Semisolid Metal Processing Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apelian,Diran
Mathematical modeling and simulations of semisolid filling processes remains a critical issue in understanding and optimizing the process. Semisolid slurries are non-Newtonian materials that exhibit complex rheological behavior. There the way these slurries flow in cavities is very different from the way liquid in classical casting fills cavities. Actually filling in semisolid processing is often counter intuitive
Investigation on thixojoining to produce hybrid components with intermetallic phase
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2018-05-01
Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.
NASA Astrophysics Data System (ADS)
Schomer, Laura; Liewald, Mathias; Riedmüller, Kim Rouven
2018-05-01
Metal-ceramic Interpenetrating Phase Composites (IPC) belong to a special subcategory of composite materials and reveal enhanced properties compared to conventional composite materials. Currently, IPC are produced by infiltration of a ceramic open-pore body with liquid metal applying high pressure and I or high temperature to avoid residual porosity. However, these IPC are not able to gain their complete potential, because of structural damages and interface reactions occurring during the manufacturing process. Compared to this, the manufacturing of IPC using the semi-solid forming technology offers great perspectives due to relative low processing temperatures and reduced mechanical pressure. In this context, this paper is focusing on numerical investigations conducted by using the FLOW-3D software for gaining a deeper understanding of the infiltration of open-pore bodies with semi-solid materials. For flow simulation analysis, a geometric model and different porous media drag models have been used. They have been adjusted and compared to get a precise description of the infiltration process. Based on these fundamental numerical investigations, this paper also shows numerical investigations that were used for basically designing a semi-solid forming tool. Thereby, the development of the flow front and the pressure during the infiltration represent the basis of the evaluation. The use of an open and closed tool cavity combined with various geometries of the upper die shows different results relating to these evaluation arguments. Furthermore, different overflows were designed and its effects on the pressure at the end of the infiltration process were investigated. Thus, this paper provides a general guideline for a tool design for manufacturing of metal-ceramic IPC using semi-solid forming.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-02-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-11-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming maching.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2007-05-15
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
Direct metal writing: Controlling the rheology through microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wen; Thornley, Luke; Coe, Hannah G.
Most metal additive manufacturing approaches are based on powder-bed melting techniques such as laser selective melting or electron beam melting, which often yield uncontrolled microstructures with defects (e.g., pores or microcracks) and residual stresses. Here, we introduce a proof-of-concept prototype of a 3D metal freeform fabrication process by direct writing of metallic alloys in the semi-solid regime. This process is achieved through controlling the particular microstructure and the rheological behavior of semi-solid alloy slurries, which demonstrate a well suited viscosity and a shear thinning property to retain the shape upon printing. Furthermore, the ability to control the microstructure through thismore » method yields a flexible manufacturing route to fabricating 3D metal parts with full density and complex geometries.« less
Direct metal writing: Controlling the rheology through microstructure
Chen, Wen; Thornley, Luke; Coe, Hannah G.; ...
2017-02-27
Most metal additive manufacturing approaches are based on powder-bed melting techniques such as laser selective melting or electron beam melting, which often yield uncontrolled microstructures with defects (e.g., pores or microcracks) and residual stresses. Here, we introduce a proof-of-concept prototype of a 3D metal freeform fabrication process by direct writing of metallic alloys in the semi-solid regime. This process is achieved through controlling the particular microstructure and the rheological behavior of semi-solid alloy slurries, which demonstrate a well suited viscosity and a shear thinning property to retain the shape upon printing. Furthermore, the ability to control the microstructure through thismore » method yields a flexible manufacturing route to fabricating 3D metal parts with full density and complex geometries.« less
Semisolid Metal Processing Techniques for Nondendritic Feedstock Production
Mohammed, M. N.; Omar, M. Z.; Salleh, M. S.; Alhawari, K. S.; Kapranos, P.
2013-01-01
Semisolid metal (SSM) processing or thixoforming is widely known as a technology that involves the formation of metal alloys between solidus and liquidus temperatures. For the procedure to operate successfully, the microstructure of the starting material must consist of solid near-globular grains surrounded by a liquid matrix and a wide solidus-to-liquidus transition area. Currently, this process is industrially successful, generating a variety of products with high quality parts in various industrial sectors. Throughout the years since its inception, a number of technologies to produce the appropriate globular microstructure have been developed and applied worldwide. The main aim of this paper is to classify the presently available SSM technologies and present a comprehensive review of the potential mechanisms that lead to microstructural alterations during the preparation of feedstock materials for SSM processing. PMID:24194689
NASA Astrophysics Data System (ADS)
Ragab, Kh. A.; Bouaicha, A.; Bouazara, M.
2017-09-01
The semi-solid casting process has the advantage of providing reliable mechanical aluminum parts that work continuously in dynamic as control arm of the suspension system in automotive vehicles. The quality performance of dynamic control arm is related to casting mold and gating system designs that affect the fluidity of semi-solid metal during filling the mold. Therefore, this study focuses on improvement in mechanical performance, depending on material characterization, and casting design optimization, of suspension control arms made of A357 aluminum semi-solid alloys. Mechanical and design analyses, applied on the suspension arm, showed the occurrence of mechanical failures at unexpected weak points. Metallurgical analysis showed that the main reason lies in the difficult flow of semi-solid paste through the thin thicknesses of a complex geometry. A design modification procedure is applied to the geometry of the suspension arm to avoid this problem and to improve its quality performance. The design modification of parts was carried out by using SolidWorks design software, evaluation of constraints with ABAQUS, and simulation of flow with ProCast software. The proposed designs showed that the modified suspension arm, without ribs and with a central canvas designed as Z, is considered as a perfect casting design showing an increase in the structural strength of the component. In this case, maximum von Mises stress is 199 MPa that is below the yield strength of the material. The modified casting mold design shows a high uniformity and minim turbulence of molten metal flow during semi-solid casting process.
Microstructural Evolution during DPRM Process of Semisolid Ledeburitic D2 Tool Steel
Mohammed, M. N.; Omar, M. Z.; Syarif, J.; Sajuri, Z.; Salleh, M. S.; Alhawari, K. S.
2013-01-01
Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μm), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network. PMID:24223510
Microstructural evolution during DPRM process of semisolid ledeburitic D2 tool steel.
Mohammed, M N; Omar, M Z; Syarif, J; Sajuri, Z; Salleh, M S; Alhawari, K S
2013-01-01
Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μ m), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network.
Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process
NASA Astrophysics Data System (ADS)
Eric, Becker; Guochao, Gu; Laurent, Langlois; Raphaël, Pesci; Régis, Bigot
2011-01-01
Semisolid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semisolid state. Taking advantage of the thixotropic behavior of alloys in the semisolid state, significant progress has been made in semisolid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, James; Mandal, Animesh
X-ray computed tomography (XCT) was used to characterise the internal microstructure and clustering behaviour of TiB{sub 2} particles in in-situ processed Al-Cu metal matrix composites prepared by casting method. Forging was used in semi-solid state to reduce the porosity and to uniformly disperse TiB{sub 2} particles in the composite. Quantification of porosity and clustering of TiB{sub 2} particles was evaluated for different forging reductions (30% and 50% reductions) and compared with an as-cast sample using XCT. Results show that the porosity content was decreased by about 40% due to semi-solid forging as compared to the as-cast condition. Further, XCT resultsmore » show that the 30% forging reduction resulted in greater uniformity in distribution of TiB{sub 2} particles within the composite compared to as-cast and the 50% forge reduction in semi-solid state. These results show that the application of forging in semi-solid state enhances particle distribution and reduces porosity formation in cast in-situ Al-Cu-TiB{sub 2} metal matrix composites. - Highlights: •XCT was used to visualise 3D internal structure of Al-Cu-TiB{sub 2} MMCs. •Al-Cu-TiB{sub 2} MMC was prepared by casting using flux assisted synthesis method. •TiB{sub 2} particles and porosity size distribution were evaluated. •Results show that forging in semi-solid condition decreases the porosity content and improve the particle dispersion in MMCs.« less
Investigation of pouring temperature and holding time for semisolid metal feedstock production
NASA Astrophysics Data System (ADS)
Razak, N. A.; Ahmad, A. H.; Rashidi, M. M.
2017-10-01
Semisolid metal (SSM) processing, as a kind of new technology that exploits forming of alloys between solidus and liquidus temperatures, has attracted great attention from investigators for its thixotropic behaviour as well as having advantages in reducing porosity, macrosegregation, and forming forces during shaping process. Various techniques are employed to produce feedstock with fine globular microstructures, and direct thermal method is one of them. In this paper, the effect from different pouring temperatures and holding times using a direct thermal method on microstructure and hardness of aluminium alloy 6061 is presented. Molten aluminium alloy 6061 was poured into a cylindrical copper mould and cooled down to the semisolid temperature before being quenched in water at room temperature. The effect of different pouring temperatures of 660 °C, 680 °C, 700 °C, and holding time of 20 s, and 60 s on the microstructure of aluminium alloy 6061 were investigated. From the micrographs, it was found that the most globular structures were achieved at processing parameters of 660 °C pouring temperature and 60 s holding time. The highest density and hardness of the samples were found at the same processing parameters. It can be concluded that the most spheroidal microstructure, the highest density, and the hardness were recorded at lower pouring temperature and longer holding time.
NASA Technical Reports Server (NTRS)
Moon, H.-K.; Ito, Y.; Cornie, J. A.; Flemings, M. C.
1993-01-01
The rheology of SiC particulate/Al-6.5 pct Si composite slurries was explored. The rheological behavior of the composite slurries shows both thixotropic and pseudoplastic behaviors. Isostructural experiments on the composite slurries revealed a Newtonian behavior beyond a high shear rate limit. The rheology of fully molten composite slurries over the low to high shear rate range indicates the existence of a low shear rate Newtonian region, an intermediate pseudoplastic region and a high shear rate Newtonian region. The isostructural studies indicate that the viscosity of a composite slurry depends upon the shearing history of a given volume of material. An unexpected shear thinning was noted for SiC particulate + alpha slurries as compared to semi-solid metallic slurries at the same fraction solid. The implications of these findings for the processing of slurries into cast components is discussed.
NASA Astrophysics Data System (ADS)
Rabeeh, Bakr Mohamed
Great efforts aiming towards the synthesis and the development of structural composite materials. Direct metal oxidation, DIMOX introduced for hybrid composite processing. However, oxidation temperatures around 1100°C lead to the formation of porous ceramic materials. To utilize this porosity intentionally for foam production, a new approach based on synergetic effect of alloying elements, DIMOX and semisolid (rheocsting) processing is developed. A semisolid reaction, rheocasting is introduced to control porosity shape and size. Aluminum alloy 6xxx (automobile scrap pistons) is recycled for this objective and DIMOX at 1100°C for 30 min, then rheocasting, at 750°C for 30 minutes. The effect of α-Fe powder, Mg powder, and Boric acid powder established for the objective of a hybrid structural metal matrix composite in bulk foam matrix. The kinetic of formation of hybrid metal matrix foam composite is introduced. Microstructural and mechanical characterization established for high performance Aluminum foam hybrid composite materials.
NASA Astrophysics Data System (ADS)
Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Shafizadeh, Mahdi; Nikzad, Siamak
2015-12-01
Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and rotational speed of the joining process.
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2017-10-01
Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.
NASA Astrophysics Data System (ADS)
Zareie Rajani, H. R.; Phillion, A. B.
2015-06-01
A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld.
Development of Axial Continuous Metal Expeller for melt conditioning of alloys
NASA Astrophysics Data System (ADS)
Cassinath, Z.; Prasada Rao, A. K.
2016-02-01
ACME (Axial, centrifugal metal expeller) is a novel processing technology developed independently for conditioning liquid metal prior to solidification processing. The ACME process is based on an axial compressor and uses a rotor stator mechanism to impose a high shear rate and a high intensity of turbulence to the liquid metal, so that the conditioned liquid metal has uniform temperature and uniform chemical composition as it is expelled. The microstructural refinement is achieved through the process of dendrite fragmentation while taking advantage of the thixotropic property of semisolid metal slurry so that it can be conveyed for further downstream operations. This paper introduces the concept and its advantages over current technologies.
Tailorable Burning Behavior of Ti14 Alloy by Controlling Semi-Solid Forging Temperature.
Chen, Yongnan; Yang, Wenqing; Zhan, Haifei; Zhang, Fengying; Huo, Yazhou; Zhao, Yongqing; Song, Xuding; Gu, Yuantong
2016-08-16
Semi-solid processing (SSP) is a popular near-net-shape forming technology for metals, while its application is still limited in titanium alloy mainly due to its low formability. Recent works showed that SSP could effectively enhance the formability and mechanical properties of titanium alloys. The processing parameters such as temperature and forging rate/ratio, are directly correlated with the microstructure, which endow the alloy with different chemical and physical properties. Specifically, as a key structural material for the advanced aero-engine, the burn resistant performance is a crucial requirement for the burn resistant titanium alloy. Thus, this work aims to assess the burning behavior of Ti14, a kind of burn resistant alloy, as forged at different semi-solid forging temperatures. The burning characteristics of the alloy are analyzed by a series of burning tests with different burning durations, velocities, and microstructures of burned sample. The results showed that the burning process is highly dependent on the forging temperature, due to the fact that higher temperatures would result in more Ti₂Cu precipitate within grain and along grain boundaries. Such a microstructure hinders the transport of oxygen in the stable burning stage through the formation of a kind of oxygen isolation Cu-enriched layer under the burn product zone. This work suggests that the burning resistance of the alloy can be effectively tuned by controlling the temperature during the semi-solid forging process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bing; Tan, Dongyue; Lee, Tung Lik
Ultrasound processing of metal alloys is an environmental friendly and promising green technology for liquid metal degassing and microstructural refinement. However many fundamental issues in this field are still not fully understood, because of the difficulties in direct observation of the dynamic behaviours caused by ultrasound inside liquid metal and semisolid metals during the solidification processes. In this paper, we report a systematic study using the ultrafast synchrotron X-ray imaging (up to 271,554 frame per second) technique available at the Advanced Photon Source, USA and Diamond Light Source, UK to investigate the dynamic interactions between the ultrasonic bubbles/acoustic flow andmore » the solidifying phases in a Bi-8%Zn alloy. The experimental results were complimented by numerical modelling. The chaotic bubble implosion and dynamic bubble oscillations were revealed in-situ for the first time in liquid metal and semisolid metal. The fragmentation of the solidifying Zn phases and breaking up of the liquid-solid interface by ultrasonic bubbles and enhanced acoustic flow were clearly demonstrated and agreed very well with the theoretical calculations. The research provides unambiguous experimental evidence and robust theoretical interpretation in elucidating the dominant mechanisms of microstructure fragmentation and refinement in solidification under ultrasound.« less
Wang, Bing; Tan, Dongyue; Lee, Tung Lik; ...
2017-11-03
Ultrasound processing of metal alloys is an environmental friendly and promising green technology for liquid metal degassing and microstructural refinement. However many fundamental issues in this field are still not fully understood, because of the difficulties in direct observation of the dynamic behaviours caused by ultrasound inside liquid metal and semisolid metals during the solidification processes. In this paper, we report a systematic study using the ultrafast synchrotron X-ray imaging (up to 271,554 frame per second) technique available at the Advanced Photon Source, USA and Diamond Light Source, UK to investigate the dynamic interactions between the ultrasonic bubbles/acoustic flow andmore » the solidifying phases in a Bi-8%Zn alloy. The experimental results were complimented by numerical modelling. The chaotic bubble implosion and dynamic bubble oscillations were revealed in-situ for the first time in liquid metal and semisolid metal. The fragmentation of the solidifying Zn phases and breaking up of the liquid-solid interface by ultrasonic bubbles and enhanced acoustic flow were clearly demonstrated and agreed very well with the theoretical calculations. The research provides unambiguous experimental evidence and robust theoretical interpretation in elucidating the dominant mechanisms of microstructure fragmentation and refinement in solidification under ultrasound.« less
Study on the rheoformability of semi-solid 7075 wrought aluminum alloy using seed process =
NASA Astrophysics Data System (ADS)
Zhao, Qinfu
Semisolid metal forming is becoming more and more attractive in the foundry industry due to its low cost and easy operation to produce high quality near-net-shape components. Over the past years, semisolid forming technique is mainly applied on the casting aluminum alloys due to their superior castability because of low melting temperature and viscosity. In semisolid forming field, thixoforming has been majorly used which involves of reheating the billet into semisolid state followed by casting process. Rheocasting is a more economic semisolid processing compared to thixoforming, which the semisolid billet is produced directly from liquid phase. The SEED process is one of reliable rheocasting techniques to produce high quality semisolid billets. To produce high quality semisolid billets, their unique rheological properties have been the most important issue need to be fully investigated. The aim of present project is to produce high quality semisolid AA7075 billets by SEED process and analyze their rheological properties under various process conditions. The effect of the SEED processing parameters and grain refiners on the semisolid microstructure and rheoformability were investigated. The deformation and rheological behavior of the semisolid billets of AA7075 base and its grain-refined alloys were studied using parallel-plate viscometer. In the first part, the evolution of liquid fraction to temperature of semisolid AA7075 alloy was investigated using Differential Scanning Calorimetry (DSC). It was found that the liquidus and solidus temperature of AA7075 alloy were 631 °C and 490°C respectively. And the corresponding temperatures of solid fraction of 40% and 60% were 622°C and 610°C, which was recognized as the temperature window for semisolid forming of this alloy. In the second part, the semisolid slurries were rheocasted using SEED technology and the effect of the SEED process parameters like swirling frequency and demolding temperature on evolution of microstructure was studied. It was found that the swirling frequency has a strong influence on the mean grain size and morphology of primary alpha-Al particles. With increasing swirling frequency, the mean size of alpha-Al particles first decreased significantly and then kept constant or increased slightly, due to the fragment and aggregation of solid particles. Microstructures also revealed that the alpha-Al particles tend to transform from dendrite-like to rosette-like to globular-like morphology due to the stirring movement. In the third part, the effects of TiB2 and Zr on the microstructure of semisolid AA7075 alloy were investigated. The microstructure observation and the intermetallic phase identification were carried out by optical microscopy equipped with Clemex analyzer and scanning electron microscopy (SEM). The mean size of primary alpha-Al particles decreases from more than 110 mum to less than 90 mum and the morphology changes from dendritic-like to globular-like with the addition of TiB2. With the addition of Zr or Zr + TiB 2, the mean size and morphology of primary alpha-Al particles didn't show significant modification. Furthermore, the addition of TiB2 shows significant refinement on three intermetallic phases (Mg(Zn,Cu,Al) 2, Fe-rich Al(Fe,Mn)Si and Mg2Si. All the intermetallic phases become finer in size and more uniform distribution among the grains. Finally, the rheological behavior and microstructure of deformed semisolid billets of AA7075 base and grain-refined alloys were investigated using parallel-plate viscometer. Images analysis shows that liquid segregates from center to edge of the billet during compression and with increasing temperature the liquid segregation becomes more significant. The apparent viscosity of two alloys decreases with the increasing shear rate, indicating shear thinning behavior. Shear rate jump phenomenon (first increase and then decrease) occurred at lower solid fraction, reaching a maximum shear rate value. The whole compression processing is divided into two parts: shear rate increasing part and shear rate decreasing part. For higher solid fraction, the shear rate decreases continuously and slowly. The attainable maximum shear rate value increases with the decreasing solid fraction. During the shear rate decreasing part, at any given shear rate the viscosity increases with the increasing solid fraction. The comparison of the viscosity of two alloys indicated that the TiB2-refined AA7075 alloy has lower viscosity (shear rate decreasing part) due to small grain size and globular grain shape. In addition, the grain refinement significantly expands the solid fraction range of good rheoformability from 42%-48% for the base alloy to 42%-55% for the refined alloy.
Tailorable Burning Behavior of Ti14 Alloy by Controlling Semi-Solid Forging Temperature
Chen, Yongnan; Yang, Wenqing; Zhan, Haifei; Zhang, Fengying; Huo, Yazhou; Zhao, Yongqing; Song, Xuding; Gu, Yuantong
2016-01-01
Semi-solid processing (SSP) is a popular near-net-shape forming technology for metals, while its application is still limited in titanium alloy mainly due to its low formability. Recent works showed that SSP could effectively enhance the formability and mechanical properties of titanium alloys. The processing parameters such as temperature and forging rate/ratio, are directly correlated with the microstructure, which endow the alloy with different chemical and physical properties. Specifically, as a key structural material for the advanced aero-engine, the burn resistant performance is a crucial requirement for the burn resistant titanium alloy. Thus, this work aims to assess the burning behavior of Ti14, a kind of burn resistant alloy, as forged at different semi-solid forging temperatures. The burning characteristics of the alloy are analyzed by a series of burning tests with different burning durations, velocities, and microstructures of burned sample. The results showed that the burning process is highly dependent on the forging temperature, due to the fact that higher temperatures would result in more Ti2Cu precipitate within grain and along grain boundaries. Such a microstructure hinders the transport of oxygen in the stable burning stage through the formation of a kind of oxygen isolation Cu-enriched layer under the burn product zone. This work suggests that the burning resistance of the alloy can be effectively tuned by controlling the temperature during the semi-solid forging process. PMID:28773820
NASA Astrophysics Data System (ADS)
Lemieux, Alain
The advantages of producing metal parts by rheocasting are generally recognised for common foundry alloys of Al-Si. However, other more performing alloys in terms of mechanical properties could have a great interest in specialized applications in the automotive industry, while remaining competitive in the forming. Indeed, the growing demand for more competitive products requires the development of new alloys better suited to semi-solid processes. Among others, Al-Cu alloys of the 2XX series are known for their superior mechanical strength. However, in the past, 2XX alloys were never candidates for pressure die casting. The main reason is their propensity to hot tearing. Semi-solid processes provide better conditions for molding with the rheological behavior of dough and molding temperatures lower reducing this type of defect. In the initial phase, this research has studied factors that reduce hot tearing susceptibility of castings produced by semi-solid SEED of alloy 206. Subsequently, a comparative study on the tensile properties and fatigue was performed on four variants of the alloy 206. The results of tensile strength and fatigue were compared with the specifications for applications in the automotive industry and also to other competing processes and alloys. During this study, several metallurgical aspects were analyzed. The following main points have been validated: i) the main effects of compositional variations of silicon, iron and copper alloy Al-Cu (206) on the mechanical properties, and ii) certain relationships between the mechanism of hot cracking and the solidification rate in semi-solid. Parts produced from the semi-solid paste coming from the SEED process combined with modified 206 alloys have been successfully molded and achieved superior mechanical properties than the requirements of the automotive industry. The fatigue properties of the two best modified 206 alloys were higher than those of A357 alloy castings and are close to those of the wrought alloy AA6061. At present, there is simply no known application for pressure die-cast alloy with 206 (Liquid Die-casting). This is mainly due to the high propensity to hot cracking and limitations facing the part geometry and the subsequent assembly. This study demonstrated that in addition to pieces produced by semi-solid die-casting using large variations in chemical composition, the SEED process allows obtaining spare sound (sound part) and more complex geometry. Moreover, as the semi-solid parts have less porosity, they can also be machined and welded for some applications. The conclusions of this study demonstrate significant progress in identifying the main issues related to the feasibility of die-casting good parts with high performance using the modified 206 alloy combined with SEED process. This work is therefore a baseline work in the development of new Al-Cu alloys for industries of semi-solid and, at the same time, for the expansion of aluminum for high performance applications in the industry. N.B. This thesis is part of a research project developed by the NSERC / Rio Tinto Akan Industrial Research Chair in Metallurgy of Innovative Aluminum Transformation (CIMTAL).
Semi-solid state bioremediation of CCA-treated wood using malted barley as a nutrient source
Carol A. Clausen
2002-01-01
Bioremediation processes for recovery and reuse of CCA-treated wood invariably increase the cost of any secondary products manufactured from the remediated fiber. Microbial remediation using either bacteria or fungi has been shown to remove heavy metals from CCA-treated southern yellow pine (SYP). In a two-step remediation process utilizing oxalic acid extraction and...
Direct observation of grain rotations during coarsening of a semisolid Al–Cu alloy
Dake, Jules M.; Oddershede, Jette; Sørensen, Henning O.; Werz, Thomas; Shatto, J. Cole; Uesugi, Kentaro; Schmidt, Søren; Krill, Carl E.
2016-01-01
Sintering is a key technology for processing ceramic and metallic powders into solid objects of complex geometry, particularly in the burgeoning field of energy storage materials. The modeling of sintering processes, however, has not kept pace with applications. Conventional models, which assume ideal arrangements of constituent powders while ignoring their underlying crystallinity, achieve at best a qualitative description of the rearrangement, densification, and coarsening of powder compacts during thermal processing. Treating a semisolid Al–Cu alloy as a model system for late-stage sintering—during which densification plays a subordinate role to coarsening—we have used 3D X-ray diffraction microscopy to track the changes in sample microstructure induced by annealing. The results establish the occurrence of significant particle rotations, driven in part by the dependence of boundary energy on crystallographic misorientation. Evidently, a comprehensive model for sintering must incorporate crystallographic parameters into the thermodynamic driving forces governing microstructural evolution. PMID:27671639
Advanced Metalworking Solutions for Naval Systems That Go In Harm’s Way
2013-01-01
quarter century of projects, including early research and development of technologies such as semi-solid metalworking; powder metallurgy; and process...modeling and simulation. More recent projects have focused on friction stir welding, hybrid laser -arc welded metallic sandwich panels, and improved...Metalworking Center has optimized a wide variety of manufacturing technologies throughout its 25-year history, including powder metallurgy processing, semi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Dongyue; Lee, Tung Lik; Khong, Jia Chuan
2015-03-31
The highly dynamic behavior of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high-speed synchrotron X-ray imaging facilities housed, respectively, at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second revealed that ultrasonic bubble implosion in a liquid Bi-8 wt pctZn alloy can occur in a single wave period (30 kHz), and the effective region affected by themore » shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 similar to 100 pct higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively.« less
Liu, L. H.; Yang, C.; Kang, L. M.; Qu, S. G.; Li, X. Q.; Zhang, W. W.; Chen, W. P.; Li, Y. Y.; Li, P. J.; Zhang, L. C.
2016-01-01
It is well known that semi-solid forming could only obtain coarse-grained microstructure in a few alloy systems with a low melting point, such as aluminum and magnesium alloys. This work presents that semi-solid forming could also produce novel bimodal microstructure composed of nanostructured matrix and micro-sized (CoFe)Ti2 twins in a titanium alloy, Ti62Nb12.2Fe13.6Co6.4Al5.8. The semi-solid sintering induced by eutectic transformation to form a bimodal microstructure in Ti62Nb12.2Fe13.6Co6.4Al5.8 alloy is a fundamentally different approach from other known methods. The fabricated alloy exhibits high yield strength of 1790 MPa and plastic strain of 15.5%. The novel idea provides a new insight into obtaining nano-grain or bimodal microstructure in alloy systems with high melting point by semi-solid forming and into fabricating high-performance metallic alloys in structural applications. PMID:27029858
Contribution to the rheological testing of pharmaceutical semisolids.
Siska, B; Snejdrova, E; Machac, I; Dolecek, P; Martiska, J
2018-01-22
Rheological behaviour of pharmaceutical semisolid preparations significantly affects manufacturing process, administration, stability, homogeneity of incorporated drug, accuracy of dosing, adhesion in the place of application, drug release, and resulting therapeutic effect of the product. We performed test of consistency by penetrometry, rotational, oscillation and creep tests, and squeeze and tack tests of model samples to introduce methods suitable for characterization and comparison of semisolids in practice. Penetrometry is a simple method allowing sorting the semisolids to low and high stress-resistant materials but deficient for rheological characterization of semisolids. Value of yield stress, generally considered to be appropriate feature of semisolids, is significantly influenced by the method of testing and the way of evaluation. The hysteresis loops of model semisolids revealed incomplete thixotropy, therefore, three-step thixotropy test was employed. Semisolids showed nonlinear response in the creep phase of tests and partial recovery of structure by storing energy in the recovery phase. Squeeze and tack tests seem to be convenient ways for comparison of semisolids. Our study can contribute to a better understanding of different flow behaviour of semisolids given by different physicochemical properties of excipients and can bring useful approaches to evaluation and comparison of semisolids in practice.
Sectional Finite Element Analysis on Viscous Pressure Forming of Sheet Metal
NASA Astrophysics Data System (ADS)
Liu, Jianguang; Wang, Zhongjin; Liu, Yan
2007-05-01
Viscous pressure forming (VPF) is a recently developed sheet flexible-die forming process, which uses a kind of semi-solid, flowable and viscous material as pressure-carrying medium that typically applied on one side of the sheet metal or on both sides of sheet metal. Different from traditional sheet metal forming processes in which sheet metal is the unique deformation-body, VPF is a coupling process of visco-elastoplastic bulk deformation of viscous medium and elasto-plastic deformation of sheet metal. A sectional finite element model for the coupled deformation between visco-elastoplastic body and elasto-plastic sheet metal was proposed to analyze VPF. The resolution of the Updated Lagrangian formulation is based on a static approach. By using static-explicit time integration strategy, the deformation of elasto-plastic sheet metal and visco-elastoplastic body can keep stable. The frictional contact between sheet metal and visco-elastoplastic body is treated by penalty function method. Using the proposed algorithm, sheet metal viscous pressure bulging (VPB) process is analyzed and compared with experiments. A good agreement between numerical simulation results and experimental ones proved the efficiency and stability of this algorithm.
Microstructural evolution during reheating of A356 machining chips at semisolid state
NASA Astrophysics Data System (ADS)
Wang, Fang; Zhang, Wen-qiang; Xiao, Wen-long; Yamagata, Hiroshi; Ma, Chao-li
2017-08-01
The microstructural evolution of A356 machining chips in the semisolid state was studied at different temperatures and holding times. The results showed that the elongated α-Al grains first recrystallized in the semisolid state and then became globular with a high shape factor (SF). Both the temperature and the holding time clearly affected the grain size and SF. When the heating temperature or holding time was increased, the grain size and SF gradually increased and finally became stable. Moreover, the Vickers hardness of primary α-Al grains gradually decreased with increasing heating temperature. The optimal slurry for semisolid processing, with a good combination of grain size and SF, was obtained when the chips were held at 600°C for 15 min. The semisolid slurry of A356 chips exhibited a lower coarsening rate of α-Al grains than those produced by most of the conventional semisolid processes. The coarsening coefficient was determined to be 436 μm3·s-1 on the basis of the linear Lifshitz-Slyozov-Wagner (LSW) relationship.
Low Cost and Energy Efficient Methods for the Manufacture of Semi-Solid (SSM) Feedstock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diran Apelian; Qingyue Pan; Makhlouf Makhlouf
2005-11-07
The SSM Consortium (now ACRC) at WPI has been carrying out fundamental, pre-competitive research in SSM for several years. Current and past research (at WPI) has generated many results of fundamental and applied nature, which are available to the SSM community. These include materials characterization, yield stress effects, alloy development, rheological properties, process modeling/simulation, semi-solid slurry formation, etc. Alternative method to produce SSM slurries at lower processing costs and with reduced energy consumption is a critical need. The production of low cost SSM feedstock will certainly lead to a dramatic increase in the tonnage of castings produced by SSM, andmore » will provide end users such as the transportation industry, with lighter, cheaper and high performance materials. In this program, the research team has addressed three critical issues in semi-solid processing. They are: (1) Development of low cost, reliable slurry-on-demand approaches for semi-solid processing; (2) Application of the novel permanent grain refining technology-SiBloy for the manufacture of high-quality SSM feedstock, and (3) Development of computational and modeling tools for semi-solid processing to enhance SSM process control. Salient results from these studies are summarized and detailed in our final technical report.« less
Energy Saving Melting and Revert Reduction Technology: Innovative Semi-Solid Metal (SSM) Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diran Apelian
2012-08-15
Semi-solid metal (SSM) processing has emerged as an attractive method for near-net-shape manufacturing due to the distinct advantages it holds over conventional near-net-shape forming technologies. These advantages include lower cycle time, increased die life, reduced porosity, reduced solidification shrinkage, improved mechanical properties, etc. SSM processing techniques can not only produce the complex dimensional details (e.g. thin-walled sections) associated with conventional high-pressure die castings, but also can produce high integrity castings currently attainable only with squeeze and low-pressure permanent mold casting processes. There are two primary semi-solid processing routes, (a) thixocasting and (b) rheocasting. In the thixocasting route, one starts frommore » a non-dendritic solid precursor material that is specially prepared by a primary aluminum manufacturer, using continuous casting methods. Upon reheating this material into the mushy (a.k.a. "two-phase") zone, a thixotropic slurry is formed, which becomes the feed for the casting operation. In the rheocasting route (a.k.a. "slurry-on-demand" or "SoD"), one starts from the liquid state, and the thixotropic slurry is formed directly from the melt via careful thermal management of the system; the slurry is subsequently fed into the die cavity. Of these two routes, rheocasting is favored in that there is no premium added to the billet cost, and the scrap recycling issues are alleviated. The CRP (Trade Marked) is a process where the molten metal flows through a reactor prior to casting. The role of the reactor is to ensure that copious nucleation takes place and that the nuclei are well distributed throughout the system prior to entering the casting cavity. The CRP (Trade Marked) has been successfully applied in hyper-eutectic Al-Si alloys (i.e., 390 alloy) where two liquids of equal or different compositions and temperatures are mixed in the reactor and creating a SSM slurry. The process has been mostly used for hypo-eutectic Al-Si alloys (i.e., 356, 357, etc.) where a single melt passes through the reactor. In addition, the CRP (Trade Marked) was designed to be flexible for thixocasting or rheocasting applications as well as batch or continuous casting. Variable heat extraction rates can be obtained by controlling either the superheat of the melt, the temperature of the channel system, or the temperature of the reactor. This program had four main objectives all of which were focused on a mechanistic understanding of the process in order to be able to scale it up, to develop it into a robust process,and for SSM processing to be commercially used.« less
NASA Astrophysics Data System (ADS)
Liu, Huihui; He, Xiongwei; Guo, Peng
2017-04-01
Three factors (pouring temperature, injection speed and mold temperature) were selected to do three levels L9 (33)orthogonal experiment, then simulate processing of semi-solid die-casting of magnesium matrix composite by Flow-3D software. The stress distribution, temperature field and defect distribution of filling process were analyzed to find the optimized processing parameter with the help of orthogonal experiment. The results showed that semi-solid has some advantages of well-proportioned stress and temperature field, less defect concentrated in the surface. The results of simulation were the same as the experimental results.
[The use of polymer gel dosimetry to measure dose distribution around metallic implants].
Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa
2014-10-01
A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.
NASA Astrophysics Data System (ADS)
Sharifi, Hamid; Larouche, Daniel
2015-09-01
The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium-copper alloy (Al-5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie-Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected.
Study on nickel and vanadium removal in thermal conversion of oil sludge and oil shale sludge
NASA Astrophysics Data System (ADS)
Sombral, L. G. S.; Pickler, A. C.; Aires, J. R.; Riehl, C. A.
2003-05-01
The petroleum refining processes and of oil shale industrialization generate solid and semi-solid residues. In those residues heavy metals are found in concentrations that vary according to the production sector. The destination of those residues is encouraging researches looking for new technologies that reach the specifications of environmental organisms, and are being developed and applied to the industry. In this work it is shown that the heavy metals concentrations, previously in the petroleum oily solid residues and in those of the oils shale, treated by low temperature thermal conversion, obtaining in both cases concentrations below Ippm to Nickel and below 5ppm to vanadium.
NASA Astrophysics Data System (ADS)
Phillion, A. B.; Cockcroft, S. L.; Lee, P. D.
2009-07-01
The methodology of direct finite element (FE) simulation was used to predict the semi-solid constitutive behavior of an industrially important aluminum-magnesium alloy, AA5182. Model microstructures were generated that detail key features of the as-cast semi-solid: equiaxed-globular grains of random size and shape, interconnected liquid films, and pores at the triple-junctions. Based on the results of over fifty different simulations, a model-based constitutive relationship which includes the effects of the key microstructure features—fraction solid, grain size and fraction porosity—was derived using regression analysis. This novel constitutive equation was then validated via comparison with both the FE simulations and experimental stress/strain data. Such an equation can now be used to incorporate the effects of microstructure on the bulk semi-solid flow stress within a macro- scale process model.
Gas uptake and chemical aging of semisolid organic aerosol particles
Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich
2011-01-01
Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350
Semi-solid processing of high-chromium tool steel to obtain microstructures without carbide network
NASA Astrophysics Data System (ADS)
Jirková, H.; Aišman, D.; Rubešová, K.; Opatová, K.; Mašek, B.
2017-02-01
Treatment of high-alloy tool steels that involves transition to the semi-solid state can transform the sharp-edged primary carbides which usually form during solidification. These carbides severely impair toughness and are virtually impossible to eliminate by conventional treatment routes. Upon classical semi-solid processing which dissolves these carbides, the resulting microstructure consists of polyhedral and super-saturated austenite embedded in lamellar austenite-carbide network. This type of microstructure reflects in the mechanical properties, predominantly in material behaviour under tensile loading. Such a network, however, can be removed by appropriate thermomechanical treatment. In the present experiment, various procedures involving heating to the semi-solid state were tested on X210Cr12 tool steel. The feedstock was heated to the temperature range of 1220 - 1280 °C. The heating was followed by procedures involving either water quenching to the forming temperature, room temperature or temperature from the range from 500 °C to 1000 °C followed by reheating to the forming temperature. It was found that the development of the lamellar network strongly depends on the temperature of heating to semi-solid state. Thermomechanical treatment produced microstructures in which the matrix consisted of a mixture of polyhedral austenite grains and the M-A constituent. In addition, the initial lamellar eutectic network was partially or even completely melted and substituted with a mixture of very fine recrystallized austenite grains and precipitates of chromium carbides. Some fine M7C3 carbides were present in the austenitic-martensitic matrix as well. When appropriate processing parameters were chosen, very good mechanical properties were obtained, among them a hardness of 860 HV10.
Bazylinski, D.A.; Dean, A.J.; Schuler, D.; Phillips, E.J.P.; Lovley, D.R.
2000-01-01
Cells of Geobacter metallireducens, Magnetospirillum strain AMB-1, Magnetospirillum magnetotacticum and Magnetospirillum gryphiswaldense showed N2-dependent growth, the first anaerobically with Fe(lll) as the electron acceptor, and the latter three species micro-aerobically in semi-solid oxygen gradient cultures. Cells of the Magnetospirillum species grown with N2 under microaerobic conditions were magnetotactic and therefore produced magnetosomes. Cells of Geobacter metallireducens reduced acetylene to ethylene (11.5 ?? 5.9nmol C2H4 produced min-1 mg-1 cell protein) while growing with Fe(lll) as the electron acceptor in anaerobic growth medium lacking a fixed nitrogen source. Cells of the Magnetospirillum species, grown in a semi-solid oxygen gradient medium, also reduced acetylene at comparable rates. Uncut chromosomal and fragments from endonuclease-digested chromosomal DNA from these species, as well as Geobacter sulphurreducens organisms, hybridized with a nifHDK probe from Rhodospirillum rubrum, indicating the presence of these nitrogenase structural genes in these organisms. The evidence presented here shows that members of the metal-metabolizing genera, Geobacter and Magnetospirillum, fix atmospheric dinitrogen.
NASA Astrophysics Data System (ADS)
Pfrang, C.; Shiraiwa, M.; Pöschl, U.
2011-04-01
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles representative of atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant time scales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
NASA Astrophysics Data System (ADS)
Pfrang, C.; Shiraiwa, M.; Pöschl, U.
2011-07-01
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron
NASA Astrophysics Data System (ADS)
Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José
2017-10-01
The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.
Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses
Launey, Maximilien E.; Hofmann, Douglas C.; Johnson, William L.; Ritchie, Robert O.
2009-01-01
The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combination of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage, and previous attempts to solve this problem have been largely disappointing. Here, we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semisolid processing is used to optimize the volume fraction, morphology, and size of second-phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of ≈2 μm, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude, making these “designed” composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems. PMID:19289820
Doležal, Pavel; Zapletal, Josef; Fintová, Stanislava; Trojanová, Zuzanka; Greger, Miroslav; Roupcová, Pavla; Podrábský, Tomáš
2016-01-01
New Mg-3Zn-2Ca magnesium alloy was prepared using different processing techniques: gravity casting as well as squeeze casting in liquid and semisolid states. Materials were further thermally treated; thermal treatment of the gravity cast alloy was additionally combined with the equal channel angular pressing (ECAP). Alloy processed by the squeeze casting in liquid as well as in semisolid state exhibit improved plasticity; the ECAP processing positively influenced both the tensile and compressive characteristics of the alloy. Applied heat treatment influenced the distribution and chemical composition of present intermetallic phases. Influence of particular processing techniques, heat treatment, and intermetallic phase distribution is thoroughly discussed in relation to mechanical behavior of presented alloys. PMID:28774000
NASA Astrophysics Data System (ADS)
Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.
2011-01-01
As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.
Kareh, K M; Lee, P D; Atwood, R C; Connolley, T; Gourlay, C M
2014-07-18
The behaviour of granular solid-liquid mixtures is key when deforming a wide range of materials from cornstarch slurries to soils, rock and magma flows. Here we demonstrate that treating semi-solid alloys as a granular fluid is critical to understanding flow behaviour and defect formation during casting. Using synchrotron X-ray tomography, we directly measure the discrete grain response during uniaxial compression. We show that the stress-strain response at 64-93% solid is due to the shear-induced dilation of discrete rearranging grains. This leads to the counter-intuitive result that, in unfed samples, compression can open internal pores and draw the free surface into the liquid, resulting in cracking. A soil mechanics approach shows that, irrespective of initial solid fraction, the solid packing density moves towards a constant value during deformation, consistent with the existence of a critical state in mushy alloys analogous to soils.
Kareh, K. M.; Lee, P. D.; Atwood, R. C.; Connolley, T.; Gourlay, C. M.
2014-01-01
The behaviour of granular solid–liquid mixtures is key when deforming a wide range of materials from cornstarch slurries to soils, rock and magma flows. Here we demonstrate that treating semi-solid alloys as a granular fluid is critical to understanding flow behaviour and defect formation during casting. Using synchrotron X-ray tomography, we directly measure the discrete grain response during uniaxial compression. We show that the stress–strain response at 64–93% solid is due to the shear-induced dilation of discrete rearranging grains. This leads to the counter-intuitive result that, in unfed samples, compression can open internal pores and draw the free surface into the liquid, resulting in cracking. A soil mechanics approach shows that, irrespective of initial solid fraction, the solid packing density moves towards a constant value during deformation, consistent with the existence of a critical state in mushy alloys analogous to soils. PMID:25034408
Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.
Yu, Xin-ye; Xing, Wen-qing; Ding, Min
2016-07-01
In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa. Copyright © 2016. Published by Elsevier B.V.
Modelling and optimization of semi-solid processing of 7075 Al alloy
NASA Astrophysics Data System (ADS)
Binesh, B.; Aghaie-Khafri, M.
2017-09-01
The new modified strain-induced melt activation (SIMA) process presented by Binesh and Aghaie-Khafri was optimized using a response surface methodology to improve the thixotropic characteristics of semi-solid 7075 alloy. The responses, namely the average grain size and the shape factor, were considered as functions of three independent input variables: effective strain, isothermal holding temperature and time. Mathematical models for the responses were developed using the regression analysis technique, and the adequacy of the models was validated by the analysis of variance method. The calculated results correlated fairly well with the experiments. It was found that all the first- and second-order terms of the independent parameters and the interactive terms of the effective strain and holding time were statistically significant for the responses. In order to simultaneously optimize the responses, the desirable values for the effective strain, holding temperature and time were predicted to be 5.1, 609 °C and 14 min, respectively, when employing the desirability function approach. Based on the optimization results, a significant improvement in the average grain size and shape factor of the semi-solid slurry prepared by the new modified SIMA process was observed.
