Science.gov

Sample records for senescence induces extreme

  1. Delayed leaf senescence induces extreme drought tolerance in a flowering plant.

    PubMed

    Rivero, Rosa M; Kojima, Mikiko; Gepstein, Amira; Sakakibara, Hitoshi; Mittler, Ron; Gepstein, Shimon; Blumwald, Eduardo

    2007-12-04

    Drought, the most prominent threat to agricultural production worldwide, accelerates leaf senescence, leading to a decrease in canopy size, loss in photosynthesis and reduced yields. On the basis of the assumption that senescence is a type of cell death program that could be inappropriately activated during drought, we hypothesized that it may be possible to enhance drought tolerance by delaying drought-induced leaf senescence. We generated transgenic plants expressing an isopentenyltransferase gene driven by a stress- and maturation-induced promoter. Remarkably, the suppression of drought-induced leaf senescence resulted in outstanding drought tolerance as shown by, among other responses, vigorous growth after a long drought period that killed the control plants. The transgenic plants maintained high water contents and retained photosynthetic activity (albeit at a reduced level) during the drought. Moreover, the transgenic plants displayed minimal yield loss when watered with only 30% of the amount of water used under control conditions. The production of drought-tolerant crops able to grow under restricted water regimes without diminution of yield would minimize drought-related losses and ensure food production in water-limited lands.

  2. Delayed leaf senescence induces extreme drought tolerance in a flowering plant

    PubMed Central

    Rivero, Rosa M.; Kojima, Mikiko; Gepstein, Amira; Sakakibara, Hitoshi; Mittler, Ron; Gepstein, Shimon; Blumwald, Eduardo

    2007-01-01

    Drought, the most prominent threat to agricultural production worldwide, accelerates leaf senescence, leading to a decrease in canopy size, loss in photosynthesis and reduced yields. On the basis of the assumption that senescence is a type of cell death program that could be inappropriately activated during drought, we hypothesized that it may be possible to enhance drought tolerance by delaying drought-induced leaf senescence. We generated transgenic plants expressing an isopentenyltransferase gene driven by a stress- and maturation-induced promoter. Remarkably, the suppression of drought-induced leaf senescence resulted in outstanding drought tolerance as shown by, among other responses, vigorous growth after a long drought period that killed the control plants. The transgenic plants maintained high water contents and retained photosynthetic activity (albeit at a reduced level) during the drought. Moreover, the transgenic plants displayed minimal yield loss when watered with only 30% of the amount of water used under control conditions. The production of drought-tolerant crops able to grow under restricted water regimes without diminution of yield would minimize drought-related losses and ensure food production in water-limited lands. PMID:18048328

  3. Indoxyl sulfate induces nephrovascular senescence.

    PubMed

    Niwa, Toshimitsu; Shimizu, Hidehisa

    2012-01-01

    Indoxyl sulfate is markedly accumulated in the serum of chronic kidney disease (CKD) patients. The oral sorbent AST-120 reduces serum levels of indoxyl sulfate in CKD patients by adsorbing indole, a precursor of indoxyl sulfate, in the intestine. Indoxyl sulfate is taken up by proximal tubular cells through organic anion transporters (OAT1, OAT3), and it induces reactive oxygen species (ROS) with impairment of cellular antioxidative system. Indoxyl sulfate stimulates progression of CKD by increasing renal expression of profibrotic cytokines such as transforming growth factor beta 1. Further, it promotes the expression of p53 by ROS-induced activation of nuclear factor kappa B, thereby accelerating senescence of proximal tubular cells with progression of CKD. Administration of indoxyl sulfate to hypertensive rats reduces renal expression of Klotho and promotes cell senescence, with expression of senescence-associated beta-galactosidase, p53, p21, p16, and retinoblastoma protein, accompanied by kidney fibrosis. Indoxyl sulfate downregulates Klotho expression in the kidneys through production of ROS and activation of nuclear factor kappa B in proximal tubular cells. It promotes cell senescence, with expression of senescence-associated beta-galactosidase, p53, p21, p16, and retinoblastoma protein, in the aorta of hypertensive rats. It also promotes aortic calcification and aortic wall thickening in hypertensive rats with expression of osteoblast-specific proteins, induces ROS in vascular smooth muscle cells and vascular endothelial cells, stimulates proliferation and osteoblastic transdifferentiation of vascular smooth muscle cells, and inhibits viability and nitric oxide production of vascular endothelial cells. Thus, indoxyl sulfate accelerates the progression of not only CKD but also of cardiovascular disease by inducing nephrovascular cell senescence. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  4. Extreme heat effects on wheat senescence in India

    NASA Astrophysics Data System (ADS)

    Lobell, David B.; Sibley, Adam; Ivan Ortiz-Monasterio, J.

    2012-03-01

    An important source of uncertainty in anticipating the effects of climate change on agriculture is limited understanding of crop responses to extremely high temperatures. This uncertainty partly reflects the relative lack of observations of crop behaviour in farmers' fields under extreme heat. We used nine years of satellite measurements of wheat growth in northern India to monitor rates of wheat senescence following exposure to temperatures greater than 34°C. We detect a statistically significant acceleration of senescence from extreme heat, above and beyond the effects of increased average temperatures. Simulations with two commonly used process-based crop models indicate that existing models underestimate the effects of heat on senescence. As the onset of senescence is an important limit to grain filling, and therefore grain yields, crop models probably underestimate yield losses for +2°C by as much as 50% for some sowing dates. These results imply that warming presents an even greater challenge to wheat than implied by previous modelling studies, and that the effectiveness of adaptations will depend on how well they reduce crop sensitivity to very hot days.

  5. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.

    PubMed

    Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C; Sedivy, John M; Adams, Peter D

    2014-06-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.

  6. Glycerophospholipid profile in oncogene-induced senescence.

    PubMed

    Cadenas, Cristina; Vosbeck, Sonja; Hein, Eva-Maria; Hellwig, Birte; Langer, Alice; Hayen, Heiko; Franckenstein, Dennis; Büttner, Bettina; Hammad, Seddik; Marchan, Rosemarie; Hermes, Matthias; Selinski, Silvia; Rahnenführer, Jörg; Peksel, Begüm; Török, Zsolt; Vígh, László; Hengstler, Jan G

    2012-09-01

    Alterations in lipid metabolism and in the lipid composition of cellular membranes are linked to the pathology of numerous diseases including cancer. However, the influence of oncogene expression on cellular lipid profile is currently unknown. In this work we analyzed changes in lipid profiles that are induced in the course of ERBB2-expression mediated premature senescence. As a model system we used MCF-7 breast cancer cells with doxycycline-inducible expression of NeuT, an oncogenic ERBB2 variant. Affymetrix gene array data showed NeuT-induced alterations in the transcription of many enzymes involved in lipid metabolism, several of which (ACSL3, CHPT1, PLD1, LIPG, MGLL, LDL and NPC1) could be confirmed by quantitative realtime PCR. A study of the glycerophospholipid and lyso-glycerophospholipid profiles, obtained by high performance liquid chromatography coupled to Fourier-transform ion cyclotron resonance-mass spectrometry revealed senescence-associated changes in numerous lipid species, including mitochondrial lipids. The most prominent changes were found in PG(34:1), PG(36:1) (increased) and LPE(18:1), PG(40:7) and PI(36:1) (decreased). Statistical analysis revealed a general trend towards shortened phospholipid acyl chains in senescence and a significant trend to more saturated acyl chains in the class of phosphatidylglycerol. Additionally, the cellular cholesterol content was elevated and accumulated in vacuoles in senescent cells. These changes were accompanied by increased membrane fluidity. In mitochondria, loss of membrane potential along with altered intracellular distribution was observed. In conclusion, we present a comprehensive overview of altered cholesterol and glycerophospholipid patterns in senescence, showing that predominantly mitochondrial lipids are affected and lipid species less susceptible to peroxidation are increased.

  7. Mitochondrial DNA damage induces apoptosis in senescent cells

    PubMed Central

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-01-01

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV–HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells. PMID:23868060

  8. Mitochondrial DNA damage induces apoptosis in senescent cells.

    PubMed

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-07-18

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV-HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.

  9. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma

    PubMed Central

    Restall, Ian J; Parolin, Doris A E; Daneshmand, Manijeh; Hanson, Jennifer E L; Simard, Manon A; Fitzpatrick, Megan E; Kumar, Ritesh; Lavictoire, Sylvie J; Lorimer, Ian A J

    2015-01-01

    Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the absence of a detectable DNA damage response. Here we demonstrate that senescent glioblastoma cells exhibit an aberrant centrosome morphology. This was observed in basal levels of senescence, in p21-induced senescence, and in PKCι depletion-induced senescence. In addition, senescent glioblastoma cells are polyploid, Ki-67 negative and arrest at the G1/S checkpoint, as determined by expression of cell cycle regulatory proteins. These markers are all consistent with cells that have undergone mitotic slippage. Failure of the spindle assembly checkpoint to function properly can lead to mitotic slippage, resulting in the premature exit of mitotic cells into the G1 phase of the cell cycle. Although in G1, these cells have the replicated DNA and centrosomal phenotype of a cell that has entered mitosis and failed to divide. Overall, we demonstrate that PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma cells. To our knowledge, this is the first evidence of markers of mitotic slippage directly in senescent cells by co-staining for senescence-associated β-galactosidase and immunofluorescence markers in the same cell population. We suggest that markers of mitotic slippage be assessed in future studies of senescence to determine the extent of mitotic slippage in the induction of cellular senescence. PMID:26208522

  10. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma.

    PubMed

    Restall, Ian J; Parolin, Doris A E; Daneshmand, Manijeh; Hanson, Jennifer E L; Simard, Manon A; Fitzpatrick, Megan E; Kumar, Ritesh; Lavictoire, Sylvie J; Lorimer, Ian A J

    2015-01-01

    Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the absence of a detectable DNA damage response. Here we demonstrate that senescent glioblastoma cells exhibit an aberrant centrosome morphology. This was observed in basal levels of senescence, in p21-induced senescence, and in PKCι depletion-induced senescence. In addition, senescent glioblastoma cells are polyploid, Ki-67 negative and arrest at the G1/S checkpoint, as determined by expression of cell cycle regulatory proteins. These markers are all consistent with cells that have undergone mitotic slippage. Failure of the spindle assembly checkpoint to function properly can lead to mitotic slippage, resulting in the premature exit of mitotic cells into the G1 phase of the cell cycle. Although in G1, these cells have the replicated DNA and centrosomal phenotype of a cell that has entered mitosis and failed to divide. Overall, we demonstrate that PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma cells. To our knowledge, this is the first evidence of markers of mitotic slippage directly in senescent cells by co-staining for senescence-associated β-galactosidase and immunofluorescence markers in the same cell population. We suggest that markers of mitotic slippage be assessed in future studies of senescence to determine the extent of mitotic slippage in the induction of cellular senescence.

  11. Trigeminal star-like platinum complexes induce cancer cell senescence through quadruplex-mediated telomere dysfunction.

    PubMed

    Zheng, Xiao-Hui; Mu, Ge; Zhong, Yi-Fang; Zhang, Tian-Peng; Cao, Qian; Ji, Liang-Nian; Zhao, Yong; Mao, Zong-Wan

    2016-12-01

    Two trigeminal star-like platinum complexes were synthesized to induce the formation of human telomere G-quadruplex (hTel G4) with extremely high selectivity and affinity. The induced hTel G4 activates strong telomeric DNA damage response (TDDR), resulting in telomere dysfunction and cell senescence.

  12. Modulation of therapy-induced senescence by reactive lipid aldehydes

    PubMed Central

    Flor, A C; Doshi, A P; Kron, S J

    2016-01-01

    Current understanding points to unrepairable chromosomal damage as the critical determinant of accelerated senescence in cancer cells treated with radiation or chemotherapy. Nonetheless, the potent senescence inducer etoposide not only targets topoisomerase II to induce DNA damage but also produces abundant free radicals, increasing cellular reactive oxygen species (ROS). Toward examining roles for DNA damage and oxidative stress in therapy-induced senescence, we developed a quantitative flow cytometric senescence assay and screened 36 redox-active agents as enhancers of an otherwise ineffective dose of radiation. While senescence failed to correlate with total ROS, the radiation enhancers, etoposide and the other effective topoisomerase inhibitors each produced high levels of lipid peroxidation. The reactive aldehyde 4-hydroxy-2-nonenal, a lipid peroxidation end product, was sufficient to induce senescence in irradiated cells. In turn, sequestering aldehydes with hydralazine blocked effects of etoposide and other senescence inducers. These results suggest that lipid peroxidation potentiates DNA damage from radiation and chemotherapy to drive therapy-induced senescence. PMID:27453792

  13. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue

    PubMed Central

    Schafer, Marissa J.; White, Thomas A.; Evans, Glenda; Tonne, Jason M.; Verzosa, Grace C.; Stout, Michael B.; Mazula, Daniel L.; Palmer, Allyson K.; Baker, Darren J.; Jensen, Michael D.; Torbenson, Michael S.; Miller, Jordan D.; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M.; Kirkland, James L.

    2016-01-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16INK4a promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. PMID:26983960

  14. PKCη promotes senescence induced by oxidative stress and chemotherapy

    PubMed Central

    Zurgil, U; Ben-Ari, A; Atias, K; Isakov, N; Apte, R; Livneh, E

    2014-01-01

    Senescence is characterized by permanent cell-cycle arrest despite continued viability and metabolic activity, in conjunction with the secretion of a complex mixture of extracellular proteins and soluble factors known as the senescence-associated secretory phenotype (SASP). Cellular senescence has been shown to prevent the proliferation of potentially tumorigenic cells, and is thus generally considered a tumor suppressive process. However, some SASP components may act as pro-tumorigenic mediators on premalignant cells in the microenvironment. A limited number of studies indicated that protein kinase C (PKC) has a role in senescence, with different isoforms having opposing effects. It is therefore important to elucidate the functional role of specific PKCs in senescence. Here we show that PKCη, an epithelial specific and anti-apoptotic kinase, promotes senescence induced by oxidative stress and DNA damage. We further demonstrate that PKCη promotes senescence through its ability to upregulate the expression of the cell cycle inhibitors p21Cip1 and p27Kip1 and enhance transcription and secretion of interleukin-6 (IL-6). Moreover, we demonstrate that PKCη creates a positive loop for reinforcing senescence by increasing the transcription of both IL-6 and IL-6 receptor, whereas the expression of IL-8 is specifically suppressed by PKCη. Thus, the presence/absence of PKCη modulates major components of SASP. Furthermore, we show that the human polymorphic variant of PKCη, 374I, that exhibits higher kinase activity in comparison to WT-374V, is also more effective in IL-6 secretion, p21Cip1 expression and the promotion of senescence, further supporting a role for PKCη in senescence. As there is now considerable interest in senescence activation/elimination to control tumor progression, it is first crucial to reveal the molecular regulators of senescence. This will improve our ability to develop new strategies to harness senescence as a potential cancer therapy in the

  15. TAp63 induces senescence and suppresses tumorigenesis in vivo

    PubMed Central

    Guo, Xuecui; Keyes, William M.; Papazoglu, Cristian; Zuber, Johannes; Li, Wangzhi; Lowe, Scott W.; Vogel, Hannes; Mills, Alea A.

    2010-01-01

    p63 is distinct from its homologue p53 in that its role as a tumour suppressor is controversial, an issue complicated by the existence of two classes of p63 isoforms1. Here we show that TAp63 isoforms are robust mediators of senescence that inhibit tumorigenesis in vivo. Whereas gain of TAp63 induces senescence, loss of p63 enhances sarcoma development in mice lacking p53. Using a new TAp63-specific conditional mouse model, we demonstrate that TAp63 isoforms are essential for Ras-induced senescence, and that TAp63 deficiency increases proliferation and enhances Ras-mediated oncogenesis in the context of p53 deficiency in vivo. TAp63 induces senescence independently of p53, p19Arf and p16Ink4a, but requires p21Waf/Cip1 and Rb. TAp63-mediated senescence overrides Ras-driven transformation of p53-deficient cells, preventing tumour initiation, and doxycycline-regulated expression of TAp63 activates p21Waf/Cip1, induces senescence and inhibits progression of established tumours in vivo. Our findings demonstrate that TAp63 isoforms function as tumour suppressors by regulating senescence through p53-independent pathways. The ability of TAp63 to trigger senescence and halt tumorigenesis irrespective of p53 status identifies TAp63 as a potential target of anti-cancer therapy for human malignancies with compromised p53. PMID:19898465

  16. Rescuing Loading Induced Bone Formation at Senescence

    PubMed Central

    Srinivasan, Sundar; Ausk, Brandon J.; Prasad, Jitendra; Threet, Dewayne; Bain, Steven D.; Richardson, Thomas S.; Gross, Ted S.

    2010-01-01

    The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca2+/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential. PMID:20838577

  17. Autophagy impairment induces premature senescence in primary human fibroblasts.

    PubMed

    Kang, Hyun Tae; Lee, Ki Baek; Kim, Sung Young; Choi, Hae Ri; Park, Sang Chul

    2011-01-01

    Recent studies have demonstrated that activation of autophagy increases the lifespan of organisms from yeast to flies. In contrast to the lifespan extension effect in lower organisms, it has been reported that overexpression of unc-51-like kinase 3 (ULK3), the mammalian homolog of autophagy-specific gene 1 (ATG1), induces premature senescence in human fibroblasts. Therefore, we assessed whether the activation of autophagy would genuinely induce premature senescence in human cells. Depletion of ATG7, ATG12, or lysosomal-associated membrane protein 2 (Lamp2) by transfecting siRNA or infecting cells with a virus containing gene-specific shRNA resulted in a senescence-like state in two strains of primary human fibroblasts. Prematurely senescent cells induced by autophagy impairment exhibited the senescent phenotypes, similar to the replicatively senescent cells, such as increased senescence associated β-galactosidase (SA-β-gal) activity, reactive oxygen species (ROS) generation, and accumulation of lipofuscin. In addition, expression levels of ribosomal protein S6 kinase1 (S6K1), p-S6K1, p-S6, and eukaryotic translation initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) in the mammalian target of rapamycin (mTOR) pathway and beclin-1, ATG7, ATG12-ATG5 conjugate, and the sequestosome 1 (SQSTM1/p62) monomer in the autophagy pathway were decreased in both the replicatively and the autophagy impairment-induced prematurely senescent cells. Furthermore, it was found that ROS scavenging by N-acetylcysteine (NAC) and inhibition of p53 activation by pifithrin-α or knockdown of p53 using siRNA, respectively, delayed autophagy impairment-induced premature senescence and restored the expression levels of components in the mTOR and autophagy pathways. Taken together, we concluded that autophagy impairment induces premature senescence through a ROS- and p53-dependent manner in primary human fibroblasts.

  18. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  19. Radiation induces senescence and a bystander effect through metabolic alterations.

    PubMed

    Liao, E-C; Hsu, Y-T; Chuah, Q-Y; Lee, Y-J; Hu, J-Y; Huang, T-C; Yang, P-M; Chiu, S-J

    2014-05-22

    Cellular senescence is a state of irreversible growth arrest; however, the metabolic processes of senescent cells remain active. Our previous studies have shown that radiation induces senescence of human breast cancer cells that display low expression of securin, a protein involved in control of the metaphase-anaphase transition and anaphase onset. In this study, the protein expression profile of senescent cells was resolved by two-dimensional gel electrophoresis to investigate associated metabolic alterations. We found that radiation induced the expression and activation of glyceraldehyde-3-phosphate dehydrogenase that has an important role in glycolysis. The activity of lactate dehydrogenase A, which is involved in the conversion of pyruvate to lactate, the release of lactate and the acidification of the extracellular environment, was also induced. Inhibition of glycolysis by dichloroacetate attenuated radiation-induced senescence. In addition, radiation also induced activation of the 5'-adenosine monophosphate-activated protein kinase (AMPK) and nuclear factor kappa B (NF-κB) pathways to promote senescence. We also found that radiation increased the expression of monocarboxylate transporter 1 (MCT1) that facilitates the export of lactate into the extracellular environment. Inhibition of glycolysis or the AMPK/NF-κB signalling pathways reduced MCT1 expression and rescued the acidification of the extracellular environment. Interestingly, these metabolic-altering signalling pathways were also involved in radiation-induced invasion of the surrounding, non-irradiated breast cancer and normal endothelial cells. Taken together, radiation can induce the senescence of human breast cancer cells through metabolic alterations.

  20. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  1. Strategies to ameliorate abiotic stress-induced plant senescence.

    PubMed

    Gepstein, Shimon; Glick, Bernard R

    2013-08-01

    The plant senescence syndrome resembles, in many molecular and phenotypic aspects, plant responses to abiotic stresses. Both processes have an enormous negative global agro-economic impact and endanger food security worldwide. Premature plant senescence is the main cause of losses in grain filling and biomass yield due to leaf yellowing and deteriorated photosynthesis, and is also responsible for the losses resulting from the short shelf life of many vegetables and fruits. Under abiotic stress conditions the yield losses are often even greater. The primary challenge in agricultural sciences today is to develop technologies that will increase food production and sustainability of agriculture especially under environmentally limiting conditions. In this chapter, some of the mechanisms involved in abiotic stress-induced plant senescence are discussed. Recent studies have shown that crop yield and nutritional values can be altered as well as plant stress tolerance through manipulating the timing of senescence. It is often difficult to separate the effects of age-dependent senescence from stress-induced senescence since both share many biochemical processes and ultimately result in plant death. The focus of this review is on abiotic stress-induced senescence. Here, a number of the major approaches that have been developed to ameliorate some of the effects of abiotic stress-induced plant senescence are considered and discussed. Some approaches mimic the mechanisms already used by some plants and soil bacteria whereas others are based on development of new improved transgenic plants. While there may not be one simple strategy that can effectively decrease all losses of crop yield that accrue as a consequence of abiotic stress-induced plant senescence, some of the strategies that are discussed already show great promise.

  2. Autophagy suppresses melanoma tumorigenesis by inducing senescence.

    PubMed

    Liu, He; He, Zhaoyue; Simon, Hans-Uwe

    2014-02-01

    Whether and how autophagy is involved in tumorigenesis is poorly understood. We approached this question by investigating a relatively large cohort of patients with mostly early primary melanoma for their expression of 2 markers for autophagy, the protein ATG5 (autophagy-related 5) and MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3B). Surprisingly, we discovered that both ATG5 and LC3 levels are decreased in patients with melanomas as compared with those with benign nevi. We wondered why reduced autophagy should facilitate early tumor development. Using an in vitro model of melanoma tumorigenesis, in which a mutated oncogene, BRAF (v-raf murine sarcoma viral oncogene homolog B), had been introduced into normal human melanocytes, we were able to show that downregulation of ATG5 promoted the proliferation of melanocytes because it facilitated bypassing oncogene-induced senescence (OIS). Our work supports previous reports that had argued that autophagy actually suppresses tumorigenesis and explains the possible mechanism. Furthermore, our findings suggest that the status of ATG5 and autophagy could serve as a diagnostic marker for distinguishing benign from malignant tumors of melanocytes.

  3. Inhibition of VEGF induces cellular senescence in colorectal cancer cells.

    PubMed

    Hasan, Mohammad R; Ho, Shirley H Y; Owen, David A; Tai, Isabella T

    2011-11-01

    Vascular endothelial growth factor (VEGF) inhibitors, such as bevacizumab, have improved outcomes in metastatic colorectal cancer (CRC). Recent studies have suggested that VEGF can delay the onset of cellular senescence in human endothelial cells. As VEGF receptors are known to be upregulated in CRC, we hypothesized that VEGF inhibition may directly influence cellular senescence in this disease. In our study, we observed that treatment with bevacizumab caused a significant increase (p < 0.05) in cellular senescence in vitro in several CRC cells, such as MIP101, RKO, SW620 and SW480 cells, compared to untreated or human IgG-treated control cells. Similar results were also obtained from cells treated with a VEGFR2 kinase inhibitor Ki8751. In vivo, cellular senescence was detected in MIP101 tumor xenografts from 75% of mice treated with bevacizumab, while cellular senescence was undetectable in xenografts from mice treated with saline or human IgG (p < 0.05). Interestingly, we also observed that the proportion of senescent cells in colon cancer tissues obtained from patients treated with bevacizumab was 4.4-fold higher (p < 0.01) than those of untreated patients. To understand how VEGF inhibitors may regulate cellular senescence, we noted that among the two important regulators of senescent growth arrest of tumor cells, bevacizumab-associated increase in cellular senescence coincided with an upregulation of p16 but appeared to be independent of p53. siRNA silencing of p16 gene in MIP101 cells suppressed bevacizumab-induced cellular senescence, while silencing of p53 had no effect. These findings demonstrate a novel antitumor activity of VEGF inhibitors in CRC, involving p16.

  4. Elevated CO2 enhances leaf senescence during extreme heat and drought in a temperate forest

    SciTech Connect

    Warren, Jeffrey; Norby, Richard J; Wullschleger, Stan D

    2011-01-01

    In 2007, an extreme drought and acute heat wave damaged ecosystems across the southeastern US, including a 19-year-old Liquidambar styraciflua L. (sweetgum) tree plantation exposed to long-term elevated CO2 treatments. Stem sap velocities in trees exposed to ambient (A) or elevated (E) CO2 were analyzed to assess potential interactions between CO2 and these weather extremes. Leaf temperature (Tleaf) and net carbon uptake (GPP) were modeled based on patterns of sap velocity to estimate indirect impacts of CO2-reduced transpiration on premature leaf senescence. Elevated CO2 reduced sap flow by 28% during early summer, and by up to 45% late in the drought during record-setting high air temperatures. Canopy transpiration and conductance declined more rapidly in ECO2 plots, resulting in ECO2 Tleaf up to 45 C, which was 1-2 C greater than ACO2 Tleaf. Pre-drought GPP was ~7% greater in ECO2 plots, then declined to 30% less than ACO2 GPP as the drought progressed. Leaf abscission peaked during this period, and was 30% greater for ECO2 trees. While ECO2 can reduce leaf-level water use under droughty conditions, acute drought or heat conditions may induce excessive stomatal closure that could offset benefits of ECO2 to temperate forest species during extreme weather events.

  5. Effect of autophagy induced by dexamethasone on senescence in chondrocytes

    PubMed Central

    Xue, Enxing; Zhang, Yu; Song, Bing; Xiao, Jun; Shi, Zhanjun

    2016-01-01

    The aim of the current study was to explore the effects of dexamethasone (DXM) on autophagy and senescence in chondrocytes. Collagen II and aggrecan were examined in normal chondrocytes isolated from Sprague-Dawley rats. Following stimulation with DXM, LysoTracker Red staining, monodansylcadaverine (MDC) staining, green fluorescent protein-red fluorescent protein-light chain 3 (LC3) and western blotting were used to detect autophagy levels in the chondrocytes. Mechanistic target of rapamycin (mTOR) pathway-associated molecules were investigated by western blotting. Cell senescence was analyzed by senescence-associated (SA)-β-galactosidase (β-gal) staining. A dose-dependent increase in the number of autophagic vacuoles was observed in the DXM-treated chondrocytes, as demonstrated by LysoTracker Red and MDC staining. A dose-dependent increase in autophagosome formation was observed in the DXM-treated chondrocytes. Expression of LC3-II and beclin-1 was increased by DXM, in particular in the cells treated with DXM for 4 days. However, P62 expression was reduced as a result of treatment. SA-β-gal staining indicated that DXM increased cell senescence. Notably, DXM-induced cell senescence was exacerbated by the autophagic inhibitor 3-MA. Autophagy induced by DXM protected chondrocytes from senescence, and it is suggested that the mTOR pathway may be involved in the activation of DXM-induced autophagy. PMID:27572674

  6. Resveratrol Attenuates Copper-Induced Senescence by Improving Cellular Proteostasis

    PubMed Central

    2017-01-01

    Copper sulfate-induced premature senescence (CuSO4-SIPS) consistently mimetized molecular mechanisms of replicative senescence, particularly at the endoplasmic reticulum proteostasis level. In fact, disruption of protein homeostasis has been associated to age-related cell/tissue dysfunction and human disorders susceptibility. Resveratrol is a polyphenolic compound with proved antiaging properties under particular conditions. In this setting, we aimed to evaluate resveratrol ability to attenuate cellular senescence induction and to unravel related molecular mechanisms. Using CuSO4-SIPS WI-38 fibroblasts, resveratrol is shown to attenuate typical senescence alterations on cell morphology, senescence-associated beta-galactosidase activity, and cell proliferation. The mechanisms implicated in this antisenescence effect seem to be independent of senescence-associated genes and proteins regulation but are reliant on cellular proteostasis improvement. In fact, resveratrol supplementation restores copper-induced increased protein content, attenuates BiP level, and reduces carbonylated and polyubiquitinated proteins by autophagy induction. Our data provide compelling evidence for the beneficial effects of resveratrol by mitigating CuSO4-SIPS stressful consequences by the modulation of protein quality control systems. These findings highlight the importance of a balanced cellular proteostasis and add further knowledge on molecular mechanisms mediating resveratrol antisenescence effects. Moreover, they contribute to identifying specific molecular targets whose modulation will prevent age-associated cell dysfunction and improve human healthspan. PMID:28280523

  7. Copper ability to induce premature senescence in human fibroblasts.

    PubMed

    Matos, Liliana; Gouveia, Alexandra; Almeida, Henrique

    2012-08-01

    Human diploid fibroblasts (HDFs) exposed to subcytotoxic concentrations of oxidative or stressful agents, such as hydrogen peroxide, tert-butylhydroperoxide, or ethanol, undergo stress-induced premature senescence (SIPS). This condition is characterized by the appearance of replicative senescence biomarkers such as irreversible growth arrest, increase in senescence-associated β-galactosidase (SA β-gal) activity, altered cell morphology, and overexpression of several senescence-associated genes. Copper is an essential trace element known to accumulate with ageing and to be involved in the pathogenesis of some age-related disorders. Past studies using either yeast or human cellular models of ageing provided evidence in favor of the role of intracellular copper as a longevity modulator. In the present study, copper ability to cause the appearance of senescent features in HDFs was assessed. WI-38 fibroblasts exposed to a subcytotoxic concentration of copper sulfate presented inhibition of cell proliferation, cell enlargement, increased SA β-gal activity, and mRNA overexpression of several senescence-associated genes such as p21, apolipoprotein J (ApoJ), fibronectin, transforming growth factor β-1 (TGF β1), insulin growth factor binding protein 3, and heme oxygenase 1. Western blotting results confirmed enhanced intracellular p21, ApoJ, and TGF β1 in copper-treated cells. Thus, similar to other SIPS-inducing agents, HDF exposure to subcytotoxic concentration of copper results in premature senescence. Further studies will unravel molecular mechanisms and the biological meaning of copper-associated senescence and lead to a better understanding of copper-related disorder establishment and progression.

  8. Interferon-γ induces senescence in normal human melanocytes.

    PubMed

    Wang, Suiquan; Zhou, Miaoni; Lin, Fuquan; Liu, Dongyin; Hong, Weisong; Lu, Liangjun; Zhu, Yiping; Xu, Aie

    2014-01-01

    Interferon-γ (IFN-γ) plays an important role in the proceedings of vitiligo through recruiting lymphocytes to the lesional skin. However, the potential effects of IFN-γ on skin melanocytes and the subsequent contribution to the vitiligo pathogenesis are still unclear. To investigate the effects of IFN-γ on viability and cellular functions of melanocytes. Primary human melanocytes were treated with IFN-γ. Cell viability, apoptosis, cell cycle melanin content and intracellular reactive oxygen species (ROS) level were measured. mRNA expression was examined by real-time PCR. The release of interleukin 6 (IL-6) and heat shock protein 70 (HSP-70) was monitored by ELISA. β-galactosidase staining was utilized to evaluate melanocyte senescence. Persistent IFN-γ treatment induced viability loss, apoptosis, cell cycle arrest and senescence in melanocytes. Melanocyte senescence was characterized as the changes in pigmentation and morphology, as well as the increase of β-galactosidase activity. Increase of p21Cip1/Waf1 protein was evident in melanocytes after IFN-γ treatment. IFN-γ induction of senescence was attenuated by siRNAs against p21, Janus kinase 2 (JAK2) or signal transducer and activator of transcription 1 (STAT1), but not by JAK1 siRNA nor by p53 inhibitor pifithrin-α. IFN-γ treatment increased the accumulation of intracellular ROS in melanocytes, while ROS scavenger N-acetyl cysteine (NAC) effectively inhibited IFN-γ induced p21 expression and melanocyte senescence. IL-6 and HSP-70 release was significantly induced by IFN-γ treatment, which was largely inhibited by NAC. The increase of IL-6 and HSP-70 release could also be observed in senescent melanocytes. IFN-γ can induce senescence in melanocytes and consequently enhance their immuno-competency, leading to a vitiligo-prone milieu.

  9. Interferon-γ Induces Senescence in Normal Human Melanocytes

    PubMed Central

    Wang, Suiquan; Zhou, Miaoni; Lin, Fuquan; Liu, Dongyin; Hong, Weisong; Lu, Liangjun; Zhu, Yiping; Xu, Aie

    2014-01-01

    Background Interferon-γ (IFN-γ) plays an important role in the proceedings of vitiligo through recruiting lymphocytes to the lesional skin. However, the potential effects of IFN-γ on skin melanocytes and the subsequent contribution to the vitiligo pathogenesis are still unclear. Objective To investigate the effects of IFN-γ on viability and cellular functions of melanocytes. Methods Primary human melanocytes were treated with IFN-γ. Cell viability, apoptosis, cell cycle melanin content and intracellular reactive oxygen species (ROS) level were measured. mRNA expression was examined by real-time PCR. The release of interleukin 6 (IL-6) and heat shock protein 70 (HSP-70) was monitored by ELISA. β-galactosidase staining was utilized to evaluate melanocyte senescence. Results Persistent IFN-γ treatment induced viability loss, apoptosis, cell cycle arrest and senescence in melanocytes. Melanocyte senescence was characterized as the changes in pigmentation and morphology, as well as the increase of β-galactosidase activity. Increase of p21Cip1/Waf1 protein was evident in melanocytes after IFN-γ treatment. IFN-γ induction of senescence was attenuated by siRNAs against p21, Janus kinase 2 (JAK2) or signal transducer and activator of transcription 1 (STAT1), but not by JAK1 siRNA nor by p53 inhibitor pifithrin-α. IFN-γ treatment increased the accumulation of intracellular ROS in melanocytes, while ROS scavenger N-acetyl cysteine (NAC) effectively inhibited IFN-γ induced p21 expression and melanocyte senescence. IL-6 and HSP-70 release was significantly induced by IFN-γ treatment, which was largely inhibited by NAC. The increase of IL-6 and HSP-70 release could also be observed in senescent melanocytes. Conclusion IFN-γ can induce senescence in melanocytes and consequently enhance their immuno-competency, leading to a vitiligo-prone milieu. PMID:24681574

  10. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    PubMed

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat-induced

  11. Effect of autophagy induced by dexamethasone on senescence in chondrocytes.

    PubMed

    Xue, Enxing; Zhang, Yu; Song, Bing; Xiao, Jun; Shi, Zhanjun

    2016-10-01

    The aim of the current study was to explore the effects of dexamethasone (DXM) on autophagy and senescence in chondrocytes. Collagen II and aggrecan were examined in normal chondrocytes isolated from Sprague‑Dawley rats. Following stimulation with DXM, LysoTracker Red staining, monodansylcadaverine (MDC) staining, green fluorescent protein‑red fluorescent protein‑light chain 3 (LC3) and western blotting were used to detect autophagy levels in the chondrocytes. Mechanistic target of rapamycin (mTOR) pathway‑associated molecules were investigated by western blotting. Cell senescence was analyzed by senescence‑associated (SA)‑β‑galactosidase (β‑gal) staining. A dose‑dependent increase in the number of autophagic vacuoles was observed in the DXM‑treated chondrocytes, as demonstrated by LysoTracker Red and MDC staining. A dose‑dependent increase in autophagosome formation was observed in the DXM‑treated chondrocytes. Expression of LC3‑II and beclin‑1 was increased by DXM, in particular in the cells treated with DXM for 4 days. However, P62 expression was reduced as a result of treatment. SA‑β‑gal staining indicated that DXM increased cell senescence. Notably, DXM‑induced cell senescence was exacerbated by the autophagic inhibitor 3‑MA. Autophagy induced by DXM protected chondrocytes from senescence, and it is suggested that the mTOR pathway may be involved in the activation of DXM‑induced autophagy.

  12. 17AAG Treatment Accelerates Doxorubicin Induced Cellular Senescence: Hsp90 Interferes with Enforced Senescence of Tumor Cells

    PubMed Central

    Sarangi, Upasana; Paithankar, Khande Rao; Kumar, Jonnala Ujwal; Subramaniam, Vaidyanathan; Sreedhar, Amere Subbarao

    2012-01-01

    Hsp90 chaperone has been identified as an attractive pharmacological target to combat cancer. However, some metastatic tumors either fail to respond to Hsp90 inhibition or show recovery necessitating irreversible therapeutic strategies. In response to this enforced senescence has been proposed as an alternate strategy. Here, we demonstrate that inhibiting Hsp90 with 17AAG sensitizes human neuroblastoma to DNA damage response mediated cellular senescence. Among individual and combination drug treatments, 17AAG pre-treatment followed by doxorubicin treatment exhibited senescence-like characteristics such as increased nucleus to cytoplasm ratio, cell cycle arrest, SA-β-gal staining and the perpetual increase in SAHF. Doxorubicin induced senescence signaling was mediated by p53-p21CIP/WAF-1 and was accelerated in the absence of functional Hsp90. Sustained p16INK4a and H3K4me3 expressions correlating with unaffected telomerase activation annulled replicative senescence and appraised stress induced senescence. Despite increases in [(ROS)i] and [(Ca2+)i], a concomitant increase in cellular antioxidant defense system suggested oxidation independent senescence activation. Sustained activation of survival (Akt) and proliferative (ERK1/2) kinases fosters robustness of cells. Invigorating senescent cells with growth factor or snooping with mTOR or PI3 kinase inhibitors compromised cell survival but not senescence. Intriguingly, senescence-associated secretory factors from the senescence cells manifested established senescence in neuroblastoma, which offers clinical advantage to our approach. Our study discusses tumor selective functions of Hsp90 and discusses irrefutable strategies of Hsp90 inhibition in anticancer treatments. PMID:22915839

  13. NETRIN-4 protects glioblastoma cells FROM temozolomide induced senescence.

    PubMed

    Li, Li; Hu, Yizhou; Ylivinkka, Irene; Li, Huini; Chen, Ping; Keski-Oja, Jorma; Hyytiäinen, Marko

    2013-01-01

    Glioblastoma multiforme is the most common primary tumor of the central nervous system. The drug temozolomide (TMZ) prolongs lifespan in many glioblastoma patients. The sensitivity of glioblastoma cells to TMZ is interfered by many factors, such as the expression of O-6-methylguanine-DNA methyltransferase (MGMT) and activation of AKT signaling. We have recently identified the interaction between netrin-4 (NTN4) and integrin beta-4 (ITGB4), which promotes glioblastoma cell proliferation via activating AKT-mTOR signaling pathway. In the current work we have explored the effect of NTN4/ITGB4 interaction on TMZ induced glioblastoma cell senescence. We report here that the suppression of either ITGB4 or NTN4 in glioblastoma cell lines significantly enhances cellular senescence. The sensitivity of GBM cells to TMZ was primarily determined by the expression of MGMT. To omit the effect of MGMT, we concentrated on the cell lines devoid of expression of MGMT. NTN4 partially inhibited TMZ induced cell senescence and rescued AKT from dephosphorylation in U251MG cells, a cell line bearing decent levels of ITGB4. However, addition of exogenous NTN4 displayed no significant effect on TMZ induced senescence rescue or AKT activation in U87MG cells, which expressed ITGB4 at low levels. Furthermore, overexpression of ITGB4 combined with exogenous NTN4 significantly attenuated U87MG cell senescence induced by TMZ. These data suggest that NTN4 protects glioblastoma cells from TMZ induced senescence, probably via rescuing TMZ triggered ITGB4 dependent AKT dephosphorylation. This suggests that interfering the interaction between NTN4 and ITGB4 or concomitant use of the inhibitors of the AKT pathway may improve the therapeutic efficiency of TMZ.

  14. Whole Chromosome Instability induces senescence and promotes SASP

    PubMed Central

    Andriani, Grasiella Angelina; Almeida, Vinnycius Pereira; Faggioli, Francesca; Mauro, Maurizio; Tsai, Wanxia Li; Santambrogio, Laura; Maslov, Alexander; Gadina, Massimo; Campisi, Judith; Vijg, Jan; Montagna, Cristina

    2016-01-01

    Age-related accumulation of ploidy changes is associated with decreased expression of genes controlling chromosome segregation and cohesin functions. To determine the consequences of whole chromosome instability (W-CIN) we down-regulated the spindle assembly checkpoint component BUB1 and the mitotic cohesin SMC1A, and used four-color-interphase-FISH coupled with BrdU incorporation and analyses of senescence features to reveal the fate of W-CIN cells. We observed significant correlations between levels of not-diploid cells and senescence-associated features (SAFs). W-CIN induced DNA double strand breaks and elevated oxidative stress, but caused low apoptosis. SAFs of W-CIN cells were remarkably similar to those induced by replicative senescence but occurred in only 13 days versus 4 months. Cultures enriched with not-diploid cells acquired a senescence-associated secretory phenotype (SASP) characterized by IL1B, CXCL8, CCL2, TNF, CCL27 and other pro-inflammatory factors including a novel SASP component CLEC11A. These findings suggest that W-CIN triggers premature senescence, presumably to prevent the propagation of cells with an abnormal DNA content. Cells deviating from diploidy have the ability to communicate with their microenvironment by secretion of an array of signaling factors. Our results suggest that aneuploid cells that accumulate during aging in some mammalian tissues potentially contribute to age-related pathologies and inflammation through SASP secretion. PMID:27731420

  15. The senescence-induced staygreen protein regulates chlorophyll degradation.

    PubMed

    Park, So-Yon; Yu, Jae-Woong; Park, Jong-Sung; Li, Jinjie; Yoo, Soo-Cheul; Lee, Na-Yeoun; Lee, Sang-Kyu; Jeong, Seok-Won; Seo, Hak Soo; Koh, Hee-Jong; Jeon, Jong-Seong; Park, Youn-Il; Paek, Nam-Chon

    2007-05-01

    Loss of green color in leaves results from chlorophyll (Chl) degradation in chloroplasts, but little is known about how Chl catabolism is regulated throughout leaf development. Using the staygreen (sgr) mutant in rice (Oryza sativa), which maintains greenness during leaf senescence, we identified Sgr, a senescence-associated gene encoding a novel chloroplast protein. Transgenic rice overexpressing Sgr produces yellowish-brown leaves, and Arabidopsis thaliana pheophorbide a oxygenase-impaired mutants exhibiting a stay-green phenotype during dark-induced senescence have reduced expression of Sgr homologs, indicating that Sgr regulates Chl degradation at the transcriptional level. We show that the leaf stay-greenness of the sgr mutant is associated with a failure in the destabilization of the light-harvesting chlorophyll binding protein (LHCP) complexes of the thylakoid membranes, which is a prerequisite event for the degradation of Chls and LHCPs during senescence. Transient overexpression of Sgr in Nicotiana benthamiana and an in vivo pull-down assay show that Sgr interacts with LHCPII, indicating that the Sgr-LHCPII complexes are formed in the thylakoid membranes. Thus, we propose that in senescing leaves, Sgr regulates Chl degradation by inducing LHCPII disassembly through direct interaction, leading to the degradation of Chls and Chl-free LHCPII by catabolic enzymes and proteases, respectively.

  16. Fumarate induces redox-dependent senescence by modifying glutathione metabolism.

    PubMed

    Zheng, Liang; Cardaci, Simone; Jerby, Livnat; MacKenzie, Elaine D; Sciacovelli, Marco; Johnson, T Isaac; Gaude, Edoardo; King, Ayala; Leach, Joshua D G; Edrada-Ebel, RuAngelie; Hedley, Ann; Morrice, Nicholas A; Kalna, Gabriela; Blyth, Karen; Ruppin, Eytan; Frezza, Christian; Gottlieb, Eyal

    2015-01-23

    Mutations in the tricarboxylic acid (TCA) cycle enzyme fumarate hydratase (FH) are associated with a highly malignant form of renal cancer. We combined analytical chemistry and metabolic computational modelling to investigate the metabolic implications of FH loss in immortalized and primary mouse kidney cells. Here, we show that the accumulation of fumarate caused by the inactivation of FH leads to oxidative stress that is mediated by the formation of succinicGSH, a covalent adduct between fumarate and glutathione. Chronic succination of GSH, caused by the loss of FH, or by exogenous fumarate, leads to persistent oxidative stress and cellular senescence in vitro and in vivo. Importantly, the ablation of p21, a key mediator of senescence, in Fh1-deficient mice resulted in the transformation of benign renal cysts into a hyperplastic lesion, suggesting that fumarate-induced senescence needs to be bypassed for the initiation of renal cancers.

