesset equation governing the radial dynamics of a contrast microbubble. By the use of the proposed procedure, the testing of different rheological laws for encapsulation can be carried out. Challenges of existing shell models for lipid-encapsulated microbubbles, such as the dependence of shell parameters on the initial bubble radius and the “compression-only” behavior, are discussed. Analysis of the rheological behavior of lipid encapsulation is made by using experimental radius-time curves for lipid-coated microbubbles with radii in the range 1.2 – 2.5 μm. The curves were acquired for a research phospholipid-coated contrast agent insonified with a 20-cycle, 3.0 MHz, 100 kPa acoustic pulse. The fitting of the experimental data by a model which treats the shell as a viscoelastic solid gives the values of the shell surface viscosity increasing from 0.30×10-8 kg/s to 2.63×10-8 kg/s for the range of bubble radii indicated above. The shell surface elastic modulus increases from 0.054 N/m to 0.37 N/m. It is proposed that this increase may be a result of the lipid coating possessing the properties of both a shear-thinning and a strain-softening material. We hypothesize that these complicated rheological properties do not allow the existing shell models to satisfactorily describe the dynamics of lipid encapsulation. In the existing shell models, the viscous and the elastic shell terms have the linear form which assumes that the viscous and the elastic stresses acting inside the lipid shell are proportional to the shell shear rate and the shell strain, respectively, with constant coefficients of proportionality. The analysis performed in the present paper suggests that a more general, nonlinear theory may be more appropriate. It is shown that the use of the nonlinear theory for shell viscosity allows one to model the “compression-only” behavior. As an example, the results of the simulation for a 2.03- μm-radius bubble insonified with a 6-cycle, 1.8 MHz, 100 kPa acoustic pulse are given. These parameters correspond to the acoustic conditions under which the “compression-only” behavior was observed by de Jong et al. [Ultrasound Med. Biol. 33 (2007) 653–656]. It is also shown that the use of the Cross law for the modeling of the shear-thinning behavior of shell viscosity reduces the variance of experimentally estimated values of the shell viscosity and its dependence on the initial bubble radius. PMID:18990417

  14. A compact circumstellar shell as the source of high-velocity features in SN 2011fe

    NASA Astrophysics Data System (ADS)

    Mulligan, Brian W.; Wheeler, J. Craig

    2018-05-01

    High-velocity features (HVFs), especially of Ca II, are frequently seen in Type Ia supernova observed prior to B-band maximum (Bmax). These HVFs evolve in velocity from more than 25 000 km s-1, in the days after first light, to about 18 000 km s-1 near Bmax. To recreate the evolution of the Ca II near-infrared triplet (CaNIR) HVFs in SN 2011fe, we consider the interaction between a model Type Ia supernova and compact circumstellar shells with masses between 0.003 and 0.012 M⊙. We fit the observed CaNIR feature using synthetic spectra generated from the models using SYN++. The CaNIR feature is better explained by the supernova model interacting with a shell than the model without a shell, with a shell of mass 0.005 M⊙ tending to be better fitting than the other shells. The evolution of the optical depth of CaNIR suggests that the ionization state of calcium within the ejecta and shell is not constant. We discuss the method used to measure the observed velocity of CaNIR and other features and conclude that HVFs or other components can be falsely identified. We briefly discuss the possible origin of the shells and the implications for the progenitor system of the supernova.

  15. Inner-shell radiation from wire array implosions on the Zebra generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouart, N. D.; Giuliani, J. L.; Dasgupta, A.

    2014-03-15

    Implosions of brass wire arrays on Zebra have produced L-shell radiation as well as inner-shell Kα and Kβ transitions. The L-shell radiation comes from ionization stages around the Ne-like charge state that is largely populated by a thermal electron energy distribution function, while the K-shell photons are a result of high-energy electrons ionizing or exciting an inner-shell (1s) electron from ionization stages around Ne-like. The K- and L-shell radiations were captured using two time-gated and two axially resolved time-integrated spectrometers. The electron beam was measured using a Faraday cup. A multi-zone non-local thermodynamic equilibrium pinch model with radiation transport ismore » used to model the x-ray emission from experiments for the purpose of obtaining plasma conditions. These plasma conditions are used to discuss some properties of the electron beam generated by runaway electrons. A simple model for runaway electrons is examined to produce the Kα radiation, but it is found to be insufficient.« less

  16. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture

    NASA Astrophysics Data System (ADS)

    Marmottant, Philippe; van der Meer, Sander; Emmer, Marcia; Versluis, Michel; de Jong, Nico; Hilgenfeldt, Sascha; Lohse, Detlef

    2005-12-01

    We present a model applicable to ultrasound contrast agent bubbles that takes into account the physical properties of a lipid monolayer coating on a gas microbubble. Three parameters describe the properties of the shell: a buckling radius, the compressibility of the shell, and a break-up shell tension. The model presents an original non-linear behavior at large amplitude oscillations, termed compression-only, induced by the buckling of the lipid monolayer. This prediction is validated by experimental recordings with the high-speed camera Brandaris 128, operated at several millions of frames per second. The effect of aging, or the resultant of repeated acoustic pressure pulses on bubbles, is predicted by the model. It corrects a flaw in the shell elasticity term previously used in the dynamical equation for coated bubbles. The break-up is modeled by a critical shell tension above which gas is directly exposed to water.

  17. Seven-parameter statistical model for BRDF in the UV band.

    PubMed

    Bai, Lu; Wu, Zhensen; Zou, Xiren; Cao, Yunhua

    2012-05-21

    A new semi-empirical seven-parameter BRDF model is developed in the UV band using experimentally measured data. The model is based on the five-parameter model of Wu and the fourteen-parameter model of Renhorn and Boreman. Surface scatter, bulk scatter and retro-reflection scatter are considered. An optimizing modeling method, the artificial immune network genetic algorithm, is used to fit the BRDF measurement data over a wide range of incident angles. The calculation time and accuracy of the five- and seven-parameter models are compared. After fixing the seven parameters, the model can well describe scattering data in the UV band.

  18. Updating the Jovian Proton Radiation Environment - 2015

    NASA Technical Reports Server (NTRS)

    Garrett, Henry; Martinez-Sierra, Luz Maria; Evans, Robin

    2015-01-01

    Since publication in 1983 by N. Divine and H. Garrett, the Jet Propulsion Laboratory's plasma and radiation models have been the design standard for NASA's missions to Jupiter. These models consist of representations of the cold plasma and electrons, the warm and auroral electrons and protons, and the radiation environment (electron, proton, and heavy ions). To date, however, the high-energy proton model has been limited to an L-shell of 12. With the requirement to compute the effects of the high energy protons and other heavy ions on the proposed Europa mission, the extension of the high energy proton model from approximately 12 L-shell to approximately 50 L-shell has become necessary. In particular, a model of the proton environment over that range is required to estimate radiation effects on the solar arrays for the mission. This study describes both the steps taken to extend the original Divine proton model out to an approximately 50 L-shell and the resulting model developed to accomplish that goal. In addition to hydrogen, the oxygen, sulfur, and helium heavy ion environments have also been added between approximately 6 L-shell and approximately 50 L-shell. Finally, selected examples of the model's predictions are presented to illustrate the uses of the tool.

  19. Electron scattering on molecules: search for semi-empirical indications

    NASA Astrophysics Data System (ADS)

    Fedus, Kamil; Karwasz, Grzegorz P.

    2017-06-01

    Reliable cross-sections for electron-molecule collisions are urgently needed for numerical modeling of various processes important from technological point of view. Unfortunately, a significant progress in theory and experiment over the last decade is not usually accompanied by the convergence of cross-sections measured at different laboratories and calculated with different methods. Moreover the most advanced contemporary theories involve such large basis sets and complicated equations that they are not easily applied to each specific molecule for which data are needed. For these reasons the search for semi-empirical indications in angular and energy dependencies of scattering cross-section becomes important. In this paper we make a brief review of the applicability of the Born-dipole approximation for elastic, rotational, vibrational and ionization processes that can occur during electron-molecule collisions. We take into account the most recent experimental findings as the reference points. Contribution to the Topical Issue "Atomic and Molecular Data and Their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  20. Dielectric and transport properties of thin films precipitated from sols with silicon nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kononov, N. N., E-mail: nnk@kapella.gpi.ru; Dorofeev, S. G.; Ishchenko, A. A.

    2011-08-15

    Dielectric properties of thin films precipitated on solid substrates from colloidal solutions containing silicon nanoparticles (average diameter is 10 nm) are studied by optical ellipsometry and impedance-spectroscopy. In the optical region, the values of real {epsilon} Prime and imaginary {epsilon} Double-Prime components of the complex permittivity {epsilon} vary within 2.1-1.1 and 0.25-0.75, respectively. These values are significantly lower than those of crystalline silicon. Using numerical simulation within the Bruggeman effective medium approximation, we show that the experimental {epsilon} Prime and {epsilon} Double-Prime spectra can be explained with good accuracy, assuming that the silicon film is a porous medium consisting ofmore » silicon monoxide (SiO) and air voids at a void ratio of 0.5. Such behavior of films is mainly caused by the effect of outer shells of silicon nanoparticles interacting with atmospheric oxygen on their dielectric properties. In the frequency range of 10-10{sup 6} Hz, the experimentally measured {epsilon} Prime and {epsilon} Double-Prime spectra of thin nanoscale silicon films are well approximated by the semi-empirical Cole-Cole dielectric dispersion law with the term related to free electric charges. The experimentally determined power-law frequency dependence of the ac conductivity means that the electrical transport in films is controlled by electric charge hopping through localized states in the unordered medium of outer shells of silicon nanoparticles composing films. It is found that the film conductivity at frequencies of {<=}2 Multiplication-Sign 10{sup 2} Hz is controlled by proton transport through Si-OH groups on the silicon nanoparticle surface.« less

  1. Effects of Combined Loads on the Nonlinear Response and Residual Strength of Damaged Stiffened Shells

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.; Rankin, Charles C.

    1996-01-01

    The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for various combinations of internal pressure and mechanical loads, and the effects of crack orientation on the shell response are described. The effects of combined loading conditions and the effects of varying structural parameters on the stress-intensity factors associated with a crack are presented.

  2. Flexible configuration-interaction shell-model many-body solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Calvin W.; Ormand, W. Erich; McElvain, Kenneth S.

    BIGSTICK Is a flexible configuration-Interaction open-source shell-model code for the many-fermion problem In a shell model (occupation representation) framework. BIGSTICK can generate energy spectra, static and transition one-body densities, and expectation values of scalar operators. Using the built-in Lanczos algorithm one can compute transition probabflity distributions and decompose wave functions into components defined by group theory.

  3. The Vibration Analysis of Tube Bundles Induced by Fluid Elastic Excitation in Shell Side of Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze

    2017-09-01

    Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.

  4. Near real time determination of the magnetopause and bow shock shape and position

    NASA Astrophysics Data System (ADS)

    Kartalev, M. D.; Keremidarska, V. I.; Grigorov, K. G.; Romanov, D. K.

    2002-03-01

    We present a web based near real time (once in 90 minutes) automated running of our 3D magnetosheath gasdynamic numerical model. (http://geospace.nat.bg). The determination of the shape and position of the bow shock and the magnetopause is a part of the solution. This approach of the model is utilizing the realistic semi-empirical Tsyganenko magnetosphere model T96-01 for ensuring the pressure balance at the magnetopause. In this realization, we use a real time ACE data, averaged over a 6 minutes time interval.

  5. An Efficient Analysis Methodology for Fluted-Core Composite Structures

    NASA Technical Reports Server (NTRS)

    Oremont, Leonard; Schultz, Marc R.

    2012-01-01

    The primary loading condition in launch-vehicle barrel sections is axial compression, and it is therefore important to understand the compression behavior of any structures, structural concepts, and materials considered in launch-vehicle designs. This understanding will necessarily come from a combination of test and analysis. However, certain potentially beneficial structures and structural concepts do not lend themselves to commonly used simplified analysis methods, and therefore innovative analysis methodologies must be developed if these structures and structural concepts are to be considered. This paper discusses such an analysis technique for the fluted-core sandwich composite structural concept. The presented technique is based on commercially available finite-element codes, and uses shell elements to capture behavior that would normally require solid elements to capture the detailed mechanical response of the structure. The shell thicknesses and offsets using this analysis technique are parameterized, and the parameters are adjusted through a heuristic procedure until this model matches the mechanical behavior of a more detailed shell-and-solid model. Additionally, the detailed shell-and-solid model can be strategically placed in a larger, global shell-only model to capture important local behavior. Comparisons between shell-only models, experiments, and more detailed shell-and-solid models show excellent agreement. The discussed analysis methodology, though only discussed in the context of fluted-core composites, is widely applicable to other concepts.

  6. A semi-empirical method for calculating the pitching moment of bodies of revolution at low Mach numbers

    NASA Technical Reports Server (NTRS)

    Hopkins, Edward J

    1951-01-01

    A semiempirical method, in which potential theory is arbitrarily combined with an approximate viscous theory, for calculating the aerodynamic pitching moments for bodies of revolution is presented. The method can also be used for calculating the lift and drag forces. The calculated and experimental force and moment characteristics of 15 bodies of revolution are compared.

  7. Design and Analysis of an X-Ray Mirror Assembly Using the Meta-Shell Approach

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Bonafede, Joseph; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low sensitivity to thermal gradients.

  8. Deformation of compound shells under action of internal shock wave loading

    NASA Astrophysics Data System (ADS)

    Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin

    2015-09-01

    The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.

  9. Semi-empirical model for retrieval of soil moisture using RISAT-1 C-Band SAR data over a sub-tropical semi-arid area of Rewari district, Haryana (India)

    NASA Astrophysics Data System (ADS)

    Rawat, Kishan Singh; Sehgal, Vinay Kumar; Pradhan, Sanatan; Ray, Shibendu S.

    2018-03-01

    We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (σ o_{RH}), differences of circular vertical and horizontal σ o (σ o_{RV} {-} σ o_{RH}) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height ({RMS}_{height}). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., σ o. Near surface SM measurements were related to σ o_{RH}, σ o_{RV} {-} σ o_{RH} derived using 5.35 GHz (C-band) image of RISAT-1 and {RMS}_{height}. The roughness component derived in terms of {RMS}_{height} showed a good positive correlation with σ o_{RV} {-} σ o_{RH} (R2 = 0.65). By considering all the major influencing factors (σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}), an SEM was developed where SM (volumetric) predicted values depend on σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}. This SEM showed R2 of 0.87 and adjusted R2 of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement ({SM}_{Observed}) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash-Sutcliffe efficiency (NSE) = 0.91 ({≈ } 1), index of agreement (d) = 1, coefficient of determination (R2) = 0.87, mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences ({S}d2) = 0.004. The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on σ o. By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.

  10. Fragmentation of protostars dust shells at the Hayashi stage

    NASA Astrophysics Data System (ADS)

    Abdulmyanov, T. R.

    2017-09-01

    The aim of this study is to determine the density variations of a protostars dust shells at the Hayashi stage. The simplified model of the density wave perturbations are obtained on the base hydrodynamic equations. According to this model, the fragmentation of dust shells may occur at the stage of slow compression of protostar. Using the solution of the wave equation, the 3-D profiles of the density of the dust shell are defined.

  11. Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert

    2007-01-01

    A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.

  12. Cohesive Elements for Shells

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert

    2007-01-01

    A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.

  13. Finite Element Analysis of Geodesically Stiffened Cylindrical Composite Shells Using a Layerwise Theory

    NASA Technical Reports Server (NTRS)

    Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.

    1996-01-01

    Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.

  14. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    PubMed

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.

  15. Model of gas adsorption on magnetic surfaces

    NASA Astrophysics Data System (ADS)

    Pick, S.˛te˛´n.; D´, Hugues

    1997-12-01

    The semi-empirical self-consistent tight-binding model of gas (C, N, O) chemisorption is suggested to study its influence on surface magnetism. For the strongly ferromagnetic Fe(001), we find that the adsorbates are not effective in magnetism reduction. For the hypothetical magnetic V(001) surface, the magnetization is very sensitive to the vanadium d-band occupation used in the calculation. Supposing that the magnetization is weak, it can be essentially suppressed by the gas contamination. The effect is explained by the Stoner criterion.

  16. Selective field evaporation in field-ion microscopy for ordered alloys

    NASA Astrophysics Data System (ADS)

    Ge, Xi-jin; Chen, Nan-xian; Zhang, Wen-qing; Zhu, Feng-wu

    1999-04-01

    Semiempirical pair potentials, obtained by applying the Chen-inversion technique to a cohesion equation of Rose et al. [Phys. Rev. B 29, 2963 (1984)], are employed to assess the bonding energies of surface atoms of intermetallic compounds. This provides a new calculational model of selective field evaporation in field-ion microscopy (FIM). Based on this model, a successful interpretation of FIM image contrasts for Fe3Al, PtCo, Pt3Co, Ni4Mo, Ni3Al, and Ni3Fe is given.

  17. A combined semiempirical-DFT study of oligomers within the finite-chain approximation, evolution from oligomers to polymers.

    PubMed

    Derosa, Pedro A

    2009-06-01

    A computationally cheap approach combining time-independent density functional theory (TIDFT) and semiempirical methods with an appropriate extrapolation procedure is proposed to accurately estimate geometrical and electronic properties of conjugated polymers using just a small set of oligomers. The highest occupied molecular orbital-lowest unoccupied molecular orbital gap (HLG) obtained at a TIDFT level (B3PW91) for two polymers, trans-polyacetylene--the simplest conjugated polymer, and a much larger poly(2-methoxy-5-(2,9-ethyl-hexyloxy)-1,4-phenylenevinylene (MEH-PPV) polymer converge to virtually the same asymptotic value than the excitation energy obtained with time-dependent DFT (TDDFT) calculations using the same functional. For TIDFT geometries, the HLG is found to converge to a value within the experimentally accepted range for the band gap of these polymers, when an exponential extrapolation is used; however if semiempirical geometries are used, a linear fit of the HLG versus 1/n is found to produce the best results. Geometrical parameters are observed to reach a saturation value in good agreement with experimental information, within the length of oligomers calculated here and no extrapolation was considered necessary. Finally, the performance of three different semiempirical methods (AM1, PM3, and MNDO) and for the TIDFT calculations, the performance of 7 different full electron basis sets (6-311+G**, 6-31+ +G**, 6-311+ +G**, 6-31+G**, 6-31G**, 6-31+G*, and 6-31G) is compared and it is determined that the choice of semiempirical method or the basis set does not significantly affect the results. 2008 Wiley Periodicals, Inc.

  18. Shell models of magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Plunian, Franck; Stepanov, Rodion; Frick, Peter

    2013-02-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfvén waves and the Hall effect.

  19. Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core

    NASA Astrophysics Data System (ADS)

    Fazzolari, Fiorenzo A.; Carrera, Erasmo

    2014-02-01

    In this paper, the Ritz minimum energy method, based on the use of the Principle of Virtual Displacements (PVD), is combined with refined Equivalent Single Layer (ESL) and Zig Zag (ZZ) shell models hierarchically generated by exploiting the use of Carrera's Unified Formulation (CUF), in order to engender the Hierarchical Trigonometric Ritz Formulation (HTRF). The HTRF is then employed to carry out the free vibration analysis of doubly curved shallow and deep functionally graded material (FGM) shells. The PVD is further used in conjunction with the Gauss theorem to derive the governing differential equations and related natural boundary conditions. Donnell-Mushtari's shallow shell-type equations are given as a particular case. Doubly curved FGM shells and doubly curved sandwich shells made up of isotropic face sheets and FGM core are investigated. The proposed shell models are widely assessed by comparison with the literature results. Two benchmarks are provided and the effects of significant parameters such as stacking sequence, boundary conditions, length-to-thickness ratio, radius-to-length ratio and volume fraction index on the circular frequency parameters and modal displacements are discussed.

  20. Two-nucleon high-spin states, the Bansal-French model and the crude shell model

    NASA Astrophysics Data System (ADS)

    Chan, Tsan Ung

    1987-08-01

    Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B2n in the Bansal-French model can be deduced from the A and T linear dependence of Bn and the crude shell model. 7-2 states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.

  1. STOL landing thrust: Reverser jet flowfields

    NASA Technical Reports Server (NTRS)

    Kotansky, D. R.; Glaze, L. W.

    1987-01-01

    Analysis tools and modeling concepts for jet flow fields encountered upon use of thrust reversers for high performance military aircraft are described. A semi-empirical model of the reverser ground wall jet interaction with the uniform cross flow due to aircraft forward velocity is described. This ground interaction model is used to demonstrate exhaust gas ingestion conditions. The effects of control of exhaust jet vector angle, lateral splay, and moving versus fixed ground simulation are discussed. The Adler/Baron jet-in-cross flow model is used in conjunction with three dimensional panel methods to investigate the upper surface jet induced flow field.

  2. Further Results in Bend-Buckling Analysis of Ring Stiffened Cylindrical Shells.

    DTIC Science & Technology

    1986-08-01

    Submerged Shell Targets, NSWC TR 84-380, Dec 1984. 2. Moussouros, M., "Finite Element Modeling Techniques for Buckling Analysis of Cylindrical Shells...KCR, MBR , M0 , F0 , and I, R is the mean radius as given by R0 ) R0 - Mean radius of circular cylindrical shell (perfect shell or radius of

  3. Direct and inverse auger processes in InAs nanocrystals: can the decay signature of a trion be mistaken for carrier multiplication?

    PubMed

    Califano, Marco

    2009-09-22

    A complete and detailed theoretical investigation of the main processes involved in the controversial detection and quantification of carrier multiplication (CM) is presented, providing a coherent and comprehensive picture of excited state relaxation in InAs nanocrystals (NCs). The observed rise and decay times of the 1S transient bleach are reproduced, in the framework of the Auger model, using an atomistic semiempirical pseudopotential method, achieving excellent agreement with experiment. The CM time constants for small core-only and core/shell nanocrystals are obtained as a function of the excitation energy, assuming an impact-ionization-like process. The resulting lifetimes at energies close to the observed CM onset are consistent with the upper limits deduced experimentally from PbSe and CdSe samples. Most interestingly, as the Auger recombination lifetimes calculated for charged excitons are found to be of a similar order of magnitude to those computed for biexcitons, both species are expected to exhibit the fast decay component in NC population dynamics so far attributed exclusively to the presence of biexcitons and therefore identified as the signature of CM occurrence in high-energy low-pump-fluence spectroscopic studies. However, the ratio between trions and biexcitons time constants is found to be larger than the typical experimental accuracy. It is therefore concluded that, in InAs NCs, it should be experimentally possible to discriminate between the two species and that the origin of the observed discrepancies in CM yields is unlikely to lay in the presence of charged excitons.