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2016-06-07
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.
Improved soft-agar colony assay in a fluid processing apparatus.
Forsman, A D; Herpich, A R; Chapes, S K
1999-01-01
The standard method for quantitating bone marrow precursor cells has been to count the number of colony-forming units that form in semisolid (0.3%) agar. Recently we adapted this assay for use in hardware, the Fluid Processing Apparatus, that is flown in standard payload lockers of the space shuttle. When mouse or rat macrophage colony-forming units were measured with this hardware in ground-based assays, we found significantly more colony growth than that seen in standard plate assays. The improved growth correlates with increased agar thickness but also appears to be due to properties inherent to the Fluid Processing Apparatus. This paper describes an improved method for determining bone marrow macrophage precursor numbers in semisolid agar.
NASA Astrophysics Data System (ADS)
McHugh, K. M.; Key, J. F.
The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.
Formation of semisolid, oligomerized aqueous SOA: lab simulations of cloud processing.
Hawkins, Lelia N; Baril, Molly J; Sedehi, Nahzaneen; Galloway, Melissa M; De Haan, David O; Schill, Gregory P; Tolbert, Margaret A
2014-02-18
Glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone form N-containing and oligomeric compounds during simulated cloud processing with small amines. Using a novel hygroscopicity tandem differential mobility analysis (HTDMA) system that allows varied humidification times, the hygroscopic growth (HG) of each of the resulting products of simulated cloud processing was measured. Continuous water uptake (gradual deliquescence) was observed beginning at ∼ 40% RH for all aldehyde-methylamine products. Particles containing ionic reaction products of either glyoxal or glycine were most hygroscopic, with HG between 1.16 and 1.20 at 80% RH. Longer humidification times (up to 20 min) produced an increase in growth factors for glyoxal-methylamine (19% by vol) and methylglyoxal-methylamine (8% by vol) aerosol, indicating that unusually long equilibration times can be required for HTDMA measurements of such particles. Glyoxal- and methylglyoxal-methylamine aerosol particles shattered in Raman microscopy impact-flow experiments, revealing that the particles were semisolid. Similar experiments on glycolaldehyde- and hydroxyacetone-methylamine aerosol found that the aerosol particles were liquid when dried for <1 h, but semisolid when dried for 20 h under ambient conditions. The RH required for flow (liquification) during humidification experiments followed the order methylglyoxal > glyoxal > glycolaldehyde = hydroxyacetone, likely caused by the speed of oligomer formation in each system.
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Pandey, O. P.
Metal foams cellular metals have gained an important role in the field of metallurgy, though barely a few decades old. Aluminum composite foam exhibit unique properties such as light weight, blast palliation, sound absorption, high energy absorption, and flame resistance. In the present investigation the effect of variation in the amount of CaCO3 as blowing agent on the microstructure and wear behavior of LM13 alloy foams has been studied. The blowing agent was blended in highly viscous semi-solid melt by stirring process. The process parameters that influence the formation of bubbles like the melt temperature, size and amount of blowing agent and its distribution has been optimized to get uniform size foams. The distribution behavior of blowing agent is influenced by the melt viscosity and stirring speed. For packaging application, the dry sliding wear behavior of the prepared foam was investigated by using a pin on disc method at applied loads of 9.8, 19.6 and 29.4 N at room temperature. The results indicate that the wear rate is dependent on the cell size and cell wall thickness of the foam.
Developing and Characterizing Bulk Metallic Glasses for Extreme Applications
NASA Astrophysics Data System (ADS)
Roberts, Scott Nolan
Metallic glasses have typically been treated as a "one size fits all" type of material. Every alloy is considered to have high strength, high hardness, large elastic limits, corrosion resistance, etc. However, similar to traditional crystalline materials, properties are strongly dependent upon the constituent elements, how it was processed, and the conditions under which it will be used. An important distinction which can be made is between metallic glasses and their composites. Charpy impact toughness measurements are performed to determine the effect processing and microstructure have on bulk metallic glass matrix composites (BMGMCs). Samples are suction cast, machined from commercial plates, and semi-solidly forged (SSF). The SSF specimens have been found to have the highest impact toughness due to the coarsening of the dendrites, which occurs during the semi-solid processing stages. Ductile to brittle transition (DTBT) temperatures are measured for a BMGMC. While at room temperature the BMGMC is highly toughened compared to a fully glassy alloy, it undergoes a DTBT by 250 K. At this point, its impact toughness mirrors that of the constituent glassy matrix. In the following chapter, BMGMCs are shown to have the capability of being capacitively welded to form single, monolithic structures. Shear measurements are performed across welded samples, and, at sufficient weld energies, are found to retain the strength of the parent alloy. Cross-sections are inspected via SEM and no visible crystallization of the matrix occurs. Next, metallic glasses and BMGMCs are formed into sheets and eggbox structures are tested in hypervelocity impacts. Metallic glasses are ideal candidates for protection against micrometeorite orbital debris due to their high hardness and relatively low density. A flat single layer, flat BMG is compared to a BMGMC eggbox and the latter creates a more diffuse projectile cloud after penetration. A three tiered eggbox structure is also tested by firing a 3.17 mm aluminum sphere at 2.7 km/s at it. The projectile penetrates the first two layers, but is successfully contained by the third. A large series of metallic glass alloys are created and their wear loss is measured in a pin on disk test. Wear is found to vary dramatically among different metallic glasses, with some considerably outperforming the current state-of-the-art crystalline material (most notably Cu43Zr 43Al7Be7). Others, on the other hand, suffered extensive wear loss. Commercially available Vitreloy 1 lost nearly three times as much mass in wear as alloy prepared in a laboratory setting. No conclusive correlations can be found between any set of mechanical properties (hardness, density, elastic, bulk, or shear modulus, Poisson's ratio, frictional force, and run in time) and wear loss. Heat treatments are performed on Vitreloy 1 and Cu43Zr43Al7Be7. Anneals near the glass transition temperature are found to increase hardness slightly, but decrease wear loss significantly. Crystallization of both alloys leads to dramatic increases in wear resistance. Finally, wear tests under vacuum are performed on the two alloys above. Vitreloy 1 experiences a dramatic decrease in wear loss, while Cu43Zr43Al7Be7 has a moderate increase. Meanwhile, gears are fabricated through three techniques: electrical discharge machining of 1 cm by 3 mm cylinders, semisolid forging, and copper mold suction casting. Initial testing finds the pin on disk test to be an accurate predictor of wear performance in gears. The final chapter explores an exciting technique in the field of additive manufacturing. Laser engineered net shaping (LENS) is a method whereby small amounts of metallic powders are melted by a laser such that shapes and designs can be built layer by layer into a final part. The technique is extended to mixing different powders during melting, so that compositional gradients can be created across a manufactured part. Two compositional gradients are fabricated and characterized. Ti 6Al-4V to pure vanadium was chosen for its combination of high strength and light weight on one end, and high melting point on the other. It was inspected by cross-sectional x-ray diffraction, and only the anticipated phases were present. 304L stainless steel to Invar 36 was created in both pillar and as a radial gradient. It combines strength and weldability along with a zero coefficient of thermal expansion material. Only the austenite phase is found to be present via x-ray diffraction. Coefficient of thermal expansion is measured for four compositions, and it is found to be tunable depending on composition.
Stationary semi-solid battery module and method of manufacture
Slocum, Alexander; Doherty, Tristan; Bazzarella, Ricardo; Cross, III, James C.; Limthongkul, Pimpa; Duduta, Mihai; Disko, Jeffry; Yang, Allen; Wilder, Throop; Carter, William Craig; Chiang, Yet-Ming
2015-12-01
A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federici, G.; Matera, R.; Chiocchio, S.
1994-11-01
One difficulty associated with the design and development of sacrificial plasma facing components that have to handle the high heat and particle fluxes in ITER is achieving the necessary contact conductance between the plasma protection material and the high-conductivity substrate in contact with the coolant. This paper presents a novel bond idea which is proposed as one of the options for the sacrificial energy dump targets located at the bottom of the divertor legs. The bonded joint in this design concept provides thermal and electrical contact between the armour and the cooled sub-structure while promoting remote, in-situ maintenance repair andmore » an easy replaceability of the armour part without disturbing the cooling pipes or rewelding neutron irradiated materials. To provide reliable and demountable adhesion, the bond consists of a metal alloy, treated in the semi-solid phase so that it leads to a fine dispersion of a globular solid phase into a liquid matrix (rheocast process). This thermal bond layer would normally operate in the solid state but could be brought reversibly to the semi-solid state during the armour replacement simply by heating it slightly above its solidus temperature. Material and design options are discussed in this paper. Possible methods of installation and removal are described, and lifetime considerations are addressed. In order to validate this concept within the ITER time-frame, a R&D programme must be rapidly implemented.« less
Eskola, M; Bäckman, S; Möttönen, S; Kekomäki, R
2015-04-01
Total colony-forming cells from thawed cord blood units (CBUs) include megakaryocytic colony-forming units (CFU-Mks), which survive the freezing process. The aim of this study was to evaluate whether different megakaryocytic progenitors from unseparated CBUs survive the freezing process and a short-term liquid culture. Thawed samples of CBUs were cultured in liquid medium. During the cultures, serial samples were drawn to assess the growth of different megakaryocytic progenitors in a semisolid collagen medium with identical cytokines as in the liquid medium. Megakaryocytic cells were detected using immunohistochemistry and flow cytometry. In suspension culture, the megakaryocytic progenitors almost completely lost the ability to generate large (burst-forming unit-like, BFU-like) megakaryocytic colonies in semisolid cultures (large colonies, median count per chamber d0: 7.25 vs. d7: 1.5; P < 0.0001), whereas the number of small colonies (median count per chamber d0: 7.25 vs. d7: 16.0; P = 0.0505) peaked at day seven. Further 7-day culture in suspension resulted in the decline of small colonies as well (d7: 16.0 vs. d14: 5.75; P = 0.0088). Total CFU-Mk count declined from 23.3 (range 12.5-34.0) at d0 to 7.25 (range 1.0-13.5) at d14 (P < 0.0001). Immediately post-thaw, CBUs possess an ability to generate large BFU-like megakaryocytic colonies, whereas the colonies were not detectable in most CBUs in semisolid culture after a short suspension culture. Small CFU-Mks were observed throughout the cultures. It may be that the BFU-Mk colonies matured and acquired CFU-Mk behaviour. © 2014 International Society of Blood Transfusion.
Semisolid forming of 44MnSiV6 microalloyed steel
NASA Astrophysics Data System (ADS)
Plata, Gorka; Lozares, Jokin; Hurtado, Iñaki; Azpilgain, Zigor; Idoyaga, Zuriñe
2018-05-01
Globalisation is forcing many sectors to be more cost-effective due to the low manpower cost of developing countries. This, in combination with European trends of green production and reduction of emissions, enhances the necessity of advanced technologies to remain at the forefront of the market. It is precisely in this field where the Semisolid forming (SSF) exhibits a great potential. In Mondragon Unibertsitatea, it has been demonstrated the capability of producing sound components of 42CrMo4 and S48C steels by saving material, energy and attaining as hot forged properties. To make the process even more cost-effective, it has also been proved the capacity of SSF 44MnSiV6 microalloyed steel that enables the striking of the post processing heat treatment.
40 CFR 407.81 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... semisolid food prepared from the combining of edible vegetable oil with acidifying, and egg yolk containing... STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and... and vegetables. (c) The term baby foods shall mean the processing of canned fresh fruits and...
Electrochemical slurry compositions and methods for preparing the same
Doherty, Tristan; Limthongkul, Pimpa; Butros, Asli; Duduta, Mihai; Cross, III, James C.
2016-11-01
Embodiments described herein generally relate to semi-solid suspensions, and more particularly to systems and methods for preparing semi-solid suspensions for use as electrodes in electrochemical devices such as, for example batteries. In some embodiments, a method for preparing a semi-solid electrode includes combining a quantity of an active material with a quantity of an electrolyte to form an intermediate material. The intermediate material is then combined with a conductive additive to form an electrode material. The electrode material is mixed to form a suspension having a mixing index of at least about 0.80 and is then formed into a semi-solid electrode.
Thixoforming of Stellite Powder Compacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogg, S. C.; Atkinson, H. V.; Kapranos, P.
2007-04-07
Thixoforming involves processing metallic alloys in the semi-solid state. The process requires the microstructure to be spheroidal when part-solid and part-liquid i.e. to consist of solid spheroids surrounded by liquid. The aim of this work was to investigate whether powder compacts can be used as feedstock for thixoforming and whether the consolidating pressure in the thixoformer can be used to remove porosity from the compact. The powder compacts were made from stellite 6 and stellite 21 alloys, cobalt-based alloys widely used for e.g. manufacturing prostheses. Isothermal heat treatments of small samples in the consolidated state showed the optimum thixoforming temperaturemore » to be in the range 1340 deg. C-1350 deg. C for both materials. The alloys were thixoformed into graphite dies and flowed easily to fill the die. Porosity in the thixoformed components was lower than in the starting material. Hardness values at various positions along the radius of the thixoformed demonstrator component were above the specification for both alloys.« less
Experimental Investigations And Numerical Modelling of 210CR12 Steel in Semi-Solid State
NASA Astrophysics Data System (ADS)
Macioł, Piotr; Zalecki, Władysław; Kuziak, Roman; Jakubowicz, Aleksandra; Weglarczyk, Stanisław
2011-05-01
Experimental investigation, including hot compression and simple closed die filling was performed. Temperature range of tests was between 1225 °C and 1320 °C. Temperature selection was adequate with liquid fraction between 20 and 60%, which is typical for thixoforming processes. In the die filling test, steel dies with ceramic layer was used (highly refractory air-setting mortar JM 3300 manufactured by Thermal Ceramics). Experiments were carried out on the Gleeble 3800 physical simulator with MCU unit. In the paper, methodology of experimental investigation is described. Dependency of forming forces on temperature and forming velocities is analysed. Obtained results are discussed. The second part of the paper concerns numerical modelling of semi-solid forming. Numerical models for both sets of test were developed. Structural and Computational Fluid Dynamics models are compared. Initial works in microstructural modelling of 210CR12 steel behaviour are described. Lattice Boltzman Method model for thixotropic flows is introduced. Microscale and macroscale models were integrated into multiscale simulation of semi-solid forming. Some fundamental issues related to multiscale modelling of thixoforming are discussed.
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2016-07-05
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2015-11-10
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solidmore » cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.« less
Semisolid forming of S48C steel grade
NASA Astrophysics Data System (ADS)
Plata, Gorka; Lozares, Jokin; Azpilgain, Zigor; Hurtado, Iñaki; Loizaga, Iñigo; Idoyaga, Zuriñe
2017-10-01
Steel production and component manufacturing industries have to face the challenge of globalization, trying to overcome the economic pressure to remain competitive. Moreover, the lightweighting trend of the latter years implies an even higher challenge to maintain the steel use. Therefore, advanced manufacturing processes will be the cornerstone. In this field, Semisolid forming (SSF) has demonstrated the capability of obtaining complex geometries and saving raw material and energy. Despite it is complicated the SSF of sound components, in Mondragon Unibertsitatea it has been successfully demonstrated the capability of producing strong enough automotive components with 42CrMo4 steel grade. In this work, we demonstrate the capability of SSF S48C steel grade with great mechanical properties.
Semi-solid electrode cell having a porous current collector and methods of manufacture
Chiang, Yet-Ming; Carter, William Craig; Cross, III, James C.; Bazzarella, Ricardo; Ota, Naoki
2017-11-21
An electrochemical cell includes an anode, a semi-solid cathode, and a separator disposed therebetween. The semi-solid cathode includes a porous current collector and a suspension of an active material and a conductive material disposed in a non-aqueous liquid electrolyte. The porous current collector is at least partially disposed within the suspension such that the suspension substantially encapsulates the porous current collector.
Pegoraro, Natháli S; Barbieri, Allanna V; Camponogara, Camila; Mattiazzi, Juliane; Brum, Evelyne S; Marchiori, Marila C L; Oliveira, Sara M; Cruz, Letícia
2017-02-01
This study aimed to investigate the feasibility of producing semisolid formulations based on nanocapsule suspensions containing the association of the coenzyme Q10 and vitamin E acetate by adding gellan gum (2%) to the suspensions. Furthermore, we studied their application as an alternative for the treatment of inflammation induced by ultraviolet B (UVB) radiation. For this, an animal model of injury induced by UVB-radiation was employed. All semisolids presented pH close to 5.5, drug content above 95% and mean diameter on the nanometric range, after redispersion in water. Besides, the semisolids presented non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor values. The results also showed that the semisolid containing coenzyme Q10-loaded nanocapsules with higher vitamin E acetate concentration reduced in 73±8% the UVB radiation-induced ear edema. Moreover, all formulations tested were able to reduce inflammation parameters evaluated through MPO activity and histological procedure on injured tissue and the semisolids containing the nanoencapsulated coenzyme Q10 reduced oxidative parameters assessment through the non-protein thiols levels and lipid peroxidation. This way, the semisolids based on nanocapsules may be considered a promising approach for the treatment and prevention of skin inflammation diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Horiuchi, Akira; Sakai, Ryosei; Tamaki, Michio; Kajiyama, Masashi; Tanaka, Naoki; Morikawa, Akio
2018-03-21
Aspiration is a common problem in bedridden gastrostomy-fed patients. We compared gastric emptying of an elemental liquid diet and a commercial semisolid diet in bedridden gastrostomy-fed patients. Study 1: from January 2013 to December 2016, consecutive bedridden patients receiving percutaneous endoscopic gastrostomy (PEG) semisolid feeding hospitalized due to aspiration pneumonia were switched to elemental liquid diet feedings. The frequency of defecation, tube feed contents aspirated from the trachea, and aspiration pneumonia during hospitalization were retrospectively reviewed. Study 2 was a randomized, crossover trial comparing C sodium acetate gastric emptying of a commercial elemental liquid or a commercial semisolid diet in bedridden PEG patients and controls. Study 1: 18 patients were enrolled. Elemental liquid diet was aspirated from the trachea in 1 (5.6%) (once in 24 observations); neither aspiration pneumonia nor diarrhea developed during elemental liquid diet feeding over 2 weeks observation. Study 2: 8 PEG patients and 8 healthy subjects were separately randomized to assess gastric emptying of the commercial elemental and semisolid diets. The elemental liquid diet was associated with a significant decrease of the 10%, 30%, or 50% emptying (excretion) time (P<0.05) and an increased the area under the curve (% dose/h) compared with the commercial semisolid diet (P<0.05). In healthy subjects there was no significant difference in gastric empting between the 2 diets. Elemental liquid diets emptied more rapidly from the stomach than semisolid diets in bedridden PEG patients. They may prevent or reduce aspiration pneumonia compared with semisolid diets.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.
... News Physician Resources Professions Site Index A-Z Blood Clots Blood clots are semi-solid masses of blood ... evaluated? How are blood clots treated? What are blood clots? Blood clots are semi-solid masses of blood. ...
NASA Astrophysics Data System (ADS)
Morita, S.; Yasuda, H.; Nagira, T.; Gourlay, C. M.; Yoshiya, M.; Sugiyama, A.
2012-07-01
In-situ observation was carried out to observe deformation of semi-solid Fe-2mass%C steel with 65% solid and globular morphology by X-ray radiography. Deformation was predominantly controlled by the rearrangement of globules. The solid particles were pushed into each other and rearrangement caused lower solid fraction regions to form. On the basis of the observation, a macroscopic model that introduces a normal stress acting on the solid due to collisions and rearrangement is proposed. The solid particles are treated as a non-Newtonian fluid. The stiffness parameters, which characterize the flow of the solid, are introduced. Stability of semisolid to fluctuations in solid fraction during simple shear was analysed. Shear deformation can be stably localized in the semisolid with a certain solid fraction range. The model essentially reproduces band segregation formation.
Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale; Mabee, Warren
2014-07-01
Sludge is a semi-solid residue produced from wastewater treatment processes. It contains biodegradable and recalcitrant organic compounds, as well as pathogens, heavy metals, and other inorganic constituents. Sludge can also be considered a source of nutrients and energy, which could be recovered using economically viable approaches. In the present paper, several commonly used sludge treatment processes including land application, composting, landfilling, anaerobic digestion, and combustion are reviewed, along with their potentials for energy and product recovery. In addition, some innovative thermo-chemical techniques in pyrolysis, gasification, liquefaction, and wet oxidation are briefly introduced. Finally, a brief summary of selected published works on the life cycle assessment of a variety of sludge treatment and end-use scenarios is presented in order to better understand the overall energy balance and environmental burdens associated with each sludge treatment pathway. In all scenarios investigated, the reuse of bioenergy and by-products has been shown to be of crucial importance in enhancing the overall energy efficiency and reducing the carbon footprint. © The Author(s) 2014.
Zhao, Kun; Yuan, Yue; Wang, Hui; Li, Panpan; Bao, Zhihong; Li, Yue
2016-10-01
The aim of the present study was to develop a novel semi-solid self-microemulsifying drug delivery system (SMEDDS) using Gelucire(®) 44/14 as oil with strong solid character to improve the oral bioavailability of poorly soluble drug valsartan. The solubility of valsartan in various excipients was determined, the pseudo-ternary phase diagram was constructed in order to screen the optimal excipients, and DSC analysis was performed to evaluate the melting point of SMEDDS. The optimal drug-loaded SMEDDS formulation was consisted of 30% Gelucire(®) 44/14 (oil), 40% Solutol(®) HS 15 (surfactant), and 30% Transcutol(®) P (cosurfactant) (w/w) with 80 mg valsartan/g excipients. The average droplet sizes of the optimized blank and drug-loaded SMEDDS formulations were 26.20 ± 1.43 and 33.34 ± 2.15 nm, and the melting points of them were 35.6 and 36.8 °C, respectively. The in vitro dissolution rate of optimal semi-solid SMEDDS was increased compared with commercial capsules, resulting in the 2.72-fold and 2.97-fold enhancement of Cmax and AUC0-t after oral administration in rats, respectively. These results indicated that the novel semi-solid SMEDDS formulation could potentially improve the oral bioavailability of valsartan, and the semi-solid SMEDDS was a desirable system than the traditional liquid SMEDDS because it was convenient for preparation, storage and transportation due to semi-solid state at room temperature and melted state at body temperature.
NASA Astrophysics Data System (ADS)
Dutkiewicz, Jan; Rogal, Łukasz; Fima, Przemyslaw; Ozga, Piotr
2018-04-01
MgLiAl base composites strengthened with graphene platelets were prepared by semisolid processing of ball-milled alloy chips with 2% of graphene platelets. Composites strengthened with graphene platelets show higher hardness and yield stress than the cast alloys, i.e., 160 MPa as compared to 90 MPa for as-cast alloy MgLi9Al1.5. Mechanical properties for MgLiAl-based composites were similar or higher than for composites based on conventional AZ91 or WE43 alloys. The strengthening however was not only due to the presence of graphene, but also phases resulting from the reaction between carbon and lithium, i.e., Li2C2 carbide. Graphene platelets were located at globules boundaries resulting from semisolid processing for all investigated composites. Graphene platelets were in agglomerates forming continuous layers at grain boundaries in the composite based on the alloy MgLi4.5Al1.5. The shape of agglomerates was more complex and wavy in the composite based on MgLi9Al1.5 alloy most probably due to lithium-graphene reaction. Electron diffraction from the two-phase region α + β in MgLi9Al1.5 indicated that [001]α and [110]β directions are rotated about 4° from the ideal relationship [001] hex || [110] bcc phases. It showed higher lattice rotation than in earlier studies what is most probably caused by lattice slip and rotation during semisolid pressing causing substantial deformation particularly within the β phase. Raman spectroscopy studies confirmed the presence of graphene platelets within agglomerates and in addition the presence mainly of Li2C2 carbides in composites based on MgLi4.5Al1.5 and Mg9Li1.5Al alloys. From the character of Raman spectra refinement of graphene platelets was found in comparison with their initial size. The graphene areas without carbides contain graphene nanoplatelets with lateral dimension close to initial graphene sample. Electron diffraction allowed to confirm the presence of Li2C2 carbide at the surface of agglomerates found from Raman spectroscopy results.
NASA Astrophysics Data System (ADS)
Dutkiewicz, Jan; Rogal, Łukasz; Fima, Przemyslaw; Ozga, Piotr
2018-05-01
MgLiAl base composites strengthened with graphene platelets were prepared by semisolid processing of ball-milled alloy chips with 2% of graphene platelets. Composites strengthened with graphene platelets show higher hardness and yield stress than the cast alloys, i.e., 160 MPa as compared to 90 MPa for as-cast alloy MgLi9Al1.5. Mechanical properties for MgLiAl-based composites were similar or higher than for composites based on conventional AZ91 or WE43 alloys. The strengthening however was not only due to the presence of graphene, but also phases resulting from the reaction between carbon and lithium, i.e., Li2C2 carbide. Graphene platelets were located at globules boundaries resulting from semisolid processing for all investigated composites. Graphene platelets were in agglomerates forming continuous layers at grain boundaries in the composite based on the alloy MgLi4.5Al1.5. The shape of agglomerates was more complex and wavy in the composite based on MgLi9Al1.5 alloy most probably due to lithium-graphene reaction. Electron diffraction from the two-phase region α + β in MgLi9Al1.5 indicated that [001]α and [110]β directions are rotated about 4° from the ideal relationship [001] hex || [110] bcc phases. It showed higher lattice rotation than in earlier studies what is most probably caused by lattice slip and rotation during semisolid pressing causing substantial deformation particularly within the β phase. Raman spectroscopy studies confirmed the presence of graphene platelets within agglomerates and in addition the presence mainly of Li2C2 carbides in composites based on MgLi4.5Al1.5 and Mg9Li1.5Al alloys. From the character of Raman spectra refinement of graphene platelets was found in comparison with their initial size. The graphene areas without carbides contain graphene nanoplatelets with lateral dimension close to initial graphene sample. Electron diffraction allowed to confirm the presence of Li2C2 carbide at the surface of agglomerates found from Raman spectroscopy results.
NASA Astrophysics Data System (ADS)
Das, Prosenjit; Samanta, Sudip K.; Mondal, Biswanath; Dutta, Pradip
2018-04-01
In the present paper, we present an experimentally validated 3D multiphase and multiscale solidification model to understand the transport processes involved during slurry generation with a cooling slope. In this process, superheated liquid alloy is poured at the top of the cooling slope and allowed to flow along the slope under the influence of gravity. As the melt flows down the slope, it progressively loses its superheat, starts solidifying at the melt/slope interface with formation of solid crystals, and eventually exits the slope as semisolid slurry. In the present simulation, the three phases considered are the parent melt as the primary phase, and the solid grains and air as secondary phases. The air phase forms a definable air/liquid melt interface as the free surface. After exiting the slope, the slurry fills an isothermal holding bath maintained at the slope exit temperature, which promotes further globularization of microstructure. The outcomes of the present model include prediction of volume fractions of the three different phases considered, grain evolution, grain growth, size, sphericity and distribution of solid grains, temperature field, velocity field, macrosegregation and microsegregation. In addition, the model is found to be capable of making predictions of morphological evolution of primary grains at the onset of isothermal coarsening. The results obtained from the present simulations are validated by performing quantitative image analysis of micrographs of the rapidly oil-quenched semisolid slurry samples, collected from strategic locations along the slope and from the isothermal slurry holding bath.
NASA Astrophysics Data System (ADS)
Szklarz, Zbigniew; Bisztyga, Magdalena; Krawiec, Halina; Lityńska-Dobrzyńska, Lidia; Rogal, Łukasz
2017-05-01
The influence of semi-solid metal processing (SSM called also as thixoforming) of ZE41A magnesium alloy on the electrochemical behavior in 0.1 M NaCl solution was investigated. To describe the corrosion behavior of ZE41A alloy, the electrochemical measurements were conducted in global and local scale for two types of specimens: (1) ingot-feedstock, (2) specimen after thixoforming and T6 treatment. The heat treatment and thixoforming significantly improved mechanical properties of ZE41A alloy. The global corrosion potential is slightly higher for treated sample what is related to the presence of Zr-Zn nanoparticles distributed in solid solution. The corrosion behavior differences between feedstock and thixo-cast after T6 samples are also visible in local scale, what has been revealed by using microcapillary technique. However there is no improvement in corrosion behavior after treatment. Corrosion morphology of the treated sample indicate higher susceptibility to pitting and filiform corrosion. Corrosion rate is also slightly higher.
Djekic, Ljiljana; Jankovic, Jovana; Čalija, Bojan; Primorac, Marija
2017-08-07
The study aimed to develop semisolid self-microemulsifying drug delivery systems (SMEDDSs) as carriers for oral delivery of aciclovir in hard hydroxypropylmethyl cellulose (HPMC) capsules. Six self-dispersing systems (SD1-SD6) were prepared by loading aciclovir into the semisolid formulations consisting of medium chain length triglycerides (lipid), macrogolglycerol hydroxystearate (surfactant), polyglyceryl-3-dioleate (cosurfactant), glycerol (hydrophilic cosolvent), and macrogol 8000 (viscosity modifier). Their characterization was performed in order to identify the semisolid system with rheological behaviour suitable for filling in hard HPMC capsules and fast dispersibility in acidic and alkaline aqueous media with formation of oil-in-water microemulsions. The optimal SMEDDS was loaded with aciclovir at two levels (2% and 33.33%) and morphology and aqueous dispersibility of the obtained systems were examined by applying light microscopy and photon correlation spectroscopy (PCS), respectively. The assessment of diffusivity of aciclovir from the SMEDDSs by using an enhancer cell model, showed that it was increased at a higher drug loading. Differential scanning calorimetry (DSC) analysis indicated that the SMEDDSs were semisolids at temperatures up to 50°C and physically stable and compatible with HPMC capsules for 3 months storage at 25°C and 4°C. The results of in vitro release study revealed that the designed solid dosage form based on the semisolid SMEDDS loaded with the therapeutic dose of 200mg, may control partitioning of the solubilized drug from in situ formed oil-in-water microemulsion carrier into the sorrounding aqueous media, and hence decrease the risk for precipitation of the drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Production and degradation of oxalic acid by brown rot fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espejo, E.; Agosin, E.
1991-07-01
Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted {sup 14}C-labeled oxalic acid to CO{sub 2} during cellulose depolymerization. The other brown rot fungi also oxidized {sup 14}C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay.more » Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize {sup 14}C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi.« less
Modern Aspects of Liquid Metal Engineering
NASA Astrophysics Data System (ADS)
Czerwinski, Frank
2017-02-01
Liquid metal engineering (LME) refers to a variety of physical and/or chemical treatments of molten metals aimed at influencing their solidification characteristics. Although the fundamentals have been known for decades, only recent progress in understanding solidification mechanisms has renewed an interest in opportunities this technique creates for an improvement of castings. This review covers conventional and novel concepts of LME with their application to modern manufacturing techniques based not only on liquid but also on semisolid routes. The role of external forces applied to the melt combined with grain nucleation control is explained along with laboratory- and commercial-scale equipment designed for implementation of various concepts exploring mechanical, electromagnetic, and ultrasound principles. An influence of melt treatments on quality of the final product is considered through distinguishing between internal integrity of net shape components and the alloy microstructure. Recent global developments indicate that exploring the synergy of melt chemistry and physical treatments achieved through LME allows creating the optimum conditions for nucleation and growth during solidification, positively affecting quality of castings.
Dyja, R; Jankowski, A
2017-08-01
To assess the effect of two different additives (propylene glycol (PG) and polyethylene glycol 400 (PEG 400)) on release and in vitro skin retention of quercetin and chrysin from semisolid bases (amphiphilic creams and acidic carbomer gels). For obtaining semisolid formulations, flavonoids were pre-dissolved in the liquid (PG or PEG 400) or directly suspended in the semisolid base. Three chrysin formulations ('cream 0', 'PG-cream' and 'PEG 400-cream') and five quercetin formulations ('cream 0', 'PG cream', 'PEG 400 cream', 'gel 0' and 'PG gel') were prepared. The release studies were carried out in Franz diffusion cells by means of a cellulose membrane. The porcine ear skin was used in in vitro skin retention studies. The dissolution was a prerequisite to increase the release rates of tested flavonoids from obtained semisolid formulations. The cumulative amount of chrysin released after 6 h from 'PEG 400 cream' containing partly dissolved form of that flavonoid was higher than that from 'cream 0' or 'PG cream' containing its suspended form. The formulations containing quercetin dissolved in PG ('PG cream', 'PG gel') or PEG 400 ('PEG 400 cream') exhibited higher release rates of that flavonoid than corresponding semisolid suspensions ('cream 0' or 'gel 0'). The effects of both liquid additives (PG and PEG 400) on the cumulative amount of quercetin released after 6 h were comparable. However, there was no correlation between the release rate and the skin retention. The amounts of the flavonoids found in the skin were strongly affected by the type of the used solvent. While PG increased the skin retention of both flavonoids, PEG 400 had no effect on chrysin skin retention and delayed quercetin skin absorption. The proper choice of the solvent added to the semisolid base is crucial for enhanced skin delivery of the tested flavonoids. PG is more efficient absorption promoter than PEG 400 of both chrysin and quercetin. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
USDA-ARS?s Scientific Manuscript database
A planar transmission-line configuration for rapid, nondestructive, wideband permittivity measurements of liquid and semisolid materials at microwave frequencies is described. The transmission-line propagation constant of the proposed configuration is determined with the multiline technique from sca...
Bacillus thuringiensis: fermentation process and risk assessment. A short review.
Capalbo, D M
1995-01-01
Several factors make the local production of Bacillus thuringiensis (Bt) highly appropriate for pest control in developing nations. Bt can be cheaply produced on a wide variety of low cost, organic substrates. Local production results in considerable savings in hard currency which otherwise would be spent on importation of chemical and biological insecticides. The use of Bt in Brazil has been limited in comparison with chemical insecticides. Although Bt is imported, some Brazilian researchers have been working on its development and production. Fermentation processes (submerged and semi-solid) were applied, using by-products from agro-industries. As the semi-solid fermentation process demonstrated to be interesting for Bt endotoxins production, it could be adopted for small scale local production. Although promising results had been achieved, national products have not been registered due to the absence of a specific legislation for biological products. Effective actions are being developed in order to solve this gap. Regardless of the biocontrol agents being considered atoxic and harmless to the environment, information related to direct and indirect effects of microbials are still insufficient in many cases. The risk analysis of the use of microbial control agents is of upmost importance nowadays, and is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at leastmore » 5 mAh/cm.sup.2 at a C-rate of C/2.« less
Velazquez, J R; Lacy, P; Mahmudi-Azer, S; Bablitz, B; Milne, C D; Denburg, J A; Moqbel, R
2000-01-01
Eosinophils elaborate a number of proinflammatory mediators, including immunoregulatory cytokines and chemokines. Interleukin (IL)-4 and RANTES are important cytokines that have previously been shown to be expressed by mature eosinophils. We hypothesized that de novo synthesis of IL-4 and RANTES occurs in nascent eosinophils, leading to storage of newly produced proteins in crystalloid granule-like structures. Cytokine mRNA and protein expression were examined in cultured eosinophil colonies, which were derived from purified cord blood CD34+ cells and generated in semisolid media (methylcellulose) in the presence of recombinant human (rh)IL-3 and rhIL-5. Cytokine mRNA profiles were analysed by the reverse transcription–polymerase chain reaction (RT–PCR) to determine transcription of IL-4 and RANTES in cells on days 0, 7, 14, 21 and 28 of culture. The expression of translated cytokine products and granule major basic protein (MBP) was confirmed, from day 23 onwards, for colonies cultured in semisolid media, by immunofluorescent labelling and confocal laser-scanning microscopy (CLSM). We found that mRNA sequences encoding IL-4 and RANTES were expressed in freshly prepared, non-differentiated CD34+ cells. Furthermore, RANTES mRNA localized to carbol chromotrope 2R-positive colony cells, as assessed using in situ RT–PCR on day 21 of culture in semisolid media, and was found to gradually decrease (relative to β2-microglobulin) in rhIL-3- and rhIL-5-treated colony cells (comprising > 90% eosinophil-like cells) up to day 28. Immunoreactivity for IL-4 and RANTES co-localized with MBP in maturing colony eosinophils on day 23 of culture in semisolid media, as judged by CLSM. These results suggest that synthesis and storage of immunoregulatory cytokines, essential for processes associated with adaptive immunity, occurs in nascent eosinophils during their growth and differentiation. PMID:11106947
R-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy
Zhou, Bing; Kang, Yonglin; Qi, Mingfan; Zhang, Huanhuan; Zhu, Guoming
2014-01-01
The continuing quest for cost-effective and complex shaped aluminum castings with fewer defects for applications in the automotive industries has aroused the interest in rheological high pressure die casting (R-HPDC). A new machine, forced convection mixing (FCM) device, based on the mechanical stirring and convection mixing theory for the preparation of semisolid slurry in convenience and functionality was proposed to produce the automotive shock absorber part by R-HPDC process. The effect of barrel temperature and rotational speed of the device on the grain size and morphology of semi-solid slurry were extensively studied. In addition, flow behavior and temperature field of the melt in the FCM process was investigated combining computational fluid dynamics simulation. The results indicate that the microstructure and pore defects at different locations of R-HPDC casting have been greatly improved. The vigorous fluid convection in FCM process has changed the temperature field and composition distribution of conventional solidification. Appropriately increasing the rotational speed can lead to a uniform temperature filed sooner. The lower barrel temperature leads to a larger uniform degree of supercooling of the melt that benefits the promotion of nucleation rate. Both of them contribute to the decrease of the grain size and the roundness of grain morphology. PMID:28788608
Semi-solid dosage form of clonazepam for rapid oral mucosal absorption.
Sakata, Osamu; Machida, Yoshiharu; Onishi, Hiraku
2011-07-01
In order to obtain an alternative to the intravenous (i.v.) dosage form of clonazepam (CZ), an oral droplet formulation of CZ was developed previously; however, the droplet was physically unstable. Therefore, in the present study, it was attempted to develop an easily-handled dosage form, which was more physically stable and allowed rapid drug absorption from oral mucosa. A semi-solid dosage form, composed of polyethylene glycol 1500 (PEG), CZ, and oleic acid (OA) at 37/1/2 (w/w) and named PEG/CZ/OA, and a semi-solid dosage form containing PEG and CZ at 39/1 (w/w), called PEG/CZ, were prepared. Their physical stability in air at room temperature and oral mucosal absorption in rats were investigated. The semi-solid dosage forms were much more stable physically than the droplet, that is, no recrystallization of CZ was observed for at least 8 days. The effective concentration for humans and rats (20 ng/mL or more) was achieved within 30 min after buccal administration for both PEG/CZ/OA and PEG/CZ. The plasma concentration increased gradually and less varied at each time point for PEG/CZ/OA. PEG/CZ/OA was found to show more rapid and higher absorption of CZ in buccal administration than in sublingual administration. Buccal administration with the semi-solid dosage PEG/CZ with or without OA was suggested to be a possibly useful novel dosage form as an alternative to i.v. injection.
Measurement of the controlled variable during heating of Ti6Al4V for thixoforging
NASA Astrophysics Data System (ADS)
Gerlach, O.; Lechler, A.; Verl, A.
2018-02-01
Controlled heating of metal billets into the semi-solid state for thixoforming is a challenging task, mainly due to the difficulties in measuring the liquid fraction of the billet during heating. Past research primarily focused on methods measuring the liquid fraction during heating of low-melting aluminium alloys. One of these methods is time constant measurement, a contactless measurement method that uses the heating coil as a sensor. The current through the coil is used to determine the electrical time constant of the heating circuit, which itself is influenced by the specific resistance of the billet inside the coil. While previous works focused on the suitability of this method for industrial applications using aluminum alloys, this paper extends this research to the high-melting titanium alloy Ti6Al4V. This alloys shows high strength, low density and excellent corrosion resistance. It is therefore used to produce light-weight and durable components for medical and aerospace applications. Ti6Al4V is an expensive and difficult to machine alloy. Thus, it is an interesting alloy for thixoforging. However, heating of the billet into a homogeneous state of defined liquid fraction is difficult due to the poor thermal conductivity of Ti6Al4V. This paper analyses the potential of using time constant measurement for controlled heating of Ti6Al4V into the semi-solid state.
Mechanisms and mechanics of shape loss during supersolidus liquid-phase sintering
NASA Astrophysics Data System (ADS)
Lal, Anand
Rapid sinter densification of relatively coarse prealloyed powders is possible by exceeding the solidus temperature in an approach termed supersolidus liquid phase sintering (SLPS). However, narrow processing windows for densification without distortion often limit this process. The liquid films at the grain boundaries that are responsible for densification also reduce the structural rigidity of components. Hence, components tend to slump under their own weight. Thus, the present study investigates shape loss during SLPS and rationalizes the processing and material factors with regard to separating densification from distortion. Experiments are performed on various prealloyed powders, including bronze, 316L stainless steel, and T15 tool steel. Differential thermal analysis, dilatometry, and in situ video imaging of sintering compacts are used to follow melting, densification, and distortion, respectively. Further, density and dimensional measurements are performed on sintered compacts. Results indicate a dependence of distortion on the sintering temperature and time, compact size, and melting behavior of the alloy. It is shown that the sintering temperature window, where high-density, precise components are obtained, can be widened for 316L stainless steel by boron addition. For the first time, a beam bending technique is used to measure the macroscopic apparent viscosity of semisolid bronze. The viscosity drops with temperature above the solidus and lies in the range of 108 to 106 Pa-s. Additionally, the in situ transverse rupture strength of bronze is measured to demonstrate the softening above the solidus temperature. Further, microstructural measurements are performed to enable correlation with the slumping behavior and viscosity. A model combining the deformation mechanisms, driving forces, and microstructural characteristics is developed to predict the conditions for densification and distortion onset. The microstructure is also correlated with the magnitude of shape loss and viscosity of a semisolid aggregate. A mechanistic model, based on the semisolid rheological characteristics, is developed to predict the magnitude and nature of shape loss. The model shows good correlation with experimental data for bronze. This study offers critical insight into SLPS and provides processing strategies for fabrication of high-density components without shape loss.
Contamination of semi-solid dosage forms by leachables from aluminium tubes.
Haverkamp, Jan Boris; Lipke, Uwe; Zapf, Thomas; Galensa, Rudolf; Lipperheide, Cornelia
2008-11-01
The objective of this study was to determine to what extent bisphenol A (BPA), bisphenol A diglycidyl ether (BADGE) and its derivatives are extractable from epoxy-based coatings of aluminium tubes for pharmaceutical use and to monitor their leaching into different kinds of semi-solid dosage forms. Migration increasing factors should be evaluated. Extraction tests using acetonitrile for 10 days at 40 degrees C turned out to be suitable to estimate the maximum amount of extractables. A plain variability in the nature and amount of extractables among tubes of different vendors (n=7) could be demonstrated. Leaching of the remnants into various semi-solid drug products (ointment, cream, gel) during storage (30 degrees C/40 degrees C) was verifiable. Leachable profiles were, apart from storage time and temperature, decisively influenced by the matrix. In particular, matrix polarity seemed to play a crucial role. Thus, the highest amount of leachables was found in isopropanol-based carbomer gel. Furthermore, in-use conditions (mechanical stress) enhanced migration significantly. In order to ensure quality and safety of semi-solid formulae, interactions between the coating material and the drug product should be thoroughly evaluated.