  17. Cellular senescence determines endothelial cell damage induced by uremia.

    PubMed

    Carracedo, Julia; Buendía, Paula; Merino, Ana; Soriano, Sagrario; Esquivias, Elvira; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael

    2013-08-01

    Renal dysfunction is closely associated with endothelial damage leading to cardiovascular disease. However, the extent to which endothelial damage induced by uremia is modulated by aging is poorly known. Aging can render endothelial cells more susceptible to apoptosis through an oxidative stress-dependent pathway. We examined whether senescence-associated to oxidative stress determines the injury induced by the uremia in endothelial cells. Human umbilical vein endothelial cells (HUVEC) was incubated with human uremic serum and, in the animal model, endothelial cells were obtained from aortas of uremic and no uremic rats. Vitamin C was used to prevent oxidative stress. Senescence, assessed by telomere length and enzyme-betagalactosidase (β-gal), reactive oxygen species (ROS), mitochondrial depolarization (JC-1 probe), caspase 3, and apoptosis were determined by flow cytometry. NF-κB activity was determined by Western blot. Uremic serum increased ROS and NF-κB in young and aging HUVEC. However only in aging cells, uremic serum induced apoptosis (vs young HUVEC, p<0.01). The endothelial damage induced by uremia seems to be related with the increased oxidative stress, since in both HUVEC and in the experimental model of renal disease in rats, vitamin C prevents endothelial apoptosis. However, vitamin C did not decrease the oxidative stress associated to senescence. These results showed that as compared with young cells, senescent cells have high sensitivity to damage associated to the oxidative stress induced by the uremia. Consequently, protecting senescent endothelial cells from increased oxidative stress might be an effective therapeutic approach in the treatment of vascular disorders in chronic kidney diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Aging with ING: a comparative study of different forms of stress induced premature senescence.

    PubMed

    Rajarajacholan, Uma Karthika; Riabowol, Karl

    2015-10-27

    Cell senescence contributes to organismal aging and is induced by telomere erosion and an ensuing DNA damage signal as cells reach the end of their replicative lifespan in vitro or in vivo. Stresses induced by oncogene or tumor suppressor hyperactivation, oxidative stress, ionizing radiation and other DNA damaging agents result in forms of stress induced premature senescence (SIPS) that show similarities to replicative senescence. Since replicative senescence and SIPS occur over many days and many population doublings of the mass cultures of primary cells used to study senescence, the sequence of events that occur downstream of senescence signaling can be challenging to define. Here we compare a new model of ING1a-induced senescence with several other forms of senescence. The ING1a epigenetic regulator synchronously induces senescence in mass cultures several-fold faster than all other agents, taking 24 and 36 hours to activate the Rb/ p16INK4a, but not the p53 tumor suppressor axis to efficiently induce senescence. ING1a induces expression of intersectin 2, a scaffold protein necessary for endocytosis, altering the stoichiometry of endocytosis proteins, subsequently blocking growth factor uptake leading to activation of Rb signaling to block cell growth. ING1a acts as a novel link in the activation of the Rb pathway that can impose senescence in the absence of activating p53-mediated DNA damage signaling, and should prove useful in defining the molecular events contributing to Rb-induced senescence.

  19. Failure of cell cleavage induces senescence in tetraploid primary cells.

    PubMed

    Panopoulos, Andreas; Pacios-Bras, Cristina; Choi, Justin; Yenjerla, Mythili; Sussman, Mark A; Fotedar, Rati; Margolis, Robert L

    2014-10-15

    Tetraploidy can arise from various mitotic or cleavage defects in mammalian cells, and inheritance of multiple centrosomes induces aneuploidy when tetraploid cells continue to cycle. Arrest of the tetraploid cell cycle is therefore potentially a critical cellular control. We report here that primary rat embryo fibroblasts (REF52) and human foreskin fibroblasts become senescent in tetraploid G1 after drug- or small interfering RNA (siRNA)-induced failure of cell cleavage. In contrast, T-antigen-transformed REF52 and p53+/+ HCT116 tumor cells rapidly become aneuploid by continuing to cycle after cleavage failure. Tetraploid primary cells quickly become quiescent, as determined by loss of the Ki-67 proliferation marker and of the fluorescent ubiquitination-based cell cycle indicator/late cell cycle marker geminin. Arrest is not due to DNA damage, as the γ-H2AX DNA damage marker remains at control levels after tetraploidy induction. Arrested tetraploid cells finally become senescent, as determined by SA-β-galactosidase activity. Tetraploid arrest is dependent on p16INK4a expression, as siRNA suppression of p16INK4a bypasses tetraploid arrest, permitting primary cells to become aneuploid. We conclude that tetraploid primary cells can become senescent without DNA damage and that induction of senescence is critical to tetraploidy arrest.

  20. Extreme geomagnetically induced currents

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Ngwira, Chigomezyo

    2016-12-01

    We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of d B/d t, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude d B/d t values are the major cause of hazards associated with three different types of GICs: (1) slow d B/d t with ring current evolution (RC-type), (2) fast d B/d t associated with auroral electrojet activity (AE-type), and (3) transient d B/d t of sudden commencements (SC-type). We set "caution," "warning," and "emergency" alert levels during the main phase of superstorms with the peak Dst index of less than -300 nT (once per 10 years), -600 nT (once per 60 years), or -900 nT (once per 100 years), respectively. The extreme d B/d t values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a "transient alert" is also proposed for d B/d t values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.

  1. Telomere Fragment Induced Amnion Cell Senescence: A Contributor to Parturition?

    PubMed Central

    Polettini, Jossimara; Behnia, Faranak; Taylor, Brandie D.; Saade, George R.; Taylor, Robert N.; Menon, Ramkumar

    2015-01-01

    Oxidative stress (OS)-induced senescence of the amniochorion has been associated with parturition at term. We investigated whether telomere fragments shed into the amniotic fluid (AF) correlated with labor status and tested if exogenous telomere fragments (T-oligos) could induce human and murine amnion cell senescence. In a cross-sectional clinical study, AF telomere fragment concentrations quantitated by a validated real-time PCR assay were higher in women in labor at term compared to those not in labor. In vitro treatment of primary human amnion epithelial cells with 40 μM T-oligos ([TTAGGG]2) that mimic telomere fragments, activated p38MAPK, produced senescence-associated (SA) β-gal staining and increased interleukin (IL)-6 and IL-8 production compared to cells treated with complementary DNA sequences (Cont-oligos, [AATCCC]2). T-oligos injected into the uteri of pregnant CD1 mice on day 14 of gestation, led to increased p38MAPK, SA-β-gal (SA β-gal) staining in murine amniotic sacs and higher AF IL-8 levels on day 18, compared to saline treated controls. In summary, term labor AF samples had higher telomere fragments than term not in labor AF. In vitro and in situ telomere fragments increased human and murine amnion p38MAPK, senescence and inflammatory cytokines. We propose that telomere fragments released from senescent fetal cells are indicative of fetal cell aging. Based on our data, these telomere fragments cause oxidative stress associated damages to the term amniotic sac and force them to release other DAMPS, which, in turn, provide a sterile immune response that may be one of the many inflammatory signals required to initiate parturition at term. PMID:26397719

  2. Central Role of Cellular Senescence in TSLP-Induced Airway Remodeling in Asthma

    PubMed Central

    Wu, Jinxiang; Dong, Fangzheng; Wang, Rui-An; Wang, Junfei; Zhao, Jiping; Yang, Mengmeng; Gong, Wenbin; Cui, Rutao; Dong, Liang

    2013-01-01

    Background Airway remodeling is a repair process that occurs after injury resulting in increased airway hyper-responsiveness in asthma. Thymic stromal lymphopoietin (TSLP), a vital cytokine, plays a critical role in orchestrating, perpetuating and amplifying the inflammatory response in asthma. TSLP is also a critical factor in airway remodeling in asthma. Objectives To examine the role of TSLP-induced cellular senescence in airway remodeling of asthma in vitro and in vivo. Methods Cellular senescence and airway remodeling were examined in lung specimens from patients with asthma using immunohischemical analysis. Both small molecule and shRNA approaches that target the senescent signaling pathways were used to explore the role of cellular senescence in TSLP-induced airway remodeling in vitro. Senescence-Associated β-galactosidase (SA-β-Gal) staining, and BrdU assays were used to detect cellular senescence. In addition, the Stat3-targeted inhibitor, WP1066, was evaluated in an asthma mouse model to determine if inhibiting cellular senescence influences airway remodeling in asthma. Results Activation of cellular senescence as evidenced by checkpoint activation and cell cycle arrest was detected in airway epithelia samples from patients with asthma. Furthermore, TSLP-induced cellular senescence was required for airway remodeling in vitro. In addition, a mouse asthma model indicates that inhibiting cellular senescence blocks airway remodeling and relieves airway resistance. Conclusion TSLP stimulation can induce cellular senescence during airway remodeling in asthma. Inhibiting the signaling pathways of cellular senescence overcomes TSLP-induced airway remodeling. PMID:24167583

  3. Ferrocifen derivatives that induce senescence in cancer cells: selected examples.

    PubMed

    Bruyère, Céline; Mathieu, Véronique; Vessières, Anne; Pigeon, Pascal; Top, Siden; Jaouen, Gérard; Kiss, Robert

    2014-12-01

    Platinum coordination complexes represent an important class of anti-tumor agents. Due to recognized drawbacks, research into other types of metallodrugs has been diversified with the aim of finding new chemical entities with alternative mechanisms of action to overcome classical chemoresistance. P5 and DP1, two closely related ferrocenyl complexes bearing a similar ferrocenyl-ene-phenyl motif and displaying marked differences in their conformations and oxidation state versatility, were assayed in cancer cell models characterized by various sensitivities to pro-apoptotic stimuli. P5 and DP1 exert growth inhibitory effects between 0.5 and 10 μM against glioma and melanoma cells including pluripotent stem-like cells. These effects are due, at least partly, to senescence induction with typical SA-β-galactosidase staining and senescence-associated secretory phenotype (SASP) as measured by the secretion of IL-1α, IL-1β, IL-6, IL-8 and TNF-α. Regulation of these cytokines' secretion may be related to AP-1 and other transcription factors unrelated to senescence. An in vivo graft of B16F10 cells after in vitro pre-incubation with DP1 or P5 led to increased survival in mice. In conclusion, P5 and DP1 ferrocenyl complexes induce senescence in various cancer cell models associated with distinct sensitivity to pro-apoptotic stimuli.

  4. Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage.

    PubMed

    Filippi-Chiela, Eduardo Cremonese; Bueno e Silva, Mardja Manssur; Thomé, Marcos Paulo; Lenz, Guido

    2015-01-01

    Autophagy and senescence have been described as central features of cell biology, but the interplay between these mechanisms remains obscure. Using a therapeutically relevant model of DNA damage-induced senescence in human glioma cells, we demonstrated that acute treatment with temozolomide induces DNA damage, a transitory activation of PRKAA/AMPK-ULK1 and MAPK14/p38 and the sustained inhibition of AKT-MTOR. This produced a transient induction of autophagy, which was followed by senescence. However, at the single cell level, this coordinated transition was not observed, and autophagy and senescence were triggered in a very heterogeneous manner. Indeed, at a population level, autophagy was highly negatively correlated with senescence markers, while in single cells this correlation did not exist. The inhibition of autophagy triggered apoptosis and decreased senescence, while its activation increased temozolomide-induced senescence, showing that DNA damage-induced autophagy acts by suppressing apoptosis.

  5. Western-type diet induces senescence, modifies vascular function in non-senescence mice and triggers adaptive mechanisms in senescent ones.

    PubMed

    Onetti, Yara; Jiménez-Altayó, Francesc; Heras, Magda; Vila, Elisabet; Dantas, Ana Paula

    2013-12-01

    The effects of high-fat diet ingestion on senescence-induced modulation of contractile responses to phenylephrine (Phe) were determined in aortas of senescence-accelerated (SAMP8) and non-senescent (SAMR1) mice fed (8weeks) a Western-type high-fat diet (WD). Increased levels of senescence-associated β-galactosidase staining were found in aortas of SAMP8 and SAMR1 with WD. In SAMR1, WD did not modify Phe contraction in spite of inducing major changes in the mechanisms of regulation of contractile responses. Although WD increased NAD(P)H-oxidase-derived O2(-) and augmented peroxynitrite formation, we found an increase of inducible NOS (iNOS)-derived NO production which may contribute to maintain Phe contraction in SAMR1 WD. On SAMP8, WD significantly decreased Phe-induced contractions when compared with SAMP8 under normal chow. This response was not dependent on changes of NOS expression, but rather as consequence of increased antioxidant capacity by superoxide dismutase (SOD1). A similar constrictor influence from cyclooxygenase (COX) pathway on Phe responses was found in SAMR1 and SAMP8 ND. However, WD removed that influence on SAMR1, and produced a switch in the balance from a vasoconstrictor to a vasodilator component in SAMP8. These results were associated to the increased COX-2 expression, suggesting that a COX-2-derived vasodilator prostaglandin may contribute to the vascular adaptations after WD intake. Taken together, our data suggest that WD plays a detrimental role in the vasculature of non-senescent mice by increasing pro-inflammatory (iNOS) and pro-oxidative signaling pathways and may contribute to increase vascular senescence. In senescent vessels, however, WD triggers different intrinsic compensatory alterations which include increase of antioxidant activity by SOD1 and vasodilator prostaglandin production via COX-2.

  6. Mortalin sensitizes human cancer cells to MKT-077-induced senescence.

    PubMed

    Deocaris, Custer C; Widodo, Nashi; Shrestha, Bhupal G; Kaur, Kamaljit; Ohtaka, Manami; Yamasaki, Kazuhiko; Kaul, Sunil C; Wadhwa, Renu

    2007-07-18

    Mortalin is a chaperone protein that functions in many cellular processes such as mitochondrial biogenesis, intracellular trafficking, cell proliferation and signaling. Its upregulation in many human cancers makes it a candidate target for therapeutic intervention by small molecule drugs. In continuation to our earlier studies showing mortalin as a cellular target of MKT-077, a mitochondrion-seeking delocalized cationic dye that causes selective death of cancer cells, in this work, we report that MKT-077 binds to the nucleotide-binding domain of mortalin, causes tertiary structural changes in the protein, inactivates its chaperone function, and induces senescence in human tumor cell lines. Interestingly, in tumor cells with elevated level of mortalin expression, fairly low drug doses were sufficient to induce senescence. Guided by molecular screening for mortalin in tumor cells, our results led to the idea that working at low doses of the drug could be an alternative senescence-inducing cancer therapeutic strategy that could, in theory, avoid renal toxicities responsible for the abortion of MKT-077 clinical trials. Our work may likely translate to a re-appraisal of the therapeutic benefits of low doses of several classes of anti-tumor drugs, even of those that had been discontinued due to adverse effects.

  7. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  8. Rice Phytochrome B (OsPhyB) Negatively Regulates Dark- and Starvation-Induced Leaf Senescence

    PubMed Central

    Piao, Weilan; Kim, Eun-Young; Han, Su-Hyun; Sakuraba, Yasuhito; Paek, Nam-Chon

    2015-01-01

    Light regulates leaf senescence and light deprivation causes large-scale transcriptional reprogramming to dismantle cellular components and remobilize nutrients to sink organs, such as seeds and storage tissue. We recently reported that in Arabidopsis (Arabidopsis thaliana), Phytochrome-Interacting Factor4 (PIF4) and PIF5 promote dark-induced senescence and natural senescence by directly activating the expression of typical senescence-associated genes (SAGs), including ORESARA1 (ORE1) and ETHYLENE INSENSITIVE3 (EIN3). In contrast, phytochrome B (PhyB) inhibits leaf senescence by repressing PIF4 and PIF5 at the post-translational level. Although we found how red light signaling represses leaf senescence in Arabidopsis, it remains unknown whether PhyB and/or PhyA are involved in leaf senescence in rice (Oryza sativa). Here we show that rice phyB knockout mutants (osphyB-1, -2, and -3) exhibited an early senescence phenotype during dark-induced senescence, but an osphyA knockout mutant (osphyA-3) senesced normally. The RT-qPCR analysis revealed that several senescence-associated genes, including OsORE1 and OsEIN3, were significantly up-regulated in osphyB-2 mutants, indicating that OsPhyB also inhibits leaf senescence, like Arabidopsis PhyB. We also found that leaf segments of osphyB-2 senesced faster even under light conditions. Supplementation with nitrogen compounds, such as KNO3 and NH4NO3, rescued the early senescence phenotype of osphyB-2, indicating that starvation is one of the major signaling factors in the OsPhyB-dependent leaf senescence pathway. PMID:27135344

  9. A small molecule inhibitor of PAI-1 protects against doxorubicin-induced cellular senescence

    PubMed Central

    Ghosh, Asish K.; Rai, Rahul; Park, Kitae E.; Eren, Mesut; Miyata, Toshio; Wilsbacher, Lisa D.; Vaughan, Douglas E.

    2016-01-01

    Doxorubicin, an anthracycline antibiotic, is a commonly used anticancer drug. In spite of its widespread usage, its therapeutic effect is limited by its cardiotoxicity. On the cellular level, Doxorubicin-induced cardiotoxicity manifests as stress induced premature senescence. Previously, we demonstrated that plasminogen activator inhibitor-1 (PAI-1), a potent inhibitor of serine proteases, is an important biomarker and regulator of cellular senescence and aging. Here, we tested the hypothesis that pharmacological inhibition of cellular PAI-1 protects against stress- and aging-induced cellular senescence and delineated the molecular basis of protective action of PAI-1 inhibition. Results show that TM5441, a potent small molecule inhibitor of PAI-1, effectively prevents Doxorubicin-induced senescence in cardiomyocytes, fibroblasts and endothelial cells. TM5441 exerts its inhibitory effect on Doxorubicin-induced cellular senescence by decreasing reactive oxygen species generation, induction of antioxidants like catalase and suppression of stress-induced senescence cadre p53, p21, p16, PAI-1 and IGFBP3. Importantly, TM5441 also reduces replicative senescence of fibroblasts. Together these results for the first time demonstrate the efficacy of PAI-1 inhibitor in prevention of Doxorubicin-induced and replicative senescence in normal cells. Thus PAI-1 inhibitor may form an important adjuvant component of chemotherapy regimens, limiting not only Doxorubicin-induced cardiac senescence but also ameliorating the prothrombotic profile. PMID:27736799

  10. Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in Sorghum bicolor

    PubMed Central

    Chen, Daoqian; Wang, Shiwen; Xiong, Binglin; Cao, Beibei; Deng, Xiping

    2015-01-01

    Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-induced leaf senescence is unclear. To investigate the role of carbon/nitrogen balance in drought-induced senescence, sorghum seedlings were subjected to a gradual soil drought treatment. Leaf senescence symptoms and the C:N ratio, which was indicated by the ratio of non-structural carbohydrate to total N content, were monitored during drought progression. In this study, leaf senescence developed about 12 days after the start of drought treatment, as indicated by various senescence symptoms including decreasing photosynthesis, photosystem II photochemistry efficiency (Fv/Fm) and chlorophyll content, and by the differential expression of senescence marker genes. The C:N ratio was significantly enhanced 10 to 12 days into drought treatment. Leaf senescence occurred in the older (lower) leaves, which had higher C:N ratios, but not in the younger (upper) leaves, which had lower C:N ratios. In addition, a detached leaf assay was conducted to investigate the effect of carbon/nitrogen availability on drought-induced senescence. Exogenous application of excess sugar combined with limited nitrogen promoted drought-induced leaf senescence. Thus our results suggest that the carbon/nitrogen balance may be involved in the regulation of drought-induced leaf senescence. PMID:26317421

  11. Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in Sorghum bicolor.

    PubMed

    Chen, Daoqian; Wang, Shiwen; Xiong, Binglin; Cao, Beibei; Deng, Xiping

    2015-01-01

    Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-induced leaf senescence is unclear. To investigate the role of carbon/nitrogen balance in drought-induced senescence, sorghum seedlings were subjected to a gradual soil drought treatment. Leaf senescence symptoms and the C:N ratio, which was indicated by the ratio of non-structural carbohydrate to total N content, were monitored during drought progression. In this study, leaf senescence developed about 12 days after the start of drought treatment, as indicated by various senescence symptoms including decreasing photosynthesis, photosystem II photochemistry efficiency (Fv/Fm) and chlorophyll content, and by the differential expression of senescence marker genes. The C:N ratio was significantly enhanced 10 to 12 days into drought treatment. Leaf senescence occurred in the older (lower) leaves, which had higher C:N ratios, but not in the younger (upper) leaves, which had lower C:N ratios. In addition, a detached leaf assay was conducted to investigate the effect of carbon/nitrogen availability on drought-induced senescence. Exogenous application of excess sugar combined with limited nitrogen promoted drought-induced leaf senescence. Thus our results suggest that the carbon/nitrogen balance may be involved in the regulation of drought-induced leaf senescence.

  12. Ochratoxin A induced premature senescence in human renal proximal tubular cells.

    PubMed

    Yang, Xuan; Liu, Sheng; Huang, Chuchu; Wang, Haomiao; Luo, Yunbo; Xu, Wentao; Huang, Kunlun

    2017-05-01

    Ochratoxin A (OTA) has many nephrotoxic effects and is a promising compound for the study of nephrotoxicity. Human renal proximal tubular cells (HKC) are an important model for the study of renal reabsorption, renal physiology and pathology. Since the induction of OTA in renal senescence is largely unknown, whether OTA can induce renal senescence, especially at a sublethal dose, and the mechanism of OTA toxicity remain unclear. In our study, a sublethal dose of OTA led to an enhanced senescent phenotype, β-galactosidase staining and senescence associated secretory phenotype (SASP). Cell cycle arrest and cell shape alternations also confirmed senescence. In addition, telomere analysis by RT-qPCR allowed us to classify OTA-induced senescence as a premature senescence. Western blot assays showed that the p53-p21 and the p16-pRB pathways and the ezrin-associated cell spreading changes were activated during the OTA-induced senescence of HKC. In conclusion, our results demonstrate that OTA promotes the senescence of HKC through the p53-p21 and p16-pRB pathways. The understanding of the mechanisms of OTA-induced senescence is critical in determining the role of OTA in cytotoxicity and its potential carcinogenicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Platelet-derived growth factor B induces senescence and transformation in normal human fibroblasts.

    PubMed

    Vindrieux, David; Gras, Baptiste; Garcia-Belinchon, Merce; Mourah, Samia; Lebbe, Céleste; Augert, Arnaud; Bernard, David

    2013-07-01

    Normal cells enter a senescent state upon aberrant oncogenic signals and this response inhibits tumor initiation and progression. It is now well admitted that intracellular and membrane localized oncogenes can illicit oncogene induced senescence. However, the effect of mitogenic growth factor on cellular senescence is so far largely unknown. Here we show that normal human dermal fibroblasts display a complex response to Platelet derived growth factor B (PDGFB) expression. Indeed, PDGFB expression induces, in the same cell population, both senescence and cellular transformation. Remarkably both populations are sustained with passages suggesting that transformed cells eventually enter a senescent state. This senescence state is p53 dependent as inhibiting the p53 pathway blocks the ability of PDGFB to induce senescence and results in strong cellular transformation increase upon PDGFB expression. The relevance of these observations is supported by the fact that human dermatofibrosarcoma protuberans, skin tumors arising from constitutive PDGFB production with little aggressiveness, also display some senescence hallmarks. Together these data support the view that PDGFB, a mitogenic growth factor, has a limited ability to induce senescence. We propose that this low level of senescence might decrease the transforming ability of this factor without totally abolishing it.

  14. Transcriptional and Metabolic Analysis of Senescence Induced by Preventing Pollination in Maize1[W][OA

    PubMed Central

    Sekhon, Rajandeep S.; Childs, Kevin L.; Santoro, Nicholas; Foster, Cliff E.; Buell, C. Robin; de Leon, Natalia; Kaeppler, Shawn M.

    2012-01-01

    Transcriptional and metabolic changes were evaluated during senescence induced by preventing pollination in the B73 genotype of maize (Zea mays). Accumulation of free glucose and starch and loss of chlorophyll in leaf was manifested early at 12 d after anthesis (DAA), while global transcriptional and phenotypic changes were evident only at 24 DAA. Internodes exhibited major transcriptomic changes only at 30 DAA. Overlaying expression data onto metabolic pathways revealed involvement of many novel pathways, including those involved in cell wall biosynthesis. To investigate the overlap between induced and natural senescence, transcriptional data from induced senescence in maize was compared with that reported for Arabidopsis (Arabidopsis thaliana) undergoing natural and sugar-induced senescence. Notable similarities with natural senescence in Arabidopsis included up-regulation of senescence-associated genes (SAGs), ethylene and jasmonic acid biosynthetic genes, APETALA2, ethylene-responsive element binding protein, and no apical meristem transcription factors. However, differences from natural senescence were highlighted by unaltered expression of a subset of the SAGs, and cytokinin, abscisic acid, and salicylic acid biosynthesis genes. Key genes up-regulated during sugar-induced senescence in Arabidopsis, including a cysteine protease (SAG12) and three flavonoid biosynthesis genes (PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1), PAP2, and LEUCOANTHOCYANIDIN DIOXYGENASE), were also induced, suggesting similarities in senescence induced by pollination prevention and sugar application. Coexpression analysis revealed networks involving known senescence-related genes and novel candidates; 82 of these were shared between leaf and internode networks, highlighting similarities in induced senescence in these tissues. Insights from this study will be valuable in systems biology of senescence in maize and other grasses. PMID:22732243

  15. Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize.

    PubMed

    Sekhon, Rajandeep S; Childs, Kevin L; Santoro, Nicholas; Foster, Cliff E; Buell, C Robin; de Leon, Natalia; Kaeppler, Shawn M

    2012-08-01

    Transcriptional and metabolic changes were evaluated during senescence induced by preventing pollination in the B73 genotype of maize (Zea mays). Accumulation of free glucose and starch and loss of chlorophyll in leaf was manifested early at 12 d after anthesis (DAA), while global transcriptional and phenotypic changes were evident only at 24 DAA. Internodes exhibited major transcriptomic changes only at 30 DAA. Overlaying expression data onto metabolic pathways revealed involvement of many novel pathways, including those involved in cell wall biosynthesis. To investigate the overlap between induced and natural senescence, transcriptional data from induced senescence in maize was compared with that reported for Arabidopsis (Arabidopsis thaliana) undergoing natural and sugar-induced senescence. Notable similarities with natural senescence in Arabidopsis included up-regulation of senescence-associated genes (SAGs), ethylene and jasmonic acid biosynthetic genes, APETALA2, ethylene-responsive element binding protein, and no apical meristem transcription factors. However, differences from natural senescence were highlighted by unaltered expression of a subset of the SAGs, and cytokinin, abscisic acid, and salicylic acid biosynthesis genes. Key genes up-regulated during sugar-induced senescence in Arabidopsis, including a cysteine protease (SAG12) and three flavonoid biosynthesis genes (PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1), PAP2, and LEUCOANTHOCYANIDIN DIOXYGENASE), were also induced, suggesting similarities in senescence induced by pollination prevention and sugar application. Coexpression analysis revealed networks involving known senescence-related genes and novel candidates; 82 of these were shared between leaf and internode networks, highlighting similarities in induced senescence in these tissues. Insights from this study will be valuable in systems biology of senescence in maize and other grasses.

  16. Involvement of creatine kinase B in cigarette smoke-induced bronchial epithelial cell senescence.

    PubMed

    Hara, Hiromichi; Araya, Jun; Takasaka, Naoki; Fujii, Satoko; Kojima, Jun; Yumino, Yoko; Shimizu, Kenichiro; Ishikawa, Takeo; Numata, Takanori; Kawaishi, Makoto; Saito, Keisuke; Hirano, Jun; Odaka, Makoto; Morikawa, Toshiaki; Hano, Hiroshi; Nakayama, Katsutoshi; Kuwano, Kazuyoshi

    2012-03-01

    Cigarette smoke induces damage to proteins and organelles by oxidative stress, resulting in accelerated epithelial cell senescence in the lung, which is implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Although the detailed molecular mechanisms are not fully understood, cellular energy status is one of the most crucial determinants for cell senescence. Creatine kinase (CK) is a constitutive enzyme, playing regulatory roles in energy homeostasis of cells. Among two isozymes, brain-type CK (CKB) is the predominant CK in lung tissue. In this study, we investigated the role of CKB in cigarette smoke extract (CSE)-induced cellular senescence in human bronchial epithelial cells (HBECs). Primary HBECs and Beas2B cells were used. Protein carbonylation was evaluated as a marker of oxidative protein damage. Cellular senescence was evaluated by senescence-associated β-galactosidase staining. CKB inhibition was examined by small interfering RNA and cyclocreatine. Secretion of IL-8, a hallmark of senescence-associated secretary phenotype, was measured by ELISA. CKB expression levels were reduced in HBECs from patients with COPD compared with that of HBECs from nonsmokers. CSE induced carbonylation of CKB and subsequently decreased CKB protein levels, which was reversed by a proteasome inhibitor. CKB inhibition alone induced cell senescence, and further enhanced CSE-induced cell senescence and IL-8 secretion. CSE-induced oxidation of CKB is a trigger for proteasomal degradation. Concomitant loss of enzymatic activity regulating energy homeostasis may lead to the acceleration of bronchial epithelial cell senescence, which is implicated in the pathogenesis of COPD.

  17. Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence.

    PubMed

    Marthandan, Shiva; Menzel, Uwe; Priebe, Steffen; Groth, Marco; Guthke, Reinhard; Platzer, Matthias; Hemmerich, Peter; Kaether, Christoph; Diekmann, Stephan

    2016-07-28

    Cellular senescence is induced either internally, for example by replication exhaustion and cell division, or externally, for example by irradiation. In both cases, cellular damages accumulate which, if not successfully repaired, can result in senescence induction. Recently, we determined the transcriptional changes combined with the transition into replicative senescence in primary human fibroblast strains. Here, by γ-irradiation we induced premature cellular senescence in the fibroblast cell strains (HFF and MRC-5) and determined the corresponding transcriptional changes by high-throughput RNA sequencing. Comparing the transcriptomes, we found a high degree of similarity in differential gene expression in replicative as well as in irradiation induced senescence for both cell strains suggesting, in each cell strain, a common cellular response to error accumulation. On the functional pathway level, "Cell cycle" was the only pathway commonly down-regulated in replicative and irradiation-induced senescence in both fibroblast strains, confirming the tight link between DNA repair and cell cycle regulation. However, "DNA repair" and "replication" pathways were down-regulated more strongly in fibroblasts undergoing replicative exhaustion. We also retrieved genes and pathways in each of the cell strains specific for irradiation induced senescence. We found the pathways associated with "DNA repair" and "replication" less stringently regulated in irradiation induced compared to replicative senescence. The strong regulation of these pathways in replicative senescence highlights the importance of replication errors for its induction.

  18. A high-content screening assay for small-molecule modulators of oncogene-induced senescence.

    PubMed

    Bitler, Benjamin G; Fink, Lauren S; Wei, Zhi; Peterson, Jeffrey R; Zhang, Rugang

    2013-10-01

    Cellular senescence is a state of stable cell growth arrest. Activation of oncogenes such as RAS in mammalian cells typically triggers cellular senescence. Oncogene-induced senescence (OIS) is an important tumor suppression mechanism, and suppression of OIS contributes to cell transformation. Oncogenes trigger senescence through a multitude of incompletely understood downstream signaling events that frequently involve protein kinases. To identify target proteins required for RAS-induced senescence, we developed a small-molecule screen in primary human fibroblasts undergoing senescence induced by oncogenic RAS (H-Ras(G12V)). Using a high-content imaging system to monitor two hallmarks of senescence, senescence-associated β-galactosidase activity expression and inhibition of proliferation, we screened a library of known small-molecule kinase inhibitors for those that suppressed OIS. Identified compounds were subsequently validated and confirmed using a third marker of senescence, senescence-associated heterochromatin foci. In summary, we have established a novel high-content screening platform that may be useful for elucidating signaling pathways mediating OIS by targeting critical pathway components.

  19. Senescence-Induced Serotonin Biosynthesis and Its Role in Delaying Senescence in Rice Leaves1[C][W][OA

    PubMed Central

    Kang, Kiyoon; Kim, Young-Soon; Park, Sangkyu; Back, Kyoungwhan

    2009-01-01

    Serotonin, which is well known as a pineal hormone in mammals, plays a key role in conditions such as mood, eating disorders, and alcoholism. In plants, although serotonin has been suggested to be involved in several physiological roles, including flowering, morphogenesis, and adaptation to environmental changes, its regulation and functional roles are as yet not characterized at the molecular level. In this study, we found that serotonin is greatly accumulated in rice (Oryza sativa) leaves undergoing senescence induced by either nutrient deprivation or detachment, and its synthesis is closely coupled with transcriptional and enzymatic induction of the tryptophan biosynthetic genes as well as tryptophan decarboxylase (TDC). Transgenic rice plants that overexpressed TDC accumulated higher levels of serotonin than the wild type and showed delayed senescence of rice leaves. However, transgenic rice plants, in which expression of TDC was suppressed through an RNA interference (RNAi) system, produced less serotonin and senesced faster than the wild type, suggesting that serotonin is involved in attenuating leaf senescence. The senescence-retarding activity of serotonin is associated with its high antioxidant activity compared to either tryptophan or chlorogenic acid. Results of TDC overexpression and TDC RNAi plants suggest that TDC plays a rate-limiting role for serotonin accumulation, but the synthesis of serotonin depends on an absolute amount of tryptophan accumulation by the coordinate induction of the tryptophan biosynthetic genes. In addition, immunolocalization analysis revealed that serotonin was abundant in the vascular parenchyma cells, including companion cells and xylem-parenchyma cells, suggestive of its involvement in maintaining the cellular integrity of these cells for facilitating efficient nutrient recycling from senescing leaves to sink tissues during senescence. PMID:19439571

  20. Senescence effects in an extremely long-lived bird: the grey-headed albatross Thalassarche chrysostoma.

    PubMed

    Catry, Paulo; Phillips, Richard A; Phalan, Ben; Croxall, John P

    2006-07-07

    Studies attempting to document reproductive or other pre-lethal senescence effects in wild birds typically face an array of problems, including flaws in statistical analyses, non-adaptive philopatry to deteriorating environments, confounding effects arising from cohort heterogeneity and differential death rates of phenotypes and the frequent pairing of old birds to younger mates. Furthermore, recent studies suggest that birds could maintain a high level of physical fitness until old age, before being struck by a catastrophic illness leading quickly to their demise. The presence of terminally ill individuals in most datasets (and their greater incidence in older age categories) may therefore provide a false impression of progressive senescence in cross-sectional analyses. This study was designed explicitly to avoid all the known pitfalls linked to the demonstration of progressive senescence in wild populations, and involved one of the very longest-lived bird species. We show that, during incubation, old (aged 35 years and over) male grey-headed albatrosses Thalassarche chrysostoma make longer foraging trips, and have lower daily mass gains, than experienced mid-aged individuals (aged up to 28 years). This is, to our knowledge, the first report documenting reduced foraging performance with old age. Hatching and breeding success of pairs composed of two old individuals were reduced in comparison to mid-aged pairs. Overall results were very similar when analyses were repeated using only individuals known to have survived 1 or 2 years beyond field measurements (hence probably not suffering from the effects of an advanced terminal illness). We conclude that extremely long-lived individuals usually experience some degree of general physical deterioration, leading to reduced foraging and breeding performance, long before their final demise.

  1. Senescence effects in an extremely long-lived bird: the grey-headed albatross Thalassarche chrysostoma

    PubMed Central

    Catry, Paulo; Phillips, Richard A; Phalan, Ben; Croxall, John P

    2006-01-01

    Studies attempting to document reproductive or other pre-lethal senescence effects in wild birds typically face an array of problems, including flaws in statistical analyses, non-adaptive philopatry to deteriorating environments, confounding effects arising from cohort heterogeneity and differential death rates of phenotypes and the frequent pairing of old birds to younger mates. Furthermore, recent studies suggest that birds could maintain a high level of physical fitness until old age, before being struck by a catastrophic illness leading quickly to their demise. The presence of terminally ill individuals in most datasets (and their greater incidence in older age categories) may therefore provide a false impression of progressive senescence in cross-sectional analyses. This study was designed explicitly to avoid all the known pitfalls linked to the demonstration of progressive senescence in wild populations, and involved one of the very longest-lived bird species. We show that, during incubation, old (aged 35 years and over) male grey-headed albatrosses Thalassarche chrysostoma make longer foraging trips, and have lower daily mass gains, than experienced mid-aged individuals (aged up to 28 years). This is, to our knowledge, the first report documenting reduced foraging performance with old age. Hatching and breeding success of pairs composed of two old individuals were reduced in comparison to mid-aged pairs. Overall results were very similar when analyses were repeated using only individuals known to have survived 1 or 2 years beyond field measurements (hence probably not suffering from the effects of an advanced terminal illness). We conclude that extremely long-lived individuals usually experience some degree of general physical deterioration, leading to reduced foraging and breeding performance, long before their final demise. PMID:16769633

  2. From Accumulation to Degradation: Reprogramming Polyamine Metabolism Facilitates Dark-Induced Senescence in Barley Leaf Cells

    PubMed Central

    Sobieszczuk-Nowicka, Ewa; Kubala, Szymon; Zmienko, Agnieszka; Małecka, Arleta; Legocka, Jolanta

    2016-01-01

    The aim of this study was to analyze whether polyamine (PA) metabolism is involved in dark-induced Hordeum vulgare L. ‘Nagrad’ leaf senescence. In the cell, the titer of PAs is relatively constant and is carefully controlled. Senescence-dependent increases in the titer of the free PAs putrescine, spermidine, and spermine occurred when the process was induced, accompanied by the formation of putrescine conjugates. The addition of the anti-senescing agent cytokinin, which delays senescence, to dark-incubated leaves slowed the senescence-dependent PA accumulation. A feature of the senescence process was initial accumulation of PAs at the beginning of the process and their subsequent decrease during the later stages. Indeed, the process was accompanied by both enhanced expression of PA biosynthesis and catabolism genes and an increase in the activity of enzymes involved in the two metabolic pathways. To confirm whether the capacity of the plant to control senescence might be linked to PA, chlorophyll fluorescence parameters, and leaf nitrogen status in senescing barley leaves were measured after PA catabolism inhibition and exogenously applied γ-aminobutyric acid (GABA). The results obtained by blocking putrescine oxidation showed that the senescence process was accelerated. However, when the inhibitor was applied together with GABA, senescence continued without disruption. On the other hand, inhibition of spermidine and spermine oxidation delayed the process. It could be concluded that in dark-induced leaf senescence, the initial accumulation of PAs leads to facilitating their catabolism. Putrescine supports senescence through GABA production and spermidine/spermine supports senescence-dependent degradation processes, is verified by H2O2 generation. PMID:26779231

  3. Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells.

    PubMed

    Huang, Yao-Huei; Yang, Pei-Ming; Chuah, Qiu-Yu; Lee, Yi-Jang; Hsieh, Yi-Fen; Peng, Chih-Wen; Chiu, Shu-Jun

    2014-07-01

    Ionizing radiation induces cellular senescence to suppress cancer cell proliferation. However, it also induces deleterious bystander effects in the unirradiated neighboring cells through the release of senescence-associated secretory phenotypes (SASPs) that promote tumor progression. Although autophagy has been reported to promote senescence, its role is still unclear. We previously showed that radiation induces senescence in PTTG1-depleted cancer cells. In this study, we found that autophagy was required for the radiation-induced senescence in PTTG1-depleted breast cancer cells. Inhibition of autophagy caused the cells to switch from radiation-induced senescence to apoptosis. Senescent cancer cells exerted bystander effects by promoting the invasion and migration of unirradiated cells through the release of CSF2 and the subsequently activation of the JAK2-STAT3 and AKT pathways. However, the radiation-induced bystander effects were correlated with the inhibition of endogenous autophagy in bystander cells, which also resulted from the activation of the CSF2-JAK2 pathway. The induction of autophagy by rapamycin reduced the radiation-induced bystander effects. This study reveals, for the first time, the dual role of autophagy in radiation-induced senescence and bystander effects.