  4. X-rays from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Chlebowski, T.; Seward, F. D.; Swank, J.; Szymkowiak, A.

    1984-01-01

    X-ray observations of Eta Car obtained with the high-resolution imager and solid-state spectrometer of the Einstein observatory are reported and interpreted in terms of a two-shell model. A soft component with temperature 5 million K is located in the expanding outer shell, and the hard core component with temperature 80 million K is attributed to the interaction of a high-velocity stellar wind from the massive central object with the inner edge of a dust shell. Model calculations based on comparison with optical and IR data permit estimation of the mass of the outer shell (0.004 solar mass), the mass of the dust shell (3 solar mass), and the total shell expansion energy (less than 2 x 10 to the 49th ergs).

  5. Space vehicle engine and heat shield environment review. Volume 1: Engineering analysis

    NASA Technical Reports Server (NTRS)

    Mcanelly, W. B.; Young, C. T. K.

    1973-01-01

    Methods for predicting the base heating characteristics of a multiple rocket engine installation are discussed. The environmental data is applied to the design of adequate protection system for the engine components. The methods for predicting the base region thermal environment are categorized as: (1) scale model testing, (2) extrapolation of previous and related flight test results, and (3) semiempirical analytical techniques.

  6. Entropy of mixing calculations for compound forming liquid alloys in the hard sphere system

    NASA Astrophysics Data System (ADS)

    Singh, P.; Khanna, K. N.

    1984-06-01

    It is shown that the semi-empirical model proposed in a previous paper for the evaluation of the entropy of mixing of simple liquid metals alloys leads to accurate results for compound forming liquid alloys. The procedure is similar to that described for a regular solution. Numerical applications are made to NaGa, KPb and KT1 alloys.

  7. Steady-state solution of the semi-empirical diffusion equation for area sources. [air pollution studies

    NASA Technical Reports Server (NTRS)

    Lebedeff, S. A.; Hameed, S.

    1975-01-01

    The problem investigated can be solved exactly in a simple manner if the equations are written in terms of a similarity variable. The exact solution is used to explore two questions of interest in the modelling of urban air pollution, taking into account the distribution of surface concentration downwind of an area source and the distribution of concentration with height.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, Antoine; Monard, Gérald; Ruiz-López, Manuel F., E-mail: Manuel.Ruiz@univ-lorraine.fr

    In this work, we present a study of the ability of different semiempirical methods to describe intermolecular interactions in water solution. In particular, we focus on methods based on the Neglect of Diatomic Differential Overlap approximation. Significant improvements of these methods have been reported in the literature in the past years regarding the description of non-covalent interactions. In particular, a broad range of methodologies has been developed to deal with the properties of hydrogen-bonded systems, with varying degrees of success. In contrast, the interactions between water and a molecule containing hydrophobic groups have been little analyzed. Indeed, by considering themore » potential energy surfaces obtained using different semiempirical Hamiltonians for the intermolecular interactions of model systems, we found that none of the available methods provides an entirely satisfactory description of both hydrophobic and hydrophilic interactions in water. In addition, a vibrational analysis carried out in a model system for these interactions, a methane clathrate cluster, showed that some recent methods cannot be used to carry out studies of vibrational properties. Following a procedure established in our group [M. I. Bernal-Uruchurtu, M. T. C. Martins-Costa, C. Millot, and M. F. Ruiz-López, J. Comput. Chem. 21, 572 (2000); W. Harb, M. I. Bernal-Uruchurtu, and M. F. Ruiz-López, Theor. Chem. Acc. 112, 204 (2004)], we developed new parameters for the core-core interaction terms based on fitting potential energy curves obtained at the MP2 level for our model system. We investigated the transferability of the new parameters to describe a system, having both hydrophilic and hydrophobic groups, interacting with water. We found that only by introducing two different sets of parameters for hydrophilic and hydrophobic hydrogen atom types we are able to match the features of the ab initio calculated properties. Once this assumption is made, a good agreement with the MP2 reference is achieved. The results reported in this work provide therefore a direction for future developments of semiempirical approaches that are still required to investigate chemical processes in biomolecules and in large disordered systems.« less

  9. Interaction of (O,Ar)ions with Prostate tissue

    NASA Astrophysics Data System (ADS)

    Saied, Bashair Mohammed, Dr.; Yaqoob, SaadNafea

    2018-05-01

    The use of Ion beam in cancer therapy allows an accurate irradiation of the tumor with minimum collateral damage in surrounding healthy tissue, for this purpose we calculate the energy loss for (O,Ar) ions beams with (prostate tissue) in energy rang(0.001-200) MeV using different theoretical and semi-empirical formulation. The stopping power values calculated using semi-empirical approaches SRIM, CaSP and SRIM Dictionary compound.

  10. Influence of an asymmetric ring on the modeling of an orthogonally stiffened cylindrical shell

    NASA Technical Reports Server (NTRS)

    Rastogi, Naveen; Johnson, Eric R.

    1994-01-01

    Structural models are examined for the influence of a ring with an asymmetrical cross section on the linear elastic response of an orthogonally stiffened cylindrical shell subjected to internal pressure. The first structural model employs classical theory for the shell and stiffeners. The second model employs transverse shear deformation theories for the shell and stringer and classical theory for the ring. Closed-end pressure vessel effects are included. Interacting line load intensities are computed in the stiffener-to-skin joints for an example problem having the dimensions of the fuselage of a large transport aircraft. Classical structural theory is found to exaggerate the asymmetric response compared to the transverse shear deformation theory.

  11. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  12. 1D Atmosphere Models from Inversion of Fe i 630 nm Observations with an Application to Solar Irradiance Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristaldi, Alice; Ermolli, Ilaria, E-mail: alice.cristaldi@oaroma.inaf.it

    Present-day semi-empirical models of solar irradiance (SI) variations reconstruct SI changes measured on timescales greater than a day by using spectra computed in one dimensional atmosphere models (1D models), which are representative of various solar surface features. Various recent studies have pointed out, however, that the spectra synthesized in 1D models do not reflect the radiative emission of the inhomogenous atmosphere revealed by high-resolution solar observations. We aimed to derive observation-based atmospheres from such observations and test their accuracy for SI estimates. We analyzed spectropolarimetric data of the Fe i 630 nm line pair in photospheric regions that are representativemore » of the granular quiet-Sun pattern (QS) and of small- and large-scale magnetic features, both bright and dark with respect to the QS. The data were taken on 2011 August 6, with the CRisp Imaging Spectropolarimeter at the Swedish Solar Telescope, under excellent seeing conditions. We derived atmosphere models of the observed regions from data inversion with the SIR code. We studied the sensitivity of results to spatial resolution and temporal evolution, and discuss the obtained atmospheres with respect to several 1D models. The atmospheres derived from our study agree well with most of the 1D models we compare our results with, both qualitatively and quantitatively (within 10%), except for pore regions. Spectral synthesis computations of the atmosphere obtained from the QS observations return an SI between 400 and 2400 nm that agrees, on average, within 2.2% with standard reference measurements, and within −0.14% with the SI computed on the QS atmosphere employed by the most advanced semi-empirical model of SI variations.« less

  13. Cross-shell excitations in Si 31

    DOE PAGES

    Tai, P. -L.; Tabor, S. L.; Lubna, R. S.; ...

    2017-07-28

    The Si-31 nucleus was produced through the O-18(18O, an) fusion-evaporation reaction at E-lab = 24 MeV. Evaporated a particles from the reaction were detected and identified in the Microball detector array for channel selection. Multiple gamma-ray coincidence events were detected in Gammasphere. The energy and angle information for the alpha particles was used to determine the Si-31 recoil kinematics on an event-by-event basis for a more accurate Doppler correction. A total of 22 new states and 52 new gamma transitions were observed, including 14 from states above the neutron separation energy. The positive-parity states predicted by the shell-model calculations inmore » the sd model space agree well with experiment. The negative-parity states were compared with shell-model calculations in the psdpf model space with some variations in the N = 20 shell gap. The best agreement was found with a shell gap intermediate between that originally used for A approximate to 20 nuclei and that previously adapted for P-32,P-34. This variation suggests the need for a more universal cross-shell interaction.« less

  14. Old and New Magic Numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talmi, Igal

    2008-11-11

    The discovery of magic numbers led to the shell model. They indicated closure of major shells and are robust: proton magic numbers are rather independent of the occupation of neutron orbits and vice versa. Recently the magic property became less stringent and we hear a lot about the discovery of new magic numbers. These, however, indicate sub-shell closures and strongly depend on occupation numbers and hence, may be called quasi-magic numbers. Some of these have been known for many years and the mechanism for their appearance as well as disappearance, was well understood within the simple shell model. The situationmore » will be illustrated by a few examples which demonstrate the simple features of the shell model. Will this simplicity emerge from the complex computations of nuclear many-body theory?.« less

  15. Observations and NLTE modeling of Ellerman bombs

    NASA Astrophysics Data System (ADS)

    Berlicki, A.; Heinzel, P.

    2014-07-01

    Context. Ellerman bombs (EBs) are short-lived, compact, and spatially well localized emission structures that are observed well in the wings of the hydrogen Hα line. EBs are also observed in the chromospheric CaII lines and in UV continua as bright points located within active regions. Hα line profiles of EBs show a deep absorption at the line center and enhanced emission in the line wings with maxima around ±1 Å from the line center. Similar shapes of the line profiles are observed for the CaII IR line at 8542 Å. In CaII H and K lines the emission peaks are much stronger, and EBs emission is also enhanced in the line center. Aims: It is generally accepted that EBs may be considered as compact microflares located in lower solar atmosphere that contribute to the heating of these low-lying regions, close to the temperature minimum of the atmosphere. However, it is still not clear where exactly the emission of EBs is formed in the solar atmosphere. High-resolution spectrophotometric observations of EBs were used for determining of their physical parameters and construction of semi-empirical models. Obtained models allow us to determine the position of EBs in the solar atmosphere, as well as the vertical structure of the activated EB atmosphere Methods: In our analysis we used observations of EBs obtained in the Hα and CaII H lines with the Dutch Open Telescope (DOT). These one-hour long simultaneous sequences obtained with high temporal and spatial resolution were used to determine the line emissions. To analyze them, we used NLTE numerical codes for the construction of grids of 243 semi-empirical models simulating EBs structures. In this way, the observed emission could be compared with the synthetic line spectra calculated for all such models. Results: For a specific model we found reasonable agreement between the observed and theoretical emission and thus we consider such model as a good approximation to EBs atmospheres. This model is characterized by an enhanced temperature in the lower chromosphere and can be considered as a compact structure (hot spot), which is responsible for the emission observed in the wings of chromospheric lines, in particular in the Hα and CaII H lines. Conclusions: For the first time the set of two lines Hα and CaII H was used to construct semi-empirical models of EBs. Our analysis shows that EBs can be described by a "hot spot" model, with the temperature and/or density increase through a few hundred km atmospheric structure. We confirmed that EBs are located close to the temperature minimum or in the lower chromosphere. Two spectral features (lines in our case), observed simultaneously, significantly strengthen the constraints on a realistic model.

  16. A semi-empirical model relating micro structure to acoustic properties of bimodal porous material

    NASA Astrophysics Data System (ADS)

    Mosanenzadeh, Shahrzad Ghaffari; Doutres, Olivier; Naguib, Hani E.; Park, Chul B.; Atalla, Noureddine

    2015-01-01

    Complex morphology of open cell porous media makes it difficult to link microstructural parameters and acoustic behavior of these materials. While morphology determines the overall sound absorption and noise damping effectiveness of a porous structure, little is known on the influence of microstructural configuration on the macroscopic properties. In the present research, a novel bimodal porous structure was designed and developed solely for modeling purposes. For the developed porous structure, it is possible to have direct control on morphological parameters and avoid complications raised by intricate pore geometries. A semi-empirical model is developed to relate microstructural parameters to macroscopic characteristics of porous material using precise characterization results based on the designed bimodal porous structures. This model specifically links macroscopic parameters including static airflow resistivity ( σ ) , thermal characteristic length ( Λ ' ) , viscous characteristic length ( Λ ) , and dynamic tortuosity ( α ∞ ) to microstructural factors such as cell wall thickness ( 2 t ) and reticulation rate ( R w ) . The developed model makes it possible to design the morphology of porous media to achieve optimum sound absorption performance based on the application in hand. This study makes the base for understanding the role of microstructural geometry and morphological factors on the overall macroscopic parameters of porous materials specifically for acoustic capabilities. The next step is to include other microstructural parameters as well to generalize the developed model. In the present paper, pore size was kept constant for eight categories of bimodal foams to study the effect of secondary porous structure on macroscopic properties and overall acoustic behavior of porous media.

  17. Modeling of Kerena Emergency Condenser

    NASA Astrophysics Data System (ADS)

    Bryk, Rafał; Schmidt, Holger; Mull, Thomas; Wagner, Thomas; Ganzmann, Ingo; Herbst, Oliver

    2017-12-01

    KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA) was built in Karlstein, Germany. The emergency condenser (EC) system transfers heat from the reactor pressure vessel (RPV) to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA). The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nick Cannell; Adrian S. Sabau

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The first part of the project involved preparation of reports on the state of the art at that time for all the areas under consideration (die-wax, wax-shell, and shell-alloy). The primary R&D focus during Phase I was on the wax material since the least was known about it. The main R&D accomplishments during this phasemore » were determination of procedures for obtaining the thermal conductivity and viscoelastic properties of an unfilled wax and validating those procedures. Phase II focused on die-wax and shell-alloy systems. A wax material model was developed based on results obtained during the previous R&D phase, and a die-wax model was successfully incorporated into and used in commercial computer programs. Current computer simulation programs have complementary features. A viscoelastic module was available in ABAQUS but unavailable in ProCAST, while the mold-filling module was available in ProCAST but unavailable in ABAQUS. Thus, the numerical simulation results were only in good qualitative agreement with experimental results, the predicted shrinkage factors being approximately 2.5 times larger than those measured. Significant progress was made, and results showed that the testing and modeling of wax material had great potential for industrial applications. Additional R&D focus was placed on one shell-alloy system. The fused-silica shell mold and A356 aluminum alloy were considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. It was very important to obtain accurate temperature data from actual castings, and significant effort was made to obtain temperature profiles in the shell mold. A model for thermal radiation within the shell mold was developed, and the thermal model was successfully validated using ProCAST. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The prefiring of the empty shell mold was considered in the model, and the shell mold was limited to a pure elastic material. The alloy dimensions were obtained from numerical simulations only with coupled shell-alloy systems. The alloy dimensions were in excellent quantitative agreement with experimental data, validating the deformation module. For actual parts, however, the creep properties of the shell molds must also be obtained, modeled, and validated.« less

  19. Applying a Qualitative Modeling Shell to Process Diagnosis: The Caster System.

    DTIC Science & Technology

    1986-03-01

    Process Diagnosis: The Caster System by Timothy F. Thompson and William J. Clancey Department of Computer Science Stanford University Stanford, CA 94303...MODELING SHELL TO PROCESS DIAGNOSIS: THE CASTER SYSTEM 12 PERSONAL AUTHOR(S) TIMOTHY F. THOMPSON. WESTINGHOUSE R&D CENTER, WILLIAM CLANCEY, STANFORD...editions are obsolete. Applying a Qualitative Modeling Shell to Process Diagnosis: The Caster System by Timothy F. Thompson, Westinghouse R&D Center

  20. Systematics of heavy-ion charge-exchange straggling

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12, in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  1. Theoretical predictions of a bucky-diamond SiC cluster.

    PubMed

    Yu, Ming; Jayanthi, C S; Wu, S Y

    2012-06-15

    A study of structural relaxations of Si(n)C(m) clusters corresponding to different compositions, different relative arrangements of Si/C atoms, and different types of initial structure, reveals that the Si(n)C(m) bucky-diamond structure can be obtained for an initial network structure constructed from a truncated bulk 3C-SiC for a magic composition corresponding to n = 68 and m = 79. This study was performed using a semi-empirical Hamiltonian (SCED-LCAO) since it allowed an extensive search of different types of initial structures. However, the bucky-diamond structure predicted by this method was also confirmed by a more accurate density functional theory (DFT) based method. The bucky-diamond structure exhibited by a SiC-based system represents an interesting paradigm where a Si atom can form three-coordinated as well as four-coordinated networks with carbon atoms and vice versa and with both types of network co-existing in the same structure. Specifically, the bucky-diamond structure of the Si(68)C(79) cluster consists of a 35-atom diamond-like inner core (four-atom coordinations) suspended inside a 112-atom fullerene-like shell (three-atom coordinations).

  2. Dielectronic recombination of lowly charged tungsten ions Wq+(q = 5 - 10)

    NASA Astrophysics Data System (ADS)

    Kwon, Duck-Hee

    2018-03-01

    Dielectronic recombination (DR) rate coefficients for the ground levels of low ionization state Wq+ (q = 5 - 10) ions have been obtained by an ab-inito level-by-level calculation using the flexible atomic code (FAC) based on relativistic jj coupling scheme and independent process, isolated resonance, distorted wave approximation. The radiative transition calculation in the original FAC has been adapted into parallel programming for time effective dealing with so many resonance levels of the complex open 4f, 5p, or 5d-shell structure ion. Core excitations Δnc = 0 , 1 of 4f, 5p, and 5d (W5+), Δnc = 2 of 4f, and Δnc = 0 of 4d (W7+), and 5s (W8+) are included to the total DR rate coefficient. The core excitations Δnc = 0 , 5p → 5l and Δnc = 1 , 4f → 5l mainly contribute to the total DR rate coefficients. The strong resonances involved in the DR are analyzed and the total DR rate coefficients are compared with available previous ab-initio predictions and with ADAS data by a simple semiempirical formula.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gronke, M.; Dijkstra, M., E-mail: maxbg@astro.uio.no

    We perform Lyman- α (Ly α ) Monte-Carlo radiative transfer calculations on a suite of 2500 models of multiphase, outflowing media, which are characterized by 14 parameters. We focus on the Ly α spectra emerging from these media and investigate which properties are dominant in shaping the emerging Ly α profile. Multiphase models give rise to a wide variety of emerging spectra, including single-, double-, and triple-peaked spectra. We find that the dominant parameters in shaping the spectra include (i) the cloud covering factor, f {sub c} , which is in agreement with earlier studies, and (ii) the temperature andmore » number density of residual H i in the hot ionized medium. We attempt to reproduce spectra emerging from multiphase models with “shell models” which are commonly used to fit observed Ly α spectra, and investigate the connection between shell-model parameters and the physical parameters of the clumpy media. In shell models, the neutral hydrogen content of the shell is one of the key parameters controlling Ly α radiative transfer. Because Ly α spectra emerging from multiphase media depend much less on the neutral hydrogen content of the clumps, the shell-model parameters such as H i column density (but also shell velocity and dust content) are generally not well matched to the associated physical parameters of the clumpy media.« less

  4. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, A.; ELI-ALPS, Szeged; Platonov, K.

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  5. Ballistic Simulation Method for Lithium Ion Batteries (BASIMLIB) Using Thick Shell Composites (TSC) in LS-DYNA

    DTIC Science & Technology

    2016-08-04

    BAllistic SImulation Method for Lithium Ion Batteries (BASIMLIB) using Thick Shell Composites (TSC) in LS-DYNA Venkatesh Babu, Dr. Matt Castanier, Dr...Objective • Objective and focus of this work is to develop a – Robust simulation methodology to model lithium - ion based batteries in its module and full...unlimited  Lithium Ion Phosphate (LiFePO4) battery cell, module and pack was modeled in LS-DYNA using both Thin Shell Layer (TSL) and Thick Shell

  6. Semiempirical limits on the thermal conductivity of intracluster gas

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Hughes, John P.; Tucker, Wallace H.

    1992-01-01

    A semiempirical method for establishing lower limits on the thermal conductivity of hot gas in clusters of galaxies is described. The method is based on the observation that the X-ray imaging data (e.g., Einstein IPC) for clusters are well described by the hydrostatic-isothermal beta model, even for cooling flow clusters beyond about one core radius. In addition, there are strong indications that noncooling flow clusters (like the Coma Cluster) have a large central region (up to several core radii) of nearly constant gas temperature. This suggests that thermal conduction is an effective means of transporting and redistributing the thermal energy of the gas. This in turn has implications for the extent to which magnetic fields in the cluster are effective in reducing the thermal conductivity of the gas. Time-dependent hydrodynamic simulations for the gas in the Coma Cluster under two separate evolutionary scenarios are presented. One scenario assumes that the cluster potential is static and that the gas has an initial adiabatic distribution. The second scenario uses an evolving cluster potential. These models along with analytic results show that the thermal conductivity of the gas in the Coma Cluster cannot be less than 0.1 of full Spitzer conductivity. These models also show that high gas conductivity assists rather than hinders the development of radiative cooling in the central regions of clusters.

  7. Alpha decay calculations with a new formula

    NASA Astrophysics Data System (ADS)

    Akrawy, D. T.; Poenaru, D. N.

    2017-10-01

    A new semi-empirical formula for calculations of α decay half-lives is presented. It was derived from the Royer relationship by introducing new parameters which are fixed by fit to a set of experimental data. We are using three sets: set A with 130 e-e (even-even), 119 e-o (even-odd), 109 o-e, and 96 o-o, set B with 188 e-e, 147 e-o, 131 o-e and 114 o-o, and set C with 136 e-e, 84 e-o, 76 o-e and 48 o-o alpha emitters. A comparison of results obtained with the new formula (newF) and the following well known relationships: semiempirical relationship based on fission theory (semFIS), analytical superasymmetric fission (ASAF) model and universal formula (UNIV) made in terms of rms standard deviation. We also introduced a weighted mean value of this quantity, allowing us to compare the global properties of a given model. For set B the order of the four models is the following: semFIS, UNIV, newF and ASAF. Nevertheless for even-even alpha emitters, UNIV gives the second best result after semFIS, and for odd-even parents the second is newF. Despite its simplicity in comparison with semFIS, newF, presented in this article, behaves quite well, competing with the other well known relationships.