Effect of ZnO nanoparticles to mechanical properties of thixoformed Mg-Al-Zn alloy
NASA Astrophysics Data System (ADS)
Kusharjanto; Soepriyanto, Syoni; Ardian Korda, Akhmad; Adi Dwiwanto, Supono
2018-03-01
Magnesium alloys are lightweight metallic materials with low mechanical properties. Therefore, in order to meet the requirements in various industrial sector applications such as automotive, aerospace and electronic frame, improvement strength and ductility is required. The purpose of this research is to investigate the effect of adding ZnO nanoparticles to changes in microstructure, hardness, mechanical properties regarding with yield and ultimate strength. In this research, the molten Mg-Al-Zn alloy is added ZnO nanoparticles with a various range of 0, 1; 3 and 5 wt% and then cooling in the room temperature. Futhermore, Mg-Al-Zn-ZnO is heated at a temperature of 530 °C (in the semi-solid temperature range 470 °C–595 °C or 53% solid fraction) and then thixoforming process is performed. The characterization results of the thixoforming product show that, the microstructure is globular in shape with maximum hardness value of 107.14 VHN, the yield strength of 214.87 MPa, and the ultimate tensile strength of 311.25 MPa in 5 wt% ZnO nanoparticles.
Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.
Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M
2011-10-01
The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.
Semi-Solid and Solid Dosage Forms for the Delivery of Phage Therapy to Epithelia.
Brown, Teagan L; Petrovski, Steve; Chan, Hiu Tat; Angove, Michael J; Tucci, Joseph
2018-02-26
The delivery of phages to epithelial surfaces for therapeutic outcomes is a realistic proposal, and indeed one which is being currently tested in clinical trials. This paper reviews some of the known research on formulation of phages into semi-solid dosage forms such as creams, ointments and pastes, as well as solid dosage forms such as troches (or lozenges and pastilles) and suppositories/pessaries, for delivery to the epithelia. The efficacy and stability of these phage formulations is discussed, with a focus on selection of optimal semi-solid bases for phage delivery. Issues such as the need for standardisation of techniques for formulation as well as for assessment of efficacy are highlighted. These are important when trying to compare results from a range of experiments and across different delivery bases.
Semi-Solid and Solid Dosage Forms for the Delivery of Phage Therapy to Epithelia
Petrovski, Steve; Chan, Hiu Tat; Angove, Michael J.; Tucci, Joseph
2018-01-01
The delivery of phages to epithelial surfaces for therapeutic outcomes is a realistic proposal, and indeed one which is being currently tested in clinical trials. This paper reviews some of the known research on formulation of phages into semi-solid dosage forms such as creams, ointments and pastes, as well as solid dosage forms such as troches (or lozenges and pastilles) and suppositories/pessaries, for delivery to the epithelia. The efficacy and stability of these phage formulations is discussed, with a focus on selection of optimal semi-solid bases for phage delivery. Issues such as the need for standardisation of techniques for formulation as well as for assessment of efficacy are highlighted. These are important when trying to compare results from a range of experiments and across different delivery bases. PMID:29495355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Carter, Craig W.; Ho, Bryan Y.
Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). Highmore » energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.« less
Drag reduction through self-texturing compliant bionic materials
Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji
2017-01-01
Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction. PMID:28053309
Giusti, P.; Mancini, V.; Grosso, M.; Barillari, M.R.; Bastiani, L.; Molinaro, S.; Nacci, A.
2016-01-01
SUMMARY The purpose of this study was to compare videofluoroscopy (VFS), fiberoptic endoscopic evaluation of swallowing (FEES) and oro-pharyngo- oesophageal scintigraphy (OPES) with regards to premature spillage, post-swallowing residue and aspiration to assess the reliability of these tests for detection of oro-pharyngeal dysphagia. Sixty patients affected with dysphagia of various origin were enrolled in the study and submitted to VFS, FEES and OPES using a liquid and semi-solid bolus. As a reference, we used VFS. Both the FEES and the OPES showed good sensitivity with high overall values (≥ 80% and ≥ 90% respectively). The comparison between FEES vs VFS concerning drop before swallowing showed good specificity (84.4% for semi-solids and 86.7% for liquids). In the case of post-swallowing residue, FEES vs VFS revealed good overall validity (75% for semi-solids) with specificity and sensitivity well balanced for the semi-solids. OPES vs. VFS demonstrated good sensitivity (88.6%) and overall validity (76.7%) for liquids. The analysis of FEES vs. VFS for aspiration showed that the overall validity was low (≤ 65%). On the other hand, OPES demonstrated appreciable overall validity (71.7%). VFS, FEES and OPES are capable of detecting oro-pharyngeal dysphagia. FEES gave significant results in the evaluation of post-swallowing residues. PMID:27958600
Rai, Vineet Kumar; Mishra, Nidhi; Yadav, Kuldeep Singh; Yadav, Narayan Prasad
2018-01-28
The use of nanoemulsion in augmenting dermal and transdermal effectiveness of drugs has now well established. The development of nanoemulsion based semisolid dosage forms is an active area of present research. However, thickening or liquid-to-semisolid conversion of the nanoemulsions provides opportunities to the formulation scientist to explore novel means of solving instability issues during transformation. Extending knowledge about the explicit role of nature/magnitude of zeta potential, types of emulsifiers and selection of appropriate semisolid bases could place these versatile carriers from laboratory to industrial scale. This article reviews the progressive advancement in the delivery of medicament via nanoemulsion with special reference to the dermal and transdermal administration. It is attempted to explore the most suitable semi solid dosage form for the particular type of nanoemulsion (o/w, w/o and others) and effect of particle size and zeta potential on the delivery of drugs through dermal or transdermal route. Finally, this review also highlights the basic principles and fundamental considerations of nanoemulsion manufacture, application of nanoemulsion based semisolid dosage forms in the dermal/transdermal administration and basic considerations during the nanoemulsion absorption into and through skin. Copyright © 2017 Elsevier B.V. All rights reserved.
Drag reduction through self-texturing compliant bionic materials.
Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji
2017-01-05
Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.
Drag reduction through self-texturing compliant bionic materials
NASA Astrophysics Data System (ADS)
Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji
2017-01-01
Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.
Consolidation process for producing ceramic waste forms
Hash, Harry C.; Hash, Mark C.
2000-01-01
A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.
High energy density redox flow device
Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa
2014-05-13
Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.
NASA Astrophysics Data System (ADS)
Ratna Kumar, P. S. Samuel; Robinson Smart, D. S.; Alexis, S. John
2018-04-01
Aluminium alloy 5083 (AA5083) is a widely used material in aerospace, marine, defence and structural applications were mechanical and corrosion resistance property plays a vital role. For the present work, MWCNT / Nanoclay (montmorillonite (MMT) K10) mixed with AA5083 for different composition in weight percentage to enhance the mechanical property. Semi-solid state casting method (Compo-casting) was used to fabricate the composite materials. By using Field-emission scanning electron microscope (FESEM) the uniform dispersion of the reinforcement and microstructure were studied. Finally, the addition of Nanoclay shows decrease in tensile strength compared to the AA5083 / MWCNT composites and hardness value of the composites (AA5083 / MWCNT and AA5083 / Nanoclay) was found to increase significantly.
Fattori, B; Giusti, P; Mancini, V; Grosso, M; Barillari, M R; Bastiani, L; Molinaro, S; Nacci, A
2016-10-01
The purpose of this study was to compare videofluoroscopy (VFS), fiberoptic endoscopic evaluation of swallowing (FEES) and oro-pharyngo- oesophageal scintigraphy (OPES) with regards to premature spillage, post-swallowing residue and aspiration to assess the reliability of these tests for detection of oro-pharyngeal dysphagia. Sixty patients affected with dysphagia of various origin were enrolled in the study and submitted to VFS, FEES and OPES using a liquid and semi-solid bolus. As a reference, we used VFS. Both the FEES and the OPES showed good sensitivity with high overall values (≥ 80% and ≥ 90% respectively). The comparison between FEES vs VFS concerning drop before swallowing showed good specificity (84.4% for semi-solids and 86.7% for liquids). In the case of post-swallowing residue, FEES vs VFS revealed good overall validity (75% for semi-solids) with specificity and sensitivity well balanced for the semi-solids. OPES vs. VFS demonstrated good sensitivity (88.6%) and overall validity (76.7%) for liquids. The analysis of FEES vs. VFS for aspiration showed that the overall validity was low (≤ 65%). On the other hand, OPES demonstrated appreciable overall validity (71.7%). VFS, FEES and OPES are capable of detecting oro-pharyngeal dysphagia. FEES gave significant results in the evaluation of post-swallowing residues. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.
Materials for suspension (semi-solid) electrodes for energy and water technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzell, Kelsey B.; Boota, Muhammad; Gogotsi, Yury
2015-01-01
Suspension or semi-solid electrodes have recently gained increased attention for large-scale applications such as grid energy storage, capacitive water deionization, and wastewater treatment. A suspension electrode is a multiphase material system comprised of an active (charge storing) material suspended in ionic solution (electrolyte). Gravimetrically, the electrolyte is the majority component and aids in physical transport of the active material. For the first time, this principle enables, scalability of electrochemical energy storage devices (supercapacitors and batteries) previously limited to small and medium scale applications. This critical review describes the ongoing material challenges encompassing suspension-based systems. The research described here combines classicalmore » aspects of electrochemistry, colloidal science, material science, fluid mechanics, and rheology to describe ion and charge percolation, adsorption of ions, and redox charge storage processes in suspension electrodes. Our review summarizes the growing inventory of material systems, methods and practices used to characterize suspension electrodes, and describes universal material system properties (rheological, electrical, and electrochemical) that are pivotal in the design of high performing systems. We include a discussion of the primary challenges and future research directions.« less
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2017-11-28
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2016-09-06
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
Lotfipour, Farzaneh; Valizadeh, Hadi; Shademan, Shahin; Monajjemzadeh, Farnaz
2015-01-01
One of the most significant issues in pharmaceutical industries, prior to commercialization of a pharmaceutical preparation is the "preformulation" stage. However, far too attention has been paid to verification of the software assisted statistical designs in preformulation studies. The main aim of this study was to report a step by step preformulation approach for a semisolid preparation based on a statistical mixture design and to verify the predictions made by the software with an in-vitro efficacy bioassay test. Extreme vertices mixture design (4 factors, 4 levels) was applied for preformulation of a semisolid Povidone Iodine preparation as Water removable ointment using different PolyEthylenGlycoles. Software Assisted (Minitab) analysis was then performed using four practically assessed response values including; Available iodine, viscosity (N index and yield value) and water absorption capacity. Subsequently mixture analysis was performed and finally, an optimized formulation was proposed. The efficacy of this formulation was bio-assayed using microbial tests in-vitro and MIC values were calculated for Escherichia coli, pseudomonaaeruginosa, staphylococcus aureus and Candida albicans. Results indicated the acceptable conformity of the measured responses. Thus, it can be concluded that the proposed design had an adequate power to predict the responses in practice. Stability studies, proved no significant change during the one year study for the optimized formulation. Efficacy was eligible on all tested species and in the case of staphylococcus aureus; the prepared semisolid formulation was even more effective. PMID:26664368
Cayuela, Maria Luz; Sánchez-Monedero, Miguel A; Roig, Asunción
2010-06-01
Two-phase olive mill waste (TPOMW) is a semisolid sludge generated by the olive oil industry. Its recycling as a soil amendment, either unprocessed or composted, is being promoted as a beneficial agricultural practice in the Mediterranean area. One of the major difficulties when composting TPOMW is the compaction of the material due to its dough-like texture, which leads to an inadequate aeration. For this reason, the addition of bulking agents is particularly important to attain a proper composting process. In this study we followed the evolution of two composting mixtures (A and B) prepared by mixing equal amounts of TPOMW and sheep litter (SL) (in a dry weight basis). In pile B grape stalks (GS) were added (10% dry weight) as bulking agent to study their effect on the development of the composting process and the final compost quality. The incorporation of grape stalks to the composting mixture changed the organic matter (OM) degradation dynamics and notably reduced the total amount of lixiviates. The evolution of several maturation indices (C/N, germination index, water soluble carbon, humification indices, C/N in the leachates) showed a faster and improved composting process when GS were added. Moreover, chemical (NH4+, NO3(-), cation exchange capacity, macro and micronutrients, heavy metals) and physical properties (bulk and real densities, air content, total water holding capacity, porosity) of the final composts were analysed and confirmed the superior quality of the compost where GS were added.
Non-Thermal, On-Site Decontamination and Destruction of Practice Bombs
2006-06-12
extraction (SW1311) followed by analysis (SW6010B with analysis for Mercury SW7470). The samples taken from the process tanks indicated in Table 3...A: Analytical Methods Supporting Project CD-ROM 7471A - 1 Revision 1 September 1994 METHOD 7471A MERCURY IN SOLID OR SEMISOLID WASTE (MANUAL...COLD-VAPOR TECHNIQUE) 1.0 SCOPE AND APPLICATION 1.1 Method 7471 is approved for measuring total mercury (organic and inorganic) in soils, sediments
Development and stability of semisolid preparations based on a supercritical CO2 Arnica extract.
Bilia, Anna Rita; Bergonzi, Maria Camilla; Mazzi, Giovanni; Vincieri, Franco Francesco
2006-05-03
Conventional herbal drug preparations (HDP) based on Arnica montana L. have a low content of the active principles, sesquiterpene lactones, which show poor stability and low physical compatibility in semisolid formulations. Recently, an innovative supercritical carbon dioxide (CO2) extract with high sesquiterpene content has been marketed. Development of six semisolid preparations (cetomacrogol, polysorbate 60, polawax, anphyphil, natrosol and sepigel) based on this innovative CO2 extract is discussed. Stability of these preparations was investigated according to ICH guidelines. The evaluation of in vitro release of active constituents was performed using the cell method reported in the European Pharmacopoeia. Preliminary data on in vivo permeation of three selected formulations is demonstrated using the "skin stripping" test, according to the FDA, in healthy subjects. Analysis of sesquiterpene lactones within the extract and in vitro and in vivo studies was performed by RP-HPLC-DAD-MS method. The cetomacrogol showed the best release profile in the in vitro test, while in the in vivo test the best preparation resulted polysorbate 60 and polawax.
NASA Astrophysics Data System (ADS)
Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Nikzad, Siamak; Shafizadeh, Mahdi
2015-02-01
In this research, the semisolid stir joining method was used to overcome the problem of hot cracking in welding aluminum and silicon bronzes. Moreover, the effects of grooved and cylindrical tools on the microstructure and mechanical properties of samples were examined. After welding specimens, mechanical tests were carried out to find differences between the cast and welded samples. Optical microscopy and scanning electron microscopy were used to study microstructure. X-ray diffraction was used to investigate compounds formed during casting and welding. The solidus and liquidus temperatures of the alloy were measured by differential scanning calorimetry. In this study, the temperature of the work pieces was raised to 1203 K (930 °C) that is in the semisolid region, and the weld seams were stirred by two different types of tools at the speed of 1600 rpm. Macro and micro-structural analyses show uniformity in the phase distribution for specimens welded by cylindrical tool. Desirable and uniform mechanical properties obtained when the cylindrical tool was used.
Fractional time-dependent apparent viscosity model for semisolid foodstuffs
NASA Astrophysics Data System (ADS)
Yang, Xu; Chen, Wen; Sun, HongGuang
2017-10-01
The difficulty in the description of thixotropic behaviors in semisolid foodstuffs is the time dependent nature of apparent viscosity under constant shear rate. In this study, we propose a novel theoretical model via fractional derivative to address the high demand by industries. The present model adopts the critical parameter of fractional derivative order α to describe the corresponding time-dependent thixotropic behavior. More interestingly, the parameter α provides a quantitative insight into discriminating foodstuffs. With the re-exploration of three groups of experimental data (tehineh, balangu, and natillas), the proposed methodology is validated in good applicability and efficiency. The results show that the present fractional apparent viscosity model performs successfully for tested foodstuffs in the shear rate range of 50-150 s^{ - 1}. The fractional order α decreases with the increase of temperature at low temperature, below 50 °C, but increases with growing shear rate. While the ideal initial viscosity k decreases with the increase of temperature, shear rate, and ingredient content. It is observed that the magnitude of α is capable of characterizing the thixotropy of semisolid foodstuffs.
Neef, Maren; Ecke, Margret; Hampp, Rüdiger
2015-01-01
The Simbox mission was the first joint space project between Germany and China in November 2011. Eleven-day-old Arabidopsis thaliana wild type semisolid callus cultures were integrated into fully automated plant cultivation containers and exposed to spaceflight conditions within the Simbox hardware on board of the spacecraft Shenzhou 8. The related ground experiment was conducted under similar conditions. The use of an in-flight centrifuge provided a 1 g gravitational field in space. The cells were metabolically quenched after 5 days via RNAlater injection. The impact on the Arabidopsis transcriptome was investigated by means of whole-genome gene expression analysis. The results show a major impact of nonmicrogravity related spaceflight conditions. Genes that were significantly altered in transcript abundance are mainly involved in protein phosphorylation and MAPK cascade-related signaling processes, as well as in the cellular defense and stress responses. In contrast to short-term effects of microgravity (seconds, minutes), this mission identified only minor changes after 5 days of microgravity. These concerned genes coding for proteins involved in the plastid-associated translation machinery, mitochondrial electron transport, and energy production. PMID:25654111
Fineblanking, Diffusion Bonding, and Testing of Fluidic Laminates.
1980-07-01
AD-AU69 347 TRITEC INC COLUMBIA ND F/$ 13/7 FINEBLANKING, DIFFUSION BONDING, AND TESTING OF FLUIDIC LAMINAT --ETCIU) JUL 80 L K PECAN OAAK21-79-C-0074...amplifier assembly. The effects of die roll and burrs can be minimized by secondary operations *such as abrasive machining , but this adds to the expense...clad material. Experience has shown that a clad thickness of 0.038 + 0.008 mm is required for the semi-solid diffusion bonding process. The composition
Growth of Organic Microspherules in Sugar-Ammonia Reactions
NASA Astrophysics Data System (ADS)
Weber, Arthur L.
2005-12-01
Reaction of small sugars of less than four carbons with ammonia in water yielded organic microspherules generally less than ten microns in size. The time course of microspherule growth was examined for the D-erythrose-ammonia reaction that yielded microspherules attached to the glass walls of containers. Measurements were made of the elemental composition and infrared spectrum of the microspherule material. These viscose semi-solid microspherules are viewed as possible containers for prebiotic catalytic processes relevant to the origin of life.
Zhu, Yong; Hsu, Walter H; Hollis, James H
2013-01-01
Understanding the impact of rheological properties of food on postprandial appetite and glycemic response helps to design novel functional products. It has been shown that solid foods have a stronger satiating effect than their liquid equivalent. However, whether a subtle change in viscosity of a semi-solid food would have a similar effect on appetite is unknown. Fifteen healthy males participated in the randomized cross-over study. Each participant consumed a 1690 kJ portion of a standard viscosity (SV) and a high viscosity (HV) semi-solid meal with 1000 mg acetaminophen in two separate sessions. At regular intervals during the three hours following the meal, subjective appetite ratings were measured and blood samples collected. The plasma samples were assayed for insulin, glucose-dependent insulinotropic peptide (GIP), glucose and acetaminophen. After three hours, the participants were provided with an ad libitum pasta meal. Compared with the SV meal, HV was consumed at a slower eating rate (P = 0.020), with postprandial hunger and desire to eat being lower (P = 0.019 and P<0.001 respectively) while fullness was higher (P<0.001). In addition, consuming the HV resulted in lower plasma concentration of GIP (P<0.001), higher plasma concentration of glucose (P<0.001) and delayed gastric emptying as revealed by the acetaminophen absorption test (P<0.001). However, there was no effect of food viscosity on insulin or food intake at the subsequent meal. In conclusion, increasing the viscosity of a semi-solid food modulates glycemic response and suppresses postprandial satiety, although the effect may be short-lived. A slower eating rate and a delayed gastric emptying rate can partly explain for the stronger satiating properties of high viscous semi-solid foods.
Hasan, Y; Go, J; Hashmi, S M; Valestin, J; Schey, R
2015-04-01
The standard protocol for esophageal manometry involves placing the patient in the supine position with head turned to left (supine head left [SHL]) while evaluating liquid bolus swallows. Routinely, semisolid or solid boluses are not evaluated. Currently, the daily American diet includes up to 40% solid or semisolid texture. Thus far, the data on the effect of different bolus on high-resolution esophageal pressure topography (HREPT) parameters are scarce. This study aims to evaluate the effect of every day bolus consistencies in different body positions on HREPT variables. HREPT was performed on healthy volunteers with a modified protocol including liquid swallows in the SHL position followed by applesauce (semisolid), cracker (solid), and marshmallow (soft solid) in three different positions (SHL, sitting, and standing). A total of 38 healthy adult subjects (22 males and 16 females, median age = 27, and mean body mass index = 25) were evaluated. The resting upper esophageal sphincter pressure was significantly different while subjects swallowed crackers, applesauce, and marshmallows in most positions compared with liquid SHL (P < 0.05). The lower esophageal sphincter, contractile front velocity, and distal contractile integral pressures did not differ in all different consistencies compared with SHL. The integrated relaxation period was significantly higher with solid bolus compared with liquid bolus only in SHL position. The intrabolus pressure was significantly different with solid and soft solid boluses in all postures compared to liquid SHL. The American diet consistency affects upper esophageal sphincter pressure and partially integrated relaxation period and intrabolus pressure in various positions. Semisolid bolus swallows do not cause substantial pressure changes and are safe for evaluation and maintaining adequate caloric intake in patients with dysphagia who cannot tolerate solids. © 2014 International Society for Diseases of the Esophagus.
Zhu, Yong; Hsu, Walter H.; Hollis, James H.
2013-01-01
Understanding the impact of rheological properties of food on postprandial appetite and glycemic response helps to design novel functional products. It has been shown that solid foods have a stronger satiating effect than their liquid equivalent. However, whether a subtle change in viscosity of a semi-solid food would have a similar effect on appetite is unknown. Fifteen healthy males participated in the randomized cross-over study. Each participant consumed a 1690 kJ portion of a standard viscosity (SV) and a high viscosity (HV) semi-solid meal with 1000 mg acetaminophen in two separate sessions. At regular intervals during the three hours following the meal, subjective appetite ratings were measured and blood samples collected. The plasma samples were assayed for insulin, glucose-dependent insulinotropic peptide (GIP), glucose and acetaminophen. After three hours, the participants were provided with an ad libitum pasta meal. Compared with the SV meal, HV was consumed at a slower eating rate (P = 0.020), with postprandial hunger and desire to eat being lower (P = 0.019 and P<0.001 respectively) while fullness was higher (P<0.001). In addition, consuming the HV resulted in lower plasma concentration of GIP (P<0.001), higher plasma concentration of glucose (P<0.001) and delayed gastric emptying as revealed by the acetaminophen absorption test (P<0.001). However, there was no effect of food viscosity on insulin or food intake at the subsequent meal. In conclusion, increasing the viscosity of a semi-solid food modulates glycemic response and suppresses postprandial satiety, although the effect may be short-lived. A slower eating rate and a delayed gastric emptying rate can partly explain for the stronger satiating properties of high viscous semi-solid foods. PMID:23818981
van Nieuwenhoven, M A; Kovacs, E M; Brummer, R J; Westerterp-Plantenga, M S; Brouns, F
2001-02-01
There is no consensus about the effect of guar gum supplementation on gastrointestinal transit. It has been suggested that guar gum slows gastric emptying and intestinal transit, thus inducing an increased feeling of satiety. To investigate whether addition of guar gum to a semisolid meal affects gastrointestinal transit. Eight male subjects were randomly studied four times. They consumed a standard semisolid test meal containing either 0 g, 2.5 g, 3.5 g, or 4.5 g of guar gum. The test meals contained 1 mCi 99mTc-hepatate for scintigraphy and 5 g lactulose for the H2-breath test. Scintigraphic scanning was performed for at least two hours, and gastric half-emptying time (T1/2) was calculated. Breath samples were collected at 15 minute intervals and analyzed for H2-enrichment. The orocecal transit time (OCTT) was then determined. A parameter of intestinal transit (PIT) was obtained by subtracting the T1/2 from the OCTT. There were no significant differences (in minutes) between the different tests in both T1/2 (0 g, t = 88.2 +/- 11, 2.5 g, t = 83.3 +/- 11.9, 3.5 g, t = 83.3 +/- 13.6, 4.5 g, t = 72.4 +/- 7.2, p = 0.86) and PIT (0 g, t = 149.9 +/- 26.6, 2.5 g, t = 145.5 +/- 25.6, t = 3.5 g, t = 175.3 +/- 17.6, t = 4.5 g, t = 152.6 +/- 22.4, p = 0.52). Addition of guar gum to a semisolid meal up to a dosage of 4.5 g does not affect gastrointestinal transit. Other mechanisms than gastrointestinal motility are involved in a possible satiating effect of guar gum supplementation.
Rothfuss, Nicholas E; Petters, Markus D
2017-03-01
Atmospheric aerosols can exist in amorphous semi-solid or glassy phase states. These states are determined by the temperature (T) and relative humidity (RH). New measurements of viscosity for amorphous semi-solid nanometer size sucrose particles as a function of T and RH are reported. Viscosity is measured by inducing coagulation between two particles and probing the thermodynamic states that induce the particle to relax into a sphere. It is shown that the glass transition temperature can be obtained by extrapolation to 10 12 Pa s from the measured temperature-dependent viscosity in the 10 6 to 10 7 Pa s range. The experimental methodology was refined to allow isothermal probing of RH dependence and to increase the range of temperatures over which the dry temperature dependence can be studied. Several experiments where one monomer was sodium dodecyl sulfate (SDS), which remains solid at high RH, are also reported. These sucrose-SDS dimers were observed to relax into a sphere at T and RH similar to those observed in sucrose-sucrose dimers, suggesting that amorphous sucrose will flow over an insoluble particle at a viscosity similar to that characteristic of coalescence between two sucrose particles. Possible physical and analytical implications of this observation are considered. The data reported here suggest that semi-solid viscosity between 10 4 and 10 12 Pa s can be modelled over a wide range of T and RH using an adapted Vogel-Fulcher-Tammann equation and the Gordon-Taylor mixing rule. Sensitivity of modelled viscosity to variations in dry glass transition temperature, Gordon-Taylor constant, and aerosol hygroscopicity are explored, along with implications for atmospheric processes such as ice nucleation of glassy organic aerosols in the upper free troposphere. The reported measurement and modelling framework provides a template for characterizing the phase diagram of other amorphous aerosol systems, including secondary organic aerosols.
Wiegel, Aaron A.; Liu, Matthew J.; Hinsberg, William D.; ...
2017-02-07
Multiphase chemical reactions (gas + solid/liquid) involve a complex interplay between bulk and interface chemistry, diffusion, evaporation, and condensation. Reactions of atmospheric aerosols are an important example of this type of chemistry: the rich array of particle phase states and multiphase transformation pathways produce diverse but poorly understood interactions between chemistry and transport. Their chemistry is of intrinsic interest because of their role in controlling climate. Their characteristics also make them useful models for the study of principles of reactivity of condensed materials under confined conditions. Previously, we have reported a computational study of the oxidation chemistry of a liquidmore » aliphatic aerosol. In this study, we extend the calculations to investigate nearly the same reactions at a semisolid gas-aerosol interface. A reaction-diffusion model for heterogeneous oxidation of triacontane by hydroxyl radicals (OH) is described, and its predictions are compared to measurements of aerosol size and composition, which evolve continuously during oxidation. Our results are also explicitly compared to those obtained for the corresponding liquid system, squalane, to pinpoint salient elements controlling reactivity. The diffusive confinement of the free radical intermediates at the interface results in enhanced importance of a few specific chemical processes such as the involvement of aldehydes in fragmentation and evaporation, and a significant role of radical-radical reactions in product formation. The simulations show that under typical laboratory conditions semisolid aerosols have highly oxidized nanometer-scale interfaces that encapsulate an unreacted core and may confer distinct optical properties and enhanced hygroscopicity. This highly oxidized layer dynamically evolves with reaction, which we propose to result in plasticization. The validated model is used to predict chemistry under atmospheric conditions, where the OH radical concentration is much lower. The oxidation reactions are more strongly influenced by diffusion in the particle, resulting in a more liquid-like character.« less
A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation
NASA Astrophysics Data System (ADS)
Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.
2012-07-01
A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.
Le Kim, Trang Huyen; Jun, Hwiseok; Nam, Yoon Sung
2017-10-01
Polymer emulsifiers solidified at the interface between oil and water can provide exceptional dispersion stability to emulsions due to the formation of unique semi-solid interphase. Our recent works showed that the structural stability of paraffin-in-water emulsions highly depends on the oil wettability of hydrophobic block of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL). Here we investigate the effects of the crystallinity of hydrophobic block of triblock copolymer-based emulsifiers, PCLL-b-PEG-b-PCLL, on the colloidal properties of silicone oil-in-water nanoemulsions. The increased ratio of l-lactide to ε-caprolactone decreases the crystallinity of the hydrophobic block, which in turn reduces the droplet size of silicone oil nanoemulsions due to the increased chain mobility at the interface. All of the prepared nanoemulsions are very stable for a month at 37°C. However, the exposure to repeated freeze-thaw cycles quickly destabilizes the nanoemulsions prepared using the polymer with the reduced crystallinity. This work demonstrates that the anchoring chain crystallization in the semi-solid interphase is critically important for the structural robustness of nanoemulsions under harsh physical stresses. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of Semisolid Formulation of Persea Americana Mill (Avocado) Oil on Wound Healing in Rats
de Oliveira, Ana Paula; Franco, Eryvelton de Souza; Rodrigues Barreto, Rafaella; Cordeiro, Daniele Pires; de Melo, Rebeca Gonçalves; de Aquino, Camila Maria Ferreira; e Silva, Antonio Alfredo Rodrigues; de Medeiros, Paloma Lys; da Silva, Teresinha Gonçalves; Góes, Alexandre José da Silva; Maia, Maria Bernadete de Sousa
2013-01-01
The aim of this study was to evaluate the wound-healing activity of a semisolid formulation of avocado oil, SSFAO 50%, or avocado oil in natura, on incisional and excisional cutaneous wound models in Wistar rats. An additional objective was to quantify the fatty acids present in avocado oil. On the 14th day, a significant increase was observed in percentage wound contraction and reepithelialization in the groups treated with 50% SSFAO or avocado oil compared to the petroleum jelly control. Anti-inflammatory activity, increase in density of collagen, and tensile strength were observed inSSFAO 50% or avocado oil groups, when compared to control groups. The analysis of the components of avocado oil by gas chromatography detected the majority presence of oleic fatty acid (47.20%), followed by palmitic (23.66%), linoleic (13.46%) docosadienoic (8.88%), palmitoleic (3.58%), linolenic (1.60%), eicosenoic (1.29%), and myristic acids (0.33%). Our results show that avocado oil is a rich source of oleic acid and contains essential fatty acids. When used in natura or in pharmaceutical formulations for topical use, avocado oil can promote increased collagen synthesis and decreased numbers of inflammatory cells during the wound-healing process and may thus be considered a new option for treating skin wounds. PMID:23573130
Effect of semisolid formulation of persea americana mill (avocado) oil on wound healing in rats.
de Oliveira, Ana Paula; Franco, Eryvelton de Souza; Rodrigues Barreto, Rafaella; Cordeiro, Daniele Pires; de Melo, Rebeca Gonçalves; de Aquino, Camila Maria Ferreira; E Silva, Antonio Alfredo Rodrigues; de Medeiros, Paloma Lys; da Silva, Teresinha Gonçalves; Góes, Alexandre José da Silva; Maia, Maria Bernadete de Sousa
2013-01-01
The aim of this study was to evaluate the wound-healing activity of a semisolid formulation of avocado oil, SSFAO 50%, or avocado oil in natura, on incisional and excisional cutaneous wound models in Wistar rats. An additional objective was to quantify the fatty acids present in avocado oil. On the 14th day, a significant increase was observed in percentage wound contraction and reepithelialization in the groups treated with 50% SSFAO or avocado oil compared to the petroleum jelly control. Anti-inflammatory activity, increase in density of collagen, and tensile strength were observed inSSFAO 50% or avocado oil groups, when compared to control groups. The analysis of the components of avocado oil by gas chromatography detected the majority presence of oleic fatty acid (47.20%), followed by palmitic (23.66%), linoleic (13.46%) docosadienoic (8.88%), palmitoleic (3.58%), linolenic (1.60%), eicosenoic (1.29%), and myristic acids (0.33%). Our results show that avocado oil is a rich source of oleic acid and contains essential fatty acids. When used in natura or in pharmaceutical formulations for topical use, avocado oil can promote increased collagen synthesis and decreased numbers of inflammatory cells during the wound-healing process and may thus be considered a new option for treating skin wounds.
Ultrasonic Vibration and Rheocasting for Refinement of Mg-Zn-Y Alloy Reinforced with LPSO Structure
NASA Astrophysics Data System (ADS)
Lü, Shulin; Yang, Xiong; Hao, Liangyan; Wu, Shusen; Fang, Xiaogang; Wang, Jing
2018-05-01
In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg-Zn-Y alloy was prepared by UV and processed by rheo-squeeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg-Zn-Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and α-Mg matrix in Mg96.9Zn1Y2Zr0.1 alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to 4.3 μm. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast Mg96.9Zn1Y2Zr0.1 alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine α-Mg matrix (α1-Mg and α2-Mg grains) and LPSO structure.
Development of an Ointment Formulation Using Hot-Melt Extrusion Technology.
Bhagurkar, Ajinkya M; Angamuthu, Muralikrishnan; Patil, Hemlata; Tiwari, Roshan V; Maurya, Abhijeet; Hashemnejad, Seyed Meysam; Kundu, Santanu; Murthy, S Narasimha; Repka, Michael A
2016-02-01
Ointments are generally prepared either by fusion or by levigation methods. The current study proposes the use of hot-melt extrusion (HME) processing for the preparation of a polyethylene glycol base ointment. Lidocaine was used as a model drug. A modified screw design was used in this process, and parameters such as feeding rate, barrel temperature, and screw speed were optimized to obtain a uniform product. The product characteristics were compared with an ointment of similar composition prepared by conventional fusion method. The rheological properties, drug release profile, and texture characteristics of the hot-melt extruded product were similar to the conventionally prepared product. This study demonstrates a novel application of the hot-melt extrusion process in the manufacturing of topical semi-solids.
Method for excluding salt and other soluble materials from produced water
Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN
2009-08-04
A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.
Dynamic, diagnostic, and pharmacological radionuclide studies of the esophagus in achalasia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozen, P.; Gelfond, M.; Zaltzman, S.
1982-08-01
The esophagus was evaluated in 15 patients with achalasia by continuous gamma camera imaging following ingestion of a semi-solid meal labeled with /sup 99m/Tc. The images were displayed and recorded on a simple computerized data processing/display system. Subsequent cine mode images of esophageal emptying demonstrated abnormalities of the body of the esophagus not reflected by the manometric examination. Computer-generated time-activity curves representing specific regions of interest were better than manometry in evaluating the results of myotomy, dilatation, and drug therapy. Isosorbide dinitrate significantly improved esophageal emptying.
Neuronal Dynamics and Axonal Flow, V. The Semisolid State of the Moving Axonal Column
Weiss, Paul A.
1972-01-01
Evidence assembled since the first comprehensive description of “axonal flow”, by deformation analysis, electron microscopy, cinemicrography, and microrheology, has confirmed that the axon of the mature neuron is (a) a semisolid column; (b) in cellulifugal motion at about 1 μm/min (1 mm per day); (c) continuously reproduced at its perikaryal base; (d) propelled by a microperistaltic pulse wave in its surface; and (e) undergoing internal dissolution at the nerve ending. The axon thus “flows” as a structural entity (“axonal flow”), in contradistinction to fast “intraaxonal transport” of molecules and molecular assemblies along internal routes and by mechanisms that are still unknown. Images PMID:4111049
Dua, Kamal; Malipeddi, Venkata Ramana; Madan, Jyotsna; Gupta, Gaurav; Chakravarthi, Srikumar; Awasthi, Rajendra; Kikuchi, Irene Satiko; De Jesus Andreoli Pinto, Terezinha
2016-01-01
Introduction Our various previous findings have shown the suitability of norfloxacin in the treatment of bacterial infections and burn wounds in alone as well as in combination with Curcuma longa in various topical (ointments, gels, and creams) and transdermal drug delivery systems. Aims and methods Keeping these facts in consideration, we have made an another attempt to prepare semisolid formulations containing 1% w/w of norfloxacin and metronidazole with different bases like Carbopol, polyethylene glycol, and hydroxypropylmethyl cellulose for effective treatment of bacterial infections and burn wounds. The prepared formulations were evaluated for physicochemical parameters, in vitro drug release, antimicrobial activity, and burn wound healing properties. Results The prepared formulations were compared with Silver Sulfadiazine cream 1%, USP. Antimicrobial activity of norfloxacin semisolid formulations was found to be equally effective against both aerobic and anaerobic bacteria in comparison to a marketed formulation of Silver Sulfadiazine 1% cream, USP. Based on the burn wound healing property, the prepared norfloxacin semisolid formulation was found to be in good agreement with marketed Silver Sulfadiazine 1% cream, USP. Conclusions These findings suggest formulations containing norfloxacin and metronidazole may also prove as an effective alternative for existing remedies in the treatment of bacterial infections and burn wounds. PMID:28386462
Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunini, VE; Chiang, YM; Carter, WC
2012-05-01
A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid activemore » materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.« less
Esophageal function testing using multichannel intraluminal impedance.
Srinivasan, R; Vela, M F; Katz, P O; Tutuian, R; Castell, J A; Castell, D O
2001-03-01
Multichannel intraluminal impedance (MII) is a new technique for evaluation of bolus transport. We evaluated esophageal function using bolus transport time (BTT) and contraction wave velocity (CWV) of liquid, semisolid, and solid boluses. Ten healthy subjects underwent MII swallow evaluation with various boluses of sterile water (pH 5), applesauce, three different sized marshmallows, and iced and 130 degrees F water. The effect of bethanechol was also studied. There was no difference in BTT or CWV for all water volumes from 1 to 20 ml. There was significant linear increase of BTT with progressively larger volumes of applesauce, and BTT of applesauce was longer than for water. BTT was significantly longer with large marshmallows vs. small and medium and was longer than for water. BTT for iced water was similar to 130 degrees F water. Applesauce showed a significant linear decrease of CWV with progressively larger volumes and was slower than water. Marshmallow showed significantly slower CWV with the large vs. small, and CWV for ice water was significantly slower than 130 degrees F water. Therefore, BTT of liquid is constant, whereas BTT of semisolid and solid are volume dependent and longer than liquids. CWV of semisolids and solids are slower than liquids. CWV of cold liquids is slower than warm liquids. MII can be used as a discriminating test of esophageal function.
Brown, Teagan L; Thomas, Tereen; Odgers, Jessica; Petrovski, Steve; Spark, Marion Joy; Tucci, Joseph
2017-03-01
Resistance of bacteria to antimicrobial agents is of grave concern. Further research into the development of bacteriophage as therapeutic agents against bacterial infections may help alleviate this problem. To formulate bacteriophage into a range of semisolid and solid dosage forms and investigate the capacity of these preparations to kill bacteria under laboratory conditions. Bacteriophage suspensions were incorporated into dosage forms such as creams, ointments, pastes, pessaries and troches. These were applied to bacterial lawns in order to ascertain lytic capacity. Stability of these formulations containing phage was tested under various storage conditions. A range of creams and ointments were able to support phage lytic activity against Propionibacterium acnes. Assessment of the stability of these formulations showed that storage at 4 °C in light-protected containers resulted in optimal phage viability after 90 days. Pessaries/suppositories and troches were able to support phage lytic activity against Rhodococcus equi. We report here the in-vitro testing of semisolid and solid formulations of bacteriophage lytic against a range of bacteria known to contribute to infections of the epithelia. This study provides a basis for the future formulation of diverse phage against a range of bacteria that infect epithelial tissues. © 2016 Royal Pharmaceutical Society.
Effect of liquid-to-solid ratio on semi-solid Fenton process in hazardous solid waste detoxication.
Hu, Li-Fang; Feng, Hua-Jun; Long, Yu-Yang; Zheng, Yuan-Ge; Fang, Cheng-Ran; Shen, Dong-Sheng
2011-01-01
The liquid-to-solid ratio (L/S) of semi-solid Fenton process (SSFP) designated for hazardous solid waste detoxication was investigated. The removal and minimization effects of o-nitroaniline (ONA) in simulate solid waste residue (SSWR) from organic arsenic industry was evaluated by total organic carbon (TOC) and ONA removal efficiency, respectively. Initially, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the key factors of SSFP. Results showed that the removal rates of TOC and ONA decreased as L/S increased. Subsequently, four target initial ONA concentrations including 100 mg kg(-1), 1 g kg(-1), 10 g kg(-1), and 100 gk g(-1) on a dry basis were evaluated for the effect of L/S. A significant cubic empirical model between the initial ONA concentration and L/S was successfully developed to predict the optimal L/S for given initial ONA concentration for SSFP. Moreover, an optimized operation strategy of multi-SSFP for different cases was determined based on the residual target pollutant concentration and the corresponding environmental conditions. It showed that the total L/S of multi-SSFP in all tested scenarios was no greater than 3.8, which is lower than the conventional slurry systems (L/S ≥ 5). The multi-SSFP is environment-friendly when it used for detoxication of hazardous solid waste contaminated by ONA and provides a potential method for the detoxication of hazardous solid waste contaminated by organics. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke
2018-04-01
Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.
NASA Astrophysics Data System (ADS)
Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke
2018-06-01
Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1986-01-01
Background information, list of materials needed, and procedures used are provided for a demonstration involving the transformation of a hydrophobic liquid to a partially hydrophobic semisolid. Safety considerations are noted. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozen, P.; Gelfond, M.; Zaltzman, S.
1982-08-01
The esophagus was evaluated in 15 patients with achalasia by continuous gamma camera imaging following ingestion of a semi-solid meal labeled with /sup 99//sup m/Tc. The images were displayed and recorded on a simple computerized data processing/display system. Subsequent cine' mode images of esophagela emptying demonstrated abnormalities of the body of the esophagus not reflected by the manometric examination. Computer-generated time-activity curves representing specific regions of interest were better than manometry in evaluating the results of myotomy, dilatation, and drug therapy. Isosorbide dinitrate significantly improved esophageal emptying.
Alkrad, Jamal Alyoussef; Mrestani, Yahya; Neubert, Reinhard H H
2003-07-01
A multi-layer membrane system was used to measure in vitro release of hydrophilic macromolecules such as hyaluronic acid (HA) from semisolid formulations. One enzymatically digested HA-derivative with molecular mass of 22 kDa (HA-D) and 1200 kDa intact HA (HA) were incorporated into three semisolid formulations: water-containing hydrophilic ointment (WHO), amphiphilic cream (AC) and water-containing wool wax alcohol ointment (WWO). Because of the high hydrophilic properties of HA-D and HA, the artificial model membranes consisted of collodion as the matrix and glycerol as the hydrophilic acceptor phase. The area under the concentration-time curve and the mean dissolution time were used as a quantitative parameter to characterise the rate and extent of release in vitro. This study showed that the HA-D and HA release as hydrophilic substances from WHO was higher than both from AC and WWO. It was observed that 83% of HA-D1 was released from WHO after 2 h; in contrast, only 10% was released from 2% HA from the same vehicle during the same time. In conclusion, the in vitro availability of enzymatically digested HA-D was higher for WHO than for the other formulations, AC and WWO. Similarly, the availability of HA-D was higher than that of HA from the same formulations.