  4. Characterization of the p53 Response to Oncogene-Induced Senescence

    PubMed Central

    Castro, Estrella; Leal, Juan F. M.; Kaufman, Marcelline; Carnero, Amancio

    2008-01-01

    Background P53 activation can trigger various outcomes, among them reversible growth arrest or cellular senescence. It is a live debate whether these outcomes are influenced by quantitative or qualitative mechanisms. Furthermore, the relative contribution of p53 to Ras-induced senescence is also matter of controversy. Methodology/Principal Findings This study compared situations in which different signals drove senescence with increasing levels of p53 activation. The study revealed that the levels of p53 activation do not determine the outcome of the response. This is further confirmed by the clustering of transcriptional patterns into two broad groups: p53-activated or p53-inactivated, i.e., growth and cellular arrest/senescence. Furthermore, while p53-dependent transcription decreases after 24 hrs in the presence of active p53, senescence continues. Maintaining cells in the arrested state for long periods does not switch reversible arrest to cellular senescence. Together, these data suggest that a Ras-dependent, p53-independent, second signal is necessary to induce senescence. This study tested whether PPP1CA (the catalytic subunit of PP1α), recently identified as contributing to Ras-induced senescence, might be this second signal. PPP1CA is induced by Ras; its inactivation inhibits Ras-induced senescence, presumably by inhibiting pRb dephosphorylation. Finally, PPP1CA seems to strongly co-localize with pRb only during senescence. Conclusions The levels of p53 activation do not determine the outcome of the response. Rather, p53 activity seems to act as a necessary but not sufficient condition for senescence to arise. Maintaining cells in the arrested state for long periods does not switch reversible arrest to cellular senescence. PPP1CA is induced by Ras; its inactivation inhibits Ras-induced senescence, presumably by inhibiting pRb dephosphorylation. Finally, PPP1CA seems to strongly co-localize with pRb only during senescence, suggesting that PP1α activation

  5. MicroRNA Regulation of Ionizing Radiation-Induced Premature Senescence

    SciTech Connect

    Wang Yong; Scheiber, Melissa N.; Neumann, Carola; Calin, George A.; Zhou Daohong

    2011-11-01

    Purpose: MicroRNAs (miRNAs) have emerged as critical regulators of many cellular pathways. Ionizing radiation (IR) exposure causes DNA damage and induces premature senescence. However, the role of miRNAs in IR-induced senescence has not been well defined. Thus, the purpose of this study was to identify and characterize senescence-associated miRNAs (SA-miRNAs) and to investigate the role of SA-miRNAs in IR-induced senescence. Methods and Materials: In human lung (WI-38) fibroblasts, premature senescence was induced either by IR or busulfan (BU) treatment, and replicative senescence was accomplished by serial passaging. MiRNA microarray were used to identify SA-miRNAs, and real-time reverse transcription (RT)-PCR validated the expression profiles of SA-miRNAs in various senescent cells. The role of SA-miRNAs in IR-induced senescence was characterized by knockdown of miRNA expression, using anti-miRNA oligonucleotides or by miRNA overexpression through the transfection of pre-miRNA mimics. Results: We identified eight SA-miRNAs, four of which were up-regulated (miR-152, -410, -431, and -493) and four which were down-regulated (miR-155, -20a, -25, and -15a), that are differentially expressed in both prematurely senescent (induced by IR or BU) and replicatively senescent WI-38 cells. Validation of the expression of these SA-miRNAs indicated that down-regulation of miR-155, -20a, -25, and -15a is a characteristic miRNA expression signature of cellular senescence. Functional analyses revealed that knockdown of miR-155 or miR-20a, but not miR-25 or miR-15a, markedly enhanced IR-induced senescence, whereas ectopic overexpression of miR-155 or miR-20a significantly inhibited senescence induction. Furthermore, our studies indicate that miR-155 modulates IR-induced senescence by acting downstream of the p53 and p38 mitogen-activated protein kinase (MAPK) pathways and in part via regulating tumor protein 53-induced nuclear protein 1 (TP53INP1) expression. Conclusion: Our

  6. miR-22 represses cancer progression by inducing cellular senescence

    PubMed Central

    Xu, Dan; Takeshita, Fumitaka; Hino, Yumiko; Fukunaga, Saori; Kudo, Yasusei; Tamaki, Aya; Matsunaga, Junko; Takahashi, Ryou-u; Takata, Takashi; Shimamoto, Akira; Ochiya, Takahiro

    2011-01-01

    Cellular senescence acts as a barrier to cancer progression, and microRNAs (miRNAs) are thought to be potential senescence regulators. However, whether senescence-associated miRNAs (SA-miRNAs) contribute to tumor suppression remains unknown. Here, we report that miR-22, a novel SA-miRNA, has an impact on tumorigenesis. miR-22 is up-regulated in human senescent fibroblasts and epithelial cells but down-regulated in various cancer cell lines. miR-22 overexpression induces growth suppression and acquisition of a senescent phenotype in human normal and cancer cells. miR-22 knockdown in presenescent fibroblasts decreased cell size, and cells became more compact. miR-22–induced senescence also decreases cell motility and inhibits cell invasion in vitro. Synthetic miR-22 delivery suppresses tumor growth and metastasis in vivo by inducing cellular senescence in a mouse model of breast carcinoma. We confirmed that CDK6, SIRT1, and Sp1, genes involved in the senescence program, are direct targets of miR-22. Our study provides the first evidence that miR-22 restores the cellular senescence program in cancer cells and acts as a tumor suppressor. PMID:21502362

  7. Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-κB impairs this drug-induced senescence

    PubMed Central

    Liu, Yan; Hawkins, Oriana E; Su, Yingjun; Vilgelm, Anna E; Sobolik, Tammy; Thu, Yee-Mon; Kantrow, Sara; Splittgerber, Ryan C; Short, Sarah; Amiri, Katayoun I; Ecsedy, Jeffery A; Sosman, Jeffery A; Kelley, Mark C; Richmond, Ann

    2013-01-01

    Oncogene-induced senescence can provide a protective mechanism against tumour progression. However, production of cytokines and growth factors by senescent cells may contribute to tumour development. Thus, it is unclear whether induction of senescence represents a viable therapeutic approach. Here, using a mouse model with orthotopic implantation of metastatic melanoma tumours taken from 19 patients, we observed that targeting aurora kinases with MLN8054/MLN8237 impaired mitosis, induced senescence and markedly blocked proliferation in patient tumour implants. Importantly, when a subset of tumour-bearing mice were monitored for tumour progression after pausing MLN8054 treatment, 50% of the tumours did not progress over a 12-month period. Mechanistic analyses revealed that inhibition of aurora kinases induced polyploidy and the ATM/Chk2 DNA damage response, which mediated senescence and a NF-κB-related, senescence-associated secretory phenotype (SASP). Blockade of IKKβ/NF-κB led to reversal of MLN8237-induced senescence and SASP. Results demonstrate that removal of senescent tumour cells by infiltrating myeloid cells is crucial for inhibition of tumour re-growth. Altogether, these data demonstrate that induction of senescence, coupled with immune surveillance, can limit melanoma growth. PMID:23180582

  8. A drug-induced accelerated senescence (DIAS) is a possibility to study aging in time lapse.

    PubMed

    Alili, Lirija; Diekmann, Johanna; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter

    2014-06-01

    Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. Accordingly, a stress-induced senescence-like phenotype of human dermal fibroblasts can be induced in vitro by the exposure of human diploid fibroblasts to subcytotoxic concentrations of hydrogen peroxide. However, several biomarkers of replicative senescence e.g. cell cycle arrest and enlarged morphology are abrogated 14 days after treatment, indicating that reactive oxygen species (ROS) rather acts as a trigger for short-term senescence (1-3 days) than being responsible for the maintenance of the senescence-like phenotype. Further, DNA-damaging factors are discussed resulting in a permanent senescent cell type. To induce long-term premature senescence and to understand the molecular alterations occurring during the aging process, we analyzed mitomycin C (MMC) as an alkylating DNA-damaging agent and ROS producer. Human dermal fibroblasts (HDF), used as model for skin aging, were exposed to non-cytotoxic concentrations of MMC and analyzed for potential markers of cellular aging, for example enlarged morphology, activity of senescence-associated-ß-galactosidase, cell cycle arrest, increased ROS production and MMP1-activity, which are well-documented for HDF in replicative senescence. Our data show that mitomycin C treatment results in a drug-induced accelerated senescence (DIAS) with long-term expression of senescence markers, demonstrating that a combination of different susceptibility factors, here ROS and DNA alkylation, are necessary to induce a permanent senescent cell type.

  9. Pseudolaric acid B induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma l929 cell.

    PubMed

    Yu, Jing hua; Liu, Chun yu; Zheng, Gui bin; Zhang, Li Ying; Yan, Ming hui; Zhang, Wen yan; Meng, Xian ying; Yu, Xiao fang

    2013-01-01

    PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC.

  10. Epigenetic alteration to activate Bmp2-Smad signaling in Raf-induced senescence

    PubMed Central

    Fujimoto, Mai; Mano, Yasunobu; Anai, Motonobu; Yamamoto, Shogo; Fukuyo, Masaki; Aburatani, Hiroyuki; Kaneda, Atsushi

    2016-01-01

    AIM: To investigate epigenomic and gene expression alterations during cellular senescence induced by oncogenic Raf. METHODS: Cellular senescence was induced into mouse embryonic fibroblasts (MEFs) by infecting retrovirus to express oncogenic Raf (RafV600E). RNA was collected from RafV600E cells as well as MEFs without infection and MEFs with mock infection, and a genome-wide gene expression analysis was performed using microarray. The epigenomic status for active H3K4me3 and repressive H3K27me3 histone marks was analyzed by chromatin immunoprecipitation-sequencing for RafV600E cells on day 7 and for MEFs without infection. These data for Raf-induced senescence were compared with data for Ras-induced senescence that were obtained in our previous study. Gene knockdown and overexpression were done by retrovirus infection. RESULTS: Although the expression of some genes including secreted factors was specifically altered in either Ras- or Raf-induced senescence, many genes showed similar alteration pattern in Raf- and Ras-induced senescence. A total of 841 commonly upregulated 841 genes and 573 commonly downregulated genes showed a significant enrichment of genes related to signal and secreted proteins, suggesting the importance of alterations in secreted factors. Bmp2, a secreted protein to activate Bmp2-Smad signaling, was highly upregulated with gain of H3K4me3 and loss of H3K27me3 during Raf-induced senescence, as previously detected in Ras-induced senescence, and the knockdown of Bmp2 by shRNA lead to escape from Raf-induced senescence. Bmp2-Smad inhibitor Smad6 was strongly repressed with H3K4me3 loss in Raf-induced senescence, as detected in Ras-induced senescence, and senescence was also bypassed by Smad6 induction in Raf-activated cells. Different from Ras-induced senescence, however, gain of H3K27me3 did not occur in the Smad6 promoter region during Raf-induced senescence. When comparing genome-wide alteration between Ras- and Raf-induced senescence, genes

  11. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    PubMed Central

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  12. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    PubMed

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research.

  13. Viral subversion of autophagy impairs oncogene-induced senescence.

    PubMed

    Leidal, Andrew M; Lee, Patrick W K; McCormick, Craig

    2012-07-01

    Many viruses have evolved elegant strategies to co-opt cellular autophagic responses to facilitate viral propagation and evasion of immune surveillance. Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a life-long persistent infection in its human host, and is etiologically linked to several cancers. KSHV gene products have been shown to modulate autophagy but their contribution to pathogenesis remains unclear. Our recent study demonstrated that KSHV subversion of autophagy promotes bypass of oncogene-induced senescence (OIS), an important host barrier to tumor initiation. These findings suggest that KSHV has evolved to subvert autophagy, at least in part, to establish an optimal niche for infection, concurrently dampening host antiviral defenses and allowing the ongoing proliferation of infected cells.

  14. Molecular characterization of a novel senescence-associated gene SPA15 induced during leaf senescence in sweet potato.

    PubMed

    Yap, Mee-Ngan; Lee, Ruey-Hua; Huang, Yih-Jong; Liao, Chao-Jan; Chen, Shu-Chen Grace

    2003-03-01

    The structure and expression of a novel senescence-associated gene (SPA15) of sweet potato were characterized. The protein coding region of the gene consists of 13 exons encoding 420 amino acids. Apparent homologues of this sweet potato gene are found in a variety of dicot and monocot plants, but not in animals or microorganisms. Examination of the expression patterns of the SPA15 gene in sweet potato reveals that the transcripts of SPA15 are specifically induced in the senescing leaves, and the temporal profile of SPA15 protein accumulation is correlated with that of SPA15 transcripts. Studies on the distribution of SPA15 homologue in rice plants also indicate that SPA15 homologue is up-regulated specifically in senescing rice leaves. Treatment of detached sweet potato leaves with phytohormones including ethylene, methyl jasmonate, salicylic acid and abscisic acid resulted in a high-level induction of SPA15. Immunoelectron microscopic analysis demonstrates that SPA15 is specifically associated with the cell wall. The potential role for SPA15 during leaf senescence is discussed.

  15. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    PubMed Central

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and prevent certain cancers. Here, we show that simvastatin decreases the SASP of senescent human fibroblasts by inhibiting protein prenylation, without affecting the senescent growth arrest. The Rho family GTPases Rac1 and Cdc42 were activated in senescent cells, and simvastatin reduced both activities. Further, geranylgeranyl transferase, Rac1 or Cdc42 depletion reduced IL-6 secretion by senescent cells. We also show that simvastatin mitigates the effects of senescent conditioned media on breast cancer cell proliferation and endocrine resistance. Our findings identify a novel activity of simvastatin and mechanism of SASP regulation. They also suggest that senescent cells, which accumulate after radio/chemo therapy, promote endocrine resistance in breast cancer and that simvastatin might suppress this resistance. PMID:26658759

  16. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence.

    PubMed

    Morancho, Beatriz; Martínez-Barriocanal, Águeda; Villanueva, Josep; Arribas, Joaquín

    2015-08-12

    Cellular senescence is a terminal cell proliferation arrest that can be triggered by oncogenes. One of the traits of oncogene-induced senescence (OIS) is the so-called senescence-associated secretory phenotype or senescence secretome. Depending on the context, the non-cell autonomous effects of OIS may vary from tumor suppression to promotion of metastasis. Despite being such a physiological and pathologically relevant effector, the mechanisms of generation of the senescence secretome are largely unknown. We analyzed by label-free proteomics the secretome of p95HER2-induced senescent cells and compared the levels of the membrane-anchored proteins with their transcript levels. Then, protein and RNA levels of ADAM17 were evaluated by using Western blot and reverse transcription-polymerase chain reaction, its localization by using biotin labeling and immunofluorescence, and its activity by using alkaline phosphatase-tagged substrates. The p95HER2-expressing cell lines, senescent MCF7 and proliferating MCF10A, were analyzed to study ADAM17 regulation. Finally, we knocked down ADAM17 to determine its contribution to the senescence-associated secretome. The effect of this secretome was evaluated in migration assays in vitro and in nude mice by assessing the metastatic ability of orthotopically co-injected non-senescent cells. Using breast cancer cells expressing p95HER2, a constitutively active fragment of the proto-oncogene HER2 that induces OIS, we show that the extracellular domains of a variety of membrane-bound proteins form part of the senescence secretome. We determine that these proteins are regulated transcriptionally and, in addition, that their shedding is limited by the protease ADAM17. The activity of the sheddase is constrained, at least in part, by the accumulation of cellular cholesterol. The blockade of ADAM17 abrogates several prometastatic effects of the p95HER2-induced senescence secretome, both in vitro and in vivo. Considering these findings, we

  17. Aldosterone/Mineralocorticoid receptor stimulation induces cellular senescence in the kidney.

    PubMed

    Fan, Yu-Yan; Kohno, Masakazu; Hitomi, Hirofumi; Kitada, Kento; Fujisawa, Yoshihide; Yatabe, Junichi; Yatabe, Midori; Felder, Robin A; Ohsaki, Hiroyuki; Rafiq, Kazi; Sherajee, Shamshad J; Noma, Takahisa; Nishiyama, Akira; Nakano, Daisuke

    2011-02-01

    Recent studies demonstrated a possible role of aldosterone in mediating cell senescence. Thus, the aim of this study was to investigate whether aldosterone induces cell senescence in the kidney and whether aldosterone-induced renal senescence affects the development of renal injury. Aldosterone infusion (0.75 μg/h) into rats for 5 weeks caused hypertension and increased urinary excretion rates of proteins and N-acetyl-β-D-glucosaminidase. Aldosterone induced senescence-like changes in the kidney, exhibited by increased expression of the senescence-associated β-galactosidase, overexpression of p53 and cyclin-dependent kinase inhibitor (p21), and decreased expression of SIRT1. These changes were abolished by eplerenone (100 mg/kg/d), a mineralocorticoid receptor (MR) antagonist, but unaffected by hydralazine (80 mg/liter in drinking water). Furthermore, aldosterone induced similar changes in senescence-associated β-galactosidase, p21, and SIRT1 expression in cultured human proximal tubular cells, which were normalized by an antioxidant, N-acetyl L-cysteine, or gene silencing of MR. Aldosterone significantly delayed wound healing and reduced the number of proliferating human proximal tubular cells, while gene silencing of p21 diminished the effects, suggesting impaired recovery from tubular damage. These findings indicate that aldosterone induces renal senescence in proximal tubular cells via the MR and p21-dependent pathway, which may be involved in aldosterone-induced renal injury.

  18. Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence.

    PubMed

    Kural, Kamil C; Tandon, Neetu; Skoblov, Mikhail; Kel-Margoulis, Olga V; Baranova, Ancha V

    2016-12-28

    In culturing normal diploid cells, senescence may either happen naturally, in the form of replicative senescence, or it may be a consequence of external challenges such as oxidative stress. Here we present a comparative analysis aimed at reconstruction of molecular cascades specific for replicative (RS) and stressinduced senescence (SIPS) in human fibroblasts. An involvement of caspase-3/keratin-18 pathway and serine/threonine kinase Aurora A/ MDM2 pathway was shared between RS and SIPS. Moreover, stromelysin/MMP3 and N-acetylglucosaminyltransferase enzyme MGAT1, which initiates the synthesis of hybrid and complex Nglycans, were identified as key orchestrating components in RS and SIPS, respectively. In RS only, Aurora-B driven cell cycle signaling was deregulated in concert with the suppression of anabolic branches of the fatty acids and estrogen metabolism. In SIPS, Aurora-B signaling is deprioritized, and the synthetic branches of cholesterol metabolism are upregulated, rather than downregulated. Moreover, in SIPS, proteasome/ubiquitin ligase pathways of protein degradation dominate the regulatory landscape. This picture indicates that SIPS proceeds in cells that are actively fighting stress which facilitates premature senescence while failing to completely activate the orderly program of RS. The promoters of genes differentially expressed in either RS or SIPS are unusually enriched by the binding sites for homeobox family proteins, with particular emphasis on HMX1, IRX2, HDX and HOXC13. Additionally, we identified Iroquois Homeobox 2 (IRX2) as a master regulator for the secretion of SPP1-encoded osteopontin, a stromal driver for tumor growth that is overexpressed by both RS and SIPS fibroblasts. The latter supports the hypothesis that senescence-specific de-repression of SPP1 aids in SIPS-dependent stromal activation. Reanalysis of previously published experimental data is cost-effective approach for extraction of additional insignts into the functioning of

  19. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy.

    PubMed

    Chang, Tzu-Ching; Hsu, Min-Fen; Wu, Kenneth K

    2015-01-01

    Hyperglycemia was reported to cause bone marrow hematopoietic niche dysfunction, and high glucose (HG) in the cultured medium induces MSC senescence. The underlying mechanism is unclear. Here, we investigated the role of HG-induced autophagy in bone-marrow-derived mesenchymal stem cell (BMSC) senescence. HG (25 mM) increased expression of Beclin-1, Atg 5, 7 and 12, generation of LC3-II and autophagosome formation which was correlated with development of cell senescence. Pretreatment of HG-MSC with 3-methyladenine (3-MA) prevented senescence but increased apoptosis. N-acetylcysteine (NAC) was effective in abrogating HG-induced autophagy accompanied by prevention of senescence. Diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, blocked autophagy and senescence in a manner comparable to NAC. 3-MA, NAC and DPI inhibited HG-induced interleukin-6 production in BMSCs. These results suggest that hyperglycemia induces MSC senescence and local inflammation via a novel oxidant-mediated autophagy which contributes to bone marrow niche dysfunction and hematopoietic impairment.

  20. Nitric oxide regulates dark-induced leaf senescence through EIN2 in Arabidopsis.

    PubMed

    Niu, Yun-Han; Guo, Fang-Qing

    2012-08-01

    The nitric oxide (NO)-deficient mutant nos1/noa1 exhibited an early leaf senescence phenotype. ETHYLENE INSENSITIVE 2 (EIN2) was previously reported to function as a positive regulator of ethylene-induced senescence. The aim of this study was to address the question of how NO interacts with ethylene to regulate leaf senescence by characterizing the double mutant ein2-1 nos1/noa1 (Arabidopsis thaliana). Double mutant analysis revealed that the nos1/noa1-mediated, dark-induced early senescence phenotype was suppressed by mutations in EIN2, suggesting that EIN2 is involved in nitric oxide signaling in the regulation of leaf senescence. The results showed that chlorophyll degradation in the double mutant leaves was significantly delayed. In addition, nos1/noa1-mediated impairment in photochemical efficiency and integrity of thylakoid membranes was reverted by EIN2 mutations. The rapid upregulation of the known senescence marker genes in the nos1/noa1 mutant was severely inhibited in the double mutant during leaf senescence. Interestingly, the response of dark-grown nos1/noa1 mutant seedlings to ethylene was similar to that of wild type seedlings. Taken together, our findings suggest that EIN2 is involved in the regulation of early leaf senescence caused by NO deficiency, but NO deficiency caused by NOS1/NOA1 mutations does not affect ethylene signaling. © 2012 Institute of Botany, Chinese Academy of Sciences.

  1. A role for p53 in selenium-induced senescence

    USDA-ARS?s Scientific Manuscript database

    The tumor suppressor p53 and the ataxia-telangiectasia mutated (ATM) kinase play important roles in the senescence response to oncogene activation and DNA damage. We have previously shown that selenium-containing compounds can activate an ATM-dependent senescence response in MRC-5 normal fibroblasts...

  2. Molecular basis for premature senescence induced by surfactants in normal human cells.

    PubMed

    Yamakami, Yoshimi; Miki, Kensuke; Yonekura, Ryuzo; Kudo, Ikuru; Fujii, Michihiko; Ayusawa, Dai

    2014-01-01

    Sublethal doses of surfactants as exemplified by NP-40 clearly induce premature senescence in normal human cells. To understand molecular basis for this phenomenon, we tried to suppress it with use of various inhibitors. An inhibitor of p38 of the MAPK family almost completely suppressed growth arrest and morphological changes induced by surfactants; however, other inhibitors tested had no effect. Oleic acid, a weak inducer of premature senescence, was found to suppress the effect of NP-40. Fluorescein-labeled oleic acid rapidly bound to the cell surface, and this binding was clearly blocked by pre-treatment with surfactants, suggesting that surfactants and oleic acid compete for binding to the cell surface. Moderate concentrations of cycloheximide, an inhibitor of protein synthesis, also suppressed the senescent features induced by NP-40. These results suggest that surfactants activate p38 signaling pathway by binding to the cell surface, and induce cellular senescence.

  3. Analysis of cellular senescence induced by lipopolysaccharide in pulmonary alveolar epithelial cells.

    PubMed

    Kim, Chang Oh; Huh, Ae Jung; Han, Sang Hoon; Kim, June Myung

    2012-01-01

    In this work, it was examined the possibility of lipopolysaccharide (LPS) causing cellular senescence in lung alveolar epithelial cells. Then, it was clarified how this cellular senescence phenomenon is associated with oxidative stress effect induced by LPS and whether antioxidants could inhibit reduced cellular viability by oxidant stress effect of LPS. In cell viability using cell counting kit-8, exposure to LPS decreased cellular viability and induced growth arrest in a concentration-dependent manner. The pre-apoptotic concentration of LPS was determined by caspase activation using a Caspase-Glo 3/7 luminescence assay kit. This concentration of LPS caused morphologic characteristics shown in senescent cells and elevated senescence-associated β-galactosidase activity. In addition, lysosomal content associated with senescence was increased by LPS at the pre-apoptotic concentration. However, this concentration of LPS did not shorten the telomere length. Exposure to LPS resulted in the formation of hydrogen peroxide in a concentration-dependent manner. The ability of LPS to reduce cellular viability was inhibited by the presence of glutathione. This study revealed that LPS could induce cellular senescence in lung alveloar epithelial cells, and these phenomena were closely associated with hydrogen peroxide production by LPS. Taken together, it is suggested that LPS-induced cellular senescence may play an important role in limiting the tissue repair response after sepsis.

  4. Copper induces cellular senescence in human glioblastoma multiforme cells through downregulation of Bmi-1.

    PubMed

    Li, Yuan; Hu, Jifan; Guan, Fangxia; Song, Laijun; Fan, Ruitai; Zhu, Huaijie; Hu, Xiang; Shen, Eileen; Yang, Bo

    2013-05-01

    Most human tumor cells, including glioblastoma multiforme (GBM) cells, have aberrant control of cell aging and apoptosis. Subcytotoxic concentrations of oxidative or stress‑causing agents, such as hydrogen peroxide, may induce human cell senescence. Thus, induction of tumor cells into premature senescence may provide a useful in vitro model for developing novel therapeutic strategy to combat tumors. In the present study, we assessed the molecular mechanism(s) underlying senescence in GBM cells induced by copper sulfate. Following pretreatment with subcytotoxic concentrations of copper sulfate, U87-MG tumor cells showed typical aging characteristics, including reduced cell proliferation, cell enlargement, increased level of senescence-associated β-galactosidase (SA β-gal) activity, and overexpression of several senescence-associated genes, p16, p21, transforming growth factor β-1 (TGF-β1), insulin growth factor binding protein 3 (IGFBP3) and apolipoprotein J (ApoJ). We further demonstrated that the Bmi-1 pathway was downregulated in GBM cells in parallel with the induced senescence. The present study for the first time demonstrates the ability of copper to induce GBM cell senescence by downregulating Bmi-1.

  5. The impact of light intensity on shade-induced leaf senescence.

    PubMed

    Brouwer, Bastiaan; Ziolkowska, Agnieszka; Bagard, Matthieu; Keech, Olivier; Gardeström, Per

    2012-06-01

    Plants often have to cope with altered light conditions, which in leaves induce various physiological responses ranging from photosynthetic acclimation to leaf senescence. However, our knowledge of the regulatory pathways by which shade and darkness induce leaf senescence remains incomplete. To determine to what extent reduced light intensities regulate the induction of leaf senescence, we performed a functional comparison between Arabidopsis leaves subjected to a range of shading treatments. Individually covered leaves, which remained attached to the plant, were compared with respect to chlorophyll, protein, histology, expression of senescence-associated genes, capacity for photosynthesis and respiration, and light compensation point (LCP). Mild shading induced photosynthetic acclimation and resource partitioning, which, together with a decreased respiration, lowered the LCP. Leaf senescence was induced only under strong shade, coinciding with a negative carbon balance and independent of the red/far-red ratio. Interestingly, while senescence was significantly delayed at very low light compared with darkness, phytochrome A mutant plants showed enhanced chlorophyll degradation under all shading treatments except complete darkness. Taken together, our results suggest that the induction of leaf senescence during shading depends on the efficiency of carbon fixation, which in turn appears to be modulated via light receptors such as phytochrome A.

  6. Foam cell-derived 4-hydroxynonenal induces endothelial cell senescence in a TXNIP-dependent manner.

    PubMed

    Riahi, Yael; Kaiser, Nurit; Cohen, Guy; Abd-Elrahman, Ihab; Blum, Galia; Shapira, Oz M; Koler, Tomer; Simionescu, Maya; Sima, Anca V; Zarkovic, Neven; Zarkovic, Kamelija; Orioli, Marica; Aldini, Giancarlo; Cerasi, Erol; Leibowitz, Gil; Sasson, Shlomo

    2015-08-01

    Vascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co-culture transwell system. Primary bovine aortic endothelial cells, exposed to the secretome of THP-1 monocyte-derived foam cells, were analysed for the induction of senescence. Senescence associated β-galactosidase activity and the expression of p16 and p21 were increased, whereas phosphorylated retinoblastoma protein was reduced. This senescent phenotype was mediated by 4-hydroxnonenal (4-HNE), a lipid peroxidation product secreted from foam cells; scavenging of 4-HNE in the co-culture medium blunted this effect. Furthermore, both foam cells and 4-HNE increased the expression of the pro-oxidant thioredoxin-interacting protein (TXNIP). Molecular manipulation of TXNIP expression confirmed its involvement in foam cell-induced senescence. Previous studies showed that peroxisome proliferator-activated receptor (PPAR)δ was activated by 4-hydroalkenals, such as 4-HNE. Pharmacological interventions supported the involvement of the 4-HNE-PPARδ axis in the induction of TXNIP and VEC senescence. The association of TXNIP with VEC senescence was further supported by immunofluorescent staining of human carotid plaques in which the expression of both TXNIP and p21 was augmented in endothelial cells. Collectively, these findings suggest that foam cell-released 4-HNE activates PPARδ in VEC, leading to increased TXNIP expression and consequently to senescence.

  7. Injury-Induced Senescence Enables In Vivo Reprogramming in Skeletal Muscle.

    PubMed

    Chiche, Aurélie; Le Roux, Isabelle; von Joest, Mathieu; Sakai, Hiroshi; Aguín, Sabela Búa; Cazin, Coralie; Salam, Rana; Fiette, Laurence; Alegria, Olinda; Flamant, Patricia; Tajbakhsh, Shahragim; Li, Han

    2017-03-02

    In vivo reprogramming is a promising approach for tissue regeneration in response to injury. Several examples of in vivo reprogramming have been reported in a variety of lineages, but some including skeletal muscle have so far proven refractory. Here, we show that acute and chronic injury enables transcription-factor-mediated reprogramming in skeletal muscle. Lineage tracing indicates that this response frequently originates from Pax7+ muscle stem cells. Injury is associated with accumulation of senescent cells, and advanced aging or local irradiation further enhanced in vivo reprogramming, while selective elimination of senescent cells reduced reprogramming efficiency. The effect of senescence appears to be, at least in part, due to the release of interleukin 6 (IL-6), suggesting a potential link with the senescence-associated secretory phenotype. Collectively, our findings highlight a beneficial paracrine effect of injury-induced senescence on cellular plasticity, which will be important for devising strategies for reprogramming-based tissue repair.

  8. Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts.

    PubMed

    Lim, Hyun; Park, Haeil; Kim, Hyun Pyo

    2015-08-15

    During senescence, cells express molecules called senescence-associated secretory phenotype (SASP), including growth factors, proinflammatory cytokines, chemokines, and proteases. The SASP induces a chronic low-grade inflammation adjacent to cells and tissues, leading to degenerative diseases. The anti-inflammatory activity of flavonoids was investigated on SASP expression in senescent fibroblasts. Effects of flavonoids on SASP expression such as IL-1α, IL-1β, IL-6, IL-8, GM-CSF, CXCL1, MCP-2 and MMP-3 and signaling molecules were examined in bleomycin-induced senescent BJ cells. In vivo activity of apigenin on SASP suppression was identified in the kidney of aged rats. Among the five naturally-occurring flavonoids initially tested, apigenin and kaempferol strongly inhibited the expression of SASP. These flavonoids inhibited NF-κB p65 activity via the IRAK1/IκBα signaling pathway and expression of IκBζ. Blocking IκBζ expression especially reduced the expression of SASP. A structure-activity relationship study using some synthetic flavones demonstrated that hydroxyl substitutions at C-2',3',4',5 and 7 were important in inhibiting SASP production. Finally, these results were verified by results showing that the oral administration of apigenin significantly reduced elevated levels of SASP and IκBζ mRNA in the kidneys of aged rats. This study is the first to show that certain flavonoids are inhibitors of SASP production, partially related to NF-κB p65 and IκBζ signaling pathway, and may effectively protect or alleviate chronic low-grade inflammation in degenerative diseases such as cardiovascular diseases and late-stage cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Lovastatin-induced RhoA modulation and its effect on senescence in prostate cancer cells

    SciTech Connect

    Lee, Jeeyun; Lee, Inkyoung; Park, Chaehwa; Kang, Won Ki . E-mail: wkkang@smc.samsung.co.kr

    2006-01-20

    Lovastatin inhibits a 3-hydroxy 3-methylglutaryl coenzyme A reductase and prevents the synthesis of cholesterol precursors, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), responsible for important cell signaling in cell proliferation and migration. Recently, the anti-cancer effect of lovastatin has been suggested in various tumor types. In this study, we showed that a low dose lovastatin induced senescence and G1 cell cycle arrest in human prostate cancer cells. Addition of GGPP or mevalonate, but not FPP, prevented the lovastatin-induced G1 phase cell cycle arrest and cell senescence. We found that constitutively active RhoA (caRhoA) reversed lovastatin-induced senescence in caRhoA-transfected PC-3 cells. Thus, we postulate that modulation of RhoA may be critical in lovastatin-induced senescence in PC-3 cells.

  10. Downregulation of Polo-like kinase 1 induces cellular senescence in human primary cells through a p53-dependent pathway.

    PubMed

    Kim, Hee-Jin; Cho, Jung Hee; Kim, Jae-Ryong

    2013-10-01

    Polo-like kinase 1 (PLK1) plays a key role in various stages of mitosis from entry into M phase to exit from mitosis. However, its role in cellular senescence remains to be determined. Therefore, the effects of PLK1 on cellular senescence in human primary cells were investigated. We found that expression of PLK1 decreased in human dermal fibroblasts and human umbilical vein endothelial cells under replicative senescence and premature senescence induced by adriamycin. PLK1 knockdown with PLK1 small interfering RNAs in young cells induced premature senescence. In contrast, upregulation of PLK1 in old cells partially reversed senescence phenotypes. Cellular senescence by PLK1 inhibition was observed in p16 knockdown cells but not in p53 knockdown cells. Our data suggest that PLK1 repression might result in cellular senescence in human primary cells via a p53-dependent pathway.

  11. Taxol-induced paraptosis-like A549 cell death is not senescence

    NASA Astrophysics Data System (ADS)

    Wang, Chao-yang; Chen, Tong-Sheng

    2011-03-01

    Our previous studies have shown that taxol, a potent anticancer agent, induces caspase-independent cell death and cytoplasmic vacuolization in human lung cancer cells. However, the mechanisms of taxol-induced cytoplasmic vacuolization are poorly understood. Cytoplasmic vacuolization have been reported to be a characteristic of cell senescence. Here, we employed confocal fluorescence microscopy imaging to study the reversibility of taxol-induced cytoplasmic vacuolization and whether taxol triggers senescence in A549 cells. We found that taxol-induced cytoplasmic vacuolization at 6 or 9 h after treatment with taxol did not decrease but increase at 24 h or 72 h after refreshing the culture medium without taxol, indicating taxol-induced cytoplasmic vacuolization is irreversible. We used SA-β-Gal (senescence-associated β-galactosidase) to assess whether taxol-induced cell death in cytoplasmic vacuolization fashion is senescence, and found that hydrogen peroxide (H2O2)-treated, but not taxol-treated cells is significantly stained by the SA-β-Gal, a senescence testing kit, indicating that the form of taxol-induced cell death is not senescence.

  12. A Model for p38MAPK-Induced Astrocyte Senescence.

    PubMed

    Mombach, José C M; Vendrusculo, Bruno; Bugs, Cristhian A

    2015-01-01

    Experimental evidence indicates that aging leads to accumulation of senescent cells in tissues and they develop a secretory phenotype (also known as SASP, for senescence-associated secretory phenotype) that can contribute to chronic inflammation and diseases. Recent results have showed that markers of senescence in astrocytes from aged brains are increased in brains with Alzheimer's disease. These studies strongly involved the stress kinase p38MAPK in the regulation of the secretory phenotype of astrocytes, yet the molecular mechanisms underlying the onset of senescence and SASP activation remain unclear. In this work, we propose a discrete logical model for astrocyte senescence determined by the level of DNA damage (reparable or irreparable DNA strand breaks) where the kinase p38MAPK plays a central role in the regulation of senescence and SASP. The model produces four alternative stable states: proliferation, transient cycle arrest, apoptosis and senescence (and SASP) computed from its inputs representing DNA damages. Perturbations of the model were performed through gene gain or loss of functions and compared with results concerning cultures of normal and mutant astrocytes showing agreement in most cases. Moreover, the model allows some predictions that remain to be tested experimentally.

  13. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration

    PubMed Central

    Ritschka, Birgit; Storer, Mekayla; Mas, Alba; Heinzmann, Florian; Ortells, Mari Carmen; Morton, Jennifer P.; Sansom, Owen J.; Zender, Lars; Keyes, William M.

    2017-01-01

    Senescence is a form of cell cycle arrest induced by stress such as DNA damage and oncogenes. However, while arrested, senescent cells secrete a variety of proteins collectively known as the senescence-associated secretory phenotype (SASP), which can reinforce the arrest and induce senescence in a paracrine manner. However, the SASP has also been shown to favor embryonic development, wound healing, and even tumor growth, suggesting more complex physiological roles than currently understood. Here we uncover timely new functions of the SASP in promoting a proregenerative response through the induction of cell plasticity and stemness. We show that primary mouse keratinocytes transiently exposed to the SASP exhibit increased expression of stem cell markers and regenerative capacity in vivo. However, prolonged exposure to the SASP causes a subsequent cell-intrinsic senescence arrest to counter the continued regenerative stimuli. Finally, by inducing senescence in single cells in vivo in the liver, we demonstrate that this activates tissue-specific expression of stem cell markers. Together, this work uncovers a primary and beneficial role for the SASP in promoting cell plasticity and tissue regeneration and introduces the concept that transient therapeutic delivery of senescent cells could be harnessed to drive tissue regeneration. PMID:28143833

  14. Androgen deprivation-induced senescence promotes outgrowth of androgen-refractory prostate cancer cells.

    PubMed

    Burton, Dominick G A; Giribaldi, Maria G; Munoz, Anisleidys; Halvorsen, Katherine; Patel, Asmita; Jorda, Merce; Perez-Stable, Carlos; Rai, Priyamvada

    2013-01-01

    Androgen deprivation (AD) is an effective method for initially suppressing prostate cancer (PC) progression. However, androgen-refractory PC cells inevitably emerge from the androgen-responsive tumor, leading to incurable disease. Recent studies have shown AD induces cellular senescence, a phenomenon that is cell-autonomously tumor-suppressive but which confers tumor-promoting adaptations that can facilitate the advent of senescence-resistant malignant cell populations. Because androgen-refractory PC cells emerge clonally from the originally androgen-responsive tumor, we sought to investigate whether AD-induced senescence (ADIS) affects acquisition of androgen-refractory behavior in androgen-responsive LNCaP and LAPC4 prostate cancer cells. We find that repeated exposure of these androgen-responsive cells to senescence-inducing stimuli via cyclic AD leads to the rapid emergence of ADIS-resistant, androgen-refractory cells from the bulk senescent cell population. Our results show that the ADIS phenotype is associated with tumor-promoting traits, notably chemoresistance and enhanced pro-survival mechanisms such as inhibition of p53-mediated cell death, which encourage persistence of the senescent cells. We further find that pharmacologic enforcement of p53/Bax activation via Nutlin-3 prior to establishment of ADIS is required to overcome the associated pro-survival response and preferentially trigger pervasive cell death instead of senescence during AD. Thus our study demonstrates that ADIS promotes outgrowth of androgen-refractory PC cells and is consequently a suboptimal tumor-suppressor response to AD.

  15. Interaction between mTOR pathway inhibition and autophagy induction attenuates adriamycin-induced vascular smooth muscle cell senescence through decreased expressions of p53/p21/p16.

    PubMed

    Sung, Jin Young; Lee, Kyung Young; Kim, Jae-Ryong; Choi, Hyoung Chul

    2017-08-07

    Cellular senescence is related to aging and extremely stable proliferative arrest with active metabolism. Senescent cells can activate mammalian target of rapamycin (mTOR) pathway, which plays a crucial role in the regulation of cell metabolism, cellular growth, and autophagy in senescence-associated cardiovascular diseases. Therefore, we examined whether mTOR pathway could induce cellular senescence by inhibition of autophagy in vascular smooth muscle cells (VSMCs). We found that adriamycin-induced VSMC senescence is accompanied by increased activity of mTOR, a major controller of cell growth and a negative regulator of autophagy. VSMC senescence induced by activation of mTOR pathway led to reduced levels of signal-associated autophagy proteins, and inhibition of mTOR pathway resulted in a drastic decrease in the number of senescence-associated β-galactosidase (SA-β-gal)-stained cells and increased levels of signal-associated autophagy proteins. Autophagic inhibition potentiated adriamycin-induced mTOR pathway activation as well as increase in the number of SA-β-gal-stained VSMCs. Results of further experiments showed that mTOR pathway inhibition regulates adriamycin-induced expression of senescence markers (p53/p21/p16), which plays an important role in different aspects of cellular aging. Taken together, these results support the idea that intervention to modulate the interaction between mTOR pathway and autophagy could be a potential strategy for longevity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Protein kinase D1 is essential for Ras-induced senescence and tumor suppression by regulating senescence-associated inflammation

    PubMed Central

    Wang, Pan; Han, Limin; Shen, Hong; Wang, Pengfeng; Lv, Cuicui; Zhao, Ganye; Niu, Jing; Xue, Lixiang; Wang, Qiming Jane; Tong, Tanjun; Chen, Jun

    2014-01-01

    Oncogene-induced senescence (OIS) is an initial barrier to tumor development. Reactive oxygen species (ROS) is critical for oncogenic Ras OIS, but the downstream effectors to mediate ROS signaling are still relatively elusive. Senescent cells develop a senescence-associated secretory phenotype (SASP). However, the mechanisms underlying the regulation of the SASP are largely unknown. Here, we identify protein kinase D1 (PKD1) as a downstream effector of ROS signaling to mediate Ras OIS and SASP. PKD1 is activated by oncogenic Ras expression and PKD1 promotes Ras OIS by mediating inflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8) via modulation of NF-κB activity. We demonstrate that ROS-protein kinase Cδ (PKCδ)-PKD1 axis is essential for the establishment and maintenance of IL-6/IL8 induction. In addition, ablation of PKD1 causes the bypass of Ras OIS, and promotes cell transformation and tumorigenesis. Together, these findings uncover a previously unidentified role of ROS-PKCδ-PKD1 pathway in Ras OIS and SASP regulation. PMID:24828530

  17. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence

    PubMed Central

    Patel, Priyanka L.; Suram, Anitha; Mirani, Neena; Bischof, Oliver; Herbig, Utz

    2016-01-01

    Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc–dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression. PMID:27503890

  18. SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer

    PubMed Central

    Tordella, Luca; Khan, Sadaf; Hohmeyer, Anja; Banito, Ana; Klotz, Sabrina; Raguz, Selina; Martin, Nadine; Dhamarlingam, Gopuraja; Carroll, Thomas; González Meljem, José Mario; Deswal, Sumit; Martínez-Barbera, Juan Pedro; García-Escudero, Ramón; Zuber, Johannes; Zender, Lars; Gil, Jesús

    2016-01-01

    Oncogene-induced senescence (OIS) is a potent tumor suppressor mechanism. To identify senescence regulators relevant to cancer, we screened an shRNA library targeting genes deleted in hepatocellular carcinoma (HCC). Here, we describe how knockdown of the SWI/SNF component ARID1B prevents OIS and cooperates with RAS to induce liver tumors. ARID1B controls p16INK4a and p21CIP1a transcription but also regulates DNA damage, oxidative stress, and p53 induction, suggesting that SWI/SNF uses additional mechanisms to regulate senescence. To systematically identify SWI/SNF targets regulating senescence, we carried out a focused shRNA screen. We discovered several new senescence regulators, including ENTPD7, an enzyme that hydrolyses nucleotides. ENTPD7 affects oxidative stress, DNA damage, and senescence. Importantly, expression of ENTPD7 or inhibition of nucleotide synthesis in ARID1B-depleted cells results in re-establishment of senescence. Our results identify novel mechanisms by which epigenetic regulators can affect tumor progression and suggest that prosenescence therapies could be employed against SWI/SNF-mutated cancers. PMID:27737960

  19. High concentrations of NaCl induce cell swelling leading to senescence in human cells.

    PubMed

    Yamakami, Yoshimi; Yonekura, Ryuzo; Matsumoto, Yuko; Takauji, Yuki; Miki, Kensuke; Fujii, Michihiko; Ayusawa, Dai

    2016-01-01

    Cell swelling and retardation in DNA replication are always observed in senescent cells. When DNA replication is slowed down with RNA and protein syntheses unchanged in proliferating cells, it causes a phenomenon known as unbalanced growth. The purpose of this study is to assess the role of cell swelling in unbalanced growth in terms of senescence and investigate the mechanism underlying this phenomenon. We tried to induce cell swelling with minimum damage to cells in this study. We perturbed the osmoregulatory functions to induce cell swelling under hypotonic and hypertonic conditions in normal human fibroblasts. Addition of excess NaCl was found to induce significant cell and nuclear swelling in dose- and time-dependent manners. Excess NaCl immediately retarded DNA replication, accumulated cells at G1 phase of the cell cycle, and eventually deprived division potential of the cells. Such cells showed typical senescent cell shape followed by expression of the typical senescence-associated genes. Excess NaCl also activated ERK1/2, p38, and JNK of the mitogen activated protein kinase family. Addition of U0126, an inhibitor of ERK1/2, prevented appearance of senescent features induced by excess NaCl. These results suggest that hypertonic conditions induce cell swelling due to unbalanced growth, thereby leading to cellular senescence.

  20. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    PubMed

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  1. Hyperphosphatemia induces senescence in human endothelial cells by increasing endothelin-1 production.

    PubMed

    Olmos, Gemma; Martínez-Miguel, Patricia; Alcalde-Estevez, Elena; Medrano, Diana; Sosa, Patricia; Rodríguez-Mañas, Leocadio; Naves-Diaz, Manuel; Rodríguez-Puyol, Diego; Ruiz-Torres, María Piedad; López-Ongil, Susana

    2017-08-31

    Hyperphosphatemia is related to some pathologies, affecting vascular cell behavior. This work analyzes whether high concentration of extracellular phosphate induces endothelial senescence through up-regulation of endothelin-1 (ET-1), exploring the mechanisms involved. The phosphate donor β-glycerophosphate (BGP) in human endothelial cells increased ET-1 production, endothelin-converting enzyme-1 (ECE-1) protein, and mRNA expression, which depend on the AP-1 activation through ROS production. In parallel, BGP also induced endothelial senescence by increasing p16 expression and the senescence-associated β-galactosidase (SA-ß-GAL) activity. ET-1 itself was able to induce endothelial senescence, increasing p16 expression and SA-ß-GAL activity. In addition, senescence induced by BGP was blocked when different ET-1 system antagonists were used. BGP increased ROS production at short times, and the presence of antioxidants prevented the effect of BGP on AP1 activation, ECE-1 expression, and endothelial senescence. These findings were confirmed in vivo with two animal models in which phosphate serum levels were increased: seven/eight nephrectomized rats as chronic kidney disease models fed on a high phosphate diet and aged mice. Both models showed hyperphosphatemia, higher levels of ET-1, and up-regulation in aortic ECE-1, suggesting a direct relationship between hyperphosphatemia and ET-1. Present results point to a new and relevant role of hyperphosphatemia on the regulation of ET-1 system and senescence induction at endothelial level, both in endothelial cells and aorta from two animal models. The mechanism involved showed a higher ROS production, which probably activates AP-1 transcription factor and, as a result, ECE-1 expression, increasing ET-1 synthesis, which in consequence induces endothelial senescence. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    PubMed Central

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  3. Attenuation of Replication Stress–Induced Premature Cellular Senescence to Assess Anti-Aging Modalities

    PubMed Central

    Zhao, Hong; Darzynkiewicz, Zbigniew

    2014-01-01

    Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels). This change is paralleled by an increase in nuclear area. Thus, the ratio of mean intensity of maximal pixels to nuclear area provides a very sensitive morphometric biomarker for the degree of senescence. This analysis is combined with immunocytochemical detection of senescence markers, such as overexpression of cyclin kinase inhibitors (e.g., p21WAF1) and phosphorylation of ribosomal protein S6 (rpS6), a key marker associated with aging/senescence that is detected using a phospho-specific antibody. These biomarker indices are presented in quantitative terms defined as a senescence index (SI), which is the fraction of the marker in test cultures relative to the same marker in exponentially growing control cultures. This system can be used to evaluate the anti-aging potential of test agents by assessing attenuation of maximal senescence. As an example, the inclusion of berberine, a natural alkaloid with reported anti-aging properties and a long history of use in traditional Chinese medicine, is shown to markedly attenuate the Mxt-induced SI and phosphorylation of rpS6. The multivariate analysis of senescence markers by laser scanning cytometry offers a promising tool to explore the potential anti-aging properties of a variety agents. PMID:24984966

  4. Attenuation of replication stress-induced premature cellular senescence to assess anti-aging modalities.

    PubMed

    Zhao, Hong; Darzynkiewicz, Zbigniew

    2014-07-01

    Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels). This change is paralleled by an increase in nuclear area. Thus, the ratio of mean intensity of maximal pixels to nuclear area provides a very sensitive morphometric biomarker for the degree of senescence. This analysis is combined with immunocytochemical detection of senescence markers, such as overexpression of cyclin kinase inhibitors (e.g., p21(WAF1) ) and phosphorylation of ribosomal protein S6 (rpS6), a key marker associated with aging/senescence that is detected using a phospho-specific antibody. These biomarker indices are presented in quantitative terms defined as a senescence index (SI), which is the fraction of the marker in test cultures relative to the same marker in exponentially growing control cultures. This system can be used to evaluate the anti-aging potential of test agents by assessing attenuation of maximal senescence. As an example, the inclusion of berberine, a natural alkaloid with reported anti-aging properties and a long history of use in traditional Chinese medicine, is shown to markedly attenuate the Mxt-induced SI and phosphorylation of rpS6. The multivariate analysis of senescence markers by laser scanning cytometry offers a promising tool to explore the potential anti-aging properties of a variety agents. Copyright © 2014 John Wiley & Sons, Inc.