  8. Jet Aeroacoustics: Noise Generation Mechanism and Prediction

    NASA Technical Reports Server (NTRS)

    Tam, Christopher

    1998-01-01

    This report covers the third year research effort of the project. The research work focussed on the fine scale mixing noise of both subsonic and supersonic jets and the effects of nozzle geometry and tabs on subsonic jet noise. In publication 1, a new semi-empirical theory of jet mixing noise from fine scale turbulence is developed. By an analogy to gas kinetic theory, it is shown that the source of noise is related to the time fluctuations of the turbulence kinetic theory. On starting with the Reynolds Averaged Navier-Stokes equations, a formula for the radiated noise is derived. An empirical model of the space-time correlation function of the turbulence kinetic energy is adopted. The form of the model is in good agreement with the space-time two-point velocity correlation function measured by Davies and coworkers. The parameters of the correlation are related to the parameters of the k-epsilon turbulence model. Thus the theory is self-contained. Extensive comparisons between the computed noise spectrum of the theory and experimental measured have been carried out. The parameters include jet Mach number from 0.3 to 2.0 and temperature ratio from 1.0 to 4.8. Excellent agreements are found in the spectrum shape, noise intensity and directivity. It is envisaged that the theory would supercede all semi-empirical and totally empirical jet noise prediction methods in current use.

  9. Nuclear structure for SNe r- and neutrino processes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio

    2014-09-01

    SNe r- and neutrino-processes are investigated based on recent advances in the studies of spin responses in nuclei. New shell-model Hamiltonians, which can well describe spin responses in nuclei with proper tensor components, are used to make accurate evaluations of reaction cross sections and rates in astrophysical processes. Nucleosyntheses in SNe r- and ν -processes as well as rp-processes are discussed with these new reaction rates with improved accuracies. (1) Beta-decay rates for N = 126 isotones are evaluated by shell-model calculations, and new rates are applied to study r-process nucleosynthesis in SNe's around its third peak as well as beyond the peak region up to uranium. (2) ν -processes for light-element synthesis in core-collapse SNe are studied with a new shell-model Hamiltonian in p-shell, SFO. Effects of MSW ν -oscillations on the production yields of 7Li and 11B and sensitivity of the yield ratio on ν -oscillation parameters are discussed. ν -induced reactions on 16O are also studied. (3) A new shell-model Hamiltonian in pf-shell, GXPF1J, is used to evaluate e-capture rates in pf-shell nuclei at stellar environments. New e-capture rates are applied to study nucleosynthesis in type-Ia supernova explosions, rp-process and X-ray bursts.

  10. Host susceptibility hypothesis for shell disease in American lobsters.

    PubMed

    Tlusty, Michael F; Smolowitz, Roxanna M; Halvorson, Harlyn O; DeVito, Simone E

    2007-12-01

    Epizootic shell disease (ESD) in American lobsters Homarus americanus is the bacterial degradation of the carapace resulting in extensive irregular, deep erosions. The disease is having a major impact on the health and mortality of some American lobster populations, and its effects are being transferred to the economics of the fishery. While the onset and progression of ESD in American lobsters is undoubtedly multifactorial, there is little understanding of the direct causality of this disease. The host susceptibility hypothesis developed here states that although numerous environmental and pathological factors may vary around a lobster, it is eventually the lobster's internal state that is permissive to or shields it from the final onset of the diseased state. To support the host susceptibility hypothesis, we conceptualized a model of shell disease onset and severity to allow further research on shell disease to progress from a structured model. The model states that shell disease onset will occur when the net cuticle degradation (bacterial degradation, decrease of host immune response to bacteria, natural wear, and resorption) is greater than the net deposition (growth, maintenance, and inflammatory response) of the shell. Furthermore, lesion severity depends on the extent to which cuticle degradation exceeds deposition. This model is consistent with natural observations of shell disease in American lobster.

  11. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  12. Planetary Ice-Oceans: Numerical Modeling Study of Ice-Shell Growth in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, Divya; McNamara, Allen

    2017-04-01

    Several icy bodies in the Solar system such as the icy moons Europa and Enceladus exhibit signs of subsurface oceans underneath an ice-shell. For Europa, the geologically young surface, the presence of surface features and the aligned surface chemistry pose interesting questions about formation of the ice-shell and its interaction with the ocean below. This also ties in with its astrobiological potential and implications for similar ice-ocean systems elsewhere in the cosmos. The overall thickness of the H2O layer on Europa is estimated to be 100-150 km while the thickness of the ice-shell is debated. Additionally, Europa is subject to tidal heating due to interaction with Jupiter's immense gravity field. It is of interest to understand how the ice-shell thickness varies in the presence of tidal internal heating and the localization of heating in different regions of the ice-shell. Thus this study aims to determine the effect of tidal internal heating on the growth rate of the ice-shell over time. We perform geodynamic modeling of the ice-ocean system in order to understand how the ice-shell thickness changes with time. The convection code employs the ice Ih-water phase diagram in order to model the two-phase convecting ice-ocean system. All the models begin from an initial warm thick ocean that cools from the top. The numerical experiments analyze three cases: case 1 with no tidal internal heating in the system, case 2 with constant tidal internal heating in the ice and case 3 with viscosity-dependent tidal internal heating in the ice. We track the ice-shell thickness as a function of time as the system cools. Modeling results so far have identified that the shell growth rate changes substantially at a point in time that coincides with a change in the planform of ice-convection cells. Additionally, the velocity vs depth plots indicate a shift from a conduction dominant to a convection dominant ice regime. We compare the three different cases to provide a comprehensive understanding of the temporal variation in the ice-shell thickness due to the addition of heating in the ice.

  13. Double-detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell Mass Models

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Sim, S. A.; Fink, M.; Röpke, F. K.; Seitenzahl, I. R.; Hillebrandt, W.

    2010-08-01

    In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and γ-ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.

  14. Cohesion and coordination effects on transition metal surface energies

    NASA Astrophysics Data System (ADS)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  15. Statistical iterative material image reconstruction for spectral CT using a semi-empirical forward model

    NASA Astrophysics Data System (ADS)

    Mechlem, Korbinian; Ehn, Sebastian; Sellerer, Thorsten; Pfeiffer, Franz; Noël, Peter B.

    2017-03-01

    In spectral computed tomography (spectral CT), the additional information about the energy dependence of attenuation coefficients can be exploited to generate material selective images. These images have found applications in various areas such as artifact reduction, quantitative imaging or clinical diagnosis. However, significant noise amplification on material decomposed images remains a fundamental problem of spectral CT. Most spectral CT algorithms separate the process of material decomposition and image reconstruction. Separating these steps is suboptimal because the full statistical information contained in the spectral tomographic measurements cannot be exploited. Statistical iterative reconstruction (SIR) techniques provide an alternative, mathematically elegant approach to obtaining material selective images with improved tradeoffs between noise and resolution. Furthermore, image reconstruction and material decomposition can be performed jointly. This is accomplished by a forward model which directly connects the (expected) spectral projection measurements and the material selective images. To obtain this forward model, detailed knowledge of the different photon energy spectra and the detector response was assumed in previous work. However, accurately determining the spectrum is often difficult in practice. In this work, a new algorithm for statistical iterative material decomposition is presented. It uses a semi-empirical forward model which relies on simple calibration measurements. Furthermore, an efficient optimization algorithm based on separable surrogate functions is employed. This partially negates one of the major shortcomings of SIR, namely high computational cost and long reconstruction times. Numerical simulations and real experiments show strongly improved image quality and reduced statistical bias compared to projection-based material decomposition.

  16. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  17. Two-nucleon high-spin states, the Bansal-French model and the crude shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, T.U.

    Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B/sub 2n/ in the Bansal-French model can be deduced from the A and T linear dependence of B/sub n/ and the crude shell model. 7/sub 2//sup -/ states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.

  18. An immersed-shell method for modelling fluid–structure interactions

    PubMed Central

    Viré, A.; Xiang, J.; Pain, C. C.

    2015-01-01

    The paper presents a novel method for numerically modelling fluid–structure interactions. The method consists of solving the fluid-dynamics equations on an extended domain, where the computational mesh covers both fluid and solid structures. The fluid and solid velocities are relaxed to one another through a penalty force. The latter acts on a thin shell surrounding the solid structures. Additionally, the shell is represented on the extended domain by a non-zero shell-concentration field, which is obtained by conservatively mapping the shell mesh onto the extended mesh. The paper outlines the theory underpinning this novel method, referred to as the immersed-shell approach. It also shows how the coupling between a fluid- and a structural-dynamics solver is achieved. At this stage, results are shown for cases of fundamental interest. PMID:25583857

  19. Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.

    2015-12-01

    Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.

  20. Comparison of physical and semi-empirical hydraulic models for flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Tavakoly, A. A.; Afshari, S.; Omranian, E.; Feng, D.; Rajib, A.; Snow, A.; Cohen, S.; Merwade, V.; Fekete, B. M.; Sharif, H. O.; Beighley, E.

    2016-12-01

    Various hydraulic/GIS-based tools can be used for illustrating spatial extent of flooding for first-responders, policy makers and the general public. The objective of this study is to compare four flood inundation modeling tools: HEC-RAS-2D, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), AutoRoute and Height Above the Nearest Drainage (HAND). There is a trade-off among accuracy, workability and computational demand in detailed, physics-based flood inundation models (e.g. HEC-RAS-2D and GSSHA) in contrast with semi-empirical, topography-based, computationally less expensive approaches (e.g. AutoRoute and HAND). The motivation for this study is to evaluate this trade-off and offer guidance to potential large-scale application in an operational prediction system. The models were assessed and contrasted via comparability analysis (e.g. overlapping statistics) by using three case studies in the states of Alabama, Texas, and West Virginia. The sensitivity and accuracy of physical and semi-eimpirical models in producing inundation extent were evaluated for the following attributes: geophysical characteristics (e.g. high topographic variability vs. flat natural terrain, urbanized vs. rural zones, effect of surface roughness paratermer value), influence of hydraulic structures such as dams and levees compared to unobstructed flow condition, accuracy in large vs. small study domain, effect of spatial resolution in topographic data (e.g. 10m National Elevation Dataset vs. 0.3m LiDAR). Preliminary results suggest that semi-empericial models tend to underestimate in a flat, urbanized area with controlled/managed river channel around 40% of the inundation extent compared to the physical models, regardless of topographic resolution. However, in places where there are topographic undulations, semi-empericial models attain relatively higher level of accuracy than they do in flat non-urbanized terrain.

  1. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.

    PubMed

    Ramachandran, S; Srivastava, Rohit

    2013-05-01

    Aerosol optical properties of external and core-shell mixtures of aerosol species present in the atmosphere are calculated in this study for different relative humidities. Core-shell Mie calculations are performed using the values of radii, refractive indices and densities of aerosol species that act as core and shell, and the core-shell radius ratio. The single scattering albedo (SSA) is higher when the absorbing species (black carbon, BC) is the core, while for a sulfate core SSA does not vary significantly as the BC in the shell dominates the absorption. Absorption gets enhanced in core-shell mixing of absorbing and scattering aerosols when compared to their external mixture. Thus, SSA is significantly lower for a core-shell mixture than their external mixture. SSA is more sensitive to core-shell ratio than mode radius when BC is the core. The extinction coefficient, SSA and asymmetry parameter are higher for external mixing when compared to BC (core)-water soluble aerosol (shell), and water soluble aerosol (core)-BC (shell) mixtures in the relative humidity range of 0 to 90%. Spectral SSA exhibits the behaviour of the species which acts as a shell in core-shell mixing. The asymmetry parameter for an external mixture of water soluble aerosol and BC is higher than BC (core)-water soluble aerosol (shell) mixing and increases as function of relative humidity. The asymmetry parameter for the water soluble aerosol (core)-BC (shell) is independent of relative humidity as BC is hydrophobic. The asymmetry parameter of the core-shell mixture decreases when BC aerosols are involved in mixing, as the asymmetry parameter of BC is lower. Aerosol optical depth (AOD) of core-shell mixtures increases at a higher rate when the relative humidity exceeds 70% in continental clean and urban aerosol models, whereas AOD remains the same when the relative humidity exceeds 50% in maritime aerosol models. The SSA for continental aerosols varies for core-shell mixing of water soluble aerosol (core)-shell (BC) when compared to their external mixture, while the SSA for maritime aerosols does not vary significantly for different mixing scenarios because of the dominance of sea salt aerosols. Thus, these results confirm that aerosol mixing can modify the physical and optical characteristics of aerosols, which vary as a function of relative humidity. These calculations will be useful in parameterising the effect of core-shell vs. external mixing of aerosols in global climate models, and in the evaluation of aerosol radiative effects.

  2. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, Adam Ray; Quinn, D. Dane

    This paper describes the energy dissipation arising from microslip for an elastic shell incorporating shear and longitudinal deformation resting on a rough-rigid foundation. This phenomenon is investigated using finite element (FE) analysis and nonlinear geometrically exact shell theory. Both approaches illustrate the effect of shear within the shell and observe a reduction in the energy dissipated from microslip as compared to a similar system neglecting shear deformation. In particular, it is found that the shear deformation allows for load to be transmitted beyond the region of slip so that the entire interface contributes to the load carrying capability of themore » shell. The energy dissipation resulting from the shell model is shown to agree well with that arising from the FE model, and this representation can be used as a basis for reduced order models that capture the microslip phenomenon.« less

  4. Semiempirical Two-Dimensional Magnetohydrodynamic Model of the Solar Corona and Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Guhathakurta, Madhulika

    1999-01-01

    We have developed a two-dimensional semiempirical MHD model of the solar corona and solar wind. The model uses empirically derived electron density profiles from white-light coronagraph data measured during the Skylub period and an empirically derived model of the magnetic field which is fitted to observed streamer topologies, which also come from the white-light coronagraph data The electron density model comes from that developed by Guhathakurta and coworkers. The electron density model is extended into interplanetary space by using electron densities derived from the Ulysses plasma instrument. The model also requires an estimate of the solar wind velocity as a function of heliographic latitude and radial component of the magnetic field at 1 AU, both of which can be provided by the Ulysses spacecraft. The model makes estimates as a function of radial distance and latitude of various fluid parameters of the plasma such as flow velocity V, effective temperature T(sub eff), and effective heat flux q(sub eff), which are derived from the equations of conservation of mass, momentum, and energy, respectively. The term effective indicates that wave contributions could be present. The model naturally provides the spiral pattern of the magnetic field far from the Sun and an estimate of the large-scale surface magnetic field at the Sun, which we estimate to be approx. 12 - 15 G. The magnetic field model shows that the large-scale surface magnetic field is dominated by an octupole term. The model is a steady state calculation which makes the assumption of azimuthal symmetry and solves the various conservation equations in the rotating frame of the Sun. The conservation equations are integrated along the magnetic field direction in the rotating frame of the Sun, thus providing a nearly self-consistent calculation of the fluid parameters. The model makes a minimum number of assumptions about the physics of the solar corona and solar wind and should provide a very accurate empirical description of the solar corona and solar wind Once estimates of mass density rho, flow velocity V, effective temperature T(sub eff), effective heat flux q(sub eff), and magnetic field B are computed from the model and waves are assumed unimportant, all other plasma parameters such as Mach number, Alfven speed, gyrofrequency, etc. can be derived as a function of radial distance and latitude from the Sun. The model can be used as a planning tool for such missions as Slar Probe and provide an empirical framework for theoretical models of the solar corona and solar wind The model will be used to construct a semiempirical MHD description of the steady state solar corona and solar wind using the SOHO Large Angle Spectrometric Coronagraph (LASCO) polarized brightness white-light coronagraph data, SOHO Extreme Ultraviolet Imaging Telescope data, and Ulysses plasma data.

  5. Slush Fund: The Multiphase Nature of Oceanic Ices and Its Role in Shaping Europa's Icy Shell

    NASA Astrophysics Data System (ADS)

    Buffo, J.; Schmidt, B. E.; Huber, C.

    2017-12-01

    The role of Europa's ice shell in mediating ocean-surface interaction, constraining potential habitability of the underlying hydrosphere, and dictating the surface morphology of the moon is discussed extensively in the literature, yet the dynamics and characteristics of the shell itself remain largely unconstrained. Some of the largest unknowns arise from underrepresented physics and varying a priori assumptions built into the current ice shell models. Here we modify and apply a validated one-dimensional reactive transport model designed to simulate the formation and evolution of terrestrial sea ice to the Europa environment. The top-down freezing of sea ice due to conductive heat loss to the atmosphere is akin to the formation of the Jovian moon's outer ice shell, albeit on a different temporal and spatial scale. Nevertheless, the microscale physics that govern the formation of sea ice on Earth (heterogenous solidification leading to brine pockets and channels, multiphase reactive transport phenomena, gravity drainage) likely operate in a similar manner at the ice-ocean interface of Europa, dictating the thermal, chemical, and mechanical properties of the ice shell. Simulations of the European ice-ocean interface at different stages during the ice shell's evolution are interpolated to produce vertical profiles of temperature, salinity, solid fraction, and eutectic points throughout the entire shell. Additionally, the model is coupled to the equilibrium chemistry package FREZCHEM to investigate the impact a diverse range of putative European ocean chemistries has on ice shell properties. This method removes the need for a priori assumptions of impurity entrainment rates and ice shell properties, thus providing a first principles constraint on the stratigraphic characteristics of a simulated European ice shell. These insights have the potential to improve existing estimates for the onset of solid state convection, melt lens formation due to eutectic melting, ice shell thickness, and ocean-surface interaction rates. Moreover, this work aims to shed light on the important role microscale physics plays in determining the macroscale properties of icy worlds by highlighting and adapting successful multiphase reactive transport sea ice models utilized in large scale Earth systems science simulations.

  6. Calculation methods study on hot spot stress of new girder structure detail

    NASA Astrophysics Data System (ADS)

    Liao, Ping; Zhao, Renda; Jia, Yi; Wei, Xing

    2017-10-01

    To study modeling calculation methods of new girder structure detail's hot spot stress, based on surface extrapolation method among hot spot stress method, a few finite element analysis models of this welded detail were established by finite element software ANSYS. The influence of element type, mesh density, different local modeling methods of the weld toe and extrapolation methods was analyzed on hot spot stress calculation results at the toe of welds. The results show that the difference of the normal stress in the thickness direction and the surface direction among different models is larger when the distance from the weld toe is smaller. When the distance from the toe is greater than 0.5t, the normal stress of solid models, shell models with welds and non-weld shell models tends to be consistent along the surface direction. Therefore, it is recommended that the extrapolated point should be selected outside the 0.5t for new girder welded detail. According to the results of the calculation and analysis, shell models have good grid stability, and extrapolated hot spot stress of solid models is smaller than that of shell models. So it is suggested that formula 2 and solid45 should be carried out during the hot spot stress extrapolation calculation of this welded detail. For each finite element model under different shell modeling methods, the results calculated by formula 2 are smaller than those of the other two methods, and the results of shell models with welds are the largest. Under the same local mesh density, the extrapolated hot spot stress decreases gradually with the increase of the number of layers in the thickness direction of the main plate, and the variation range is within 7.5%.

  7. Computations and estimates of rate coefficients for hydrocarbon reactions of interest to the atmospheres of outer solar system

    NASA Technical Reports Server (NTRS)

    Laufer, A. H.; Gardner, E. P.; Kwok, T. L.; Yung, Y. L.

    1983-01-01

    The rate coefficients, including Arrhenius parameters, have been computed for a number of chemical reactions involving hydrocarbon species for which experimental data are not available and which are important in planetary atmospheric models. The techniques used to calculate the kinetic parameters include the Troe and semiempirical bond energy-bond order (BEBO) or bond strength-bond length (BSBL) methods.

  8. SEGR in SiO$${}_2$$ –Si$$_3$$ N$$_4$$ Stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javanainen, Arto; Ferlet-Cavrois, Veronique; Bosser, Alexandre

    2014-04-17

    This work presents experimental SEGR data for MOS-devices, where the gate dielectrics are are made of stacked SiO 2–Si 3N 4 structures. Also a semi-empirical model for predicting the critical gate voltage in these structures under heavy-ion exposure is proposed. Then statistical interrelationship between SEGR cross-section data and simulated energy deposition probabilities in thin dielectric layers is discussed.

  9. Organic Crystal Engineering of Thermosetting Cyanate Ester Monomers: Influence of Structure on Melting Point

    DTIC Science & Technology

    2016-05-27

    often discussed in the field of thermosetting materials, crystal engineering1-4 plays a key role in facilitating the successful utilization of these...not to alter the desirable properties of the polymerized networks. Fortunately, the field of crystal engineering provides examples where even very...Chickos and Acree.26 For molecular modeling, methods ranging from atomistic simulations with semi-empirical force fields to density functional

  10. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-05-12

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  11. Molecular Modeling of Ammonium, Calcium, Sulfur, and Sodium Lignosulphonates in Acid and Basic Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.

    2015-12-01

    Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.

  12. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGES

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C 7H 10O 2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  13. Modeling delamination growth in composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reedy, E.D. Jr.; Mello, F.J.

    1996-12-01

    A method for modeling the initiation and growth of discrete delaminations in shell-like composite structures is presented. The laminate is divided into two or more sublaminates, with each sublaminate modeled with four-noded quadrilateral shell elements. A special, eight-noded hex constraint element connects opposing sublaminate shell elements. It supplies the nodal forces and moments needed to make the two opposing shell elements act as a single shell element until a prescribed failure criterion is satisfied. Once the failure criterion is attained, the connection is broken, creating or growing a discrete delamination. This approach has been implemented in a 3D finite elementmore » code. This code uses explicit time integration, and can analyze shell-like structures subjected to large deformations and complex contact conditions. The shell elements can use existing composite material models that include in-plane laminate failure modes. This analysis capability was developed to perform crashworthiness studies of composite structures, and is useful whenever there is a need to estimate peak loads, energy absorption, or the final shape of a highly deformed composite structure. This paper describes the eight-noded hex constraint element used to model the initiation and growth of a delamination, and discusses associated implementation issues. Particular attention is focused on the delamination growth criterion, and it is verified that calculated results do not depend on element size. In addition, results for double cantilever beam and end notched flexure specimens are presented and compared to measured data to assess the ability of the present approach to model a growing delamination.« less

  14. A semi-empirical approach for the chemoviscosity modeling of reactive resin system

    NASA Technical Reports Server (NTRS)

    Hou, T. H.; Bai, J. M.