Gravity, chromosomes, and organized development in aseptically cultured plant cells
NASA Technical Reports Server (NTRS)
Krikorian, Abraham D.
1993-01-01
The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.
... risk of getting an infection later that resists antibiotic treatment. ... the medication in a small amount of semisolid food such as pudding or applesauce. ... resistant to antibiotics. If you miss doses of rifapentine, you may ...
Rydning, A; Berstad, A; Berstad, T; Hertzenberg, L
1985-04-01
The effect of physiological doses of guar gum (Guarem), 5 g, and fiber-enriched wheat bran (Fiberform), 10.5 g, on gastric emptying was studied by two different methods in healthy subjects: by a simple isotope localization monitor placed over the upper part of the abdomen and by gamma camera. The fiber preparations were added to a semisolid meal consisting of wheatmeal porridge and juice, using technetium-99 DTPA as a marker. The gamma camera showed no effect of fiber on gastric emptying. The isotope localization monitor, however, indicated that Fiberform prevented a postprandial accumulation of the meal within the upper part of the stomach. The simple isotope localization monitor cannot be recommended for measurements of gastric emptying.
The Influence of Microgravity on Invasive Growth in Saccharomyces cerevisiae
NASA Astrophysics Data System (ADS)
Van Mulders, Sebastiaan E.; Stassen, Catherine; Daenen, Luk; Devreese, Bart; Siewers, Verena; van Eijsden, Rudy G. E.; Nielsen, Jens; Delvaux, Freddy R.; Willaert, Ronnie
2011-01-01
This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Σ1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Σ1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Σ1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium.
Hisao, Grant S; Harland, Michael A; Brown, Robert A; Berthold, Deborah A; Wilson, Thomas E; Rienstra, Chad M
2016-04-01
The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries. Copyright © 2016 Elsevier Inc. All rights reserved.
Darwiche, Gassan; Björgell, Ola; Almér, Lars-olof
2003-01-01
Background Most of the previous studies regarding the effects of gel-forming fibres have considered the gastric emptying of liquid or solid meals after the addition of pectin or guar gum. The influence of locust bean gum, on gastric emptying of nutrient semisolid meals in humans has been less well studied, despite its common occurrence in foods. Using a standardised ultrasound method, this study was aimed at investigating if the gastric emptying in healthy subjects could be influenced by adding locust been gum, a widely used thickening agent, or water directly into a nutrient semisolid test meal. Methods The viscosity of a basic test meal (300 g rice pudding, 330 kcal) was increased by adding Nestargel (6 g, 2.4 kcal), containing viscous dietary fibres (96.5%) provided as seed flour of locust bean gum, and decreased by adding 100 ml of water. Gastric emptying of these three test meals were evaluated in fifteen healthy non-smoking volunteers, using ultrasound measurements of the gastric antral area to estimate the gastric emptying rate (GER). Results The median value of GER with the basic test meal (rice pudding) was estimated at 63 %, (range 47 to 84 %), (the first quartile = 61 %, the third quartile = 69 %). Increasing the viscosity of the rice pudding by adding Nestargel, resulted in significantly lower gastric emptying rates (p < 0.01), median GER 54 %, (range 7 to 71 %), (the first quartile = 48 %, the third quartile = 60 %). When the viscosity of the rice pudding was decreased (basic test meal added with water), the difference in median GER 65 %, (range 38 to 79 %), (the first quartile = 56 %, the third quartile = 71 %) was not significantly different (p = 0.28) compared to the GER of the basic test meal. Conclusions We conclude that the addition of locust bean gum to a nutrient semisolid meal has a major impact on gastric emptying by delaying the emptying rate, but that the addition of water to this test meal has no influence on gastric emptying in healthy subjects. PMID:12793910
Kovacs, E M; Westerterp-Plantenga, M S; Saris, W H; Goossens, I; Geurten, P; Brouns, F
2001-03-01
To investigate the effect of addition of modified guar gum (GG) to a low-energy semisolid meal on appetite and body weight (BW) loss. Twenty eight mainly overweight male volunteers (age, 19-56 y; body mass index, 29+/-2 kg x m(-2); BW, 89.4+/-9.2 kg). Baseline of one week with self-selected diet. Three treatments of 2 weeks with a low-energy diet divided over three times a day, consisting of a semisolid meal with (SSM+) or without GG (SSM) or a solid meal (SM) with the same energy content (947 kJ) and macronutrient composition, and a dinner of the subject's own choice. Washout periods lasted 4 weeks. Compared to baseline values, reduction in energy intake and BW loss were similar for SSM+, SSM and SM. Appetite (hunger, desire to eat or estimation of how much one could eat) was increased in SSM and in SM compared to baseline, but not in SSM+. Satiety and fullness in SSM+, SSM and SM were similar to baseline. Any intervention was more effective on BW loss when it took place the first time compared to the second and third times (2.6+/-0.2 kg, 1.7+/-0.2 kg and 1.1+/-0.2 kg, respectively; P<0.001). The SM-SSM+-SSM sequence was more effective on BW loss compared to the SSM+-SSM-SM sequence (5.6+/-1.0 and 2.5+/-0.6 kg, respectively; P<0.05). All the three treatments were equally effective with respect to BW loss. GG addition to a semisolid meal prevented an increase in appetite, hunger and desire to eat, which increase was present in the other treatments. However, differences between treatments were not statistically significant. The order effect shows that repeated 2-week bouts of dieting become increasingly ineffective. The sequence SM-SSM+-SSM was more effective than the sequence SSM+-SSM-SM, probably because compliance was relatively higher with the SSM+ or SSM diet, and compliance decreased towards the end of the complete experiment.
Darwiche, Gassan; Björgell, Ola; Almér, Lars-Olof
2003-06-06
Most of the previous studies regarding the effects of gel-forming fibres have considered the gastric emptying of liquid or solid meals after the addition of pectin or guar gum. The influence of locust bean gum, on gastric emptying of nutrient semisolid meals in humans has been less well studied, despite its common occurrence in foods. Using a standardised ultrasound method, this study was aimed at investigating if the gastric emptying in healthy subjects could be influenced by adding locust been gum, a widely used thickening agent, or water directly into a nutrient semisolid test meal. The viscosity of a basic test meal (300 g rice pudding, 330 kcal) was increased by adding Nestargel (6 g, 2.4 kcal), containing viscous dietary fibres (96.5%) provided as seed flour of locust bean gum, and decreased by adding 100 ml of water. Gastric emptying of these three test meals were evaluated in fifteen healthy non-smoking volunteers, using ultrasound measurements of the gastric antral area to estimate the gastric emptying rate (GER). The median value of GER with the basic test meal (rice pudding) was estimated at 63%, (range 47 to 84%), (the first quartile = 61%, the third quartile = 69%). Increasing the viscosity of the rice pudding by adding Nestargel, resulted in significantly lower gastric emptying rates (p < 0.01), median GER 54%, (range 7 to 71%), (the first quartile = 48%, the third quartile = 60%). When the viscosity of the rice pudding was decreased (basic test meal added with water), the difference in median GER 65%, (range 38 to 79%), (the first quartile = 56%, the third quartile = 71%) was not significantly different (p = 0.28) compared to the GER of the basic test meal. We conclude that the addition of locust bean gum to a nutrient semisolid meal has a major impact on gastric emptying by delaying the emptying rate, but that the addition of water to this test meal has no influence on gastric emptying in healthy subjects.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., oil, gas, oil shale, phosphate, potash, sodium, native asphalt, solid and semisolid bitumen, and... improvements upon or reduced to cultivation any of such lands. The coal, oil, gas, and other minerals in such...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., oil, gas, oil shale, phosphate, potash, sodium, native asphalt, solid and semisolid bitumen, and... improvements upon or reduced to cultivation any of such lands. The coal, oil, gas, and other minerals in such...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., oil, gas, oil shale, phosphate, potash, sodium, native asphalt, solid and semisolid bitumen, and... improvements upon or reduced to cultivation any of such lands. The coal, oil, gas, and other minerals in such...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., oil, gas, oil shale, phosphate, potash, sodium, native asphalt, solid and semisolid bitumen, and... improvements upon or reduced to cultivation any of such lands. The coal, oil, gas, and other minerals in such...
Code of Federal Regulations, 2012 CFR
2012-07-01
... area extending from the Brooks Range to the Arctic Ocean. Asphalt (also known as Bitumen) is a black or dark brown solid or semi-solid thermo-plastic material possessing waterproofing and adhesive properties...
Code of Federal Regulations, 2014 CFR
2014-07-01
... area extending from the Brooks Range to the Arctic Ocean. Asphalt (also known as Bitumen) is a black or dark brown solid or semi-solid thermo-plastic material possessing waterproofing and adhesive properties...
Code of Federal Regulations, 2013 CFR
2013-07-01
... area extending from the Brooks Range to the Arctic Ocean. Asphalt (also known as Bitumen) is a black or dark brown solid or semi-solid thermo-plastic material possessing waterproofing and adhesive properties...
Code of Federal Regulations, 2014 CFR
2014-07-01
...,000 square mile area extending from the Brooks Range to the Arctic Ocean. Asphalt (also known as Bitumen) is a black or dark brown solid or semi-solid thermo-plastic material possessing waterproofing and...
Code of Federal Regulations, 2012 CFR
2012-07-01
...,000 square mile area extending from the Brooks Range to the Arctic Ocean. Asphalt (also known as Bitumen) is a black or dark brown solid or semi-solid thermo-plastic material possessing waterproofing and...
Code of Federal Regulations, 2013 CFR
2013-07-01
...,000 square mile area extending from the Brooks Range to the Arctic Ocean. Asphalt (also known as Bitumen) is a black or dark brown solid or semi-solid thermo-plastic material possessing waterproofing and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Bitumen) is a black or dark brown solid or semi-solid thermo-plastic material possessing waterproofing and... hydrogen ratio. It is essentially non-volatile at ambient temperatures with closed cup flash point of 445...
Photoacoustic spectroscopy of condensed matter
NASA Technical Reports Server (NTRS)
Somoano, R. B.
1978-01-01
Photoacoustic spectroscopy is a new analytical tool that provides a simple nondestructive technique for obtaining information about the electronic absorption spectrum of samples such as powders, semisolids, gels, and liquids. It can also be applied to samples which cannot be examined by conventional optical methods. Numerous applications of this technique in the field of inorganic and organic semiconductors, biology, and catalysis have been described. Among the advantages of photoacoustic spectroscopy, the signal is almost insensitive to light scattering by the sample and information can be obtained about nonradiative deactivation processes. Signal saturation, which can modify the intensity of individual absorption bands in special cases, is a drawback of the method.
7 CFR 1000.40 - Classes of utilization.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., sour half-and-half, sour cream mixtures containing non-milk items; yogurt, including yogurt containing beverages with 20 percent or more yogurt by weight and kefir, and any other semi-solid product resembling a...
7 CFR 1000.40 - Classes of utilization.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., sour half-and-half, sour cream mixtures containing non-milk items; yogurt, including yogurt containing beverages with 20 percent or more yogurt by weight and kefir, and any other semi-solid product resembling a...
7 CFR 1000.40 - Classes of utilization.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., sour half-and-half, sour cream mixtures containing non-milk items; yogurt, including yogurt containing beverages with 20 percent or more yogurt by weight and kefir, and any other semi-solid product resembling a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... dark brown solid or semi-solid thermo-plastic material possessing waterproofing and adhesive properties... essentially non-volatile at ambient temperatures with closed cup flash point of 445 °F (230 °C) or greater...
Baratieri, Sabrina C; Barbosa, Juliana M; Freitas, Matheus P; Martins, José A
2006-01-23
A multivariate method of analysis of nystatin and metronidazole in a semi-solid matrix, based on diffuse reflectance NIR measurements and partial least squares regression, is reported. The product, a vaginal cream used in the antifungal and antibacterial treatment, is usually, quantitatively analyzed through microbiological tests (nystatin) and HPLC technique (metronidazole), according to pharmacopeial procedures. However, near infrared spectroscopy has demonstrated to be a valuable tool for content determination, given the rapidity and scope of the method. In the present study, it was successfully applied in the prediction of nystatin (even in low concentrations, ca. 0.3-0.4%, w/w, which is around 100,000 IU/5g) and metronidazole contents, as demonstrated by some figures of merit, namely linearity, precision (mean and repeatability) and accuracy.
Baskaran, Ponnusamy; Kumari, Aloka; Van Staden, Johannes
2018-01-01
Efficient in vitro propagation systems via organogenesis and synthetic seeds were developed for the first time for conservation and commercial propagation from leaf or longitudinal thin cell layer (lTCL) leaf or shoot-tip explants of Urginea altissima . Various plant growth regulators and phloroglucinol were used in semi-solid and liquid Murashige and Skoog (MS) medium to establish multiplication of shoots and roots for in vitro regeneration. Of the various treatments, the highest number of shoots (17.4 per lTCL leaf explant) was obtained on liquid MS medium supplemented with 10 µM meta -Topolin ( m T) and 2 µM benzyladenine followed by transferal to semi-solid MS media. The shoot tips were encapsulated with liquid MS medium plus 3% (w/v) sodium alginate and 100 mM calcium chloride. Adventitious shoot regeneration (91.0%; 12.6 shoots per synthetic seed) of synthetic seeds was achieved on semi-solid MS medium supplemented with 10 µM m T and 2 µM naphthaleneacetic acid (NAA) after 15 days of storage in darkness at 25 ± 2 °C. Regenerated shoots rooted (9.8 roots per shoot; 6.5 cm long) efficiently when transferred to 5 µM indole-3-butyric acid and 2.5 µM NAA. All the plantlets were successfully acclimatized (100%) in a vermiculite:soil (1:1 v/v) mixture in the greenhouse.
Ilić, Tanja; Pantelić, Ivana; Lunter, Dominique; Đorđević, Sanela; Marković, Bojan; Ranković, Dragana; Daniels, Rolf; Savić, Snežana
2017-08-07
This work aimed to prove the ability of "ready-to-use" topical vehicles based on alkyl polyglucoside-mixed emulsifier (with/without co-solvent modifications) to replace the conventionally used pharmacopoeial bases (e.g., non-ionic hydrophilic cream) in compounding practice. For this purpose, considering the regulatory efforts to establish alternative, scientifically valid methods for evaluating therapeutic equivalence of topical semisolids, we performed a comparative assessment of microstructure, selected critical quality attributes (CQAs) and in vitro/in vivo product performances, by utilizing aceclofenac as a model drug. The differences in composition between investigated samples have imposed remarkable variances in monitored CQAs (particularly in the amount of aceclofenac dissolved, rheological properties and water distribution mode), reflecting the distinct differences in microstructure formed, as partially observed by polarization microscopy and confocal Raman spectral imaging. Although not fully indicative of the in vivo performances, in vitro release data (vertical diffusion vs. immersion cells) proved the microstructure peculiarities, asserting the rheological properties as decisive factor for obtained liberation profiles. Contrary, in vitro permeation results obtained using pig ear epidermis correlated well with in vivo dermatopharmacokinetic data and distinguished unequivocally between tested formulations, emphasizing the importance of skin/vehicle interactions. In summary, suggested multi-faceted approach can provide adequate proof on topical semisolids therapeutic equivalence or lack thereof. Copyright © 2017 Elsevier B.V. All rights reserved.
21 CFR 133.165 - Parmesan and reggiano cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... milk to a semisolid mass. Harmless artificial coloring may be added. The mass is cut into pieces no... alum, calcium sulfate, and magnesium carbonate, singly or combined, is not more than six times the...
Bures, J; Kopácová, M; Vorísek, V; Bukac, J; Neumann, D; Rejchrt, S; Pozler, O; Douda, T; Zivný, P; Palicka, V
2005-01-01
13C-octanoic acid breath test (13C-OABT) is a simple, safe and non-invasive technique for measuring gastric emptying. However, the method has not been standardized yet. Aim of the study was to work up, introduce and evaluate our own method of the 13C-OABT for adults. Ten healthy volunteers entered the study (5 men, 5 women, mean age 32 years, 50 % Helicobacter pylori positive). Standard test meals (with 100 mg 13C-sodium octanoate) were used three times within 3 weeks. The same solid meal (1,178 kJ) for Tests 1 and 2 contained scrambled egg (+ 3 g oil), white bread (40 g), butter (10 g) and distilled water (200 ml). Semi-solid meal (1,020 kJ) for Test 3 contained milk pudding (200 g) and distilled water (200 ml). Duplicate breath samples were obtained before and every 15 minutes after eating the test meal during 255 minutes. Altogether 1,080 breath samples were analysed twice (isotope ratio mass spectrometry, AP2003 Analytical Precision, UK). To assess the half-life of elimination (t1/2 E), we modelled the process of elimination with the incomplete gamma-function, which has a convenient form for the empiric plotting of breath test data. Mean t1/2E was 136+/-10 minutes (Test 1), 134+/-14 (Test 2) and 123+/-16 minutes (Test 3). Clinical reproducibility of 13C-OABT in particular persons was 98.2% (18 breath samples series), 90.8 % (15 samples) and 87.1% (9 breath samples series). There was a significant correlation between Test 1 and Test 2 results (r=0.887, p<0.0001). Mean difference of duplicate breath sample analysis was 1.460 % (in 540 pairs), mean baseline one-day analysis difference was 0.0982 (99.9274% accuracy). In healthy volunteers, normal range of t1/2E is 110-160 minutes for solids and 91-155 minutes for semisolid test meal. Using our own computed mean time of intermediate metabolism of 13C-octanoic acid (76.5+/-7.5 minutes), gastric emptying half-time is 33.5-83.5 minutes for solids and 14.5-78.5 minutes for semisolid test meal in healthy volunteers. The 13C-OABT is accurate non-invasive method for gastric emptying measurement.
Pawar, Jaywant; Narkhede, Rajkiran; Amin, Purnima; Tawde, Vaishali
2017-08-01
The aim of the present context was to develop and evaluate a Kolliphor® P407-based transdermal gel formulation of diclofenac sodium by hot melt extrusion (HME) technology; central composite design was used to optimize the formulation process. In this study, we have explored first time ever HME as an industrially feasible and continuous manufacturing technology for the manufacturing of gel formulation using Kolliphor® P407 and Kollisolv® PEG400 as a gel base. Diclofenac sodium was used as a model drug. The HME parameters such as feeding rate, screw speed, and barrel temperature were crucial for the semisolid product development, and were optimized after preliminary trials. For the processing of the gel formulation by HME, a modified screw design was used to obtain a uniform product. The obtained product was evaluated for physicochemical characterization such as differential scanning calorimetry (DSC), X-ray diffraction (XRD), pH measurement, rheology, surface tension, and texture profile analysis. Moreover, it was analyzed for general appearance, spreadibility, surface morphology, and drug content. The optimized gel formulation showed homogeneity and transparent film when applied on a glass slide under microscope, pH was 7.02 and uniform drug content of 100.04 ± 2.74 (SD = 3). The DSC and XRD analysis of the HME gel formulation showed complete melting of crystalline API into an amorphous form. The Kolliphor® P407 and Kollisolv® PEG400 formed excellent gel formulation using HME with consistent viscoelastic properties of the product. An improved drug release was found for the HME gel, which showed a 100% drug release than that of a marketed product which showed only 88% of drug release at the end of 12 h. The Flux value of the HME gel was 106 than that of a marketed formulation, which showed only about 60 value, inferring a significant difference (P < 0.05) at the end of 1 h. This study demonstrates a novel application of the hot melt extrusion process for manufacturing of topical semisolid products.
Effects of physical factors on the swarming motility of text itPseudomonas aeruginosa
NASA Astrophysics Data System (ADS)
Si, Tieyan; Ma, Zidong; Tang, Wai Shing; Yang, Alexander; Tang, Jay
Many species of bacteria can spread over a semi-solid surface via a particular form of collective motion known as surface swarming. Using Pseudomonas aeruginosa as a model organism, we investigate physical factors that either facilitate or restrict the swarming motility. The semi-solid surface is typically formed by 0.5-1% agar containing essential nutrients for the bacterial growth and proliferation. Most bacterial species, including P. aeruginosa, synthesize bio-surfactants to aid in swarming. We found addition of exogenous surfactants such as triton into the agar matrix enhances the swarming. In contrast, increasing agar percentage, infusing osmolites, and adding viscous agents all decrease swarming. We propose that the swarming speed is restricted by the rate of water supply from within the agar gel and by the line tension at the swarm front involving three materials in contact: the air, the bacteria propelled liquid film, and the agar substrate.
Cross-contamination in Porcelain Mortars.
Bauer-Brandl, A; Falck, A; Ingebrigtsen, L; Nilson, C
2001-01-01
Porcelain mortars and pestles are frequently used to comminute drug substances on a small scale and (in some cases) in the production of liquid and semisolid suspensions. Although it is generally accepted that removal of a drug substance from a rough surface by rinsing may be difficult and may lead to cross-contamination, no hard data support that theory. In this study, the amount of salicylic acid remaining on a porcelain mortar after different washing procedures was quantified and compared with the amount remaining on a plastic mortar. Drug residues in the "mg" range on the porcelain mortars made common rinsing procedures appear inappropriate, but no traces of drug were detected on plastic mortars. In addition, the quality of suspension ointments with respect to particle size and homogeneity produced by the two types of mortars was compared. Porcelain and plastic mortars appeared equally suitable for use in the production of semisolid suspensions.
NASA Astrophysics Data System (ADS)
van Haaften, W. M.; Kool, W. H.; Katgerman, L.
2002-10-01
One of the major problems during direct chill (DC) casting is hot tearing. These tears initiate during solidification of the alloy and may run through the entire ingot. To study the hot tearing mechanism, tensile tests were carried out in semisolid state and at low strain rates, and crack propagation was studied in situ by scanning electron microscopy (SEM). These experimentally induced cracks were compared with hot tears developed in an AA5182 ingot during a casting trial in an industrial research facility. Similarities in the microstructure of the tensile test specimens and the hot tears indicate that hot tearing can be simulated by performing tensile tests at semisolid temperatures. The experimental data were compared with existing hot tearing models and it was concluded that the latter are restricted to relatively high liquid fractions because they do not take into account the existence of solid bridges in the crack.
Aliyar, Hyder; Huber, Robert; Loubert, Gary; Schalau, Gerald
2014-07-01
The use of silicone as a primary polymer in topical semisolid pharmaceutical formulations is infrequent. Recent development of novel silicone materials provides an opportunity to investigate their drug delivery efficiencies. In this study, an anhydrous semisolid formulation was prepared using a novel cross-linked silicone polymer network swollen in isododecane. Similar formulations were prepared using petrolatum, an acrylic, or a cellulose polymer. All formulations contained 5% ibuprofen (IBP). In vitro permeability was evaluated for all formulations and a commercial product using human cadaver epidermis. The silicone formulation delivered IBP more efficiently than all other formulations in terms of flux, cumulative amount, and percent drug release. The silicone formulation showed the maximum flux of 85.9 μg . cm(-2) . h(-1) and a cumulative IBP release of 261.6 μg in 8 h, whereas the benchmark showed 20.1 μg . cm(-2) . h(-1) and 30.9 μg, respectively. An in vivo study conducted on rats showed calculated blood AUCs of 59.2 and 17.6 μg . h/g (p < 0.003) for the silicone formulation and the benchmark, respectively. The IBP in excised rat skin was 264 ± 59 μg/g for the silicone formulation and 102 ± 5 μg/g for the benchmark. The results obtained from the in vitro and in vivo studies demonstrate efficient topical IBP delivery by the silicone formulation. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Kovacs, E M R; Westerterp-Plantenga, M S; Saris, W H M; Melanson, K J; Goossens, I; Geurten, P; Brouns, F
2002-08-01
To investigate whether addition of modified guar gum (GG) to a low-energy semisolid meal might be effective on appetite by modifying the response of blood glucose and other blood parameters. Three intervention periods of 2 weeks each, separated by washout periods of 4 weeks. Randomized and cross-over design. Fifteen overweight male subjects (mean+/-s.d.; age, 44+/-9 y; body mass index, 28.6+/-1.8 kg/m(2)). Subjects consumed a low-energy diet divided over three times a day, consisting of a semisolid meal with (SSM+) or without (SSM) addition of 2.5 g GG, or a solid meal (SM) with the same energy content (947 kJ) and macronutrient composition, plus a dinner of the subject's own choice. At the end of each intervention, time and number of meal initiations, dynamics of blood glucose and other blood parameters, and appetite ratings such as hunger and satiety were determined in a time-blinded situation. The changes in blood glucose from meal initiation to blood glucose peak and from peak to nadir were smaller with SSM+ and SM compared to SSM. Satiety before the third meal was higher with SSM+ and SM compared to SSM (P<0.01). Meal pattern, general appetite and total energy intake were similar for all treatments. We conclude that, similar to SM, SSM+ resulted in a more moderate change in blood glucose compared to SSM and positively affected satiety before the third meal, while general appetite, total energy intake and meal pattern did not differ.
Casiraghi, Antonella; Ardovino, Paola; Minghetti, Paola; Botta, Cinzia; Gattini, Arrigo; Montanari, Luisa
2007-07-01
The topical treatment with dimethyl sulfoxide (DMSO) and/or alpha-tocopherol (alpha-T) is widely used in order to prevent the local complications of extravasation of cytostatic drugs and protect patients against skin ulceration. Till now, DMSO and alpha-T have been mainly used in solution. The goal of this study was to formulate semisolid preparations for cutaneous application differing in the hydrophilic and lipophilic properties and containing DMSO and alpha-T in combination. With respect to solutions, the use of semisolid preparations containing DMSO and alpha-T could be advantageous in patients having extravasation as DMSO and alpha-T can remain in contact with the skin over an extended period of time. As a consequence, the action of the active principles can be limited specifically on the injured skin area, reducing the cutaneous irritative effects of DMSO. The following types of semisolid formulations containing 50% m/m DMSO and 2.5% m/m alpha-T were prepared: hydrophilic ointment, o/w emulsion, hydrophilic gel and lipophilic gel. The ex vivo skin permeation of DMSO and alpha-T was evaluated by using modified Franz's diffusion cells and human stratum corneum and epidermis (SCE) as a membrane. The permeated and retained amounts of DMSO and alpha-T were determined. The oleogel preparation, the hydrophilic gel and the o/w emulsion were uniform in colour and aspect, without any evidences of phase separation over the period of the study. Hydrophilic ointments were discarded as they showed phase separation after 12 h. All formulations had a different behaviour in terms of skin permeability. In particular, hydrogel and o/w emulsion showed the best control on the drug release considering the interactions of the vehicle components with the SCE and the drugs partition between the vehicle and the SCE. The DMSO permeated amount after 24 h was 4.1 mg/cm(2) for hydrogel and 2.5 mg/cm(2) for emulsion while the permeated amount of pure DMSO after 24 h was 47.5 mg/cm(2). Therefore, aiming to reduce side effects after the topical application of the antidotes DMSO and alpha-T, these results suggested that hydrogel and o/w emulsion could be considered the most promising formulations for further clinical evaluations in managing of extravasation of anthracyclines.
32 CFR 643.35 - Policy-Mineral leasing on lands controlled by the Department of the Army.
Code of Federal Regulations, 2010 CFR
2010-07-01
... lease deposits of coal, phosphate, oil, oil shale, gas, sodium, potassium and sulfur which are within..., oil, oil shale, native asphalt, solid and semi-solid bitumen, bituminous rock and gas located on...
32 CFR 643.35 - Policy-Mineral leasing on lands controlled by the Department of the Army.
Code of Federal Regulations, 2012 CFR
2012-07-01
... lease deposits of coal, phosphate, oil, oil shale, gas, sodium, potassium and sulfur which are within..., oil, oil shale, native asphalt, solid and semi-solid bitumen, bituminous rock and gas located on...
32 CFR 643.35 - Policy-Mineral leasing on lands controlled by the Department of the Army.
Code of Federal Regulations, 2013 CFR
2013-07-01
... lease deposits of coal, phosphate, oil, oil shale, gas, sodium, potassium and sulfur which are within..., oil, oil shale, native asphalt, solid and semi-solid bitumen, bituminous rock and gas located on...
32 CFR 643.35 - Policy-Mineral leasing on lands controlled by the Department of the Army.
Code of Federal Regulations, 2011 CFR
2011-07-01
... lease deposits of coal, phosphate, oil, oil shale, gas, sodium, potassium and sulfur which are within..., oil, oil shale, native asphalt, solid and semi-solid bitumen, bituminous rock and gas located on...
32 CFR 643.35 - Policy-Mineral leasing on lands controlled by the Department of the Army.
Code of Federal Regulations, 2014 CFR
2014-07-01
... lease deposits of coal, phosphate, oil, oil shale, gas, sodium, potassium and sulfur which are within..., oil, oil shale, native asphalt, solid and semi-solid bitumen, bituminous rock and gas located on...
Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.
Spark, Amy J; Law, David W; Ward, Liam P; Cole, Ivan S; Best, Adam S
2017-08-01
Buried steel infrastructure can be a source of iron ions for bacterial species, leading to microbiologically influenced corrosion (MIC). Localized corrosion of pipelines due to MIC is one of the key failure mechanisms of buried steel pipelines. In order to better understand the mechanisms of localized corrosion in soil, semisolid agar has been developed as an analogue for soil. Here, Pseudomonas fluorescens has been introduced to the system to understand how bacteria interact with steel. Through electrochemical testing including open circuit potentials, potentiodynamic scans, anodic potential holds, and electrochemical impedance spectroscopy it has been shown that P. fluorescens increases the rate of corrosion. Time for oxide and biofilms to develop was shown to not impact on the rate of corrosion but did alter the consistency of biofilm present and the viability of P. fluorescens following electrochemical testing. The proposed mechanism for increased corrosion rates of carbon steel involves the interactions of pyoverdine with the steel, preventing the formation of a cohesive passive layer, after initial cell attachment, followed by the formation of a metal concentration gradient on the steel surface.
Food technology problems related to space feeding.
Hollender, H A; Klicka, M V; Smith, M C
1970-01-01
The development of foods suitable for extraterrestrial consumption posed unique problems. Limitations on weight, volume and stability of space food together with the lack of refrigeration favored the use of dehydrated foods on Gemini and Apollo menus. Environmental constraints, cabin pressures of 1/3 atmosphere with exposure of the food assembly to the vacuum of space in conjunction with extravehicular activities and zero gravity required special packaging and adaptation of foods considered suitable for space flight use. Requirements for acceptable, familiar, crumb free, low residue, non-gas producing, stable foods added to the complexity of the developmental effort. Four basic approaches: semisolid foods in metal tubes, dehydrated bite-size foods to be eaten dry, dehydrated foods to be reconstituted before eating and flexibly packaged thermostabilized wet meat products have been utilized in the feeding systems developed for Projects Mercury, Gemini and Apollo. The development of each type posed many interesting technologic problems. Data from current Apollo flights have pointed to certain deficiencies which still remain to be corrected. Work is progressing to eliminate current problems and to provide feeding systems suitable for both short-term and long-term space flights.
General introduction: Liquid and solid (materials, main properties and applications …)
NASA Astrophysics Data System (ADS)
Zabler, Simon
2014-10-01
A general introduction about the diversity of foam structures is given with focus onto the structural, mechanical and dynamical properties at hand. Two classes of materials are addressed: liquid and semi-solid foams, on the one hand, solid foams, on the other hand. The latter can be subdivided into metallic, ceramic and organic foams, depending on the nature of the solid skeleton that supports the overall cell structure. Solid foams generally stem from the concept of mechanical light-weight structures, but they can just as well be employed for their large surface area as well as for their acoustic and thermal properties. Modern biomaterials use tailored ceramic or organo-ceramic foams as bone scaffolds, whereas hierarchically micro- and nanoporous structures are being used by chemistry to control catalytic reactions. Future materials design and development is going to rely increasingly on natural and synthetic foam structures and properties, be it food, thermal insulators or car frames, thus giving a promising outlook onto the foam research and development that is about to come. xml:lang="fr"
In situ analytical techniques for battery interface analysis.
Tripathi, Alok M; Su, Wei-Nien; Hwang, Bing Joe
2018-02-05
Lithium-ion batteries, simply known as lithium batteries, are distinct among high energy density charge-storage devices. The power delivery of batteries depends upon the electrochemical performances and the stability of the electrode, electrolytes and their interface. Interfacial phenomena of the electrode/electrolyte involve lithium dendrite formation, electrolyte degradation and gas evolution, and a semi-solid protective layer formation at the electrode-electrolyte interface, also known as the solid-electrolyte interface (SEI). The SEI protects electrodes from further exfoliation or corrosion and suppresses lithium dendrite formation, which are crucial needs for enhancing the cell performance. This review covers the compositional, structural and morphological aspects of SEI, both artificially and naturally formed, and metallic dendrites using in situ/in operando cells and various in situ analytical tools. Critical challenges and the historical legacy in the development of in situ/in operando electrochemical cells with some reports on state-of-the-art progress are particularly highlighted. The present compilation pinpoints the emerging research opportunities in advancing this field and concludes on the future directions and strategies for in situ/in operando analysis.
Sensor apparatus using an electrochemical cell
Thakur, Mrinal
2002-01-01
A novel technology for sensing mechanical quantities such as force, stress, strain, pressure and acceleration has been invented. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electronegativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors.
Carmona-Moran, Carlos A; Zavgorodnya, Oleksandra; Penman, Andrew D; Kharlampieva, Eugenia; Bridges, S Louis; Hergenrother, Robert W; Singh, Jasvinder A; Wick, Timothy M
2016-07-25
Enhancing skin permeation is important for development of new transdermal drug delivery formulations. This is particularly relevant for non-steroidal anti-inflammatory drugs (NSAIDs). To address this, semisolid gel and solid hydrogel film formulations containing gellan gum as a gelling agent were developed and the effects of penetration enhancers (dimethyl sulfoxide, isopropyl alcohol and propylene glycol) on transport of the NSAID diclofenac sodium was quantified. A transwell diffusion system was used to accelerate formulation development. After 4h, diclofenac flux from a superior formulation of the semisolid gel or the solid hydrogel film was 130±11μg/cm(2)h and 108±7μg/cm(2)h, respectively, and significantly greater than that measured for a currently available diclofenac sodium topical gel (30±4μg/cm(2)h, p<0.05) or solution formulation (44±6μg/cm(2)h, p<0.05) under identical conditions. Over 24h diclofenac transport from the solid hydrogel film was greater than that measured for any new or commercial diclofenac formulation. Entrapment of temperature-responsive nanogels within the solid hydrogel film provides temperature-activated prolonged release of diclofenac. Diclofenac transport was minimal at 22°C, when diclofenac is entrapped within temperature-responsive nanogels incorporated into the solid hydrogel film, but increased 6-fold when the temperature was increased to skin surface temperature of 32°C. These results demonstrate the feasibility of the semisolid gel and solid hydrogel film formulations that can include thermo-responsive nanogels for development of transdermal drug formulations with adjustable drug transport kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.
Mamood, S N H; Hidayatulfathi, O; Budin, S B; Ahmad Rohi, G; Zulfakar, M H
2017-02-01
The essential oil (EO) of Piper aduncum Linnaeus, known as 'sireh lada' to locals Malaysian, has the potential to be used as an alternative to synthetic insect repellents such as N,N-diethyl-meta-toluamide. However, the EO's efficacy as a repellent decreases after application due to the high volatility of its active ingredients. A number of studies have showed that optimizing the formulation of plant-based EOs can improve their efficacy as repellents. The present study sought to evaluate the effectiveness of 10% P. aduncum EO in ethanol and in three different semisolid formulations: ointment, cream and gel. These formulations were tested on Aedes aegypti under laboratory conditions. Each formulation was applied to the subject's hands, which were then inserted into a cage containing 25 nulliparous A. aegypti. The number of mosquitoes landing on or biting each subject's hand was recorded, and the repellency percentage, landing/biting percentage and protection time for each of the formulations were compared. There were no statistically significant differences between the semisolid EO formulations with regards to the repellency percentage and the landing/biting percentage at 4 h post-application. All three semisolid EO formulations were able to repel >65% of the A. aegypti at 4 h post-application. The EO ointment formulation provided a protection time (182.5 ± 16.01 min) that was statistically significantly longer than that associated with the EO gel formulation (97.5 ± 14.93 min). Meanwhile, the EO cream formulation provided a protection time of 162.5 ± 6.29 min. As the EO cream and ointment formulations displayed better repellent properties than the EO gel formulation, they appear to be the most promising P. aduncum EO formulations to be developed and commercialized as alternatives to synthetic repellents.
El Massik, M A; Abdallah, O Y; Galal, S; Daabis, N A
2003-05-01
Seven semisolid fill bases were selected for the formulation of 24 capsule formulations, each containing 100 mg of phenytoin sodium. The fill materials were selected based on the water absorption capacity of their mixtures with phenytoin sodium. The fill matrices included lipophilic bases (castor oil, soya oil, and Gelucire (G) 33/01), amphiphilic bases (G 44/14 and Suppocire BP), and water-soluble bases (PEG 4000 and PEG 6000). The drug:base ratio was 1:2. Excipients such as lecithin, docusate sodium, and poloxamer 188 were added to some formulations. The dissolution rate study indicated that formulations containing lipophilic and amphiphilic bases showed the best release profiles. These are F4 (castor oil-1% docusate sodium); F10 (castor oil-3% poloxamer 188); F14 (G33/01-10% lecithin); F17 (G33/01-1% docusate sodium), and F20 (Suppocire BP). Further, the dissolution stability of the five formulations above was assessed by an accelerated stability study at 30 degrees C and 75% RH using standard Epanutin capsules for comparison. The study included the test and standard capsules either packed in the container of marketed Epanutin capsules (packed) or removed from their outer pack (unpacked). Release data indicated superior release rates of castor oil based formulations (F4 and F10) relative to standard capsules in both the unpacked and packed forms. For instance, the extent of drug release at 30 min after 1 month was 91% for F4 and F10 and 20% for standard capsules. Drug release from packed capsules after 6 months storage was 88% for both formulations F4 and F10 and 35% for standard capsules. In conclusion, the pharmaceutical quality of phenytoin sodium capsules can be improved by using a semisolid lipophilic matrix filled in hard gelatin capsules.
Hawthorne, Steven B.; Miller, David J.; Yang, Yu; Lagadec, Arnaud Jean-Marie
1999-01-01
The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired chemical process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from nonaqueous liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, and removing organics from water using activated carbon or other suitable sorbents.
Hawthorne, Steven B.; Miller, David J.; Lagadec, Arnaud Jean-Marie; Hammond, Peter James; Clifford, Anthony Alan
2002-01-01
The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, removing organics from water using activated carbon or other suitable sorbents, and degrading various compounds.
Fatigue behavior in rheocast aluminum 357 suspension arms using the SEED process
NASA Astrophysics Data System (ADS)
Samuel, Ehab; Zheng, Chang-Qing; Bouaicha, Amine; Bouazara, Mohamed
Extensive studies have been devoted to the use of aluminum alloys in the automotive industry, by virtue of the favourable mechanical properties that can be attained. Moreover, the aluminum casting method employed has also been the subject of scrutiny, given the multitude of casting options available. The present work serves to illustrate the advancements made in the area of rheocasting, using the SEED method, as carried out at the National Research Council Canada — Aluminum Technology Centre. The SEED (Swirled Enthalpy Equilibration Device) process, which relies on heat extraction of the liquid aluminum alloy via mechanical agitation in a confined cylinder to form the semi-solid billet, has already proven successful in producing sound aluminum castings having an excellent combination of strength and ductility. Moreover, fatigue testing on the cast alloy parts has shown enormous potential for this emerging technology.
Utilizing soybean milk to culture soybean pathogens
USDA-ARS?s Scientific Manuscript database
Liquid and semi-solid culture media are used to maintain and proliferate bacteria, fungi, and Oomycetes for research in microbiology and plant pathology. In this study, a comparison was made between soybean milk medium, also referred to as soymilk, and media traditionally used for culturing soybean ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... natural gas (LNG) means a liquid or semisolid consisting mostly of methane and small quantities of ethane...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS General § 127.005 Definitions. As used in this part: Active means accomplishing the transfer of LHG or LNG...
Code of Federal Regulations, 2013 CFR
2013-07-01
... natural gas (LNG) means a liquid or semisolid consisting mostly of methane and small quantities of ethane...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS General § 127.005 Definitions. As used in this part: Active means accomplishing the transfer of LHG or LNG...
In Vitro Mass Propagation of Cymbopogon citratus Stapf., a Medicinal Gramineae.
Quiala, Elisa; Barbón, Raúl; Capote, Alina; Pérez, Naivy; Jiménez, Elio
2016-01-01
Cymbopogon citratus (D.C.) Stapf. is a medicinal plant source of lemon grass oils with multiple uses in the pharmaceutical and food industry. Conventional propagation in semisolid culture medium has become a fast tool for mass propagation of lemon grass, but the production cost must be lower. A solution could be the application of in vitro propagation methods based on liquid culture advantages and automation. This chapter provides two efficient protocols for in vitro propagation via organogenesis and somatic embryogenesis of this medicinal plant. Firstly, we report the production of shoots using a temporary immersion system (TIS). Secondly, a protocol for somatic embryogenesis using semisolid culture for callus formation and multiplication, and liquid culture in a rotatory shaker and conventional bioreactors for the maintenance of embryogenic culture, is described. Well-developed plants can be achieved from both protocols. Here we provide a fast and efficient technology for mass propagation of this medicinal plant taking the advantage of liquid culture and automation.
Tan, E L; Shah, H S; Leister, K J; Kozick, L M; Pasciak, P; Vanderlaan, R K; Yu, C D; Patel, B
1993-08-01
The selection of an ideal semisolid vehicle for growth factors presents a challenge. Some antimicrobial agents are known to delay wound healing. The objective of this investigation was to identify appropriate preservatives and vehicles for TGF-alpha. Criteria for acceptance are noninterference with the mitogenic activity of TGF-alpha as well as adequate product preservation. Vehicles considered were o/w creams, ointments, and a gel. Combinations of six preservatives were tested. Selection was determined using both microbial preservative challenge and TGF-alpha mitogenic assay. In the former, 10 species of microorganisms were inoculated into formulation samples. At selected time intervals, it was determined whether colonies decreased, increased, or remained constant. In the mitogenic assay, samples of either preservatives or formulation prototypes were introduced to TGF-alpha-stimulated fibroblast cell cultures. Mitogenesis was determined by measuring 3H-dThd uptake into newly synthesized DNA. As preservatives, sorbic acid and quaternium-15 appear to satisfy both selection criteria. A thermosetting gel appears most promising as vehicle.
Shiraiwa, Manabu; Zuend, Andreas; Bertram, Allan K; Seinfeld, John H
2013-07-21
Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.