  5. AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway

    SciTech Connect

    Sung, Jin Young; Woo, Chang-Hoon; Kang, Young Jin; Lee, Kwang Youn; Choi, Hyoung Chul

    2011-09-16

    Highlights: {yields} An aging model was established by stimulating VSMC with adriamycin. {yields} Adriamycin increased p-LKB1, p-AMPK, p53 and p21 expressions. {yields} Inhibition of AMPK diminished SA-{beta}-gal staining and restored VSMC proliferation. {yields} p53 and p21 siRNA attenuated adriamycin-induced SA-{beta}-gal staining in VSMC. {yields} p53-p21 pathway is a mediator of LKB1/AMPK induced VSMC senescence. -- Abstract: Vascular cells have a limited lifespan with limited cell proliferation and undergo cellular senescence. The functional changes associated with cellular senescence are thought to contribute to age-related vascular disorders. AMP-activated protein kinase (AMPK) has been discussed in terms of beneficial or harmful effects for aging-related diseases. However, the detailed functional mechanisms of AMPK are largely unclear. An aging model was established by stimulating vascular smooth muscle cell (VSMC) with adriamycin. Adriamycin progressively increased the mRNA and protein expressions of AMPK. The phosphorylation levels of LKB1 and acetyl-CoA carboxylase (ACC), the upstream and downstream of AMPK, were dramatically increased by adriamycin stimulation. The expressions of p53 and p21, which contribute to vascular senescence, were also increased. Inhibition of AMPK diminished senescence-associated {beta}-galactosidase (SA-{beta}-gal) staining, and restored VSMC proliferation. Cytosolic translocation of LKB1 by adriamycin could be a mechanism for AMPK activation in senescence. Furthermore, p53 siRNA and p21 siRNA transfection attenuated adriamycin-induced SA-{beta}-gal staining. These results suggest that LKB1 dependent AMPK activation elicits VSMC senescence and p53-p21 pathway is a mediator of LKB1/AMPK-induced senescence.

  6. Changes in the Transcriptome of Human Astrocytes Accompanying Oxidative Stress-Induced Senescence

    PubMed Central

    Crowe, Elizabeth P.; Tuzer, Ferit; Gregory, Brian D.; Donahue, Greg; Gosai, Sager J.; Cohen, Justin; Leung, Yuk Y.; Yetkin, Emre; Nativio, Raffaella; Wang, Li-San; Sell, Christian; Bonini, Nancy M.; Berger, Shelley L.; Johnson, F. Brad; Torres, Claudio

    2016-01-01

    Aging is a major risk factor for many neurodegenerative disorders. A key feature of aging biology that may underlie these diseases is cellular senescence. Senescent cells accumulate in tissues with age, undergo widespread changes in gene expression, and typically demonstrate altered, pro-inflammatory profiles. Astrocyte senescence has been implicated in neurodegenerative disease, and to better understand senescence-associated changes in astrocytes, we investigated changes in their transcriptome using RNA sequencing. Senescence was induced in human fetal astrocytes by transient oxidative stress. Brain-expressed genes, including those involved in neuronal development and differentiation, were downregulated in senescent astrocytes. Remarkably, several genes indicative of astrocytic responses to injury were also downregulated, including glial fibrillary acidic protein and genes involved in the processing and presentation of antigens by major histocompatibility complex class II proteins, while pro-inflammatory genes were upregulated. Overall, our findings suggest that senescence-related changes in the function of astrocytes may impact the pathogenesis of age-related brain disorders. PMID:27630559

  7. Changes in the Transcriptome of Human Astrocytes Accompanying Oxidative Stress-Induced Senescence.

    PubMed

    Crowe, Elizabeth P; Tuzer, Ferit; Gregory, Brian D; Donahue, Greg; Gosai, Sager J; Cohen, Justin; Leung, Yuk Y; Yetkin, Emre; Nativio, Raffaella; Wang, Li-San; Sell, Christian; Bonini, Nancy M; Berger, Shelley L; Johnson, F Brad; Torres, Claudio

    2016-01-01

    Aging is a major risk factor for many neurodegenerative disorders. A key feature of aging biology that may underlie these diseases is cellular senescence. Senescent cells accumulate in tissues with age, undergo widespread changes in gene expression, and typically demonstrate altered, pro-inflammatory profiles. Astrocyte senescence has been implicated in neurodegenerative disease, and to better understand senescence-associated changes in astrocytes, we investigated changes in their transcriptome using RNA sequencing. Senescence was induced in human fetal astrocytes by transient oxidative stress. Brain-expressed genes, including those involved in neuronal development and differentiation, were downregulated in senescent astrocytes. Remarkably, several genes indicative of astrocytic responses to injury were also downregulated, including glial fibrillary acidic protein and genes involved in the processing and presentation of antigens by major histocompatibility complex class II proteins, while pro-inflammatory genes were upregulated. Overall, our findings suggest that senescence-related changes in the function of astrocytes may impact the pathogenesis of age-related brain disorders.

  8. Klotho Prevents NFκB Translocation and Protects Endothelial Cell From Senescence Induced by Uremia.

    PubMed

    Buendía, Paula; Carracedo, Julia; Soriano, Sagrario; Madueño, Juan Antonio; Ortiz, Alberto; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael

    2015-10-01

    In patients with renal disease, uremia raises oxidative stress and senescence in endothelial cells, which can lead to endothelial dysfunction and cardiovascular disease. Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. This protein is recognized as an antiaging gene, that modulate both stress-induced senescence and functional response. The aim of the study was to investigate how senescence and oxidative stress induced by uremia in endothelial cells affects Klotho expression and whether intra or extracellular Klotho has effects on the response of these cells. Senescence and oxidative stress was obtained by exposure to uremic serum. Telomere length, the enzyme β-galactosidase, and oxidative stress were studied by flow cytometry. Nuclear factor kappa B activity was determined by electrophoretic mobility shift assay. The expression of Klotho decreased with the uremia and preceded the manifestations of cell aging. Levels of intracellular Klotho decreases associated to endothelial senescence, and exogenous Klotho prevents cellular senescence by inhibiting the increase in oxidative stress induced by uremia and diminished the nuclear factor kappa B-DNA binding ability. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Retinal-conjugated pH-sensitive micelles induce tumor senescence for boosting breast cancer chemotherapy.

    PubMed

    Zhang, Yijuan; Li, Ping; Pan, Hong; Liu, Lanlan; Ji, Manyi; Sheng, Nan; Wang, Ce; Cai, Lintao; Ma, Yifan

    2016-03-01

    Evoking tumor cellular senescence, an irreversible status of cell growth quiescence, has been recently proposed as a potential strategy to improve the efficacy of cancer treatment. In the current study, all-trans retinal, the precursor of all-trans retinoic acid, was conjugated to dextran via hydrazone bond to generate amphiphilic dextran-retinal (DR) conjugates, which self-assembled into pH-sensitive DR micelles. Our results showed that DR micelles moderately inhibited MCF-7 breast cancer cell growth through inducing p21-associated cellular senescence, which relied on retinoic acid receptors (RARs) and was accompanied by significant G0/G1 cell cycle arrest. Moreover, DR micelles were capable of encapsulating doxorubicin (DOX) to generate DOX-loaded DD micelles, facilitating the uptake and release of DOX in cancer cells. Compared with free DOX, DD micelles more effectively suppressed tumor growth and prolonged survival time of mouse xenograft model through inducing tumor apoptosis and cellular senescence. However, blocking cellular senescence diminished DD-caused apoptosis in MCF-7 cells by 40-50%. Therefore, pH-sensitive DR micelles not only served as a potent platform for DOX delivery, but also enhanced the anti-tumor effect of DOX by inducing tumor cellular senescence. These data reveal a great potential of evoking tumor senescence with retinal-conjugated micelles for boosting breast cancer chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nucleases activities during French bean leaf aging and dark-induced senescence.

    PubMed

    Lambert, Rocío; Quiles, Francisco Antonio; Gálvez-Valdivieso, Gregorio; Piedras, Pedro

    2017-09-07

    During leaf senescence resources are managed, with nutrients mobilized from older leaves to new sink tissues. The latter implies a dilemma in terms of resource utilization, the leaf senescence should increase seed quality whereas delay in senescence should improve the seed yield. Increased knowledge about nutrient recycling during leaf senescence could lead to advances in agriculture and improved seed quality. Macromolecules mobilized during leaf senescence include proteins and nucleic acids. Although nucleic acids have been less well studied than protein degradation, they are possible reservoirs of nitrogen and phosphorous. The present study investigated nuclease activities and gene expression patterns of five members of the S1/P1 family in French bean (Phaseolus vulgaris L. cv.)Page: 2 during leaf senescence. An in-gel assay was used to detect nuclease activity during natural and dark-induced senescence, with single-stranded DNA (ssDNA) used as a substrate. The results revealed two nucleases (glycoproteins), with molecular masses of 34 and 39kDa in the senescent leaves. The nuclease activities were higher at a neutral than at an acidic pH. EDTA treatment inhibited the activities of the nucleases, and the addition of zinc resulted in the recovery of these activities. Both the 34 and 39kDa nucleases were able to use RNA and double-stranded DNA (dsDNA) as substrates, although their activities were low when dsDNA was used as a substrate. In addition, two ribonucleases with molecular masses of 14 and 16kDa, both of which could only utilize RNA as a substrate, were detected in the senescent leaves. Two members of the S1/P1 family, PVN2 and PVN5, were expressed under the experimental conditions, suggesting that these two genes were involved in senescence. The nuclease activity of the glycoproteins and gene expression were similar under both natural senescence and dark-induced senescence conditions. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights

  11. Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts.

    PubMed

    Volonte, Daniela; Zhang, Kun; Lisanti, Michael P; Galbiati, Ferruccio

    2002-07-01

    Caveolae are vesicular invaginations of the plasma membrane. Caveolin-1 is the principal structural component of caveolae in vivo. Several lines of evidence are consistent with the idea that caveolin-1 functions as a "transformation suppressor" protein. In fact, caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). We have previously demonstrated that overexpression of caveolin-1 arrests mouse embryonic fibroblasts in the G(0)/G(1) phase of the cell cycle through activation of a p53/p21-dependent pathway, indicating a role of caveolin-1 in mediating growth arrest. However, it remains unknown whether overexpression of caveolin-1 promotes cellular senescence in vivo. Here, we demonstrate that mouse embryonic fibroblasts transgenically overexpressing caveolin-1 show: 1) a reduced proliferative lifespan; 2) senescence-like cell morphology; and 3) a senescence-associated increase in beta-galactosidase activity. These results indicate for the first time that the expression of caveolin-1 in vivo is sufficient to promote and maintain the senescent phenotype. Subcytotoxic oxidative stress is known to induce premature senescence in diploid fibroblasts. Interestingly, we show that subcytotoxic level of hydrogen peroxide induces premature senescence in NIH 3T3 cells and increases endogenous caveolin-1 expression. Importantly, quercetin and vitamin E, two antioxidant agents, successfully prevent the premature senescent phenotype and the up-regulation of caveolin-1 induced by hydrogen peroxide. Also, we demonstrate that hydrogen peroxide alone, but not in combination with quercetin, stimulates the caveolin-1 promoter activity. Interestingly, premature senescence induced by hydrogen peroxide is greatly reduced in NIH 3T3 cells harboring antisense caveolin-1. Importantly, induction of premature senescence is recovered when

  12. Expression of Caveolin-1 Induces Premature Cellular Senescence in Primary Cultures of Murine Fibroblasts

    PubMed Central

    Volonte, Daniela; Zhang, Kun; Lisanti, Michael P.; Galbiati, Ferruccio

    2002-01-01

    Caveolae are vesicular invaginations of the plasma membrane. Caveolin-1 is the principal structural component of caveolae in vivo. Several lines of evidence are consistent with the idea that caveolin-1 functions as a “transformation suppressor” protein. In fact, caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). We have previously demonstrated that overexpression of caveolin-1 arrests mouse embryonic fibroblasts in the G0/G1 phase of the cell cycle through activation of a p53/p21-dependent pathway, indicating a role of caveolin-1 in mediating growth arrest. However, it remains unknown whether overexpression of caveolin-1 promotes cellular senescence in vivo. Here, we demonstrate that mouse embryonic fibroblasts transgenically overexpressing caveolin-1 show: 1) a reduced proliferative lifespan; 2) senescence-like cell morphology; and 3) a senescence-associated increase in β-galactosidase activity. These results indicate for the first time that the expression of caveolin-1 in vivo is sufficient to promote and maintain the senescent phenotype. Subcytotoxic oxidative stress is known to induce premature senescence in diploid fibroblasts. Interestingly, we show that subcytotoxic level of hydrogen peroxide induces premature senescence in NIH 3T3 cells and increases endogenous caveolin-1 expression. Importantly, quercetin and vitamin E, two antioxidant agents, successfully prevent the premature senescent phenotype and the up-regulation of caveolin-1 induced by hydrogen peroxide. Also, we demonstrate that hydrogen peroxide alone, but not in combination with quercetin, stimulates the caveolin-1 promoter activity. Interestingly, premature senescence induced by hydrogen peroxide is greatly reduced in NIH 3T3 cells harboring antisense caveolin-1. Importantly, induction of premature senescence is recovered when

  13. An Ethylene-Induced Regulatory Module Delays Flower Senescence by Regulating Cytokinin Content1[OPEN

    PubMed Central

    Wu, Lin; Ma, Nan; Zhang, Yi; Feng, Ming

    2017-01-01

    In many plant species, including rose (Rosa hybrida), flower senescence is promoted by the gaseous hormone ethylene and inhibited by the cytokinin (CTK) class of hormones. However, the molecular mechanisms underlying these antagonistic effects are not well understood. In this study, we characterized the association between a pathogenesis-related PR-10 family gene from rose (RhPR10.1) and the hormonal regulation of flower senescence. Quantitative reverse transcription PCR analysis showed that RhPR10.1 was expressed at high levels during senescence in different floral organs, including petal, sepal, receptacle, stamen, and pistil, and that expression was induced by ethylene treatment. Silencing of RhPR10.1 expression in rose plants by virus-induced gene silencing accelerated flower senescence, which was accompanied by a higher ion leakage rate in the petals, as well as increased expression of the senescence marker gene RhSAG12. CTK content and the expression of three CTK signaling pathway genes were reduced in RhPR10.1-silenced plants, and the accelerated rate of petal senescence that was apparent in the RhPR10.1-silenced plants was restored to normal levels by CTK treatment. Finally, RhHB6, a homeodomain-Leu zipper I transcription factor, was observed to bind to the RhPR10.1 promoter, and silencing of its expression also promoted flower senescence. Our results reveal an ethylene-induced RhHB6-RhPR10.1 regulatory module that functions as a brake of ethylene-promoted senescence through increasing the CTK content. PMID:27879388

  14. A posttranslational modification cascade involving p38, Tip60, and PRAK mediates oncogene-induced senescence.

    PubMed

    Zheng, Hui; Seit-Nebi, Alim; Han, Xuemei; Aslanian, Aaron; Tat, John; Liao, Rong; Yates, John R; Sun, Peiqing

    2013-06-06

    Oncogene-induced senescence is an important tumor-suppressing defense mechanism. However, relatively little is known about the signaling pathway mediating the senescence response. Here, we demonstrate that a multifunctional acetyltransferase, Tip60, plays an essential role in oncogenic ras-induced senescence. Further investigation reveals a cascade of posttranslational modifications involving p38, Tip60, and PRAK, three proteins that are essential for ras-induced senescence. Upon activation by ras, p38 induces the acetyltransferase activity of Tip60 through phosphorylation of Thr158; activated Tip60 in turn directly interacts with and induces the protein kinase activity of PRAK through acetylation of K364 in a manner that depends on phosphorylation of both Tip60 and PRAK by p38. These posttranslational modifications are critical for the prosenescent function of Tip60 and PRAK, respectively. These results have defined a signaling pathway that mediates oncogene-induced senescence, and identified posttranslational modifications that regulate the enzymatic activity and biological functions of Tip60 and PRAK.

  15. 2,4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles.

    PubMed

    Karuppanapandian, Thirupathi; Wang, Hong Wei; Prabakaran, Natarajan; Jeyalakshmi, Kandhavelu; Kwon, Mi; Manoharan, Kumariah; Kim, Wook

    2011-02-01

    Leaf senescence induced by 2,4-dichlorophenoxyacetic acid (2,4-D) and senescence inhibition caused by supplementation with silver (Ag(+)) ions in the form of silver nitrate (AgNO(3)) or silver nanoparticles (AgNPs) were investigated in 8-day-old mung bean (Vigna radiata L. Wilczek) seedlings. Inhibition of root and shoot elongation were observed in mung bean seedlings treated with 500μM 2,4-D. Concomitantly, the activity of 1-aminocyclopropane-1-carboxylic acid synthase was significantly induced in leaf tissue. Leaf senescence induced by 2,4-D was closely associated with lipid peroxidation as well as increased levels of cytotoxic hydrogen peroxide (H(2)O(2)) and superoxide radicals (O(2)(·-)). Despite decreased catalase activity, the activities of peroxidase, superoxide dismutase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase were increased during 2,4-D-induced leaf senescence. Further, the levels of reduced ascorbate, oxidized ascorbate, and reduced glutathione were markedly decreased, whereas the level of oxidized glutathione increased. 2,4-D-induced leaf senescence in mung bean was accompanied by an increase in positive terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, nuclear DNA fragmentation, and the activity of a 15-kDa Ca(2+)-dependent DNase. Supplementation with 100μM AgNO(3) or AgNPs inhibited 2,4-D-induced leaf senescence. The present results suggest that increased oxidative stress (O(2)(·-) and H(2)O(2)) led to senescence in mung bean leaves. Furthermore, significantly induced antioxidative enzymes are not sufficient to protect mung bean cells from 2,4-D-induced harmful ROS. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  16. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion.

    PubMed

    Helman, Aharon; Klochendler, Agnes; Azazmeh, Narmen; Gabai, Yael; Horwitz, Elad; Anzi, Shira; Swisa, Avital; Condiotti, Reba; Granit, Roy Z; Nevo, Yuval; Fixler, Yaakov; Shreibman, Dorin; Zamir, Amit; Tornovsky-Babeay, Sharona; Dai, Chunhua; Glaser, Benjamin; Powers, Alvin C; Shapiro, A M James; Magnuson, Mark A; Dor, Yuval; Ben-Porath, Ittai

    2016-04-01

    Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.

  17. Mussel oligopeptides protect human fibroblasts from hydrogen peroxide (H2O2)-induced premature senescence.

    PubMed

    Zhou, Yue; Dong, Ying; Xu, Qing-Gang; Zhu, Shu-Yun; Tian, Shi-Lei; Huo, Jing-jing; Hao, Ting-Ting; Zhu, Bei-Wei

    2014-01-01

    Mussel bioactive peptides have been viewed as mediators to maximize the high quality of life. In this study, the anti-aging activities of mussel oligopeptides were evaluated using H2O2-induced prematurely senescent MRC-5 fibroblasts. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry displayed that exposure to H2O2 led to the loss of cell viability and cell cycle arrest. In addition, H2O2 caused the elevation of senescence-associated-β-galactosidase (SA-β-gal) activity and formation of senescence-associated heterochromatin foci (SAHF). It was found that pretreatment with mussel oligopeptides could significantly attenuate these properties associated with cellular senescence. Mussel oligopeptides also led to the increase of glutathione (GSH) level and mitochondrial transmembrane potential (Δψm) recovery. In addition, mussel oligopeptides resulted in an improvement in transcriptional activity of peroxiredoxin 1 (Prx1), nicotinamide phosphoribosyltransferase (NAMPT) and sirtuin 1 (SIRT1). This study revealed that mussel oligopeptides could protect against cellular senescence induced by H2O2, and the effects were closely associated with redox cycle modulating and potentiating the SIRT1 pathway. These findings provide new insights into the beneficial role of mussel bioactive peptides on retarding senescence process. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  18. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.

    PubMed

    Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang

    2017-02-01

    Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.

  19. STAT3-mediated SMAD3 activation underlies Oncostatin M-induced Senescence.

    PubMed

    Bryson, Benjamin L; Junk, Damian J; Cipriano, Rocky; Jackson, Mark W

    2017-02-16

    Cytokines in the developing tumor microenvironment (TME) can drive transformation and subsequent progression toward metastasis. Elevated levels of the Interleukin-6 (IL-6) family cytokine Oncostatin M (OSM) in the breast TME correlate with aggressive, metastatic cancers, increased tumor recurrence, and poor patient prognosis. Paradoxically, OSM engages a tumor-suppressive, Signal Transducer and Activator of Transcription 3 (STAT3)-dependent senescence response in normal and non-transformed human mammary epithelial cells (HMEC). Here, we identify a novel link between OSM-activated STAT3 signaling and the Transforming Growth Factor-β (TGF-β) signaling pathway that engages senescence in HMEC. Inhibition of functional TGF-β/SMAD signaling by expressing a dominant-negative TGF-β receptor, treating with a TGF-β receptor inhibitor, or suppressing SMAD3 expression using a SMAD3-shRNA prevented OSM-induced senescence. OSM promoted a protein complex involving activated-STAT3 and SMAD3, induced the nuclear localization of SMAD3, and enhanced SMAD3-mediated transcription responsible for senescence. In contrast, expression of MYC (c-MYC) from a constitutive promoter abrogated senescence and strikingly, cooperated with OSM to promote a transformed phenotype, epithelial-mesenchymal transition (EMT), and invasiveness. Our findings suggest that a novel STAT3/SMAD3-signaling axis is required for OSM-mediated senescence that is coopted during the transformation process to confer aggressive cancer cell properties. Understanding how developing cancer cells bypass OSM/STAT3/SMAD3-mediated senescence may help identify novel targets for future "pro-senescence" therapies aiming to reengage this hidden tumor-suppressive response.

  20. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence

    PubMed Central

    Macip, Salvador; Igarashi, Makoto; Fang, Li; Chen, Angus; Pan, Zhen-Qiang; Lee, Sam W.; Aaronson, Stuart A.

    2002-01-01

    The cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1/Sdi1 was identified initially as a gene induced in senescent cells and itself has been shown to cause permanent growth arrest/senescence. Reactive oxygen species (ROS), a byproduct of oxidative processes, can also induce an irreversible growth arrest similar to senescence. Here we show that p21 increased intracellular levels of ROS both in normal fibroblasts and in p53-negative cancer cells. N-acetyl-l-cysteine, an ROS inhibitor, rescued p21-induced senescence, showing that ROS elevation is necessary for induction of the permanent growth arrest phenotype. p16Ink4a, a CDK4- and CDK6-specific inhibitor, failed to increase ROS levels, and cell cycle arrest induced by p16 was reversible following its down-regulation, demonstrating the specificity of this p21 effect. A p21 mutant that lacked the ability to bind proliferating cell nuclear antigen (PCNA) retained the ability to induce both ROS and permanent growth arrest. All of these findings establish that p21 mediates senescence by a mechanism involving ROS accumulation which does not require either its PCNA binding or the CDK inhibitory functions shared with p16. PMID:11980715

  1. Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation

    PubMed Central

    Kansara, Maya; Leong, Huei San; Lin, Dan Mei; Popkiss, Sophie; Pang, Puiyi; Garsed, Dale W.; Walkley, Carl R.; Cullinane, Carleen; Ellul, Jason; Haynes, Nicole M.; Hicks, Rod; Kuijjer, Marieke L.; Cleton-Jansen, Anne-Marie; Hinds, Philip W.; Smyth, Mark J.; Thomas, David M.

    2013-01-01

    Ionizing radiation (IR) and germline mutations in the retinoblastoma tumor suppressor gene (RB1) are the strongest risk factors for developing osteosarcoma. Recapitulating the human predisposition, we found that Rb1+/– mice exhibited accelerated development of IR-induced osteosarcoma, with a latency of 39 weeks. Initial exposure of osteoblasts to carcinogenic doses of IR in vitro and in vivo induced RB1-dependent senescence and the expression of a panel of proteins known as senescence-associated secretory phenotype (SASP), dominated by IL-6. RB1 expression closely correlated with that of the SASP cassette in human osteosarcomas, and low expression of both RB1 and the SASP genes was associated with poor prognosis. In vivo, IL-6 was required for IR-induced senescence, which elicited NKT cell infiltration and a host inflammatory response. Mice lacking IL-6 or NKT cells had accelerated development of IR-induced osteosarcomas. These data elucidate an important link between senescence, which is a cell-autonomous tumor suppressor response, and the activation of host-dependent cancer immunosurveillance. Our findings indicate that overcoming the immune response to senescence is a rate-limiting step in the formation of IR-induced osteosarcoma. PMID:24231354

  2. Pancreatitis-induced Inflammation Contributes to Pancreatic Cancer by Inhibiting Oncogene-Induced Senescence

    PubMed Central

    Guerra, Carmen; Collado, Manuel; Navas, Carolina; Schuhmacher, Alberto J; Hernández-Porras, Isabel; Cañamero, Marta; Rodriguez-Justo, Manuel; Serrano, Manuel; Barbacid, Mariano

    2016-01-01

    Pancreatic acinar cells of adult mice (≥P60) are resistant to transformation by some of the most robust oncogenic insults including expression of K-Ras oncogenes and loss of p16Ink4a/p19Arf or Trp53 tumor suppressors. Yet, these acinar cells yield pancreatic intraepithelial neoplasias (mPanIN) and ductal adenocarcinomas (mPDAC) if exposed to limited bouts of non-acute pancreatitis, providing they harbor K-Ras oncogenes. Pancreatitis contributes to tumor progression by abrogating the senescence barrier characteristic of low-grade mPanINs. Attenuation of pancreatitis-induced inflammation also accelerates tissue repair and thwarts mPanIN expansion. Patients with chronic pancreatitis display senescent PanINs, if they have received anti-inflammatory drugs. These results put forward the concept that anti-inflammatory treatment of people diagnosed with pancreatitis may reduce their risk of developing PDAC. PMID:21665147

  3. Inonotus obliquus Protects against Oxidative Stress-Induced Apoptosis and Premature Senescence

    PubMed Central

    Yun, Jong Seok; Pahk, Jung Woon; Lee, Jong Seok; Shin, Won Cheol; Lee, Shin Young; Hong, Eock Kee

    2011-01-01

    In this study, we investigated the cytoprotective effects of Inonotus obliquus against oxidative stress-induced apoptosis and premature senescence. Pretreatment with I. obliquus scavenged intracellular ROS and prevented lipid peroxidation in hydrogen peroxide-treated human fibroblasts. As a result, I. obliquus exerted protective effects against hydrogen peroxide-induced apoptosis and premature senescence in human fibroblasts. In addition, I. obliquus suppressed UV-induced morphologic skin changes, such as skin thickening and wrinkle formation, in hairless mice in vivo and increased collagen synthesis through inhibition of MMP-1 and MMP-9 activities in hydrogen peroxide- treated human fibroblasts. Taken together, these results demonstrate that I. obliquus can prevent the aging process by attenuating oxidative stress in a model of stress-induced premature senescence. PMID:21359681

  4. SIRT1 is required for the effects of rapamycin on high glucose-inducing mesangial cells senescence.

    PubMed

    Zhang, Sifang; Cai, Guangyan; Fu, Bo; Feng, Zhe; Ding, Rui; Bai, Xueyuan; Liu, Weiping; Zhuo, Li; Sun, Lin; Liu, Fuyou; Chen, Xiangmei

    2012-06-01

    The mTOR deregulation has a role in chronic kidney disease including diabetic nephropathy. SIRT1 is an important participant in renal cytoprotective responses to aging and stress. However, whether both mTOR and SIRT1 are involved in high glucose-inducing mesangial cells (MCs) senescence still remains to be explored. Hence we investigate the potential functional interrelationship between these two proteins in high glucose-inducing MCs senescence. High glucose increased mTOR expression and activity, but decreased SIRT1 expression and activity. The level of mTOR was increased significantly, while the SIRT1 expression and activity was declined significantly with serial cell culture passage. The siRNA-SIRT1 and nicotinamide promoted MCs senescence. NAD or resveratrol arrested high glucose-inducing MCs senescence. Meanwhile, the effects of NAD or resveratrol on high glucose-inducing MCs senescence were also completely blocked by SiRNA-SIRT1. Rapamycin arrested MCs senescence induced by high glucose and prevented MCs senescence with serial cell culture passage, and meanwhile increased the SIRT1 expression and activity. Moreover, the effects of rapamycin on MCs senescence induced by high glucose were also completely blocked by treating cells with niacinamide or siRNA-SIRT1. These findings provide support for the hypothesis that SIRT1 is required for the effects of rapamycin on high glucose-inducing MCs senescence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Long-Term Treatment of Native LDL Induces Senescence of Cultured Human Endothelial Cells

    PubMed Central

    Oh, Sung-Tack; Park, Hoon; Yoon, Hyun Joong

    2017-01-01

    The study aimed to evaluate whether the treatment of primary cultured human endothelial cells with native low-density lipoprotein (nLDL) could induce their senescence and to uncover some of the putative mechanisms involved. For this purpose, human umbilical vein endothelial cells (HUVECs) were subcultured and/or continuously cultured with nLDL (0, 2, 5, and 10 μg protein/mL), for up to 9 days. The results indicated that nLDL inhibited the proliferation of HUVECs by arresting the cell cycle at G1 phase. The G1-arrested cells showed increase in cytosolic senescence-associated-β-galactosidase (SA-β-Gal) activity, a biomarker of cellular senescence. The causative factor of the cellular senescence was nLDL itself and not oxidized LDL (oxLDL), since blocking LDL receptor (LDLR) with the anti-LDLR antibody opposed the nLDL-induced increase of SA-β-Gal activity and decrease of cellular proliferation. In addition, nLDL-induced cellular senescence by inhibiting the phosphorylation of pRb (G1 arrest) via p53 as well as p16 signal transduction pathways. G1 phase arrest of the senescent cells was not overcome by nLDL removal from the culture medium. Moreover, the nLDL-treated cells produced reactive oxygen species (ROS) dose- and time-dependently. These results suggested, for the first time, that long-term treatment of nLDL could induce the premature senescence of endothelial cells. PMID:28197300

  6. Knockout of Ku86 accelerates cellular senescence induced by high NaCl

    PubMed Central

    Dmitrieva, Natalia I.; Chen, Hua Tang; Nussenzweig, André; Burg, Maurice B.

    2009-01-01

    NaCl induces DNA breaks, thus leading to cellular senescence. Here we showed that Ku86 deficiency accelerated the high NaCl-induced cellular senescence. We find that 1) high NaCl induces rapid cellular senescence in Ku86 deficient (xrs5) cells, 2) Ku86 deficiency shortens lifespan of C. elegans in high NaCl, and 3) cellular senescence is greatly accelerated in renal inner medullas of Ku86-/- mice. Further, although water balance is known to be compromised in old mice, this occurs at much earlier age in Ku86-/- mice. When subjected to mild water restriction, 3 month old Ku86-/-, but not Ku86+/+, mice rapidly become dehydrated as evidenced by decrease in body weight, increased production of antidiuretic hormone, increased urine osmolality and decreased urine volume. The deficiency in water balance does not occur in Ku86+/+mice until they are much older (14 months). We conclude that Ku86 deficiency accelerates high NaCl-induced cellular senescence, particularly in the renal medulla where NaCl normally is high. PMID:19946467

  7. Knockout of Ku86 accelerates cellular senescence induced by high NaCl.

    PubMed

    Dmitrieva, Natalia I; Chen, Hua Tang; Nussenzweig, André; Burg, Maurice B

    2009-02-01

    NaCl induces DNA breaks, thus leading to cellular senescence. Here we showed that Ku86 deficiency accelerated the high NaCl-induced cellular senescence. We find that 1) high NaCl induces rapid cellular senescence in Ku86 deficient(xrs5) cells, 2) Ku86 deficiency shortens lifespan of C. elegans in high NaCl, and 3) cellular senescence is greatly accelerated in renal inner medullas of Ku86 (-/-) mice. Further, although water balance is known to be compromised in old mice, this occurs at much earlier age in Ku86(-/-) mice. When subjected to mild water restriction, 3 month old Ku86(-/-), but not Ku86(+/+),mice rapidly become dehydrated as evidenced by decrease in body weight, increased production of antidiuretic hormone,increased urine osmolality and decreased urine volume. The deficiency in water balance does not occur in Ku86(+/+)mice until they are much older (14 months). We conclude that Ku86 deficiency accelerates high NaCl(-) induced cellular senescence,particularly in the renal medulla where NaCl normally is high.

  8. Hyperosmolarity induced by high glucose promotes senescence in human glomerular mesangial cells.

    PubMed

    del Nogal, Maria; Troyano, Nuria; Calleros, Laura; Griera, Mercedes; Rodriguez-Puyol, Manuel; Rodriguez-Puyol, Diego; Ruiz-Torres, María P

    2014-09-01

    Hyperglycemia is involved in the diabetic complication of different organs and can elevate serum osmolarity. Here, we tested whether hyperosmolarity promoted by high glucose levels induces cellular senescence in renal cells. We treated Wistar rats with streptozotocin to induce diabetes or with consecutive daily injections of mannitol to increase serum osmolarity and analyzed p53 and p16 genes in renal cortex by immunohistochemistry. Both diabetic and mannitol treated rats showed a significant increase in serum osmolarity, without significant signs of renal dysfunction, but associated with increased staining for p53 and p16 in the renal cortex. An increase in p53 and p16 expression was also found in renal cortex slices and glomeruli isolated from healthy rats, which were later treated with 30 mM glucose or mannitol. Intracellular mechanisms involved were analyzed in cultured human glomerular mesangial cells treated with 30 mM glucose or mannitol. After treatments, cells showed increased p53, p21 and p16 expression and elevated senescence-associated β-galactosidase activity. Senescence was prevented when myo-inositol was added before treatment. High glucose or mannitol induced constitutive activation of Ras and ERK pathways which, in turn, were activated by oxidative stress. In summary, hyperosmolarity induced renal senescence, particularly in glomerular mesangial cells, increasing oxidative stress, which constitutively activated Ras-ERK 1/2 pathway. Cellular senescence could contribute to the organ dysfunction associated with diabetes.

  9. Transcription factor Sp1 prevents TRF2(ΔBΔM)-induced premature senescence in human diploid fibroblasts.

    PubMed

    An, Hyun Ju; Lee, Hyeon Ju; Jang, Suhwa; Jung, Yu-Jin; Choi, Sun Shim; Park, Sang Chul; Han, Jeong A

    2016-03-01

    Telomere uncapping is thought to be the fundamental cause of replicative cellular senescence, but the cellular machineries mediating this process have not been fully understood. In the present study, we present the role of Sp1 transcription factor in the state of telomere uncapping using the TRF2(ΔBΔM)-induced senescence model in human diploid fibroblasts. We observed that the expression of Sp1 is down-regulated in the TRF2(ΔBΔM)-induced senescence, which was mediated by ATM and p38 MAPK. In addition, overexpression of Sp1 prevented the TRF2(ΔBΔM)-induced senescence. Among transcriptional targets of Sp1, expression levels of nuclear transport genes such as karyopherin α, Nup107, and Nup50 were down-regulated in the TRF2(ΔBΔM)-induced senescence, which was prevented by Sp1 overexpression. Moreover, inhibition of the nuclear transport by wheat germ agglutinin (an import inhibitor) and leptomycin B (an export inhibitor) induced premature senescence. These results suggest that Sp1 is an anti-senescence transcription factor in the telomere uncapping-induced senescence and that down-regulation of Sp1 leads to the senescence via down-regulation of the nuclear transport.

  10. Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells.

    PubMed

    Kujuro, Yuki; Suzuki, Norihiro; Kondo, Toru

    2010-05-04

    Mammalian aging is thought to be partially caused by the diminished capacity of stem/precursor cells to undergo self-renewing divisions. Although many cell-cycle regulators are involved in this process, it is unknown to what extent cell senescence, first identified as irreversible growth arrest in vitro, contributes to the aging process. Here, using a serum-induced mouse oligodendrocyte precursor cell (mOPC) senescence model, we identified esophageal cancer-related gene 4 (Ecrg4) as a senescence inducer with implications for the senescence-like state of postmitotic cells in the aging brain. Although mOPCs could proliferate indefinitely when cultured using the appropriate medium (OPC medium), they became senescent in the presence of serum and maintained their senescent phenotype even when the serum was subsequently replaced by OPC medium. We show that Ecrg4 was up-regulated in the senescent OPCs, its overexpression in OPCs induced senescence by accelerating the proteasome-dependent degradation of cyclins D1 and D3, and that its knockdown by a specific short hairpin RNA prevented these phenotypes. We also show that senescent OPCs secreted Ecrg4 and that recombinant Ecrg4 induced OPC senescence in culture. Moreover, increased Ecrg4 expression was observed in the OPCs and neural precursor cells in the aged mouse brain; this was accompanied by the expression of senescence-associated beta-galactosidase activity, indicating the cells' entrance into senescence. These results suggest that Ecrg4 is a factor linking neural-cell senescence and aging.

  11. Inactivation of Heat Shock Factor Hsf4 Induces Cellular Senescence and Suppresses Tumorigenesis In Vivo

    PubMed Central

    Jin, Xiongjie; Eroglu, Binnur; Cho, Wonkyoung; Yamaguchi, Yukihiro; Moskophidis, Demetrius; Mivechi, Nahid F.

    2013-01-01

    Studies suggest that Hsf4 expression correlates with its role in cell growth and differentiation. However, the role of Hsf4 in tumorigenesis in vivo remains unexplored. In this article, we provide evidence that absence of the Hsf4 gene suppresses evolution of spontaneous tumors arising in p53- or Arf-deficient mice. Furthermore, deletion of hsf4 alters the tumor spectrum by significantly inhibiting development of lymphomas that are normally observed in the majority of mice lacking p53 or Arf tumor suppressor genes. Using mouse embryo fibroblasts deficient in the hsf4 gene, we have found that these cells exhibit reduced proliferation that is associated with induction of senescence and senescence-associated β-galactosidase (SA-β-gal). Cellular senescence in hsf4-deficient cells is associated with the increased expression of the cyclin-dependent kinase inhibitors, p21 and p27 proteins. Consistent with the cellular senescence observed in vitro, specific normal tissues of hsf4−/− mice and tumors that arose in mice deficient in both hsf4 and p53 genes exhibit increased SA-β-gal activity and elevated levels of p27 compared with wild-type mice. These results suggest that hsf4 deletion-induced senescence is also present in vivo. Our results therefore indicate that Hsf4 is involved in modulation of cellular senescence, which can be exploited during cancer therapy. PMID:22355043

  12. Molecular mechanisms for the p38-induced cellular senescence in normal human fibroblast.

    PubMed

    Harada, Gakuro; Neng, Qian; Fujiki, Tsukasa; Katakura, Yoshinori

    2014-11-01

    We previously reported that TAK1, one of the mitogen-activated protein kinase kinase kinases (MAP3Ks), represses the transcription of the human telomerase reverse transcriptase (hTERT) gene in human cancer cells and induces cellular senescence in normal diploid human cells. On the basis of these results, we presumed a link between hTERT repression and the induction of cellular senescence. In this study, we identified the MAPK p38 as a downstream mediator of TAK1, which represses hTERT transcription. Further, we observed that hTERT expression was repressed in senescent normal human fibroblast, and was attenuated on treatment with SB203580, a p38-specific inhibitor, which suggests that p38 represses hTERT expression during cellular senescence. Next, we demonstrated that repression of hTERT, irrespective of the activation status of p38, is important for the induction of cellular senescence, by using hTERT-overexpressing cells and hTERT-knockdown cells. Our results suggested that p38 is activated during the serial passagings of normal human fibroblast, which results in the repression of hTERT transcription and induction of cellular senescence. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  13. Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast.

    PubMed

    Kar, Bishnupriya; Liu, Baohua; Zhou, Zhongjun; Lam, Yun W

    2011-08-11

    Nucleolus is the most prominent mammalian organelle within the nucleus which is also the site for ribosomal biogenesis. There have been many reports indicating the involvement of nucleolus in the process of aging. Several proteins related to aging have been shown to localize in the nucleolus, which suggests the role of this organelle in senescence. In this study, we used quantitative mass spectrometry to map the flux of proteins into and out of the nucleolus during the induction of senescence in cultured mammalian cells. Changes in the abundance of 344 nucleolar proteins in sodium butyrate-induced senescence in NIH3T3 cells were studied by SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry. Biochemically, we have validated the proteomic results and confirmed that B23 (nucleophosmin) protein was down-regulated, while poly (ADP-ribose) polymerase (PARP) and nuclear DNA helicase II (NDH II/DHX9/RHA) were up-regulated in the nucleolus upon treatment with sodium butyrate. Accumulation of chromatin in the nucleolus was also observed, by both proteomics and microscopy, in sodium butyrate-treated cells. Similar observations were found in other models of senescence, namely, in mitoxantrone- (MTX) treated cells and primary fibroblasts from the Lamin A knockout mice. Our data indicate an extensive nuclear organization during senescence and suggest that the redistribution of B23 protein and chromatin can be used as an important marker for senescence.

  14. Shp2 signaling suppresses senescence in PyMT-induced mammary gland cancer in mice

    PubMed Central

    Lan, Linxiang; Holland, Jane D; Qi, Jingjing; Grosskopf, Stefanie; Vogel, Regina; Györffy, Balázs; Wulf-Goldenberg, Annika; Birchmeier, Walter

    2015-01-01

    In this study, we have used techniques from cell biology, biochemistry, and genetics to investigate the role of the tyrosine phosphatase Shp2 in tumor cells of MMTV-PyMT mouse mammary glands. Genetic ablation or pharmacological inhibition of Shp2 induces senescence, as determined by the activation of senescence-associated β-gal (SA-β-gal), cyclin-dependent kinase inhibitor 1B (p27), p53, and histone 3 trimethylated lysine 9 (H3K9me3). Senescence induction leads to the inhibition of self-renewal of tumor cells and blockage of tumor formation and growth. A signaling cascade was identified that acts downstream of Shp2 to counter senescence: Src, focal adhesion kinase, and Map kinase inhibit senescence by activating the expression of S-phase kinase-associated protein 2 (Skp2), Aurora kinase A (Aurka), and the Notch ligand Delta-like 1 (Dll1), which block p27 and p53. Remarkably, the expression of Shp2 and of selected target genes predicts human breast cancer outcome. We conclude that therapies, which rely on senescence induction by inhibiting Shp2 or controlling its target gene products, may be useful in blocking breast cancer. PMID:25736378

  15. Shp2 signaling suppresses senescence in PyMT-induced mammary gland cancer in mice.

    PubMed

    Lan, Linxiang; Holland, Jane D; Qi, Jingjing; Grosskopf, Stefanie; Rademann, Jörg; Vogel, Regina; Györffy, Balázs; Wulf-Goldenberg, Annika; Birchmeier, Walter

    2015-06-03

    In this study, we have used techniques from cell biology, biochemistry, and genetics to investigate the role of the tyrosine phosphatase Shp2 in tumor cells of MMTV-PyMT mouse mammary glands. Genetic ablation or pharmacological inhibition of Shp2 induces senescence, as determined by the activation of senescence-associated β-gal (SA-β-gal), cyclin-dependent kinase inhibitor 1B (p27), p53, and histone 3 trimethylated lysine 9 (H3K9me3). Senescence induction leads to the inhibition of self-renewal of tumor cells and blockage of tumor formation and growth. A signaling cascade was identified that acts downstream of Shp2 to counter senescence: Src, focal adhesion kinase, and Map kinase inhibit senescence by activating the expression of S-phase kinase-associated protein 2 (Skp2), Aurora kinase A (Aurka), and the Notch ligand Delta-like 1 (Dll1), which block p27 and p53. Remarkably, the expression of Shp2 and of selected target genes predicts human breast cancer outcome. We conclude that therapies, which rely on senescence induction by inhibiting Shp2 or controlling its target gene products, may be useful in blocking breast cancer. © 2015 The Authors.