    1988-01-01

    A new analytical model for simulating chemoviscosity of a thermosetting resin is presented. The model is developed on the basis of the Williams-Landel-Ferry (WLF, 1955) polymer rheology theory for the thermoplastic materials, which was modified to account for the factor of reaction time by introducing a relationship between the glass transition temperature and the degree of cure of the resin system. Theoretical predictions of the chemoviscosity profiles under dynamic curing conditions are shown to compare favorably with the experimental data obtained on the Hercules 3501-6 resin system cured under seven isothermal conditions.

  15. NMR and NQR parameters of ethanol crystal

    NASA Astrophysics Data System (ADS)

    Milinković, M.; Bilalbegović, G.

    2012-04-01

    Electric field gradients and chemical shielding tensors of the stable monoclinic crystal phase of ethanol are computed. The projector-augmented wave (PAW) and gauge-including projector-augmented wave (GIPAW) models in the periodic plane-wave density functional theory are used. The crystal data from X-ray measurements, as well as the structures where either all atomic, or only hydrogen atom positions are optimized in the density functional theory are analyzed. These structural models are also studied by including the semi-empirical van der Waals correction to the density functional theory. Infrared spectra of these five crystal models are calculated.

  16. HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous

    1993-01-01

    Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.

  17. A machine learning approach to the accurate prediction of monitor units for a compact proton machine.

    PubMed

    Sun, Baozhou; Lam, Dao; Yang, Deshan; Grantham, Kevin; Zhang, Tiezhi; Mutic, Sasa; Zhao, Tianyu

    2018-05-01

    Clinical treatment planning systems for proton therapy currently do not calculate monitor units (MUs) in passive scatter proton therapy due to the complexity of the beam delivery systems. Physical phantom measurements are commonly employed to determine the field-specific output factors (OFs) but are often subject to limited machine time, measurement uncertainties and intensive labor. In this study, a machine learning-based approach was developed to predict output (cGy/MU) and derive MUs, incorporating the dependencies on gantry angle and field size for a single-room proton therapy system. The goal of this study was to develop a secondary check tool for OF measurements and eventually eliminate patient-specific OF measurements. The OFs of 1754 fields previously measured in a water phantom with calibrated ionization chambers and electrometers for patient-specific fields with various range and modulation width combinations for 23 options were included in this study. The training data sets for machine learning models in three different methods (Random Forest, XGBoost and Cubist) included 1431 (~81%) OFs. Ten-fold cross-validation was used to prevent "overfitting" and to validate each model. The remaining 323 (~19%) OFs were used to test the trained models. The difference between the measured and predicted values from machine learning models was analyzed. Model prediction accuracy was also compared with that of the semi-empirical model developed by Kooy (Phys. Med. Biol. 50, 2005). Additionally, gantry angle dependence of OFs was measured for three groups of options categorized on the selection of the second scatters. Field size dependence of OFs was investigated for the measurements with and without patient-specific apertures. All three machine learning methods showed higher accuracy than the semi-empirical model which shows considerably large discrepancy of up to 7.7% for the treatment fields with full range and full modulation width. The Cubist-based solution outperformed all other models (P < 0.001) with the mean absolute discrepancy of 0.62% and maximum discrepancy of 3.17% between the measured and predicted OFs. The OFs showed a small dependence on gantry angle for small and deep options while they were constant for large options. The OF decreased by 3%-4% as the field radius was reduced to 2.5 cm. Machine learning methods can be used to predict OF for double-scatter proton machines with greater prediction accuracy than the most popular semi-empirical prediction model. By incorporating the gantry angle dependence and field size dependence, the machine learning-based methods can be used for a sanity check of OF measurements and bears the potential to eliminate the time-consuming patient-specific OF measurements. © 2018 American Association of Physicists in Medicine.

  18. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.

    PubMed

    Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2015-08-14

    In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Nonlinear Response and Residual Strength of Damaged Stiffened Shells Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Britt, Vicki O.; Rose, Cheryl A.; Rankin, Charles C.

    1996-01-01

    The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Fuselage skins, frames stringers and failsafe straps are included in the models. Results are presented for various combinations of internal pressure and mechanical bending, vertical shear and torsion loads, and the effects of crack orientation and location on the shell response are described. These results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell, and the stress-intensity factors associated with a crack that are used to predict residual strength. The effects of representative combined loading conditions on the stress-intensity factors associated with a crack are presented. The effects of varying structural parameters on the stress-intensity factors associated with a crack, and on self-similar and non-self-similar crack-growth are also presented.

  20. van der Waals three-body force shell model (VTSM) for the lattice dynamical studies of thallous bromide

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarvesh K.; Pandey, L. K.; Shukla, Lal Ji; Upadhyaya, K. S.

    2009-12-01

    The van der Waals three-body force shell model (VTSM) has been developed by modifying the three-body force shell model (TSM) for the lattice dynamics of ionic crystals with cesium chloride (CsCl) structure. This new model incorporates van der Waals interactions along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of a rigid shell model (RSM). In the present paper, VTSM has been used to study the lattice dynamics of thallous bromide (TlBr), from which adequacy of VTSM has been established. A comparative study of the dynamical behaviour of TlBr has also been done between the present model and TSM, the model over which modification has been made to obtain the present model VTSM. Good agreement has been observed between the theoretical and experimental results, which give confidence that it is an appropriate model for the complete description of ionic crystals with CsCl structure.

  1. Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies: applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals.

    PubMed

    Skrdla, Peter J; Robertson, Rebecca T

    2005-06-02

    Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.

  2. A Semi-empirical Model of the Stratosphere in the Climate System

    NASA Astrophysics Data System (ADS)

    Sodergren, A. H.; Bodeker, G. E.; Kremser, S.; Meinshausen, M.; McDonald, A.

    2014-12-01

    Chemistry climate models (CCMs) currently used to project changes in Antarctic ozone are extremely computationally demanding. CCM projections are uncertain due to lack of knowledge of future emissions of greenhouse gases (GHGs) and ozone depleting substances (ODSs), as well as parameterizations within the CCMs that have weakly constrained tuning parameters. While projections should be based on an ensemble of simulations, this is not currently possible due to the complexity of the CCMs. An inexpensive but realistic approach to simulate changes in stratospheric ozone, and its coupling to the climate system, is needed as a complement to CCMs. A simple climate model (SCM) can be used as a fast emulator of complex atmospheric-ocean climate models. If such an SCM includes a representation of stratospheric ozone, the evolution of the global ozone layer can be simulated for a wide range of GHG and ODS emissions scenarios. MAGICC is an SCM used in previous IPCC reports. In the current version of the MAGICC SCM, stratospheric ozone changes depend only on equivalent effective stratospheric chlorine (EESC). In this work, MAGICC is extended to include an interactive stratospheric ozone layer using a semi-empirical model of ozone responses to CO2and EESC, with changes in ozone affecting the radiative forcing in the SCM. To demonstrate the ability of our new, extended SCM to generate projections of global changes in ozone, tuning parameters from 19 coupled atmosphere-ocean general circulation models (AOGCMs) and 10 carbon cycle models (to create an ensemble of 190 simulations) have been used to generate probability density functions of the dates of return of stratospheric column ozone to 1960 and 1980 levels for different latitudes.

  3. SYMPLECTIC INVARIANTS AND FLOWERS' CLASSIFICATION OF SHELL MODEL STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmers, K.

    1961-01-01

    Flowers has given a classification of shell model states in j-j coupling for a fixed number of nucleons in a shell with respect to a symplectic group. The relation between these classifications for the various nucleon numbers is studied and is found to be governed by another symplectic group, the transformations of which in general change the nucleon number. (auth)

  4. Charge symmetry breaking in light Λ hypernuclei

    NASA Astrophysics Data System (ADS)

    Gal, Avraham; Gazda, Daniel

    2018-02-01

    Charge symmetry breaking (CSB) is particularly strong in the A = 4 mirror hypernuclei {}14\\text{H}-Λ 4\\text{He}. Recent four-body no-core shell model calculations that confront this CSB by introducing Λ-Σ0 mixing to leading-order chiral effective field theory hyperon-nucleon potentials are reviewed, and a shell-model approach to CSB in p-shell Λ hypernuclei is outlined.

  5. Applicability of the Continuum-Shell Theories to the Mechanics of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Harik, V. M.; Gates, T. S.; Nemeth, M. P.

    2002-01-01

    Validity of the assumptions relating the applicability of continuum shell theories to the global mechanical behavior of carbon nanotubes is examined. The present study focuses on providing a basis that can be used to qualitatively assess the appropriateness of continuum-shell models for nanotubes. To address the effect of nanotube structure on their deformation, all nanotube geometries are divided into four major classes that require distinct models. Criteria for the applicability of continuum models are presented. The key parameters that control the buckling strains and deformation modes of these classes of nanotubes are determined. In an analogy with continuum mechanics, mechanical laws of geometric similitude are presented. A parametric map is constructed for a variety of nanotube geometries as a guide for the applicability of different models. The continuum assumptions made in representing a nanotube as a homogeneous thin shell are analyzed to identify possible limitations of applying shell theories and using their bifurcation-buckling equations at the nano-scale.

  6. Projected shell model study on nuclei near the N = Z line

    NASA Astrophysics Data System (ADS)

    Sun, Y.

    2003-04-01

    Study of the N ≈ Z nuclei in the mass-80 region is not only interesting due to the existence of abundant nuclear-structure phenomena, but also important in understanding the nucleosynthesis in the rp-process. It is difficult to apply a conventional shell model due to the necessary involvement of the g 9/2 sub-shell. In this paper, the projected shell model is introduced to this study. Calculations are systematically performed for the collective levels as well as the quasi-particle excitations. It is demonstrated that calculations with this truncation scheme can achieve a comparable quality as the large-scale shell model diagonalizations for 48 Cr, but the present method can be applied to much heavier mass regions. While the known experimental data of the yrast bands in the N ≈ Z nuclei (from Se to Ru) are reasonably described, the present calculations predict the existence of high- K states, some of which lie low in energy under certain structure conditions.

  7. Statistical mechanics of shell models for two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Aurell, E.; Boffetta, G.; Crisanti, A.; Frick, P.; Paladin, G.; Vulpiani, A.

    1994-12-01

    We study shell models that conserve the analogs of energy and enstrophy and hence are designed to mimic fluid turbulence in two-dimensions (2D). The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager [Nuovo Cimento Suppl. 6, 279 (1949)], Hopf [J. Rat. Mech. Anal. 1, 87 (1952)], and Lee [Q. Appl. Math. 10, 69 (1952)]. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. This is clear evidence that the simplest shell models are not adequate to reproduce the main features of two-dimensional turbulence. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy and from one branch of the formal statistical equilibrium coincide in these shell models in contrast to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence has previously led to the mistaken conclusion that shell models exhibit a forward cascade of enstrophy. We also study the dynamical properties of the models and the growth of perturbations.

  8. Chromospheric and Transition region He lines during a flare

    NASA Astrophysics Data System (ADS)

    Falchi, A.; Mauas, P. J. D.; Andretta, V.; Teriaca, L.; Cauzzi, G.; Falciani, R.; Smaldone, L. A.

    An observing campaign (SOHO JOP 139), coordinated between ground based and SOHO instruments, has been planned to obtain simultaneous spectroheliograms of the same area in several spectral lines. The chromospheric lines Ca II K, Hα and Na I D as well as He I 10830, 5876, 584 and 304 Ålines have been observed. These observations allow us to build semi-empirical models of the atmosphere before and during a small flare. With these models, constructed to match the observed line profiles, we can test the He abundance value.

  9. Modeling of Branched (L, T and Y) Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Han, Jie; Jaffe, Richard; Saini, Subhash (Technical Monitor)

    1998-01-01

    Models for connecting two or three carbon nanotubes (CNT) using topological defects (i.e., pentagons and heptagons) are presented for the characterization of experimentally observed L, T and Y CNT junctions. The effects of the separation and orientation of the topological defects on the structures and energetics of these junctions are investigated using the nonlocal density function theory (DFT) and semi-empirical molecular orbital (AM1) calculations, and the Brenner empirical potential molecular mechanics simulations. The potential applications of L, Y and T CNT junctions in nanoelectronic devices are also discussed.

  10. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  11. Shear effects on energy dissipation from an elastic beam on a rigid foundation

    DOE PAGES

    Brink, Adam Ray; Quinn, D. Dane

    2015-10-20

    This paper describes the energy dissipation arising from microslip for an elastic shell incorporating shear and longitudinal deformation resting on a rough-rigid foundation. This phenomenon is investigated using finite element (FE) analysis and nonlinear geometrically exact shell theory. Both approaches illustrate the effect of shear within the shell and observe a reduction in the energy dissipated from microslip as compared to a similar system neglecting shear deformation. In particular, it is found that the shear deformation allows for load to be transmitted beyond the region of slip so that the entire interface contributes to the load carrying capability of themore » shell. The energy dissipation resulting from the shell model is shown to agree well with that arising from the FE model, and this representation can be used as a basis for reduced order models that capture the microslip phenomenon.« less

  12. Core excitations across the neutron shell gap in 207Tl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, E.; Podolyák, Zs.; Grawe, H.

    2015-05-05

    The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations usingmore » two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.« less

  13. New Tooling System for Forming Aluminum Beverage Can End Shell

    NASA Astrophysics Data System (ADS)

    Yamazaki, Koetsu; Otsuka, Takayasu; Han, Jing; Hasegawa, Takashi; Shirasawa, Taketo

    2011-08-01

    This paper proposes a new tooling system for forming shells of aluminum beverage can ends. At first, forming process of a conversional tooling system has been simulated using three-dimensional finite element models. Simulation results have been confirmed to be consistent with those of axisymmetric models, so simulations for further study have been performed using axisymmetric models to save computational time. A comparison shows that thinning of the shell formed by the proposed tooling system has been improved about 3.6%. Influences of the tool upmost surface profiles and tool initial positions in the new tooling system have been investigated and the design optimization method based on the numerical simulations has been then applied to search optimum design points, in order to minimize thinning subjected to the constraints of the geometrical dimensions of the shell. At last, the performance of the shell subjected to internal pressure has been confirmed to meet design requirements.

  14. Comparison of performance of shell-and-tube heat exchangers with conventional segmental baffles and continuous helical baffle

    NASA Astrophysics Data System (ADS)

    Ahmed, Asif; Ferdous, Imam Ul.; Saha, Sumon

    2017-06-01

    In the present study, three-dimensional numerical simulation of two shell-and-tube heat exchangers (STHXs) with conventional segmental baffles (STHXsSB) and continuous helical baffle (STHXsHB) is carried out and a comparative study is performed based on the simulation results. Both of the STHXs contain 37 tubes inside a 500 mm long and 200 mm diameter shell and mass flow rate of shell-side fluid is varied from 0.5 kg/s to 2 kg/s. At first, physical and mathematical models are developed and numerically simulated using finite element method (FEM). For the validation of the computational model, shell-side average nusselt number (Nus) is calculated from the simulation results and compared with the available experimental results. The comparative study shows that STHXsHB has 72-127% higher heat transfer coefficient per unit pressure drop compared to the conventional STHXsSB for the same shell-side mass flow rate. Moreover, STHXsHB has 59-63% lower shell-side pressure drop than STHXsSB.

  15. Cenosphere formation from heavy fuel oil: a numerical analysis accounting for the balance between porous shells and internal pressure

    NASA Astrophysics Data System (ADS)

    Reddy, Vanteru M.; Rahman, Mustafa M.; Gandi, Appala N.; Elbaz, Ayman M.; Schrecengost, Robert A.; Roberts, William L.

    2016-01-01

    Heavy fuel oil (HFO) as a fuel in industrial and power generation plants ensures the availability of energy at economy. Coke and cenosphere emissions from HFO combustion need to be controlled by particulate control equipment such as electrostatic precipitators, and collection effectiveness is impacted by the properties of these particulates. The cenosphere formation is a function of HFO composition, which varies depending on the source of the HFO. Numerical modelling of the cenosphere formation mechanism presented in this paper is an economical method of characterising cenosphere formation potential for HFO in comparison to experimental analysis of individual HFO samples, leading to better control and collection. In the present work, a novel numerical model is developed for understanding the global cenosphere formation mechanism. The critical diameter of the cenosphere is modelled based on the balance between two pressures developed in an HFO droplet. First is the pressure (Prpf) developed at the interface of the liquid surface and the inner surface of the accumulated coke due to the flow restriction of volatile components from the interior of the droplet. Second is the pressure due to the outer shell strength (PrC) gained from van der Walls energy of the coke layers and surface energy. In this present study it is considered that when PrC ≥ Prpf the outer shell starts to harden. The internal motion in the shell layer ceases and the outer diameter (DSOut) of the shell is then fixed. The entire process of cenosphere formation in this study is analysed in three phases: regression, shell formation and hardening, and post shell hardening. Variations in pressures during shell formation are analysed. Shell (cenosphere) dimensions are evaluated at the completion of droplet evaporation. The rate of fuel evaporation, rate of coke formation and coke accumulation are analysed. The model predicts shell outer diameters of 650, 860 and 1040 µm, and inner diameters are 360, 410 and 430 µm respectively, for 700, 900 and 1100 µm HFO droplets. The present numerical model is validated with experimental results available from the literature. Total variation between computational and experimental results is in the range of 3-7%.

  16. Differences between the MEMLS and the multiple-layer HUT model and their comparisons with in-situ snowpack observations

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Sandells, M. J.; Lemmetyinen, J.; Kim, E. J.

    2013-12-01

    Application of passive microwave (PM) brightness temperature for snow water equivalent retrieval requires deep understanding of snow emission models, not only for their performance to reproduce in-situ PM observations, but also for their theoretical differences to approximate radiative transfer theory. In this paper, differences between the multiple-layer HUT (or TKK) model and the Microwave Emission Model of Layered Snowpacks (MEMLS) were listed, and the two models were compared with snow ground-based PM observations at Streamboat Springs, Colorado, USA; Churchill, Canada; and Sodankyla, Finland. The two models were chosen for their multiple-layer schemes are close to actual layer-by-layer snow measurements. Both the two models are semi-empirical models; whereas the HUT model uses the mean snow grain size, MEMLS uses the correlation length to relate the snow microstructure with the scattering coefficients. The two parameters are related according to previous studies. The Specific Surface Area (SSA) was measured at three test sites to derive the correlation length, while the mean snow grain sizes was available at Stream Springs and Sodankyla. It was shown that with different apparent forms of radiative transfer equations, the different parts of the two models have one-to-one correspondence however, and intermediate parameters are comparable. Regarding the multiple-layer structure of the models, it was found that the HUT model considers the internal reflectivity of each snow layer to be zero. The two-flux radiative transfer equations of the two models were compared, and the correspondence of the semi-empirical parameter q in the HUT model was found in the MEMLS. The effect of consideration of transverse radiation scattered into the direction under consideration via the six-flux approximation in MEMLS is compared. Based on model comparisons, we analyzed the differences of TB predictions at the three test sites.

  17. Water trimer torsional spectrum from accurate ab initio and semiempirical potentials

    NASA Astrophysics Data System (ADS)

    van der Avoird, Ad; Szalewicz, Krzysztof

    2008-01-01

    The torsional levels of (H2O)3 and (D2O)3 were calculated in a restricted dimensionality (three-dimensional) model with several recently proposed water potentials. Comparison with the experimental data provides a critical test, not only of the pair interactions that have already been probed on the water dimer spectra, but also of the nonadditive three-body contributions to the potential. The purely ab initio CC-pol and HBB potentials that were previously shown to yield very accurate water dimer levels, also reproduce the trimer levels well when supplemented with an appropriate three-body interaction potential. The TTM2.1 potential gives considerably less good agreement with experiment. Also the semiempirical VRT(ASP-W)III potential, fitted to the water dimer vibration-rotation-tunneling levels, gives substantial disagreement with the measured water trimer levels, which shows that the latter probe the potential for geometries other than those probed by the dimer spectrum. Although the three-body nonadditive interactions significantly increase the stability of the water trimer, their effect on the torsional energy barriers and vibration-tunneling frequencies is less significant.

  18. All (4,1): Sigma models with (4 , q) off-shell supersymmetry

    NASA Astrophysics Data System (ADS)

    Hull, Chris; Lindström, Ulf

    2017-03-01

    Off-shell (4 , q) supermultiplets in 2-dimensions are constructed for q = 1 , 2 , 4. These are used to construct sigma models whose target spaces are hyperkähler with torsion. The off-shell supersymmetry implies the three complex structures are simultaneously integrable and allows us to construct actions using extended superspace and projective superspace, giving an explicit construction of the target space geometries.

  19. An Aeroelastic Evaluation of the Flexible Thermal Protection System for an Inatable Aerodynamic Decelerator

    NASA Astrophysics Data System (ADS)

    Goldman, Benjamin D.