Szymańska, Emilia; Winnicka, Katarzyna; Wieczorek, Piotr; Sacha, Paweł Tomasz; Tryniszewska, Elżbieta Anna
2014-01-01
The combination of an antifungal agent and drug carrier with adjunctive antimicrobial properties represents novel strategy of complex therapy in pharmaceutical technology. The goal of this study was to investigate the unmodified and ion cross-linked chitosan’s influence on anti-Candida activity of clotrimazole used as a model drug in hydrogels. It was particularly crucial to explore whether the chitosans’ structure modification by β-glycerophosphate altered its antifungal properties. Antifungal studies (performed by plate diffusion method according to CLSI reference protocol) revealed that hydrogels obtained with chitosan/β-glycerophosphate displayed lower anti-Candida effect, probably as a result of weakened polycationic properties of chitosan in the presence of ion cross-linker. Designed chitosan hydrogels with clotrimazole were found to be more efficient against tested Candida strains and showed more favorable drug release profile compared to commercially available product. These observations indicate that novel chitosan formulations may be considered as promising semi-solid delivery system of clotrimazole. PMID:25272230
Szymańska, Emilia; Winnicka, Katarzyna; Wieczorek, Piotr; Sacha, Paweł Tomasz; Tryniszewska, Elżbieta Anna
2014-09-30
The combination of an antifungal agent and drug carrier with adjunctive antimicrobial properties represents novel strategy of complex therapy in pharmaceutical technology. The goal of this study was to investigate the unmodified and ion cross-linked chitosan's influence on anti-Candida activity of clotrimazole used as a model drug in hydrogels. It was particularly crucial to explore whether the chitosans' structure modification by β-glycerophosphate altered its antifungal properties. Antifungal studies (performed by plate diffusion method according to CLSI reference protocol) revealed that hydrogels obtained with chitosan/β-glycerophosphate displayed lower anti-Candida effect, probably as a result of weakened polycationic properties of chitosan in the presence of ion cross-linker. Designed chitosan hydrogels with clotrimazole were found to be more efficient against tested Candida strains and showed more favorable drug release profile compared to commercially available product. These observations indicate that novel chitosan formulations may be considered as promising semi-solid delivery system of clotrimazole.
Enhancement of methane production from co-digestion of chicken manure with agricultural wastes.
Abouelenien, Fatma; Namba, Yuzaburo; Kosseva, Maria R; Nishio, Naomichi; Nakashimada, Yutaka
2014-05-01
The potential for methane production from semi-solid chicken manure (CM) and mixture of agricultural wastes (AWS) in a co-digestion process has been experimentally evaluated at thermophilic and mesophilic temperatures. To the best of author(')s knowledge, it is the first time that CM is co-digested with mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Two types of anaerobic digestion processes (AD process) were used, process 1 (P1) using fresh CM (FCM) and process 2 (P2) using treated CM (TCM), ammonia stripped CM, were conducted. Methane production in P1 was increased by 93% and 50% compared to control (no AWS added) with maximum methane production of 502 and 506 mL g(-1)VS obtained at 55°C and 35°C, respectively. Additionally, 42% increase in methane production was observed with maximum volume of 695 mL g(-1)VS comparing P2 test with P2 control under 55°C. Ammonia accumulation was reduced by 39% and 32% in P1 and P2 tests. Copyright © 2014 Elsevier Ltd. All rights reserved.
Artificial diets for life tables bioassays of TPB in Mississippi
USDA-ARS?s Scientific Manuscript database
Two artificial diets for mass rearing and bioassay of the tarnished plant bug, (TPB), Lygus lineolaris Palisot de Beauvois, (Hemiptera: Miridae) were modified and developed, respectively. The first diet is a modification of a semisolid artificial diet (NI diet), which permits large scale rearing of ...
Shah, Dheeraj; Singh, Meenakshi; Gupta, Piyush; Faridi, M M A
2014-03-01
The aim of the present study was to evaluate whether the order of complementary feeding in relation to breast-feeding affects breast milk, semisolid, or total energy intake in infants. The present study was designed as a randomized crossover trial. The study was conducted in a tertiary care hospital. The study participants were 25 healthy infants between the ages of 7 and 11 months who were exclusively breast-fed for at least 6 months and were now receiving complementary foods for at least 1 month in addition to breast-feeding. Infants were randomized to follow a sequence of either complementary feeding before breast-feeding (sequence A) or complementary feeding after breast-feeding (sequence B) for the first day (24 hours) of the study period using simple randomization. For the next day, the sequence was reversed for each child. All babies received 3 actively fed complementary food meals per day (morning, afternoon, and evening). A semisolid study diet was prepared in the hospital by cooking rice and pulse with oil using a standard method, ensuring the energy density of at least 0.6 kcal/g. The infants were allowed ad libitum breast-feeding during the observation period. Semisolid intake was directly measured and breast milk intake was quantified by test weighing method. Energy intake from complementary foods was calculated from the product of energy density of the diet served on that day and the total amount consumed. The total energy intake and energy intake from breast milk and complementary foods between the 2 sequences were compared. The mean (standard deviation) energy intake from breast milk during 12 hours of daytime by following sequence A (complementary feeding before breast-feeding) was 132.0 (67.4) kcal in comparison with 135.9 (56.2) kcal in sequence B, which was not statistically different (P = 0.83). The mean (standard deviation) energy consumed from semisolids in sequences A and B was also comparable (88.6 [75.5] kcal vs. 85.5 [89.7] kcal; P = 0.58). The total energy intake during daytime in sequence A was 220.6 (96.2) kcal in comparison with 221.5 (94.0) kcal in sequence B, which was also comparable (P = 0.97). The results related to energy intake through breast milk and total energy intake were not different when insensible losses during feeding were adjusted in both groups. Altering the sequence of complementary feeding in relation to breast-feeding does not affect total energy intake.
Shawar, R; Paetznick, V; Witte, Z; Ensign, L G; Anaissie, E; LaRocco, M
1992-01-01
A study was performed in two laboratories to evaluate the effect of growth medium and test methodology on inter- and intralaboratory variations in the MICs of amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITRA), and the triazole Sch 39304 (SCH) against 14 isolates of Candida albicans. Testing was performed by broth microdilution and semisolid agar dilution with the following media, buffered to pH 7.0 with morpholinepropanesulfonic acid (MOPS): buffered yeast nitrogen base (BYNB), Eagle's minimal essential medium (EMEM), RPMI 1640 medium (RPMI), and synthetic amino acid medium for fungi (SAAMF). Inocula were standardized spectrophotometrically, and endpoints were defined by the complete absence of growth for AMB and by no more than 25% of the growth in the drug-free control for all other agents. Comparative analyses of median MICs, as determined by each test method, were made for all drug-medium combinations. Both methods yielded similar (+/- 1 twofold dilution) median MICs for AMB in EMEM and RPMI, 5FC in all media, and FLU in EMEM, RPMI, and SAAMF. In contrast, substantial between-method variations in median MICs were seen for AMB in BYNB and SAAMF, FLU In BYNB, and ITRA and SCH in all media. Interlaboratory concordance of median MICs was good for AMB, 5FC, and FLU but poor for ITRA and SCH in all media. Endpoint determinations were analyzed by use of kappa statistical analyses for evaluating the strength of observer agreement. Moderate to almost perfect interlaboratory agreement occurred with AMB and 5FC in all media and with FLU in EMEM, RPMI, and SAAMF, irrespective of the test method. Slight to almost perfect interlaboratory agreement occurred with ITRA and SCH in EMEM, RPMI, and SAAMF when tested by semisolid agar dilution but not broth microdilution. Kappa values assessing intralaboratory agreement between methods were high for 5FC in all media, for AMB in BYNB, ENEM, and RPMI, and for FLU in EMEM, RPMI, and SAAMF. One laboratory, but not the other, reported substantial to almost perfect agreement between methods for ITRA, and SCH in EMEM, RPMI, and SAAMF. Both laboratories reported poor agreement between methods for the azoles in BYNB. Discrepancies noted in azole-BYNB combinations were largely due to the greater inhibitory effect of these agents in BYNB than in other media. These results indicate that the semisolid agar dilution and broth microdilution methods with EMEM or RPMI yield equivalent and reproducible MICs for AMB, 5FC, and FLU but not ITRA and SCH. PMID:1500502
Shawar, R; Paetznick, V; Witte, Z; Ensign, L G; Anaissie, E; LaRocco, M
1992-08-01
A study was performed in two laboratories to evaluate the effect of growth medium and test methodology on inter- and intralaboratory variations in the MICs of amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITRA), and the triazole Sch 39304 (SCH) against 14 isolates of Candida albicans. Testing was performed by broth microdilution and semisolid agar dilution with the following media, buffered to pH 7.0 with morpholinepropanesulfonic acid (MOPS): buffered yeast nitrogen base (BYNB), Eagle's minimal essential medium (EMEM), RPMI 1640 medium (RPMI), and synthetic amino acid medium for fungi (SAAMF). Inocula were standardized spectrophotometrically, and endpoints were defined by the complete absence of growth for AMB and by no more than 25% of the growth in the drug-free control for all other agents. Comparative analyses of median MICs, as determined by each test method, were made for all drug-medium combinations. Both methods yielded similar (+/- 1 twofold dilution) median MICs for AMB in EMEM and RPMI, 5FC in all media, and FLU in EMEM, RPMI, and SAAMF. In contrast, substantial between-method variations in median MICs were seen for AMB in BYNB and SAAMF, FLU In BYNB, and ITRA and SCH in all media. Interlaboratory concordance of median MICs was good for AMB, 5FC, and FLU but poor for ITRA and SCH in all media. Endpoint determinations were analyzed by use of kappa statistical analyses for evaluating the strength of observer agreement. Moderate to almost perfect interlaboratory agreement occurred with AMB and 5FC in all media and with FLU in EMEM, RPMI, and SAAMF, irrespective of the test method. Slight to almost perfect interlaboratory agreement occurred with ITRA and SCH in EMEM, RPMI, and SAAMF when tested by semisolid agar dilution but not broth microdilution. Kappa values assessing intralaboratory agreement between methods were high for 5FC in all media, for AMB in BYNB, ENEM, and RPMI, and for FLU in EMEM, RPMI, and SAAMF. One laboratory, but not the other, reported substantial to almost perfect agreement between methods for ITRA, and SCH in EMEM, RPMI, and SAAMF. Both laboratories reported poor agreement between methods for the azoles in BYNB. Discrepancies noted in azole-BYNB combinations were largely due to the greater inhibitory effect of these agents in BYNB than in other media. These results indicate that the semisolid agar dilution and broth microdilution methods with EMEM or RPMI yield equivalent and reproducible MICs for AMB, 5FC, and FLU but not ITRA and SCH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiegel, Aaron A.; Liu, Matthew J.; Hinsberg, William D.
Multiphase chemical reactions (gas + solid/liquid) involve a complex interplay between bulk and interface chemistry, diffusion, evaporation, and condensation. Reactions of atmospheric aerosols are an important example of this type of chemistry: the rich array of particle phase states and multiphase transformation pathways produce diverse but poorly understood interactions between chemistry and transport. Their chemistry is of intrinsic interest because of their role in controlling climate. Their characteristics also make them useful models for the study of principles of reactivity of condensed materials under confined conditions. Previously, we have reported a computational study of the oxidation chemistry of a liquidmore » aliphatic aerosol. In this study, we extend the calculations to investigate nearly the same reactions at a semisolid gas-aerosol interface. A reaction-diffusion model for heterogeneous oxidation of triacontane by hydroxyl radicals (OH) is described, and its predictions are compared to measurements of aerosol size and composition, which evolve continuously during oxidation. Our results are also explicitly compared to those obtained for the corresponding liquid system, squalane, to pinpoint salient elements controlling reactivity. The diffusive confinement of the free radical intermediates at the interface results in enhanced importance of a few specific chemical processes such as the involvement of aldehydes in fragmentation and evaporation, and a significant role of radical-radical reactions in product formation. The simulations show that under typical laboratory conditions semisolid aerosols have highly oxidized nanometer-scale interfaces that encapsulate an unreacted core and may confer distinct optical properties and enhanced hygroscopicity. This highly oxidized layer dynamically evolves with reaction, which we propose to result in plasticization. The validated model is used to predict chemistry under atmospheric conditions, where the OH radical concentration is much lower. The oxidation reactions are more strongly influenced by diffusion in the particle, resulting in a more liquid-like character.« less
EFFECT OF PHOSPHORUS CONCENTRATION ON THE GROWTH OF CATTAIL CALLUS CELLS
This investigation examined the growth of Typha latifolia (cattail) callus cells grown in 5 different (0, 11, 22, 33, 44, jg/L(-1) phosphosur concentrations. The cells were grown for two successive subcultures on semi-solid media, and subsequently in suspension culture with the s...
Coaxial-probe contact-force monitoring for dielectric properties measurements
USDA-ARS?s Scientific Manuscript database
A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...
Monitoring Coaxial-Probe Contact Force for Dielectric Properties Measurement
USDA-ARS?s Scientific Manuscript database
A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...
NASA Astrophysics Data System (ADS)
Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri
2017-04-01
SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.
1965-10-01
lubrication method even though the Correct lubricant and method of xubrioation were readily available with a long history of successful operation under...grease has failed. During the discussion of the lubricant failure it is disclosed that the failure is due to corrosion of titani ™ *etal located
USDA-ARS?s Scientific Manuscript database
A novel open-ended half-mode substrate integrated waveguide (HMSIW) sensor with ground flange for measuring complex permittivity of liquids, semisolids, and granular and particulate materials is presented. The open-ended HMSIW is designed and fabricated on FR4 substrate. The ground flange was custo...
USDA-ARS?s Scientific Manuscript database
Motile bacteria can employ one or more different strategies to move, including swimming, swarming, twitching, gliding, sliding, and darting. Swimming is considered the movement of individual bacteria through a liquid or semi-solid medium, while swarming is the concerted movement of a group of bacte...
Treated biosolids may be applied to land as a crop nutrient and soil conditioner. However, land application of biosolids may pose the risk of releasing pathogens into the environment if disinfection and use criteria established by EPA at 40 CFR part 503 are not met. Among these c...
Takeda, Namihiro; Hamana, Tomoko; Oka, Toyoka; Matsuyama, Narihisa; Hirohara, Masayoshi; Kushida, Kazuki
2015-12-01
Among patients who receive enteral nutrition through a gastric fistula, some are concomitantly administered viscosity modifiers to avoid aspiration pneumonitis caused by gastroesophageal reflux. These patients(and families)often bear the high economic and care burdens associated with enteral nutritional management. We developed an outpatient-based pharmacy service through multidisciplinary cooperation, facilitating a shift from enteral nutrition to semi-solid formula. This shift is expected to reduce the economic burden by approximately 120 thousand yen, and the hours of care by about 550 hours annually. Owing to family circumstances or economic conditions, some patients(and families)do not receive at-home guidance of pharmaceutical management by pharmacists. The family members of such patients visit the pharmacy to obtain the prescribed medications. Such patients and families could be supported within the outpatient-based pharmacy services, through proactively participating in home health care daily(collaborative relationship with the local community)and re-counting experiences of providing home guidance of pharmaceutical management.
NASA Technical Reports Server (NTRS)
Moon, Hee-Kyung
1990-01-01
The rheological behavior and microstructure were investigated using a concentric cylinder viscometer for three different slurries: semi-solid alloy slurries of a matrix alloy, Al-6.5wt percent Si: composite slurries, SiC (sub p) (8.5 microns)/Al-6.5wt percent Si, with the same matrix alloy in the molten state, and composite slurries of the same composition with the matrix alloy in the semi-solid state. The pseudoplasticity of these slurries was obtained by step changes of the shear rate from a given initial shear rate. To study the thixotropic behavior of the system, a slurry was allowed to rest for different periods of time, prior to shearing at a given initial shear rate. In the continuous cooling experiments, the viscosities of these slurries were dependent on the shear rate, cooling rate, volume fraction of the primary solid of the matrix alloy, and volume fraction of silicon carbide. In the isothermal experiments, all three kinds of slurries exhibited non-Newtonian behavior, depending on the volume fraction of solid particles.
Schwach-Abdellaoui, Khadija; Moreau, Marinette; Schneider, Marc; Boisramć, Bernard; Gurny, Robert
2002-11-06
In animal health care, current therapeutic regimens for gastrointestinal disorders require repeated oral or parenteral dosage forms of anti-emetic agents. However, fluctuations of plasma concentrations produce severe side effects. The aim of this work is to develop a subcutaneous and biodegradable controlled release system containing metoclopramide (MTC). Semi-solid poly(ortho ester)s (POE) prepared by a transesterification reaction between trimethyl orthoacetate and 1,2,6,-hexanetriol were investigated as injectable bioerodible polymers for the controlled release of MTC. MTC is present in the polymeric matrix as a solubilised form and it is released rapidly from the POE by erosion and diffusion because of its acidic character and its high hydrosolubility. If a manual injection is desired, only low molecular weight can be used. However, low molecular weight POEs release the drug rapidly. In order to extend polymer lifetime and decrease drug release rate, a sparingly water-soluble base Mg(OH)(2) was incorporated to the formulation. It was possible to produce low molecular weight POE that can be manually injected and releasing MTC over a period of several days.
A Three-Stage Mechanistic Model for Solidification Cracking During Welding of Steel
NASA Astrophysics Data System (ADS)
Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J.; Rack, A.; Cocks, A. C. F.
2018-03-01
A three-stage mechanistic model for solidification cracking during TIG welding of steel is proposed from in situ synchrotron X-ray imaging of solidification cracking and subsequent analysis of fracture surfaces. Stage 1—Nucleation of inter-granular hot cracks: cracks nucleate inter-granularly in sub-surface where maximum volumetric strain is localized and volume fraction of liquid is less than 0.1; the crack nuclei occur at solute-enriched liquid pockets which remain trapped in increasingly impermeable semi-solid skeleton. Stage 2—Coalescence of cracks via inter-granular fracture: as the applied strain increases, cracks coalesce through inter-granular fracture; the coalescence path is preferential to the direction of the heat source and propagates through the grain boundaries to solidifying dendrites. Stage 3—Propagation through inter-dendritic hot tearing: inter-dendritic hot tearing occurs along the boundaries between solidifying columnar dendrites with higher liquid fraction. It is recommended that future solidification cracking criterion shall be based on the application of multiphase mechanics and fracture mechanics to the failure of semi-solid materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, E.; Kraatz, M.; Luthy, R.G.
The dissolution of naphthalene, phenanthrene, and pyrene from viscous organic phases into water was studied in continuous-flow systems for time periods ranging from several months to more than 1 year. By selecting nonaqueous phases ranging from low viscosity to semisolid, i.e., from a light lubricating oil to paraffin, the governance of mass transfer was shown to vary from water phase control to nonaqueous phase control. An advancing depleted-zone model is proposed to explain the dissolution of PAHs from a viscous organic phase wherein the formation of a depleted zone within the organic phase increases the organic phase resistance to themore » dissolution of PAHs. The experimental data suggest the formation of a depleted zone within the organic phase for systems comprising a high-viscosity oil, petrolatum (petroleum jelly), and paraffin. Organic phase resistance to naphthalene dissolution became dominant over aqueous phase resistance after flushing for several days. Such effects were not evident for low viscosity lubricating oil. The transition from aqueous-phase dissolution control to nonaqueous-phase dissolution control appears predictable, and this provides a more rational framework to assess long-term release of HOCs from viscous nonaqueous phase liquids and semisolids.« less
Antral localization worsens the efficacy of enteral stents in malignant digestive tumors.
Dolz, Carlos; Vilella, Àngels; González Carro, Pedro; González Huix, Ferran; Espinós, Juan Carlos; Santolaria, Santos; Pérez Roldán, Francisco; Figa, Montserrat; Loras, Carmen; Andreu, Hernán
2011-02-01
Malignant gastric outlet obstruction can be treated by means of enteral stenting or surgical gastrojejunalanatomosis. We evaluated in a prospective and multicentre study the efficacy of the enteral stent on food intake, the quality of life impact, and the relationship between efficacy and determined clinical and technical parameters. Seventy one patients affected by symptoms arising from gastroduodenal obstruction due to malignant tumors, with criteria of irresecability, metastatic disease or very high surgical risk, were treated by means of self expanding metal stents. We used the GOOSS index to evaluate efficacy, and the Euro Qol-5D index to evaluate quality of life. Before stenting patients with GOOSS 0 and 1 were 68 (98.5%). After stenting patients with GOOSS 2 and 3 (semisolid and solid food) were 58 (84,1%) (P<.0001). The Euro Qol-5D index measured before and a month after stenting were 10.17 and 10.04 respectively (P=.6). The median survival was 91 days (9-552). The enteral stents for localised tumors in the duodenum and the gastrojejunalanastomosis were effective in 26 patients (70.2%) and 13 patients respectively (86.6%), while the enteral stents of tumors in the antrum were effective in only 5 patients (29.4%). The palliative treatment of malignant gastric outlet obstruction with a uncovered metal stent produces a significant improvement of oral food intake and maintains the overall quality of life index. The antral localization is associated with a lower efficacy of the procedure. Copyright © 2010 Elsevier España, S.L. All rights reserved.
Chen, Tijun; Gao, Min; Tong, Yunqi
2018-01-01
To prepare core-shell-structured Ti@compound particle (Ti@compoundp) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al–Ti–Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al3Ti phase to form to different degrees. The first-formed Al–Ti–Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)3Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)3Ti phase was larger than that in τ1 phase, but smaller than that in Al3Ti phase. So, the shells in the Al–Ti–Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al–Ti–Mg system and the reaction rate in the Al–Ti–Zn system. More importantly, the desirable core-shell structured Ti@compoundp was only achieved in the semisolid Al–Ti–Si system. PMID:29342946
RD, Mattes; WW, Campbell
2009-01-01
Objective Overweight and obesity have been attributed to increased eating frequency and the size of eating events. This study explored the influence of the timing of eating events and food form on appetite and daily energy intake. Design Cross-over, clinical intervention where participants consumed 300 kcal loads of a solid (apple), semi-solid (apple sauce) and beverage (apple juice) at a meal or 2 hours later (snack). Subjects Twenty normal weight (body mass index - BMI=22.6±1.8kg/m2) and 20 obese (BMI=32.3±1.5kg/m2) adults. There were 10 males and 10 females within each BMI group. Measurements On 6 occasions, participants reported to the laboratory at their customary midday meal time. Appetite questionnaires and motor skills tests were completed upon arrival and at 30min intervals for the 2 hours participants were in the laboratory and at 30min intervals for 4 hours after leaving the laboratory. Diet recalls were collected the next day. Data were collected between January of 2006 and June of 2007. Results Whether consumed with a meal or alone as a snack, the beverage elicited the weakest appetitive response, the solid food form elicited the strongest appetitive response and the semi-solid response was intermediate. The appetite shift was greatest for the solid food when consumed as a snack. The interval between test food consumption and the first spontaneous eating event >100 kcal was shortest for the beverage. No significant treatment effects were observed for test day energy intake or between lean and obese individuals. Conclusion Based on the appetitive findings, consumption of an energy-yielding beverage either with a meal or as a snack poses a greater risk for promoting positive energy than macronutrient-matched semi-solid or solid foods consumed at these times. PMID:19248858
Chen, Tijun; Gao, Min; Tong, Yunqi
2018-01-15
To prepare core-shell-structured Ti@compound particle (Ti@compound p ) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al-Ti-Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al₃Ti phase to form to different degrees. The first-formed Al-Ti-Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)₃Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)₃Ti phase was larger than that in τ1 phase, but smaller than that in Al₃Ti phase. So, the shells in the Al-Ti-Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al-Ti-Mg system and the reaction rate in the Al-Ti-Zn system. More importantly, the desirable core-shell structured Ti@compound p was only achieved in the semisolid Al-Ti-Si system.
da Silva Barth, Cristiane; Tolentino de Souza, Hugo Guilherme; Rocha, Lilian W; da Silva, Gislaine Francieli; Dos Anjos, Mariana Ferreira; Pastor, Veronica D'Avila; Belle Bresolin, Tania Mari; Garcia Couto, Angelica; Roberto Santin, José; Meira Quintão, Nara Lins
2017-03-22
Ipomoea pes-caprae is known as bayhops, beach morning glory or goat's foot, and in Brazil as salsa-de-praia. Its leaves are used in worldwide folk medicine for the relief of jellyfish-stings symptoms. The literature only reports the neutralizing effects of nonpolar plant derived over jellyfish venoms, without validating the popular use or exploring the mechanism of action. This study aimed to evaluate and validate the topical effects of a semisolid containing hydroethanolic extract obtained from the aerial parts of I. pes-caprae using different models of paw- and ear-oedema and spontaneous nociception in mice, attempting to better understand the mechanism involved in its effect. Leaf and stem of I. pes-caprae were extracted by ethanol 50% (v/v) and the soft-extract was incorporated in Hostacerin® cream base at 0.5%, 1.0% and 2% (w/w). The anti-hypersensitivity effects were evaluated by injecting the Physalia physalis venom into the right mice's hindpaw pre-treated either with the semisolid containing the I. pes-caprae extract or with the isolated majority compound 3,5-Di-O-caffeoylquinic acid (ISA). The topical anti-inflammatory activity was investigated using both preclinical models: paw oedema induced by trypsin, bradykinin (BK), histamine and carrageenan, and ear oedema induced by capsaicin. Additionally, the model of spontaneous nociception induced by trypsin and capsaicin were used to verify the topical antinociceptive activity. The animals pre-treated with the semisolid containing I. pes-caprae extract or with the intraplantar injection of the major component (ISA) had the mechanical hypersensitivity induced by P. physalis venom significantly reduced. Significant inhibition was also observed in paw-oedema induced by trypsin, histamine and BK, and in a less extent in carrageenan-induced paw oedema. Similar effect was observed in mice challenged to the capsaicin-induced ear-oedema. Besides the vascular effects, the extract interfered with leukocyte migration induced by histamine injection. Finally, the semisolid presented significant inhibition in trypsin- and capsaicin-induced spontaneous nociception. The hydroethanolic extract of I. pes-caprae showed compliance with the topical popular use of the herbal product to relieve the symptoms evoked by the cnidarian venom-skin contact, such as neurogenic oedema and nociception. The extract components seem to interfere with the effects resulting from the TRPV1, B 2 R and PAR-2 activation, once it interfered with painful-behaviour and oedema induced by capsaicin, BK and trypsin, pointing the histaminergic system as the main target, once it is an important mediator in the signalling pathway of the aforementioned receptors. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Vigueras, G; Paredes-Hernández, D; Revah, S; Valenzuela, J; Olivares-Hernández, R; Le Borgne, S
2017-08-01
A mutualistic fungus of the leaf-cutting ant Atta mexicana was isolated and identified as Leucoagaricus gongylophorus. This isolate had a close phylogenetic relationship with L. gongylophorus fungi cultivated by other leaf-cutting ants as determined by ITS sequencing. A subcolony started with ~500 A. mexicana workers could process 2 g day -1 of plant material and generate a 135 cm 3 fungus garden in 160 days. The presence of gongylidia structures of ~35 μm was observed on the tip of the hyphae. The fungus could grow without ants on semi-solid cultures with α-cellulose and microcrystalline cellulose and in solid-state cultures with grass and sugarcane bagasse, as sole sources of carbon. The maximum CO 2 production rate on grass (V max = 17·5 mg CO 2 L g -1 day -1 ) was three times higher than on sugarcane bagasse (V max = 6·6 mg CO 2 L g -1 day -1 ). Recoveries of 32·9 mg glucose g biomass -1 and 12·3 mg glucose g biomass -1 were obtained from the fungal biomass and the fungus garden, respectively. Endoglucanase activity was detected on carboxymethylcellulose agar plates. This is the first study reporting the growth of L. gongylophorus from A. mexicana on cellulose and plant material. According to the best of our knowledge, this is the first report about the growth of Leucoagaricus gongylophorus, isolated from the colony of the ant Atta mexicana, on semisolid medium with cellulose and solid-state cultures with lignocellulosic materials. The maximum CO 2 production rate on grass was three times higher than on sugarcane bagasse. Endoglucanase activity was detected and it was possible to recover glucose from the fungal gongylidia. The cellulolytic activity could be used to process lignocellulosic residues and obtain sugar or valuable products, but more work is needed in this direction. © 2017 The Society for Applied Microbiology.
Bostijn, N; Hellings, M; Van Der Veen, M; Vervaet, C; De Beer, T
2018-07-12
UltraViolet (UV) spectroscopy was evaluated as an innovative Process Analytical Technology (PAT) - tool for the in-line and real-time quantitative determination of low-dosed active pharmaceutical ingredients (APIs) in a semi-solid (gel) and a liquid (suspension) pharmaceutical formulation during their batch production process. The performance of this new PAT-tool (i.e., UV spectroscopy) was compared with an already more established PAT-method based on Raman spectroscopy. In-line UV measurements were carried out with an immersion probe while for the Raman measurements a non-contact PhAT probe was used. For both studied formulations, an in-line API quantification model was developed and validated per spectroscopic technique. The known API concentrations (Y) were correlated with the corresponding in-line collected preprocessed spectra (X) through a Partial Least Squares (PLS) regression. Each developed quantification method was validated by calculating the accuracy profile on the basis of the validation experiments. Furthermore, the measurement uncertainty was determined based on the data generated for the determination of the accuracy profiles. From the accuracy profile of the UV- and Raman-based quantification method for the gel, it was concluded that at the target API concentration of 2% (w/w), 95 out of 100 future routine measurements given by the Raman method will not deviate more than 10% (relative error) from the true API concentration, whereas for the UV method the acceptance limits of 10% were exceeded. For the liquid formulation, the Raman method was not able to quantify the API in the low-dosed suspension (0.09% (w/w) API). In contrast, the in-line UV method was able to adequately quantify the API in the suspension. This study demonstrated that UV spectroscopy can be adopted as a novel in-line PAT-technique for low-dose quantification purposes in pharmaceutical processes. Important is that none of the two spectroscopic techniques was superior to the other for both formulations: the Raman method was more accurate in quantifying the API in the gel (2% (w/w) API), while the UV method performed better for API quantification in the suspension (0.09% (w/w) API). Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodford, William
This document is the final technical report from 24M Technologies on the project titled: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing. All of the program milestones and deliverables were completed during the performance of the award. Specific accomplishments are 1) 24M demonstrated the processability and electrochemical performance of semi-solid electrodes with active volume contents increased by 10% relative to the program baseline; 2) electrode-level metrics, quality, and yield were demonstrated at an 80 cm 2 electrode footprint; 3) these electrodes were integrated into cells with consistent capacities and impedances, including cells delivered to Argonne National Laboratory for independentmore » testing; 4) those processes were scaled to a large-format (> 260 cm 2) electrode footprint and quality and yield were demonstrated; 5) a high-volume manufacturing approach for large-format electrode fabrication was demonstrated; and 6) large-format cells (> 100 Ah capacity) were prototyped with consistent capacity and impedance, including cells which were delivered to Argonne National Laboratory for independent testing.« less
9 CFR 319.303 - Corned beef hash.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Corned beef hash. 319.303 Section 319.303 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Products § 319.303 Corned beef hash. (a) “Corned Beef Hash” is the semi-solid food product in the form of a...
9 CFR 319.303 - Corned beef hash.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Corned beef hash. 319.303 Section 319.303 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Products § 319.303 Corned beef hash. (a) “Corned Beef Hash” is the semi-solid food product in the form of a...
9 CFR 319.303 - Corned beef hash.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Corned beef hash. 319.303 Section 319.303 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Products § 319.303 Corned beef hash. (a) “Corned Beef Hash” is the semi-solid food product in the form of a...
9 CFR 319.303 - Corned beef hash.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Corned beef hash. 319.303 Section 319.303 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Products § 319.303 Corned beef hash. (a) “Corned Beef Hash” is the semi-solid food product in the form of a...
NASA Astrophysics Data System (ADS)
Reza, M. S.; Aqida, S. N.; Ismail, I.
2018-03-01
This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.
High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators
Janke, C.J.; Lopata, V.J.; Havens, S.J.; Dorsey, G.F.; Moulton, R.J.
1999-03-02
A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.
Strange but True: The Physics of Glass, Gels and Jellies Is All Related through Rheology
ERIC Educational Resources Information Center
Sarker, Dipak K.
2017-01-01
Rheology is an enormously far-reaching branch of physics (or physical chemistry) and has a number of different guises. Rheological descriptions define fluids, semi-solids and conventional solids, and the application of this science defines the performance and utility of materials and substances as diverse as foods (such as yogurt and marmalade),…
High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators
Janke, Christopher J.; Lopata, Vincent J.; Havens, Stephen J.; Dorsey, George F.; Moulton, Richard J.
1999-01-01
A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla
Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less
Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol
Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla; ...
2017-12-15
Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less
Pontoni, Ludovico; Panico, Antonio; Matanò, Alessia; van Hullebusch, Eric D; Fabbricino, Massimiliano; Esposito, Giovanni; Pirozzi, Francesco
2017-12-06
A novel modification of the sample preparation procedure for the Folin-Ciocalteu colorimetric assay for the determination of total phenolic compounds in natural solid and semisolid organic materials (e.g., foods, organic solid waste, soils, plant tissues, agricultural residues, manure) is proposed. In this method, the sample is prepared by adding sodium sulfate as a solid diluting agent before homogenization. The method allows for the determination of total phenols (TP) in samples with high solids contents, and it provides good accuracy and reproducibility. Additionally, this method permits analyses of significant amounts of sample, which reduces problems related to heterogeneity. We applied this method to phenols-rich lignocellulosic and humic-like solids and semisolid samples, including rice straw (RS), peat-rich soil (PS), and food waste (FW). The TP concentrations measured with the solid dilution (SD) preparation were substantially higher (increases of 41.4%, 15.5%, and 59.4% in RS, PS and FW, respectively) than those obtained with the traditional method (solids suspended in water). These results showed that the traditional method underestimates the phenolic contents in the studied solids.
Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla
Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less
Kohli, Monika V; Patil, Gururaj B.; Kulkarni, Narayan B.; Bagalkot, Kishore; Purohit, Zarana; Dave, Nilixa; Sagari, Shitalkumar G; Malaghan, Manjunath
2014-01-01
Background: Feeding mode during infancy and its effect on deciduous tooth appearance in oral cavity in two generations and among genders. Aim and Objective: Study aimed to compare and correlate times and patterns of deciduous tooth eruption in breastfeeding (OBF), partial breastfeeding (PBF) and spoon feeding (SF) infants and initiation of semisolid food feeding (SSF) in infants. It also aimed to address the variations in the time of eruption of first deciduous tooth and its pattern in two generations who had more than a decade of difference in ages. Materials and methods: An open-ended questionnaire study was conducted on mothers of 265 patients from two groups, generation 1 (G1)- adults who were aged 20-35 years and second group, generation 2 (G2) - children who were below 5 years of age . Results: A statistical significance was observed with respect to age, gender, generations, and frequency of breastfeeding, partial breastfeeding and time of initiation of semisolid food. Conclusion: There is a delayed eruption of teeth in present generation. For girls, it occurs at age of 7.88 months and for boys, it occurs at the age of 8.08 months. PMID:24783136
Determining casting defects in near-net shape casting aluminum parts by computed tomography
NASA Astrophysics Data System (ADS)
Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter
2018-03-01
Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan
The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).
Airborne Power Ultrasonic Technologies for Intensification of Food and Environmental Processes
NASA Astrophysics Data System (ADS)
Riera, Enrique; Acosta, Víctor M.; Bon, José; Aleixandre, Manuel; Blanco, Alfonso; Andrés, Roque R.; Cardoni, Andrea; Martinez, Ignacio; Herranz, Luís E.; Delgado, Rosario; Gallego-Juárez, Juan A.
Airborne power ultrasound is a green technology with a great potential for food and environmental applications, among others. This technology aims at producing permanent changes in objects and substances by means of the propagation of high-intensity waves through air and multiphase media. Specifically, the nonlinear effects produced in such media are responsible for the beneficial repercussions of ultrasound in airborne applications. Processing enhancement is achieved through minimizing the impedance mismatch between the ultrasonic radiator source and the medium by the generation of large vibration displacements and the concentration of energy radiation thus overcoming the high acoustic absorption of fluids, and in particular of gases such as air. Within this work the enhancing effects of airborne power ultrasound in various solid/liquid/gas applications including drying of solid and semi-solid substances, and the agglomeration of tiny particles in air cleaning processes are presented. Moreover, the design of new ultrasonic devices capable of generating these effects are described along with practical methods aimed at maintaining a stable performance of the tuned systems at operational powers. Hence, design strategies based on finite element modelling (FEM) and experimental methods consolidated through the years for material and tuned assembly characterizations are highlighted.
A review of the technological solutions for the treatment of oily sludges from petroleum refineries.
da Silva, Leonardo Jordão; Alves, Flávia Chaves; de França, Francisca Pessôa
2012-10-01
The activities of the oil industry have several impacts on the environment due to the large amounts of oily wastes that are generated. The oily sludges are a semi-solid material composed by a mixture of clay, silica and iron oxides contaminated with oil, produced water and the chemicals used in the production of oil. Nowadays both the treatment and management of these waste materials is essential to promote sustainable management of exploration and exploitation of natural resources. Biological, physical and chemical processes can be used to reduce environmental contamination by petroleum hydrocarbons to acceptable levels. The choice of treatment method depends on the physical and chemical properties of the waste as well as the availability of facilities to process these wastes. Literature provides some operations for treatment of oily sludges, such as landfilling, incineration, co-processing in clinkerization furnaces, microwave liquefaction, centrifugation, destructive distillation, thermal plasma, low-temperature conversion, incorporation in ceramic materials, development of impermeable materials, encapsulation and biodegradation in land farming, biopiles and bioreactors. The management of the technology to be applied for the treatment of oily wastes is essential to promote proper environmental management, and provide alternative methods to reduce, reuse and recycle the wastes.
Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites.
Florián-Algarín, David; Marrero, Raúl; Li, Xiaochun; Choi, Hongseok; Suárez, Oscar Marcelo
2018-03-10
This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl₂O₃ nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl₂O₃ nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al-γAl₂O₃ nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires' electrical conductivity compared with that of pure aluminum and aluminum-copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.
Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites
Marrero, Raúl; Li, Xiaochun; Choi, Hongseok
2018-01-01
This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl2O3 nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl2O3 nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al–γAl2O3 nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires’ electrical conductivity compared with that of pure aluminum and aluminum–copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding. PMID:29534441
McIntyre, Irene; O'Sullivan, Michael; O'Riordan, Dolores
2017-12-15
Calcium and protein solubilisation during small-scale manufacture of semi-solid casein-based food matrices was investigated and found to be very different in the presence or absence of calcium chelating salts. Calcium concentrations in the dispersed phase increased and calcium-ion activity (A Ca ++ ) decreased during manufacture of the matrices containing calcium chelating salts; with ∼23% of total calcium solubilised by the end of manufacture. In the absence of calcium chelating salts, these concentrations were significantly lower at equivalent processing times and remained unchanged as did A Ca ++ , throughout manufacture. The protein content of the dispersed phase was low (≤3% of total protein), but was significantly higher for matrices containing calcium chelating salts. This study elucidates the critical role of calcium chelating salts in modulating casein hydration and dispersion and gives an indication of the levels of soluble calcium and protein required to allow matrix formation during manufacture of casein-based food structures e.g. processed and analogue cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aqueous Peroxyoxalate Chemiluminescence.
1982-01-01
fluorescence. It should be noted that the chloromethylstyrene, 45, was actually a mixture of the meta and para isomers as received from the supplier...the pentaetWyleneoxy acetylenic derivative, 65. By the conventional scheme, bis-pentaethyleneoxy-BPEA, 66, was obtained as an oil, even after HPLC ...phenylacetylide or lithium amide. The attempted hydrolysis of 56 using NaOH/DMF at reflux gave a semi-solid product, which was not totally pure even after HPLC
Hot Wax Sweeps Debris From Narrow Passages
NASA Technical Reports Server (NTRS)
Ricklefs, Steven K.
1990-01-01
Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.
Biocompatible and Biomimetic Self-Assembly of Functional
2007-10-03
rearrangement of the lipid/silica matrix to create a bio/nano interface quite similar to that formed by direct CDA. This approach has several advantages over CDA...precursors with a biologically compatible surfactant, glycerol monooleate ( GMO ) via dip-coating, spin-coating, drop-casting, or aerosol deposition...with water and remains in a semi-solid state. Upon exposure to UV/ozone, the GMO begins to photodecompose and the silanol precursors become more
Improved Characterization of Healthy and Malignant Tissue by NMR Line-Shape Relaxation Correlations
Peemoeller, H.; Shenoy, R.K.; Pintar, M.M.; Kydon, D.W.; Inch, W.R.
1982-01-01
We performed a relaxation-line-shape correlation NMR experiment on muscle, liver, kidney, and spleen tissues of healthy mice and of mouse tumor tissue. In each tissue studied, five spin groups were resolved and characterized by their relaxation parameters. We report a previously uncharacterized semi-solid spin group and discuss briefly the value of this method for the identification of malignant tissues. PMID:7104438
A highly sensitive and versatile virus titration assay in the 96-well microplate format.
Borisevich, V; Nistler, R; Hudman, D; Yamshchikov, G; Seregin, A; Yamshchikov, V
2008-02-01
This report describes a fast, reproducible, inexpensive and convenient assay system for virus titration in the 96-well format. The micromethod substantially increases assay throughput and improves the data reproducibility. A highly simplified variant of virus quantification is based on immunohistochemical detection of virus amplification foci obtained without use of agarose or semisolid overlays. It can be incorporated into several types of routine virological assays successfully replacing the laborious and time-consuming conventional methods based on plaque formation under semisolid overlays. The method does not depend on the development of CPE and can be accommodated to assay viruses with substantial differences in growth properties. The use of enhanced immunohistochemical detection enabled a five- to six-fold reduction of the total assay time. The micromethod was specifically developed to take advantage of multichannel pipettor use to simplify handling of a large number of samples. The method performs well with an inexpensive low-power binocular, thus offering a routine assay system usable outside of specialized laboratory setting, such as for testing of clinical or field samples. When used in focus reduction-neutralization tests (FRNT), the method accommodates very small volumes of immune serum, which is often a decisive factor in experiments involving small rodent models.
Lipke, Uwe; Haverkamp, Jan Boris; Zapf, Thomas; Lipperheide, Cornelia
2016-04-01
To study the impact of different semi-solid dosage form components on the leaching of Bisphenol A (BPA) and Bisphenol A diglycidyl ether (BADGE) from the epoxy resin-based inner lacquer of aluminium tubes, the tubes were filled with different matrix preparations and stored at an elevated temperature. Despite compliance with the European Standards EN 15348 and EN 15766 on porosity and polymerisation of internal coatings of aluminium tubes, the commercially available tubes used in the study contained an increased amount of polymerisation residues, such as unbound BPA, BADGE and BADGE derivatives in the lacquer, as determined by acetonitrile extraction. Storage of Macrogol ointments in these tubes resulted in an almost quantitative migration of the unbound polymerisation residues from the coating into the ointment. In addition, due to alterations observed in the RP-HPLC chromatograms of the matrix spiked with BADGE and BADGE derivatives it is supposed that the leachates can react with formulation components. The contamination of the medicinal product by BPA, BADGE and BADGE derivatives can be precluded by using aluminium tubes with an internal lacquer with a low degree of unbound polymerisation residues. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Hyperthermal Carbon Dioxide Interactions with Self-Assembled Monolayer Surfaces
2013-09-08
comparison of the scattering behavior from the liquid and semi-solid surfaces to allow new insight into the pivotal initial step in gas -surface reaction...scattering dynamics of atoms and molecules on liquid and SAM surfaces, in order to deepen the understanding of gas -surface interactions at liquid and... gas - liquid and gas -SAM interface have developed a basic picture of the gas -surface collision dynamics. The previous experiments showed a bimodal
Ema, Tadashi; Nanjo, Yoshiko; Shiratori, Sho; Terao, Yuta; Kimura, Ryo
2016-11-04
The intermolecular or intramolecular asymmetric benzoin reaction was catalyzed by a small amount of N-heterocyclic carbene (NHC) (0.2-1 mol %) under solvent-free conditions. The solvent-free intramolecular asymmetric Stetter reaction also proceeded efficiently with NHC (0.2-1 mol %). In some cases, even solid-to-solid or solid-to-liquid conversions took place with low catalyst loading (0.2-1 mol %).