  16. Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine.

    PubMed

    Meng, Yuru; Efimova, Elena V; Hamzeh, Khaled W; Darga, Thomas E; Mauceri, Helena J; Fu, Yang-Xin; Kron, Stephen J; Weichselbaum, Ralph R

    2012-05-01

    Radiotherapy offers an effective treatment for advanced cancer but local and distant failures remain a significant challenge. Here, we treated melanoma and pancreatic carcinoma in syngeneic mice with ionizing radiation (IR) combined with the poly(ADP-ribose) polymerase inhibitor (PARPi) veliparib to inhibit DNA repair and promote accelerated senescence. Based on prior work implicating cytotoxic T lymphocytes (CTLs) as key mediators of radiation effects, we discovered that senescent tumor cells induced by radiation and veliparib express immunostimulatory cytokines to activate CTLs that mediate an effective antitumor response. When these senescent tumor cells were injected into tumor-bearing mice, an antitumor CTL response was induced which potentiated the effects of radiation, resulting in elimination of established tumors. Applied to human cancers, radiation-inducible immunotherapy may enhance radiotherapy responses to prevent local recurrence and distant metastasis.

  17. Androgen Deprivation-Induced Senescence Promotes Outgrowth of Androgen-Refractory Prostate Cancer Cells

    PubMed Central

    Burton, Dominick G. A.; Giribaldi, Maria G.; Munoz, Anisleidys; Halvorsen, Katherine; Patel, Asmita; Jorda, Merce; Perez-Stable, Carlos; Rai, Priyamvada

    2013-01-01

    Androgen deprivation (AD) is an effective method for initially suppressing prostate cancer (PC) progression. However, androgen-refractory PC cells inevitably emerge from the androgen-responsive tumor, leading to incurable disease. Recent studies have shown AD induces cellular senescence, a phenomenon that is cell-autonomously tumor-suppressive but which confers tumor-promoting adaptations that can facilitate the advent of senescence-resistant malignant cell populations. Because androgen-refractory PC cells emerge clonally from the originally androgen-responsive tumor, we sought to investigate whether AD-induced senescence (ADIS) affects acquisition of androgen-refractory behavior in androgen-responsive LNCaP and LAPC4 prostate cancer cells. We find that repeated exposure of these androgen-responsive cells to senescence-inducing stimuli via cyclic AD leads to the rapid emergence of ADIS-resistant, androgen-refractory cells from the bulk senescent cell population. Our results show that the ADIS phenotype is associated with tumor-promoting traits, notably chemoresistance and enhanced pro-survival mechanisms such as inhibition of p53-mediated cell death, which encourage persistence of the senescent cells. We further find that pharmacologic enforcement of p53/Bax activation via Nutlin-3 prior to establishment of ADIS is required to overcome the associated pro-survival response and preferentially trigger pervasive cell death instead of senescence during AD. Thus our study demonstrates that ADIS promotes outgrowth of androgen-refractory PC cells and is consequently a suboptimal tumor-suppressor response to AD. PMID:23840802

  18. WRKY22 Transcription Factor Mediates Dark-Induced Leaf Senescence in Arabidopsis

    PubMed Central

    Zhou, Xiang; Jiang, Zhou; Yu, Diqiu

    2011-01-01

    Arabidopsis WRKY proteins are plant-specific transcrip-tion factors, encoded by a large gene family, which contain the highly conserved amino acid sequence WRKYGQK and the zinc-finger-like motifs, Cys2His2 or Cys2HisCys. They can recognize and bind the TTGAC(C/T) W-box cis-elements found in the promoters of target genes, and are involved in the regulation of gene expression during pathogen defense, wounding, trichome development, and senescence. Here we investigated the physiological function of the Arabidopsis WRKY22 transcription factor during dark-induced senescence. WRKY22 transcription was suppressed by light and promoted by darkness. In addi-tion, AtWRKY22 expression was markedly induced by H2O2. These results indicated that AtWRKY22 was involved in signal pathways in response to abiotic stress. Dark-treated AtWRKY22 over-expression and knockout lines showed accelerated and delayed senescence phenotypes, respectively, and senescence-associated genes exhibited increased and decreased expression levels. Mutual regulation existed between AtWRKY22 and AtWRKY6, AtWR-KY53, and AtWRKY70, respectively. Moreover, AtWRKY22 could influence their relative expression levels by feedback regulation or by other, as yet unknown mechanisms in response to dark. These results prove that AtWRKY22 participates in the dark-induced senescence signal transduction pathway. PMID:21359674

  19. Ethylene production associated with petal senescence in carnation flowers is induced irrespective of the gynoecium.

    PubMed

    Ichimura, Kazuo; Niki, Tomoko

    2014-11-15

    To clarify whether climacteric-like increases in ethylene production of senescing petals are also induced in the absence of the gynoecium in cut carnation (Dianthus caryophyllus cv. Barbara) flowers, we compared ethylene production and expression of ethylene-biosynthesis genes in detached petals and in petals, which remained on flowers (attached petals). No significant difference in longevity was observed between the attached and detached petals when held in distilled water, and both showed the inward rolling typical of senescing flowers. Treatment with silver thiosulfate complex (STS), an ethylene inhibitor, similarly delayed senescence of attached and detached petals. Climacteric-like increases in ethylene production of petals and gynoecium started on the same day, with similar bursts in attached and detached petals. Transcript levels of DcACS1 and DcACO1 were very low at harvest and increased similarly during senescence in both petal groups. Removal of the gynoecium did not significantly delay wilting of attached petals. In flowers with the gynoecium removed, the petals produced most of the ethylene while production by the other floral organs was very low, suggesting that wound-induced ethylene is not the reason for the ineffectiveness of gynoecium-removal in inhibiting flower senescence. These results indicate that ethylene biosynthesis is induced in carnation petals irrespective of the gynoecium.

  20. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).

    PubMed

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-09-01

    Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest

  1. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max)

    PubMed Central

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-01-01

    Background and Aims Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Methods Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Key Results Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv′) to maximal chlorophyll a fluorescence (Fm′) fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv′/Fm′ ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. Conclusions While the physiological impact of the drought was perceived throughout the

  2. Ageing induced vascular smooth muscle cell senescence in atherosclerosis.

    PubMed

    Uryga, Anna K; Bennett, Martin R

    2016-04-15

    Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  3. Identification of novel therapeutic targets in the secretome of ionizing radiation‑induced senescent tumor cells.

    PubMed

    Hwang, Hyun Jung; Jung, Seung Hee; Lee, Hyung Chul; Han, Na Kyung; Bae, In Hwa; Lee, Minyoung; Han, Young-Hoon; Kang, Young-Sun; Lee, Su-Jae; Park, Heon Joo; Ko, Young-Gyu; Lee, Jae-Seon

    2016-02-01

    Cellular senescence is a state of irreversible growth arrest that can be triggered by multiple mechanisms, including telomere shortening, the epigenetic derepression of the INK4α/ARF locus and DNA damage. Senescence has been considered a tumor‑suppressing mechanism that permanently arrests cells at risk for malignant transformation. However, accumulating evidence shows that senescent cells have deleterious effects on the tissue microenvironment. Some of these effects could be attributed to the senescence‑associated secretory phenotype that has the ability to promote tumor progression. However, secreted proteins from senescent tumor cells and their effects on the tumor microenvironment due to ionizing radiation (IR) exposure have not yet been fully elucidated. In the present study, we analyzed cytokines secreted from IR‑induced senescent MCF7 cells by using cytokine microarrays and confirmed by western blot analysis that increased secretion of osteoprotegerin (OPG), midkine (MDK) and apolipoprotein E3 (ApoE3) occurs in these cells. Invasive, migratory and wound‑healing activities were observed in MDA‑MB‑231 and MCF‑10A cells following treatment with recombinant human OPG, MDK and ApoE3 proteins. Additionally, tube‑formation activity was assessed in OPG‑, MDK‑ and ApoE3‑treated human umbilical vein endothelial cells (HUVECs). We found that OPG, MDK and ApoE3 affected cell motility and tube‑formation activity. Since OPG markedly affected cell motility, we examined the effect of senescent conditioned media containing neutralizing OPG antibodies on migration and wound‑healing activity. Our results demonstrated that IR‑induced senescent tumor cells influence the tumor microenvironment by increasing the production of cytokines, such as OPG, MDK and ApoE3. Furthermore, these data suggest that OPG is likely a promising target capable of reducing the deleterious effects on the tumor microenvironment during radiation therapy.

  4. Lycium barbarum Polysaccharides Protect Human Lens Epithelial Cells against Oxidative Stress–Induced Apoptosis and Senescence

    PubMed Central

    Wen, Yuechun; Liu, Lian; Guo, Xiaoling; Hou, Guanghui; Wang, Guifang; Zhong, Jingxiang

    2014-01-01

    Objectives We aimed to investigate the protective effect of Lycium barbarum polysaccharides (LBPs) against oxidative stress–induced apoptosis and senescence in human lens epithelial cells. Methods To study apoptosis, SRA01/04 cells, a human lens epithelial cell lines, were exposed to 200 µM hydrogen peroxide (H2O2) for 24 h with or without pretreatment with LBPs. Cell viability was measured using a Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis, intracellular reactive oxygen species (ROS), and the loss of mitochondria membrane potential (Δψm) were detected by flow cytometric analyses. Expression levels of Bcl-2 and Bax proteins were measured by western blot analysis. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were quantized using commercial enzymatic kits according to the manufacturer's instructions. To study senescence, SRA01/04 cells were pre-incubated with LBPs and all cells were then exposed to 100 µM H2O2 for 96 h. Cellular senescence was assessed by morphologic examination and senescence-associated β-galactosidase (SA-β-gal) staining. Results LBPs significantly reduced H2O2-induced cell apoptosis, the generation of ROS, the loss of Δψm, and the levels of MDA. LBPs also inhibited H2O2-induced downregulated Bcl-2 and upregulated Bax proteins and increased the levels of SOD and GSH enzyme activity. Moreover, LBPs significantly attenuated H2O2-induced cellular senescence. Conclusions These findings suggested that LBPs protect human lens epithelial cells from H2O2-induced apoptosis by modulating the generation of ROS, loss of Δψm, Bcl-2 family, and antioxidant enzyme activity and attenuating cellular senescence. PMID:25333784

  5. Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts.

    PubMed

    Ryu, S J; Oh, Y S; Park, S C

    2007-05-01

    We previously reported that senescent human diploid fibroblasts (HDFs) are resistant to apoptosis induced by H(2)O(2) and staurosporine. We report here that senescent HDFs are resistant to thapsigargin-induced apoptosis as well. These agonists caused the reductions in mitochondrial membrane potential (MMP) and in the apoptosis inhibitory protein (B-cell lymphoma) only in young HDFs but not in senescent HDFs. In addition, downregulation of Bcl-2 increased the sensitivity of senescent HDFs to apoptosis induction, suggesting the significant role of Bcl-2 in apoptosis resistance of the senescent HDFs. We further found that P-cAMP response element-binding protein (CREB), a positive regulator of Bcl-2, decreased in stress-induced apoptosis of young HDFs but not in senescent HDFs, and that Bcl-2 was markedly reduced in CREB small interfering RNA (siRNA), transfected senescent HDFs. In addition, activity of protein phosphatase 2A (PP2A), which dephosphorylates p-CREB, significantly increased in young HDFs but not in senescent HDFs treated with H(2)O(2), staurosporine or thapsigargin. Taken together, these results suggest that failure of stress-induced downregulation of Bcl-2 underlies resistance of senescent HDFs to apoptosis.

  6. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells

    PubMed Central

    Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang

    2016-01-01

    Objectives Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Methods Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Results Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. Conclusion CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence. PMID:27555762

  7. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells.

    PubMed

    Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang

    2016-01-01

    Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence.

  8. Subversion of autophagy by Kaposi's sarcoma-associated herpesvirus impairs oncogene-induced senescence.

    PubMed

    Leidal, Andrew M; Cyr, David P; Hill, Richard J; Lee, Patrick W K; McCormick, Craig

    2012-02-16

    Acute oncogenic stress can activate autophagy and facilitate permanent arrest of the cell cycle through a failsafe mechanism known as oncogene-induced senescence (OIS). Kaposi's sarcoma-associated herpesvirus (KSHV) proteins are known to subvert autophagic pathways, but the link to Kaposi's sarcoma pathogenesis is unclear. We find that oncogenic assault caused by latent KSHV infection elicits DNA damage responses (DDRs) characteristic of OIS, yet infected cells display only modest levels of autophagy and fail to senesce. These aberrant responses result from the combined activities of tandemly expressed KSHV v-cyclin and v-FLIP proteins. v-Cyclin deregulates the cell cycle, triggers DDRs, and if left unchecked can promote autophagy and senescence. However, during latency v-FLIP blocks v-cyclin-induced autophagy and senescence in a manner that requires intact v-FLIP ATG3-binding domains. Together, these data reveal a coordinated viral gene expression program that usurps autophagy, blocks senescence, and facilitates the proliferation of KSHV-infected cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Ionizing irradiation inhibits keloid fibroblast cell proliferation and induces premature cellular senescence.

    PubMed

    Ji, Jiang; Tian, Ye; Zhu, Ya-qun; Zhang, Li-yuan; Ji, Sheng-jun; Huan, Jian; Zhou, Xiao-zhong; Cao, Jian-ping

    2015-01-01

    Keloids are one of the common refractory conditions in dermatology and aesthetic plastic surgery. The most effective treatment is superficial radiotherapy followed by surgical removal. The rate of recurrence is strongly associated with the total dose of ionizing irradiation, and the underlying mechanism remains unclear. In this study, we used primary keloid fibroblasts (KFb) isolated from patient samples to investigate the effects of X-ray radiation on cell proliferation, cell toxicity and cell cycle, as detected by CCK-8 assay kit and flow cytometer. In addition, we examined senescence-associated β-galactosidase activity and the associated gene expression using real-time polymerase chain reaction and western blot in KFb exposed to X-ray radiation. X-ray radiation inhibited cell proliferation and induced cell senescence in KFb in a dose-dependent manner. Inhibition of cell proliferation and induction of cellular senescence were mediated by interruption of the cell cycle with an extended G0/G1 phase. Furthermore, the expressions of senescence-associated genes p21, p16 and p27 were upregulated both at mRNA and protein levels in KFb exposed to X-ray radiation. Taken together, our data indicate that X-ray radiation may prevent the recurrence of keloids by controlling fibroblast proliferation, arresting the cell cycle and inducing premature cellular senescence. © 2014 Japanese Dermatological Association.

  10. Adiponectin Suppresses UVB-Induced Premature Senescence and hBD2 Overexpression in Human Keratinocytes

    PubMed Central

    Kim, MinJeong; Park, Kui Young; Lee, Mi-Kyung; Jin, Taewon; Seo, Seong Jun

    2016-01-01

    Recent studies have revealed that adiponectin can suppress cellular inflammatory signaling pathways. This study aimed to elucidate the effect of adiponectin on the unregulated production of hBD2 in UVB-induced premature senescent keratinocytes. We constructed an in vitro model of premature senescent keratinocytes through repeated exposure to low energy UVB. After repeated low energy UVB exposure, there was significant generation of reactive oxygen species (ROS) and induction of senescence-associated markers, including senescence associated beta-galactosidase activity and expression of p16INK4a and histone H2AX. In addition, the present clinical study showed higher expression of hBD2 in sun-exposed skin of elderly group, and the overexpression of hBD2 was observed by c-Fos activation in vitro. Adiponectin has the ability to scavenge ROS and consequently inhibit MAPKs and SA-markers in UVB-exposed keratinocytes. An inhibitor study demonstrated that adiponectin downregulated hBD2 mRNA expression through suppression of the AP-1 transcription factor components c-Fos via inactivation of p38 MAPK. Collectively, the dysregulated production of hBD2 by the induction of oxidative stress was attenuated by adiponectin through the suppression of p38 and JNK/SAPK MAPK signaling in UVB-mediated premature senescent inducible conditions. These results suggest the feasibility of adiponectin as an anti-photoaging and anti-inflammatory agent in the skin. PMID:27526049

  11. Dehydroepiandrosterone prevents linoleic acid-induced endothelial cell senescence by increasing autophagy.

    PubMed

    Lee, Min Jung; Kim, Eun Hee; Lee, Sang Ah; Kang, Yu Mi; Jung, Chang Hee; Yoon, Hae Kyeong; Seol, So Mi; Lee, Yoo La; Lee, Woo Je; Park, Joong-Yeol

    2015-09-01

    Autophagy has emerged as a potentially important factor in the pathogenesis of atherosclerosis. Dehydroepiandrosterone (DHEA) is an adrenal steroid of great recent interest due to its anti-aging and anti-atherogenic effects; however, little is known about its role in autophagy and endothelial senescence. The aim of this study was to investigate whether DHEA prevents linoleic acid (LA)-induced endothelial senescence by enhancing autophagy. After pre-treatement with or without DHEA prior to LA treatment in human aortic endothelial cells (HAECs), the level of senescence was compared by senescence-associated acidic β-galactosidase (SA-β-Gal) staining and hyperphosphorylated pRB (ppRB) protein level. Autophagy was detected by LC3 conversion and measuring the level of p62/SQSTM1 (sequestosome 1), a protein degraded by autophagy. The fusion of autophagosome and lysosome was confirmed by fluorescence microscopy. Pre-treatment with DHEA inhibited LA-induced endothelial senescence. DHEA increased the conversion of LC3-I to LC3-II and decreased the level of p62 in a time- and dose-dependent manner. Although both DHEA and LA treatment increased the conversion of LC3-I to LC3-II, treatment of LA increased p62 and decreased fusion of autophagosome and lysosome, which reflected decreased autophagic flux. However, pre-treatment with DHEA restored autophagic flux inhibited by LA. When we evaluated signaling pathways, we found that JNK activation involved in LC3 conversion induced by DHEA. DHEA prevents LA-induced endothelial senescence by restoring autophagy and autophagic flux through JNK activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth

    PubMed Central

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum

    2017-01-01

    Summary The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves do not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a 3-fold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol, were reduced more in senescence-induced LEC2 than endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Senescence-induced LEC2 upregulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expression of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. PMID:25790072

  13. GDF15 contributes to radiation-induced senescence through the ROS-mediated p16 pathway in human endothelial cells.

    PubMed

    Park, Hyejin; Kim, Chun-Ho; Jeong, Jae-Hoon; Park, Myungjin; Kim, Kwang Seok

    2016-03-01

    Growth differentiation factor 15 (GDF15) is an emerging biomarker of cardiovascular risk and disease. Microarray analyses revealed that GDF15 levels were increased during cellular senescence induced by ionizing radiation (IR) in human aortic endothelial cells (HAECs). However, the role of GDF15 in HAEC cellular senescence remains unclear. This study demonstrated that downregulation of GDF15 in HAECs partially prevented cellular senescence triggered by IR, which was confirmed by recovery of cell proliferation and reverse senescence-associated β-galactosidase (SA-β-gal) staining. Conversely, upregulation of GDF15-induced cellular senescence in HAECs, confirmed by G0/G1 cell cycle arrest, decreased during cell proliferation and increased SA-β-gal staining. GDF15-induced cellular senescence was observed in p16-knockdown cells but not in p53-knockdown cells. GDF15 expression in endothelial cells also generated reactive oxygen species (ROS), which led to activation of extracellular signal-regulated kinases (ERKs) and induction of senescence by oxidative stress. These results suggested that GDF15 might play an important role in cellular senescence through a ROS-mediated p16 pathway and contribute to the pathogenesis of atherosclerosis via pro-senescent activity.

  14. Jasmonates during senescence

    PubMed Central

    Seltmann, Martin A; Hussels, Wiebke

    2010-01-01

    Jasmonic acid and derivatives are oxylipin signaling compounds derived from linolenic acid. Jasmonates accumulate during natural and dark-induced senescence but the increase in these compounds is not essential for the initiation or progression of these senescence processes. Here we report that during natural and dark-induced senescence the increase in jasmonate levels does not trigger jasmonate signaling. Furthermore we provide evidence that jasmonate production might result from membrane turnover during dark-induced senescence. PMID:21057217

  15. The ER stress regulator Bip mediates cadmium-induced autophagy and neuronal senescence

    PubMed Central

    Wang, Tao; Yuan, Yan; Zou, Hui; Yang, Jinlong; Zhao, Shiwen; Ma, Yonggang; Wang, Yi; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Liu, Zongping; Zhu, Jiaqiao

    2016-01-01

    Autophagy is protective in cadmium (Cd)-induced oxidative damage. Endoplasmic reticulum (ER) stress has been shown to induce autophagy in a process requiring the unfolded protein response signalling pathways. Cd treatment significantly increased senescence in neuronal cells, which was aggravated by 3-MA or silencing of Atg5 and abolished by rapamycin. Cd increased expression of ER stress regulators Bip, chop, eIf2α, and ATF4, and activated autophagy as evidenced by upregulated LC3. Moreover, the ER stress inhibitor mithramycin inhibited the expression of ER stress protein chaperone Bip and blocked autophagic flux. Downregulating Bip significantly blocked the conversion of LC3-I to LC3-II, decreased LC3 puncta formation, and prevented the increase of senescence in PC12 cells. Interestingly, knocking down Bip regulated the expression of p-AMPK, p-AKT and p-s6k induced by Cd. BAPTA, a Bip inhibitor, decreased the expression of p-AMPK and LC3-II, but enhanced neuronal senescence. In addition, we found that siRNA for Bip enhanced GATA4 expression after 6 h Cd exposure in PC12 cells, while rapamycin treatment decreased GATA4 levels induced by 24 h Cd exposure. These results indicate that autophagy degraded GATA4 in a Bip-dependent way. Our findings suggest that autophagy regulated by Bip expression after ER stress suppressed Cd-induced neuronal senescence. PMID:27905509

  16. Evidence of cellular senescence during the development of estrogen-induced pituitary tumors.

    PubMed

    Sabatino, Maria Eugenia; Petiti, Juan Pablo; Sosa, Liliana Del Valle; Pérez, Pablo Anibal; Gutiérrez, Silvina; Leimgruber, Carolina; Latini, Alexandra; Torres, Alicia Inés; De Paul, Ana Lucía

    2015-06-01

    Although pituitary adenomas represent 25% of intracranial tumors, they are usually benign, with the mechanisms by which these tumors usually avoid an invasive profile and metastatic growth development still remaining unclear. In this context, cellular senescence might constitute a plausible explanation for the benign nature of pituitary adenomas. In this study, we investigated the emergence of cellular senescence as a growth control mechanism during the progression of estrogen-induced pituitary tumors. The quantification of Ki67-immunopositive cells in the pituitaries of estrogenized male rats after 10, 20, 40, and 60 days revealed that the mitogenic potential rate was not sustained for the whole period analyzed and successively decreased after 10 days of estrogen exposure. In addition, the expression of cellular senescence features, such as the progressive rise in the enzymatic senescence-associated b-galactosidase (SA-b-gal) activity, IL6, IL1b, and TGFb expression, was observed throughout pituitary tumor development. Furthermore, tumoral pituitary cells also displayed nuclear pATM expression, indicating activated DNA damage signaling, with a significant increase in p21 expression also being detected. The associations among DNA damage signaling activation, SA-b-gal expression, and p21 may provide a reliable combination of senescence-associated markers for in vivo pituitary senescence detection. These results suggest a role for this cellular process in the regulation of pituitary cell growth. Thus, cellular senescence should be conceived as a contributing component to the benign nature of pituitary adenomas, thereby influencing the capability of the pituitary gland to avoid unregulated cell proliferation.

  17. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes.

    PubMed

    Talla, Sai Krishna; Panigrahy, Madhusmita; Kappara, Saivishnupriya; Nirosha, P; Neelamraju, Sarla; Ramanan, Rajeshwari

    2016-03-01

    The phytohormone cytokinin (CK) is known to delay senescence in plants. We studied the effect of a CK analog, 6-benzyl adenine (BA), on rice leaves to understand the possible mechanism by which CK delays senescence in a drought- and heat-tolerant rice cultivar Nagina22 (N22) using dark-induced senescence (DIS) as a surrogate for natural senescence of leaves. Leaves of N22-H-dgl162, a stay-green mutant of N22, and BA-treated N22 showed retention of chlorophyll (Chl) pigments, maintenance of the Chl a/b ratio, and delay in reduction of both photochemical efficiency and rate of oxygen evolution during DIS. HPLC analysis showed accumulation of 7-hydroxymethyl chlorophyll (HmChl) during DIS, and the kinetics of its accumulation correlated with progression of senescence. Transcriptome analysis revealed that several plastid-localized genes, specifically those associated with photosystem II (PSII), showed higher transcript levels in BA-treated N22 and the stay-green mutant leaves compared with naturally senescing N22 leaves. Real-time PCR analyses showed that genes coding for enzymes associated with Chl a/b interconversion and proteins associated with light-harvesting complexes maintained higher transcript levels up to 72h of DIS following BA treatment. The pigment-protein complexes analyzed by green gel remained intact in both N22-H-dgl162 and BA-treated N22 leaves even after 96h of DIS. Thus, CK delays senescence by accumulation of HmChl and up-regulating genes in the Chl cycle, thereby maintaining the Chl a/b ratio. Also, CK treatment retains higher transcript levels of PSII-related genes, resulting in the stability of photosynthetic pigment complexes and functional stay-greenness in rice.

  18. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    SciTech Connect

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  19. CREG1 enhances p16(INK4a) -induced cellular senescence.

    PubMed

    Moolmuang, Benchamart; Tainsky, Michael A

    2011-02-01

    Cellular senescence is an irreversible growth arrest that is activated in normal cells upon shortening of telomere and other cellular stresses. Bypassing cellular senescence is a necessary step for cells to become immortal during oncogenic transformation. During the spontaneous immortalization of Li-Fraumeni Syndrome (LFS) fibroblasts, we found that CREG1 (Cellular Repressor of E1A-stimulated Genes 1) expression was decreased during immortalization and increased in senescence. Moreover, we found that repression of CREG1 expression occurs via an epigenetic mechanism, promoter DNA methylation. Ectopic expression of CREG1 in the immortal LFS cell lines decreases cell proliferation but does not directly induce senescence. We confirmed this in osteosarcoma and fibrosarcoma cancer cell lines, cancers commonly seen in Li-Fraumeni Syndrome. In addition, we found that p16 (INK4a) is also downregulated in immortal cells and that coexpression of CREG1 and p16 (INK4a) , an inhibitor of CDK4/6 and Rb phosphorylation, has a greater effect than either CREG1 and p16 (INK4a) alone to reduce cell growth, induce cell cycle arrest and cellular senescence in immortal LFS fibroblasts, osteosarcoma and fibrosarcoma cell lines. Moreover, cooperation of CREG1 and p16 (INK4a) inhibits the expression of cyclin A and cyclin B by inhibiting promoter activity thereby decreasing mRNA and protein levels; these proteins are required for S-phase entry and G2/M transition. In conclusion, this is the first evidence to demonstrate that CREG1 enhances p16 (INK4a) -induced senescence by transcriptional repression of cell cycle-regulated genes.

  20. The Effect of Caffeine and chk2 Inhibitor on Doxorubicin-Induced Cellular Senescence in MCF-7 Cells.

    PubMed

    Mohammadrezaei, F Mir; Movaghar, A Fayyaz; Gharghabi, M

    2016-09-01

    Senescence is cellular growth arrest. Induction of senescence can be considered as an alternative approach for treating cancer cells being resistance to anti-cancer drugs. We investigated the effect of caffeine and chk2 inhibitor on doxorubicin induced senescence in MCF-7 cells. Caffeine and chk2 inhibitor were used in combination with doxorubicin. Cellular senescence was assessed by β-galactosidase assay. P21 expression was determined using immunoblotting. Cell proliferation was evaluated using prestoblue assay. Results revealed that doxorubicin induced senescence and increased p21 expression in MCF-7 cells. However, co-treatment of chk2 inhibitor and caffeine with doxorubicin could not augment doxorubicin-induced senescence. Moreover, p21 expression was decreased in combination studies compared to doxorubicin group. Our results indicate that caffeine, chk2 inhibitor and combination of chk2 inhibitor, caffeine and doxorubicin could not increase sensitivity of the cells to doxorubicin-induced senescence. Our findings demonstrate that low-dose doxorubicin induced senescence via the activation of ATM, -chk2, and -p21 pathways, while inhibition of ATM and chk2 cannot consider as a new target for sensitization of MCF-7 cells to doxorubicin. Thus, chk2 inhibitor and caffeine might not serve as desirable agents being capable to restore chemo sensitivity in doxorubicin-resistant breast tumors. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Major heat shock protein Hsp72 controls oncogene-induced senescence.

    PubMed

    Sherman, Michael

    2010-06-01

    Various heat shock proteins, including Hsp72, are strongly upregulated in cancers, but their significance for tumor emergence and growth is poorly understood. Here we review recent data from several labs to indicate that Hsps, including Hsp72, are critical for growth of transformed but not normal cells. By manipulating expression and activity of Hsp72 and several oncogenes, it was shown that Hsp72 suppresses oncogene-induced senescence, thus allowing proliferation of cancer cells. Importantly, Hsp72 is able to suppress both p53-dependent and p53-independent senescence pathways. We propose that targeting Hsp72 may be a promising approach toward development of novel cancer therapies.

  2. Light-induced h secretion and the relation to senescence of oat leaves.

    PubMed

    Gepstein, S

    1982-10-01

    When abraded oat (Avena sativa L. cv Victory) leaf segments are floated on KCl solution, white light causes acidification of the solution external to leaf tissue. The presence of mannitol amplifies the light-induced proton secretion. Mature leaves as well as young ones acidify the medium in light, while senescing leaves (after 3 to 4 days incubated in water in the dark) lose the ability to produce this response to light. The decrease in H(+) secretion is already measureable after as little as 30 minutes in darkness, while the increase in proteolysis rate was detected only after 6 hours in dark. The decrease in capacity to secrete protons is one of the symptoms of leaf senescence. Moreover, fusicoccin mimics light in stimulating H(+) pumping and delaying the senescence in the dark. On the other hand vanadate, an apparent inhibitor of plasma membrane H(+) ATPase, blocks the acidification and promotes the chlorophyll and protein degradation in leaf segments during the 2-day period of incubation. These results, which show a parallel between cessation of H(+) secretion and acceleration of senescence, may suggest a regulatory role for H(+) secretion in leaf senescence.

  3. microRNA-141 regulates BMI1 expression and induces senescence in human diploid fibroblasts.

    PubMed

    Dimri, Manjari; Carroll, Jeremy D; Cho, Joon-Ho; Dimri, Goberdhan P

    2013-11-15

    Polycomb group protein BMI1 is an important regulator of senescence, aging, and cancer. On one hand, it is overexpressed in cancer cells and is required for self-renewal of stem cells. On the other hand, it is downregulated during senescence and aging. MicroRNAs have emerged as major regulators of almost every gene associated with cancer, aging, and related pathologies. At present, very little is known about the miRNAs that regulate the expression of BMI1. Here, we report that miR-141 posttranscriptionally downregulates BMI1 expression in human diploid fibroblasts (HDFs) via a miR-141 targeting sequence in the 3' untranslated region of BMI1 mRNA. We also show that overexpression of miR-141 induces premature senescence in HDFs via targeting of BMI1 in normal but not in exogenous BMI1-overexpressing HDFs. Induction of premature senescence in HDFs was accompanied by upregulation of p16INK4a, an important downstream target of BMI1 and a major regulator of senescence. Our results suggest that miR-141-based therapies could be developed to treat pathologies where BMI1 is deregulated.

  4. Low zinc environment induces stress signaling, senescence and mixed cell death modalities in colon cancer cells.

    PubMed

    Rudolf, Emil; Rudolf, Kamil

    2015-12-01

    Currently it is not clear what type of the final cellular response (i.e. cell death modality or senescence) is induced upon chronic intracellular zinc depletion in colon cancer cells. To address this question, isogenic colon cancer lines SW480 and SW620 exposed to low zinc environment were studied over the period of 6 weeks. Low zinc environment reduced total as well as free intracellular zinc content in both cell lines. Decreased intracellular zinc content resulted in changes in cellular proliferation, cell cycle distribution and activation of stress signaling. In addition, colonocytes with low zinc content displayed increased levels of oxidative stress, changes in mitochondrial activity but in the absence of significant DNA damage. Towards the end of treatment (4th-6th week), exposed cells started to change morphologically, and typical markers of senescence as well as cell death appeared. Of two examined colon cancer cell lines, SW480 cells proved to activate predominantly senescent phenotype, with frequent form of demise being necrosis and mixed cell death modality but not apoptosis. Conversely, SW620 cells activated mostly cell death, with relatively equal distribution of apoptosis and mixed types, while senescent phenotypes and necrosis were present only in a small fraction of cell populations. Addition of zinc at the beginning of 4th week of treatment significantly suppressed cell death phenotypes in both cell lines but had no significant effect on senescence. In conclusion, presented results demonstrate variability of responses to chronic zinc depletion in colon cancer as modeled in vitro.

  5. Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence.

    PubMed

    Liu, Jian; Ji, Yingbin; Zhou, Jun; Xing, Da

    2016-03-01

    PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence.

  6. Thrombospondin-1 mediates oncogenic Ras–induced senescence in premalignant lung tumors

    PubMed Central

    Baek, Kwan-Hyuck; Bhang, Dongha; Zaslavsky, Alexander; Wang, Liang-Chuan; Vachani, Anil; Kim, Carla F.; Albelda, Steven M.; Evan, Gerard I.; Ryeom, Sandra

    2013-01-01

    Progression of premalignant lesions is restrained by oncogene-induced senescence. Oncogenic Ras triggers senescence in many organs, including the lung, which exhibits high levels of the angiogenesis inhibitor thrombospondin-1 (TSP-1). The contribution of TSP-1 upregulation to the modulation of tumorigenesis in the lung is unclear. Using a mouse model of lung cancer, we have shown that TSP-1 plays a critical and cell-autonomous role in suppressing Kras-induced lung tumorigenesis independent of its antiangiogenic function. Overall survival was decreased in a Kras-driven mouse model of lung cancer on a Tsp-1–/– background. We found that oncogenic Kras–induced TSP-1 upregulation in a p53-dependent manner. TSP-1 functioned in a positive feedback loop to stabilize p53 by interacting directly with activated ERK. TSP-1 tethering of ERK in the cytoplasm promoted a level of MAPK signaling that was sufficient to sustain p53 expression and a senescence response. Our data identify TSP-1 as a p53 target that contributes to maintaining Ras-induced senescence in the lung. PMID:24018559

  7. Potassium channel KCNA1 modulates oncogene-induced senescence and transformation.

    PubMed

    Lallet-Daher, Hélène; Wiel, Clotilde; Gitenay, Delphine; Navaratnam, Naveenan; Augert, Arnaud; Le Calvé, Benjamin; Verbeke, Stéphanie; Carling, David; Aubert, Sébastien; Vindrieux, David; Bernard, David

    2013-08-15

    Oncogene-induced senescence (OIS) constitutes a failsafe program that restricts tumor development. However, the mechanisms that link oncogenesis to senescence are not completely understood. We carried out a loss-of-function genetic screen that identified the potassium channel KCNA1 as a determinant of OIS escape that can license tumor growth. Oncogenic stress triggers an increase in KCNA1 expression and its relocation from the cytoplasm to the membrane. Mechanistically, this relocation is due to a loss of protein kinase A (PKA)-induced phosphorylation at residue S446 of KCNA1. Accordingly, sustaining PKA activity or expressing a KCNA1 phosphomimetic mutant maintained KCNA1 in the cytoplasm and caused escape from OIS. KCNA1 relocation to the membrane induced a change in membrane potential that invariably resulted in cellular senescence. Restoring KCNA1 expression in transformation-competent cells triggered variation in membrane potential and blocked RAS-induced transformation, and PKA activation suppressed both effects. Furthermore, KCNA1 expression was reduced in human cancers, and this decrease correlated with an increase in breast cancer aggressiveness. Taken together, our results identify a novel pathway that restricts oncogenesis through a potassium channel-dependent senescence pathway.

  8. Progesterone receptors induce FOXO1-dependent senescence in ovarian cancer cells

    PubMed Central

    Diep, Caroline H.; Charles, Nathan J.; Gilks, C. Blake; Kalloger, Steve E.; Argenta, Peter A.; Lange, Carol A.

    2013-01-01

    Loss of nuclear progesterone receptors (PR) and low circulating progesterone levels are associated with increased ovarian cancer (OC) risk. However, PR are abundantly expressed in a significant percentage of serous and endometrioid ovarian tumors; patients with PR+ tumors typically experience longer progression-free survival relative to those with PR-null tumors. The molecular mechanisms of these protective effects are poorly understood. To study PR action in OC in the absence of added estrogen (i.e., needed to induce robust PR expression), we created ES-2 OC cells stably expressing vector control or GFP-tagged PR-B (GFP-PR). Progestin (R5020) stimulation of ES-2 cells stably expressing GFP-PR induced cellular senescence characterized by altered cellular morphology, prolonged survival, senescence-associated β-galactosidase activity, G1 cell cycle arrest and upregulation of the cell cycle inhibitor, p21, as well as the Forkhead-box transcription factor, FOXO1; these results repeated in unmodified ER+/PR+ PEO4 OC cells. PR-B and FOXO1 were detected within the same PRE-containing regions of the p21 upstream promoter. Knockdown of p21 resulted in molecular compensation via FOXO1-dependent upregulation of numerous FOXO1 target genes (p15, p16, p27) and an increased rate of senescence. Inhibition of FOXO1 (with AS1842856) or stable FOXO1 knockdown inhibited progestin-induced p21 expression and blocked progestin-induced senescence. Overall, these findings support a role for PR as a tumor suppressor in OC cells, which exhibits inhibitory effects by inducing FOXO1-dependent cellular senescence. Clinical “priming” of the PR-FOXO1-p21 signaling pathway using PR agonists may provide a useful strategy to induce irreversible cell cycle arrest and thereby sensitize OC cells to existing chemotherapies as part of combination “two-step” therapies. PMID:23574718

  9. Tumor Suppressor and Aging Biomarker p16INK4a Induces Cellular Senescence without the Associated Inflammatory Secretory Phenotype*

    PubMed Central

    Coppé, Jean-Philippe; Rodier, Francis; Patil, Christopher K.; Freund, Adam; Desprez, Pierre-Yves; Campisi, Judith

    2011-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of cells that experience potentially oncogenic stimuli. Senescent cells often express p16INK4a, a cyclin-dependent kinase inhibitor, tumor suppressor, and biomarker of aging, which renders the senescence growth arrest irreversible. Senescent cells also acquire a complex phenotype that includes the secretion of many cytokines, growth factors, and proteases, termed a senescence-associated secretory phenotype (SASP). The SASP is proposed to underlie age-related pathologies, including, ironically, late life cancer. Here, we show that ectopic expression of p16INK4a and another cyclin-dependent kinase inhibitor, p21CIP1/WAF1, induces senescence without a SASP, even though they induced other features of senescence, including a stable growth arrest. Additionally, human fibroblasts induced to senesce by ionizing radiation or oncogenic RAS developed a SASP regardless of whether they expressed p16INK4a. Cells induced to senesce by ectopic p16INK4a expression lacked paracrine activity on epithelial cells, consistent with the absence of a functional SASP. Nonetheless, expression of p16INK4a by cells undergoing replicative senescence limited the accumulation of DNA damage and premature cytokine secretion, suggesting an indirect role for p16INK4a in suppressing the SASP. These findings suggest that p16INK4a-positive cells may not always harbor a SASP in vivo and, furthermore, that the SASP is not a consequence of p16INK4a activation or senescence per se, but rather is a damage response that is separable from the growth arrest. PMID:21880712

  10. SNEV(Prp19/PSO4) deficiency increases PUVA-induced senescence in mouse skin.

    PubMed

    Monteforte, Rossella; Beilhack, Georg F; Grausenburger, Reinhard; Mayerhofer, Benjamin; Bittner, Reginald; Grillari-Voglauer, Regina; Sibilia, Maria; Dellago, Hanna; Tschachler, Erwin; Gruber, Florian; Grillari, Johannes

    2016-03-01

    Senescent cells accumulate during ageing in various tissues and contribute to organismal ageing. However, factors that are involved in the induction of senescence in vivo are still not well understood. SNEV(P) (rp19/) (PSO) (4) is a multifaceted protein, known to be involved in DNA damage repair and senescence, albeit only in vitro. In this study, we used heterozygous SNEV(+/-) mice (SNEV-knockout results in early embryonic lethality) and wild-type littermate controls as a model to elucidate the role of SNEV(P) (rp19/) (PSO) (4) in DNA damage repair and senescence in vivo. We performed PUVA treatment as model system for potently inducing cellular senescence, consisting of 8-methoxypsoralen in combination with UVA on mouse skin to induce DNA damage and premature skin ageing. We show that SNEV(P) (rp19/) (PSO) (4) expression decreases during organismal ageing, while p16, a marker of ageing in vivo, increases. In response to PUVA treatment, we observed in the skin of both SNEV(P) (rp19/) (PSO) (4) and wild-type mice an increase in γ-H2AX levels, a DNA damage marker. In old SNEV(P) (rp19/) (PSO) (4) mice, this increase is accompanied by reduced epidermis thickening and increase in p16 and collagenase levels. Thus, the DNA damage response occurring in the mouse skin upon PUVA treatment is dependent on SNEV(P) (rp19/) (PSO) (4) expression and lower levels of SNEV(P) (rp19/) (PSO) (4) , as in old SNEV(+/-) mice, result in increase in cellular senescence and acceleration of premature skin ageing.

  11. Connecting radiation-induced bystander effects and senescence to improve radiation response prediction.

    PubMed

    Poleszczuk, Jan; Krzywon, Aleksandra; Forys, Urszula; Widel, Maria

    2015-05-01

    For the last two decades radiation-induced bystander effects (RIBEs) have attracted significant attention due to their possible implications for radiotherapy. However, despite extensive research, the molecular pathways associated with RIBEs are still not completely known. In the current study we investigated the role of senescence in the bystander response. Irradiated (2, 4, 6 and 8 Gy) human colorectal carcinoma cells (HCT116) with p53(+/+) (wild-type) or p53(-/-) (knockout) gene were co-incubated with nonirradiated cells of the same type. Clonogenic and senescence assays were used for both irradiated and co-incubated bystander cell populations. We also performed additional measurements on the number of remaining cells after the whole co-incubation period. For radiation doses larger than 2 Gy we observed much larger fractions of senescent cells in p53-positive populations compared to their p53-negative counterparts (15.81% vs. 3.63% in the irradiated population; 2.89% vs. 1.05% in the bystander population; 8 Gy; P < 0.05). Statistically significant differences between cell lines in the clonogenic cell surviving fraction were observed for doses higher than 4 Gy (1.61% for p53(+/+) vs. 0.19% for p53(-/-) in irradiated population; 3.57% for +/+ vs. 50.39% for -/- in bystander population; 8 Gy; P < 0.05). Our main finding was that the number of senescent cells in the irradiated population correlated strongly with the clonogenic cell surviving fraction (R = -0.98, P < 0.001) and the number of senescent cells (R = 0.97, P < 0.001) in the bystander population. We also extended the standard linear-quadratic radiation response model by incorporating the influence of the signals released by the senescent cells, which accurately described the radiation response in the bystander population. Our findings suggest that radiation-induced senescence might be a key player in RIBE, i.e., the strength of RIBE depends on the amount of radiation-induced senescence.

  12. UVB-Induced Senescence of Human Dermal Fibroblasts Involves Impairment of Proteasome and Enhanced Autophagic Activity.