    The purpose of this dissertation is to study the aeroelastic stability of a proposed flexible thermal protection system (FTPS) for the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A flat, square FTPS coupon exhibits violent oscillations during experimental aerothermal testing in NASA's 8 Foot High Temperature Tunnel, leading to catastrophic failure. The behavior of the structural response suggested that aeroelastic flutter may be the primary instability mechanism, prompting further experimental investigation and theoretical model development. Using Von Karman's plate theory for the panel-like structure and piston theory aerodynamics, a set of aeroelastic models were developed and limit cycle oscillations (LCOs) were calculated at the tunnel flow conditions. Similarities in frequency content of the theoretical and experimental responses indicated that the observed FTPS oscillations were likely aeroelastic in nature, specifically LCO/flutter. While the coupon models can be used for comparison with tunnel tests, they cannot predict accurately the aeroelastic behavior of the FTPS in atmospheric flight. This is because the geometry of the flight vehicle is no longer a flat plate, but rather (approximately) a conical shell. In the second phase of this work, linearized Donnell conical shell theory and piston theory aerodynamics are used to calculate natural modes of vibration and flutter dynamic pressures for various structural models composed of one or more conical shells resting on several circumferential elastic supports. When the flight vehicle is approximated as a single conical shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case, as "hump-mode" flutter is possible. Aeroelastic models that consider the individual FTPS layers as separate shells exhibit asymmetric flutter at high dynamic pressures relative to the single shell models. Parameter studies also examine the effects of tension, shear modulus reduction, and elastic support stiffness. Limitations of a linear structural model and piston theory aerodynamics prompted a more elaborate evaluation of the flight configuration. Using nonlinear Donnell conical shell theory for the FTPS structure, the pressure buckling and aeroelastic limit cycle oscillations were studied for a single elastically-supported conical shell. While piston theory was used initially, a time-dependent correction factor was derived using transform methods and potential flow theory to calculate more accurately the low Mach number supersonic flow. Three conical shell geometries were considered: a 3-meter diameter 70° shell, a 3.7-meter 70° shell, and a 6-meter diameter 70° shell. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD vehicle. Though agreement between theoretical and experimental strains was poor, circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With piston theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. Pre-buckling pressure loads and the aerodynamic pressure correction factor were studied for all geometries, and these effects resulted in significantly lower flutter boundaries compared with piston theory alone. In the final phase of this work, the existing linear and nonlinear FTPS shell models were coupled with NASA's FUN3D Reynolds Averaged Navier Stokes CFD code, allowing for the most physically realistic flight predictions. For the linear shell structural model, the elastically-supported shell natural modes were mapped to a CFD grid of a 6-meter HIAD vehicle, and a linear structural dynamics solver internal to the CFD code was used to compute the aeroelastic response. Aerodynamic parameters for a proposed HIAD re-entry trajectory were obtained, and aeroelastic solutions were calculated at three points in the trajectory: Mach 1, Mach 2, and Mach 11 (peak dynamic pressure). No flutter was found at any of these conditions using the linear method, though oscillations (of uncertain origin) on the order of the shell thickness may be possible in the transonic regime. For the nonlinear shell structural model, a set of assumed sinusoidal modes were mapped to the CFD grid, and the linear structural dynamics equations were replaced by a nonlinear ODE solver for the conical shell equations. Successful calculation and restart of the nonlinear dynamic aeroelastic solutions was demonstrated. Preliminary results indicated that dynamic instabilities may be possible at Mach 1 and 2, with a completely stable solution at Mach 11, though further study is needed. A major benefit of this implementation is that the coefficients and mode shapes for the nonlinear conical shell may be replaced with those of other types of structures, greatly expanding the aeroelastic capabilities of FUN3D.

  20. A Complete Structural Inventory of the Mycobacterial Microcompartment Shell Proteins Constrains Models of Global Architecture and Transport*

    PubMed Central

    Mallette, Evan

    2017-01-01

    Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. PMID:27927988

  1. A Complete Structural Inventory of the Mycobacterial Microcompartment Shell Proteins Constrains Models of Global Architecture and Transport.

    PubMed

    Mallette, Evan; Kimber, Matthew S

    2017-01-27

    Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Modeling the Electrostatics of Hollow Shell Suspensions: Ion Distribution, Pair Interactions, and Many-Body Effects.

    PubMed

    Hallez, Yannick; Meireles, Martine

    2016-10-11

    Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.

  3. Modeling and simulation in biomedicine.

    PubMed Central

    Aarts, J.; Möller, D.; van Wijk van Brievingh, R.

    1991-01-01

    A group of researchers and educators in The Netherlands, Germany and Czechoslovakia have developed and adapted mathematical computer models of phenomena in the field of physiology and biomedicine for use in higher education. The models are graphical and highly interactive, and are all written in TurboPascal or the mathematical simulation language PSI. An educational shell has been developed to launch the models. The shell allows students to interact with the models and teachers to edit the models, to add new models and to monitor the achievements of the students. The models and the shell have been implemented on a MS-DOS personal computer. This paper describes the features of the modeling package and presents the modeling and simulation of the heart muscle as an example. PMID:1807745

  4. Performance analysis of the node shell on a container door based on ANSYS

    NASA Astrophysics Data System (ADS)

    Li, Qingzhou; Zhou, Yi; Hu, Changqing; Cheng, Jiamin; Zeng, Xiaochen

    2018-01-01

    The structure of thenode shell on a container door was designed and analyzed in this study. The model of the shell was developed with ANSYS. The grids of the model were divided based on the Hex dominant method, and the stress distribution and the temperature distribution of the shell were calculated based on FEA (Finite Element Analysis) method. The analysis results indicated thatthe location of the concave upward side has the highest stress which also lower than the strength limit of the material. The temperature of the magnet installation location was highest, therefore the glue for fixing the magnet must has high temperature resistance. The results provide the basis for the further optimization of the shell.

  5. On sound transmission into a stiffened cylindrical shell with rings and stringers treated as discrete elements

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1980-01-01

    In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the transmission of an oblique plane sound wave into a finite cylindrical shell stiffened by stringers and ring frames. The rings and stringers are modeled as discrete structural elements. The numerical case studied was typical of a narrow-bodied jet transport fuselage. The numerical results show that the ring-frequency dip in the transmission loss curve that is present for a monocoque shell is still present in the case of a stiffened shell. The ring frequency effect is a result of the cylindrical geometry of the shell. Below the ring frequency, stiffening does not appear to have any significant effect on transmission loss, but above the ring frequency, stiffeners can enhance the transmission loss of a cylindrical shell.

  6. Microbubble Sizing and Shell Characterization Using Flow Cytometry

    PubMed Central

    Tu, Juan; Swalwell, Jarred E.; Giraud, David; Cui, Weicheng; Chen, Weizhong; Matula, Thomas J.

    2015-01-01

    Experiments were performed to size, count, and obtain shell parameters for individual ultrasound contrast microbubbles using a modified flow cytometer. Light scattering was modeled using Mie theory, and applied to calibration beads to calibrate the system. The size distribution and population were measured directly from the flow cytometer. The shell parameters (shear modulus and shear viscosity) were quantified at different acoustic pressures (from 95 to 333 kPa) by fitting microbubble response data to a bubble dynamics model. The size distribution of the contrast agent microbubbles is consistent with manufacturer specifications. The shell shear viscosity increases with increasing equilibrium microbubble size, and decreases with increasing shear rate. The observed trends are independent of driving pressure amplitude. The shell elasticity does not vary with microbubble size. The results suggest that a modified flow cytometer can be an effective tool to characterize the physical properties of microbubbles, including size distribution, population, and shell parameters. PMID:21622051

  7. Multi-shell model of ion-induced nucleic acid condensation

    NASA Astrophysics Data System (ADS)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding shells."

  8. SEMI-EMPIRICAL MODELING OF THE PHOTOSPHERE, CHROMOPSHERE, TRANSITION REGION, AND CORONA OF THE M-DWARF HOST STAR GJ 832

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontenla, J. M.; Linsky, Jeffrey L.; Witbrod, Jesse

    Stellar radiation from X-rays to the visible provides the energy that controls the photochemistry and mass loss from exoplanet atmospheres. The important extreme ultraviolet (EUV) region (10–91.2 nm) is inaccessible and should be computed from a reliable stellar model. It is essential to understand the formation regions and physical processes responsible for the various stellar emission features to predict how the spectral energy distribution varies with age and activity levels. We compute a state-of-the-art semi-empirical atmospheric model and the emergent high-resolution synthetic spectrum of the moderately active M2 V star GJ 832 as the first of a series of modelsmore » for stars with different activity levels. We construct a one-dimensional simple model for the physical structure of the star’s chromosphere, chromosphere-corona transition region, and corona using non-LTE radiative transfer techniques and many molecular lines. The synthesized spectrum for this model fits the continuum and lines across the UV-to-optical spectrum. Particular emphasis is given to the emission lines at wavelengths that are shorter than 300 nm observed with the Hubble Space Telescope , which have important effects on the photochemistry of the exoplanet atmospheres. The FUV line ratios indicate that the transition region of GJ 832 is more biased to hotter material than that of the quiet Sun. The excellent agreement of our computed EUV luminosity with that obtained by two other techniques indicates that our model predicts reliable EUV emission from GJ 832. We find that the unobserved EUV flux of GJ 832, which heats the outer atmospheres of exoplanets and drives their mass loss, is comparable to the active Sun.« less

  9. Solubility and dissolution thermodynamics of tetranitroglycoluril in organic solvents at 295-318 K

    NASA Astrophysics Data System (ADS)

    Zheng, Zhihua; Wang, Jianlong; Hu, Zhiyan; Du, Hongbin

    2017-08-01

    The solubility data of tetranitroglycoluril in acetone, methanol, ethanol, ethyl acetate, nitromethane and chloroform at temperatures ranging from 295-318 K were measured by gravimetric method. The solubility data of tetranitroglycoluril were fitted with Apelblat semiempirical equation. The dissolution enthalpy, entropy and Gibbs energy of tetranitroglycoluril were calculated using the Van't Hoff and Gibbs equations. The results showed that the Apelblat semiempirical equation was significantly correlated with solubility data. The dissolving process was endothermic, entropy-driven, and nonspontaneous.

  10. Quasi-static axisymmetric eversion hemispherical domes made of elastomers

    NASA Astrophysics Data System (ADS)

    Kabrits, Sergey A.; Kolpak, Eugeny P.

    2016-06-01

    The paper considers numerical solution for the problem of quasi-static axisymmetric eversion of a spherical shell (hemisphere) under action of external pressure. Results based on the general nonlinear theory of shells made of elastomers, proposed by K. F. Chernykh. It is used two models of shells based on the hypotheses of the Kirchhoff and Timoshenko, modified K.F. Chernykh for the case of hyperelastic rubber-like material. The article presents diagrams of equilibrium states of eversion hemispheres for both models as well as the shape of the shell at different points in the diagram.

  11. Nonlinear analysis of damaged stiffened fuselage shells subjected to combined loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Britt, Vicki O.; Young, Richard D.; Rankin, Charles C.; Shore, Charles P.; Bains, Jane C.

    1994-01-01

    The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy that accounts for global and local response phenomena accurately. Results are presented for internal pressure and mechanical bending loads. The effects of crack location and orientation on shell response are described. The effects of mechanical fasteners on the response of a lap joint and the effects of elastic and elastic-plastic material properties on the buckling response of tension-loaded flat panels with cracks are also addressed.

  12. Kinematic Methods of Designing Free Form Shells

    NASA Astrophysics Data System (ADS)

    Korotkiy, V. A.; Khmarova, L. I.

    2017-11-01

    The geometrical shell model is formed in light of the set requirements expressed through surface parameters. The shell is modelled using the kinematic method according to which the shell is formed as a continuous one-parameter set of curves. The authors offer a kinematic method based on the use of second-order curves with a variable eccentricity as a form-making element. Additional guiding ruled surfaces are used to control the designed surface form. The authors made a software application enabling to plot a second-order curve specified by a random set of five coplanar points and tangents.

  13. Nuclear fragmentation studies for microelectronic application

    NASA Technical Reports Server (NTRS)

    Ngo, Duc M.; Wilson, John W.; Buck, Warren W.; Fogarty, Thomas N.

    1989-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. Predicted results are compared to experiments with the surface barrier detectors of McNulty et al. The intranuclear cascade nuclear reaction model does not predict the McNulty experimental data for the highest energy events. A semiempirical nuclear cross section gives an adequate explanation of McNulty's experiments. Application of the formalism to specific electronic devices is discussed.

  14. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres.

    PubMed

    Angelescu, Daniel G; Caragheorgheopol, Dan

    2015-10-14

    The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.

  15. Stall flutter analysis of propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1988-01-01

    Three semi-empirical aerodynamic stall models are compared with respect to their lift and moment hysteresis loop prediction, limit cycle behavior, easy implementation, and feasibility in developing the parameters required for stall flutter prediction of advanced turbines. For the comparison of aeroelastic response prediction including stall, a typical section model and a plate structural model are considered. The response analysis includes both plunging and pitching motions of the blades. In model A, a correction of the angle of attack is applied when the angle of attack exceeds the static stall angle. In model B, a synthesis procedure is used for angles of attack above static stall angles, and the time history effects are accounted for through the Wagner function.

  16. Efficacy of antimicrobials extracted from organic pecan shell for inhibiting the growth of Listeria spp.

    PubMed

    Babu, Dinesh; Crandall, Philip G; Johnson, Casey L; O'Bryan, Corliss A; Ricke, Steven C

    2013-12-01

    Growers and processors of USDA certified organic foods are in need of suitable organic antimicrobials. The purpose of the research reported here was to develop and test natural antimicrobials derived from an all-natural by-product, organic pecan shells. Unroasted and roasted organic pecan shells were subjected to solvent free extraction to produce antimicrobials that were tested against Listeria spp. and L. monocytogenes serotypes to determine the minimum inhibitory concentrations (MIC) of antimicrobials. The effectiveness of pecan shell extracts were further tested using a poultry skin model system and the growth inhibition of the Listeria cells adhered onto the skin model were quantified. The solvent free extracts of pecan shells inhibited Listeria strains at MICs as low as 0.38%. The antimicrobial effectiveness tests on a poultry skin model exhibited nearly a 2 log reduction of the inoculated cocktail mix of Listeria strains when extracts of pecan shell powder were used. The extracts also produced greater than a 4 log reduction of the indigenous spoilage bacteria on the chicken skin. Thus, the pecan shell extracts may prove to be very effective alternative antimicrobials against food pathogens and supplement the demand for effective natural antimicrobials for use in organic meat processing. © 2013 Institute of Food Technologists®

  17. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The line-spring model developed by Rice and Levy (1972) is used to obtain an approximate solution for a cylindrical shell containing a part-through surface crack. A Reissner type theory is used to account for the effects of the transverse shear deformations, and the stress intensity factor at the deepest penetration point of the crack is tabulated for bending and membrane loading by varying three-dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided, and qualitatively the line-spring model gives the expected results in comparison with elasticity solutions.

  18. An Evaluation of Semiempirical Models for Partitioning Photosynthetically Active Radiation Into Diffuse and Direct Beam Components

    NASA Astrophysics Data System (ADS)

    Oliphant, Andrew J.; Stoy, Paul C.

    2018-03-01

    Photosynthesis is more efficient under diffuse than direct beam photosynthetically active radiation (PAR) per unit PAR, but diffuse PAR is infrequently measured at research sites. We examine four commonly used semiempirical models (Erbs et al., 1982, https://doi.org/10.1016/0038-092X(82)90302-4; Gu et al., 1999, https://doi.org/10.1029/1999JD901068; Roderick, 1999, https://doi.org/10.1016/S0168-1923(99)00028-3; Weiss & Norman, 1985, https://doi.org/10.1016/0168-1923(85)90020-6) that partition PAR into diffuse and direct beam components based on the negative relationship between atmospheric transparency and scattering of PAR. Radiation observations at 58 sites (140 site years) from the La Thuille FLUXNET data set were used for model validation and coefficient testing. All four models did a reasonable job of predicting the diffuse fraction of PAR (ϕ) at the 30 min timescale, with site median r2 values ranging between 0.85 and 0.87, model efficiency coefficients (MECs) between 0.62 and 0.69, and regression slopes within 10% of unity. Model residuals were not strongly correlated with astronomical or standard meteorological variables. We conclude that the Roderick (1999, https://doi.org/10.1016/S0168-1923(99)00028-3) and Gu et al. (1999, https://doi.org/10.1029/1999JD901068) models performed better overall than the two older models. Using the basic form of these models, the data set was used to find both individual site and universal model coefficients that optimized predictive accuracy. A new universal form of the model is presented in section 5 that increased site median MEC to 0.73. Site-specific model coefficients increased median MEC further to 0.78, indicating usefulness of local/regional training of coefficients to capture the local distributions of aerosols and cloud types.

  19. All (4,0): Sigma models with (4,0) off-shell supersymmetry

    NASA Astrophysics Data System (ADS)

    Hull, Chris; Lindström, Ulf

    2017-08-01

    Off-shell (4, 0) supermultiplets in 2-dimensions are formulated. These are used to construct sigma models whose target spaces are vector bundles over manifolds that are hyperkähler with torsion. The off-shell supersymmetry implies that the complex structures are simultaneously integrable and allows us to write actions using extended superspace and projective superspace, giving an explicit construction of the target space geometries.

  20. LQR Control of Shell Vibrations Via Piezoceramic Actuators

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A model-based Linear Quadratic Regulator (LQR) method for controlling vibrations in cylindrical shells is presented. Surface-mounted piezo-ceramic patches are employed as actuators which leads to unbounded control input operators. Modified Donnell-Mushtari shell equations incorporating strong or Kelvin-Voigt damping are used to model the system. The model is then abstractly formulated in terms of sesquilinear forms. This provides a framework amenable for proving model well-posedness and convergence of LQR gains using analytic semigroup results combined with LQR theory for unbounded input operators. Finally, numerical examples demonstrating the effectiveness of the method are presented.

  1. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  2. Global Curvature Buckling and Snapping of Spherical Shells.

    NASA Astrophysics Data System (ADS)

    Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark; Bade, Abdikhalaq; Trejo, Miguel; Holmes, Douglas

    A spherical shell under external pressure will eventually buckle locally through the development of a dimple. However, when a free spherical shell is subject to variations in natural curvature, it will either buckle globally or snap towards a buckled configuration. We study the similarities and differences between pressure and curvature instabilities in spherical shells. We show how the critical buckling natural curvature is largely independent of the thinness and half-angle of the shell, while the critical snapping natural curvature grows linearly with the half-angle. As a result, we demonstrate how a critical half-angle, depending only on the thinness of the shell, sets the threshold between two different kinds of snapping: as a rule of thumb, shallow shells snap into everted shells, while deep shells snap into buckled shells. As the developed models are purely geometrical, the results are applicable to a large variety of stimuli and scales. NSF CAREER CMMI-1454153.

  3. Silica-Coated Core-Shell Structured Polystyrene Nanospheres and Their Size-Dependent Mechanical Properties.

    PubMed

    Cao, Xu; Pan, Guoshun; Huang, Peng; Guo, Dan; Xie, Guoxin

    2017-08-22

    The core-shell structured PS/SiO 2 composite nanospheres were synthesized on the basis of a modified Stöber method. The mechanical properties of monodisperse nanospheres were characterized with nanoindentation on the basis of the atomic force microscopy (AFM). The surface morphologies of PS/SiO 2 composite nanospheres was scanned with the tapping mode of AFM, and the force-distance curves were measured with the contact mode of AFM. Different contact models were compared for the analyses of experimental data. The elastic moduli of PS/SiO 2 composite nanosphere (4-40 GPa) and PS nanosphere (∼3.4 GPa) were obtained with the Hertz and Johnson-Kendall-Roberts (JKR) models, respectively, and the JKR model was proven to be more appropriate for calculating the elastic modulus of PS/SiO 2 nanospheres. The elastic modulus of SiO 2 shell gradually approached a constant value (∼46 GPa) with the increase of SiO 2 shell thickness. A core-shell model was proposed for describing the relationship between PS/SiO 2 composite nanosphere's elastic modulus and shell thickness. The mechanical properties of the composite nanospheres were reasonably explained on the basis of the growth mechanism of PS/SiO 2 composite nanospheres, in particular the SiO 2 shell's formation process. Available research data of PS/SiO 2 composite nanospheres in this work can provide valuable guidance for their effective application in surface engineering, micro/nanomanufacturing, lubrication, and so on.

  4. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness

    NASA Astrophysics Data System (ADS)

    Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-09-01

    We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.

  5. A steady state model of agricultural waste pyrolysis: A mini review.

    PubMed

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types. © The Author(s) 2016.

  6. Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict Protein Fold Stability and Binding Affinity Effects upon Mutation

    PubMed Central

    Garcia Lopez, Sebastian; Kim, Philip M.

    2014-01-01

    Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403

  7. Data on inelastic processes in low-energy potassium-hydrogen and rubidium-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Yakovleva, S. A.; Barklem, P. S.; Belyaev, A. K.

    2018-01-01

    Two sets of rate coefficients for low-energy inelastic potassium-hydrogen and rubidium-hydrogen collisions were computed for each collisional system based on two model electronic structure calculations, performed by the quantum asymptotic semi-empirical and the quantum asymptotic linear combinations of atomic orbitals (LCAO) approaches, followed by quantum multichannel calculations for the non-adiabatic nuclear dynamics. The rate coefficients for the charge transfer (mutual neutralization, ion-pair formation), excitation and de-excitation processes are calculated for all transitions between the five lowest lying covalent states and the ionic states for each collisional system for the temperature range 1000-10 000 K. The processes involving higher lying states have extremely low rate coefficients and, hence, are neglected. The two model calculations both single out the same partial processes as having large and moderate rate coefficients. The largest rate coefficients correspond to the mutual neutralization processes into the K(5s 2S) and Rb(4d 2D) final states and at temperature 6000 K have values exceeding 3 × 10-8 cm3 s-1 and 4 × 10-8 cm3 s-1, respectively. It is shown that both the semi-empirical and the LCAO approaches perform equally well on average and that both sets of atomic data have roughly the same accuracy. The processes with large and moderate rate coefficients are likely to be important for non-LTE modelling in atmospheres of F, G and K-stars, especially metal-poor stars.

  8. Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.

    2015-06-01

    This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.

  9. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    NASA Astrophysics Data System (ADS)

    Yang, Chungja

    Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material. Experiments further examined shell thickness and particle concentration (chapter 6) dependencies on ~530 nm CSnp dielectrophoretic and electrorotational responses with ~30nm and ~80 nm shell thicknesses and at particle concentration count rates of 5000 +/- 500, 10000 +/- 500, and 15000 +/- 500 counts per second. Using similar experimental conditions, both dielectrophoretic and electrorotational CSnp responses were compiled versus frequency, shell thickness, and particle concentration. Knowledge gained from this study includes a unique resonance-like dielectrophoretic and electrorotational spectrum, which is significantly distinct from other cells and particles. CSnp dielectric properties were then calculated by parametrically fitting parameters to an existing core-shell model. The optimum conductivity and relative permittivity for the core and the shell are 1E-15 S/m, 1, 0.6 S/m, and 90, respectively. These properties can be exploited to rapidly assemble these unique core-shell particles for future structural color production in fabrics, vehicle, and wall painting.