Design for Corrosion Control of Aviation Fuel Storage and Distribution Systems
1975-06-01
may be painted, or oiled. The paint usually used is an asphalt varnish applied in one coat in accor- dance with Federal Specification TT-V-51A...Fluorocarbon plastics -- Plastics based on resins made by the polymeri- zation of monomers composed of fluorine and carbon only. Film thickness -- Depth...natural or synthetic, contained in varnishes , lacquers and paints; the film former. -- A solid, semisolid, or pseudosolid organic material which has an
Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures
2010-02-28
evaporation induced self-assembly of aqueous silica precursors with a biologically compatible surfactant, glycerol monooleate ( GMO ) via dip-coating...film is first deposited, it has a relatively low contact angle with water and remains in a semi-solid state. Upon exposure to UV/ozone, the GMO begins...Figure 8. A) Water contact angle of a GMO -templated silica film as a function of UV light and ozone exposure time, B) Localization of fluorescently
NASA Astrophysics Data System (ADS)
Pratt, Lawrence M.; Strothers, Joel; Pinnock, Travis; Hilaire, Dickens Saint; Bacolod, Beatrice; Cai, Zhuo Biao; Sim, Yoke-Leng
2017-04-01
Brown grease is a generic term for the oily solids and semi-solids that accumulate in the sewer system and in sewage treatment plants. It has previously been shown that brown grease undergoes pyrolysis to form a homologous series of alkanes and 1-alkenes between 7 and 17 carbon atoms, with smaller amounts of higher hydrocarbons and ketones up to about 30 carbon atoms. The initial study was performed in batch mode on a scale of up to 50 grams of starting material. However, continuous processes are usually more efficient for large scale production of fuels and commodity chemicals. This work describes the research and development of a continuous process. The first step was to determine the required reactor temperature. Brown grease consists largely of saturated and unsaturated fatty acids, and they react at different rates, and produce different products and intermediates. Intermediates include ketones, alcohols, and aldehydes, and Fe(III) ion catalyzes at least some of the reactions. By monitoring the pyrolysis of brown grease, its individual components, and intermediates, it was determined that a reactor temperature of at least 340 °C is required. A small scale (1 L) continuous stirred tank reactor was built and its performance is described.
Raman analysis of polyethylene glycols and polyethylene oxides
NASA Astrophysics Data System (ADS)
Sagitova, E. A.; Prokhorov, K. A.; Nikolaeva, G. Yu; Baimova, A. V.; Pashinin, P. P.; Yarysheva, A. Yu; Mendeleev, D. I.
2018-04-01
We present Raman study of commercial liquids and powders of polyethylene glycols and polyethylene oxides with the average molecular weight from 400 Da to 10000 kDa. The most significant spectral changes were observed for the range of the molecular weights, where the liquid/semisolid transition has occurred. For the powders we revealed increase in the content of the molecules in the helical conformation and in the content of the monoclinic crystalline phase with growth of the molecular weight.
Role of overexpressed CFA/I fimbriae in bacterial swimming
NASA Astrophysics Data System (ADS)
Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, SangMu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong
2012-06-01
Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.
Abrego, Guadalupe; Alvarado, Helen; Souto, Eliana B; Guevara, Bessy; Bellowa, Lyda Halbaut; Parra, Alexander; Calpena, Ana; Garcia, María Luisa
2015-09-01
Two optimized pranoprofen-loaded poly-l-lactic-co glycolic acid (PLGA) nanoparticles (PF-F1NPs; PF-F2NPs) have been developed and further dispersed into hydrogels for the production of semi-solid formulations intended for ocular administration. The optimized PF-NP suspensions were dispersed in freshly prepared carbomer hydrogels (HG_PF-F1NPs and HG_PF-F2NPs) or in hydrogels containing 1% azone (HG_PF-F1NPs-Azone and HG_PF-F2NPs-Azone) in order to improve the ocular biopharmaceutical profile of the selected non-steroidal anti-inflammatory drug (NSAID), by prolonging the contact of the pranoprofen with the eye, increasing the drug retention in the organ and enhancing its anti-inflammatory and analgesic efficiency. Carbomer 934 has been selected as gel-forming polymer. The hydrogel formulations with or without azone showed a non-Newtonian behavior and adequate physicochemical properties for ocular instillation. The release study of pranoprofen from the semi-solid formulations exhibited a sustained release behavior. The results obtained from ex vivo corneal permeation and in vivo anti-inflammatory efficacy studies suggest that the ocular application of the hydrogels containing azone was more effective over the azone-free formulations in the treatment of edema on the ocular surface. No signs of ocular irritancy have been detected for the produced hydrogels. Copyright © 2015 Elsevier B.V. All rights reserved.
Gonzalez, Juan C; Medina, Sandra C; Rodriguez, Alexander; Osma, Johann F; Alméciga-Díaz, Carlos J; Sánchez, Oscar F
2013-01-01
Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametespubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM), and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1) and 60 kDa (Lac2). Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69 ± 0.28 U mg(-1) of protein for the crude extract, and 0.08 ± 0.001 and 2.86 ± 0.05 U mg(-1) of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct.
Role of overexpressed CFA/I fimbriae in bacterial swimming.
Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, Sangmu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong
2012-06-01
Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.
NASA Astrophysics Data System (ADS)
Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank
2016-05-01
There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from -38 to -10 °C at 5-15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -39.0 and -37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.
Rodriguez, Alexander; Osma, Johann F.; Alméciga-Díaz, Carlos J.; Sánchez, Oscar F.
2013-01-01
Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametes pubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM), and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1) and 60 kDa (Lac2). Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69±0.28 U mg-1 of protein for the crude extract, and 0.08±0.001 and 2.86±0.05 U mg-1 of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct. PMID:24019936
Pharmaceutical preparation of Saubhagya Shunthi Churna: A herbal remedy for puerperal women
Shukla, Khushbu; Dwivedi, Manjari; Kumar, Neeraj
2010-01-01
Background: In the last few decades, there has been exponential growth in the field of herbal remedies. Pharmacopoeial preparations like avleha or paka (semi-solid), swarasa (expressed juice), kalka (mass), him (cold infusion) and phanta (hot infusion), kwatha (decoction) and churna (powder) form the backbone of Ayurvedic formulations. Newer guidelines for standardization, manufacture, and quality control, and scientifically rigorous research will be necessary for traditional treatments. This traditional knowledge can serve as powerful search engine that will greatly facilitate drug discovery. Purpose: The aim of the present study is to standardize Saubhagya Shunthi Paka in churna (powder) form. The powder form makes this traditional drug more stable for long-term storage and hence, easier to preserve. Materials and Methods: Saubhagya Shunthi Paka is an ayurvedic formulation containing Shunthi (Zingiber officinalis) as one of its chief ingredients. The basic preparation of this drug is a semisolid. We checked the microbial load and nutrient values (using International Standard IS and Association of Official Analytical chemists AOAC methods) Results: The powdered form of Saubhagya Shunthi Churna yielded a weight loss of approximately 17.64% of the total weight of ingredients. The total energy of Churna (calculated based on nutrient content) was found higher over Paka. Conclusion: Saubhagya Shunthi Churna may be a good therapeutic and dietary medicine for Indian women, which may be easily prepared at home. PMID:20532094
Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi.
Ogbo, Frank C
2010-06-01
Two fungi characterized as Aspergillus fumigatus and Aspergillus niger, isolated from decaying cassava peels were used to convert cassava wastes by the semi-solid fermentation technique to phosphate biofertilizer. The isolates solubilized Ca(3)(PO(4))(2), AlPO(4) and FePO(4) in liquid Pikovskaya medium, a process that was accompanied by acid production. Medium for the SSF fermentation was composed of 1% raw cassava starch and 3% poultry droppings as nutrients and 96% ground (0.5-1.5mm) dried cassava peels as carrier material. During the 14days fermentation, both test organisms increased in biomass in this medium as indicated by increases in phosphatase activity and drop in pH. Ground cassava peels satisfied many properties required of carrier material particularly in respect of the organisms under study. Biofertilizer produced using A. niger significantly (p<.05) improved the growth of pigeon pea [Cajanus cajan (L.) Millsp.] in pot experiments but product made with A. fumigatus did not. Copyright 2009 Elsevier Ltd. All rights reserved.
Fernández-San Juan, P-M
2009-01-01
Recent studies of dietary habits in children and adolescents performed in Spain show that a high percentage of the daily energy intake corresponds to fat (42.0-43.0%). These findings show an excessive contribution of saturated fatty acids and also a considerable supply of trans fatty acids. These compounds are formed generally during partial hydrogenation of vegetable oils, a process that converts vegetable oils into semisolid fats. Also, in some cases naturally occurring trans fatty acids in smaller amounts in meat and dairy products from ruminants (cows, sheep), these trans fatty acids are produced by the action of bacteria in the ruminant stomach by reactions of biohydrogenation. On the other hand, metabolic studies have clearly shown that trans fatty acids increase LDL cholesterol and reduce HDL cholesterol. Our results show that major sources of trans fatty acids in commercial Spanish foods are fast-food (hamburger, French fries), snacks, bakery products (cakes, donuts, biscuits), margarines and dehydrated soups.
Meloni, Domenico; Spina, Antonio; Satta, Gianluca; Chessa, Vittorio
2016-06-25
In recent years, besides the consumption of fresh sea urchin specimens, the demand of minimally-processed roe has grown considerably. This product has made frequent consumption in restaurants possible and frauds are becoming widespread with the partial replacement of sea urchin roe with surrogates that are similar in colour. One of the main factors that determines the quality of the roe is its colour and small differences in colour scale cannot be easily discerned by the consumers. In this study we have applied a rapid colorimetric method for reveal the fraudulent partial substitution of semi-solid sea urchin roe with liquid egg yolk. Objective assessment of whiteness (L*), redness (a*), yellowness (b*), hue (h*), and chroma (C*) was carried out with a digital spectrophotometer using the CIE L*a*b* colour measurement system. The colorimetric method highlighted statistically significant differences among sea urchin roe and liquid egg yolk that could be easily discerned quantitatively.
Barzegar, Hassan; Azizi, Mohammad Hossein; Barzegar, Mohsen; Hamidi-Esfahani, Zohreh
2014-09-22
Using fresh foods which undergo the least processing operations developed widely in recent years. Active packaging is a novel method for preserving these products. Active starch-clay nanocomposite films which contained potassium sorbate (PS) at a level of 0, 5, 7.5 and 10 g PS/100 g starch were produced and their physical, mechanical and antimicrobial properties were evaluated. In order to evaluate antimicrobial properties of films Aspergillus niger was used. The results showed that 5% of the PS did not produce antimicrobial property in the film, but by increasing the content of the additive in film formulation, antimicrobial effect increased. PS increased water permeability and elongation at break of the films, but decreased tensile strength. The rate of PS migration into the semi-solid medium in starch-nanocomposites was lower than starch films. This shows that nanocomposite films could retain their antimicrobial property for longer time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Determination of Extensional Rheological Properties by Hyperbolic Contraction Flow
NASA Astrophysics Data System (ADS)
Stading, Mats
2008-07-01
Extensional rheologyy is important for diverse applications such as processing of viscoelastic fluids, mouthfeel of semi-solid foods, cell mitosis and baking, and is also a useful tool for testing the applicability of constitutive equations. Despite the documented influence of extensional rheological properties, it is seldom measured due to experimental difficulties. There are only commercial equipments available for low-viscosity fluids by Capillary Breakup and for polymer melts by Meissner-type winding of ribbons around cylinders. Both methods have limited applicability for medium-viscosity fluids such as foods and other biological systems. Contraction flows are extensively studied and a new test method has been developed based on contraction flow through a hyperbolic nozzle. The method is suitable for medium-viscosity fluids and has been validated by comparison to results from Filament Stretching and Capillary Breakup. The hyperbolic contraction flow method has been used to characterize food and medical systems, distinguish between different products having equal shear behavior, quantify ropy mouth feel and to predict foaming behavior of biopolymers.
Hirsjärvi, Samuli; Bastiat, Guillaume; Saulnier, Patrick; Benoît, Jean-Pierre
2012-09-15
Deformability of nanoparticles might affect their behaviour at biological interfaces. Lipid nanocapsules (LNCs) are semi-solid particles resembling a hybrid of polymer nanoparticles and liposomes. Deformability of LNCs of different sizes was modelled by drop tensiometer technique. Two purification methods, dialysis and tangential flow filtration (TFF), were applied to study experimental behaviour and deformability of LNCs in order to evaluate if these properties contributed to membrane passing. Rheological parameters obtained from the drop tensiometer analysis suggested decreasing surface deformability of LNCs with increase in diameter. Dialysis results showed that up to 10% of LNCs can be lost during the process (e.g. membrane accumulation) but no clear evidence of the membrane passing was observed. Instead, LNCs with initial size and size distribution could be found in the TFF filtrate although molecular weight cut-off (MWCO) of the membrane used was smaller than the LNC diameter. Copyright © 2012 Elsevier B.V. All rights reserved.
A tutorial for developing a topical cream formulation based on the Quality by Design approach.
Simões, Ana; Veiga, Francisco; Vitorino, Carla; Figueiras, Ana
2018-06-20
The pharmaceutical industry has entered in a new era, as there is a growing interest in increasing the quality standards of dosage forms, through the implementation of more structured development and manufacturing approaches. For many decades, the manufacturing of drug products was controlled by a regulatory framework to guarantee the quality of the final product through a fixed process and exhaustive testing. Limitations related to the Quality by Test (QbT) system have been widely acknowledged. The emergence of Quality by Design (QbD) as a systematic and risk-based approach introduced a new quality concept based on a good understanding of how raw materials and process parameters influence the final quality profile. Although the QbD system has been recognized as a revolutionary approach to product development and manufacturing, its full implementation in the pharmaceutical field is still limited. This is particularly evident in the case of semisolid complex formulation development. The present review aims at establishing a practical QbD framework to describe all stages comprised in the pharmaceutical development of a conventional cream in a comprehensible manner. Copyright © 2018. Published by Elsevier Inc.
Multi-Affinity for Growing Rough Interfaces of Bacterial Colonies
NASA Astrophysics Data System (ADS)
Kobayashi, N.; Ozawa, T.; Saito, K.; Yamazaki, Y.; Matsuyama, T.; Matsushita, M.
We have examined whether rough interfaces of bacterial colonies are multi-affine. We have used the bacterial species called textit{Bacillus subtilis}, which has been found to exhibit a variety of colony patterns when varying both the concentration of nutrient and solidity of agar medium. Consequently, we have found that the colony interface on a nutrient-rich, solid agar medium is multi-affine. On the other hand, the colony interface on a nutrient-rich, semi-solid agar medium is self-affine.
Machine Casting of Ferrous Alloys
1975-10-01
casting from entrapped air. This fact, together with the lower amount of solidification shrinkage of semi-solid alloys , results in the now firmly...compositions and solidification ranges. Figures 5 and 6 illustrate -24- typical quenched microstructures obtained for several of the alloys investi...COBALT SUPERALLOY Cu - 10%Sn - 2%Zn Fe - 2.6%C - 3.2% Si Fe - 17%Cr - l% Si l%Mn - 1.1%C Fe - 17%Cr - USi l%Mn - 0.6%C Fe - 18.5%Cr - 9.5% Ni 0.08
Hydrothermal alkali metal catalyst recovery process
Eakman, James M.; Clavenna, LeRoy R.
1979-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.
Mechanochemical processing for metals and metal alloys
Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith
2001-01-01
A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.
Improved Dysphagia After Decannulation of Tracheostomy in Patients With Brain Injuries
Kim, Yong Kyun; Choi, Jung-Hwa; Yoon, Jeong-Gyu; Lee, Jang-Won
2015-01-01
Objective To investigate improved dysphagia after the decannulation of a tracheostomy in patients with brain injuries. Methods The subjects of this study are patients with brain injuries who were admitted to the Department of Rehabilitation Medicine in Myongji Hospital and who underwent a decannulation between 2012 and 2014. A video fluoroscopic swallowing study (VFSS) was performed in order to investigate whether the patients' dysphagia had improved. We measured the following 5 parameters: laryngeal elevation, pharyngeal transit time, post-swallow pharyngeal remnant, upper esophageal width, and semisolid aspiration. We analyzed the patients' results from VFSS performed one month before and one month after decannulation. All VFSS images were recorded using a camcorder running at 30 frames per second. An AutoCAD 2D screen was used to measure laryngeal elevation, post-swallow pharyngeal remnant, and upper esophageal width. Results In this study, a number of dysphagia symptoms improved after decannulation. Laryngeal elevation, pharyngeal transit time, and semisolid aspiration showed no statistically significant differences (p>0.05), however after decannulation, the post-swallow pharyngeal remnant (pre 37.41%±24.80%, post 21.02%±11.75%; p<0.001) and upper esophageal width (pre 3.57±1.93 mm, post 4.53±2.05 mm; p<0.001) showed statistically significant differences. Conclusion When decannulation is performed on patients with brain injuries who do not require a ventilator and who are able to independently excrete sputum, improved esophageal dysphagia can be expected. PMID:26605176
Improved Dysphagia After Decannulation of Tracheostomy in Patients With Brain Injuries.
Kim, Yong Kyun; Choi, Jung-Hwa; Yoon, Jeong-Gyu; Lee, Jang-Won; Cho, Sung Sik
2015-10-01
To investigate improved dysphagia after the decannulation of a tracheostomy in patients with brain injuries. The subjects of this study are patients with brain injuries who were admitted to the Department of Rehabilitation Medicine in Myongji Hospital and who underwent a decannulation between 2012 and 2014. A video fluoroscopic swallowing study (VFSS) was performed in order to investigate whether the patients' dysphagia had improved. We measured the following 5 parameters: laryngeal elevation, pharyngeal transit time, post-swallow pharyngeal remnant, upper esophageal width, and semisolid aspiration. We analyzed the patients' results from VFSS performed one month before and one month after decannulation. All VFSS images were recorded using a camcorder running at 30 frames per second. An AutoCAD 2D screen was used to measure laryngeal elevation, post-swallow pharyngeal remnant, and upper esophageal width. In this study, a number of dysphagia symptoms improved after decannulation. Laryngeal elevation, pharyngeal transit time, and semisolid aspiration showed no statistically significant differences (p>0.05), however after decannulation, the post-swallow pharyngeal remnant (pre 37.41%±24.80%, post 21.02%±11.75%; p<0.001) and upper esophageal width (pre 3.57±1.93 mm, post 4.53±2.05 mm; p<0.001) showed statistically significant differences. When decannulation is performed on patients with brain injuries who do not require a ventilator and who are able to independently excrete sputum, improved esophageal dysphagia can be expected.
Characterization, sensorial evaluation and moisturizing efficacy of nanolipidgel formulations.
Estanqueiro, M; Conceição, J; Amaral, M H; Sousa Lobo, J M
2014-04-01
Nanostructured lipid carriers (NLC) have been widely studied for cosmetic and dermatological applications due to their favourable properties that include the formation of an occlusive film on the skin surface that reduces the transepidermal water loss (TEWL) and increase in water content in the skin which improves the appearance on healthy human skin and reduces symptoms of some skin disorders like eczema. The main objective of this study was the development of semisolid formulations based NLC with argan oil or jojoba oil as liquid lipids, by addition of Carbopol®934 or Carbopol®980 as gelling agents, followed by comparison between instrumental analysis and sensorial evaluation and in vivo efficacy evaluation. Nanostructured lipid carriers dispersions were produced by the ultrasound technique, and to obtain a semisolid formulation, gelling agents were dispersed in the aqueous dispersion. Particle size, polydispersity index and zeta potential were determined. Instrumental characterization was performed by rheological and textural analysis; the sensorial evaluation was also performed. Finally, skin hydration and TEWL were studied by capacitance and evaporimetry evaluation, respectively. Particles showed a nanometric size in all the analysed formulations. All the gels present pseudoplastic behaviour. There is a correspondence between the properties firmness and adhesiveness as determined by textural analysis and the sensory evaluation. The formulations that showed a greater increase in skin hydration also presented appropriate technological and sensorial attributes for skin application. Nanolipidgel formulations with the addition of humectants are promising systems for cosmetic application with good sensory and instrumental attributes and moisturizing efficacy.
Huang, Xia; Huang, Xue-Lin; Xiao, Wang; Zhao, Jie-Tang; Dai, Xue-Mei; Chen, Yun-Feng; Li, Xiao-Ju
2007-10-01
A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0-490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants.
Froelich, Anna; Osmałek, Tomasz; Snela, Agnieszka; Kunstman, Paweł; Jadach, Barbara; Olejniczak, Marta; Roszak, Grzegorz; Białas, Wojciech
2017-12-01
Microemulsion-based semisolid systems may be considered as an interesting alternative to the traditional dosage forms applied in topical drug delivery. Mechanical properties of topical products are important both in terms of application and dosage form effectiveness. In this study we designed and evaluated novel microemulsion-based gels with indomethacin and analyzed the factors affecting their mechanical characteristics and drug release. The impact of the microemulsion composition on the extent of isotropic region was investigated with the use of pseudoternary phase diagrams. Selected microemulsions were analyzed in terms of electrical conductivity and surface tension in order to determine the microemulsion type. Microemulsions were transformed into polymer-based gels and subjected to rheological and textural studies. Finally, the indomethacin release from the analyzed gels was studied and compared to commercially available product. The extent of isotropic domain in pseudoternary phase diagrams seems to be dependent on the polarity of the oil phase. The surface tension and conductivity monitored as a function of water content in microemulsion systems revealed possible structural transformations from w/o through bicontinuous systems into o/w. The mechanical properties of semisolid microemulsion-based systems depended on the composition of surface active agents and the drug presence. The drug release profiles observed in the case of the investigated gels differed from those recorded for the commercially available product which was most probably caused by the different structure of both systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Levesque, Ives; Sled, John G; Narayanan, Sridar; Santos, A Carlos; Brass, Steven D; Francis, Simon J; Arnold, Douglas L; Pike, G Bruce
2005-02-01
To use quantitative magnetization transfer imaging (qMTI) in an investigation of T1-weighted hypointensity observed in clinical magnetic resonance imaging (MRI) scans of multiple sclerosis (MS) patients, which has previously been proposed as a more specific indicator of tissue damage than the more commonly detected T2 hyperintensity. A cross-sectional study of 10 MS patients was performed using qMTI. A total of 60 MTI measurements were collected in each patient at a resolution of 2 x 2 x 7 mm, over a range of saturation pulses. The observed T1 and T2 were also measured. qMT model parameters were estimated using a voxel-by-voxel fit. A total of 65 T2-hyperintense lesions were identified; 53 were also T1 hypointense. In these black holes, the qMTI-derived semisolid pool fraction F correlated negatively with T(1,obs) (r2 = 0.76; P < 0.0001). The water pool absolute size (PDf) showed a weaker correlation with T(1,obs) (positive, r2 = 0.53; P < 0.0001). The magnetization transfer ratio (MTR) showed a similarly strong correlation with F and a weaker correlation with PDf (r2 = 0.18; P < 0.04). T1 increases in chronic black holes strongly correlated with the decline in semisolid pool size, and somewhat less to the confounding effect of edema. MTR was less sensitive than T(1,obs) to liquid pool changes associated with edema. (c) 2005 Wiley-Liss, Inc.
Process for the enhanced capture of heavy metal emissions
Biswas, Pratim; Wu, Chang-Yu
2001-01-01
This invention is directed to a process for forming a sorbent-metal complex. The process includes oxidizing a sorbent precursor and contacting the sorbent precursor with a metallic species. The process further includes chemically reacting the sorbent precursor and the metallic species, thereby forming a sorbent-metal complex. In one particular aspect of the invention, at least a portion of the sorbent precursor is transformed into sorbent particles during the oxidation step. These sorbent particles then are contacted with the metallic species and chemically reacted with the metallic species, thereby forming a sorbent-metal complex. Another aspect of the invention is directed to a process for forming a sorbent metal complex in a combustion system. The process includes introducing a sorbent precursor into a combustion system and subjecting the sorbent precursor to an elevated temperature sufficient to oxidize the sorbent precursor and transform the sorbent precursor into sorbent particles. The process further includes contacting the sorbent particles with a metallic species and exposing the sorbent particles and the metallic species to a complex-forming temperature whereby the metallic species reacts with the sorbent particles thereby forming a sorbent-metal complex under UV irradiation.
Sensor apparatus using an electrochemical cell
Thakur, Mrinal
2003-07-01
A method for sensing mechanical quantities such as force, stress, strain, pressure and acceleration is disclosed. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electro negativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors. An apparatus for sensing such mechanical quantities using materials such as doped 1,4 cis-polyisopropene and nafion. The 1,4 cis-polyisopropene may be doped with lithium perchlorate or iodine. The output voltage signal increases with an increase of the sensing area for a given stress. The device can be used as an intruder alarm, among other applications.
Process for improving metal production in steelmaking processes
Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali
1996-01-01
A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.
Integrated decontamination process for metals
Snyder, Thomas S.; Whitlow, Graham A.
1991-01-01
An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.
NASA Technical Reports Server (NTRS)
Matson, D. M.; Loser, W.; Rogers, J. R.; Flemings, M. C.
2001-01-01
Containerless processing using electromagnetic levitation (EML) is a powerful technique in the investigation of reactive molten metal systems. On ground, the power required to overcome the weight of the sample is sufficient to cause significant heating and induce substantial melt convection. In microgravity, the heating and positioning fields may be decoupled and the field strength may be varied to achieve the desired level of convection within the limits set by the geometry of the levitation coil and the sample size. From high-speed digital images of the double recalescence behavior of Fe-Cr-Ni alloys in ground-based testing and in reduced-gravity aboard the NASA KC-135 parabolic aircraft, we have shown that phase selection can be predicted based on a growth competition model. An important parameter in this model is the delay time between primary nucleation and subsequent nucleation of the stable solid within the liquid/metastable solid array. This delay time is a strong function of composition and a weak function of the undercooling of the melt below the metastable liquidus. From the results obtained during the first Microgravity Sciences Laboratory (MSL-1) mission, we also know that convection may significantly influence the delay time, especially at low undercoolings. Currently, it is unclear what mechanism controls the formation of a heterogeneous site that allows nucleation of the austenitic phase on the pre-existing ferrite skeleton. By examining the behavior of the delay time under different convective conditions, we hypothesize that we can differentiate between several of these mechanisms to gain an understanding of how to control microstructural. evolution. We will anchor these predictions by examining samples quenched at different times following primary recalescence in microgravity. A second important parameter in the growth competition model is the identification of the growth rate of the stable phase into the semi-solid array that formed during primary recalescence. Current dendritic growth theory is inadequate in predicting solidification behavior under these conditions as metallographic analyses show that stable phase growth proceeds along the interface between the metastable solid and residual liquid. Since growth velocity is independent of the initial undercooling relative to the metastable liquidus, we hypothesize that purely thermal effects can be separated from other important growth model parameters by careful selection of the liquid composition in a ternary system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.
2017-01-10
A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.
Description of Latvian Metal Production and Processing Enterprises' Air Emissions
NASA Astrophysics Data System (ADS)
Pubule, Jelena; Zahare, Dace; Blumberga, Dagnija
2010-01-01
The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and processing sector in Latvia. This article deals with the air polluting emissions of the Latvian metal production and processing industry, and sets the optimum sector emission volumes using the emissions benchmark methodology.
Process for improving metal production in steelmaking processes
Pal, U.B.; Gazula, G.K.M.; Hasham, A.
1996-06-18
A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.
Somatic embryogenesis for efficient micropropagation of guava (Psidium guajava L.).
Akhtar, Nasim
2013-01-01
Guava (Psidium guajava L.) is well known for edible fruit, environment friendly pharmaceutical and commercial products for both national and international market. The conventional propagation and in vitro organogenesis do not meet the demand for the good quality planting materials. Somatic embryogenesis for efficient micropropagation of guava (P. guajava L.) has been developed to fill up the gap. Somatic embryogenesis and plantlets regeneration are achieved from 10-week post-anthesis zygotic embryo explants by 8-day inductive treatment with different concentrations of 2,4-dichlorophenoxy acetic acid (2,4-D) on MS agar medium containing 5% sucrose. Subsequent development and maturation of somatic embryos occur after 8 days on MS basal medium supplemented with 5% sucrose without plant growth regulator. The process of somatic embryogenesis shows the highest relative efficiency in 8-day treatment of zygotic embryo explants with 1.0 mg L(-1) 2,4-D. High efficiency germination of somatic embryos and plantlet regeneration takes place on half strength semisolid MS medium amended with 3% sucrose within 2 weeks of subculture. Somatic plantlets are grown for additional 2 weeks by subculturing in MS liquid growth medium containing 3% sucrose. Well-grown plantlets from liquid medium have survived very well following 2-4 week hardening process. The protocol of somatic embryogenesis is optimized for high efficiency micropropagation of guava species.
Degradation of milk-based bioactive peptides by yogurt fermentation bacteria.
Paul, M; Somkuti, G A
2009-09-01
To analyse the effect of cell-associated peptidases in yogurt starter culture strains Lactobacillus delbrueckii ssp. bulgaricus (LB) and Streptococcus thermophilus (ST) on milk-protein-based antimicrobial and hypotensive peptides in order to determine their survival in yogurt-type dairy foods. The 11mer antimicrobial and 12mer hypotensive milk-protein-derived peptides were incubated with mid-log cells of LB and ST, which are required for yogurt production. Incubations were performed at pH 4.5 and 7.0, and samples removed at various time points were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC). The peptides remained mostly intact at pH 4.5 in the presence of ST strains and moderately digested by exposure to LB cells. Peptide loss occurred more rapidly and was more extensive after incubation at pH 7.0. The 11mer and 12mer bioactive peptides may be added at the end of the yogurt-making process when the pH level has dropped to 4.5, limiting the overall extent of proteolysis. The results show the feasibility of using milk-protein-based antimicrobial and hypotensive peptides as food supplements to improve the health-promoting qualities of liquid and semi-solid dairy foods prepared by the yogurt fermentation process.
Mesoporous metal oxides and processes for preparation thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suib, Steven L.; Poyraz, Altug Suleyman
A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier,more » a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.« less
Metal-Silicate Segregation in Asteroidal Meteorites
NASA Technical Reports Server (NTRS)
Herrin, Jason S.; Mittlefehldt, D. W.
2006-01-01
A fundamental process of planetary differentiation is the segregation of metal-sulfide and silicate phases, leading eventually to the formation of a metallic core. Asteroidal meteorites provide a glimpse of this process frozen in time from the early solar system. While chondrites represent starting materials, iron meteorites provide an end product where metal has been completely concentrated in a region of the parent asteroid. A complimentary end product is seen in metal-poor achondrites that have undergone significant igneous processing, such as angrites, HED's and the majority of aubrites. Metal-rich achondrites such as acapulcoite/lodranites, winonaites, ureilites, and metal-rich aubrites may represent intermediate stages in the metal segregation process. Among these, acapulcoite-lodranites and ureilites are examples of primary metal-bearing mantle restites, and therefore provide an opportunity to observe the metal segregation process that was captured in progress. In this study we use bulk trace element compositions of acapulcoites-lodranites and ureilites for this purpose.
Process for producing metal compounds from graphite oxide
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh (Inventor)
2000-01-01
A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.
Process for Producing Metal Compounds from Graphite Oxide
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh (Inventor)
2000-01-01
A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.
Dental management in dysphagia syndrome patients with previously acquired brain damages
Bramanti, Ennio; Arcuri, Claudio; Cecchetti, Francesco; Cervino, Gabriele; Nucera, Riccardo; Cicciù, Marco
2012-01-01
Dysphagia is defined as difficulty in swallowing food (semi-solid or solid), liquid, or both. Difficulty in swallowing affects approximately 7% of population, with risk incidence increasing with age. There are many disorder conditions predisposing to dysphagia such as mechanical strokes or esophageal diseases even if neurological diseases represent the principal one. Cerebrovascular pathology is today the leading cause of death in developing countries, and it occurs most frequently in individuals who are at least 60 years old. Swallowing disorders related to a stroke event are common occurrences. The incidence ranging is estimated from 18% to 81% in the acute phase and with a prevalence of 12% among such patients. Cerebral, cerebellar, or brain stem strokes can influence swallowing physiology while cerebral lesions can interrupt voluntary control of mastication and bolus transport during the oral phase. Among the most frequent complications of dysphagia are increased mortality and pulmonary risks such as aspiration pneumonia, dehydration, malnutrition, and long-term hospitalization. This review article discusses the epidemiology of dysphagia, the normal swallowing process, pathophysiology, signs and symptoms, diagnostics, and dental management of patients affected. PMID:23162574
Acosta, Niuris; Sánchez, Elisa; Calderón, Laura; Cordoba-Diaz, Manuel; Cordoba-Diaz, Damián; Dom, Senne; Heras, Ángeles
2015-01-01
A chitosan-based hydrophilic system containing an olive leaf extract was designed and its antioxidant capacity was evaluated. Encapsulation of olive leaf extract in chitosan microspheres was carried out by a spray-drying process. The particles obtained with this technique were found to be spherical and had a positive surface charge, which is an indicator of mucoadhesiveness. FTIR and X-ray diffraction results showed that there are not specific interactions of polyphenolic compounds in olive leaf extract with the chitosan matrix. Stability and release studies of chitosan microspheres loaded with olive leaf extract before and after the incorporation into a moisturizer base were performed. The resulting data showed that the developed formulations were stable up to three months. The encapsulation efficiency was around 44% and the release properties of polyphenols from the microspheres were found to be pH dependent. At pH 7.4, polyphenols release was complete after 6 h; whereas the amount of polyphenols released was 40% after the same time at pH 5.5. PMID:26389926
Mai, Huajun; Shiraiwa, Manabu; Flagan, Richard C; Seinfeld, John H
2015-10-06
The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.
Preparation of transparent conductors ferroelectric memory materials and ferrites
Bhattacharya, Raghu Nath; Ginley, David S.
1998-01-01
A process for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.
NASA Astrophysics Data System (ADS)
Ellerby, Donald Thomas
1999-12-01
Compared to monolithic ceramics, metal-reinforced ceramic composites offer the potential for improved toughness and reliability in ceramic materials. As such, there is significant scientific and commercial interest in the microstructure and properties of metal-ceramic composites. Considerable work has been conducted on modeling the toughening behavior of metal reinforcements in ceramics; however, there has been limited application and testing of these concepts on real systems. Composites formed by newly developed reactive processes now offer the flexibility to systematically control metal-ceramic composite microstructure, and to test some of the property models that have been proposed for these materials. In this work, the effects of metal-ceramic composite microstructure on resistance curve (R-curve) behavior, strength, and reliability were systematically investigated. Al/Al2O3 composites were formed by reactive metal penetration (RMP) of aluminum metal into aluminosilicate ceramic preforms. Processing techniques were developed to control the metal content, metal composition, and metal ligament size in the resultant composite microstructure. Quantitative stereology and microscopy were used to characterize the composite microstructures, and then the influence of microstructure on strength, toughness, R-curve behavior, and reliability, was investigated. To identify the strength limiting flaws in the composite microstructure, fractography was used to determine the failure origins. Additionally, the crack bridging tractions produced by the metal ligaments in metal-ceramic composites formed by the RMP process were modeled. Due to relatively large flaws and low bridging stresses in RMP composites, no dependence of reliability on R-curve behavior was observed. The inherent flaws formed during reactive processing appear to limit the strength and reliability of composites formed by the RMP process. This investigation has established a clear relationship between processing, microstructure, and properties in metal-ceramic composites formed by the RMP process. RMP composite properties are determined by the metal-ceramic composite microstructure (e.g., metal content and ligament size), which can be systematically varied by processing. Furthermore, relative to the ceramic preforms used to make the composites, metal-ceramic composites formed by RMP generally have improved properties and combinations of properties that make them more desirable for advanced engineering applications.
Ourique, Aline Ferreira; Melero, Ana; de Bona da Silva, Cristiane; Schaefer, Ulrich F; Pohlmann, Adriana Raffin; Guterres, Silvia Stanisçuaski; Lehr, Claus-Michael; Kostka, Karl-Heinz; Beck, Ruy Carlos Ruver
2011-09-01
The aims of this work were to increase the photostability and to reduce the skin permeation of tretinoin through nanoencapsulation. Tretinoin is widely used in the topical treatment of various dermatological diseases such as acne, psoriasis, skin cancer, and photoaging. Tretinoin-loaded lipid-core polymeric nanocapsules were prepared by interfacial deposition of a preformed polymer. Carbopol hydrogels containing nanoencapsulated tretinoin presented a pH value of 6.08±0.14, a drug content of 0.52±0.01 mg g(-1), pseudoplastic rheological behavior, and higher spreadability than a marketed formulation. Hydrogels containing nanoencapsulated tretinoin demonstrated a lower photodegradation (24.17±3.49%) than the formulation containing the non-encapsulated drug (68.64±2.92%) after 8h of ultraviolet A irradiation. The half-life of the former was seven times higher than the latter. There was a decrease in the skin permeability coefficient of the drug by nanoencapsulation, independently of the dosage form. The liquid suspension and the semisolid form provided K(p)=0.31±0.15 and K(p)=0.33±0.01 cm s(-1), respectively (p≤0.05), while the samples containing non-encapsulated tretinoin showed K(p)=1.80±0.27 and K(p)=0.73±0.12 cm s(-1) for tretinoin solution and hydrogel, respectively. Lag time was increased two times by nanoencapsulation, meaning that the drug is retained for a longer time on the skin surface. Copyright © 2011 Elsevier B.V. All rights reserved.
Exploring imperfect squeezing flow measurements in a Teflon geometry for semisolid foods.
Terpstra, M E J; Janssen, A M; Linden, E van der
2007-11-01
The method of imperfect lubricated squeezing flow in a Teflontrade mark geometry has been explored for the characterization of elongational behavior of custard and mayonnaise. Two Newtonian products, one of low (0.07 Pas) and one of high (18 Pas) shear viscosity, were used as references. Measurements of custards and mayonnaises did not behave according to either the theory of lubricated or nonlubricated squeezing flow, as there were effects of the initial sample height and compression speed. Also, calculated values for the flow index were not as we had expected. The same was true for the Newtonian samples. An important factor explaining the effect of compression speed was the presence of a certain amount of friction, rendering both lubricated theory and nonlubricated theory nonapplicable. Correcting for (pseudo-) thixotropic behavior of custard and mayonnaise appears to be an effective way of obtaining realistic values for the flow index. The presence of buoyancy also affected the results, especially in the case of low viscous products and the effect of initial sample height. Other factors that played a role in the results were yield stress for custard and mayonnaise and instrumental artifacts associated with the imperfect setup of the measurement, especially for the highly viscous products. Quantitatively correcting the results for all of these factors is not possible at this point. Although the imperfect squeezing flow technique in a Teflon geometry is a very practical way to measure semisolids such as custard and mayonnaise under (partly) elongational deformation, the results should be regarded as more qualitative than quantitative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bingbing; O'Brien, Rachel E.; Univ. of the Pacific, Stockton, CA
2015-05-14
Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semi-solid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary micro-spectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the highmore » volatility of HCl. Similar reactions can take place in SOC/NaNO₃ particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO₃ from reacted aerosol particles may have important implications for atmospheric chemistry.« less
Wang, Bingbing; O'Brien, Rachel E; Kelly, Stephen T; Shilling, John E; Moffet, Ryan C; Gilles, Mary K; Laskin, Alexander
2015-05-14
Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semisolid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary microspectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the high volatility of HCl. Similar reactions can take place in SOC/NaNO3 particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO3 from reacted aerosol particles may have important implications for atmospheric chemistry.
Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesis
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1990-01-01
Cultures of preglobular stage proembryos (PGSPs) were initiated from mechanically wounded mature zygotic embryos of carrot, Daucus carota, on a hormone-free, semisolid medium. These PGSPs have been maintained and multiplied for extended periods without their progression into later embryo stages on the same hormone-free medium containing 1 mM NH4+ as the sole nitrogen source. Sustained maintenance of cultures comprised exclusively of PGSPs was dependent on medium pH throughout the culture period. Best growth and multiplication of PGSP cultures occurred when the pH of unbuffered, hormone-free medium fell from 4.5 to 4 over a 2-week period or when buffered medium was titrated to pH 4. If the hormone-free medium was buffered to sustain a pH at or above 4.5, PGSPs developed into later embryo stages. Maintenance with continuous multiplication of PGSPs occurred equally well on medium containing NH4+ or NH4+ and NO3-, but growth was poor with NO3- alone. Additional observations on the effects of medium components such as various nitrogen sources and levels, sucrose concentration, semisolid supports, type of buffer, borate concentration, activated charcoal, and initial pH that permit optimum maintenance of the PGSPs or foster their continued developmental progression into mature embryos and plantlets are reported. The influence of the pH of the hormone-free medium as a determinant in maintaining cultures as PGSPs or allowing their continued embryonic development are unequivocally demonstrated by gross morphology, scanning electron microscopy, and histological preparations.
Gongronema latifolium delays gastric emptying of semi-solid meals in diabetic dogs.
Ogbu, Sylvester Osita; Agwu, Kenneth Kalu; Asuzu, Isaac Uzoma
2013-01-01
The aim of the study was to investigate sonographically the effect of Gongronema latifolium on gastric emptying of semi-solid meals in diabetic dogs. Twenty-five alloxan-induced diabetic dogs were randomly allotted into five groups of five dogs each in a randomised placebo-controlled study. These are placebo, prokinetic dose, low dose, moderate dose and high dose groups. The placebo group served as the control. The low, moderate and high dose groups ingested methanolic leaf extract of G. latifolium at 100 mg/kg, 250 mg/kg, 500 mg/kg respectively, while the prokinetic group ingested 0.5 mg/kg of metoclopramide. After a 12-hour fast, each group ingested its treatment capsules 30 minutes before the administration of test meal. Measurements of gastric emptying and blood glucose levels were obtained from each dog 30 minutes before and immediately after the ingestion of a test meal, every 15 minutes for another 4 hours and then every 30 minutes for further 2 hours. Gastric emptying of the moderate and high dose groups were 227.8 ± 9.9 min and 261.3 ± 19.3 min respectively and significantly (p < 0.0001) slower than the placebo control group of 143.0 ± 17.8 min. The gastric emptying of the low dose group (169.8 ± 3.8) and control group did not differ significantly (p > 0.05). A strong inverse relationship between gastric emptying and the incremental blood glucose levels was noted in the diabetic dogs after the ingestion of Gongronema latifolium (r = -0.90; p < 0.0001). Gonogronema latifolium delayed gastric emptying in diabetic dogs.
APPLICATION OF DRY HAWTHORN (CRATAEGUS OXYACANTHA L.) EXTRACT IN NATURAL TOPICAL FORMULATIONS.
Stelmakiene, Ada; Ramanauskiene, Kristina; Petrikaite, Vilma; Jakstas, Valdas; Briedis, Vitalis
2016-07-01
There is a great potential for a semi-solid preparation for topical application to the skin that would use materials of natural origin not only as an active substance but also as its base. The aim of this research was to model semisolid preparations containing hawthorn extract and to determine the effect of their bases (carriers) on the release of active components from experimental dosage forms, based on the results of the in vitro studies of the bioactivity of hawthorn active components and ex vivo skin penetration studies. The active compounds of hawthorn were indentified and quantified by validated HPLC method. The antimicrobial and anti-radical activity of dry hawthorn extract were evaluated by methods in vitro. The penetration of active substances into the full undamaged human skin was evaluated by method ex vivo. Natural topical composition was chosen according to the results of release of active compounds. Release experiments were performed with modified Franz type diffusion cells. B.ceieus was the most sensitive bacteria for the hawthorn extract. Extract showed antiradical activity, however the penetration was limited. Only traces of hyperoside and isoquercitrin were founded in epidermis. Protective topical preparation with shea butter released 41.4-42.4% of active substances. Four major compounds of dry hawthorn extract were identified. The research showed that extract had antimicrobial and antiradical activity, however compounds of hawthorn stay on the surface of the undamaged human skin. Topical preparation containing beeswax did not release active compounds. Beeswax was identified as suspending agent. Topical preparations released active compounds when shea butter was used instead of beeswax.