    PubMed

    Cavinato, Maria; Koziel, Rafal; Romani, Nikolaus; Weinmüllner, Regina; Jenewein, Brigitte; Hermann, Martin; Dubrac, Sandrine; Ratzinger, Gudrun; Grillari, Johannes; Schmuth, Matthias; Jansen-Dürr, Pidder

    2017-05-01

    In the current study, we have extended previous findings aiming at a better understanding of molecular mechanisms underlying UVB-induced senescence of diploid human dermal fibroblasts (HDFs), an experimental model to study the process of photoaging in the skin. We provide evidence that the inhibition of proteasomal degradation of damaged proteins and the activation of autophagosome formation are early events in UVB-induced senescence of HDFs, dependent on UVB-induced accumulation of reactive oxygen species. Our data suggest that autophagy is required for the establishment of the senescent phenotype in UVB-treated HDFs and that inhibition of autophagy is sufficient to change the cell fate from senescence to cell death by apoptosis. Studies in reconstructed skin equivalents revealed that UVB irradiation triggers hallmarks of autophagy induction in the dermal layer. These findings have potential implications for fundamental as well as translational research into skin aging, in particular photoaging. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Anti-photoaging potential of Botulinum Toxin Type A in UVB-induced premature senescence of human dermal fibroblasts in vitro through decreasing senescence-related proteins.

    PubMed

    Permatasari, Felicia; Hu, Yan-yan; Zhang, Jia-an; Zhou, Bing-rong; Luo, Dan

    2014-04-05

    This study was aimed to evaluate the anti-photoaging effects of Botulinum Toxin Type A (BoNTA) in Ultraviolet B-induced premature senescence (UVB-SIPS) of human dermal fibroblasts (HDFs) in vitro and the underlying mechanism. We established a stress-induced premature senescence model by repeated subcytotoxic exposures to Ultraviolet B (UVB) irradiation. The aging condition was determined by cytochemical staining of senescence-associated β-galactosidase (SA-β-gal). The tumor suppressor and senescence-associated protein levels of p16(INK-4a), p21(WAF-1), and p53 were estimated by Western blotting. The G1 phase cell growth arrest was analyzed by flow cytometry. The mRNA expressions of p16, p21, p53, COL1a1, COL3a1, MMP1, and MMP3 were determined by real-time PCR. The level of Col-1, Col-3, MMP-1, and MMP-3 were determined by ELISA. Compared with the UVB-irradiated group, we found that the irradiated fibroblasts additionally treated with BoNTA demonstrated a decrease in the expression of SA-β-gal, a decrease in the level of tumor suppressor and senescence-associated proteins, a decrease in the G1 phase cell proportion, an increase in the production of Col-1 and Col-3, and a decrease in the secretion of MMP-1 and MMP-3, in a dose-dependent manner. Taken together, these results indicate that BoNTA significantly antagonizes premature senescence induced by UVB in HDFs in vitro, therefore potential of intradermal BoNTA injection as anti-photoaging treatment still remains a question. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway

    SciTech Connect

    Kim, Hag Dong; Jang, Chang-Young; Choe, Jeong Min; Sohn, Jeongwon; Kim, Joon

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.

  15. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence

    PubMed Central

    Jin, H; Lian, N; Zhang, F; Chen, L; Chen, Q; Lu, C; Bian, M; Shao, J; Wu, L; Zheng, S

    2016-01-01

    Activation of quiescent hepatic stellate cells (HSCs) is the major event in hepatic fibrogenesis, along with enhancement of cell proliferation and overproduction of extracellular matrix. Although inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSCs, a better understanding of the senescence of activated HSCs can provide a new therapeutic strategy for prevention and treatment of liver fibrosis. The antioxidant curcumin, a phytochemical from turmeric, has been shown to suppress HSC activation in vitro and in vivo. The current work was aimed to evaluate the effect of curcumin on senescence of activated HSCs and to elucidate the underlying mechanisms. In this study, curcumin promoted the expression of senescence marker Hmga1 in rat fibrotic liver. In addition, curcumin increased the number of senescence-associated β-galactosidase-positive HSCs in vitro. At the same time, curcumin induced HSC senescence by elevating the expression of senescence markers P16, P21 and Hmga1, concomitant with reduced abundance of HSC activation markers α-smooth muscle actin and α1(I)-procollagen in cultured HSCs. Moreover, curcumin affected the cell cycle and telomerase activity. We further demonstrated that P53 pharmacological inhibitor pifithrin-α (PFT-α) or transfection with P53 siRNA abrogated the curcumin-induced HSC senescence in vitro. Meanwhile, curcumin disruption of P53 leading to increased senescence of activated HSCs was further verified in vivo. Further studies indicated that curcumin promoted the expression of P53 through a PPARγ activation-dependent mechanism. Moreover, promoting PPARγ transactivating activity by a PPARγ agonist 15d-PGJ2 markedly enhanced curcumin induction of senescence of activated HSCs. However, the PPARγ antagonist PD68235 eliminated curcumin induction of HSC senescence. Taken together, our results provided a novel insight into the mechanisms underlying curcumin inhibition of HSC

  16. Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells.

    PubMed

    Mishra, Rachana; Kaur, Gurcharan

    2015-08-01

    Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells.

  17. The mitogen-inducible gene-6 is involved in regulation of cellular senescence in normal diploid fibroblasts.

    PubMed

    Xie, Bushan; Zhao, Lin; Chen, Hao; Jin, Bo; Mao, Zebin; Yao, Zhi

    2013-10-01

    The mitogen-inducible gene-6 (Mig-6) is a non-kinase scaffolding adaptor protein. It has been shown that Mig-6 may play important roles in regulating stress response, maintaining homeostasis and functioning as a tumour suppressor. In this study, we investigated the role of Mig-6 in cellular senescence. Our results showed that Mig-6 is up-regulated during the senescence process. Functional analysis indicated that cells over-expressing Mig-6 have reduced DNA synthesis and showed the signs of senescence. Knockdown of Mig-6 delayed the initiation of Ras-induced cellular senescence. These results suggest that the increase of Mig-6 expression contributes to establishment of cellular senescence. Furthermore, our results showed that Mig-6 induction of senescence is related to its inhibition of EGF receptor (EGFR)/Erb B signalling. Subsequent analysis of the mechanism responsible for the up-regulation of its expression showed that FOXO3A transcriptionally up-regulates Mig-6 expression via directly binding to the FOXO response element in Mig-6 5'-flanking regulatory sequences. Mig-6 induces premature senescence via functioning in regulation of cellular senescence in normal diploid fibroblasts. © 2013 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  18. Transcription Analysis of Arabidopsis Membrane Transporters and Hormone Pathways during Developmental and Induced Leaf Senescence1[W

    PubMed Central

    van der Graaff, Eric; Schwacke, Rainer; Schneider, Anja; Desimone, Marcelo; Flügge, Ulf-Ingo; Kunze, Reinhard

    2006-01-01

    A comparative transcriptome analysis for successive stages of Arabidopsis (Arabidopsis thaliana) developmental leaf senescence (NS), darkening-induced senescence of individual leaves attached to the plant (DIS), and senescence in dark-incubated detached leaves (DET) revealed many novel senescence-associated genes with distinct expression profiles. The three senescence processes share a high number of regulated genes, although the overall number of regulated genes during DIS and DET is about 2 times lower than during NS. Consequently, the number of NS-specific genes is much higher than the number of DIS- or DET-specific genes. The expression profiles of transporters (TPs), receptor-like kinases, autophagy genes, and hormone pathways were analyzed in detail. The Arabidopsis TPs and other integral membrane proteins were systematically reclassified based on the Transporter Classification system. Coordinate activation or inactivation of several genes is observed in some TP families in all three or only in individual senescence types, indicating differences in the genetic programs for remobilization of catabolites. Characteristic senescence type-specific differences were also apparent in the expression profiles of (putative) signaling kinases. For eight hormones, the expression of biosynthesis, metabolism, signaling, and (partially) response genes was investigated. In most pathways, novel senescence-associated genes were identified. The expression profiles of hormone homeostasis and signaling genes reveal additional players in the senescence regulatory network. PMID:16603661

  19. Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells

    PubMed Central

    Ejaz, Asim; Mattesich, Monika; Zwerschke, Werner

    2017-01-01

    Inhibition of Akt-mTOR signaling protects from obesity and extends life span in animals. In the present study, we analyse the impact of the small GTPase, GTP-binding RAS-like 3 (DIRAS3), a recently identified weight-loss target gene, on cellular senescence in adipose stromal/progenitor cells (ASCs) derived from human subcutaneous white adipose tissue (sWAT). We demonstrate that DIRAS3 knock-down (KD) in ASCs induces activation of Akt-mTOR signaling and proliferation arrest. DIRAS3 KD ASCs lose the potential to form colonies and are negative for Ki-67. Moreover, silencing of DIRAS3 results in a premature senescence phenotype. This is characterized by senescence-associated β-galactosidase positive enlarged ASCs containing increased p16INK4A level and activated retinoblastoma protein. DIRAS3 KD ASCs form senescence-associated heterochromatic foci as shown by increased level of γ-H2A.X positive foci. Furthermore, these cells express a senescence-associated secretory phenotype characterized by increased interleukin-8 secretion. Human DIRAS3 KD ASCs develop also a senescence phenotype in sWAT of SCID mice. Finally, we show that DIRAS3 KD in ASCs stimulates both adipogenic differentiation and premature senescence. In conclusion, our data suggest that silencing of DIRAS3 in ASCs and subsequently hyper-activation of Akt-mTOR drives adipogenesis and premature senescence. Moreover, differentiating ASCs and/or mature adipocytes may acquire features of cellular senescence. PMID:28316325

  20. Curcumin Attenuates Hydrogen Peroxide-Induced Premature Senescence via the Activation of SIRT1 in Human Umbilical Vein Endothelial Cells.

    PubMed

    Sun, Yueliu; Hu, Xiaorong; Hu, Gangying; Xu, Changwu; Jiang, Hong

    2015-01-01

    Endothelial senescence has been proposed to be involved in endothelial dysfunction and atherogenesis. Curcumin, a natural phenol, possesses antioxidant and anti-inflammatory properties. However, the effect of curcumin on endothelial senescence is unclear. This study explores the effect of curcumin on hydrogen peroxide (H2O2)-induced endothelial premature senescence and the mechanisms involved. Human umbilical vein endothelial cells (HUVECs) were cultured, and premature senescence was induced with 100 µM H2O2. Results showed that pretreatment with curcumin significantly attenuated the H2O2-induced HUVECs' premature senescence, which was evidenced by a decreased percentage of senescence-associated β-galactosidase positive cells, improved cell division and decreased expression of senescence-associated protein p21 (all p<0.05). Pretreatment with curcumin decreased oxidative stress and apoptosis in H2O2-treated HUVECs. Treatment of HUVECs with H2O2 also down-regulated the phosphorylation of endothelial nitric oxide synthase (eNOS), decreased the level of nitric oxide in the culture medium, and inhibited the protein expression and enzymatic activity of silent information regulator 1 (SIRT1), while pretreatment with curcumin partly reversed these effects (all p<0.05). Treatment with curcumin alone enhanced the enzymatic activity of SIRT1, but didn't affect cellular senescence, cell growth or apoptosis compared to the Control. The inhibition of SIRT1 using SIRT1 short interfering RNA (siRNA) could decrease the expression and phosphorylation of eNOS and abrogate the protective effect of curcumin on H2O2-induced premature senescence. These findings suggest that curcumin could attenuate oxidative stress-induced HUVECs' premature senescence via the activation of SIRT1.

  1. Guiqi polysaccharide protects the normal human fetal lung fibroblast WI-38 cells from H2O2-induced premature senescence.

    PubMed

    Pu, Xiuying; Yu, Shuang; Fan, Wenbo; Liu, Lu; Ma, Xiaolong; Ren, Jing

    2015-01-01

    This study is to investigate the effects of Guiqi polysaccharide (GQP) on H2O2-induced premature senescence in normal human fetal lung fibroblast WI-38 cells. WI-38 cells were subjected to treatments of GQP, Angelica sinensis polysaccharide (ASP), and Astragalus membranaceus polysaccharide (AMP), and then treated with H2O2 to induce premature senescence. Morphological observation, MTT assay, senescence-associated β-galactosidase activity assessment, telomerase activity determination, cell cycle analysis, and Western blot analysis were performed to evaluate cellular senescence. H2O2 treatment induced premature senescence in WI-38 cells, as indicated by the decreased fibroblast proliferation activity and changed cellular morphology. When treated with GQP, ASP, or AMP, the morphological changes in WI-38 cells induced by H2O2 could be restored. SA-β-gal activity was elevated in H2O2-treated WI-38 cells, which could be decreased by GQP treatment. Moreover, compared with the normal control, H2O2 treatment significantly inhibited the telomerase activity of WI-38 cells. However, GQP effectively elevated the telomerase activity of these senescent cells. Furthermore, flow cytometry and cell cycle analysis showed that GQP treatment could abrogate the cell cycle arrest in H2O2-treated WI-38 cells, which might contribute to the anti-senescent effects. In addition, GQP significantly affected the p53-p21 and p16-pRb pathways in H2O2-treated WI-38 cells. The effectiveness of GQP was superior to AMP or ASP treatment alone. GQP has protective effects in oxidative stress-induced senescence. Our findings suggest the promising role of GQP as an attractive and bio-safe agent with the potential to retard senescence and attenuate senescence-related diseases.

  2. The STAT3-IGFBP5 axis is critical for IL-6/gp130-induced premature senescence in human fibroblasts.

    PubMed

    Kojima, Hirotada; Kunimoto, Hiroyuki; Inoue, Toshiaki; Nakajima, Koichi

    2012-02-15

    Cells undergo senescence in response to various conditions, including telomere erosion, oncogene activation and multiple cytokines. One of these cytokines, interleukin-6 (IL‑6), not only functions in the immune system, but also promotes cellular senescence and cancer. Here we demonstrate that IL‑6 and the soluble IL‑6 receptor (sIL‑6R) induce premature senescence in normal human fibroblasts by establishing a senescence-inducing circuit involving the signal transducer and activator of transcription 3 (STAT3) and insulin-like growth factor-binding protein 5 (IGFBP5). Stimulating TIG3 fibroblast cells with IL‑6/sIL‑6R sequentially caused an increase in reactive oxygen species (ROS) as early as day 1, followed by the DNA damage response, p53 accumulation and, finally, senescence on days 8-10. We found that STAT3 was required for the events leading to senescence, including the initial early-phase ROS increase and the induction of IL‑1α/β, IL‑6 and CXCL8 mRNAs 4-5 d after IL‑6/sIL‑6R stimulation, suggesting that STAT3's role is indirect. We searched for STAT3-downstream molecule(s) responsible for the senescence-inducing activity in the supernatants of stimulated TIG3 and identified IGFBP5 as a major STAT3 mediator, because IGFBP5 was expressed from the early phase through the entire senescence process and was responsible for IL‑6/STAT3-induced ROS increase and premature senescence. Thus, IL‑6/sIL‑6R forms a senescence-inducing circuit involving the STAT3-IGFBP5 axis as a key triggering and reinforcing component.

  3. Metronomic topotecan impedes tumor growth of MYCN-amplified neuroblastoma cells in vitro and in vivo by therapy induced senescence

    PubMed Central

    Taschner-Mandl, Sabine; Schwarz, Magdalena; Blaha, Johanna; Kauer, Maximilian; Kromp, Florian; Frank, Nelli; Rifatbegovic, Fikret; Weiss, Tamara; Ladenstein, Ruth; Hohenegger, Martin; Ambros, Inge M.; Ambros, Peter F.

    2016-01-01

    Poor prognosis and frequent relapses are major challenges for patients with high-risk neuroblastoma (NB), especially when tumors show MYCN amplification. High-dose chemotherapy triggers apoptosis, necrosis and senescence, a cellular stress response leading to permanent proliferative arrest and a typical senescence-associated secretome (SASP). SASP components reinforce growth-arrest and act immune-stimulatory, while others are tumor-promoting. We evaluated whether metronomic, i.e. long-term, repetitive low-dose, drug treatment induces senescence in vitro and in vivo. And importantly, by using the secretome as a discriminator for beneficial versus adverse effects of senescence, drugs with a tumor-inhibiting SASP were identified. We demonstrate that metronomic application of chemotherapeutic drugs induces therapy-induced senescence, characterized by cell cycle arrest, p21WAF/CIP1 up-regulation and DNA double-strand breaks selectively in MYCN-amplified NB. Low-dose topotecan (TPT) was identified as an inducer of a favorable SASP while lacking NFKB1/p50 activation. In contrast, Bromo-deoxy-uridine induced senescent NB-cells secret a tumor-promoting SASP in a NFKB1/p50-dependent manner. Importantly, TPT-treated senescent tumor cells act growth-inhibitory in a dose-dependent manner on non-senescent tumor cells and MYCN expression is significantly reduced in vitro and in vivo. Furthermore, in a mouse xenotransplant-model for MYCN-amplified NB metronomic TPT leads to senescence selectively in tumor cells, complete or partial remission, prolonged survival and a favorable SASP. This new mode-of-action of metronomic TPT treatment, i.e. promoting a tumor-inhibiting type of senescence in MYCN-amplified tumors, is clinically relevant as metronomic regimens are increasingly implemented in therapy protocols of various cancer entities and are considered as a feasible maintenance treatment option with moderate adverse event profiles. PMID:26657295

  4. Senescence-induced loss in photosynthesis enhances cell wall beta-glucosidase activity.

    PubMed

    Mohapatra, Pranab Kishor; Patro, Lichita; Raval, Mukesh Kumar; Ramaswamy, Nemmara Krishnan; Biswal, Udaya Chand; Biswal, Basanti

    2010-03-01

    A link between senescence-induced decline in photosynthesis and activity of beta-glucosidase is examined in the leaves of Arabidopsis. The enzyme is purified and characterized. The molecular weight of the enzyme is 58 kDa. It shows maximum activity at pH 5.5 and at temperature of 50 degrees C. Photosynthetic measurements and activity of the enzyme are conducted at different developmental stages including senescence of leaves. Senescence causes a significant loss in total chlorophyll, stomatal conductance, rate of evaporation and in the ability of the leaves for carbon dioxide fixation. The process also brings about a decline in oxygen evolution, quantum yield of photosystem II (PS II) and quantum efficiency of PS II photochemistry of thylakoid membrane. The loss in photosynthesis is accompanied by a significant increase in the activity of the cell wall-bound beta-glucosidase that breaks down polysaccharides to soluble sugars. The loss in photosynthesis as a signal for the enhancement in the activity of the enzyme is confirmed from the observation that incubation of excised mature leaves in continuous dark or in light with a photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) that leads to sugar starvation enhances the activity of the enzyme. The work suggests that in the background of photosynthetic decline, the polysaccharides bound to cell wall that remains intact even during late phase of senescence may be the last target of senescing leaves for a possible source of sugar for remobilization and completion of the energy-dependent senescence program.

  5. Pituitary gene expression differs in D-galactose-induced cell senescence and steroid-induced prolactinomas.

    PubMed

    Zhang, Tiehui; Zhao, Binhai; Li, Jia; Zhang, Chunlei; Li, Hongzhi; Wu, Jiang; Zhang, Shiming; Hui, Guozhen

    2015-04-01

    In general, pituitary tumors are benign with low mitotic activity. Premature senescence has been considered to be a significant mechanism underlying this uniquely benign pituitary tumor. The present study aims to compare the expression of the associated proteins involved in premature senescence pathways among normal, aging and pituitary adenoma cells. We successfully induced the aging pituitary using continuous D‑galactose (D‑gal) injection as well as a prolactin‑secreting pituitary tumor via diethylstilbestrol implants. Compared with normal pituitary cells, the aging pituitary tissues revealed increased expression of IL‑6, C/EBPβ, p53, p21 and p16 and decreased expression of pituitary tumor transforming gene. In contrast, the expression of IL‑6, p21 and p16 was decreased in pituitary tumor cells compared with normal pituitary tissues. Taken together, multiple pathways including IL‑6/C/EBPβ, p53/p21 and p16 were activated in aging pituitary cells in response to D‑gal treatment. However, all these pathways were immune to pituitary tumors treated by chronic estrogen. The findings and the involvement of cytokines in a highly prevalent natural disease model (pituitary adenomas) indicate a potential use of this pathway as a target for effective therapy for tumor silencing and prevention of adenoma progression towards malignancy.

  6. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    PubMed

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a, and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH, we used a yeast (Saccharomyces cerevisiae) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant (soc1-6) showed an accelerated yellowing phenotype, whereas those of SOC1-overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis (Arabidopsis thaliana) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES (SAGs) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis.

  7. Senescence-induced iron mobilization in source leaves of barley (Hordeum vulgare) plants.

    PubMed

    Shi, Rongli; Weber, Günther; Köster, Jessica; Reza-Hajirezaei, Mohammad; Zou, Chunqin; Zhang, Fusuo; von Wirén, Nicolaus

    2012-07-01

    • Retranslocation of iron (Fe) from source leaves to sinks requires soluble Fe binding forms. As much of the Fe is protein-bound and associated with the leaf nitrogen (N) status, we investigated the role of N in Fe mobilization and retranslocation under N deficiency- vs dark-induced leaf senescence. • By excluding Fe retranslocation from the apoplastic root pool, Fe concentrations in source and sink leaves from hydroponically grown barley (Hordeum vulgare) plants were determined in parallel with the concentrations of potential Fe chelators and the expression of genes involved in phytosiderophore biosynthesis. • N supply showed opposing effects on Fe pools in source leaves, inhibiting Fe export out of source leaves under N sufficiency but stimulating Fe export from source leaves under N deficiency, which partially alleviated Fe deficiency-induced chlorosis. Both triggers of leaf senescence, shading and N deficiency, enhanced NICOTIANAMINE SYNTHASE2 gene expression, soluble Fe pools in source leaves, and phytosiderophore and citrate rather than nicotianamine concentrations. • These results indicate that Fe mobilization within senescing leaves is independent of a concomitant N sink in young leaves and that phytosiderophores enhance Fe solubility in senescing source leaves, favoring subsequent Fe retranslocation.

  8. Fibroblasts that resist cigarette smoke-induced senescence acquire profibrotic phenotypes.

    PubMed

    Kanaji, Nobuhiro; Basma, Hesham; Nelson, Amy; Farid, Maha; Sato, Tadashi; Nakanishi, Masanori; Wang, Xingqi; Michalski, Joel; Li, YingJi; Gunji, Yoko; Feghali-Bostwick, Carol; Liu, Xiangde; Rennard, Stephen I

    2014-09-01

    This study assessed the effect of extended exposure to cigarette smoke extract (CSE) on tissue repair functions in lung fibroblasts. Human fetal (HFL-1) and adult lung fibroblasts were exposed to CSE for 14 days. Senescence-associated β-galactosidase (SA β-gal) expression, cell proliferation, and tissue repair functions including chemotaxis and gel contraction were assessed. HFL-1 proliferation was inhibited by CSE and nearly half of the CSE-exposed cells were SA β-gal positive after 14 days exposure, whereas 33% of adult lung fibroblasts were SA β-gal positive in response to 10% CSE exposure. The SA β-gal-positive cells did not proliferate as indicated by bromodeoxyuridine incorporation. In contrast, cells negative for SA β-gal after CSE exposure proliferated faster than cells never exposed to CSE. These nonsenescent cells migrated more and contracted collagen gels more than control cells. CSE exposure stimulated TGF-β1 production, and both inhibition of TGF-β receptor kinase and TGF-β1 siRNA blocked CSE modulation of fibroblast function. Extended exposure to CSE might induce two different fibroblast phenotypes, a senescent and a profibrotic phenotype. The fibroblasts that resist CSE-induced cellular senescence may contribute to the pathogenesis of idiopathic pulmonary fibrosis and could contribute to fibrotic lesions in chronic obstructive pulmonary disease acting through a TGF-β1-mediated pathway. In contrast, the senescent cells may contribute to the pathogenesis of emphysema. Copyright © 2014 the American Physiological Society.

  9. Nuclear accumulation of Yes-Associated Protein (YAP) maintains the survival of doxorubicin-induced senescent cells by promoting survivin expression.

    PubMed

    Ma, Kai; Xu, Qing; Wang, Shuren; Zhang, Weina; Liu, Mei; Liang, Shufang; Zhu, Hongxia; Xu, Ningzhi

    2016-05-28

    Although chemotherapeutic drugs can induce senescence to prohibit further division of tumor cells, senescence could also promote tumorigenesis mainly through a senescence-associated secretory phenotype. Therefore, senescent tumor cells should be eliminated immediately to prevent drug resistance and recurrence. Here, we used a doxorubicin-induced senescence model to explore the mechanism underlying the survival of therapy-induced senescent cells. After low-dose doxorubicin treatment, tumor cells turned on a senescence program and became large and flattened, increasing their contact area with the extracellular matrix (ECM). Furthermore, Yes-associated protein (YAP) accumulated in the nucleus and YAP activity was increased in doxorubicin-induced senescent cells. Knockdown of YAP increased the sensitivity of cells to low-dose doxorubicin treatment, causing apoptosis rather than senescence. Moreover, the anti-apoptotic gene survivin, a YAP target gene, was overexpressed in senescent cells. Inhibition of survivin could lead to selective elimination of senescent cells through apoptosis. Our study indicates that nuclear accumulation of YAP could promote the survival of senescent cells by increasing survivin expression. Therefore, targeting YAP or survivin might be a new strategy for clearing senescent cancer cells during drug treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Melatonin reverses H2 O2 -induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway.

    PubMed

    Zhou, Long; Chen, Xi; Liu, Tao; Gong, Yihong; Chen, Sijin; Pan, Guoqing; Cui, Wenguo; Luo, Zong-Ping; Pei, Ming; Yang, Huilin; He, Fan

    2015-09-01

    Mesenchymal stem cells (MSCs) represent an attractive source for stem cell-based regenerative therapy, but they are vulnerable to oxidative stress-induced premature senescence in pathological conditions. We previously reported antioxidant and antiarthritic effects of melatonin on MSCs against proinflammatory cytokines. In this study, we hypothesized that melatonin could protect MSCs from premature senescence induced by hydrogen peroxide (H2 O2 ) via the silent information regulator type 1 (SIRT1)-dependent pathway. In response to H2 O2 at a sublethal concentration of 200 μm, human bone marrow-derived MSCs (BM-MSCs) underwent growth arrest and cellular senescence. Treatment with melatonin before H2 O2 exposure cannot significantly prevent premature senescence; however, treatment with melatonin subsequent to H2 O2 exposure successfully reversed the senescent phenotypes of BM-MSCs in a dose-dependent manner. This result was made evident by improved cell proliferation, decreased senescence-associated β-galactosidase activity, and the improved entry of proliferating cells into the S phase. In addition, treatment with 100 μm melatonin restored the osteogenic differentiation potential of BM-MSCs that was inhibited by H2 O2 -induced premature senescence. We also found that melatonin attenuated the H2 O2 -stimulated phosphorylation of p38 mitogen-activated protein kinase, decreased expression of the senescence-associated protein p16(INK) (4α) , and increased SIRT1. Further molecular experiments revealed that luzindole, a nonselective antagonist of melatonin receptors, blocked melatonin-mediated antisenescence effects. Inhibition of SIRT1 by sirtinol counteracted the protective effects of melatonin, suggesting that melatonin reversed the senescence in cells through the SIRT1-dependent pathway. Together, these findings lay new ground for understanding oxidative stress-induced premature senescence and open perspectives for therapeutic applications of melatonin in stem cell

  11. Purification, characterization and identification of a senescence related serine protease in dark-induced senescent wheat leaves.

    PubMed

    Wang, Renxian; Liu, Shaowei; Wang, Jin; Dong, Qiang; Xu, Langlai; Rui, Qi

    2013-11-01

    Senescence-related proteases play important roles in leaf senescence by regulating protein degradation and nutrient recycling. A 98.9kDa senescence-related protease EP3 in wheat leaves was purified by ammonium sulfate precipitation, Q-Sepharose fast flow anion exchange chromatography and gel slicing after gel electrophoresis. Due to its relatively high thermal stability, its protease activity did not decrease after incubation at 40°C for 1-h. EP3 protease was suggested to be a metal-dependent serine protease, because its activity was inhibited by serine protease inhibitors PMSF and AEBSF and metal related protease inhibitor EGTA. It was identified as a subtilisin-like serine protease of the S8A family based on data from both mass spectrometry and the cloned cDNA sequence. Therefore, these data suggest that a serine protease of the S8A subfamily with specific biochemical properties is involved in senescence-associated protein degradation.

  12. Suppression of autophagy impedes glioblastoma development and induces senescence.

    PubMed

    Gammoh, Noor; Fraser, Jane; Puente, Cindy; Syred, Heather M; Kang, Helen; Ozawa, Tatsuya; Lam, Du; Acosta, Juan Carlos; Finch, Andrew J; Holland, Eric; Jiang, Xuejun

    2016-09-01

    The function of macroautophagy/autophagy during tumor initiation or in established tumors can be highly distinct and context-dependent. To investigate the role of autophagy in gliomagenesis, we utilized a KRAS-driven glioblastoma mouse model in which autophagy is specifically disrupted via RNAi against Atg7, Atg13 or Ulk1. Inhibition of autophagy strongly reduced glioblastoma development, demonstrating its critical role in promoting tumor formation. Further supporting this finding is the observation that tumors originating from Atg7-shRNA injections escaped the knockdown effect and thereby still underwent functional autophagy. In vitro, autophagy inhibition suppressed the capacity of KRAS-expressing glial cells to form oncogenic colonies or to survive low serum conditions. Molecular analyses revealed that autophagy-inhibited glial cells were unable to maintain active growth signaling under growth-restrictive conditions and were prone to undergo senescence. Overall, these results demonstrate that autophagy is crucial for glioma initiation and growth, and is a promising therapeutic target for glioblastoma treatment.

  13. Bisdemethoxycurcumin Increases Sirt1 to Antagonize t-BHP-Induced Premature Senescence in WI38 Fibroblast Cells.

    PubMed

    Li, Ying-Bo; Zhong, Zhang-Feng; Chen, Mei-Wan; Bao, Jiao-Lin; Wu, Guo-Sheng; Zhang, Qing-Wen; Lee, Simon Ming-Yuen; Hoi, Pui-Man; Wang, Yi-Tao

    2013-01-01

    Curcuminoids are well known for their capabilities to combat risk factors that are associated with ageing and cellular senescence. Recent reports have demonstrated that curcuminoids can extend the lifespan of model organisms. However, the underlying mechanisms by which these polyphenic compounds exert these beneficial effects remain unknown. In this study, t-BHP-induced premature senescence model in human fibroblasts was chosen to explore the protective effects of a curcuminoid, bisdemethoxycurcumin (BDMC), on cellular senescence. The results demonstrated that BDMC attenuated oxidative stress-induced senescence-like features which include the induction of an enlarged cellular appearance, higher frequency of senescence-associated β -galactosidase staining activity, appearance of senescence-associated heterochromatic foci in nuclei, decrease in proliferation capability, and alteration in related molecules such as p16 and retinoblastoma protein. Notably, we found that BDMC treatment activated Sirt1/AMPK signaling pathway. Moreover, downregulating Sirt1 by the pharmacological inhibitor nicotianamine or small interfering RNA blocked BDMC-mediated protection against t-BHP-mediated decrease in proliferation. These results suggested that BDMC prevented t-BHP-induced cellular senescence, and BDMC-induced Sirt1 may be a mechanism mediating its beneficial effects.

  14. Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acid-dependent leaf senescence.

    PubMed

    Li, Yuan; Chang, Ying; Zhao, Chongchong; Yang, Hailian; Ren, Dongtao

    2016-08-01

    Leaf senescence is the final leaf developmental process that is regulated by both intracellular factors and environmental conditions. The mitogen-activated protein kinase (MAPK) signaling cascades have been shown to play important roles in regulating leaf senescence; however, the component(s) downstream of the MAPK cascades in regulating leaf senescence are not fully understood. Here we showed that the transcriptions of ZmMEK1, ZmSIMK1, and ZmMPK3 were induced during dark-induced maize leaf senescence. Furthermore, in-gel kinase analysis revealed the 42 kDa MAPK was activated. ZmMEK1 interacted with ZmSIMK1 in yeast and maize mesophyll protoplasts and ZmSIMK1 was activated by ZmMEK1 in vitro. Expression of a dominant negative mutant of ZmMEK1 in Arabidopsis transgenic plants induced salicylic acid (SA) accumulation and SA-dependent leaf senescence. ZmMEK1 interacted with Arabidopsis MPK4 in yeast and activated MPK4 in vitro. SA treatment accelerated dark-induced maize leaf senescence. Moreover, blockage of MAPK signaling increased endogenous SA accumulation in maize leaves. These findings suggest that ZmMEK1-ZmSIMK1 cascade and its modulating SA levels play important roles in regulating leaf senescence.

  15. Mcl-1 regulates reactive oxygen species via NOX4 during chemotherapy-induced senescence.

    PubMed

    Demelash, Abeba; Pfannenstiel, Lukas W; Liu, Li; Gastman, Brian R

    2017-04-25

    Mcl-1, a Bcl-2 family member, is highly expressed in a variety of human cancers and is believed to enhance tumorigenic potential and chemotherapy resistance through the inhibition of apoptosis and senescence. We previously reported that Mcl-1's regulation of chemotherapy-induced senescence (CIS) is dependent on its ability to prevent reactive oxygen species (ROS) generation. In this report, we demonstrate that Mcl-1-regulated CIS requires not only ROS, but specifically mitochondrial ROS, and that these events are upstream of activation of the DNA damage response, another necessary step toward senescence. Mcl-1's anti-senescence activity also involves the unique ability to inhibit ROS formation by preventing the upregulation of pro-oxidants. Specifically, we found that NADPH oxidases (NOXs) are regulated by Mcl-1 and that NOX4 expression in particular is a required step for CIS induction that is blocked by Mcl-1. Lastly, we illustrate that by preventing expression of NOX4, Mcl-1 limits its availability in the mitochondria, thereby lowering the production of mitochondrial ROS during CIS. Our studies not only define the essential role of Mcl-1 in chemoresistance, but also for the first time link a key pro-survival Bcl-2 family member with the NOX protein family, both of which have significant ramifications in cancer progression.

  16. MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence

    PubMed Central

    Wedel, Sophia; Cavinato, Maria; Jansen-Dürr, Pidder

    2017-01-01

    Aging is a time-related process of functional deterioration at cellular, tissue, organelle, and organismal level that ultimately brings life to end. Cellular senescence, a state of permanent cell growth arrest in response to cellular stress, is believed to be the driver of the aging process and age-related disorders. The free radical theory of aging, referred to as oxidative stress (OS) theory below, is one of the most studied aging promoting mechanisms. In addition, genetics and epigenetics also play large roles in accelerating and/or delaying the onset of aging and aging-related diseases. Among various epigenetic events, microRNAs (miRNAs) turned out to be important players in controlling OS, aging, and cellular senescence. miRNAs can generate rapid and reversible responses and, therefore, are ideal players for mediating an adaptive response against stress through their capacity to fine-tune gene expression. However, the importance of miRNAs in regulating OS in the context of aging and cellular senescence is largely unknown. The purpose of our article is to highlight recent advancements in the regulatory role of miRNAs in OS-induced cellular senescence. PMID:28593022

  17. Salidroside protects against premature senescence induced by ultraviolet B irradiation in human dermal fibroblasts.

    PubMed

    Mao, G-X; Xing, W-M; Wen, X-L; Jia, B-B; Yang, Z-X; Wang, Y-Z; Jin, X-Q; Wang, G-F; Yan, J

    2015-06-01

    Salidroside, the predominant component of a Chinese herbal medicine, Rhodiola rosea L., becomes an attractive bio-agent due to its multifunction. Although it is well proposed that this herbal medicine may have photoprotective effect according to the folk hearsay, the direct supportive experimental evidences linking the drug with skin ageing have rarely been reported so far. The study was conducted to investigate the photoprotective role of salidrosdie and its related mechanisms in vitro. First, a premature senescence model induced by UVB irradiation (250 mJ cm(-2)) in human dermal fibroblasts (HDFs) was established, and senescent phenotypes were evaluated by cell morphology, cell proliferation, senescence-associated beta-galactosidase (SA-β-gal) activity and cell cycle distribution. Then the photoprotective effect of salidroside was investigated. Cells were pre-treated with various doses of salidroside (1, 5 and 10 μM) followed by the sublethal dosage of UVB exposure and then were harvested for various detections, including senescence-associated phenotypes and molecules, alteration of oxidative stress, matrix metalloproteinase-1 (MMP-1) secretion and inflammatory response. Pre-treatment of salidroside dose dependently reversed the senescent state of HDFs induced by UVB as evidenced by elevated cell viability, decreased SA-β-gal activity and relieving of G1/G0 cell cycle arrest. UVB-induced increased protein expression of cyclin-dependent kinase (CDK) inhibitors p21(WAF) (1) and p16(INK) (4) was also repressed by salidrosdie treatment in a dose-dependent manner. Meanwhile, the increment of malondialdehyde (MDA) level in UVB-irradiated HDFs was inhibited upon salidroside treatment. Additionally, salidroside significantly attenuated UVB-induced synthesis of MMP-1 as well as the production of IL-6 and TNF-α in HDFs. Our data provided the evidences for the protective role of salidroside against UVB-induced premature senescence in HDFs probably via its anti

  18. Autophagy inhibition switches low-dose camptothecin-induced premature senescence to apoptosis in human colorectal cancer cells.

    PubMed

    Zhang, Jian-wei; Zhang, Shan-shan; Song, Jian-rui; Sun, Kai; Zong, Chen; Zhao, Qiu-dong; Liu, Wen-ting; Li, Rong; Wu, Meng-chao; Wei, Li-xin

    2014-08-01

    Recently, several studies indicated that senescent tumor cells are resistant to apoptosis in chemotherapy. They may return to cell cycle, thus act as stumbling blocks in anticancer treatments. In the present study, we found that, in human colorectal cancer cells, low-dose camptothecin (CPT) simultaneously induced autophagy and premature senescence through AMPK-TSC2-mTOR pathway and ATM-Chk2-p53-p21 pathway respectively. What's important is the suppression of autophagy substantially increased apoptosis and greatly attenuated senescence possibly by blocking p53/p21 pathway, which suggests that autophagy plays an indispensable role in sustaining cell senescence caused by low-dose CPT. The combination of low-dose CPT and autophagy inhibitor, a way to lead senescent cells to die, would be potentially valuable in cancer therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence.

    PubMed

    Benson, Erica K; Lee, Sam W; Aaronson, Stuart A

    2010-08-01

    Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature-aging syndrome caused by a dominant mutation in the gene encoding lamin A, which leads to an aberrantly spliced and processed protein termed progerin. Previous studies have shown that progerin induces early senescence associated with increased DNA-damage signaling and that telomerase extends HGPS cellular lifespan. We demonstrate that telomerase extends HGPS cellular lifespan by decreasing progerin-induced DNA-damage signaling and activation of p53 and Rb pathways that otherwise mediate the onset of premature senescence. We show further that progerin-induced DNA-damage signaling is localized to telomeres and is associated with telomere aggregates and chromosomal aberrations. Telomerase amelioration of DNA-damage signaling is relatively rapid, requires both its catalytic and DNA-binding functions, and correlates in time with the acquisition by HGPS cells of the ability to proliferate. All of these findings establish that HGPS premature cellular senescence results from progerin-induced telomere dysfunction.

  20. Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts.

    PubMed

    Greussing, Ruth; Hackl, Matthias; Charoentong, Pornpimol; Pauck, Alexander; Monteforte, Rossella; Cavinato, Maria; Hofer, Edith; Scheideler, Marcel; Neuhaus, Michael; Micutkova, Lucia; Mueck, Christoph; Trajanoski, Zlatko; Grillari, Johannes; Jansen-Dürr, Pidder

    2013-04-04

    Cellular senescence can be induced by a variety of extrinsic stimuli, and sustained exposure to sunlight is a key factor in photoaging of the skin. Accordingly, irradiation of skin fibroblasts by UVB light triggers cellular senescence, which is thought to contribute to extrinsic skin aging, although molecular mechanisms are incompletely understood. Here, we addressed molecular mechanisms underlying UVB induced senescence of human diploid fibroblasts. We observed a parallel activation of the p53/p21(WAF1) and p16(INK4a)/pRb pathways. Using genome-wide transcriptome analysis, we identified a transcriptional signature of UVB-induced senescence that was conserved in three independent strains of human diploid fibroblasts (HDF) from skin. In parallel, a comprehensive screen for microRNAs regulated during UVB-induced senescence was performed which identified five microRNAs that are significantly regulated during the process. Bioinformatic analysis of miRNA-mRNA networks was performed to identify new functional mRNA targets with high confidence for miR-15a, miR-20a, miR-20b, miR-93, and miR-101. Already known targets of these miRNAs were identified in each case, validating the approach. Several new targets were identified for all of these miRNAs, with the potential to provide new insight in the process of UVB-induced senescence at a genome-wide level. Subsequent analysis was focused on miR-101 and its putative target gene Ezh2. We confirmed that Ezh2 is regulated by miR-101 in human fibroblasts, and found that both overexpression of miR-101 and downregulation of Ezh2 independently induce senescence in the absence of UVB irradiation. However, the downregulation of miR-101 was not sufficient to block the phenotype of UVB-induced senescence, suggesting that other UVB-induced processes induce the senescence response in a pathway redundant with upregulation of miR-101. We performed a comprehensive screen for UVB-regulated microRNAs in human diploid fibroblasts, and identified a

  1. Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Cellular senescence can be induced by a variety of extrinsic stimuli, and sustained exposure to sunlight is a key factor in photoaging of the skin. Accordingly, irradiation of skin fibroblasts by UVB light triggers cellular senescence, which is thought to contribute to extrinsic skin aging, although molecular mechanisms are incompletely understood. Here, we addressed molecular mechanisms underlying UVB induced senescence of human diploid fibroblasts. Results We observed a parallel activation of the p53/p21WAF1 and p16INK4a/pRb pathways. Using genome-wide transcriptome analysis, we identified a transcriptional signature of UVB-induced senescence that was conserved in three independent strains of human diploid fibroblasts (HDF) from skin. In parallel, a comprehensive screen for microRNAs regulated during UVB-induced senescence was performed which identified five microRNAs that are significantly regulated during the process. Bioinformatic analysis of miRNA-mRNA networks was performed to identify new functional mRNA targets with high confidence for miR-15a, miR-20a, miR-20b, miR-93, and miR-101. Already known targets of these miRNAs were identified in each case, validating the approach. Several new targets were identified for all of these miRNAs, with the potential to provide new insight in the process of UVB-induced senescence at a genome-wide level. Subsequent analysis was focused on miR-101 and its putative target gene Ezh2. We confirmed that Ezh2 is regulated by miR-101 in human fibroblasts, and found that both overexpression of miR-101 and downregulation of Ezh2 independently induce senescence in the absence of UVB irradiation. However, the downregulation of miR-101 was not sufficient to block the phenotype of UVB-induced senescence, suggesting that other UVB-induced processes induce the senescence response in a pathway redundant with upregulation of miR-101. Conclusion We performed a comprehensive screen for UVB-regulated microRNAs in human diploid

  2. Tumor growth accelerated by chemotherapy-induced senescent cells is suppressed by treatment with IL-12 producing cellular vaccines

    PubMed Central

    Simova, Jana; Sapega, Olena; Imrichova, Terezie; Stepanek, Ivan; Kyjacova, Lenka; Mikyskova, Romana; Indrova, Marie; Bieblova, Jana; Bubenik, Jan; Bartek, Jiri; Hodny, Zdenek; Reinis, Milan

    2016-01-01

    Standard-of-care chemo- or radio-therapy can induce, besides tumor cell death, also tumor cell senescence. While senescence is considered to be a principal barrier against tumorigenesis, senescent cells can survive in the organism for protracted periods of time and they can promote tumor development. Based on this emerging concept, we hypothesized that elimination of such potentially cancer-promoting senescent cells could offer a therapeutic benefit. To assess this possibility, here we first show that tumor growth of proliferating mouse TC-1 HPV-16-associated cancer cells in syngeneic mice becomes accelerated by co-administration of TC-1 or TRAMP-C2 prostate cancer cells made senescent by pre-treatment with the anti-cancer drug docetaxel, or lethally irradiated. Phenotypic analyses of tumor-explanted cells indicated that the observed acceleration of tumor growth was attributable to a protumorigenic environment created by the co-injected senescent and proliferating cancer cells rather than to escape of the docetaxel-treated cells from senescence. Notably, accelerated tumor growth was effectively inhibited by cell immunotherapy using irradiated TC-1 cells engineered to produce interleukin IL-12. Collectively, our data document that immunotherapy, such as the IL-12 treatment, can provide an effective strategy for elimination of the detrimental effects caused by bystander senescent tumor cells in vivo. PMID:27448982

  3. Hydrogen sulfide prevents H₂O₂-induced senescence in human umbilical vein endothelial cells through SIRT1 activation.

    PubMed

    Suo, Rong; Zhao, Zhan-Zhi; Tang, Zhi-Han; Ren, Zhong; Liu, Xing; Liu, Lu-Shan; Wang, Zuo; Tang, Chao-Ke; Wei, Dang-Heng; Jiang, Zhi-Sheng

    2013-06-01

    The aim of the present study was to investigate the attenuation of endothelial cell senescence by H2S and to explore the mechanisms underlying the anti-aging effects of H2S. Senescence was induced in human umbilical vein endothelial cells (HUVECs) by incubation in 25 µmol/l H2O2 for 1 h. Senescence-associated β-galactosidase (SA-β-gal) activity was examined to determine the effects of H2S on senescent HUVECs. The results indicated that SA-β-gal activity in the H2O2-treated HUVECs was 11.2 ± 1.06%, which was attenuated in the NaHS group. Pretreatment with nicotinamide (NAM), a sirtuin 1 (SIRT1) inhibitor, inhibited the reduction in senescence associated with H2S. Immunoblot analyses revealed that SIRT1 levels in senescent HUVECs treated with NaHS (60 µM) were indistinguishable from controls; however, analyses of SIRT1 activity indicated that SIRT1 enzyme activity was enhanced. In addition, we found that H2S improves the function of senescent HUVECs. The present study demonstrated that H2S protects against HUVEC senescence, potentially through modulation of SIRT1 activity. Furthermore, this study establishes a novel endothelial protective effect of H2S.