  10. Probing the pre-PN Mass Loss Histories in the PPN Dust Shells

    NASA Astrophysics Data System (ADS)

    Ueta, T.

    2001-12-01

    Proto-planetary nebulae (PPNs) are immediate progenitors of planetary nebulae (PNs) rapidly evolving over a relatively short time scale. Unlike the full-fledged PNs, the circumstellar dust shells of PPNs have neither been photo-ionized nor been swept up by fast winds. Since the PPN shells retain pristine fossil records of mass loss histories of these stars during the pre-PN phases, these dust shells provide ideal astronomical laboratories in which to investigate the origin of complex PN structures that we observe. We have conducted imaging surveys of the PPN shells in mid-infrared and optical wavelengths, probing the dust distribution directly via mid-infrared thermal dust emission arising from the shells and indirectly via dust-scattered stellar optical emission passing through the shells. From these surveys, we have found that (1) the PPN shells are intrinsically axisymmetric due to equatorially-enhanced superwind mass loss that occurred immediately before the beginning of the PPN phase, and (2) the variable degree of equatorial enhancement in the shells, which is probably related to the progenitor mass, has resulted in different optical depths and morphologies. To characterize the PPN shell geometries, we have developed and employed a 2.5 dimensional radiative transfer code that treats dust absorption, reemission, and an/isotropic scattering in any axisymmetric system illuminated by a central energy source. In the code, the dust optical properties are derived from the laboratory-measured refractive index using Mie theory allowing a distribution of sizes for each species in each composition layer in the shell. Our numerical analysis would be able to de-project and recover 3-D geometrical quantities, such as the pole-to-equator density ratio, from the observational data. These model calculations would provide constraining parameters for hydrodynamical models intended to generate equatorial enhancements during dust mass loss as well as initial parameters for magneto-hydrodynamical models aimed to reproduce highly complex PN morphologies.

  11. Development of Semi-Empirical Damping Equation for Baffled Tank with Oblate Spheroidal Dome

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff; Brodnick, Jacob; Eberhart, Chad

    2016-01-01

    Propellant slosh is a potential source of disturbance that can significantly impact the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the slosh, slosh mass, slosh mass center location, and the critical damping ratio. A fundamental study has been undertaken at NASA MSFC to understand the fluid damping physics from a ring baffle in the barrel section of a propellant tank. An asymptotic damping equation and CFD blended equation have been derived by NASA MSFC team to complement the popularly used Miles equation at different flow regimes. The new development has found success in providing a nonlinear damping model for the Space Launch System. The purpose of this study is to further extend the semi-empirical damping equations into the oblate spheroidal dome section of the propellant tanks. First, previous experimental data from the spherical baffled tank are collected and analyzed. Several methods of taking the dome curvature effect, including a generalized Miles equation, area projection method, and equalized fill height method, are assessed. CFD simulation is used to shed light on the interaction of vorticity around the baffle with the locally curved wall and liquid-gas interface. The final damping equation will be validated by a recent subscale test with an oblate spheroidal dome conducted at NASA MSFC.

  12. Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements

    NASA Technical Reports Server (NTRS)

    Trefny, C. J.

    1985-01-01

    Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

  13. A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com

    Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certainmore » K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.« less

  14. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness

    PubMed Central

    Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-01-01

    Abstract We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 1013 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus—Tidal deformation—Faults—Variable ice shell thickness—Tidal heating—Plume activity and timing. Astrobiology 17, 941–954. PMID:28816521

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  16. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  17. Variational asymptotic modeling of composite dimensionally reducible structures

    NASA Astrophysics Data System (ADS)

    Yu, Wenbin

    A general framework to construct accurate reduced models for composite dimensionally reducible structures (beams, plates and shells) was formulated based on two theoretical foundations: decomposition of the rotation tensor and the variational asymptotic method. Two engineering software systems, Variational Asymptotic Beam Sectional Analysis (VABS, new version) and Variational Asymptotic Plate and Shell Analysis (VAPAS), were developed. Several restrictions found in previous work on beam modeling were removed in the present effort. A general formulation of Timoshenko-like cross-sectional analysis was developed, through which the shear center coordinates and a consistent Vlasov model can be obtained. Recovery relations are given to recover the asymptotic approximations for the three-dimensional field variables. A new version of VABS has been developed, which is a much improved program in comparison to the old one. Numerous examples are given for validation. A Reissner-like model being as asymptotically correct as possible was obtained for composite plates and shells. After formulating the three-dimensional elasticity problem in intrinsic form, the variational asymptotic method was used to systematically reduce the dimensionality of the problem by taking advantage of the smallness of the thickness. The through-the-thickness analysis is solved by a one-dimensional finite element method to provide the stiffnesses as input for the two-dimensional nonlinear plate or shell analysis as well as recovery relations to approximately express the three-dimensional results. The known fact that there exists more than one theory that is asymptotically correct to a given order is adopted to cast the refined energy into a Reissner-like form. A two-dimensional nonlinear shell theory consistent with the present modeling process was developed. The engineering computer code VAPAS was developed and inserted into DYMORE to provide an efficient and accurate analysis of composite plates and shells. Numerical results are compared with the exact solutions, and the excellent agreement proves that one can use VAPAS to analyze composite plates and shells efficiently and accurately. In conclusion, rigorous modeling approaches were developed for composite beams, plates and shells within a general framework. No such consistent and general treatment is found in the literature. The associated computer programs VABS and VAPAS are envisioned to have many applications in industry.

  18. Buckling Imperfection Sensitivity of Axially Compressed Orthotropic Cylinders

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Nemeth, Michael P.

    2010-01-01

    Structural stability is a major consideration in the design of lightweight shell structures. However, the theoretical predictions of geometrically perfect structures often considerably over predict the buckling loads of inherently imperfect real structures. It is reasonably well understood how the shell geometry affects the imperfection sensitivity of axially compressed cylindrical shells; however, the effects of shell anisotropy on the imperfection sensitivity is less well understood. In the present paper, the development of an analytical model for assessing the imperfection sensitivity of axially compressed orthotropic cylinders is discussed. Results from the analytical model for four shell designs are compared with those from a general-purpose finite-element code, and good qualitative agreement is found. Reasons for discrepancies are discussed, and potential design implications of this line of research are discussed.

  19. Chaotic and regular instantons in helical shell models of turbulence

    NASA Astrophysics Data System (ADS)

    De Pietro, Massimo; Mailybaev, Alexei A.; Biferale, Luca

    2017-03-01

    Shell models of turbulence have a finite-time blowup in the inviscid limit, i.e., the enstrophy diverges while the single-shell velocities stay finite. The signature of this blowup is represented by self-similar instantonic structures traveling coherently through the inertial range. These solutions might influence the energy transfer and the anomalous scaling properties empirically observed for the forced and viscous models. In this paper we present a study of the instantonic solutions for a set of four shell models of turbulence based on the exact decomposition of the Navier-Stokes equations in helical eigenstates. We find that depending on the helical structure of each model, instantons are chaotic or regular. Some instantonic solutions tend to recover mirror symmetry for scales small enough. Models that have anomalous scaling develop regular nonchaotic instantons. Conversely, models that have nonanomalous scaling in the stationary regime are those that have chaotic instantons. The direction of the energy carried by each single instanton tends to coincide with the direction of the energy cascade in the stationary regime. Finally, we find that whenever the small-scale stationary statistics is intermittent, the instanton is less steep than the dimensional Kolmogorov scaling, independently of whether or not it is chaotic. Our findings further support the idea that instantons might be crucial to describe some aspects of the multiscale anomalous statistics of shell models.

  20. Thickness Constraints on the Icy Shells of the Galilean Satellites from a Comparison of Crater Shapes

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    2002-01-01

    A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometers of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7-8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25-0.5 times the thickness of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.

  1. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, T.; Sugura, K.; Enokida, Y.

    2015-03-15

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one andmore » established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)« less

  2. Simulations of polymorphic icosahedral shells assembling around many cargo molecules

    NASA Astrophysics Data System (ADS)

    Mohajerani, Farzaneh; Perlmutter, Jason; Hagan, Michael

    Bacterial microcompartments (BMCs) are large icosahedral shells that sequester the enzymes and reactants responsible for particular metabolic pathways in bacteria. Although different BMCs vary in size and encapsulate different cargoes, they are constructed from similar pentameric and hexameric shell proteins. Despite recent groundbreaking experiments which visualized the formation of individual BMCs, the detailed assembly pathways and the factors which control shell size remain unclear. In this talk, we describe theoretical and computational models that describe the dynamical encapsulation of hundreds of cargo molecules by self-assembling icosahedral shells. We present phase diagrams and analysis of dynamical simulation trajectories showing how the thermodynamics, assembly pathways, and emergent structures depend on the interactions among shell proteins and cargo molecules. Our model suggests a mechanism for controlling insertion of the 12 pentamers required for a closed shell topology, and the relationship between assembly pathway and BMC size polydispersity. In addition to elucidating how native BMCs assemble,our results establish principles for reengineering BMCs or viral capsids as customizable nanoreactors that can assemble around a programmable set of enzymes and reactants. Supported by NIH R01GM108021 and Brandeis MRSEC DMR-1420382.

  3. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.

    2016-09-01

    Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.

  4. Readout models for BaFBr0.85I0.15:Eu image plates

    NASA Astrophysics Data System (ADS)

    Stoeckl, M.; Solodov, A. A.

    2018-06-01

    The linearity of the photostimulated luminescence process makes repeated image-plate scanning a viable technique to extract a more dynamic range. In order to obtain a response estimate, two semi-empirical models for the readout fading of an image plate are introduced; they relate the depth distribution of activated photostimulated luminescence centers within an image plate to the recorded signal. Model parameters are estimated from image-plate scan series with BAS-MS image plates and the Typhoon FLA 7000 scanner for the hard x-ray image-plate diagnostic over a collection of experiments providing x-ray energy spectra whose approximate shape is a double exponential.

  5. Shell-model predictions for Lambda Lambda hypernuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gal, A.; Millener, D.

    2011-06-02

    It is shown how the recent shell-model determination of {Lambda}N spin-dependent interaction terms in {Lambda} hypernuclei allows for a reliable deduction of {Lambda}{Lambda} separation energies in {Lambda}{Lambda} hypernuclei across the nuclear p shell. Comparison is made with the available data, highlighting {sub {Lambda}{Lambda}}{sup 11}Be and {sub {Lambda}{Lambda}}{sup 12}Be which have been suggested as possible candidates for the KEK-E373 HIDA event.

  6. Adaptation from restricted geometries: the shell inclination of terrestrial gastropods.

    PubMed

    Okajima, Ryoko; Chiba, Satoshi

    2013-02-01

    The adaptations that occur for support and protection can be studied with regard to the optimal structure that balances these objectives with any imposed constraints. The shell inclination of terrestrial gastropods is an appropriate model to address this problem. In this study, we examined how gastropods improve shell angles to well-balanced ones from geometrically constrained shapes. Our geometric analysis and physical analysis showed that constantly coiled shells are constrained from adopting a well-balanced angle; the shell angle of such basic shells tends to increase as the spire index (shell height/width) increases, although the optimum angle for stability is 90° for flat shells and 0° for tall shells. Furthermore, we estimated the influences of the geometric rule and the functional demands on actual shells by measuring the shell angles of both resting and active snails. We found that terrestrial gastropods have shell angles that are suited for balance. The growth lines of the shells indicated that this adaptation depends on the deflection of the last whorl: the apertures of flat shells are deflected downward, whereas those of tall shells are deflected upward. Our observations of active snails demonstrated that the animals hold their shells at better balanced angles than inactive snails. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  7. Modelling nifedipine photodegradation, photostability and actinometric properties.

    PubMed

    Maafi, Wassila; Maafi, Mounir

    2013-11-01

    The photodegradation of drugs obeying unimolecular mechanisms such as that of nifedipine (NIF) were usually characterised in the literature by zero-, first- and second-order kinetics. This approach has been met with varying success. This paper addresses this issue and proposes a novel approach for unimolecular photodegradation kinetics. The photodegradation of the cardiovascular drug nifedipine is investigated within this framework. Experimental kinetic data of nifedipine photodegradation were obtained by continuous monochromatic irradiation and DAD analysis. Fourth-order Runge-Kutta calculated kinetic data served for the validation of the new semi-empirical integrated rate-law model proposed in this study. A new model equation has been developed and proposed which faithfully describes the kinetic behaviour of NIF in solution for non-isosbestic irradiations at wavelengths where both NIF and its photoproduct absorb. NIF absolute quantum yield values were determined and found to increase with irradiation wavelength according to a defined sigmoid relationship. The effects of increasing NIF or excipients' concentrations on NIF kinetics were successfully modelled and found to improve NIF photostability. The potential of NIF for actinometry has been explored and evaluated. A new reaction order (the so-called Φ-order) has been identified and specifically proposed for unimolecular photodegradation reactions. The semi-empirical and integrated rate-law models facilitated reliable kinetic studies of NIF photodegradation as an example of AB(1Φ) unimolecular reactions. It allowed filling a gap in kinetic studies of drugs since, thus far, thermal first-order or a combination of first- and zero- order kinetic equations were generally applied for drug photoreactions in the literature. Also, a new reaction order, the "Φ-order", has been evidenced and proposed as a specific alternative for photodegradation kinetics. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.

    2014-03-24

    Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.

  9. Porogranular materials composed of elastic Helmholtz resonators for acoustic wave absorption.

    PubMed

    Griffiths, Stéphane; Nennig, Benoit; Job, Stéphane

    2017-01-01

    A theoretical and experimental study of the acoustic absorption of granular porous media made of non-cohesive piles of spherical shells is presented. These shells are either rigid or elastic, possibly drilled with a neck (Helmholtz resonators), and either porous or impervious. A description is given of acoustic propagation through these media using the effective medium models proposed by Johnson (rigid particles) and Boutin (rigid Helmholtz resonators), which are extended to the configurations studied in this work. A solution is given for the local equation of elasticity of a shell coupled to the viscous flow of air through the neck and the micropores. The models and the simulations are compared to absorption spectra measured in reflection in an impedance tube. The effective medium models and the measurements show excellent agreement for configurations made of rigid particles and rigid Helmholtz resonators that induce an additional peak of absorption at low frequency. A shift of the Helmholtz resonance toward low frequencies, due to the softness of the shells is revealed by the experiments for elastic shells made of soft elastomer and is well reproduced by the simulations. It is shown that microporous shells enhance and broaden acoustic absorption compared to stiff or elastic resonators.

  10. Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters

    NASA Technical Reports Server (NTRS)

    Leadbetter, S. A.; Stephens, W.; Sewall, J. L.; Majka, J. W.; Barret, J. R.

    1976-01-01

    Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results.

  11. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    NASA Astrophysics Data System (ADS)

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  12. Ab initio results for intermediate-mass, open-shell nuclei

    NASA Astrophysics Data System (ADS)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.

  13. Semiempirical models of shear modulus at shock temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Elkin, Vaytcheslav; Mikhaylov, Vadim; Mikhaylova, Tatiana

    2011-06-01

    The work is devoted to a comparison of capabilities the Steinberg-Cochran-Guinan and Burakovsky-Preston models of shear modulus offer for the description of experimental and calculated (ab initio) data at temperatures and pressures representative of solid state behind the shock front. Also, the SCG model is modernized by changing from the (P,V) variables to the (V,T) ones and adding a free parameter. The resulted model is then referred to as the (V,T)-model. The three models are tested for 9 metals (Al, Be, Cu, K, Na, Mg, Mo, W, Ta) with using ab initio and experimental values of shear modulus in a wide range of pressures as well as longitudinal sound velocities behind the shock front.

  14. Enthalpy of Mixing in Al–Tb Liquid

    DOE PAGES

    Zhou, Shihuai; Tackes, Carl; Napolitano, Ralph

    2017-06-21

    The liquid-phase enthalpy of mixing for Al$-$Tb alloys is measured for 3, 5, 8, 10, and 20 at% Tb at selected temperatures in the range from 1364 to 1439 K. Methods include isothermal solution calorimetry and isoperibolic electromagnetic levitation drop calorimetry. Mixing enthalpy is determined relative to the unmixed pure (Al and Tb) components. The required formation enthalpy for the Al3Tb phase is computed from first-principles calculations. Finally, based on our measurements, three different semi-empirical solution models are offered for the excess free energy of the liquid, including regular, subregular, and associate model formulations. These models are also compared withmore » the Miedema model prediction of mixing enthalpy.« less

  15. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure

    NASA Astrophysics Data System (ADS)

    Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2013-09-01

    We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release.We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b

  16. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  17. Hierarchic plate and shell models based on p-extension

    NASA Technical Reports Server (NTRS)

    Szabo, Barna A.; Sahrmann, Glenn J.

    1988-01-01

    Formulations of finite element models for beams, arches, plates and shells based on the principle of virtual work was studied. The focus is on computer implementation of hierarchic sequences of finite element models suitable for numerical solution of a large variety of practical problems which may concurrently contain thin and thick plates and shells, stiffeners, and regions where three dimensional representation is required. The approximate solutions corresponding to the hierarchic sequence of models converge to the exact solution of the fully three dimensional model. The stopping criterion is based on: (1) estimation of the relative error in energy norm; (2) equilibrium tests, and (3) observation of the convergence of quantities of interest.

  18. Design, Construction and Testing of an In-Pile Loop for PWR (Pressurized Water Reactor) Simulation.

    DTIC Science & Technology

    1987-06-01

    computer modeling remains at best semiempirical (C-i), this large variation in scaling factor makes extrapolation of data impossible. The DIDO Water...in a full scale PWR are not practical. The reactor plant is not controlled to tolerances necessary for research, and utilities are reluctant to vary...MIT Reactor Safeguards Committee, in revision 1 to the PCCL Safety Evaluation Report (SER), for final approval to begin in-pile testing and

  19. Low energy dipole strength from large scale shell model calculations

    NASA Astrophysics Data System (ADS)

    Sieja, Kamila

    2017-09-01

    Low energy enhancement of radiative strength functions has been deduced from experiments in several mass regions of nuclei. Such an enhancement is believed to impact the calculated neutron capture rates which are crucial input for reaction rates of astrophysical interest. Recently, shell model calculations have been performed to explain the upbend of the γ-strength as due to the M1 transitions between close-lying states in the quasi-continuum in Fe and Mo nuclei. Beyond mean-↓eld calculations in Mo suggested, however, a non-negligible role of electric dipole in the low energy enhancement. So far, no calculations of both dipole components within the same theoretical framework have been presented in this context. In this work we present newly developed large scale shell model appraoch that allows to treat on the same footing natural and non-natural parity states. The calculations are performed in a large sd - pf - gds model space, allowing for 1p{1h excitations on the top of the full pf-shell con↓guration mixing. We restrict the discussion to the magnetic part of the dipole strength, however, we calculate for the ↓rst time the magnetic dipole strength between states built of excitations going beyond the classical shell model spaces. Our results corroborate previous ↓ndings for the M1 enhancement for the natural parity states while we observe no enhancement for the 1p{1h contributions. We also discuss in more detail the e↑ects of con↓guration mixing limitations on the enhancement coming out from shell model calculations.

  20. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet

    2018-05-01

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  1. Effectively-truncated large-scale shell-model calculations and nuclei around 100Sn

    NASA Astrophysics Data System (ADS)

    Gargano, A.; Coraggio, L.; Itaco, N.

    2017-09-01

    This paper presents a short overview of a procedure we have recently introduced, dubbed the double-step truncation method, which is aimed to reduce the computational complexity of large-scale shell-model calculations. Within this procedure, one starts with a realistic shell-model Hamiltonian defined in a large model space, and then, by analyzing the effective single particle energies of this Hamiltonian as a function of the number of valence protons and/or neutrons, reduced model spaces are identified containing only the single-particle orbitals relevant to the description of the spectroscopic properties of a certain class of nuclei. As a final step, new effective shell-model Hamiltonians defined within the reduced model spaces are derived by way of a unitary transformation of the original large-scale Hamiltonian. A detailed account of this transformation is given and the merit of the double-step truncation method is illustrated by discussing few selected results for 96Mo, described as four protons and four neutrons outside 88Sr. Some new preliminary results for light odd-tin isotopes from A = 101 to 107 are also reported.

  2. Collecting the Missing Piece of the Puzzle: The Wind Temperatures of Arcturus (K2 III) and Aldeberan (K5 III)

    NASA Astrophysics Data System (ADS)

    Harper, Graham

    2017-08-01

    Unravelling the poorly understood processes that drive mass loss from red giant stars requires that we empirically constrain the intimately coupled momentum and energy balance. Hubble high spectral resolution observations of wind scattered line profiles, from neutral and singly ionized species, have provided measures of wind acceleration, turbulence, terminal speeds, and mass-loss rates. These wind properties inform us about the force-momentum balance, however, the spectra have not yielded measures of the much needed wind temperatures, which constrain the energy balance.We proposed to remedy this omission with STIS E140H observations of the Si III 1206 Ang. resonance emission line for two of the best studied red giants: Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III), both of which have detailed semi-empirical wind velocity models. The relative optical depths of wind scattered absorption in Si III 1206 Ang., O I 1303 Ang. triplet., C II 1335 Ang., and existing Mg II h & k and Fe II profiles give the wind temperatures through the thermally controlled ionization balance. The new temperature constraints will be used to test existing semi-empirical models by comparision with multi-frequency JVLA radio fluxes, and also to constrain the flux-tube geometry and wave energy spectrum of magnetic wave-driven winds.

  3. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.

    PubMed

    Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M

    2014-05-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  4. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  5. Morphomechanics and Developmental Constraints in the Evolution of Ammonites Shell Form.