Guthrie, Kate Morrow; Dunsiger, Shira; Vargas, Sara E; Fava, Joseph L; Shaw, Julia G; Rosen, Rochelle K; Kiser, Patrick F; Kojic, E Milu; Friend, David R; Katz, David F
The development of pericoital (on demand) vaginal HIV prevention technologies remains a global health priority. Clinical trials to date have been challenged by nonadherence, leading to an inability to demonstrate product efficacy. The work here provides new methodology and results to begin to address this limitation. We created validated scales that allow users to characterize sensory perceptions and experiences when using vaginal gel formulations. In this study, we sought to understand the user sensory perceptions and experiences (USPEs) that characterize the preferred product experience for each participant. Two hundred four women evaluated four semisolid vaginal formulations using the USPE scales at four randomly ordered formulation evaluation visits. Women were asked to select their preferred formulation experience for HIV prevention among the four formulations evaluated. The scale scores on the Sex-associated USPE scales (e.g., Initial Penetration and Leakage) for each participant's selected formulation were used in a latent class model analysis. Four classes of preferred formulation experiences were identified. Sociodemographic and sexual history variables did not predict class membership; however, four specific scales were significantly related to class: Initial Penetration, Perceived Wetness, Messiness, and Leakage. The range of preferred user experiences represented by the scale scores creates a potential target range for product development, such that products that elicit scale scores that fall within the preferred range may be more acceptable, or tolerable, to the population under study. It is recommended that similar analyses should be conducted with other semisolid vaginal formulations, and in other cultures, to determine product property and development targets.
Sharp, David W.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
Photochemical metal organic deposition of metal oxides
NASA Astrophysics Data System (ADS)
Law, Wai Lung (Simon)
This thesis pertains to the study of the deposition of metal oxide thin films via the process of Photochemical Metal Organic Deposition (PMOD). In this process, an amorphous metal organic precursor thin film is subjected to irradiation under ambient conditions. Fragmentation of the metal precursor results from the photoreaction, leading to the formation of metal oxide thin films in the presence of oxygen. The advantage of PMOD lies in its ability to perform lithography of metal oxide thin film without the application of photoresist. The metal organic precursor can be imaged directly by photolysis through a lithography mask under ambient conditions. Thus the PMOD process provides an attractive alternative to the conventional VLSI fabrication process. Metal carboxylates and metal acetylacetonates complexes were used as the precursors for PMOD process in this thesis. Transition metal carboxylate and metal acetylacetonate complexes have shown previously that when deposited as amorphous thin films, they will undergo fragmentation upon photolysis, leading to the formation of metal oxide thin films under ambient conditions. In this thesis, the formation of main group metal oxides of aluminum, indium and tin, as well as the formation of rare-earth metal oxides of cerium and europium by PMOD from its corresponding metal organic precursor will be presented. The nature of the photoreactions as well as the properties of the thin films deposited by PMOD will be investigated. Doped metal oxide thin films can also be prepared using the PMOD process. By mixing the metal precursors prior to deposition in the desired ratio, precursor films containing more than one metal precursor can be obtained. Mixed metal oxide thin films corresponding to the original metal ratio, in the precursor mixture, can be obtained upon photolysis under ambient conditions. In this thesis, the properties of doped metal oxide thin films of europium doped aluminum oxide as well as tin doped indium oxide thin films will also be presented.
Preparation of transparent conductors ferroelectric memory materials and ferrites
Bhattacharya, R.N.; Ginley, D.S.
1998-07-28
A process is described for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.
NASA Technical Reports Server (NTRS)
Hung, Ching-Chen (Inventor)
1999-01-01
A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a percursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh (Inventor)
1999-01-01
A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate-solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.
Process for the displacement of cyanide ions from metal-cyanide complexes
Smith, Barbara F.; Robinson, Thomas W.
1997-01-01
The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.
Fan, Qinbai
2016-04-19
An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.
Development of Replacements for Phoscoating Used in Forging, Extrusion and Metal Forming Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerry Barnett
2003-03-01
Many forging, extrusion, heading and other metal forming processes use graphite-based lubricants, phosphate coatings, and other potentially hazardous or harmful substances to improve the tribology of the metal forming process. The application of phosphate-based coatings has long been studied to determine if other synthetic ''clean'' lubricants could provide the same degree of protection afforded by phoscoatings and its formulations. So far, none meets the cost and performance objectives provided by phoscoatings as a general aid to the metal forming industry. In as much as phoscoatings and graphite have replaced lead-based lubricants, the metal forming industry has had previous experience withmore » a legislated requirement to change processes. However, without a proactive approach to phoscoating replacement, many metal forming processes could find themselves without a cost effective tribology material necessary for the metal forming process« less
Water treatment process and system for metals removal using Saccharomyces cerevisiae
Krauter, Paula A. W.; Krauter, Gordon W.
2002-01-01
A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.
Process of discharging charge-build up in slag steelmaking processes
Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali
1994-01-01
A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag-containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Requirements for Metal HAP Process Vents 4 Table 4 to Subpart VVVVVV of Part 63 Protection of Environment... of Part 63—Emission Limits and Compliance Requirements for Metal HAP Process Vents As required in § 63.11496(f), you must comply with the requirements for metal HAP process vents as shown in the...
Extraction process for removing metallic impurities from alkalide metals
Royer, L.T.
1987-03-20
A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.
Generic model of morphological changes in growing colonies of fungi
NASA Astrophysics Data System (ADS)
López, Juan M.; Jensen, Henrik J.
2002-02-01
Fungal colonies are able to exhibit different morphologies depending on the environmental conditions. This allows them to cope with and adapt to external changes. When grown in solid or semisolid media the bulk of the colony is compact and several morphological transitions have been reported to occur as the external conditions are varied. Here we show how a unified simple mathematical model, which includes the effect of the accumulation of toxic metabolites, can account for the morphological changes observed. Our numerical results are in excellent agreement with experiments carried out with the fungus Aspergillus oryzae on solid agar.
Nutrient chemotaxis suppression of a diffusive instability in bacterial colony dynamics
NASA Astrophysics Data System (ADS)
Arouh, Scott; Levine, Herbert
2000-07-01
Bacteria grown on a semisolid agar surface have been observed to form branching patterns as the colony envelope propagates outward. The fundamental cause of this instability relates to the need for limited nutrient to diffuse towards the colony. Here, we investigate the effect on this instability of allowing the bacteria to move chemotactically in response to the nutrient gradient. Our results show that this additional effect has a tendency to suppress the instability. Our calculations are done within the context of a simple ``cutoff'' model of colony dynamics, but presumably remain valid for more complex and hence more realistic approaches.
Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.
Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing
2013-02-14
Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.
DEVELOPING A CAPE-OPEN COMPLIANT METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (CO-MFFP2T)
The USEPA is developing a Computer Aided Process Engineering (CAPE) software tool for the metal finishing industry that helps users design efficient metal finishing processes that are less polluting to the environment. Metal finishing process lines can be simulated and evaluated...
Process Of Bonding A Metal Brush Structure To A Planar Surface Of A Metal Substrate
Slattery, Kevin T.; Driemeyer, Daniel E.; Wille; Gerald W.
1999-11-02
Process for bonding a metal brush structure to a planar surface of a metal substrate in which an array of metal rods are retained and immobilized at their tips by a common retention layer formed of metal, and the brush structure is then joined to a planar surface of a metal substrate via the retention layer.
On-Line Control of Metal Processing. Report of the Committee on On-Line Control of Metal Processing
1989-02-01
Materials Engineering. His work has concentrated on the electroprocessing of metals in molten salts . He is a member of TMS, AIME, ES, Canadian Institute...continuous ingot casting process with three 32 discrete control loops Figure 4-2 Controller incorporating process model 36 Figure 4-3 Real-time molten ...and others while providing a controlled macrostructure and solidification substructure. In this process, molten metal continuously flows from a
Catalysis using hydrous metal oxide ion exchanges
Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.
1985-01-01
In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.
Catalysis using hydrous metal oxide ion exchangers
Dosch, R.G.; Stephens, H.P.; Stohl, F.V.
1983-07-21
In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.
NASA Astrophysics Data System (ADS)
Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.
2017-08-01
This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.
NASA Technical Reports Server (NTRS)
Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.
1983-01-01
A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.
NASA Technical Reports Server (NTRS)
Wolf, M.
1981-01-01
The effect of solar cell metallization pattern design on solar cell performance and the costs and performance effects of different metallization processes are discussed. Definitive design rules for the front metallization pattern for large area solar cells are presented. Chemical and physical deposition processes for metallization are described and compared. An economic evaluation of the 6 principal metallization options is presented. Instructions for preparing Format A cost data for solar cell manufacturing processes from UPPC forms for input into the SAMIC computer program are presented.
Feedbacks between microphysics and photochemical aging in viscous aerosol
NASA Astrophysics Data System (ADS)
Dou, Jing; Corral Arroyo, Pablo; Alpert, Peter A.; Ammann, Markus; Peter, Thomas; Krieger, Ulrich K.
2017-04-01
Fe(III)-citrate complex photochemistry, which plays an important role in aerosol aging, especially in lower troposphere, has been widely recognized in both solution and solid states. It can get excited by light below about 500 nm, inducing the oxidation of carboxylate ligands and the production of peroxides (e.g., OH•, HO2•), which have a significant impact on the climate, air quality and health. Recently, there is literature reporting that aqueous aerosol particles may attain highly viscous, semi-solid or even glassy physical states under a wide range of atmospheric conditions. However, systematic studies on the effect of high viscosity on photochemical processes are scarce. In this research, mass and size changes of a single, aqueous Fe(III)-citrate/citric acid particle levitated in an electrodynamic balance (EDB) are tracked during photochemical processing. We observe an overall mass loss during photochemical processing due to evaporation of volatile (e.g., CO2) and semi-volatile (e.g., ketones) compounds. It is known that relative humidity and temperature strongly effects the viscosity of citric acid. Hence, under light intensities large enough not limiting photochemical processing (at a wavelength of either 375 nm or 473 nm), the quasi-steady state evaporation rate in our experiments depends on relative humidity and temperature. The same holds true for the characteristic time scale for reaching thermodynamic equilibrium after switching off the light source. We are focusing on the high viscosity case (i.e., reduced molecular mobility and low water content), which slows down the transport of products but can also affect chemical reaction rates (e.g., initial absorption process, charge and energy transfer). Data are compared to kinetic modeling and diffusivities for semi-volatile compounds are estimated aiming at a more detailed understanding of the feedbacks between microphysics and photochemical aging.
Fluorine compounds for doping conductive oxide thin films
Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L
2013-04-23
Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.
Szałatkiewicz, Jakub
2016-01-01
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804
Szałatkiewicz, Jakub
2016-08-10
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.
Method of removing sulfur emissions from a fluidized-bed combustion process
Vogel, Gerhard John; Jonke, Albert A.; Snyder, Robert B.
1978-01-01
Alkali metal or alkaline earth metal oxides are impregnated within refractory support material such as alumina and introduced into a fluidized-bed process for the combustion of coal. Sulfur dioxide produced during combustion reacts with the metal oxide to form metal sulfates within the porous support material. The support material is removed from the process and the metal sulfate regenerated to metal oxide by chemical reduction. Suitable pore sizes are originally developed within the support material by heat-treating to accommodate both the sulfation and regeneration while still maintaining good particle strength.
Process for the production of hydrogen from water
Miller, William E [Naperville, IL; Maroni, Victor A [Naperville, IL; Willit, James L [Batavia, IL
2010-05-25
A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.
Development of techniques for processing metal-metal oxide systems
NASA Technical Reports Server (NTRS)
Johnson, P. C.
1976-01-01
Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.
Process to separate alkali metal salts from alkali metal reacted hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John Howard; Alvare, Javier; Larsen, Dennis
A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phasemore » may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.« less
Simonoska Crcarevska, Maja; Dimitrovska, Aneta; Sibinovska, Nadica; Mladenovska, Kristina; Slavevska Raicki, Renata; Glavas Dodov, Marija
2015-07-15
Microsponges drug delivery system (MDDC) was prepared by double emulsion-solvent-diffusion technique using rotor-stator homogenization. Quality by design (QbD) concept was implemented for the development of MDDC with potential to be incorporated into semisolid dosage form (gel). Quality target product profile (QTPP) and critical quality attributes (CQA) were defined and identified, accordingly. Critical material attributes (CMA) and Critical process parameters (CPP) were identified using quality risk management (QRM) tool, failure mode, effects and criticality analysis (FMECA). CMA and CPP were identified based on results obtained from principal component analysis (PCA-X&Y) and partial least squares (PLS) statistical analysis along with literature data, product and process knowledge and understanding. FMECA identified amount of ethylcellulose, chitosan, acetone, dichloromethane, span 80, tween 80 and water ratio in primary/multiple emulsions as CMA and rotation speed and stirrer type used for organic solvent removal as CPP. The relationship between identified CPP and particle size as CQA was described in the design space using design of experiments - one-factor response surface method. Obtained results from statistically designed experiments enabled establishment of mathematical models and equations that were used for detailed characterization of influence of identified CPP upon MDDC particle size and particle size distribution and their subsequent optimization. Copyright © 2015 Elsevier B.V. All rights reserved.
Hou, Jun-Jie; Guo, Jian; Wang, Jin-Mei; Yang, Xiao-Quan
2016-10-01
In this study, soy protein isolate/sugar beet pectin (SPI/SBP) emulsion gels were prepared through an enzymatic gelation process. The effects of emulsifier (SBP, SPI or SPI/SBP complex) and emulsification process on the microstructure, texture, breakdown properties and aroma release behavior of resulting emulsion gels were investigated. Oil emulsification by SBP/SPI complex resulted in a higher amount of emulsifier absorbing on the oil-water interface than by SBP and SPI alone, indicating that a more compact interfacial network was formed. Flocculation of oil droplets was observed and corresponding emulsion gels exhibited lower fracture force and strain when the oil was emulsified by SPI and SBP/SPI complex. Moreover, emulsion gels with small droplets produced a greater quantity of small fragments after mastication. However, microstructure did not have a significant effect on breakdown properties of emulsion gels. Headspace gas chromatography analysis showed that the release rate of ethyl butyrate before and after mastication was significantly lower in emulsion gel with more compact network, but the release of aroma compounds with higher hydrophobicity did not show a significant influence of the microstructure and texture of emulsion gel. This finding provides a useful application for designing semi-solid foods with desirable flavor perception. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hazir, Tabish; Senarath, Upul; Agho, Kingsley; Akram, Dure-Samin; Kazmi, Narjis; Abbasi, Saleem; Dibley, Michael J
2012-01-01
Inappropriate timing of introducing complementary food deprives the infant of optimum nutrition, leading to undernutrition, and increased mortality and morbidity. The aim of this analysis was to identify determinants of inappropriate timing of introduction of solid, semi-solid and soft foods in Pakistan. Data on 941 infants 3.00 to 8.99 months were obtained from the Pakistan Demographic and Health Survey 2006-2007. The prevalence of introduction of foods among infants aged 3.00-5.99 months and 6.00-8.99 months was examined against a set of individual, household and community level variables using univariate analysis. Adjusted odds ratio (AOR) for early introduction in age 3.00-5.99 months and non-introduction in 6.00-8.99 months of age were calculated using backward stepwise logistic regression models. The prevalence of early introduction of complementary foods among 3.00- to 5.99-month-old and timely introduction among 6.00- to 8.99-month-old infants were 10.6% and 39.2%, respectively. Multivariate analyses revealed that mothers who had four or more antenatal clinic visits (AOR=2.68) and who lived in the provinces of Sindh (AOR=2.89) and Baluchistan (AOR=6.75) were more likely to introduce complementary foods early. Mothers from middle-level households (AOR=7.82), poorer households (AOR=4.84) and poorest households (AOR=5.72) were significantly more likely to delay introduction of complementary foods. In conclusion more than half (60.8%) of Pakistani infants do not receive complementary foods at recommended time. Public health interventions to improve the timing of introduction of complementary food are needed at national level with special focus on high risk groups. © 2011 Blackwell Publishing Ltd.
Das, Aritra; Mahapatra, Sanchita; Sai Mala, Guntur; Chaudhuri, Indrajit; Mahapatra, Tanmay
2016-01-01
Background Insufficiencies in complementary feeding put infants and young children at increased risk of undernutrition. Till now, most Indian studies have looked at the individual level determinants of complementary feeding practices. We aimed to evaluate the association of frontline worker (FLW) provided nutritional counselling services, with change in community level indicators of complementary feeding practices among 9–11 month old children over time. Methods The study data was obtained from five rounds of ‘Lot Quality Assurance Sampling’ survey in eight districts of Bihar, an impoverished Indian state. The surveys were conducted as evaluation exercises for the ‘Integrated Family Health Initiative (IFHI)’–a multi-faceted program aimed at improving the maternal and child health outcomes in Bihar. The main outcome indicators were—current breastfeeding, age-appropriate minimum frequency of semi-solid food, age-appropriate minimum quantity of semi-solid food, initiation of complementary feeding at the right age, and dietary diversity. Repeated measures analysis was performed to determine the association of changes in the outcome indicators with coverage of FLW-provided counselling services. Results Visits by FLW, advices on age-appropriate frequency and handwashing were significant predictors of receiving age-appropriate frequency of feeding. The determinants of receiving age-appropriate quantity were—advices on age appropriate frequency and advices on handwashing. Receiving food support from AWC and FLW visits were significantly associated with initiating complementary feeding at the right age. Conclusions The present study identified the critical elements among the different types of FLW-provided services. The study findings, from an economically and socially underdeveloped region of India, would inform the relevant programs about the nutritional counselling services that need to be emphasized upon for reducing the burden of childhood malnutrition. PMID:27832211
NASA Astrophysics Data System (ADS)
Haryono, M. B.; Sulardjaka, Nugroho, Sri
2016-04-01
The present study was aimed to investigate the effect of borax additive on physical and mechanical properties of Al7Si-Mg-TiB with the reinforcement of silicon carbide. In this case, the different weight percentage from the reinforcement of SiC (10, 15, and 20% wt), and the borax additive (ratio 1:4) were homogenously added into the matrix by employing the semi-solid stir casting method at the temperature of 590°C. Al7Si-Mg-TiB melted in an electric resistance furnace at 800°C for 25 minutes and the holding time of 5 minutes; SiC was stirred with borax inside the chamber and heated at the temperature of 250°C for 25 minutes. Then, it melted by lowing the temperature into 590°C. The SiC-borax mixture was added into the electric resistance furnace, and automatically stirred by the stirrer at a constant speed (500 rpm for 3 minutes) in the composite A17Si-Mg-TiB. It melted when heated at 750°C for 17minutes,then, casting was performed on the prepared mould. The characterizations of Al7Si-Mg-TiB-SiC/borax were porosity, hardness, and microstructure on the Al7Si-Mg-TiB-SiC/ borax. The porosity of AMC tended to increase along with the increaseof the wt% SiC (1.4%-3.6%); however, borax additive underwent a decrease in porosity (0.14%-1.3%). Further, hardness tended to improve along with the increase of wt% SiC. The unboraxmixture had 79,6 HRB up to 94 HRB. Whereas, the borax additive mixture had 105,8 HRB up to 121 HRB.
Panichayupakaranant, P; Meerungrueang, W
2010-11-01
Rhinacanthus nasutus (L.) Kurz (Acanthaceae) has long been used in Thai traditional medicine for treatment of tinea versicolor, ringworm, pruritic rash, and abscess. The active constituents are known as a group of naphthoquinone esters, rhinacanthins. This work focused on establishment of R. nasutus root cultures and determination of rhinacanthin production. Induction of R. nasutus root formation was accomplished on solid Gamborg's B5 (B5) medium, supplied with 0.1 mg/L indole-3-butyric acid (IBA) and 20 g/L sucrose. The effects of explants (whole leaf explants and four-side excised leaf explants), light and medium composition on root and rhinacanthin formation were investigated. The root formation from the whole leaf explants was 10 times higher than that from the four-side excised leaf explants. In addition, light possessed an inhibitory effect on the root and rhinacanthin formation of R. nasutus. Medium manipulation found that Murashige and Skoog (MS) medium supplied with 3 mg/L IBA and 30 g/L sucrose was the most suitable for induction of the root formation. Unfortunately, the obtained root cultures produced only rhinacanthin-C in very low amount, 0.026 mg/g dry weight (DW), when they were transferred into the same MS liquid medium. With semisolid medium (4 g/L agar) of the same MS composition, however, the root cultures appeared to produce higher content of rhinacanthin-C, -D and -N (3.45, 0.07 and 0.07 mg/g DW, respectively). Our finding suggests that culturing in semisolid medium is capable of improving of rhinacanthin production in R. nasutus root cultures.
Learning about the energy density of liquid and semi-solid foods.
Hogenkamp, P S; Stafleu, A; Mars, M; de Graaf, C
2012-09-01
People learn about a food's satiating capacity by exposure and consequently adjust their energy intake. To investigate the effect of energy density and texture on subsequent energy intake adjustments during repeated consumption. In a randomized crossover design, participants (n=27, age: 21±2.4 years, body mass index: 22.2±1.6 kg m(-2)) repeatedly consumed highly novel foods that were either low-energy-dense (LE: 30 kcal per 100 g) or high-energy-dense (HE: 130 kcal per 100 g), and either liquid or semi-solid, resulting in four product conditions. In each condition, a fixed portion of test food was consumed nine times as an obligatory part of breakfast, lunch and dinner on 3 consecutive days. All meals continued with an ad libitum buffet; food items for evening consumption were provided and the intake (kcal per day) was measured. Buffet intake depended on energy density and day of consumption of the test foods (day*energy interaction: P=0.02); daily buffet intake increased from day 1 (1745±577 kcal) to day 3 (1979±567 kcal) in the LE conditions; intake did not change in the HE conditions (day 1: 1523±429 kcal, day 3: 1589±424 kcal). Food texture did not affect the intake (P=0.56). Intake did depend on energy density of the test foods; participants increased their buffet intake over days in response to learning about the satiating capacity of the LE foods, but did not change buffet intake over days when repeatedly consuming a HE food as part of their meal. The adjustments in intake were made irrespective of the food texture.
Pediatric scalds: do cooking-related burns have a higher injury burden?
Bachier, Marielena; Hammond, Sarah E; Williams, Regan; Jancelewicz, Timothy; Feliz, Alexander
2015-11-01
Pediatric scald burns result in frequent emergency room visits and hospitalizations. We investigated whether cooking-related burns produce greater morbidity requiring more extensive care than noncooking burns. We performed a 6-y review at our free-standing children's hospital. Children aged <18 y admitted for accidental scald burns were included. Demographics, injury pattern, treatment, and outcome (contractures and/or limited mobility and nonhealing and/or infected wounds) data were analyzed comparing cooking versus noncooking burns. The Mann-Whitney U test, a chi-square test, and the negative binomial were used to compare continuous, categorical, and count data between groups. Bivariate analysis was performed to identify risk factors among patients with adverse outcomes. We identified 308 patients; 262 (85%) cooking and 46 (15%) noncooking burns. Most patients were African-American males, with public insurance, and a median age of 2 y. Cooking burns preferentially occurred over the head, neck, and upper body; noncooking burns were distributed over the lower body (P < 0.02). Median total body surface area was equal for both groups (P > 0.11). In subgroup analysis, semisolid and grease burns resulted in increased rates of wound contractures and/or limited mobility when compared with noncooking burns (P = 0.05 and P = 0.008, respectively). Patients with complications were more likely to have third degree burns and required more consults, longer hospitalization, and more surgical debridements and clinic visits. Most accidental scald burns occurred in young children during food preparation. Greater long-term morbidity was found in patients with semisolid and grease burns. This subset of children has a higher injury burden and requires extensive care in the acute and long-term setting. Copyright © 2015 Elsevier Inc. All rights reserved.
Establishment of a cell-based wound healing assay for bio-relevant testing of wound therapeutics.
Planz, Viktoria; Wang, Jing; Windbergs, Maike
Predictive in vitro testing of novel wound therapeutics requires adequate cell-based bio-assays. Such assays represent an integral part during preclinical development as pre-step before entering in vivo studies. Simple "scratch tests" based on defected skin cell monolayers exist, however these can solely be used for testing liquids, as cell monolayer destruction and excessive hydration limit their applicability for (semi-)solid systems like wound dressings. In this context, a cell-based wound healing assay is introduced for rapid and predictive testing of wound therapeutics independent of their physical state in a bio-relevant environment. A novel wound healing assay was established for bio-relevant and predictive testing of (semi-) solid wound therapeutics. The assay allows for physiologically relevant hydration of the tested wound therapeutics at the air-liquid interface and their removal without cell monolayer disruption. In a proof-of-concept study, the applicability and discriminative power could be demonstrated by examining unloaded and drug-loaded wound dressings with two different established wound healing actives (dexpanthenol and metyrapone) and their effect on skin cell behavior. The influence of the released drug on the cells´ healing behavior could successfully be monitored over time. Wound size assessment after 96h resulted in an eight fold smaller wound area for drug treated models compared to the ones treated with unloaded fibers and non-treated wounds. This assay provides valuable first insights towards the establishment of a valid screening and evaluation tool for preclinical wound therapeutic development from liquid to (semi-)solid systems to improve predictability in a simple, yet standardized way. Copyright © 2017 Elsevier Inc. All rights reserved.
Global distribution of secondary organic aerosol particle phase state
NASA Astrophysics Data System (ADS)
Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.
2016-12-01
Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.
Sugiyama, Ikumi; Takahashi, Namiki; Sadzuka, Yasuyuki
2016-01-01
In dermatologic therapy, several external preparations formulated as ointments or creams are prescribed. And they are often admixture to improve patient compliance. In this study, we prepared admixtures of moisturizer with steroids and examined their usability and the amount of principal agent in formulations, particularly focusing on the moisturizer content. Four heparinoid semisolid formulations were selected: Hirudoid ® soft ointment 0.3% (Formulation A) and 3 generic agents [(Besoften ® oil-based cream 0.3% (Formulation B), Kuradoido ® ointment 0.3% (Formulation C), and Hepadaerm ointment 0.3% (Formulation D)], and Antebate ® ointment 0.05% (Formulation E) were used as steroids. Formulation A and B are water-in-oil emulsions, and Formulation C and D are oil-in-water emulsions. Admixtures looked like to be mixed uniformly by visual observation. In the examination of heparinoid amount, admixture A+E and B+E were mixed uniformly. On the other hand, admixture C+E was remarkable un-uniformly. It was speculated that the emulsification of formulation C was broken. The phenomenon was supported by the result of malleability. After 8 weeks storage, the heparinoid ratio in each formulation could be expressed as follows: Admixture B≥Admixture A>Admixture C=Admixture D. A suitable storage temperature was 4°C. The results of physicochemical data analysis reveal the formulations composed of water-in-oil cream, i.e., Formulation A and Formulation B, to be the optimal choices for mixing with steroid ointments. Mixing time and storage conditions may be optimized to solve pharmaceutical problems. Moreover, understanding the emulsion type and character of semisolid formulations can expand the range of formulation options.
Byrne, Martin A.; Lupinski, John H.
1984-01-01
An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.
Fabrication of cast particle-reinforced metals via pressure infiltration
NASA Technical Reports Server (NTRS)
Klier, E. M.; Mortensen, A.; Cornie, J. A.; Flemings, M. C.
1991-01-01
A new casting process for fabrication of particle-reinforced metals is presented whereby a composite of particulate reinforcing phase in metal is first produced by pressure infiltration. This composite is then diluted in additional molten metal to obtain the desired reinforcement volume fraction and metal composition. This process produces a pore-free as-cast particulate metal-matrix composite. This process is demonstrated for fabrication of magnesium-matrix composites containing SiC reinforcements of average diameter 30, 10 and 3 microns. It is compared with the compocasting process, which was investigated as well for similar SiC particles in Mg-10 wt pct Al, and resulted in unacceptable levels of porosity in the as-cast composite.
Processing of metal and oxygen from lunar deposits
NASA Technical Reports Server (NTRS)
Acton, Constance F.
1992-01-01
On the moon, some whole rocks may be ores for abundant elements, such as oxygen, but beneficiation will be important if metallic elements are sought from raw lunar dirt. In the extraction process, a beneficiated metallic ore, such as an oxide, sulfide, carbonate, or silicate mineral, is converted to reduced metal. A variety of plausible processing technologies, which includes recovery of meteoritic iron, and processing of lunar ilmenite, are described in this report.
Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA
2010-02-23
A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.
Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng
2016-12-01
The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua
2010-04-01
A sodium carbonate assisted hydrothermal process was induced to stabilize the fly ash from medical waste incinerator. The results showed that sodium carbonate assisted hydrothermal process reduced the heavy metals leachability of fly ash, and the heavy metal waste water from the process would not be a secondary pollution. The leachability of heavy metals studied in this paper were Cd 1.97 mg/L, Cr 1.56 mg/L, Cu 2.56 mg/L, Mn 17.30 mg/L, Ni 1.65 mg/L, Pb 1.56 mg/L and Zn 189.00 mg/L, and after hydrothermal process with the optimal experimental condition (Na2CO3/fly ash dosage = 5/20, reaction time = 8 h, L/S ratio = 10/1) the leachability reduced to < 0.02 mg/L for Cd, Cr, Cu, Mn, Ni, Pb, and 0.05 mg/L for Zn, according to GB 5085.3-2007. Meanwhile, the concentrations of heavy metals in effluent after hydrothermal process were less than 0.8 mg/L. The heavy metals leachability and concentration in effluent reduced with prolonged reaction time. Prolonged aging can affect the leachability of metals as solids become more crystalline, and heavy metals transferred inside of crystalline. The mechanism of heavy metal stabilization can be concluded to the co precipitation and adsorption effect of aluminosilicates formation, crystallization and aging process.
Frigerio, N.A.
1962-03-27
A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)
A review of biocompatible metal injection moulding process parameters for biomedical applications.
Hamidi, M F F A; Harun, W S W; Samykano, M; Ghani, S A C; Ghazalli, Z; Ahmad, F; Sulong, A B
2017-09-01
Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM) process, have been employed for the fabrication of controlled porous structures used for dental and orthopaedic surgical implants. The porous metal implant allows bony tissue ingrowth on the implant surface, thereby enhancing fixation and recovery. This paper elaborates a systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries. In this study, three biocompatible metals are reviewed-stainless steels, cobalt alloys, and titanium alloys. The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed thoroughly. This paper should be of value to investigators who are interested in state of the art of metal powder metallurgy, particularly the MIM technology for biocompatible metal implant design and development. Copyright © 2017 Elsevier B.V. All rights reserved.
Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals.
Kumari, Deepika; Qian, Xin-Yi; Pan, Xiangliang; Achal, Varenyam; Li, Qianwei; Gadd, Geoffrey Michael
2016-01-01
Rapid urbanization and industrialization resulting from growing populations contribute to environmental pollution by toxic metals and radionuclides which pose a threat to the environment and to human health. To combat this threat, it is important to develop remediation technologies based on natural processes that are sustainable. In recent years, a biomineralization process involving ureolytic microorganisms that leads to calcium carbonate precipitation has been found to be effective in immobilizing toxic metal pollutants. The advantage of using ureolytic organisms for bioremediating metal pollution in soil is their ability to immobilize toxic metals efficiently by precipitation or coprecipitation, independent of metal valence state and toxicity and the redox potential. This review summarizes current understanding of the ability of ureolytic microorganisms for carbonate biomineralization and applications of this process for toxic metal bioremediation. Microbial metal carbonate precipitation may also be relevant to detoxification of contaminated process streams and effluents as well as the production of novel carbonate biominerals and biorecovery of metals and radionuclides that form insoluble carbonates. Copyright © 2016 Elsevier Inc. All rights reserved.
Thermally tolerant multilayer metal membrane
Dye, Robert C.; Snow, Ronny C.
2001-01-01
A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.
Accelerated decarburization of Fe-C metal alloys
Pal, Uday B.; Sadoway, Donald R.
1997-01-01
A process for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere.
Accelerated decarburization of Fe-C metal alloys
Pal, U.B.; Sadoway, D.R.
1997-05-27
A process is described for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere. 2 figs.
Laser hybrid joining of plastic and metal components for lightweight components
NASA Astrophysics Data System (ADS)
Rauschenberger, J.; Cenigaonaindia, A.; Keseberg, J.; Vogler, D.; Gubler, U.; Liébana, F.
2015-03-01
Plastic-metal hybrids are replacing all-metal structures in the automotive, aerospace and other industries at an accelerated rate. The trend towards lightweight construction increasingly demands the usage of polymer components in drive trains, car bodies, gaskets and other applications. However, laser joining of polymers to metals presents significantly greater challenges compared with standard welding processes. We present recent advances in laser hybrid joining processes. Firstly, several metal pre-structuring methods, including selective laser melting (SLM) are characterized and their ability to provide undercut structures in the metal assessed. Secondly, process parameter ranges for hybrid joining of a number of metals (steel, stainless steel, etc.) and polymers (MABS, PA6.6-GF35, PC, PP) are given. Both transmission and direct laser joining processes are presented. Optical heads and clamping devices specifically tailored to the hybrid joining process are introduced. Extensive lap-shear test results are shown that demonstrate that joint strengths exceeding the base material strength (cohesive failure) can be reached with metal-polymer joining. Weathering test series prove that such joints are able to withstand environmental influences typical in targeted fields of application. The obtained results pave the way toward implementing metalpolymer joints in manufacturing processes.
Ultrasonic Processing of Materials
NASA Astrophysics Data System (ADS)
Han, Qingyou
2015-08-01
Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.
Catalysts and process for hydrogenolysis of sugar alcohols to polyols
Chopade, Shubham P [East Lansing, MI; Miller, Dennis J [Okemos, MI; Jackson, James E [Haslett, MI; Werpy, Todd A [West Richland, WA; Frye, Jr., John G [Richland, WA; Zacher, Alan H [Richland, WA
2001-09-18
The present invention provides a process for preparation of low molecular weight polyols from high molecular weight polyols in a hydrogenolysis reaction under elevated temperature and hydrogen pressure. The process comprises providing in a reaction mixture the polyols, a base, and a metal catalyst prepared by depositing a transition metal salt on an inert support, reducing the metal salt to the metal with hydrogen, and passivating the metal with oxygen, and wherein the catalyst is reduced with hydrogen prior to the reaction. In particular, the process provides for the preparation of glycerol, propylene glycol, and ethylene glycol from sugar alcohols such as sorbitol or xylitol. In a preferred process, the metal catalyst comprises ruthenium which is deposited on an alumina, titania, or carbon support, and the dispersion of the ruthenium on the support increases during the hydrogenolysis reaction.
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules
2015-07-14
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.
2015-11-20
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.
2017-01-03
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Rapid method for sampling metals for materials identification
NASA Technical Reports Server (NTRS)
Higgins, L. E.
1971-01-01
Nondamaging process similar to electrochemical machining is useful in obtaining metal samples from places inaccessible to conventional sampling methods or where methods would be hazardous or contaminating to specimens. Process applies to industries where metals or metal alloys play a vital role.
NASA Technical Reports Server (NTRS)
Babecki, A. J. (Inventor); Haehner, C. L.
1973-01-01
A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.
The microbiology of oil sands tailings: past, present, future.
Foght, Julia M; Gieg, Lisa M; Siddique, Tariq
2017-05-01
Surface mining of enormous oil sands deposits in northeastern Alberta, Canada since 1967 has contributed greatly to Canada's economy but has also received negative international attention due largely to environmental concerns and challenges. Not only have microbes profoundly affected the composition and behavior of this petroleum resource over geological time, they currently influence the management of semi-solid tailings in oil sands tailings ponds (OSTPs) and tailings reclamation. Historically, microbial impacts on OSTPs were generally discounted, but next-generation sequencing and biogeochemical studies have revealed unexpectedly diverse indigenous communities and expanded our fundamental understanding of anaerobic microbial functions. OSTPs that experienced different processing and management histories have developed distinct microbial communities that influence the behavior and reclamation of the tailings stored therein. In particular, the interactions of Deltaproteobacteria and Firmicutes with methanogenic archaea impact greenhouse gas emissions, sulfur cycling, pore water toxicity, sediment biogeochemistry and densification, water usage and the trajectory of long-term mine waste reclamation. This review summarizes historical data; synthesizes current understanding of microbial diversity and activities in situ and in vitro; predicts microbial effects on tailings remediation and reclamation; and highlights knowledge gaps for future research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zhu, Hong-Ji; Sun, Li-Fan; Zhang, Yan-Fei; Zhang, Xiao-Li; Qiao, Jian-Jun
2012-05-01
To develop high-efficient biofertilizer, an environmental stress-tolerant phosphate-solubilizing microorganism (PSM) was isolated from agricultural wastes compost, and then applied to spent mushroom substrate (SMS). The isolate FL7 was identified as Pichia farinose with resistance against multiple environmental stresses, including 5-45°C temperature, 3-10 pH range, 0-23% (w/v) NaCl and 0-6M ammonium ion. Under the optimized cultivation condition, 852.8 mg/l total organic acids can be produced and pH can be reduced to 3.8 after 60 h, meanwhile, the soluble phosphate content reached 816.16 mg/l. The P. farinose was used to convert SMS to a phosphate biofertilizer through a semi-solid fermentation (SSF) process. After fermentation of 10 days, cell density can be increased to 5.6 × 10(8)CFU/g in biomass and pH in this medium can be decreased to 4.0. SMS biofertilizer produced by P. farinose significantly improved the growth of soybean in pot experiments, demonstrating a tremendous potential in agricultural application. Copyright © 2012 Elsevier Ltd. All rights reserved.
Controlled release behaviors of chitosan/α, β-glycerophosphate thermo-sensitive hydrogels
NASA Astrophysics Data System (ADS)
Liu, Wei-Fang; Kang, Chuan-Zhen; Kong, Ming; Li, Yang; Su, Jing; Yi, An; Cheng, Xiao-Jie; Chen, Xi-Guang
2012-09-01
Chitosan/α, β-glycerophosphate (CS/α, β-GP) thermo-sensitive hydrogels presented flowable solution state at low temperature and semisolid hydrogel when the ambient temperature increased. In this research, different concentrations of metronidazole encapsulated, CS and α, β-GP, as well as different acid solvents, were chosen to evaluate their influences on the drug release behaviors from CS/α, β-GP hydrogels. It was found that there was a sustaining release during the first 3 h followed by a plateau. SEM images showed that drugs were located both on the surface and in the interior of hydrogels. The optimal preparation conditions of this hydrogel for drug release were as follows: 1.8% (w/v) CS in HAc solvent, 5.6% (w/v) α, β-GP and 5 g/L metronidazole encapsulation. Cytotoxicity evaluation found no toxic effect. In order to control the release rate, 2.5 g/L chitosan microspheres with spherical shape and smooth surface were incorporated, and it was found that the initial release process was alleviated, while drug concentration had no obvious effect on the release rate. It could be concluded that the metronidzole release behaviors could be optimized according to practical applications.
Metal-doped organic gels and method thereof
Satcher, Jr., Joe H.; Baumann, Theodore F.
2003-09-02
Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.
Metal-doped organic gels and method thereof
Satcher, Jr., Joe H.; Baumann, Theodore F.
2007-10-23
Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.
Hydrothermal alkali metal recovery process
Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
..., Glass Manufacturing and Secondary Nonferrous Metals Processing Area Sources (Renewal) AGENCY... for Clay Ceramics Manufacturing, Glass Manufacturing and Secondary Nonferrous Metals Processing Area..., glass manufacturing, and secondary nonferrous metals processing area sources. Estimated Number of...
A new method of metallization for silicon solar cells
NASA Technical Reports Server (NTRS)
Macha, M.
1979-01-01
The new metallization process based on Mo-Sn system was studied. The reaction mechanism of MoO3 and its mixture with Sn was examined. The basic ink composition was modified in order to obtain a low ohmic contact to the cell. The electrical characteristics of the cells were comparable with the existing metallization processes. However, in comparison with the standard processes using silver as the contacting metal, the saving obtained by the use of the new process was substantial.
Carbonation of metal silicates for long-term CO2 sequestration
Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S
2014-03-18
In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).
Carbonation of metal silicates for long-term CO.sub.2 sequestration
Blencoe, James G [Harriman, TN; Palmer, Donald A [Oliver Springs, TN; Anovitz, Lawrence M [Knoxville, TN; Beard, James S [Martinsville, VA
2012-02-14
In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).
Diffusion of Siderophile Elements in Fe Metal: Application to Zoned Metal Grains in Chondrites
NASA Technical Reports Server (NTRS)
Righter, K.; Campbell, A. J.; Humajun, M.
2003-01-01
The distribution of highly siderophile elements (HSE) in planetary materials is controlled mainly by metal. Diffusion processes can control the distribution or re-distribution of these elements within metals, yet there is little systematic or appropriate diffusion data that can be used to interpret HSE concentrations in such metals. Because our understanding of isotope chronometry, redox processes, kamacite/taenite-based cooling rates, and metal grain zoning would be enhanced with diffusion data, we have measured diffusion coefficients for Ni, Co, Ga, Ge, Ru, Pd, Ir and Au in Fe metal from 1200 to 1400 C and 1 bar and 10 kbar. These new data on refractory and volatile siderophile elements are used to evaluate the role of diffusional processes in controlling zoning patterns in metal-rich chondrites.
NASA Astrophysics Data System (ADS)
Lunter, Dominique; Daniels, Rolf
2016-03-01
Confocal Raman microscopy has become an advancing technique in the characterization of drug transport into the skin. In this study the skin penetration of a local anesthetic from a semisolid preparation was investigated. Furthermore, the effect of the chemical enhancers propylene glycol and POE-23-lauryl ether on its penetration was investigated. The results show that confocal Raman microscopy may provide detailed information on the penetration of APIs into the skin and may elucidate their distribution within the skin with high resolution. The results of the CRM analysis are fully in line with those of conventional permeation and penetration experiments.
A review on recent progress in observations, and health effects of bioaerosols.
Humbal, Charmi; Gautam, Sneha; Trivedi, Ujwalkumar
2018-06-06
Bioaerosol is a particulate mixture of solid and semi-solid matter combined with biotic matter like pollens, microbes and their fragments. The present review stresses on a cumulative understanding of sources, components, quantification and distribution of bioaerosols with respect to size, and its significant impacts on human health. The present review will be instrumental in devising strategies to understand and manage bioaerosols and reducing their human exposure and associated health hazards. The present review aims explore the relationship between particle and associated biological agents responsible for behaviours like dispersal, total potential health hazards and toxicology level during exposure to bioaerosol. Copyright © 2018. Published by Elsevier Ltd.
High-rate squeezing process of bulk metallic glasses
Fan, Jitang
2017-01-01
High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials. PMID:28338092
High-rate squeezing process of bulk metallic glasses
NASA Astrophysics Data System (ADS)
Fan, Jitang
2017-03-01
High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.
High-rate squeezing process of bulk metallic glasses.
Fan, Jitang
2017-03-24
High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.