  4. HER2 overcomes PTEN (loss)-induced senescence to cause aggressive prostate cancer

    PubMed Central

    Ahmad, Imran; Patel, Rachana; Singh, Lukram Babloo; Nixon, Colin; Seywright, Morag; Barnetson, Robert J.; Brunton, Valerie G.; Muller, William J.; Edwards, Joanne; Sansom, Owen J.; Leung, Hing Y.

    2011-01-01

    Prostate cancer (CaP) is the most common cancer among adult men in the Western world. Better insight into its tumor-activating pathways may facilitate the development of targeted therapies. In this study, we show that patients who develop prostate tumors with low levels of PTEN and high levels of HER2/3 have a poor prognosis. This is functionally relevant, as targeting Her2 activation to the murine prostate cooperates with Pten loss and drives CaP progression. Mechanistically, this is associated with activation of the MAPK pathway and abrogation of the Pten loss-induced cellular senescence program. Importantly, inhibition of MEK function strongly suppressed proliferation within these tumors by restoring the Pten loss-induced cellular senescence program. Taken together, these data suggest that stratification of CaP patients for HER2/3 and PTEN status could identify patients with aggressive CaP who may respond favorably to MEK inhibition. PMID:21930937

  5. Triethylene tetramine, a novel ligand of G-quadruplex, induces senescence of MCF-7 cells.

    PubMed

    Lixia, Guo; Fei, Yin; Jiajia, Jing; Jianhui, Liu

    2008-01-01

    Interference with telomerase and telomere maintenance is emerging as an attractive target for antitumor therapies. Ligands stabilizing G-quadruplexes have the potential to interfere with telomere replication by blocking the elongation of telomeres in tumors. Here, we report that long-term treatment with triethylene tetramine (TETA), at 50 or 100 microM, induced marked cellular senescence phenotypes accompanied by increased time of population doubling of MCF-7 cells. Cyclin-dependent kinase inhibitors, including p53 and p21, were also upregulated in TETA-treated MCF-7 cells. TETA is therefore as novel ligand of G-quadruplex and can induce tumor senescence; it is a promising material for tumor treatment.

  6. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    PubMed

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging.

  7. Arabidopsis NRT1.5 Mediates the Suppression of Nitrate Starvation-Induced Leaf Senescence by Modulating Foliar Potassium Level.

    PubMed

    Meng, Shuan; Peng, Jia-Shi; He, Ya-Ni; Zhang, Guo-Bin; Yi, Hong-Ying; Fu, Yan-Lei; Gong, Ji-Ming

    2016-03-07

    Nitrogen deficiency induces leaf senescence. However, whether or how nitrate might affect this process remains to be investigated. Here, we report an interesting finding that nitrate-instead of nitrogen-starvation induced early leaf senescence in nrt1.5 mutant, and present genetic and physiological data demonstrating that nitrate starvation-induced leaf senescence is suppressed by NRT1.5. NRT1.5 suppresses the senescence process dependent on its function from roots, but not the nitrate transport function. Further analyses using nrt1.5 single and nia1 nia2 nrt1.5-4 triple mutant showed a negative correlation between nitrate concentration and senescence rate in leaves. Moreover, when exposed to nitrate starvation, foliar potassium level decreased in nrt1.5, but adding potassium could essentially restore the early leaf senescence phenotype of nrt1.5 plants. Nitrate starvation also downregulated the expression of HAK5, RAP2.11, and ANN1 in nrt1.5 roots, and appeared to alter potassium level in xylem sap from nrt1.5. These data suggest that NRT1.5 likely perceives nitrate starvation-derived signals to prevent leaf senescence by facilitating foliar potassium accumulation.

  8. The role of ANAC072 in the regulation of chlorophyll degradation during age- and dark-induced leaf senescence.

    PubMed

    Li, Shou; Gao, Jiong; Yao, Lingya; Ren, Guodong; Zhu, Xiaoyu; Gao, Shan; Qiu, Kai; Zhou, Xin; Kuai, Benke

    2016-08-01

    ANAC072 positively regulates both age- and dark-induced leaf senescence through activating the transcription of NYE1. Leaf senescence is integral to plant development, which is age-dependent and strictly regulated by internal and environmental signals. Although a number of senescence-related mutants and senescence-associated genes (SAGs) have been identified and characterized in the past decades, the general regulatory network of leaf senescence is still far from being elucidated. Here, we report the role of ANAC072, an SAG identified through bioinformatics analysis, in the regulation of chlorophyll degradation during natural and dark-induced leaf senescence. The expression of ANAC072 was increased with advancing leaf senescence in Arabidopsis. Leaf degreening was significantly delayed under normal or dark-induced conditions in anac072-1, a knockout mutant of ANAC072, with a higher chlorophyll level detected. In contrast, an overexpression mutant, anac072-2, with ANAC072 transcription markedly upregulated, showed an early leaf-yellowing phenotype. Consistently, senescent leaves of the loss-of-function mutant anac072-1 exhibited delays in the decrease of photosynthesis efficiency of photosystem II (F v/F m ratio) and the increase of plasma membrane ion leakage rate as compared with corresponding leaves of wild-type Col-0 plants, whereas the overexpression mutant anac072-2 showed opposite changes. Our data suggest that ANAC072 plays a positive role during natural and dark-induced leaf senescence. In addition, the transcript level of NYE1, a key regulatory gene in chlorophyll degradation, relied on the function of ANAC072. Combining these analyses with electrophoretic mobility shift assay and chromatin immunoprecipitation, we demonstrated that ANAC072 directly bound to the NYE1 promoter in vitro and in vivo, so ANAC072 may promote chlorophyll degradation by directly upregulating the expression of NYE1.

  9. Role of type II pneumocyte senescence in radiation-induced lung fibrosis.

    PubMed

    Citrin, Deborah E; Shankavaram, Uma; Horton, Jason A; Shield, William; Zhao, Shuping; Asano, Hiroaki; White, Ayla; Sowers, Anastasia; Thetford, Angela; Chung, Eun Joo

    2013-10-02

    Radiation is a commonly delivered therapeutic modality for cancer. The causes underlying the chronic, progressive nature of radiation injury in the lung are poorly understood. C57Bl/6NCr mice were exposed to thoracic irradiation (n = 3 per dose and time point for tissue collection). Microarray analysis of gene expression from irradiated murine lung was performed using one-way analysis of variance with post hoc Scheffe analysis. Senescence and type II airway epithelial cell (AECII) count were assayed in irradiated murine lung tissue (n = 3 per condition). Irradiated mice were treated with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase (NOX), and fibrosis was assessed by collagen assays. All statistical tests were two-tailed. Gene expression in lung tissue from mice irradiated to 17.5 Gy clustered with that of aged unirradiated mice. Only fibrogenic exposures led to AECII senescence (0 Gy: 0.66% ± 0.67%; 5 Gy: 4.5% ± 1.19%; 17.5 Gy: 18.7% ± 3.05; P = .007) and depletion (0 Gy: 2.89 per alveolus ± 0.26; 5 Gy: 2.41 ± 0.19; 17.5 Gy: 1.6 ± 0.14; P < .001) at 30 weeks. Treatment of irradiated mice with DPI for 16 weeks markedly reduced collagen accumulation (5×6 Gy: 57.26 μg/lung ± 9.91; 5×6 Gy ± DPI: 36.54μg/lung ± 4.39; P = .03) and AECII senescence (5×6 Gy: 37.61% ± 4.82%; 5×6 Gy ± DPI: 12.38% ± 2.78; P < .001). These studies identify senescence as an important process in AECII in vivo and indicate that NOX is a critical mediator of radiation-induced AECII senescence and pulmonary fibrosis.

  10. Role of Type II Pneumocyte Senescence in Radiation-Induced Lung Fibrosis

    PubMed Central

    2013-01-01

    Background Radiation is a commonly delivered therapeutic modality for cancer. The causes underlying the chronic, progressive nature of radiation injury in the lung are poorly understood. Methods C57Bl/6NCr mice were exposed to thoracic irradiation (n = 3 per dose and time point for tissue collection). Microarray analysis of gene expression from irradiated murine lung was performed using one-way analysis of variance with post hoc Scheffe analysis. Senescence and type II airway epithelial cell (AECII) count were assayed in irradiated murine lung tissue (n = 3 per condition). Irradiated mice were treated with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase (NOX), and fibrosis was assessed by collagen assays. All statistical tests were two-tailed. Results Gene expression in lung tissue from mice irradiated to 17.5 Gy clustered with that of aged unirradiated mice. Only fibrogenic exposures led to AECII senescence (0 Gy: 0.66% +/− 0.67%; 5 Gy: 4.5% +/− 1.19%; 17.5 Gy: 18.7% +/− 3.05; P = .007) and depletion (0 Gy: 2.89 per alveolus +/− 0.26; 5 Gy: 2.41 +/− 0.19; 17.5 Gy: 1.6 +/− 0.14; P < .001) at 30 weeks. Treatment of irradiated mice with DPI for 16 weeks markedly reduced collagen accumulation (5×6 Gy: 57.26 μg/lung +/− 9.91; 5×6 Gy +/− DPI: 36.54μg/lung +/− 4.39; P = .03) and AECII senescence (5×6 Gy: 37.61% +/− 4.82%; 5×6 Gy +/− DPI: 12.38% +/− 2.78; P < .001). Conclusions These studies identify senescence as an important process in AECII in vivo and indicate that NOX is a critical mediator of radiation-induced AECII senescence and pulmonary fibrosis. PMID:24052614

  11. Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence.

    PubMed

    Lenain, Christelle; de Graaf, Carolyn A; Pagie, Ludo; Visser, Nils L; de Haas, Marcel; de Vries, Sandra S; Peric-Hupkes, Daniel; van Steensel, Bas; Peeper, Daniel S

    2017-10-01

    Cellular senescence is a mechanism that virtually irreversibly suppresses the proliferative capacity of cells in response to various stress signals. This includes the expression of activated oncogenes, which causes Oncogene-Induced Senescence (OIS). A body of evidence points to the involvement in OIS of chromatin reorganization, including the formation of senescence-associated heterochromatic foci (SAHF). The nuclear lamina (NL) is an important contributor to genome organization and has been implicated in cellular senescence and organismal aging. It interacts with multiple regions of the genome called lamina-associated domains (LADs). Some LADs are cell-type specific, whereas others are conserved between cell types and are referred to as constitutive LADs (cLADs). Here, we used DamID to investigate the changes in genome-NL interactions in a model of OIS triggered by the expression of the common BRAF(V600E) oncogene. We found that OIS cells lose most of their cLADS, suggesting the loss of a specific mechanism that targets cLADs to the NL. In addition, multiple genes relocated to the NL. Unexpectedly, they were not repressed, implying the abrogation of the repressive activity of the NL during OIS. Finally, OIS cells displayed an increased association of telomeres with the NL. Our study reveals that senescent cells acquire a new type of LAD organization and suggests the existence of as yet unknown mechanisms that tether cLADs to the NL and repress gene expression at the NL. © 2017 Lenain et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Gardenia jasminoides extract-capped gold nanoparticles reverse hydrogen peroxide-induced premature senescence.

    PubMed

    Chae, Seon Yeong; Park, Sun Young; Park, Jin Oh; Lee, Kyu Jin; Park, Geuntae

    2016-11-01

    This study reports a green approach for synthesis of gold nanoparticles using Gardenia jasminoides extract, and specifically, can potentially enhance anti senescence activity. Biological synthesis of gold nanoparticles is ecofriendly and effective for the development of environmentally sustainable nanoparticles compared with existing methods. Here, we developed a simple, fast, efficient, and ecofriendly approach to the synthesis of gold nanoparticles by means of a Gardenia jasminoides extract. These G. jasminoides extract-capped gold nanoparticles (GJ-GNPs) were characterized by UV-vis, high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and Furrier transform infrared spectroscopy (FT-IR). The synthesized GJ-GNPs turned red and showed maximal absorbance at 540nm. Thus, GJ-GNPs were synthesized successfully. We hypothesized that GJ-GNPs would protect ARPE19 cells from hydrogen peroxide-induced premature senescence. SA-β-gal activity was elevated in hydrogen peroxide-treated cells, however, this effect was attenuated by GJ-GNP treatment. Moreover, compared with the normal control, hydrogen peroxide treatment significantly increased lysosome content of the cells and production of reactive oxygen species (ROS). GJ-GNPs effectively attenuated the increase in lysosome content and ROS production in these senescent cells. According to cell cycle analysis, G2/M arrest was promoted by hydrogen peroxide treatment in ARPE19 cells, however, this change was reversed by GJ-GNPs. Western blot analysis showed that treatment with GJ-GNPs increased the expression of p53, p21, SIRT3, HO-1, and NQO1 in senescent cells. Our findings should advance the understanding of premature senescence and may lead to therapeutic use of GJ-GNPs in retina-related regenerative medicine.

  13. Arsenic increases Pi-mediated vascular calcification and induces premature senescence in vascular smooth muscle cells.

    PubMed

    Martín-Pardillos, Ana; Sosa, Cecilia; Sorribas, Victor

    2013-02-01

    Several mechanisms have been proposed to explain the vascular toxicity of arsenic. Some of them are described in this work, such as stress-induced premature senescence (SIPS), dedifferentiation, and medial vascular calcification, and they all affect vascular smooth muscle cells (VSMC). Rat aortic VSMC were treated with 1-100 µM of either sodium arsenate (As(V)), sodium arsenite (As(III)), monomethylarsonic acid, or dimethylarsinic acid. None of the treatments induced VSMC calcification in the presence of 1mM inorganic phosphate (Pi), but 1 µM As(III) did increase calcification when induced with 2.5mM Pi. A lactate dehydrogenase assay revealed that this increase was explained by a rise in cytotoxicity due to simultaneous incubation with 1 µM As(III) and 2.5mM Pi. This calcification increase was also observed in the aortas of a vascular calcification model: 5/6 nephrectomized rats fed with a high Pi diet and treated with vitamin D(3). Several known mechanisms that might explain arsenic toxicity in our experimental model were discarded: apoptosis, oxidative stress, and inflammasome activation. Nevertheless, both senescence-associated β-galactosidase activity and p21 expression were increased by As(III), which reveals the induction of SIPS. As(III) also caused dedifferentiation of VSMC, as shown by the reduced expression of the VSMC markers SM22α and calponin. Senescence and gene expression were also observed in the aortas of healthy rats treated with 50 ppm As(V) in drinking water for 1 month. In conclusion, both premature senescence in aortic VSMC with phenotypic dedifferentiation and the increase of Pi-induced calcification are novel mechanisms of arsenic vasculotoxicity.

  14. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence.

    PubMed

    Jiang, Yanjuan; Liang, Gang; Yang, Shizhuo; Yu, Diqiu

    2014-01-01

    Leaf senescence is regulated by diverse developmental and environmental factors. Exogenous jasmonic acid (JA) can induce leaf senescence, whereas auxin suppresses this physiological process. Crosstalk between JA and auxin signaling has been well studied, but not during JA-induced leaf senescence. Here, we found that upon methyl jasmonate treatment, Arabidopsis thaliana wrky57 mutants produced typical leaf senescence symptoms, such as yellowing leaves, low chlorophyll content, and high cell death rates. Further investigation suggested that senescence-associated genes were upregulated in the wrky57 mutants. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of SENESCENCE4 and SENESCENCE-ASSOCIATED GENE12 and represses their transcription. In vivo and in vitro experiments suggested that WRKY57 interacts with JASMONATE ZIM-DOMAIN4/8 (JAZ4/8) and the AUX/IAA protein IAA29, repressors of the JA and auxin signaling pathways, respectively. Consistent with the opposing functions of JA and auxin in JA-induced leaf senescence, JAZ4/8 and IAA29 also displayed opposite functions in JA-induced leaf senescence and competitively interacted with WRKY57. Our results suggested that the JA-induced leaf senescence process can be antagonized by auxin via WRKY57. Moreover, WRKY57 protein levels were downregulated by JA but upregulated by auxin. Therefore, as a repressor in JA-induced leaf senescence, WRKY57 is a common component of the JA- and auxin-mediated signaling pathways.

  15. Radiation-induced senescence-like terminal growth arrest in thyroid cells.

    PubMed

    Podtcheko, Alexei; Namba, Hiroyuki; Saenko, Vladimir; Ohtsuru, Akira; Starenki, Dmitriy; Meirmanov, Serik; Polona, Iryna; Rogounovitch, Tatiana; Yamashita, Shunichi

    2005-04-01

    Premature senescence may play an important role as an acute, drug-, or ionizing radiation (IR)-inducible growth arrest program along with interphase apoptosis and mitotic catastrophe. The aim of the study was to evaluate whether IR can induce senescence-like phenotype (SLP) associated with terminal growth arrest in the thyroid cells, and if so, to evaluate impact of terminal growth arrest associated with SLP in intrinsic radiosensitivity of various thyroid carcinomas. The induction of SLP in thyroid cells were identified by: (1) senescence associated beta-galactosidase (SA-beta-Gal) staining method, (2) dual-flow cytometric analysis of cell proliferation and side light scatter using vital staining with PKH-2 fluorescent dye, (3) double labeling for 5-bromodeoxyuridine and SA- beta-Gal, (4) Staining for SA-beta-Gal with consequent antithyroglobulin immunohistochemistry. IR induced SLP associated with terminal growth arrest in four thyroid cancer cells lines and in primary thyrocytes in time- and dose-dependent manner. Analysis of relationship between induction of SLP and radiosensitivity revealed a trend in which more radioresistant cell lines strongly tended to show lower specific SLP yields (r = -0.93, p = 0.068). We find out that SA-beta-Gal staining is detectable in irradiated ARO xenotransplants, but not in control tumors. We, therefore, conclude that induction of SLP with terminal growth arrest contribute to the elimination of clonogenic populations after IR.

  16. All-trans retinoic acid induces cellular senescence via upregulation of p16, p21, and p27.

    PubMed

    Park, Sun-Hye; Lim, Joo Song; Jang, Kyung Lib

    2011-11-28

    We here present a new anti-tumor mechanism of all-trans retinoic acid (ATRA). ATRA induced several biomarkers of cellular senescence including irreversible G1 arrest, morphological changes, senescence-associated β-galactosidase, and heterochromatin foci in HepG2 cells. ATRA also upregulated levels of p16, p21, and p27 which lead to activation of Rb and subsequent inactivation of E2F1. These effects were abolished by the RNA interference-mediated silencing of p16, p21, and p27. Moreover, ATRA failed to induce cellular senescence in Huh7 and HCT116, in which p16, p21, and p27 were not upregulated by ATRA, confirming that ATRA induces cellular senescence via upregulation of p16, p21, and p27. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Repeated exposure of human fibroblasts to UVR induces secretion of stem cell factor and senescence.

    PubMed

    Shin, J; Kim, J-H; Kim, E K

    2012-12-01

    Some of chronic hyperpigmentary diseases, such as melasma, induced by multiple factors including chronic sunlight exposure, can recur even after chemical epidermal removal. Dermal factors may be involved in the pathogenesis of melasma. Changes in dermal fibroblasts resulting from chronic sun exposure might cause melanocytes to synthesize melanin in the epidermis. This study aimed at determining the effects of repetitive ultraviolet (UV) radiation on cultured fibroblasts and the secretion of melanogenic factors. Cultured human fibroblasts were exposed to ultraviolet A (UVA) or ultraviolet B (UVB) for five consecutive days. After each irradiation, the supernatant medium was isolated from each dish and measured for levels of stem cell factor (SCF) and hepatocyte growth factor using an ELISA kit assay. To assess the effect of the keratinocyte-derived factors on fibroblast-secretion of SCF and hepatocyte growth factor, we added supernatants of the UV-irradiated keratinocytes to the non-irradiated fibroblasts. Finally, the irradiated fibroblasts were stained with senescence associated-β-galactosidase to assess their senescent change. Fibroblasts irradiated with UVA or UVB for five consecutive days, secreted SCF at levels that increased with repeated UVA or UVB exposure. Conditioned culture medium from UV-irradiated keratinocytes also induced SCF release from fibroblasts, depending on the number of UV exposures. UVA- or UVB-irradiated fibroblasts stained positive for senescence associated-β-galactosidase, and the staining intensity increased with repeated exposure. These results suggest that fibroblast senescence and increased SCF secretion after repeated UV irradiation may be related to the pathogenesis of recurring hyperpigmentation disorders induced by chronic sun exposure. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  18. Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence

    PubMed Central

    Matsumoto, Ryusaku; Fukuoka, Hidenori; Iguchi, Genzo; Odake, Yukiko; Yoshida, Kenichi; Bando, Hironori; Suda, Kentaro; Nishizawa, Hitoshi; Takahashi, Michiko; Yamada, Shozo; Ogawa, Wataru; Takahashi, Yutaka

    2015-01-01

    Objective Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases. Methods We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts. Results Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047). In addition, telomere length in acromegaly was negatively correlated with the disease duration (R2 = 0.210, P = 0.003). In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence. Conclusion Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I. PMID:26448623

  19. Fullerene derivatives induce premature senescence: A new toxicity paradigm or novel biomedical applications

    SciTech Connect

    Gao Jun; Wang, H.L.; Shreve, Andrew; Iyer, Rashi

    2010-04-15

    Engineered fullerenes (C{sub 60}) are extensively used for commercial and clinical applications based on their unique physicochemical properties. Such materials have also been recognized as byproducts of many industrial activities. Functionalization of C{sub 60} may significantly influence the nature of its interactions with biological systems, impacting its applications and raising uncertainties about its health effects. In the present study, we compared the bioimpact of two chemically modified fullerene derivatives, hexa carboxyl fullerene adduct (Hexa-C{sub 60}) and tris carboxyl fullerene adduct (tris-C{sub 60}) to pristine fullerene C{sub 60} encapsulated with gamma (gamma)-cyclodextrin C{sub 60} (CD-C{sub 60}), using human cutaneous epithelial cells (HEK) to simulate possible applications and occupational dermal exposure route. We report, for the first time, the discovery of premature senescence as a potential endpoint of nanomaterial elicited biological effects, providing a new paradigm for nanoparticle-induced toxicity in human cells. Moreover, this response appeared to be functionalization specific, in that, only tris-C{sub 60} induced senescence. We investigated key biological responses, such as cellular viability, intracellular ROS generation, cell proliferation and cell cycle responses. Our results indicate that the often observed 'anti-apoptotic' function of fullerene derivatives may be independent of their 'ROS scavenging' role as previously reported. We discovered that the tris-C{sub 60}-induced responses were associated with G{sub 0}/G{sub 1} cell cycle arrest and cellular senescence. On further evaluation of the molecular mechanisms underlying the senescent response, a significant decrease in the expression levels of HERC5 was noted. HERC5 is a ubiquitin ligase of the HERC family and is implicated to be involved in innate immune responses to viral and bacterial infections.

  20. Oroxin A inhibits breast cancer cell growth by inducing robust endoplasmic reticulum stress and senescence.

    PubMed

    He, Jun; Du, Longsheng; Bao, Meimei; Zhang, Bin; Qian, Haixin; Zhou, Quansheng; Cao, Zhifei

    2016-03-01

    Breast cancer is a major cause of cancer death among women. Although various anticancer drugs have been used in clinics, drugs that are effective against advanced and metastatic breast cancer are still lacking and in great demand. In this study, we found that oroxin A, an active component isolated from the herb Oroxylum indicum (L.) Kurz, effectively inhibited the growth of human breast cancer cells MDA-MB-231 and MCF7 by inducing endoplasmic reticulum (ER) stress-mediated senescence. Oroxin A caused breast cancer cell cycle arrest at the G2/M stage, and reorganization of microtubules and actin cytoskeleton accompanied by a decrease in cellular mitosis. ER-specific probe ER-Tracker Red and confocal microscope imaging showed that ER-Tracker Red-positive cells increased in an oroxin A dosage-dependent manner. In addition, oroxin A increased cell population with high β-Gal activity and SAHF-positive staining; these data suggest that oroxin A induces breast cancer cell ER stress and senescence. Mechanistic studies showed that oroxin A led to a significant increase in intracellular reactive oxygen species levels, promoted expression of ER stress markers ATF4 and GRP78, and increased the phosphorylation of a key stress-response signaling protein p38, resulting in an ER stress-mediated senescence. Taken together, our data indicate that oroxin A exerts its antibreast cancer effects by inducing ER stress-mediated senescence, activating the key stress p38 signaling pathway, and increasing key ER stress genes ATF4 and GRP78 expression levels.

  1. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence.

    PubMed

    Tai, Haoran; Wang, Zhe; Gong, Hui; Han, Xiaojuan; Zhou, Jiao; Wang, Xiaobo; Wei, Xiawei; Ding, Yi; Huang, Ning; Qin, Jianqiong; Zhang, Jie; Wang, Shuang; Gao, Fei; Chrzanowska-Lightowlers, Zofia M; Xiang, Rong; Xiao, Hengyi

    2017-01-02

    Macroautophagy/autophagy has profound implications for aging. However, the true features of autophagy in the progression of aging remain to be clarified. In the present study, we explored the status of autophagic flux during the development of cell senescence induced by oxidative stress. In this system, although autophagic structures increased, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence and the activity of lysosomal proteolytic enzymes all decreased in senescent cells, indicating impaired autophagic flux with lysosomal dysfunction. The influence of autophagy activity on senescence development was confirmed by both positive and negative autophagy modulators; and MTOR-dependent autophagy activators, rapamycin and PP242, efficiently suppressed cellular senescence through a mechanism relevant to restoring autophagic flux. By time-phased treatment of cells with the antioxidant N-acetylcysteine (NAC), the mitochondria uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and ambroxol, a reagent with the effect of enhancing lysosomal enzyme maturation, we found that mitochondrial dysfunction plays an initiating role, while lysosomal dysfunction is more directly responsible for autophagy impairment and senescence. Interestingly, the effect of rapamycin on autophagy flux is linked to its role in functional revitalization of both mitochondrial and lysosomal functions. Together, this study demonstrates that autophagy impairment is crucial for oxidative stress-induced cell senescence, thus restoring autophagy activity could be a promising way to retard senescence.

  2. Autophagy-mediated degradation of nuclear envelope proteins during oncogene-induced senescence.

    PubMed

    Lenain, Christelle; Gusyatiner, Olga; Douma, Sirith; van den Broek, Bram; Peeper, Daniel S

    2015-11-01

    Cellular senescence is a largely irreversible form of cell cycle arrest triggered by various types of damage and stress, including oncogene expression (termed oncogene-induced senescence or OIS). We and others have previously demonstrated that OIS occurs in human benign lesions, acting as a potent tumor suppressor mechanism. Numerous phenotypic changes occur during OIS, both in the cytoplasm and in the nucleus. These include the activation of autophagy, a catabolic process operating in the cytoplasm and downregulation of lamin B1, a component of the nuclear lamina. However, it is unknown whether these changes relate to each other. We discovered that cells entering BRAF(V600E)- or H-RAS(G12V)-induced senescence downregulate not only lamin B1 but also lamin A, as well as several other nuclear envelope (NE) proteins, resulting in an altered NE morphology. Depletion of LMNB1 or LMNA/C was sufficient to recapitulate some OIS features, including cell cycle exit and downregulation of NE proteins. We further found that the global loss of NE proteins is a consequence of their degradation by the autophagy machinery, which occurs concomitantly with autophagy induction and increased lysosomal content and activity. Our study therefore reveals a previously unknown connection between autophagy and the disruption of NE integrity during OIS. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis

    PubMed Central

    Liu, Fang; Guo, Fang-Qing

    2013-01-01

    Nitric oxide (NO) has been known to preserve the level of chlorophyll (Chl) during leaf senescence. However, the mechanism by which NO regulates Chl breakdown remains unknown. Here we report that NO negatively regulates the activities of Chl catabolic enzymes during dark-induced leaf senescence. The transcriptional levels of the major enzyme genes involving Chl breakdown pathway except for RED CHL CATABOLITE REDUCTASE (RCCR) were dramatically up-regulated during dark-induced Chl degradation in the leaves of Arabidopsis NO-deficient mutant nos1/noa1 that exhibited an early-senescence phenotype. The activity of pheide a oxygenase (PAO) was higher in the dark-induced senescent leaves of nos1/noa1 compared with wild type. Furthermore, the knockout of PAO in nos1/noa1 background led to pheide a accumulation in the double mutant pao1 nos1/noa1, which retained the level of Chl during dark-induced leaf senescence. The accumulated pheide a in darkened leaves of pao1 nos1/noa1 was likely to inhibit the senescence-activated transcriptional levels of Chl catabolic genes as a feed-back inhibitory effect. We also found that NO deficiency led to decrease in the stability of photosynthetic complexes in thylakoid membranes. Importantly, the accumulation of pheide a caused by PAO mutations in combination with NO deficiency had a synergistic effect on the stability loss of thylakoid membrane complexes in the double mutant pao1 nos1/noa1 during dark-induced leaf senescence. Taken together, our findings have demonstrated that NO is a novel negative regulator of Chl catabolic pathway and positively functions in maintaining the stability of thylakoid membranes during leaf senescence. PMID:23418559

  4. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    SciTech Connect

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan

    2014-04-18

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.

  5. Sav1 Loss Induces Senescence and Stat3 Activation Coinciding with Tubulointerstitial Fibrosis.

    PubMed

    Leung, Janet Y; Wilson, Harper L; Voltzke, Kristin J; Williams, Lindsay A; Lee, Hyo Jin; Wobker, Sara E; Kim, William Y

    2017-06-15

    Tubulointerstitial fibrosis (TIF) is recognized as a final phenotypic manifestation in the transition from chronic kidney disease (CKD) to end-stage renal disease (ESRD). Here we show that conditional inactivation of Sav1 in the mouse renal epithelium resulted in upregulated expression of profibrotic genes and TIF. Loss of Sav1 induced Stat3 activation and a senescence-associated secretory phenotype (SASP) that coincided with the development of tubulointerstitial fibrosis. Treatment of mice with the YAP inhibitor verteporfin (VP) inhibited activation of genes associated with senescence, SASPs, and activation of Stat3 as well as impeded the development of fibrosis. Collectively, our studies offer novel insights into molecular events that are linked to fibrosis development from Sav1 loss and implicate VP as a potential pharmacological inhibitor to treat patients at risk for developing CKD and TIF. Copyright © 2017 American Society for Microbiology.

  6. Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2

    PubMed Central

    Mikawa, Takumi; Maruyama, Takeshi; Okamoto, Koji; Nakagama, Hitoshi; Lleonart, Matilde E.; Tsusaka, Takeshi; Hori, Kousuke; Murakami, Itsuo; Izumi, Taisuke; Takaori-Kondo, Akifumi; Yokode, Masayuki; Peters, Gordon; Beach, David

    2014-01-01

    Despite the well-documented clinical significance of the Warburg effect, it remains unclear how the aggressive glycolytic rates of tumor cells might contribute to other hallmarks of cancer, such as bypass of senescence. Here, we report that, during oncogene- or DNA damage–induced senescence, Pak1-mediated phosphorylation of phosphoglycerate mutase (PGAM) predisposes the glycolytic enzyme to ubiquitin-mediated degradation. We identify Mdm2 as a direct binding partner and ubiquitin ligase for PGAM in cultured cells and in vitro. Mutations in PGAM and Mdm2 that abrogate ubiquitination of PGAM restored the proliferative potential of primary cells under stress conditions and promoted neoplastic transformation. We propose that Mdm2, a downstream effector of p53, attenuates the Warburg effect via ubiquitination and degradation of PGAM. PMID:24567357

  7. Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2.

    PubMed

    Mikawa, Takumi; Maruyama, Takeshi; Okamoto, Koji; Nakagama, Hitoshi; Lleonart, Matilde E; Tsusaka, Takeshi; Hori, Kousuke; Murakami, Itsuo; Izumi, Taisuke; Takaori-Kondo, Akifumi; Yokode, Masayuki; Peters, Gordon; Beach, David; Kondoh, Hiroshi

    2014-03-03

    Despite the well-documented clinical significance of the Warburg effect, it remains unclear how the aggressive glycolytic rates of tumor cells might contribute to other hallmarks of cancer, such as bypass of senescence. Here, we report that, during oncogene- or DNA damage-induced senescence, Pak1-mediated phosphorylation of phosphoglycerate mutase (PGAM) predisposes the glycolytic enzyme to ubiquitin-mediated degradation. We identify Mdm2 as a direct binding partner and ubiquitin ligase for PGAM in cultured cells and in vitro. Mutations in PGAM and Mdm2 that abrogate ubiquitination of PGAM restored the proliferative potential of primary cells under stress conditions and promoted neoplastic transformation. We propose that Mdm2, a downstream effector of p53, attenuates the Warburg effect via ubiquitination and degradation of PGAM.

  8. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    SciTech Connect

    Zhai, Yingying; Chen, Xi; Yu, Dehai; Li, Tao; Cui, Jiuwei; Wang, Guanjun; Hu, Ji-Fan; Li, Wei

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  9. Hyperphosphatemia induces cellular senescence in human aorta smooth muscle cells through integrin linked kinase (ILK) up-regulation.

    PubMed

    Troyano, Nuria; Nogal, María Del; Mora, Inés; Diaz-Naves, Manuel; Lopez-Carrillo, Natalia; Sosa, Patricia; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruiz-Torres, María P

    2015-12-01

    Aging is conditioned by genetic and environmental factors. Hyperphosphatemia is related to some pathologies, affecting to vascular cells behavior. This work analyze whether high concentration of extracellular phosphate induces vascular smooth muscle cells senescence, exploring the intracellular mechanisms and highlighting the in vivo relevance of this phenomenon. Human aortic smooth muscle cells treated with β-Glycerophosphate (BGP, 10mM) suffered cellular senescence by increasing p53, p21 and p16 expression and the senescence associated β-galactosidase activity. In parallel, BGP induced ILK overexpression, dependent on the IGF-1 receptor activation, and oxidative stress. Down-regulating ILK expression prevented BGP-induced senescence and oxidative stress. Aortic rings from young rats treated with 10mM BGP for 48h, showed increased p53, p16 and ILK expression and SA-β-gal activity. Seven/eight nephrectomized rats feeding a hyperphosphatemic diet and fifteenth- month old mice showed hyperphosphatemia and aortic ILK, p53 and p16 expression. In conclusion, we demonstrated that high extracellular concentration of phosphate induced senescence in cultured smooth muscle through the activation of IGF-1 receptor and ILK overexpression and provided solid evidences for the in vivo relevance of these results since aged animals showed high levels of serum phosphate linked to increased expression of ILK and senescence genes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Resveratrol sequentially induces replication and oxidative stresses to drive p53-CXCR2 mediated cellular senescence in cancer cells.

    PubMed

    Li, Boxuan; Hou, Dong; Guo, Haiyang; Zhou, Haibin; Zhang, Shouji; Xu, Xiuhua; Liu, Qiao; Zhang, Xiyu; Zou, Yongxin; Gong, Yaoqin; Shao, Changshun

    2017-03-16

    Resveratrol (RSV) acts either as an antioxidant or a pro-oxidant depending on contexts. RSV-treated cancer cells may experience replication stress that can lead to cellular senescence or apoptosis. While both oxidative and replication stresses may mediate the anti-proliferation effect of RSV, to what extent each contributes to the impaired proliferation in response to RSV remains uncharacterized. We here report the study of the roles of replication and oxidative stresses in mediating cellular senescence in cancer cells treated with RSV. RSV induced S-phase arrest and cellular senescence in a dose-dependent manner in U2OS and A549 cancer cells as well as in normal human fibroblasts. We observed that nucleosides significantly alleviated RSV-induced replication stress and DNA damage response, and consequently attenuating cellular senescence. While the elevation of reactive oxygen species (ROS) also mediated the pro-senescent effect of RSV, it occurred after S-phase arrest. However, the induction of ROS by RSV was independent of S-phase arrest and actually reinforced the latter. We also demonstrated a critical role of the p53-CXCR2 axis in mediating RSV-induced senescence. Interestingly, CXCR2 also functioned as a barrier to apoptosis. Together, our results provided more insights into the biology of RSV-induced stress and its cellular consequences.

  11. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  12. p53 suppresses stress-induced cellular senescence via regulation of autophagy under the deprivation of serum.

    PubMed

    Sui, Xinbing; Fang, Yong; Lou, Haizhou; Wang, Kaifeng; Zheng, Yu; Lou, Fang; Jin, Wei; Xu, Yinghua; Chen, Wei; Pan, Hongming; Wang, Xian; Han, Weidong

    2015-02-01

    The tumor suppressor p53 is widely known for its ability to induce cell cycle arrest or cell death, therefore preventing neoplastic progression. Previous studies have demonstrated novel roles for p53 in the regulation of autophagy and senescence. p53 can not only exert cell cycle‑arresting and senescence‑promoting or suppressing functions, but can also induce autophagic flux, particularly under conditions of nutrient deprivation. The present study demonstrated that p53 was capable of activating autophagy, which permits cell survival under conditions of serum starvation, and suppresses cellular senescence through inhibition of the mammalian target of rapamycin pathway. These results suggest that active autophagy may be a potential mechanism by which p53 suppresses cellular senescence, in response to serum starvation. The findings of the present study provide a potential mechanism for suppression of senescence by p53.

  13. TGFβ-dependent gene expression shows that senescence correlates with abortive differentiation along several lineages in Myc-induced lymphomas.

    PubMed

    Müller, Judith; Samans, Birgit; van Riggelen, Jan; Fagà, Giovanni; Peh K N, Raquel; Wei, Chia-Lin; Müller, Heiko; Amati, Bruno; Felsher, Dean; Eilers, Martin

    2010-12-01

    Deregulated expression of Myc under the control of an immunoglobulin enhancer induces lymphoma formation in mice. The development of lymphomas is limited by TGFβ-dependent senescence and high levels of Myc expression are continuously required to antagonize senescence. The biological processes underlying senescence are not fully resolved. We report here a comprehensive analysis of TGFβ-dependent alterations in gene expression when the Myc transgene is switched off. Our data show that Myc-induced target genes are downregulated in a TGFβ-independent manner. In contrast, TGFβ is required to upregulate a broad spectrum of genes that are characteristic of different T-cell lineages when Myc is turned off. The analysis reveals a significant overlap between these Myc-repressed genes with genes that are targets of polycomb repressive complexes in embryonic stem cells. Therefore, TGFβ-dependent senescence is associated with gene expression patterns indicative of abortive cellular differentiation along several lineages.

  14. REDD1 protects osteoblast cells from gamma radiation-induced premature senescence.

    PubMed

    Li, Xiang Hong; Ha, Cam T; Fu, Dadin; Xiao, Mang

    2012-01-01

    Radiotherapy is commonly used for cancer treatment. However, it often results in side effects due to radiation damage in normal tissue, such as bone marrow (BM) failure. Adult hematopoietic stem and progenitor cells (HSPC) reside in BM next to the endosteal bone surface, which is lined primarily by hematopoietic niche osteoblastic cells. Osteoblasts are relatively more radiation-resistant than HSPCs, but the mechanisms are not well understood. In the present study, we demonstrated that the stress response gene REDD1 (regulated in development and DNA damage responses 1) was highly expressed in human osteoblast cell line (hFOB) cells after γ irradiation. Knockdown of REDD1 with siRNA resulted in a decrease in hFOB cell numbers, whereas transfection of PCMV6-AC-GFP-REDD1 plasmid DNA into hFOB cells inhibited mammalian target of rapamycin (mTOR) and p21 expression and protected these cells from radiation-induced premature senescence (PS). The PS in irradiated hFOB cells were characterized by significant inhibition of clonogenicity, activation of senescence biomarker SA-β-gal, and the senescence-associated cytokine secretory phenotype (SASP) after 4 or 8 Gy irradiation. Immunoprecipitation assays demonstrated that the stress response proteins p53 and nuclear factor κ B (NFkB) interacted with REDD1 in hFOB cells. Knockdown of NFkB or p53 gene dramatically suppressed REDD1 protein expression in these cells, indicating that REDD1 was regulated by both factors. Our data demonstrated that REDD1 is a protective factor in radiation-induced osteoblast cell premature senescence.

  15. Dark-induced senescence of barley leaves involves activation of plastid transglutaminases.

    PubMed

    Sobieszczuk-Nowicka, E; Zmienko, A; Samelak-Czajka, A; Łuczak, M; Pietrowska-Borek, M; Iorio, R; Del Duca, S; Figlerowicz, M; Legocka, J

    2015-04-01

    Transglutaminases (E.C. 2.3.2.13) catalyze the post-translational modification of proteins by establishing ε-(γ-glutamyl) lysine isopeptide bonds and by the covalent conjugation of polyamines to endo-glutamyl residues of proteins. In light of the confirmed role of transglutaminases in animal cell apoptosis and only limited information on the role of these enzymes in plant senescence, we decided to investigate the activity of chloroplast transglutaminases (ChlTGases) and the fate of chloroplast-associated polyamines in Hordeum vulgare L. 'Nagrad' leaves, where the senescence process was induced by darkness (day 0) and continued until chloroplast degradation (day 12). Using an anti-TGase antibody, we detected on a subcellular level, the ChlTGases that were associated with destacked/degraded thylakoid membranes, and beginning on day 5, were also found in the stroma. Colorimetric and radiometric assays revealed during senescence an increase in ChlTGases enzymatic activity. The MS/MS identification of plastid proteins conjugated with exogenous polyamines had shown that the ChlTGases are engaged in the post-translational modification of proteins involved in photosystem organization, stress response, and oxidation processes. We also computationally identified the cDNA of Hv-Png1-like, a barley homologue of the Arabidopsis AtPng1 gene. Its mRNA level was raised from days 3 to 10, indicating that transcriptional regulation controls the activity of barley ChlTGases. Together, the presented results deepen our knowledge of the mechanisms of the events happened in dark-induced senescence of barley leaves that might be activation of plastid transglutaminases.

  16. Cordyceps militaris Extract Protects Human Dermal Fibroblasts against Oxidative Stress-Induced Apoptosis and Premature Senescence

    PubMed Central

    Park, Jun Myoung; Lee, Jong Seok; Lee, Ki Rim; Ha, Suk-Jin; Hong, Eock Kee

    2014-01-01

    Oxidative stress induced by reactive oxygen species (ROS) is the major cause of degenerative disorders including aging and disease. In this study, we investigated whether Cordyceps militaris extract (CME) has in vitro protective effects on hydrogen peroxide-induced oxidative stress in human dermal fibroblasts (HDFs). Our results showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of CME was increased in a dose-dependent manner. We found that hydrogen peroxide treatment in HDFs increased ROS generation and cell death as compared with the control. However, CME improved the survival of HDFs against hydrogen peroxide-induced oxidative stress via inhibition of intracellular ROS production. CME treatment inhibited hydrogen peroxide-induced apoptotic cell death and apoptotic nuclear condensation in HDFs. In addition, CME prevented hydrogen peroxide-induced SA-β-gal-positive cells suggesting CME could inhibit oxidative stress-induced premature senescence. Therefore, these results suggest that CME might have protective effects against oxidative stress-induced premature senescence via scavenging ROS. PMID:25230212

  17. Cordyceps militaris extract protects human dermal fibroblasts against oxidative stress-induced apoptosis and premature senescence.