    PubMed

    Erlich, Alexander; Moulton, Derek E; Goriely, Alain; Chirat, Regis

    2016-11-01

    The idea that physical processes involved in biological development underlie morphogenetic rules and channel morphological evolution has been central to the rise of evolutionary developmental biology. Here, we explore this idea in the context of seashell morphogenesis. We show that a morphomechanical model predicts the effects of variations in shell shape on the ornamental pattern in ammonites, a now extinct group of cephalopods with external chambered shell. Our model shows that several seemingly unrelated characteristics of synchronous, ontogenetic, intraspecific, and evolutionary variations in ornamental patterns among various ammonite species may all be understood from the fact that the mechanical forces underlying the oscillatory behavior of the shell secreting system scale with the cross-sectional curvature of the shell aperture. This simple morphogenetic rule, emerging from biophysical interactions during shell formation, introduced a non-random component in the production of phenotypic variation and channeled the morphological evolution of ammonites over millions of years. As such, it provides a paradigm for the concept of "developmental constraints." © 2016 Wiley Periodicals, Inc.

  6. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2015-11-01

    This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.

  7. Shell Model Far From Stability: Island of Inversion Mergers

    NASA Astrophysics Data System (ADS)

    Nowacki, F.; Poves, A.

    2018-02-01

    In this study we propose a common mechanism for the disappearance of shell closures far from stabilty. With the use of Large Scale Shell Model calculations (SM-CI), we predict that the region of deformation which comprises the heaviest Chromium and Iron isotopes at and beyond N=40 will merge with a new one at N=50 in an astonishing parallel to the N=20 and N=28 case in the Neon and Magnesium isotopes. We propose a valence space including the full pf-shell for the protons and the full sdg shell for the neutrons, which represents a come-back of the the harmonic oscillator shells in the very neutron rich regime. Our calculations preserve the doubly magic nature of the ground state of 78Ni, which, however, exhibits a well deformed prolate band at low excitation energy, providing a striking example of shape coexistence far from stability. This new Island of Inversion (IoI) adds to the four well documented ones at N=8, 20, 28 and 40.

  8. Dynamic model of open shell structures buried in poroelastic soils

    NASA Astrophysics Data System (ADS)

    Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.

    2017-08-01

    This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.

  9. Large-scale shell-model study of the Sn isotopes

    NASA Astrophysics Data System (ADS)

    Osnes, Eivind; Engeland, Torgeir; Hjorth-Jensen, Morten

    2015-05-01

    We summarize the results of an extensive study of the structure of the Sn isotopes using a large shell-model space and effective interactions evaluated from realistic two-nucleon potentials. For a fuller account, see ref. [1].

  10. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    PubMed

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  11. Semiempirical method for prediction of aerodynamic forces and moments on a steadily spinning light airplane

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Taylor, Lawrence W., Jr.

    1987-01-01

    A semi-empirical method is presented for the estimation of aerodynamic forces and moments acting on a steadily spinning (rotating) light airplane. The airplane is divided into wing, body, and tail surfaces. The effect of power is ignored. The strip theory is employed for each component of the spinning airplane to determine its contribution to the total aerodynamic coefficients. Then, increments to some of the coefficients which account for centrifugal effect are estimated. The results are compared to spin tunnel rotary balance test data.

  12. Path-integral molecular dynamics simulations of hydrated hydrogen chloride cluster HCl(H 2O) 4 on a semiempirical potential energy surface

    NASA Astrophysics Data System (ADS)

    Takayanagi, Toshiyuki; Takahashi, Kenta; Kakizaki, Akira; Shiga, Motoyuki; Tachikawa, Masanori

    2009-04-01

    Path-integral molecular dynamics simulations for the HCl(H 2O) 4 cluster have been performed on the ground-state potential energy surface directly obtained on-the-fly from semiempirical PM3-MAIS molecular orbital calculations. It is found that the HCl(H 2O) 4 cluster has structural rearrangement above the temperature of 300 K showing a liquid-like behavior. Quantum mechanical fluctuation of hydrogen nuclei plays a significant role in structural arrangement processes in this cluster.

  13. Optical properties and progressive sterical hindering in pyridinium phenoxides

    NASA Astrophysics Data System (ADS)

    Boeglin, A.; Barsella, A.; Fort, A.; Mançois, F.; Rodriguez, V.; Diemer, V.; Chaumeil, H.; Defoin, A.; Jacques, P.; Carré, C.

    2007-07-01

    Pyridinium phenoxides are model compounds associating large dipole moments with high optical nonlinearities. A progression of sterically hindered forms of such zwitterions has been synthesized in order to investigate their structure/property relationships. Their UV-vis absorption in acetonitrile has been analyzed as a function of concentration in order to assess the presence of aggregates and the level of protonation. The quadratic optical properties have been measured by the EFISH and hyper-Rayleigh techniques and are interpreted via semi-empirical calculations. The solvation model used leads to results that agree with our experimental findings indicating an increased response for intermediate twist angles.

  14. Anti-gravity with present technology - Implementation and theoretical foundation

    NASA Astrophysics Data System (ADS)

    Alzofon, F. E.

    1981-07-01

    This paper proposes a semi-empirical model of the processes leading to the gravitational field based on accepted features of subatomic processes. Through an analogy with methods of cryogenics, a method of decreasing (or increasing) the gravitational force on a vehicle, using presently-known technology, is suggested. Various ways of ultilizing this effect in vehicle propulsion are described. A unified field theory is then detailed which provides a more formal foundation for the gravitational field model first introduced. In distinction to the general theory of relativity, it features physical processes which generate the gravitational field.

  15. Chromospheres and mass loss in metal-deficient giant stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Hartmann, L.; Avrett, E. H.

    1984-01-01

    Semiempirical atmospheric models indicate that the characteristic emission in the wings of the H-alpha line observed in Population II giant stars can arise naturally within static chromospheres. Radial expansion gives an asymmetric, blueshifted H-alpha core accompanied by greater emission in the red line wing than in the blue wing. Wind models with extended atmospheres suggest mass loss rates much smaller than 2 x 10 to the -9th solar mass per yr. Thus H-alpha provides no evidence that steady mass loss can significantly affect the evolution of stars on the red giant branch of globular clusters.

  16. Remote sensing and modelling of vegetation dynamics for early estimation and spatial analysis of grain yields in semiarid context in central Tunisia

    NASA Astrophysics Data System (ADS)

    Chahbi, Aicha; Zribi, Mehrez; Lili-Chabaane, Zohra

    2016-04-01

    In arid and semi-arid areas, population growth, urbanization, food security and climate change have an impact on agriculture in general and particular on the cereal production. Therefore to improve food security in arid countries, crop canopy monitoring and yield forecasting cereals are needed. Many models, based on the use of remote sensing or agro-meteorological models, have been developed to estimate the biomass and grain yield of cereals. Through the use of a rich database, acquired over a period of two years for more than 80 test fields, and from optical satellite SPOT/HRV images, the aim of the present study is to evaluate the feasibility of two yield prediction approaches. The first approach is based on the application of the semi-empirical growth model SAFY, developed to simulate the dynamics of the LAI and the grain yield, at the field scale. The model is able to reproduce the time evolution of the leaf area index of all fields with acceptable error. However, an inter-comparison between ground yield measurements and SAFY model simulations reveals that the yields are under-estimated by this model. We can explain the limits of the semi-empirical model SAFY by its simplicity and also by various factors that were not considered (fertilization, irrigation,...). To improve the yield estimation, a new approach is proposed: the grain yield is estimated in function of the LAI in the growth period between 25 March and 5 April. The LAI of this period is estimated by SAFY model. A linear relationship is developed between the measured grain yield and the LAI area of the maximum growth period.This approach is robust, the measured and estimated grain yields are well correlated. Following the validation of this approach, yield estimations are proposed for the entire studied site using the SPOT/HRV images.

  17. Space-Time Fluid-Structure Interaction Computation of Flapping-Wing Aerodynamics

    DTIC Science & Technology

    2013-12-01

    SST-VMST." The structural mechanics computations are based on the Kirchhoff -Love shell model. We use a sequential coupling technique, which is...mechanics computations are based on the Kirchhoff -Love shell model. We use a sequential coupling technique, which is ap- plicable to some classes of FSI...we use the ST-VMS method in combination with the ST-SUPS method. The structural mechanics computations are mostly based on the Kirchhoff –Love shell

  18. A mixed helium-oxygen shell in some core-collapse supernova progenitors

    NASA Astrophysics Data System (ADS)

    Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam

    2018-04-01

    We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40M⊙ and initial rotation velocities of 0-450 kms-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.

  19. A mixed helium-oxygen shell in some core-collapse supernova progenitors

    NASA Astrophysics Data System (ADS)

    Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam

    2018-07-01

    We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40 M⊙ and initial rotation velocities of 0-450 km s-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.

  20. Holocene sea level, a semi-empirical contemplation

    NASA Astrophysics Data System (ADS)

    Bittermann, Klaus; Kemp, Andrew; Vermeer, Martin; Rahmstorf, Stefan

    2017-04-01

    Holocene eustatic sea level from approximately -10,000-1800 CE was characterized by an increase of about 60 m, with the rate progressively slowing down until sea level almost stabilizes between 500-1800 CE. Global and northern-hemisphere temperatures rose from the last glacial termination until the 'Holocene Optimum'. From there, up to the start of the recent anthropogenic rise, they almost steadily decline. How are the sea-level and temperature evolutions linked? We investigate this with a semi-empirical sea-level model. We found that, due to the nature of Milankovitch forcing, northern-hemisphere temperature (we used the Greenland temperature by Vinther et al., 2009) is a better model driver than global mean temperature because the evolving mass of northern-hemisphere land ice was the dominant cause of Holocene global sea-level trends. The adjustment timescale for this contribution is 1200 years (900-1500 years; 90% confidence interval). To fit the observed sea-level history, the model requires a small additional constant rate (Bittermann 2016). This rate turns out to be of the same order of magnitude as reconstructions of Antarctic sea-level contributions (Briggs et al. 2014, Golledge et al. 2014). In reality this contribution is unlikely to be constant but rather has a dominant timescale that is large compared to the time considered. We thus propose that Holocene sea level can be described by a linear combination of a temperature driven rate, which becomes negative in the late Holocene (as Northern Hemisphere ice masses are diminished), and a positive, approximately constant term (possibly from Antarctica), which starts to dominate from the middle of the Holocene until the start of industrialization. Bibliography: Bittermann, K. 2016. Semi-empirical sea-level modelling. PhD Thesis University of Potsdam. Briggs, R.D., Pollard, D., & Tarasov, L. 2014. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quaternary science reviews, 103, 91-115. Golledge, N.R., Menviel, L., Carter, L., Fogwill, C.J., England, M.H., Cortese, G., & Levy, R.H. 2014. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nature communications, 5, 5107. Vinther, B.M., Buchardt, S.L., Clausen, H.B., Dahl-Jensen, D., Johnsen, S.J., Fisher, D.A., Koerner, R.M., Raynaud, D., Lipenkov, V., Andersen, K.K., Blunier, T., Rasmussen, S.O., Steffensen, J.P., & Svensson, A.M. 2009. Holocene thinning of the Greenland ice sheet. Nature, 461(7262), 385-388.

  1. Multi-shell model of ion-induced nucleic acid condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(III) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derivedmore » from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent “ion binding shells.”.« less

  2. Multi-shell model of ion-induced nucleic acid condensation

    PubMed Central

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Onufriev, Alexey V.

    2016-01-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent “ion binding shells.” PMID:27389241

  3. STATIC ANALYSIS OF SHELLS OF REVOLUTION USING DOUBLY-CURVED QUADRILATERAL ELEMENTS DERIVED FROM ALTERNATE VARIATIONAL MODELS.

    DTIC Science & Technology

    geometrical shape of the finite element in both of the models is a doubly-curved quadrilateral element whose edge curves are the lines-of-curvature coordinates employed to define the shell midsurface . (Author)

  4. A comprehensive alpha-heating model for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopherson, A. R.; Betti, R.; Bose, A.

    In this paper, a comprehensive model is developed to study alpha-heating in inertially confined plasmas. It describes the time evolution of a central low-density hot spot confined by a compressible shell, heated by fusion alphas, and cooled by radiation and thermal losses. The model includes the deceleration, stagnation, and burn phases of inertial confinement fusion implosions, and is valid for sub-ignited targets with ≤10× amplification of the fusion yield from alpha-heating. The results of radiation-hydrodynamic simulations are used to derive realistic initial conditions and dimensionless parameters for the model. It is found that most of the alpha energy (~90%) producedmore » before bang time is deposited within the hot spot mass, while a small fraction (~10%) drives mass ablation off the inner shell surface and its energy is recycled back into the hot spot. Of the bremsstrahlung radiation emission, ~40% is deposited in the hot spot, ~40% is recycled back in the hot spot by ablation off the shell, and ~20% leaves the hot spot. We show here that the hot spot, shocked shell, and outer shell trajectories from this analytical model are in good agreement with simulations. Finally, a detailed discussion of the effect of alpha-heating on the hydrodynamics is also presented.« less

  5. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    DOE PAGES

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...

    2018-03-07

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  6. A comprehensive alpha-heating model for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.; Betti, R.; Bose, A.; Howard, J.; Woo, K. M.; Campbell, E. M.; Sanz, J.; Spears, B. K.

    2018-01-01

    A comprehensive model is developed to study alpha-heating in inertially confined plasmas. It describes the time evolution of a central low-density hot spot confined by a compressible shell, heated by fusion alphas, and cooled by radiation and thermal losses. The model includes the deceleration, stagnation, and burn phases of inertial confinement fusion implosions, and is valid for sub-ignited targets with ≤10 × amplification of the fusion yield from alpha-heating. The results of radiation-hydrodynamic simulations are used to derive realistic initial conditions and dimensionless parameters for the model. It is found that most of the alpha energy (˜90%) produced before bang time is deposited within the hot spot mass, while a small fraction (˜10%) drives mass ablation off the inner shell surface and its energy is recycled back into the hot spot. Of the bremsstrahlung radiation emission, ˜40% is deposited in the hot spot, ˜40% is recycled back in the hot spot by ablation off the shell, and ˜20% leaves the hot spot. We show here that the hot spot, shocked shell, and outer shell trajectories from this analytical model are in good agreement with simulations. A detailed discussion of the effect of alpha-heating on the hydrodynamics is also presented.

  7. A comprehensive alpha-heating model for inertial confinement fusion

    DOE PAGES

    Christopherson, A. R.; Betti, R.; Bose, A.; ...

    2018-01-08

    In this paper, a comprehensive model is developed to study alpha-heating in inertially confined plasmas. It describes the time evolution of a central low-density hot spot confined by a compressible shell, heated by fusion alphas, and cooled by radiation and thermal losses. The model includes the deceleration, stagnation, and burn phases of inertial confinement fusion implosions, and is valid for sub-ignited targets with ≤10× amplification of the fusion yield from alpha-heating. The results of radiation-hydrodynamic simulations are used to derive realistic initial conditions and dimensionless parameters for the model. It is found that most of the alpha energy (~90%) producedmore » before bang time is deposited within the hot spot mass, while a small fraction (~10%) drives mass ablation off the inner shell surface and its energy is recycled back into the hot spot. Of the bremsstrahlung radiation emission, ~40% is deposited in the hot spot, ~40% is recycled back in the hot spot by ablation off the shell, and ~20% leaves the hot spot. We show here that the hot spot, shocked shell, and outer shell trajectories from this analytical model are in good agreement with simulations. Finally, a detailed discussion of the effect of alpha-heating on the hydrodynamics is also presented.« less

  8. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

    NASA Astrophysics Data System (ADS)

    Reinoso, J.; Paggi, M.; Linder, C.

    2017-06-01

    Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

  9. Optimization of Biosorptive Removal of Dye from Aqueous System by Cone Shell of Calabrian Pine

    PubMed Central

    Deniz, Fatih

    2014-01-01

    The biosorption performance of raw cone shell of Calabrian pine for C.I. Basic Red 46 as a model azo dye from aqueous system was optimized using Taguchi experimental design methodology. L9 (33) orthogonal array was used to optimize the dye biosorption by the pine cone shell. The selected factors and their levels were biosorbent particle size, dye concentration, and contact time. The predicted dye biosorption capacity for the pine cone shell from Taguchi design was obtained as 71.770 mg g−1 under optimized biosorption conditions. This experimental design provided reasonable predictive performance of dye biosorption by the biosorbent (R 2: 0.9961). Langmuir model fitted better to the biosorption equilibrium data than Freundlich model. This displayed the monolayer coverage of dye molecules on the biosorbent surface. Dubinin-Radushkevich model and the standard Gibbs free energy change proposed physical biosorption for predominant mechanism. The logistic function presented the best fit to the data of biosorption kinetics. The kinetic parameters reflecting biosorption performance were also evaluated. The optimization study revealed that the pine cone shell can be an effective and economically feasible biosorbent for the removal of dye. PMID:25405213

  10. Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Brown, T. M.; Hastings, L. J.; Martin, J.

    2000-01-01

    Two analytical models for a foam/Variable Density Multi-Layer Insulation (VD-MLI) system performance are discussed. Both models are one-dimensional and contain three heat transfer mechanisms, namely conduction through the spacer material, radiation between the shields, and conduction through the gas. One model is based on the methodology developed by McIntosh while the other model is based on the Lockheed semi-empirical approach. All models input variables are based on the Multi-purpose Hydrogen Test Bed (MHTB) geometry and available values for material properties and empirical solid conduction coefficient. Heat flux predictions are in good agreement with the MHTB data, The heat flux predictions are presented for the foam/MLI combinations with 30, 45, 60, and 75 MLI layers

  11. A review of failure models for unidirectional ceramic matrix composites under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  12. On the time-variable nature of Titan's obliquity

    NASA Astrophysics Data System (ADS)

    Noyelles, Benoit; Nimmo, Francis

    2014-05-01

    Titan presents an unexpectedly high obliquity (Stiles et al. 2008, Meriggiola & Iess 2012) while its topography and gravity suggest a non-hydrostatic ice shell (Hemingway et al. 2013). We here present a 6-dof model of the rotation of Titan simultaneously simulating the full orientation of the shell and the inner core, and considering a global subsurface ocean with a partially-compensated shell of spatially-variable thickness. Between 10 and 13% of our realistic interior models induce a resonance with the annual forcing, that dramatically raises the obliquity. The relevant model Titans are composed of a 130-140 km thick shell floating on a ~250 km thick ocean. The observed obliquity should not be considered as a mean one but as an instantaneous one, that should vary by ~7 arcmin over the duration of the Cassini mission.

  13. Systematic shell-model study on spectroscopic properties from light to heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yuan, Cenxi

    2018-05-01

    A systematic shell-model study is performed to study the spectroscopic properties from light to heavy nuclei, such as binding energies, energy levels, electromagnetic properties, and β decays. The importance of cross-shell excitation is shown in the spectroscopic properties of neutron-rich boron, carbon, nitrogen, and oxygen isotopes. A special case is presented for low-lying structure of 14C. The weakly bound effect of proton 1s1/2 orbit is necessary for the description of the mirror energy difference in the nuclei around A=20. Some possible isomers are predicted in the nuclei in the southeast region of 132Sn based on a newly suggested Hamiltonian. A preliminary study on the nuclei around 208Pb are given to show the ability of the shell model in the heavy nuclei.

  14. Superclustering in the explosion scenario. II - Prolate spheroidal shells from superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Borden, David; Ostriker, Jeremiah P.; Weinberg, David H.

    1989-01-01

    If galaxies form on shells, then clusters of galaxies should form at the vertices where three shells intersect. Weinberg, Ostriker, and Dekel (WOD, 1989) studied this picture quantitatively and found that an intersecting spherical shell model reproduces many of the properties of the observed distribution of galaxy clusters, but that too much superclustering is produced. In this paper, the WOD analysis is repeated with prolate spheroids that could be created by superconducting cosmic strings. It is found that most of the attractive features of the WOD model are maintained in the more general case and there is slight improvement in some aspects, but that the overall problem of excessive superclustering is not really alleviated.

  15. Buckling of circular cylindrical shells under dynamically applied axial loads

    NASA Technical Reports Server (NTRS)

    Tulk, J. D.

    1972-01-01

    A theoretical and experimental study was made of the buckling characteristics of perfect and imperfect circular cylindrical shells subjected to dynamic axial loading. Experimental data included dynamic buckling loads (124 data points), high speed photographs of buckling mode shapes and observations of the dynamic stability of shells subjected to rapidly applied sub-critical loads. A mathematical model was developed to describe the dynamic behavior of perfect and imperfect shells. This model was based on the Donnell-Von Karman compatibility and equilibrium equations and had a wall deflection function incorporating five separate modes of deflection. Close agreement between theory and experiment was found for both dynamic buckling strength and buckling mode shapes.

  16. Damage Tolerance of Large Shell Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Chamis, C. C.

    1999-01-01

    Progressive damage and fracture of large shell structures is investigated. A computer model is used for the assessment of structural response, progressive fracture resistance, and defect/damage tolerance characteristics. Critical locations of a stiffened conical shell segment are identified. Defective and defect-free computer models are simulated to evaluate structural damage/defect tolerance. Safe pressurization levels are assessed for the retention of structural integrity at the presence of damage/ defects. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Damage propagation and burst pressures for defective and defect-free shells are compared to evaluate damage tolerance. Design implications with regard to defect and damage tolerance of a large steel pressure vessel are examined.

  17. Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2000-01-01

    "Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).