Process for making surfactant capped metal oxide nanocrystals, and products produced by the process
Alivisatos, A. Paul; Rockenberger, Joerg
2006-01-10
Disclosed is a process for making surfactant capped nanocrystals of metal oxides which are dispersable in organic solvents. The process comprises decomposing a metal cupferron complex of the formula MXCupX, wherein M is a metal, and Cup is a N-substituted N-Nitroso hydroxylamine, in the presence of a coordinating surfactant, the reaction being conducted at a temperature ranging from about 150 to about 400.degree. C., for a period of time sufficient to complete the reaction. Also disclosed are compounds made by the process.
Synthesis of Metal Nanoparticle-decorated Carbon Nanotubes under Ambient Conditions
NASA Technical Reports Server (NTRS)
Lin, Yi; Watson, Kent A.; Ghose, Sayata; Smith, Joseph G.; Connell, John W.
2008-01-01
This viewgraph presentation reviews the production of Metal Nanoparticle-decorated carbon Nanotubes. Multi-walled carbon nanotubes (MWCNTs) were efficiently decorated with metal nanoparticles (e.g. Ag, Pt, etc.) using the corresponding metal acetate in a simple mixing process without the need of chemical reagents or further processing. The conversion of acetate compounds to the corresponding metal reached over 90%, forming nanoparticles with average diameters less than 10 nm under certain conditions. The process was readily scalable allowing for the convenient preparation of multi-gram quantities of metal nanoparticle-decorated MWCNTs in a matter of a few minutes. These materials are under evaluation for a variety of electrical and catalytic applications. The preparation and characterization of these materials will be presented. The microscopic views of the processed MWCNTs are shown
Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials
Cortes-Concepcion, Jose A.; Anton, Donald L.
2016-04-26
A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.
Supported metal alloy catalysts
Barrera, Joseph; Smith, David C.
2000-01-01
A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.
Treatment of halogen-containing waste and other waste materials
Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.
1997-01-01
A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.
Treatment of halogen-containing waste and other waste materials
Forsberg, C.W.; Beahm, E.C.; Parker, G.W.
1997-03-18
A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.
Metallurgical recovery of metals from electronic waste: a review.
Cui, Jirang; Zhang, Lifeng
2008-10-30
Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the topic are presented. In addition, mechanisms and models of biosorption of precious metal ions from solutions are discussed.
Processing of monolayer materials via interfacial reactions
Sutter, Peter Werner; Sutter, Eli Anguelova
2014-05-20
A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.
Alkali metal recovery from carbonaceous material conversion process
Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.
Carbonation of metal silicates for long-term CO.sub.2 sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.
In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to producemore » a carbonate of the metal formerly contained in the metal silicate of step (a).« less
NASA Astrophysics Data System (ADS)
Jin, Chul Kyu; Jang, Chang Hyun; Kang, Chung Gil
2014-01-01
A thin plate (150 × 150 × 1.2 mm) with embedded corrugation is fabricated using the rheoforming method. Semisolid slurry is created using the electromagnetic stirring (EMS) system, and the thin plate is made with the forging die at the 200-ton hydraulic press. The cross sections and microstructures of the slurry with and without stirring are examined. To investigate the effect of the process parameters on the formability, microstructure, and mechanical properties of thin plate the slurry is subjected to 16 types of condition for the forging experiment. The 16 types included the following conditions: Whether the EMS is applied or not, three fractions of the solid phase at 35, 45 and 55 pct; two compression velocities at 30 and 300 mm s-1; and four different compression pressures—100, 150, 200 and 250 MPa. The thin plate's formability is enhanced at higher punch velocity for compressing the slurry, and fine solid particles are uniformly distributed, which in turn, enhances the plate's mechanical properties. The pressure between 150 and 200 MPa is an appropriate condition to form thin plates. A thin plate without defects can be created when the slurry at 35 pct of the solid fraction (f s) was applied at the compression velocity of 300 mm s-1 and 150 MPa of pressure. The surface state of thin plate is excellent with 220 MPa of tensile strength and 13.5 pct of elongation. The primary particles are fine over the entire plate, and there are no liquid segregation-related defects.
Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA
2012-04-10
A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.
NASA Technical Reports Server (NTRS)
Wolf, M.; Goldman, H.
1981-01-01
The attributes of the various metallization processes were investigated. It is shown that several metallization process sequences will lead to adequate metallization for large area, high performance solar cells at a metallization add on price in the range of $6. to 12. m squared, or 4 to $.8/W(peak), assuming 15% efficiency. Conduction layer formation by thick film silver or by tin or tin/lead solder leads to metallization add-on prices significantly above the $6. to 12/m squared range c.) The wet chemical processes of electroless and electrolytic plating for strike/barrier layer and conduction layer formation, respectively, seem to be most cost effective.
DEVELOPMENT OF THE U.S. EPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL
Metal finishing processes are a type of chemical processes and can be modeled using Computer Aided Process Engineering (CAPE). Currently, the U.S. EPA is developing the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), a pollution prevention software tool for the meta...
INTEGRATED BIOREACTOR SYSTEM FOR THE TREATMENT OF CYANIDE, METALS AND NITRATES IN MINE PROCESS WATER
An innovative biological process is described for the tratment of cyanide-, metals- and nitrate-contaminated mine process water. The technology was tested for its ability to detoxify cyanide and nitrate and to immobilize metals in wastewater from agitation cyanide leaching. A pil...
The United States Environmental Protection Agency is developing a Computer
Aided Process Engineering (CAPE) software tool for the metal finishing
industry that helps users design efficient metal finishing processes that
are less polluting to the environment. Metal finish...
McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian
2016-11-22
A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.
Shin, Kwangho; Heo, Youngmoo; Park, Hyungpil; Chang, Sungho; Rhee, Byungohk
2013-12-12
In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM) process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE) simulation. PE (high density polyethylene (HDPE) and low density polyethylene (LDPE)) and polypropylene (PP) resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.
Shin, Kwangho; Heo, Youngmoo; Park, Hyungpil; Chang, Sungho; Rhee, Byungohk
2013-01-01
In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM) process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE) simulation. PE (high density polyethylene (HDPE) and low density polyethylene (LDPE)) and polypropylene (PP) resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made. PMID:28788427
Process for metallization of a substrate by irradiative curing of a catalyst applied thereto
Chen, Ken S.; Morgan, William P.; Zich, John L.
1999-01-01
An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by irradiating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface having metallic clusters. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.
Precursors for the polymer-assisted deposition of films
McCleskey, Thomas M.; Burrell, Anthony K.; Jia, Quanxi; Lin, Yuan
2013-09-10
A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.
Biotechnology for the extractive metals industries
NASA Astrophysics Data System (ADS)
Brierley, James A.
1990-01-01
Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.
Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae
2017-01-15
Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.
Extraction of trace metals from fly ash
Blander, M.; Wai, C.M.; Nagy, Z.
1983-08-15
A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.
Extraction of trace metals from fly ash
Blander, Milton; Wai, Chien M.; Nagy, Zoltan
1984-01-01
A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.
Process to restore obliterated serial numbers on metal surfaces
NASA Technical Reports Server (NTRS)
Young, S. G.; Parker, B.; Chisum, W. J.
1974-01-01
Metal smeared into grooves of serial numbers by grinding or filing can be cleaned out by process called cavitation. Ultrasonic vibrator generates very high frequency vibrations in water which create millions of microscopic bubbles. Cavitation bubbles impact metal surface at thousands of pounds per square inch pressure. Metal particles filling grooves are broken away.
Process for making transition metal nitride whiskers
Bamberger, Carlos E.
1989-01-01
A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.
Process for fabrication of cermets
Landingham, Richard L [Livermore, CA
2011-02-01
Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.
Polymer-assisted aqueous deposition of metal oxide films
Li, DeQuan [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM
2003-07-08
An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.
Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.
1961-09-19
A process is described producing metallic thorium, titanium, zirconium, or hafnium from the fluoride. In the process, the fluoride is reduced with alkali or alkaline earth metal and a booster compound (e.g. iodine or a decomposable oxysalt) in a sealed bomb at superatmospheric pressure and a temperature above the melting point of the metal to be produced.
Laser micromachining as a metallization tool for microfluidic polymer stacks
NASA Astrophysics Data System (ADS)
Brettschneider, T.; Dorrer, C.; Czurratis, D.; Zengerle, R.; Daub, M.
2013-03-01
A novel assembly approach for the integration of metal structures into polymeric microfluidic systems is described. The presented production process is completely based on a single solid-state laser source, which is used to incorporate metal foils into a polymeric multi-layer stack by laser bonding and ablation processes. Chemical reagents or glues are not required. The polymer stack contains a flexible membrane which can be used for realizing microfluidic valves and pumps. The metal-to-polymer bond was investigated for different metal foils and plasma treatments, yielding a maximum peel strength of Rps = 1.33 N mm-1. A minimum structure size of 10 µm was determined by 3D microscopy of the laser cut line. As an example application, two different metal foils were used in combination to micromachine a standardized type-T thermocouple on a polymer substrate. An additional laser process was developed which allows metal-to-metal welding in close vicinity to the polymer substrate. With this process step, the reliability of the electrical contact could be increased to survive at least 400 PCR temperature cycles at very low contact resistances.
Refractory metals for ARPS AMTEC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svedberg, R.C.; Sievers, R.C.
1998-07-01
Alkali Metal Thermal-to-Electric Converter (AMTEC) cells for the Advanced Radioisotope Power Systems (ARPS) program are being developed with refractory metals and alloys as the basic structural materials. AMTEC cell efficiency increases with cell operating temperature. For space applications, long term reliability and high efficiency are essential and refractory metals were selected because of their high temperature strength, low vapor pressure, and compatibility with sodium. However, refractory metals are sensitive to oxygen, nitrogen and hydrogen contamination and refractory metal cells cannot be processed in air. Because of this sensitivity, new manufacturing and processing techniques are being developed. In addition to structuralmore » elements, development of other refractory metal components for the AMTEC cells, such as the artery and evaporator wicks, pinchoff tubes and feedthroughs are required. Changes in cell fabrication techniques and processing procedures being implemented to manufacture refractory metal cells are discussed.« less
Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding
NASA Astrophysics Data System (ADS)
Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang
2017-10-01
As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.
NASA Astrophysics Data System (ADS)
Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier
2018-04-01
One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.
Proton Radiography Peers into Metal Solidification
Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; ...
2013-06-19
Historically, metals are cut up and polished to see the structure and to infer how processing influences the evolution. We can now peer into a metal during processing without destroying it using proton radiography. Understanding the link between processing and structure is important because structure profoundly affects the properties of engineering materials. Synchrotron x-ray radiography has enabled real-time glimpses into metal solidification. However, x-ray energies favor the examination of small volumes and low density metals. In this study, we use high energy proton radiography for the first time to image a large metal volume (>10,000 mm 3) during melting andmore » solidification. We also show complementary x-ray results from a small volume (<1mm 3), bridging four orders of magnitude. In conclusion, real-time imaging will enable efficient process development and the control of the structure evolution to make materials with intended properties; it will also permit the development of experimentally informed, predictive structure and process models.« less
NASA Astrophysics Data System (ADS)
Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye
2016-05-01
Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.
Nanoparticulate-catalyzed oxygen transfer processes
Hunt, Andrew T [Atlanta, GA; Breitkopf, Richard C [Dunwoody, GA
2009-12-01
Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.
Biomachining - A new approach for micromachining of metals
NASA Astrophysics Data System (ADS)
Vigneshwaran, S. C. Sakthi; Ramakrishnan, R.; Arun Prakash, C.; Sashank, C.
2018-04-01
Machining is the process of removal of material from workpiece. Machining can be done by physical, chemical or biological methods. Though physical and chemical methods have been widely used in machining process, they have their own disadvantages such as development of heat affected zone and usage of hazardous chemicals. Biomachining is the machining process in which bacteria is used to remove material from the metal parts. Chemolithotrophic bacteria such as Acidothiobacillus ferroxidans has been used in biomachining of metals like copper, iron etc. These bacteria are used because of their property of catalyzing the oxidation of inorganic substances. Biomachining is a suitable process for micromachining of metals. This paper reviews the biomachining process and various mechanisms involved in biomachining. This paper also briefs about various parameters/factors to be considered in biomachining and also the effect of those parameters on metal removal rate.
2008-04-15
cellulose acetate polymers, and diols. Common sol- uble metal/metal oxide-bearing materials are metal alkoxides, metal diketonates, and metal ... carboxylates . Metal-organic compounds are usually subjected to hydrolysis and condensa- tion reactions to produce polymeric or colloidal metal-oxide
Improving Metal Casting Process
NASA Technical Reports Server (NTRS)
1998-01-01
Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.
Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof
Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.
2010-07-13
Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.
Zhan, Lu; Xu, Zhenming
2009-09-15
During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.
Design of optimum solid oxide membrane electrolysis cells for metals production
Guan, Xiaofei; Pal, Uday B.
2015-12-24
Oxide to metal conversion is one of the most energy-intensive steps in the value chain for metals production. Solid oxide membrane (SOM) electrolysis process provides a general route for directly reducing various metal oxides to their respective metals, alloys, or intermetallics. Because of its lower energy use and ability to use inert anode resulting in zero carbon emission, SOM electrolysis process emerges as a promising technology that can replace the state-of-the-art metals production processes. In this paper, a careful study of the SOM electrolysis process using equivalent DC circuit modeling is performed and correlated to the experimental results. Finally, amore » discussion on relative importance of each resistive element in the circuit and on possible ways of lowering the rate-limiting resistive elements provides a generic guideline for designing optimum SOM electrolysis cells.« less
Nanosecond pulsed laser generation of holographic structures on metals
NASA Astrophysics Data System (ADS)
Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.
2016-03-01
A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.
Alkali metal nitrate purification
Fiorucci, Louis C.; Morgan, Michael J.
1986-02-04
A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.
Metals processing control by counting molten metal droplets
Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.
2000-01-01
Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.
Narayan, Jagdish; Chen, Yok
1983-01-01
This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.
Method of producing non-agglomerating submicron size particles
Bourne, Roy S.; Eichman, Clarence C.; Welbon, William W.
1989-01-01
Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in "metallic inks".
Process for making transition metal nitride whiskers
Bamberger, C.E.
1988-04-12
A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.
Abundances in the Very Metal Poor s-Process-rich Star CS 22183-015
NASA Astrophysics Data System (ADS)
Johnson, Jennifer A.; Bolte, Michael
2002-11-01
We report on the abundances for 13 elements in CS 22183-015, the most metal-poor, s-process-rich star yet discovered. We measure [Fe/H]=-3.12 and large overabundances compared to scaled solar values for 11 heavy elements with s-process origin. The low luminosity of the star suggests that it is a CH star, a giant that has accreted s-processed material from an evolved, very metal poor companion. We find a [Pb/Ba] value of 1.1 dex and, more generally, that the ratio of heavy to light s-process elements is larger than seen in the solar system. This result is consistent with theoretical expectations for the s-process in metal-poor stars. [Eu/La] is higher than predicted from the solar system s-process abundance ratios. We argue that the s-process in metal-poor stars is more efficient at producing Eu that in asymptotic giant branch stars of solar metallicity. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Metal-assisted etch combined with regularizing etch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Joanne; Miller, Jeff; Jura, Michael
In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performingmore » a chemical etch which results in regularized openings in the silicon substrate.« less
Electroless metal plating of plastics
Krause, Lawrence J.
1986-01-01
Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.
Electroless metal plating of plastics
Krause, L.J.
1982-09-20
Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.
Electroless metal plating of plastics
Krause, Lawrence J.
1984-01-01
Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.
RMRS developed the Envirobond™ process to treat heavy metals in soil.This phosphate-based technology consists of a proprietary powder and solution that binds with metals in contaminated waste. RMRS claims that the Envirobond™ process converts metal contaminants from their leach...
Production of anhydrous aluminum chloride composition and process for electrolysis thereof
Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip
1983-01-01
A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.
Thermodynamic Investigation of the Reduction-Distillation Process for Rare Earth Metals Production
NASA Astrophysics Data System (ADS)
Judge, W. D.; Azimi, G.
2017-10-01
Owing to their high vapor pressure, the four rare earth metals samarium, europium, thulium, and ytterbium are produced by reduction-distillation whereby their oxides are reduced with metallic lanthanum in vacuo, and the produced metal is subsequently vaporized off. Here, we performed a thorough thermodynamic investigation to establish a fundamental understanding of the reduction-distillation process. Thermodynamic functions including vapor pressures, Gibbs free energies, and enthalpies of reaction were calculated and compared with available experimental data. Furthermore, the kinetics of the process was explored and theoretical evaporation rates were calculated from thermodynamic data. The thermodynamic model developed in this work can help optimize processing conditions to maximize the yield and improve the overall process.
PROCESS OF RECOVERING ALKALI METALS
Wolkoff, J.
1961-08-15
A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)
NASA Astrophysics Data System (ADS)
Wesling, V.; Schram, A.; Müller, T.; Treutler, K.
2016-03-01
Under the premise of an increasing scarcity of raw materials and increasing demands on construction materials, the mechanical properties of steels and its joints are gaining highly important. In particular high- and highest-strength steels are getting in the focus of the research and the manufacturing industry. To the same extent, the requirements for filler metals are increasing as well. At present, these low-alloy materials are protected by a copper coating (<1μm) against corrosion. In addition, the coating realizes a good ohmic contact and good sliding properties between the welding machine and the wire during the welding process. By exchanging the copper with other elements it should be possible to change the mechanical properties of the weld metal and the arc stability during gas metal arc welding processes and keep the basic functions of the coating nearly untouched. On a laboratory scale solid wire electrodes with coatings of various elements and compounds such as titanium oxide were made and processed with a Gas Metal Arc Welding process. During the processing a different process behavior between the wire electrodes, coated and original, could be observed. The influences ranges from greater/shorter arc-length over increasing/decreasing droplets to larger/smaller arc foot point. Furthermore, the weld metal of the coated electrodes has significantly different mechanical and technological characteristics as the weld metal from the copper coated ground wire. The yield strength and tensile strength can be increased by up to 50%. In addition, the chemical composition of the weld metal was influenced by the application of coatings with layer thicknesses to 15 microns in the lower percentage range (up to about 3%). Another effect of the coating is a modified penetration. The normally occurring “argon finger” can be suppressed or enhanced by the choice of the coating. With the help of the presented studies it will be shown that Gas Metal Arc Welding processes are significantly affected by thin film coatings on solid wire electrodes for Gas Metal Arc welding. The influences are regarding the stability of the arc, the properties of the weld metal in terms of geometric expression, chemical composition and mechanical properties, the composition of the arc-plasma and the dynamics of the molten metal.
Metal Matrix Composite Material by Direct Metal Deposition
NASA Astrophysics Data System (ADS)
Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.
Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.
NASA Tech Briefs, February 2001. Volume 25, No. 2
NASA Technical Reports Server (NTRS)
2001-01-01
The topics include: 1) Application Briefs; 2) National Design Engineering Show Preview; 3) Marketing Inventions to Increase Income; 4) A Personal-Computer-Based Physiological Training System; 5) Reconfigurable Arrays of Transistors for Evolvable Hardware; 6) Active Tactile Display Device for Reading by a Blind Person; 7) Program Automates Management of IBM VM Computer Systems; 8) System for Monitoring the Environment of a Spacecraft Launch; 9) Measurement of Stresses and Strains in Muscles and Tendons; 10) Optical Measurement of Temperatures in Muscles and Tendons; 11) Small Low-Temperature Thermometer With Nanokelvin Resolution; 12) Heterodyne Interferometer With Phase-Modulated Carrier; 13) Rechargeable Batteries Based on Intercalation in Graphite; 14) Signal Processor for Doppler Measurements in Icing Research; 15) Model Optimizes Drying of Wet Sheets; 16) High-Performance POSS-Modified Polymeric Composites; 17) Model Simulates Semi-Solid Material Processing; 18) Modular Cryogenic Insulation; 19) Passive Venting for Alleviating Helicopter Tail-Boom Loads; 20) Computer Program Predicts Rocket Noise; 21) Process for Polishing Bare Aluminum to High Optical Quality; 22) External Adhesive Pressure-Wall Patch; 23) Java Implementation of Information-Sharing Protocol; 24) Electronic Bulletin Board Publishes Schedules in Real Time; 25) Apparatus Would Extract Water From the Martian Atmosphere; 26) Review of Research on Supercritical vs Subcritical Fluids; 27) Hybrid Regenerative Water-Recycling System; 28) Study of Fusion-Driven Plasma Thruster With Magnetic Nozzle; 29) Liquid/Vapor-Hydrazine Thruster Would Produce Small Impulses; and 30) Thruster Based on Sublimation of Solid Hydrazine
Costa, M; Wiklendt, L; Simpson, P; Spencer, N J; Brookes, S J; Dinning, P G
2015-10-01
The neuromechanical processes involved in the formation and propulsion of fecal pellets remain incompletely understood. We analyzed motor patterns in isolated segments of the guinea-pig proximal and distal colon, using video imaging, during oral infusion of liquid, viscous material, or solid pellets. Colonic migrating motor complexes (CMMCs) in the proximal colon divided liquid or natural semisolid contents into elongated shallow boluses. At the colonic flexure these boluses were formed into shorter, pellet-shaped boluses. In the non-distended distal colon, spontaneous CMMCs produced small dilations. Both high- and low-viscosity infusions evoked a distinct motor pattern that produced pellet-shaped boluses. These were propelled at speeds proportional to their surface area. Solid pellets were propelled at a speed that increased with diameter, to a maximum that matched the diameter of natural pellets. Pellet speed was reduced by increasing resistive load. Tetrodotoxin blocked all propulsion. Hexamethonium blocked normal motor patterns, leaving irregular propagating contractions, indicating the existence of neural pathways that did not require nicotinic transmission. Colonic migrating motor complexes are responsible for the slow propulsion of the soft fecal content in the proximal colon, while the formation of pellets at the colonic flexure involves a content-dependent mechanism in combination with content-independent spontaneous CMMCs. Bolus size and consistency affects propulsion speed suggesting that propulsion is not a simple reflex but rather a more complex process involving an adaptable neuromechanical loop. © 2015 John Wiley & Sons Ltd.
Kramer, D.P.
1994-08-09
Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.
Solidification and solid-state transformation sciences in metals additive manufacturing
Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub; ...
2017-02-11
Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.
Fate of Trace Metals in Anaerobic Digestion.
Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L
2015-01-01
A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.
Study on the Control of Cleanliness for X90 Pipeline in the Secondary Refining Process
NASA Astrophysics Data System (ADS)
Chu, Ren Sheng; Liu, Jin Gang; Li, Zhan Jun
X90 pipeline steel requires ultra low for sulfur content and gas content in the smelting process. The secondary refining process is very important for X90 pipeline in smelting process and the control of cleanliness is the key for the secondary refining process in the steelmaking process for Pretreatment of hot metal → LD → LF refining → RH refining → Calcium treatment → CC. In the current paper, the cleanliness control method of secondary refining was analyzed for the evolution of non-metallic inclusions in the secondary refining prcess and related changes for composition in steel. The size, composition and the type of the non-metallic inclusions were analyzed by aspex explorer automated scanning electron microscope in X90 pipeline samples for 20mm * 25mm * 25mm by the line cutting. The results show that the number of non-metallic inclusions in steel decrease from the beginning of the LF refining to the RH refining. In the composition of the Non-metallic inclusions, the initial non-metallic inclusions of alumina is converted to two comple-type non-metallic inclusions. Most of them, the non-metallic inclusions were composed by the calcium aluminate and CaS. The others are that the spinel is the core, peripheral parcels calcium aluminate nonmetallic inclusions for complex-type non-metallic inclusions. For the size of the non-metallic inclusions, the non-metallic inclusions for size larger than 100µm is converted to 5 20µm based small size non-metallic inclusions. While the S content of the steel decreased from 0.012% to 0.0012% or less, Al content is kept at between 0.025% to 0.035% and the quality for the casting slab satisfies the requirement of the steel. The ratings for various types of the non-metallic inclusions are 1.5 or less. The control strategy for the inclusions in 90 pipeline is small size, diffuse distribution and little amount of the deformation after rolling. On the contrary, the specific chemical composition of the inclusions is not important, single component in the inclusions is better.
Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V
2005-01-01
Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned above is necessary to identify the functional groups entered in the metals elimination processes.
Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe
2000-01-01
A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.
Post-processing of metal matrix composites by friction stir processing
NASA Astrophysics Data System (ADS)
Sharma, Vipin; Singla, Yogesh; Gupta, Yashpal; Raghuwanshi, Jitendra
2018-05-01
In metal matrix composites non-uniform distribution of reinforcement particles resulted in adverse affect on the mechanical properties. It is of great interest to explore post-processing techniques that can eliminate particle distribution heterogeneity. Friction stir processing is a relatively newer technique used for post-processing of metal matrix composites to improve homogeneity in particles distribution. In friction stir processing, synergistic effect of stirring, extrusion and forging resulted in refinement of grains, reduction of reinforcement particles size, uniformity in particles distribution, reduction in microstructural heterogeneity and elimination of defects.
Non-noble metal based metallization systems
NASA Technical Reports Server (NTRS)
Garcia, A., III
1983-01-01
The results of efforts to produce a nonsilver metallization system for silicon photovoltaic cells are given. The system uses a metallization system based on molybdenum, tin, and titanium hydride. The initial work in this system was done using the MIDFILM process. The MIDFILM process attains a line resolution comparable to photoresist methods with a process related to screen printing. The surface to be processed is first coated with a thin layer of photopolymer material. Upon exposure to ultraviolet light through a suitable mask, the polymer in the non-pattern area crosslinks and becomes hard. The unexposed pattern areas remain tacky. The conductor material is then applied in the form of a dry mixture of metal which adheres to the tacky pattern area. The assemblage is then fired to ash the photopolymer and sinter the conductor powder.
Bio-processing of solid wastes and secondary resources for metal extraction - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae-chun; Pandey, Banshi Dhar, E-mail: bd_pandey@yahoo.co.uk; CSIR - National Metallurgical Laboratory, Jamshedpur 831007
2012-01-15
Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed inmore » eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.« less
Plantform Bioreactor for Mass Micropropagation of Date Palm.
Almusawi, Abdulminam H A; Sayegh, Abdullah J; Alshanaw, Ansam M S; Griffis, John L
2017-01-01
A novel protocol for the commercial production of date palm through micropropagation is presented. This protocol includes the use of a semisolid medium alternation or in combination with a temporary immersion system (TIS, Plantform bioreactor) in date palm micropropagation. The use of the Plantform bioreactor for date palm results in an improved multiplication rate, reduced micropropagation time, and improved weaning success. It also reduces the cost of saleable units and thus improves economic return for commercial micropropagation. The use of the Plantform bioreactor successfully addresses other hindrances that can occur during the scale-up of date palm micropropagation, including asynchrony of somatic embryos, limited maturation of somatic embryos, and highly variable germination frequencies of embryos.
De Ryck, R; Struelens, M J; Serruys, E
1994-01-01
Four screens for the rapid (4 to 6 h) biochemical detection of pathogens from enteric isolation media are described. The Salmonella screen consisted of Kligler iron agar (KIA), motility-indole-urea-tryptophan-deamination semisolid medium (MIU-TDA), and the o-nitrophenyl-beta-D-galactopyranoside (ONPG) test; the Shigella screen consisted of KIA, MIU-TDA, the ONPG test, and the lysine decarboxylation-indole test; the Yersinia screen consisted of a rhamnose broth; the Aeromonas screen consisted of a xylose agar plate. When tested on 2,102 fresh isolates and 71 stock strains, the screens correctly detected 212 enteric pathogens (sensitivity, 100%), with a specificity of 98.1%. PMID:8077408
Progress in the development of gelling agents for improved culturability of microorganisms
Das, Nabajit; Tripathi, Naveen; Basu, Srijoni; Bose, Chandra; Maitra, Susmit; Khurana, Sukant
2015-01-01
Gelling agents are required for formulating both solid and semisolid media, vital for the isolation of microorganisms. Gelatin was the first gelling agent to be discovered but it soon paved the way for agar, which has far superior material qualities. Source depletion, issues with polymerase-chain-reaction and inability to sustain extermophiles etc., necessitate the need of other gelling agents. Many new gelling agents, such as xantham gum, gellan gum, carrageenan, isubgol, and guar gum have been formulated, raising the hopes for the growth of previously unculturable microorganisms. We evaluate the progress in the development of gelling agents, with the hope that our synthesis would help accelerate research in the field. PMID:26257708
Prabaharan, G; Barik, S P; Kumar, B
2016-06-01
A hydrometallurgical process for recovering the total metal values from waste monolithic ceramic capacitors was investigated. The process parameters such as time, temperature, acid concentration, hydrogen peroxide concentration and other reagents (amount of zinc dust and sodium formate) were optimized. Base metals such as Ba, Ti, Sn, Cu and Ni are leached out in two stages using HCl in stage 1 and HCl with H2O2 in stage 2. More than 99% of leaching efficiency for base metals (Cu, Ni, Ba, Ti and Sn) was achieved. Precious metals such as Au and Pd are leached out using aquaregia and nitric acid was used for the leaching of Ag. Base metals (Ba, Ti, Sn, Cu and Ni) are recovered by selective precipitation using H2SO4 and NaOH solution. In case of precious metals, Au and Pd from the leach solution were precipitated out using sodium metabisulphite and sodium formate, respectively. Sodium chloride was used for the precipitation of Ag from leach solution. Overall recovery for base metals and precious metals are 95% and 92%, respectively. Based on the results of the present study, a process flow diagram was proposed for commercial application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Discussion of Carbon Emissions for Charging Hot Metal in EAF Steelmaking Process
NASA Astrophysics Data System (ADS)
Yang, Ling-zhi; Jiang, Tao; Li, Guang-hui; Guo, Yu-feng
2017-07-01
As the cost of hot metal is reduced for iron ore prices are falling in the international market, more and more electric arc furnace (EAF) steelmaking enterprises use partial hot metal instead of scrap as raw materials to reduce costs and the power consumption. In this paper, carbon emissions based on 1,000 kg molten steel by charging hot metal in EAF steelmaking is studied. Based on the analysis of material and energy balance calculation in EAF, the results show that 146.9, 142.2, 137.0, and 130.8 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 %, while 143.4, 98.5, 65.81, and 31.5 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 % by using gas waste heat utilization (coal gas production) for EAF steelmaking unit process. However, carbon emissions are increased by charging hot metal for the whole blast furnace-electric arc furnace (BF-EAF) steelmaking process. In the condition that the hot metal produced by BF is surplus, as carbon monoxide in gas increased by charging hot metal, the way of coal gas production can be used for waste heat utilization, which reduces carbon emissions in EAF steelmaking unit process.
Process for removing technetium from iron and other metals
Leitnaker, J.M.; Trowbridge, L.D.
1999-03-23
A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.
HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, C. J.; Montes, F.; Arcones, A., E-mail: cjhansen@lsw.uni-heidelberg.de, E-mail: cjhansen@dark-cosmology.dk, E-mail: montes@nscl.msu.edu, E-mail: almudena.arcones@physik.tu-darmstadt.de
Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to themore » production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.« less
Advanced metal lift-off process using electron-beam flood exposure of single-layer photoresist
NASA Astrophysics Data System (ADS)
Minter, Jason P.; Ross, Matthew F.; Livesay, William R.; Wong, Selmer S.; Narcy, Mark E.; Marlowe, Trey
1999-06-01
In the manufacture of many types of integrated circuit and thin film devices, it is desirable to use a lift-of process for the metallization step to avoid manufacturing problems encountered when creating metal interconnect structures using plasma etch. These problems include both metal adhesion and plasma etch difficulties. Key to the success of the lift-off process is the creation of a retrograde or undercut profile in the photoresists before the metal deposition step. Until now, lift-off processing has relied on costly multi-layer photoresists schemes, image reversal, and non-repeatable photoresist processes to obtain the desired lift-off profiles in patterned photoresist. This paper present a simple, repeatable process for creating robust, user-defined lift-off profiles in single layer photoresist using a non-thermal electron beam flood exposure. For this investigation, lift-off profiles created using electron beam flood exposure of many popular photoresists were evaluated. Results of lift-off profiles created in positive tone AZ7209 and ip3250 are presented here.
Direct Deposition of Metal (DDM) as a Repair Process for Metallic Military Parts
2013-01-20
metal powder has properties metallurgically compatible with the substrate material. As the laser beam advances along a predefined tool path in a layer...Methodology Background During the DDM process, the energy of a high power industrial laser beam and a concentric stream of metallic alloy powder ...compatible with the substrate material. As the laser beam advances along a predefined tool path in a layer by layer fashion, metal powder is deposited
Laser-assisted solar cell metallization processing
NASA Technical Reports Server (NTRS)
Dutta, S.
1984-01-01
Laser assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are investigated. The tasks comprising these investigations are summarized. Metal deposition experiments are carried out utilizing laser assisted pyrolysis of a variety of metal bearing polymer films and metalloorganic inks spun onto silicon substrates. Laser decomposition of spun on silver neodecanoate ink yields very promising results. Solar cell comb metallization patterns are written using this technique.
Process for metallization of a substrate by curing a catalyst applied thereto
Chen, Ken S.; Morgan, William P.; Zich, John L.
2002-10-08
An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by heating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface coated with catalyst solution. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.
3-D laser patterning process utilizing horizontal and vertical patterning
Malba, Vincent; Bernhardt, Anthony F.
2000-01-01
A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.
Method of producing submicron size particles and product produced thereby
Bourne, R.S.; Eichman, C.C.; Welbon, W.W.
1988-05-11
Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martynenko, Yu. V., E-mail: Martynenko-YV@nrcki.ru
It is shown that the shielding plasma layer and metal droplet erosion in tokamaks are closely interrelated, because shielding plasma forms from the evaporated metal droplets, while droplet erosion is caused by the shielding plasma flow over the melted metal surface. Analysis of experimental data and theoretical models of these processes is presented.
NASA Astrophysics Data System (ADS)
Kühn-Kauffeldt, M.; Marqués, J.-L.; Schein, J.
2015-01-01
Thomson scattering is applied to measure temperature and density of electrons in the arc plasma of the direct current gas tungsten arc welding (GTAW) process and pulsed gas metal arc welding (GMAW) process. This diagnostic technique allows to determine these plasma parameters independent from the gas composition and heavy particles temperature. The experimental setup is adapted to perform measurements on stationary as well as transient processes. Spatial and temporal electron temperature and density profiles of a pure argon arc in the case of the GTAW process and argon arc with the presence of aluminum metal vapor in the case of the GMAW process were obtained. Additionally the data is used to estimate the concentration of the metal vapor in the GMAW plasma.
Metal sulfide initiators for metal oxide sorbent regeneration
Turk, Brian S.; Gupta, Raghubir P.
2001-01-01
A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.
Metal sulfide initiators for metal oxide sorbent regeneration
Turk, Brian S.; Gupta, Raghubir P.
1999-01-01
A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.
Metal sulfide initiators for metal oxide sorbent regeneration
Turk, B.S.; Gupta, R.P.
1999-06-22
A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.
Metal Catalyzed Fusion: Nuclear Active Environment vs. Process
NASA Astrophysics Data System (ADS)
Chubb, Talbot
2009-03-01
To achieve radiationless dd fusion and/or other LENR reactions via chemistry: some focus on environment of interior or altered near-surface volume of bulk metal; some on environment inside metal nanocrystals or on their surface; some on the interface between nanometal crystals and ionic crystals; some on a momentum shock-stimulation reaction process. Experiment says there is also a spontaneous reaction process.
Nonequilibrium processes of segregation and diffusion in metal-polymer tribosystems
NASA Astrophysics Data System (ADS)
Sidashov, A. V.; Kolesnikov, I. V.
2017-12-01
The article presents the results of exchange-diffusion processes between chemical elements in metal-polymer tribosystems (between a metal wheel of a rolling stock and a composite polymer brake shoe). The effect of the segregation processes on the strength characteristics of the working surface of a tribosystem is estimated by quantum chemical calculations, Auger and X-ray photoelectron spectroscopies.
Process for the conversion of lower alcohols to higher branched oxygenates
Barger, Paul T.
1996-01-01
A process is provided for the production of branched C.sub.4+ oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.
Process for the conversion of lower alcohols to higher branched oxygenates
Barger, P.T.
1996-09-24
A process is provided for the production of branched C{sub x} oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.
Understanding metallic bonding: Structure, process and interaction by Rasch analysis
NASA Astrophysics Data System (ADS)
Cheng, Maurice M. W.; Oon, Pey-Tee
2016-08-01
This paper reports the results of a survey of 3006 Year 10-12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students' understanding of metallic bonding as (a) a submicro structure of metals, (b) a process in which individual metal atoms lose their outermost shell electrons to form a 'sea of electrons' and octet metal cations or (c) an all-directional electrostatic force between delocalized electrons and metal cations, that is, an interaction. Part two assessed students' explanation of malleability of metals, for example (a) as a submicro structural rearrangement of metal atoms/cations or (b) based on all-directional electrostatic force. The instrument was validated by the Rasch Model. Psychometric assessment showed that the instrument possessed reasonably good properties of measurement. Results revealed that it was reliable and valid for measuring students' understanding of metallic bonding. Analysis revealed that the structure, process and interaction understandings were unidimensional and in an increasing order of difficulty. Implications for the teaching of metallic bonding, particular through the use of diagrams, critiques and model-based learning, are discussed.
Hydrometallurgical Recovery of Metals from Large Printed Circuit Board Pieces.
Jadhav, U; Hocheng, H
2015-09-29
The recovery of precious metals from waste printed circuit boards (PCBs) is an effective recycling process. This paper presents a promising hydrometallurgical process to recover precious metals from waste PCBs. To simplify the metal leaching process, large pieces of PCBs were used instead of a pulverized sample. The chemical coating present on the PCBs was removed by sodium hydroxide (NaOH) treatment prior to the hydrometallurgical treatment. Among the leaching reagents examined, hydrochloric acid (HCl) showed great potential for the recovery of metals. The HCl-mediated leaching of waste PCBs was investigated over a range of conditions. Increasing the acid concentration decreased the time required for complete metal recovery. The shaking speed showed a pronounced positive effect on metal recovery, but the temperature showed an insignificant effect. The results showed that 1 M HCl recovered all of the metals from 4 cm × 4 cm PCBs at room temperature and 150 rpm shaking speed in 22 h.
Hydrometallurgical Recovery of Metals from Large Printed Circuit Board Pieces
Jadhav, U.; Hocheng, H.
2015-01-01
The recovery of precious metals from waste printed circuit boards (PCBs) is an effective recycling process. This paper presents a promising hydrometallurgical process to recover precious metals from waste PCBs. To simplify the metal leaching process, large pieces of PCBs were used instead of a pulverized sample. The chemical coating present on the PCBs was removed by sodium hydroxide (NaOH) treatment prior to the hydrometallurgical treatment. Among the leaching reagents examined, hydrochloric acid (HCl) showed great potential for the recovery of metals. The HCl-mediated leaching of waste PCBs was investigated over a range of conditions. Increasing the acid concentration decreased the time required for complete metal recovery. The shaking speed showed a pronounced positive effect on metal recovery, but the temperature showed an insignificant effect. The results showed that 1 M HCl recovered all of the metals from 4 cm × 4 cm PCBs at room temperature and 150 rpm shaking speed in 22 h. PMID:26415827
Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration.
Ho, T C; Chuang, T C; Chelluri, S; Lee, Y; Hopper, J R
2001-01-01
Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental investigation, the effect of sulfur and chlorine on the metal capture process was also theoretically investigated through performing equilibrium calculations based on the minimization of system free energy. The observed results have indicated that, in general, the existence of sulfur and chlorine enhances the efficiency of metal capture especially at low to medium combustion temperatures. The capture mechanisms appear to include particulate scrubbing and chemisorption depending on the type of sorbents. Among the three sorbents tested, calcined limestone is capable of capturing all the three air pollutants simultaneously. The results also indicate that a mixture of the three sorbents, in general, captures more metals than a single sorbent during the process. In addition, the existence of sulfur and chlorine apparently enhances the metal capture process.
Controlled in-situ dissolution of an alkali metal
Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald
2012-09-11
A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.
Method for converting uranium oxides to uranium metal
Duerksen, Walter K.
1988-01-01
A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.
OPERATOR BURDEN IN METAL ADDITIVE MANUFACTURING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Amy M; Love, Lonnie J
2016-01-01
Additive manufacturing (AM) is an emerging manufacturing process that creates usable machine parts via layer-by-layer joining of a stock material. With this layer-wise approach, high-performance geometries can be created which are impossible with traditional manufacturing methods. Metal AM technology has the potential to significantly reduce the manufacturing burden of developing custom hardware; however, a major consideration in choosing a metal AM system is the required amount of operator involvement (i.e., operator burden) in the manufacturing process. The operator burden not only determines the amount of operator training and specialization required but also the usability of the system in a facility.more » As operators of several metal AM processes, the Manufacturing Demonstration Facility (MDF) at Oak Ridge National Labs is uniquely poised to provide insight into requirements for operator involvement in each of the three major metal AM processes. The paper covers an overview of each of the three metal AM technologies, focusing on the burden on the operator to complete the build cycle, process the part for final use, and reset the AM equipment for future builds.« less
NASA Astrophysics Data System (ADS)
Shashank Lingappa, M.; Srinath, M. S.; Amarendra, H. J.
2017-07-01
Microwave processing of metals is an emerging area. Melting of bulk metallic materials through microwave irradiation is still immature. In view of this, the present paper discusses the melting of bulk Al 1050 metallic material through microwave irradiation. The melting process is carried out successfully in a domestic microwave oven with 900 W power at 2450 MHz frequency. Metallurgical and mechanical characterization of the processed and as-received material is carried out. Aluminium phase is found to be dominant in processed material when tested through x-ray diffraction (XRD). Microstructure study of as-cast metal through scanning electron microscopy (SEM) reveals the formation of uniform hexagonal grain structure free from pores and cavities. The average tensile strength of the cast material is found to be around 21% higher, when compared to as-received material. Vickers’ microhardness of the as-cast metal is measured and is 10% higher than that of the as-received metal. Radiography on as-cast metal shows no significant defects. Al 1050 material melted through microwave irradiation has exhibited superior properties than the as-received Al 1050.
Darwich, Walid; Haumesser, Paul-Henri; Santini, Catherine C; Gaillard, Frédéric
2016-06-03
The metallization of porous silicon (PSi) is generally realized through physical vapor deposition (PVD) or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM) precursors in ionic liquid (IL), we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru) and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi), the safety and the cost of the process are improved.
Darwich, Walid; Haumesser, Paul-Henri; Santini, Catherine C.; Gaillard, Frédéric
2016-01-01
The metallization of porous silicon (PSi) is generally realized through physical vapor deposition (PVD) or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM) precursors in ionic liquid (IL), we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru) and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi), the safety and the cost of the process are improved. PMID:27271608
Development of low-cost welding procedures for thick sections of HY-150 steel
NASA Technical Reports Server (NTRS)
Schmidt, P. M.; Snow, R. S.
1972-01-01
Low cost welding procedures were developed for welding 6-inch thick HY-150 steel to be used in the manufacture of large diameter motor case Y rings and nozzle attachment flanges. An extensive investigation was made of the mechanical and metallurgical properties and fracture toughness of HY-150 base plate and welds made with manual shielded metal arc process and semi-automatic gas metal arc process in the flat position. Transverse tensiles, all-weld metal tensiles, Charpy V-notch specimens and edge notched bend specimens were tested in the course of the program. In addition metallographic studies and hardness tests were performed on the weld, weld HAZ and base metal. The results of the work performed indicate that both the shielded metal arc and gas metal arc processes are capable of producing consistently sound welds as determined by radiographic and ultrasonic inspection. In addition, the weld metal, deposited by each process was found to exhibit a good combination of strength and toughness such that the selection of a rolled and welded procedure for fabricating rocket motor case components would appear to be technically feasible.