  18. Review and history of photon cross section calculations.

    PubMed

    Hubbell, J H

    2006-07-07

    Photon (x-ray, gamma-ray, bremsstrahlung) mass attenuation coefficients, mu/rho, are among the most widely used physical parameters employed in medical diagnostic and therapy computations, as well as in diverse applications in other fields such as nuclear power plant shielding, health physics and industrial irradiation and monitoring, and in x-ray crystallography. This review traces the evolution of this data base from its empirical beginnings totally derived from measurements beginning in 1907 by Barkla and Sadler and continuing up through the 1935 Allen compilation (published virtually unchanged in all editions up through 1971-1972 of the Chemical Rubber Handbook), to the 1949 semi-empirical compilation of Victoreen, as our theoretical understanding of the constituent Compton scattering, photoabsorption and pair production interactions of photons with atoms became more quantitative. The 1950s saw the advent of completely theoretical (guided by available measured data) systematic compilations such as in the works of Davisson and Evans, and by White-Grodstein under the direction of Fano, using mostly theory developed in the 1930s (pre-World War II) by Sauter, Bethe, Heitler and others. Post-World War II new theoretical activity, and the introduction of the electronic automatic computer, led to the more extensive and more accurate compilations in the 1960s and 1970s by Storm and Israel, and by Berger and Hubbell. Today's mu/rho compilations by Cullen et al, by Seltzer, Berger and Hubbell, and by others, collectively spanning the ten decades of photon energy from 10 eV to 100 GeV, for all elements Z= 1 to 100, draw heavily on the 1970s shell-by-shell photoabsorption computations of Scofield, the 1960s coherent and incoherent scattering computations of Cromer et al, and the 1980 computations of electron-positron pair and triplet computations of Hubbell, Gimm and Øverbø, these names being representative of the vast legions of other researchers whose work fed into these computations.

  19. REVIEW: Review and history of photon cross section calculations

    NASA Astrophysics Data System (ADS)

    Hubbell, J. H.

    2006-07-01

    Photon (x-ray, gamma-ray, bremsstrahlung) mass attenuation coefficients, μ/ρ, are among the most widely used physical parameters employed in medical diagnostic and therapy computations, as well as in diverse applications in other fields such as nuclear power plant shielding, health physics and industrial irradiation and monitoring, and in x-ray crystallography. This review traces the evolution of this data base from its empirical beginnings totally derived from measurements beginning in 1907 by Barkla and Sadler and continuing up through the 1935 Allen compilation (published virtually unchanged in all editions up through 1971-1972 of the Chemical Rubber Handbook), to the 1949 semi-empirical compilation of Victoreen, as our theoretical understanding of the constituent Compton scattering, photoabsorption and pair production interactions of photons with atoms became more quantitative. The 1950s saw the advent of completely theoretical (guided by available measured data) systematic compilations such as in the works of Davisson and Evans, and by White-Grodstein under the direction of Fano, using mostly theory developed in the 1930s (pre-World War II) by Sauter, Bethe, Heitler and others. Post-World War II new theoretical activity, and the introduction of the electronic automatic computer, led to the more extensive and more accurate compilations in the 1960s and 1970s by Storm and Israel, and by Berger and Hubbell. Today's μ/ρ compilations by Cullen et al, by Seltzer, Berger and Hubbell, and by others, collectively spanning the ten decades of photon energy from 10 eV to 100 GeV, for all elements Z= 1 to 100, draw heavily on the 1970s shell-by-shell photoabsorption computations of Scofield, the 1960s coherent and incoherent scattering computations of Cromer et al, and the 1980 computations of electron-positron pair and triplet computations of Hubbell, Gimm and Øverbø, these names being representative of the vast legions of other researchers whose work fed into these computations. Work supported by the National Institute of Standards and Technology.

  20. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  1. Morphological and mechanical changes in juvenile red-eared slider turtle (Trachemys scripta elegans) shells during ontogeny.

    PubMed

    Fish, Jennifer F; Stayton, Charles T

    2014-04-01

    Turtles experience numerous modifications in the morphological, physiological, and mechanical characteristics of their shells through ontogeny. Although a general picture is available of the nature of these modifications, few quantitative studies have been conducted on changes in turtle shell shape through ontogeny, and none on changes in strength or rigidity. This study investigates the morphological and mechanical changes that juvenile Trachemys scripta elegans undergo as they increase in size. Morphology and shell rigidity were quantified in a sample of 36 alcohol-preserved juvenile Trachemys scripta elegans. Morphometric information was used to create finite element models of all specimens. These models were used to assess the mechanical behavior of the shells under various loading conditions. Overall, we find that turtles experience complementary changes in size, shape, deformability, and relative strength as they grow. As turtles age their shells become larger, more elongate, relatively flatter, and more rigid. These changes are associated with decreases in relative (size independent) strength, even though the shells of larger turtles are stronger in an absolute sense. Decreased deformability is primarily due to changes in the size of the animals. Residual variation in deformability cannot be explained by changes in shell shape. This variation is more likely due to changes in the degree of connectedness of the skeletal elements in the turtle's shells, along with changes in the thickness and degree of mineralization of shell bone. We suggest that the mechanical implications of shell size, shape, and deformability may have a large impact on survivorship and development in members of this species as they mature. Copyright © 2013 Wiley Periodicals, Inc.

  2. Shell structures of assemblies of equicharged particles subject to radial power-law confining potentials.

    PubMed

    Cioslowski, Jerzy

    2010-12-21

    Constituting the simplest generalization of spherical Coulomb crystals, assemblies of N equicharged particles confined by radial potentials proportional to the λth power of distance are amenable to rigorous analysis within the recently introduced shell model. Thanks to the power scaling of the confining potential and the resulting pruning property of the shell configurations (i.e., the lists of shell occupancies), the shell-model estimates of the energies and the mean radii of such assemblies at equilibrium geometries follow simple recursive formulas. The formulas greatly facilitate derivations of the first two leading terms in the large-N asymptotics of these estimates, which are given by power series in ξ(4/3) N(-2/3), where -(ξ/2) n(3/2) is the leading angular-correlation correction to the minimum energy of n electrons on the surface of a sphere with a unit radius (the solution of the Thomson problem). Although the scaled occupancies of the outermost shells conform to a universal scaling law, the actual filling of the shells tends to follow rather irregular patterns that vary strongly with λ. However, the number of shells K(N) for a given N decreases in general upon an increase in the power-law exponent, which is due to the (λ + 1)(2) ξ(2) dependence of shell capacities that roughly measure the maximum numbers of particles sustainable within individual shells. Several types of configuration transitions (i.e., the changes in the number of shells upon addition of one particle) are observed in the crystals with up to 10,000 particles and integer values of λ between 1 and 10, but the rule |K(N + 1)-K(N)| ≤ 1 is found to be strictly obeyed.

  3. Building Atoms Shell by Shell.

    ERIC Educational Resources Information Center

    Sussman, Beverly

    1993-01-01

    Describes an atom-building activity where students construct three-dimensional models of atoms using a styrofoam ball as the nucleus and pom-poms, gum drops, minimarshmallows, or other small items of two different colors to represent protons and neutrons attached. Rings of various sizes with pom-poms attached represent electron shells and…

  4. Enceladus's ice shell thickness and ocean depth from gravity, topography, and libration measurements

    NASA Astrophysics Data System (ADS)

    Trinh, A.; Rivoldini, A.; Beuthe, M.; Rekier, J.; Baland, R. M.; Van Hoolst, T.

    2017-12-01

    One of Cassini's major achievements is the discovery of a global ocean a few kilometres beneath Enceladus's south polar terrain. Here we infer the thickness of Enceladus's ice shell and ocean from Cassini's observations using our latest models of isostatic compensation, shell libration, and ocean dynamics.

  5. Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes.

    PubMed

    Schenk, Paul M

    2002-05-23

    A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres to ten or more kilometres. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7 8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25 0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.

  6. Vanadium fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser–solid experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège

    2015-09-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser–solid experiments through the K-shell emission cross section. In addition, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al. (2012)), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the vanadium isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent vanadium ions to the daughter ions K-vacancy levels considered in Palmerimore » et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 20 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic behavior of the modified relativistic binary encounter Bethe model (MRBEB) of Guerra et al. (2012) with the density-effect correction proposed by Davies et al. (2013)« less

  7. Kinetic Energy Transfer Process in a Double Shell Leading to Robust Burn

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Daughton, W. S.; Albright, B. J.; Wilson, D. C.; Loomis, E. N.; Merritt, E. C.; Dodd, E. S.; Kirkpatrick, R. C.; Watt, R. G.; Rosen, M. D.

    2017-10-01

    A goal of double shell capsule implosions is to impart sufficient internal energy to the D-T fuel at stagnation in order to obtain robust α-heating and burn with low hot spot convergence, C.R. < 10. A simple description of the kinetic energy transfer from the outer shell to the inner shell is found using shock physics and adiabatic compression, and compares well with 1D modeling. An isobaric model for the stagnation phase of the inner shell is used to determine the ideal partition of internal energy in the D-T fuel. Robust burn of the fuel requires, at minimum, that α-heating exceeds the rate of cooling by expansion of the hot spot so that the yield occurs before the hot spot disassembles, which is then used to define a minimum requirement for robust burn. One potential advantage of a double shell capsule compared to single shell capsules is the use of a heavy metal pusher, which may lead to a longer hot spot disassembly time. We present these analytic results and compare them to 1D and 2D radiation-hydrodynamic simulations. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  8. A statistical model for monitoring shell disease in inshore lobster fisheries: A case study in Long Island Sound

    PubMed Central

    Chen, Yong

    2017-01-01

    The expansion of shell disease is an emerging threat to the inshore lobster fisheries in the northeastern United States. The development of models to improve the efficiency and precision of existing monitoring programs is advocated as an important step in mitigating its harmful effects. The objective of this study is to construct a statistical model that could enhance the existing monitoring effort through (1) identification of potential disease-associated abiotic and biotic factors, and (2) estimation of spatial variation in disease prevalence in the lobster fishery. A delta-generalized additive modeling (GAM) approach was applied using bottom trawl survey data collected from 2001–2013 in Long Island Sound, a tidal estuary between New York and Connecticut states. Spatial distribution of shell disease prevalence was found to be strongly influenced by the interactive effects of latitude and longitude, possibly indicative of a geographic origin of shell disease. Bottom temperature, bottom salinity, and depth were also important factors affecting the spatial variability in shell disease prevalence. The delta-GAM projected high disease prevalence in non-surveyed locations. Additionally, a potential spatial discrepancy was found between modeled disease hotspots and survey-based gravity centers of disease prevalence. This study provides a modeling framework to enhance research, monitoring and management of emerging and continuing marine disease threats. PMID:28196150

  9. Upgrades to the Mars Initial Reference Ionosphere (MIRI) Model Due to Observations from MAVEN, MEX and MRO.

    NASA Astrophysics Data System (ADS)

    Narvaez, C.; Mendillo, M.; Trovato, J.

    2017-12-01

    A semi-empirical model of the maximum electron density (Nmax) of the martian ionosphere [MIRI-mark-1](1) was derived from an initial set radar observations by the MEX/MARSIS instrument. To extend the model to full electron density profiles, normalized shapes of Ne(h) from a theoretical model(2) were calibrated by MIRI's Nmax. Subsequent topside ionosphere observations from MAVEN indicated that topside shapes from MEX/MARSIS(3) offered improved morphology. The MEX topside shapes were then merged to the bottomside shapes from the theoretical model. Using a larger set of MEX/MARSIS observations (07/31/2005 - 05/24/2015), a new specification of Nmax as a function of solar zenith angle and solar flux is now used to calibrate the normalized Ne(h) profiles. The MIRI-mark-2 model includes the integral with height of Ne(h) to form total electron content (TEC) values. Validation of the MIRI TEC was accomplished using an independent set of TEC derived from the SHARAD(4) experiment on MRO. (1) M. Mendillo, A. Marusiak, P. Withers, D. Morgan and D. Gurnett, A New Semi-empirical Model of the Peak Electron Density of the Martian Ionosphere, Geophysical Research Letters, 40, 1-5, doi:10.1002/2013GL057631, 2013. (2) Mayyasi, M. and M. Mendillo (2015), Why the Viking descent probes found only one ionospheric layer at Mars, Geophys. Res. Lett., 42, 7359-7365, doi:10.1002/2015GL065575 (3) Němec, F., D. Morgan, D. Gurnett, and D. Andrews (2016), Empirical model of the Martian dayside ionosphere: Effects of crustal magnetic fields and solar ionizing flux at higher altitudes, J. Geophys. Res. Space Physics, 121, 1760-1771, doi:10.1002/2015/A022060.(4) Campbell, B., and T. Watters (2016), Phase compensation of MARSIS subsurface sounding and estimation of ionospheric properties: New insights from SHARAD results, J.Geophys. Res. Planets, 121, 180-193, doi:10.1002/2015JE004917.

  10. Simulating Self-Assembly with Simple Models

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    Results from recent molecular dynamics simulations of virus capsid self-assembly are described. The model is based on rigid trapezoidal particles designed to form polyhedral shells of size 60, together with an atomistic solvent. The underlying bonding process is fully reversible. More extensive computations are required than in previous work on icosahedral shells built from triangular particles, but the outcome is a high yield of closed shells. Intermediate clusters have a variety of forms, and bond counts provide a useful classification scheme

  11. The conformal hyperplet

    NASA Astrophysics Data System (ADS)

    Faux, Michael

    2017-05-01

    We introduce a finite off-shell hypermultiplet with no off-shell central charge. This requires 192+192 degrees of freedom, all but 8+8 of which are auxiliary or gauge. In the absence of supergravity, the model has a saddle-point vacuum instability implying ghost-like propagators. These are cured by realizing the model superconformally, such that the erstwhile ghosts are realized as compensators. Gauge fixing these links the physical hypermultiplets to supergravity. This evokes the prospect of realizing 𝒩 = 4 super-Yang-Mills theory off-shell.

  12. Mathematical modeling of shell configurations made of homogeneous and composite materials experiencing intensive short actions and large displacements

    NASA Astrophysics Data System (ADS)

    Khairnasov, K. Z.

    2018-04-01

    The paper presents a mathematical model for solving the problem of behavior of shell configurations under the action of static and dynamic impacts. The problem is solved in geometrically nonlinear statement with regard to the finite element method. The composite structures with different material layers are considered. The obtained equations are used to study the behavior of shell configurations under the action of dynamic loads. The results agree well with the experimental data.

  13. How the hydrophobic factor drives protein folding

    PubMed Central

    Baldwin, Robert L.; Rose, George D.

    2016-01-01

    How hydrophobicity (HY) drives protein folding is studied. The 1971 Nozaki–Tanford method of measuring HY is modified to use gases as solutes, not crystals, and this makes the method easy to use. Alkanes are found to be much more hydrophobic than rare gases, and the two different kinds of HY are termed intrinsic (rare gases) and extrinsic (alkanes). The HY values of rare gases are proportional to solvent-accessible surface area (ASA), whereas the HY values of alkanes depend on special hydration shells. Earlier work showed that hydration shells produce the hydration energetics of alkanes. Evidence is given here that the transfer energetics of alkanes to cyclohexane [Wolfenden R, Lewis CA, Jr, Yuan Y, Carter CW, Jr (2015) Proc Natl Acad Sci USA 112(24):7484–7488] measure the release of these shells. Alkane shells are stabilized importantly by van der Waals interactions between alkane carbon and water oxygen atoms. Thus, rare gases cannot form this type of shell. The very short (approximately picoseconds) lifetime of the van der Waals interaction probably explains why NMR efforts to detect alkane hydration shells have failed. The close similarity between the sizes of the opposing energetics for forming or releasing alkane shells confirms the presence of these shells on alkanes and supports Kauzmann's 1959 mechanism of protein folding. A space-filling model is given for the hydration shells on linear alkanes. The model reproduces the n values of Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470–3473] for the number of waters in alkane hydration shells. PMID:27791131

  14. Applications of Shell-Model Techniques to N = 50 Nuclei.

    NASA Astrophysics Data System (ADS)

    Ji, Xiangdong

    Traditional shell-model techniques, which involve setting up and diagonalizing model Hamiltonians in a finite Hilbert space, have been used to treat the N = 50 isotones. A model space with active f_{5over 2}, p_{3over 2}, p_{1over 2} and g_{9over 2} proton orbits is used to simulate the low-lying excitations of these isotones. An effective Hamiltonian which consists of one-body and two-body interactions is obtained by varying a total of 69 parameters to fit over 140 experimental energy levels in nuclei ranging from ^{82 }Ge to ^{96}Pd. The structures of the model wavefunctions calculated with the empirical model Hamiltonian are analyzed and compared with experimental measurements. It is found that the overall level systematics of N = 50 nuclei are well described by the model treatment. In particular, for the nuclei heavier than ^{88}Sr, the present results are not essentially different from those obtained in the p_{1over 2}-g_ {9over 2} model space, and for those lighter than ^{88}Sr, the wavefunctions are dominated by f_{5 over 2}-p_{3over 2}-p _{1over2} configurations. The model predictions for very proton-deficient, very unstable nuclei are presented for further experimental verification. Spectroscopic factors for single-proton-transfer reactions and M1 and E2 transition rates and moments are calculated using these model wavefunctions. Effective strengths of electromagnetic operators are adjusted in order to achieve the best agreement between the model predictions and experimental data. The effective proton charge is determined to be 1.9 e. The spin g-factor is found to be quenched by 16 percent for the fp shell orbits and by 29 percent for the g_{9over 2 } orbit. A new shell-model code which is capable of performing shell-model calculations in a general LS -coupling basis has been constructed. The code can be implemented with shell-model truncation schemes for both the LS -coupling limit and the seniority limit. Examples from the Ni isotopes are used to illustrate applications of the code.

  15. Long-memory and the sea level-temperature relationship: a fractional cointegration approach.

    PubMed

    Ventosa-Santaulària, Daniel; Heres, David R; Martínez-Hernández, L Catalina

    2014-01-01

    Through thermal expansion of oceans and melting of land-based ice, global warming is very likely contributing to the sea level rise observed during the 20th century. The amount by which further increases in global average temperature could affect sea level is only known with large uncertainties due to the limited capacity of physics-based models to predict sea levels from global surface temperatures. Semi-empirical approaches have been implemented to estimate the statistical relationship between these two variables providing an alternative measure on which to base potentially disrupting impacts on coastal communities and ecosystems. However, only a few of these semi-empirical applications had addressed the spurious inference that is likely to be drawn when one nonstationary process is regressed on another. Furthermore, it has been shown that spurious effects are not eliminated by stationary processes when these possess strong long memory. Our results indicate that both global temperature and sea level indeed present the characteristics of long memory processes. Nevertheless, we find that these variables are fractionally cointegrated when sea-ice extent is incorporated as an instrumental variable for temperature which in our estimations has a statistically significant positive impact on global sea level.

  16. Ab initio description of p-shell hypernuclei.

    PubMed

    Wirth, Roland; Gazda, Daniel; Navrátil, Petr; Calci, Angelo; Langhammer, Joachim; Roth, Robert

    2014-11-07

    We present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction. We validate the approach for s-shell hypernuclei and apply it to p-shell hypernuclei, in particular to (Λ)(7)Li, (Λ)(9)Be, and (Λ)(13)C. We show that the chiral hyperon-nucleon interactions provide ground-state and excitation energies that generally agree with experiment within the cutoff dependence. At the same time we demonstrate that hypernuclear spectroscopy provides tight constraints on the hyperon-nucleon interactions.

  17. Effect of Ice-Shell Thickness Variations on the Tidal Deformation of Enceladus

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Cadek, O.; Behounkova, M.; Tobie, G.; Kozubek, T.

    2015-12-01

    Recent analysis of Enceladus's gravity and topography has suggested that the thickness of the ice shell significantly varies laterally - from 30-40 km in the south polar region to 60 km elsewhere. These variations may influence the activity of the geysers and increase the tidal heat production in regions where the ice shell is thinned. Using a model including a regional or global subsurface ocean and Maxwell viscoelasticity, we investigate the impact of these variations on the tidal deformation of the moon and its heat production. For that purpose, we use different numerical approaches - finite elements, local application of 1d spectral method, and a generalized spectral method. Results obtained with these three approaches for various models of ice-shell thickness variations are presented and compared. Implications of a reduced ice shell thickness for the south polar terrain activity are discussed.

  18. High spin structure and intruder configurations in 31P

    NASA Astrophysics Data System (ADS)

    Ionescu-Bujor, M.; Iordachescu, A.; Napoli, D. R.; Lenzi, S. M.; Mărginean, N.; Otsuka, T.; Utsuno, Y.; Ribas, R. V.; Axiotis, M.; Bazzacco, D.; Bizzeti-Sona, A. M.; Bizzeti, P. G.; Brandolini, F.; Bucurescu, D.; Cardona, M. A.; De Angelis, G.; De Poli, M.; Della Vedova, F.; Farnea, E.; Gadea, A.; Hojman, D.; Kalfas, C. A.; Kröll, Th.; Lunardi, S.; Martínez, T.; Mason, P.; Pavan, P.; Quintana, B.; Alvarez, C. Rossi; Ur, C. A.; Vlastou, R.; Zilio, S.

    2006-02-01

    The nucleus 31P has been studied in the 24Mg(16O,2αp) reaction with a 70-MeV 16O beam. A complex level scheme extended up to spins 17/2+ and 15/2-, on positive and negative parity, respectively, has been established. Lifetimes for the new states have been investigated by the Doppler shift attenuation method. Two shell-model calculations have been performed to describe the experimental data, one by using the code ANTOINE in a valence space restricted to the sd shell, and the other by applying the Monte Carlo shell model in a valence space including the sd-fp shells. The latter calculation indicates that intruder excitations, involving the promotion of a T=0 proton-neutron pair to the fp shell, play a dominant role in the structure of the positive-parity high-spin states of 31P.

  19. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

    NASA Astrophysics Data System (ADS)

    Friedrich, Linus; Schröder, Kai-Uwe

    2016-12-01

    Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

  20. Numerical treatment of a geometrically nonlinear planar Cosserat shell model

    NASA Astrophysics Data System (ADS)

    Sander, Oliver; Neff, Patrizio; Bîrsan, Mircea

    2016-05-01

    We present a new way to discretize a geometrically nonlinear elastic planar Cosserat shell. The kinematical model is similar to the general six-parameter resultant shell model with drilling rotations. The discretization uses geodesic finite elements (GFEs), which leads to an objective discrete model which naturally allows arbitrarily large rotations. GFEs of any approximation order can be constructed. The resulting algebraic problem is a minimization problem posed on a nonlinear finite-dimensional Riemannian manifold. We solve this problem using a Riemannian trust-region method, which is a generalization of Newton's method that converges globally without intermediate loading steps. We present the continuous model and the discretization, discuss the properties of the discrete model, and show several numerical examples, including wrinkling of thin elastic sheets in shear.

Top