    PubMed

    Park, Jun Myoung; Lee, Jong Seok; Lee, Ki Rim; Ha, Suk-Jin; Hong, Eock Kee

    2014-09-16

    Oxidative stress induced by reactive oxygen species (ROS) is the major cause of degenerative disorders including aging and disease. In this study, we investigated whether Cordyceps militaris extract (CME) has in vitro protective effects on hydrogen peroxide-induced oxidative stress in human dermal fibroblasts (HDFs). Our results showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of CME was increased in a dose-dependent manner. We found that hydrogen peroxide treatment in HDFs increased ROS generation and cell death as compared with the control. However, CME improved the survival of HDFs against hydrogen peroxide-induced oxidative stress via inhibition of intracellular ROS production. CME treatment inhibited hydrogen peroxide-induced apoptotic cell death and apoptotic nuclear condensation in HDFs. In addition, CME prevented hydrogen peroxide-induced SA-β-gal-positive cells suggesting CME could inhibit oxidative stress-induced premature senescence. Therefore, these results suggest that CME might have protective effects against oxidative stress-induced premature senescence via scavenging ROS.

  18. Aldose reductase in keratinocytes attenuates cellular apoptosis and senescence induced by UV radiation.

    PubMed

    Kang, Eun Sil; Iwata, Kazumi; Ikami, Kanako; Ham, Sun Ah; Kim, Hye Jung; Chang, Ki Churl; Lee, Jae Heun; Kim, Jae-Hwan; Park, Soo-Bong; Kim, Jin-Hoi; Yabe-Nishimura, Chihiro; Seo, Han Geuk

    2011-03-15

    Although aldose reductase (AR) has been implicated in the cellular response to oxidative stress, the role of AR in ultraviolet-B (UVB)-induced cellular injury has not been investigated. Here, we show that an increased expression of AR in human keratinocytes modulates UVB-induced apoptotic cell death and senescence. Overexpression of AR in HaCaT cells significantly attenuated UVB-induced cellular damage and apoptosis, with a decreased generation of reactive oxygen species (ROS) and aldehydes. Ablation of AR with small interfering RNA or inhibition of AR activity abolished these effects. We also show that increased AR activity suppressed UVB-induced activation of the p38 and c-Jun N-terminal kinases, but did not affect the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. Similarly, UVB-induced translocation of Bax and Bcl-2 to mitochondria and cytosol, respectively, was markedly attenuated in cells overexpressing AR. Knockdown or inhibition of AR activity in primary cultured keratinocytes enhanced UVB-induced cellular senescence and increased the level of a cell-cycle regulatory protein, p53. Finally, cellular apoptosis induced by UVB radiation was significantly reduced in the epidermis of transgenic mice overexpressing human AR. These findings suggest that AR plays an important role in the cellular response to oxidative stress by sequestering ROS and reactive aldehydes generated in keratinocytes. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. The two main endoproteases present in dark-induced senescent wheat leaves are distinct subtilisin-like proteases.

    PubMed

    Roberts, Irma N; Passeron, Susana; Barneix, Atilio J

    2006-11-01

    We have previously reported the occurrence of two serine endoproteases (referred to as P1 and P2) in dark-induced senescent wheat (Triticum aestivum L.) leaves. P1 enzyme was already purified and identified as a subtilisin-like serine endoprotease (Roberts et al. in Physiol Plant 118:483-490, 2003). In this paper, we demonstrate by Western blot analysis of extracts obtained from dark-induced senescent leaves that an antiserum raised against P1 was able to recognise a second protein band of 78 kDa which corresponded to P2 activity. This result suggested that both enzymes must be structurally related. Therefore, we purified and characterised P2 activity. According to its biochemical and physical properties (inhibition by chymostatin and PMSF, broad pH range of activity, thermostability and ability to hydrolyse Suc-AAPF-pNA) P2 was classified as a serine protease with chymotrypsin-like activity. In addition, P2 was identified by mass spectrometry as a subtilisin-like protease distinct from P1. Western blot analysis demonstrated that P1 appeared in extracts from non-detached dark-induced senescent leaves but was undetectable in leaves senescing after nitrogen (N) deprivation. In contrast, P2 was already present in non-senescent leaves and showed increased levels in leaves senescing after N starvation or incubation in darkness. P1 signal was detected at late stages of ethephon or methyl jasmonate-induced senescence but was undetectable in senescent leaves from plants treated with abscisic acid. None of the three hormones have any effect on P2 protein levels. These results indicate that despite their biochemical and structural similarities, both enzymes are probably involved in different physiological roles.

  20. Cyclopentenyl cytosine induces senescence in breast cancer cells through the nucleolar stress response and activation of p53.

    PubMed

    Huang, Min; Whang, Patrick; Lewicki, Patrick; Mitchell, Beverly S

    2011-07-01

    The induction of senescence has emerged as a potentially important contributor to the effects of chemotherapeutic agents against tumors. We have demonstrated that depletion of CTP induced by cyclopentenyl cytosine (CPEC; NSC 375575), a specific inhibitor of the enzyme CTP synthetase, induces irreversible growth arrest and senescence characterized by altered morphology and expression of senescence-associated β-galactosidase activity in MCF-7 breast cancer cells expressing wild-type p53. In contrast, differentiation in the absence of senescence resulted from CPEC treatment in MDA-MB-231 breast cancer cells that express a mutated p53. Both senescence of MCF-7 cells and differentiation of MDA-MB-231 cells were prevented by repletion of CTP through the cytidine salvage pathway. Senescence in MCF-7 cells was associated with a G(2)- and S-phase arrest, whereas differentiation in MDA-MB-231 cells was associated with arrest in G(1) phase at 5 days. Mechanistic studies revealed that CTP depletion induced a rapid translocation of nucleolar proteins, including nucleostemin and nucleolin into the nucleoplasm. This nucleolar stress response resulted in a sustained elevation of p53 and the p53 target genes, p21 and Mdm2, in cells with wild-type p53. Furthermore, short interfering RNA-induced knockdown of p53 in MCF-7 cells treated with CPEC prevented cellular senescence and increased apoptotic cell death. We conclude that CTP depletion and the resulting nucleolar stress response results in a senescence-like growth arrest through activation of p53, whereas cells with mutated p53 undergo differentiation or apoptotic cell death.

  1. Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell.

    PubMed

    Jin, Huanhuan; Jia, Yan; Yao, Zhen; Huang, Jingjing; Hao, Meng; Yao, Shunyu; Lian, Naqi; Zhang, Feng; Zhang, Chenxi; Chen, Xingran; Bian, Mianli; Shao, Jiangjuan; Wu, Li; Chen, Anping; Zheng, Shizhong

    2017-05-01

    Hepatic fibrosis, a common scarring response to various forms of chronic liver injury, is a precursor to cirrhosis and liver cancer. During liver fibrosis, hepatic stellate cells (HSCs) initially activate and proliferate, which are responsible for the secretion of extracellular matrix components. However, these cells eventually senesce and are cleared by natural killer (NK) cells. Our previous researches have shown that the natural product curcumin could promote the senescence of activated HSC. In this study, we investigated how NK cells target senescent HSC and assessed the effect of this process on liver fibrosis. We found that senescent HSC induced by curcumin are susceptible to NK cells killing, due to the increased expression of NK cell activating ligand major histocompatibility complex class I chain-related genes A (MICA) and UL16-binding proteins 2 (ULBP2), but not Poliovirus Receptor (PVR). Further studies displayed that the interaction between NK cells and senescent LX2 cells stimulated granule exocytosis. Moreover, the inhibition of granule exocytosis weakened the cytotoxicity of NK cells and promoted the accumulation of senescent LX2 cells. Therefore, these aggregated data indicated that NK cells mediated clearance of senescent LX2 cells and granule exocytosis could play a protective role in the improvement of liver fibrosis.

  2. Ataxia telangiectasia mutated (ATM)-mediated DNA damage response in oxidative stress-induced vascular endothelial cell senescence.

    PubMed

    Zhan, Hong; Suzuki, Toru; Aizawa, Kenichi; Miyagawa, Kiyoshi; Nagai, Ryozo

    2010-09-17

    Oxidative stress regulates dysfunction and senescence of vascular endothelial cells. The DNA damage response and its main signaling pathway involving ataxia telangiectasia mutated (ATM) have been implicated in playing a central role in mediating the actions of oxidative stress; however, the role of the ATM signaling pathway in vascular pathogenesis has largely remained unclear. Here, we identify ATM to regulate oxidative stress-induced endothelial cell dysfunction and premature senescence. Oxidative stress induced senescence in endothelial cells through activation/phosphorylation of ATM by way of an Akt/p53/p21-mediated pathway. These actions were abrogated in cells in which ATM was knocked down by RNA interference or inhibited by specific inhibitory compounds. Furthermore, the in vivo significance of this regulatory pathway was confirmed using ATM knock-out mice in which induction of senescent endothelial cells in the aorta in a diabetic mouse model of endothelial dysfunction and senescence was attenuated in contrast to pathological changes seen in wild-type mice. Collectively, our results show that ATM through an ATM/Akt/p53/p21-dependent signaling pathway mediates an instructive role in oxidative stress-induced endothelial dysfunction and premature senescence.

  3. Dual roles of ERK1/2 in cellular senescence induced by excess thymidine in HeLa cells.

    PubMed

    Kudo, Ikuru; Nozawa, Megumi; Miki, Kensuke; Takauji, Yuki; En, Atsuki; Fujii, Michihiko; Ayusawa, Dai

    2016-08-15

    DNA damage response is crucially involved in cellular senescence. We have previously shown that excess thymidine, which stalls DNA replication forks, induces cellular senescence in human cells, and ERK1/2 play a key role in the induction of it. In this study, we found that Chk1 and ERK1/2 were activated to promote cell survival upon addition of excess thymidine. Knockdown of ERK1/2 activated Chk1, and conversely, knockdown of Chk1 activated ERK1/2, which observations suggested a mechanism for compensatory activation of Chk1 and ERK1/2 in the absence of ERK1/2 and Chk1, respectively. We also found that Chk1 functioned mainly at the onset of cellular senescence, and on the other hand, ERK1/2 functioned for a more extended period to induce cellular senescence. Our findings suggested that Chk1 and ERK1/2 were activated to promote cell survival upon addition of excess thymidine, but prolonged activation of ERK1/2 led to cellular senescence. This implies a pleiotropic effect of ERK1/2 in cellular senescence induced by excess thymidine. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Estrogen receptor alpha inhibits senescence-like phenotype and facilitates transformation induced by oncogenic ras in human mammary epithelial cells

    PubMed Central

    Liu, Zhao; Wang, Long; Yang, Junhua; Bandyopadhyay, Abhik; Kaklamani, Virginia; Wang, Shui; Sun, Lu-Zhe

    2016-01-01

    Exposure to estrogen has long been associated with an increased risk of developing breast cancer. However, how estrogen signaling promotes breast carcinogenesis remains elusive. Senescence is known as an important protective response to oncogenic events. We aimed to elucidate the role of estrogen receptor alpha (ERα) on senescence in transformed human mammary epithelial cells and breast cancer cells. Our results show that ectopic expression of oncoprotein H-ras-V12 in immortalized human mammary epithelial cells (HMEC) significantly inhibited the phosphorylation of the retinoblastoma protein (Rb) and increased the activity of the senescence-associated beta-galactosidase (SA-β-Gal). These senescence-like phenotypes were reversed by ectopic expression of ERα. Similar inhibition of the H-ras-V12-induced SA-β-Gal activity by ERα was also observed in the human mammary epithelial MCF-10A cells. Co-expression of ERα and H-ras-V12 resulted in HMEC anchorage-independent growth in vitro and tumor formation in vivo. Furthermore, inhibition of ERα expression induced senescence-like phenotypes in ERα positive human breast cancer cells such as increased activity of SA-β-Gal, decreased phosphorylation of RB, and loss of mitogenic activity. Thus, the suppression of cellular senescence induced by oncogenic signals may be a major mechanism by which ERα promotes breast carcinogenesis. PMID:27259243

  5. Estrogen receptor alpha inhibits senescence-like phenotype and facilitates transformation induced by oncogenic ras in human mammary epithelial cells.

    PubMed

    Liu, Zhao; Wang, Long; Yang, Junhua; Bandyopadhyay, Abhik; Kaklamani, Virginia; Wang, Shui; Sun, Lu-Zhe

    2016-06-28

    Exposure to estrogen has long been associated with an increased risk of developing breast cancer. However, how estrogen signaling promotes breast carcinogenesis remains elusive. Senescence is known as an important protective response to oncogenic events. We aimed to elucidate the role of estrogen receptor alpha (ERα) on senescence in transformed human mammary epithelial cells and breast cancer cells. Our results show that ectopic expression of oncoprotein H-ras-V12 in immortalized human mammary epithelial cells (HMEC) significantly inhibited the phosphorylation of the retinoblastoma protein (Rb) and increased the activity of the senescence-associated beta-galactosidase (SA-β-Gal). These senescence-like phenotypes were reversed by ectopic expression of ERα. Similar inhibition of the H-ras-V12-induced SA-β-Gal activity by ERα was also observed in the human mammary epithelial MCF-10A cells. Co-expression of ERα and H-ras-V12 resulted in HMEC anchorage-independent growth in vitro and tumor formation in vivo. Furthermore, inhibition of ERα expression induced senescence-like phenotypes in ERα positive human breast cancer cells such as increased activity of SA-β-Gal, decreased phosphorylation of RB, and loss of mitogenic activity. Thus, the suppression of cellular senescence induced by oncogenic signals may be a major mechanism by which ERα promotes breast carcinogenesis.

  6. Adiponectin induces CXCL1 secretion from cancer cells and promotes tumor angiogenesis by inducing stromal fibroblast senescence.

    PubMed

    Cai, Lun; Xu, Shengyuan; Piao, Chunmei; Qiu, Shulan; Li, Huihua; Du, Jie

    2016-11-01

    Adiponectin is an adipocyte-specific adipocytokine with proliferative and pro-angiogenic effects that regulates many biological processes, including immunity, insulin resistance, and inflammation. The oncogenic role of adiponectin has been implicated in several cancer types. Stromal cells within tumor contribute tumor growth and angiogenesis; however, it is not clear that how adiponectin regulates stromal cell-mediated tumorigenesis. In this study, using the tumor xenograft models, we demonstrated that tumor development was severely impaired in mouse subcutaneous cancer tissue and metastasis tumor tissue in adiponectin knockout mice. Our results indicated adiponectin deficiency resulted in decrease of blood vessel and stromal senescent fibroblasts in subcutaneous and metastasis tumor tissue. These observations were confirmed in vitro, in which co-cultured tumor cells and fibroblasts treated with adiponectin promoted ECs tube formation. A secretion of CXCL1 by adiponectin-treated tumor cells was observed during the process of inducing stromal fibroblast senescence. Furthermore, stromal cells senescence was through p53 and p16 pathways. Taken together, our results indicate that adiponectin promotes stromal cell senescence within invasive colon cancer contributing to angiogenesis and tumor growth in part through the production of CXCL1 and may serve as a therapeutic target for tumor patients. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Gα modulates salt-induced cellular senescence and cell division in rice and maize

    DOE PAGES

    Urano, Daisuke; Colaneri, Alejandro; Jones, Alan M.

    2014-09-16

    The plant G-protein network, comprising Gα, Gβ, and Gγ core subunits, regulates development, senses sugar, and mediates biotic and abiotic stress responses. Here in this paper, we report G-protein signalling in the salt stress response using two crop models, rice and maize. Loss-of-function mutations in the corresponding genes encoding the Gα subunit attenuate growth inhibition and cellular senescence caused by sodium chloride (NaCl). Gα null mutations conferred reduced leaf senescence, chlorophyll degradation, and cytoplasm electrolyte leakage under NaCl stress. Sodium accumulated in both wild-type and Gα-mutant shoots to the same levels, suggesting that Gα signalling controls cell death in leavesmore » rather than sodium exclusion in roots. Growth inhibition is probably initiated by osmotic change around root cells, because KCl and MgSO4 also suppressed seedling growth equally as well as NaCl. NaCl lowered rates of cell division and elongation in the wild-type leaf sheath to the level of the Gα-null mutants; however there was no NaCl-induced decrease in cell division in the Gα mutant, implying that the osmotic phase of salt stress suppresses cell proliferation through the inhibition of Gα-coupled signalling. These results reveal two distinct functions of Gα in NaCl stress in these grasses: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress.« less

  8. Fibroblast growth factor-23 induces cellular senescence in human mesenchymal stem cells from skeletal muscle.

    PubMed

    Sato, Chisato; Iso, Yoshitaka; Mizukami, Takuya; Otabe, Koji; Sasai, Masahiro; Kurata, Masaaki; Sanbe, Takeyuki; Sekiya, Ichiro; Miyazaki, Akira; Suzuki, Hiroshi

    2016-02-12

    Although muscle wasting and/or degeneration are prevalent in patients with chronic kidney disease, it remains unknown whether FGF-23 influences muscle homeostasis and regeneration. Mesenchymal stem cells (MSCs) in skeletal muscle are distinct from satellite cells and have a known association with muscle degeneration. In this study we sought to investigate the effects of FGF-23 on MSCs isolated from human skeletal muscle in vitro. The MSCs expressed FGF receptors (1 through 4) and angiotensin-II type 1 receptor, but no traces of the Klotho gene were detected. MSCs and satellite cells were treated with FGF-23 and angiotensin-II for 48 h. Treatment with FGF-23 significantly decreased the number of MSCs compared to controls, while treatment with angiotensin-II did not. FGF-23 and angiotensin-II both left the cell counts of the satellite cells unchanged. The FGF-23-treated MSCs exhibited the senescent phenotype, as judged by senescence-associated β-galactosidase assay, cell morphology, and increased expression of p53 and p21 in western blot analysis. FGF-23 also significantly altered the gene expression of oxidative stress regulators in the cells. In conclusion, FGF-23 induced premature senescence in MSCs from skeletal muscle via the p53/p21/oxidative-stress pathway. The interaction between the MSCs and FGF-23 may play a key role in the impaired muscle reparative mechanisms of chronic kidney disease.

  9. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence

    PubMed Central

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-01-01

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties. DOI: http://dx.doi.org/10.7554/eLife.13768.001 PMID:27697148

  10. Gα modulates salt-induced cellular senescence and cell division in rice and maize.

    PubMed

    Urano, Daisuke; Colaneri, Alejandro; Jones, Alan M

    2014-12-01

    The plant G-protein network, comprising Gα, Gβ, and Gγ core subunits, regulates development, senses sugar, and mediates biotic and abiotic stress responses. Here, we report G-protein signalling in the salt stress response using two crop models, rice and maize. Loss-of-function mutations in the corresponding genes encoding the Gα subunit attenuate growth inhibition and cellular senescence caused by sodium chloride (NaCl). Gα null mutations conferred reduced leaf senescence, chlorophyll degradation, and cytoplasm electrolyte leakage under NaCl stress. Sodium accumulated in both wild-type and Gα-mutant shoots to the same levels, suggesting that Gα signalling controls cell death in leaves rather than sodium exclusion in roots. Growth inhibition is probably initiated by osmotic change around root cells, because KCl and MgSO4 also suppressed seedling growth equally as well as NaCl. NaCl lowered rates of cell division and elongation in the wild-type leaf sheath to the level of the Gα-null mutants; however there was no NaCl-induced decrease in cell division in the Gα mutant, implying that the osmotic phase of salt stress suppresses cell proliferation through the inhibition of Gα-coupled signalling. These results reveal two distinct functions of Gα in NaCl stress in these grasses: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress.

  11. Involvement of Activated Oxygen in Nitrate-Induced Senescence of Pea Root Nodules.

    PubMed Central

    Escuredo, P. R.; Minchin, F. R.; Gogorcena, Y.; Iturbe-Ormaetxe, I.; Klucas, R. V.; Becana, M.

    1996-01-01

    The effect of short-term nitrate application (10 mM, 0-4 d) on nitrogenase (N2ase) activity, antioxidant defenses, and related parameters was investigated in pea (Pisum sativum L. cv Frilene) nodules. The response of nodules to nitrate comprised two stages. In the first stage (0-2 d), there were major decreases in N2ase activity and N2ase-linked respiration and concomitant increases in carbon cost of N2ase and oxygen diffusion resistance of nodules. There was no apparent oxidative damage, and the decline in N2ase activity was, to a certain extent, reversible. The second stage (>2 d) was typical of a senescent, essentially irreversible process. It was characterized by moderate increases in oxidized proteins and catalytic Fe and by major decreases in antioxidant enzymes and metabolites. The restriction in oxygen supply to bacteroids may explain the initial decline in N2ase activity. The decrease in antioxidant protection is not involved in this process and is not specifically caused by nitrate, since it also occurs with drought stress. However, comparison of nitrate- and drought-induced senescence shows an important difference: there is no lipid degradation or lipid peroxide accumulation with nitrate, indicating that lipid peroxidation is not necessarily involved in nodule senescence. PMID:12226252

  12. Gα modulates salt-induced cellular senescence and cell division in rice and maize

    SciTech Connect

    Urano, Daisuke; Colaneri, Alejandro; Jones, Alan M.

    2014-09-16

    The plant G-protein network, comprising Gα, Gβ, and Gγ core subunits, regulates development, senses sugar, and mediates biotic and abiotic stress responses. Here in this paper, we report G-protein signalling in the salt stress response using two crop models, rice and maize. Loss-of-function mutations in the corresponding genes encoding the Gα subunit attenuate growth inhibition and cellular senescence caused by sodium chloride (NaCl). Gα null mutations conferred reduced leaf senescence, chlorophyll degradation, and cytoplasm electrolyte leakage under NaCl stress. Sodium accumulated in both wild-type and Gα-mutant shoots to the same levels, suggesting that Gα signalling controls cell death in leaves rather than sodium exclusion in roots. Growth inhibition is probably initiated by osmotic change around root cells, because KCl and MgSO4 also suppressed seedling growth equally as well as NaCl. NaCl lowered rates of cell division and elongation in the wild-type leaf sheath to the level of the Gα-null mutants; however there was no NaCl-induced decrease in cell division in the Gα mutant, implying that the osmotic phase of salt stress suppresses cell proliferation through the inhibition of Gα-coupled signalling. These results reveal two distinct functions of Gα in NaCl stress in these grasses: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress.

  13. Gα modulates salt-induced cellular senescence and cell division in rice and maize

    PubMed Central

    Urano, Daisuke; Colaneri, Alejandro; Jones, Alan M.

    2014-01-01

    The plant G-protein network, comprising Gα, Gβ, and Gγ core subunits, regulates development, senses sugar, and mediates biotic and abiotic stress responses. Here, we report G-protein signalling in the salt stress response using two crop models, rice and maize. Loss-of-function mutations in the corresponding genes encoding the Gα subunit attenuate growth inhibition and cellular senescence caused by sodium chloride (NaCl). Gα null mutations conferred reduced leaf senescence, chlorophyll degradation, and cytoplasm electrolyte leakage under NaCl stress. Sodium accumulated in both wild-type and Gα-mutant shoots to the same levels, suggesting that Gα signalling controls cell death in leaves rather than sodium exclusion in roots. Growth inhibition is probably initiated by osmotic change around root cells, because KCl and MgSO4 also suppressed seedling growth equally as well as NaCl. NaCl lowered rates of cell division and elongation in the wild-type leaf sheath to the level of the Gα-null mutants; however there was no NaCl-induced decrease in cell division in the Gα mutant, implying that the osmotic phase of salt stress suppresses cell proliferation through the inhibition of Gα-coupled signalling. These results reveal two distinct functions of Gα in NaCl stress in these grasses: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress. PMID:25227951

  14. Alterations in microRNA Expression in Stress-induced Cellular Senescence

    PubMed Central

    Li, Guorong; Luna, Coralia; Qiu, Jianming; Epstein, David L.; Gonzalez, Pedro

    2009-01-01

    Summary We investigated miRNA expression changes associated with stress-induced premature senescence (SIPS) in primary cultures of human diploid fibroblasts (HDF) and human trabecular meshwork (HTM) cells. Twenty-five miRNAs were identified by miRNA microarray analysis and their changes in expression were validated by TaqMan realtime RT-PCR in three independent cell lines of HTM and HDF. SIPS in both HTM and HDF cell types was associated with significant down-regulation of four members of the miR-15 family and five miRNAs of the miR-106b family located in the oncogenic clusters miR-17–92, miR-106a-363, and miR-106b-25. SIPS was also associated with up-regulation of two miRNAs (182 and 183) from the miR-183-96-182 cluster. Transfection with miR-106a agomir inhibited the up-regulation of p21CDKN1A associated with SIPS while transfection with miR-106a antagomir led to increased p21CDKN1A expression in senescent cells. In addition, we identified retinoic acid receptor gamma (RARG) as a target of miR-182 and showed that this protein was down-regulated during SIPS in HDF and HTM cells. These results suggest that changes in miRNA expression might contribute to phenotypic alterations of senescent cells by modulating the expression of key regulatory proteins such as p21CDKN1A as well as by targeting genes that are down-regulated in senescent cells such as RARG. PMID:19782699

  15. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    SciTech Connect

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L.; Xu, C. Wilson

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular

  16. Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis

    PubMed Central

    Du, Jing; Li, Manli; Kong, Dongdong; Wang, Lei; Lv, Qiang; Wang, Jinzheng; Bao, Fang; Gong, Qingqiu; Xia, Jinchan; He, Yikun

    2014-01-01

    After germination, cotyledons undertake the major role in supplying nutrients to the pre-photoautorophy angiosperm seedlings until they senesce. Like other senescence processes, cotyledon senescence is a programmed degenerative process. Nitric oxide can induce premature cotyledon senescence in Arabidopsis thaliana, yet the underlying mechanism remains elusive. A screen for genetic mutants identified the nes1 mutant, in which cotyledon senescence was accelerated by nitric oxide. Map-based cloning revealed that NES1 is allelic to a previously reported mitotic checkpoint family gene, MAD1. The nes1/mad1 mutants were restored to the wild type, in response to nitric oxide, by transforming them with pNES1::NES1. Ectopic expression of NES1 in the wild type delayed nitric oxide-mediated cotyledon senescence, confirming the repressive role of NES1. Moreover, two positive regulators of leaf senescence, the ethylene signalling component EIN2 and the transcription factor ORE1/AtNAC2/ANAC092, were found to function during nitric oxide-induced senescence in cotyledons. The block of ORE1 function delayed senescence and ectopic expression induced the process, revealing the positive role of ORE1. EIN2 was required to induce ORE1. Furthermore, the genetic interaction analysis between NES1 and ORE1 showed that the ore1 loss-of-function mutants were epistatic to nes1, suggesting the dominant role of ORE1 and the antagonistic role of NES1 during nitric oxide-induced cotyledon senescence in Arabidopsis. PMID:24336389

  17. Genistein-induced LKB1-AMPK activation inhibits senescence of VSMC through autophagy induction.

    PubMed

    Lee, Kyung Young; Kim, Jae-Ryong; Choi, Hyoung Chul

    2016-06-01

    Genistein, the primary isoflavone from soy products, enhances antioxidant enzyme activities and inhibits tyrosine kinase. However, the mechanisms underlying genistein-induced autophagy are not yet completely understood. Autophagy refers to a regulated cellular process for the lysosomal-dependent turnover of organelles and proteins. During starvation or nutrient deficiency, autophagy provides an endogenous mechanism for prolonging survival. Here, we investigated whether genistein exerts autophagic effects through the activation of LKB1-AMPK signaling in VSMCs. Genistein dose- and time-dependently increased the phosphorylation of LKB1 and AMPK in VSMCs. LKB1 and AMPK induced autophagy through the downregulation of mTOR in VSMCs. Genistein-induced autophagy was inhibited in dominant-negative AMPK-transfected cells, whereas it was accelerated in cells transfected with the constitutively active form of AMPK. Increased autophagosome activity was confirmed by a concentration-dependent increase in LC3-II formation on Western blots and by increased perinuclear LC3-II puncta in genistein-treated VSMCs. Furthermore, genistein-induced autophagy attenuated adriamycin-induced SA-b-gal staining. These results suggest that genistein-dependent autophagy diminishes VSMC senescence and genistein may attenuate the VSMC senescence via an LKB1-AMPK-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Targeting of DNA Damage Signaling Pathway Induced Senescence and Reduced Migration of Cancer cells.

    PubMed

    Gao, Ran; Singh, Rumani; Kaul, Zeenia; Kaul, Sunil C; Wadhwa, Renu

    2015-06-01

    The heat shock 70 family protein, mortalin, has pancytoplasmic distribution pattern in normal and perinuclear in cancer human cells. Cancer cells when induced to senesce by either chemicals or stress showed shift in mortalin staining pattern from perinuclear to pancytoplasmic type. Using such shift in mortalin staining as a reporter, we screened human shRNA library and identified nine senescence-inducing siRNA candidates. An independent Comparative Genomic Hybridization analysis of 35 breast cancer cell lines revealed that five (NBS1, BRCA1, TIN2, MRE11A, and KPNA2) of the nine genes located on chromosome regions identified as the gain of locus in more than 80% cell lines. By gene-specific PCR, these five genes were found to be frequently amplified in cancer cell lines. Bioinformatics revealed that the identified targets were connected to MRN (MRE11-RAD50-NBS1) complex, the DNA damage-sensing complex. We demonstrate that the identified shRNAs triggered DNA damage response and induced the expression of tumor suppressor protein p16(INK4A) causing growth arrest of cancer cells. Furthermore, cells showed decreased migration, mediated by decrease in matrix metalloproteases. Taken together, we demonstrate that the MRN complex is a potential target of cancer cell proliferation and migration, and staining pattern of mortalin could serve as an assay to identify senescence-inducing/anticancer reagents. © The Author 2014. Published by Oxford University Press on behalf of the Gerontological Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Accelerated senescence in skin in a murine model of radiation-induced multi-organ injury.

    PubMed

    McCart, Elizabeth A; Thangapazham, Rajesh L; Lombardini, Eric D; Mog, Steven R; Panganiban, Ronald Allan M; Dickson, Kelley M; Mansur, Rihab A; Nagy, Vitaly; Kim, Sung-Yop; Selwyn, Reed; Landauer, Michael R; Darling, Thomas N; Day, Regina M

    2017-03-18

    Accidental high-dose radiation exposures can lead to multi-organ injuries, including radiation dermatitis. The types of cellular damage leading to radiation dermatitis are not completely understood. To identify the cellular mechanisms that underlie radiation-induced skin injury in vivo, we evaluated the time-course of cellular effects of radiation (14, 16 or 17 Gy X-rays; 0.5 Gy/min) in the skin of C57BL/6 mice. Irradiation of 14 Gy induced mild inflammation, observed histologically, but no visible hair loss or erythema. However, 16 or 17 Gy radiation induced dry desquamation, erythema and mild ulceration, detectable within 14 days post-irradiation. Histological evaluation revealed inflammation with mast cell infiltration within 14 days. Fibrosis occurred 80 days following 17 Gy irradiation, with collagen deposition, admixed with neutrophilic dermatitis, and necrotic debris. We found that in cultures of normal human keratinocytes, exposure to 17.9 Gy irradiation caused the upregulation of p21/waf1, a marker of senescence. Using western blot analysis of 17.9 Gy-irradiated mice skin samples, we also detected a marker of accelerated senescence (p21/waf1) 7 days post-irradiation, and a marker of cellular apoptosis (activated caspase-3) at 30 days, both preceding histological evidence of inflammatory infiltrates. Immunohistochemistry revealed reduced epithelial stem cells from hair follicles 14-30 days post-irradiation. Furthermore, p21/waf1 expression was increased in the region of the hair follicle stem cells at 14 days post 17 Gy irradiation. These data indicate that radiation induces accelerated cellular senescence in the region of the stem cell population of the skin.

  20. Abnormal mitosis in hypertetraploid cells causes aberrant nuclear morphology in association with H2O2-induced premature senescence.

    PubMed

    Ohshima, Susumu

    2008-09-01

    Aberrant nuclear morphology, such as nuclei with irregular shapes or fragmented nuclei, is often observed in senescent cells, but its biological significance is not fully understood. My previous study showed that aberrant nuclear morphology in senescent human fibroblasts is attributable to abnormal mitosis in later passages. In this study, the production of abnormal nuclei in association with premature senescence was investigated. Premature senescence was induced by brief exposure of human fibroblasts to hydrogen peroxide (H(2)O(2)), and mitosis was observed by time-lapse microscopy. In addition, cell cycle and nuclear morphology after exposure to H(2)O(2) were also analyzed using a laser scanning cytometer. Time-lapse analysis revealed that the induction of premature senescence caused abnormal mitoses, such as mitotic slippage or incomplete mitosis, especially in later days after H(2)O(2) exposure and often resulted in abnormal nuclear morphology. Analysis by laser scanning cytometer showed significantly higher frequency of abnormal cells with deformed nuclei and abnormal mitotic cells with misaligned chromosomes in a hypertetraploid subpopulation. These results suggest that unstable hypertetraploid cells, formed in association with H(2)O(2)-induced premature senescence, cause abnormal mitosis that leads to aberrant nuclear morphology.

  1. Losartan inhibits STAT1 activation and protects human glomerular mesangial cells from angiotensin II induced premature senescence.

    PubMed

    Jiao, Sumin; Zheng, Xiaoyu; Yang, Xue; Zhang, Jin; Wang, Lining

    2012-01-01

    Human glomerular mesangial cells (HMCs) have a finite lifespan, and eventually enter irreversible growth arrest known as cellular senescence, which is thought to contribute to kidney ageing and age-related kidney disorders, such as chronic kidney disease. The signal transducer and activator of transcription 1 (STAT1) is a latent transcription factor involved in a variety of signal transduction pathways, including cell proliferation, apoptosis, and differentiation, but whether it could regulate HMC senescence still remains to be explored. In our study, the induction of angiotensin II (Ang II)-accelerated HMC senescence, as judged by increased senescence-associated β-galactosidase (SA-β-gal)-positive staining cells, morphological changes, and G0/G1 cell cycle arrest. STAT1 activity and the expression of p53 and p21(Cip1) were increased after Ang II treatment. STAT1 knockdown using RNA interference significantly inhibited the progression of HMC senescence and decreased the elevated expression of p53 and p21(Cip1). Pretreating HMCs with Ang II receptor blocker losartan also inhibited the progression of HMC senescence and STAT1 activity. Our results indicate that STAT1 is implicated in the mediation of Ang II-induced HMC senescence through p53/ p21(Cip1) pathway, and that losartan could attenuate HMC senescence by regulating STAT1. The antioxidant N-acetyl-L-cysteine reduced ROS production and STAT1 activity induced by Ang II, indicating that Ang II uses ROS as a second messenger to regulate STAT1 activity.

  2. Downstream molecular events in the altered profiles of lysophosphatidic acid-induced cAMP in senescent human diploid fibroblasts.

    PubMed

    Jang, Ik Soon; Rhim, Ji Heon; Park, Sang Chul; Yeo, Eui Ju

    2006-04-30

    Lysophosphatidic acid (LPA) is a phospholipid growth factor that acts through G-protein-coupled receptors. Previously, we demonstrated an altered profile of LPA-dependent cAMP content during the aging process of human diploid fibroblasts (HDFs). In attempts to define the molecular events associated with the age-dependent changes in cAMP profiles, we determined the protein kinase A (PKA) activity, phosphorylation of cAMP-response element binding protein (CREB), and the protein expression of CRE-regulatory genes, c-fos and COX-2 in young and senescent HDFs. We observed in senescent cells, an increase in mRNA levels of the catalytic subunit a of PKA and of the major regulatory subunit Ialpha. Senescence-associated increase of cAMP after LPA treatment correlated well with increased CREB phosphorylation accompanying activation of PKA in senescent cells. In senescent cells, after LPA treatment, the expression of c-fos and COX-2 decreased initially, followed by an increase. In young HDFs, CREB phosphorylation decreased following LPA treatment, and both c-fos and COX-2 protein levels increased rapidly. CRE-luciferase assay revealed higher basal CRE-dependent gene expression in young HDFs compared to senescent HDFs. However, LPA-dependent slope of luciferase increased more rapidly in senescent cells than in young cells, presumably due to an increase of LPA-induced CREB phosphorylation. CRE-dependent luciferase activation was abrogated in the presence of inhibitors of PKC, MEK1, p38MAPK, and PKA, in both young and senescent HDFs. We conclude that these kinase are coactivators of the expression of CRE-responsive genes in LPA-induced HDFs and that their changed activities during the aging process contribute to the final expression level of CRE-responsive genes.

  3. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells.

    PubMed

    Li, Zhen; Jiang, Ke; Zhu, Xiaofang; Lin, Guibin; Song, Fei; Zhao, Yongfu; Piao, Yongjun; Liu, Jiwei; Cheng, Wei; Bi, Xiaolin; Gong, Peng; Song, Zhiqi; Meng, Songshu

    2016-01-28

    Encorafenib (LGX818) is a new-generation BRAF inhibitor that is under evaluation in clinical trials. However, the underlying mechanism remains to be elucidated. Here we show that LGX818 potently decreased ERK phosphorylation and inhibited proliferation in BRAFV600E melanoma cell lines. Moreover, LGX818 downregulated CyclinD1 in a glycogen synthase kinase 3β-independent manner and induced cell cycle arrest in the G1 phase, Surprisingly, LGX818 triggered cellular senescence in BRAFV600E melanoma cells, as evidenced by increased β-galactosidase staining, while no appreciable induction of apoptosis was detected, as determined by Annexin V and propidium iodide staining and immunoblot analysis of caspase-3 processing and poly (ADP-ribose) polymerase cleavage. Increased p27KIP1 expression and retinoblastoma protein activation were detected during LGX818-induced senescence. Additionally, inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 1B by AZ191 reversed LGX818-induced CyclinD1 turnover and senescence. Interestingly, autophagy is triggered through inhibition of the mTOR/70S6K pathway during LGX818-induced senescence. Moreover, autophagy inhibition by pharmacological and genetic regulation attenuates LGX818-induced senescence. Notably, combining LGX818 with autophagy modulators has anti-proliferative effect in LGX818-resistant BRAF mutant melanoma cells. Altogether, we uncovered a mechanism by which LGX818 exerts its anti-tumor activity in BRAFV600E melanoma cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L.

    PubMed Central

    Xiao, Huai-Juan; Yin, Yan-Xu; Chai, Wei-Guo; Gong, Zhen-Hui

    2014-01-01

    Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.). The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF), and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs) superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper. PMID:24823878

  5. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells.

    PubMed

    Takebayashi, Shin-Ichiro; Tanaka, Hiroshi; Hino, Shinjiro; Nakatsu, Yuko; Igata, Tomoka; Sakamoto, Akihisa; Narita, Masashi; Nakao, Mitsuyoshi

    2015-08-01

    Metabolism is closely linked with cellular state and biological processes, but the mechanisms controlling metabolic properties in different contexts remain unclear. Cellular senescence is an irreversible growth arrest induced by various stresses, which exhibits active secretory and metabolic phenotypes. Here, we show that retinoblastoma protein (RB) plays a critical role in promoting the metabolic flow by activating both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) in cells that have undergone oncogene-induced senescence (OIS). A combination of real-time metabolic monitoring, and metabolome and gene expression analyses showed that OIS-induced fibroblasts developed an accelerated metabolic flow. The loss of RB downregulated a series of glycolytic genes and simultaneously reduced metabolites produced from the glycolytic pathway, indicating that RB upregulates glycolytic genes in OIS cells. Importantly, both mitochondrial OXPHOS and glycolytic activities were abolished in RB-depleted or downstream glycolytic enzyme-depleted OIS cells, suggesting that RB-mediated glycolytic activation induces a metabolic flux into the OXPHOS pathway. Collectively, our findings reveal that RB essentially functions in metabolic remodeling and the maintenance of the active energy production in OIS cells.

  6. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells

    PubMed Central

    Takebayashi, Shin-ichiro; Tanaka, Hiroshi; Hino, Shinjiro; Nakatsu, Yuko; Igata, Tomoka; Sakamoto, Akihisa; Narita, Masashi; Nakao, Mitsuyoshi

    2015-01-01

    Metabolism is closely linked with cellular state and biological processes, but the mechanisms controlling metabolic properties in different contexts remain unclear. Cellular senescence is an irreversible growth arrest induced by various stresses, which exhibits active secretory and metabolic phenotypes. Here, we show that retinoblastoma protein (RB) plays a critical role in promoting the metabolic flow by activating both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) in cells that have undergone oncogene-induced senescence (OIS). A combination of real-time metabolic monitoring, and metabolome and gene expression analyses showed that OIS-induced fibroblasts developed an accelerated metabolic flow. The loss of RB downregulated a series of glycolytic genes and simultaneously reduced metabolites produced from the glycolytic pathway, indicating that RB upregulates glycolytic genes in OIS cells. Importantly, both mitochondrial OXPHOS and glycolytic activities were abolished in RB-depleted or downstream glycolytic enzyme-depleted OIS cells, suggesting that RB-mediated glycolytic activation induces a metabolic flux into the OXPHOS pathway. Collectively, our findings reveal that RB essentially functions in metabolic remodeling and the maintenance of the active energy production in OIS cells. PMID:26009982

  7. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells.

    PubMed

    Carracedo, Julia; Merino, Ana; Briceño, Carolina; Soriano, Sagrario; Buendía, Paula; Calleros, Laura; Rodriguez, Mariano; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael

    2011-04-01

    Carbamylated low-density lipoprotein (cLDL) plays a role in atherosclerosis. In this study we evaluate the effect of uremia on LDL carbamylation and the effect of cLDL and oxidized LDL (oxLDL; 200 μg/ml) on number, function, and genomic stability of endothelial progenitor cells (EPCs) obtained from healthy volunteers. cLDL was generated after incubation of native LDL (nLDL) with uremic serum from patients with chronic kidney disease (CKD) stages 2-4. Oxidative stress was measured by flow cytometry and fluorescent microscopy, mitochondrial depolarization by flow cytometry, senescence by β-galactosidase activity and telomere length, and DNA damage by phosphorylated histone H2AX (γH2AX). The percentage of cLDL by uremic serum was related to the severity of CKD. Compared with nLDL, cLDL induced an increase in oxidative stress (62±5 vs. 8±3%, P<0.001) and cells with mitochondrial depolarization (73±7 vs. 9±5%, P<0.001), and a decrease in EPC proliferation and angiogenesis. cLDL also induced accelerated senescence (73±16 vs. 12±9%, P<0.001), which was associated with a decrease in the expression of γH2AX (62±9 vs. 5±3%, P<0.001). The degree of injury induced by cLDL was comparable to that observed with oxLDL. This study supports the hypothesis that cLDL triggers genomic damage in EPCs, resulting in premature senescence. We can, therefore, hypothesize that EPCs injury by cLDL contributes to an increase in atherosclerotic disease in CKD.

  8. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

    SciTech Connect

    Wang, Daojing; Jang, Deok-Jin

    2009-08-21

    Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9, and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity.

  9. Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes

    PubMed Central

    Platas, Julia; Guillén, Maria Isabel; del Caz, Maria Dolores Pérez; Gomar, Francisco; Castejón, Miguel Angel; Mirabet, Vicente; Alcaraz, Maria José

    2016-01-01

    Aging and exposure to stress would determine the chondrocyte phenotype in osteoarthritis (OA). In particular, chronic inflammation may contribute to stress-induced senescence of chondrocytes and cartilage degeneration during OA progression. Recent studies have shown that adipose-derived mesenchymal stem cells exert paracrine effects protecting against degenerative changes in chondrocytes. We have investigated whether the conditioned medium (CM) from adipose-derived mesenchymal stem cells may regulate senescence features induced by inflammatory stress in OA chondrocytes. Our results indicate that CM down-regulated senescence markers induced by interleukin-1β including senescence-associated β-galactosidase activity, accumulation of γH2AX foci and morphological changes with enhanced formation of actin stress fibers. Treatment of chondrocytes with CM also decreased the production of oxidative stress, the activation of mitogen-activated protein kinases, and the expression of caveolin-1 and p21. The effects of CM were related to the reduction in p53 acetylation which would be dependent on the enhancement of Sirtuin 1 expression. Therefore, CM may exert protective effects in degenerative joint conditions by countering the premature senescence of OA chondrocytes induced by inflammatory stress. PMID:27490266

  10. Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging.

    PubMed

    Briganti, Stefania; Wlaschek, Meinhard; Hinrichs, Christina; Bellei, Barbara; Flori, Enrica; Treiber, Nicolai; Iben, Sebastian; Picardo, Mauro; Scharffetter-Kochanek, Karin

    2008-09-01

    Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.

  11. Ameliorative effects of melatonin on dark-induced leaf senescence in gardenia (Gardenia jasminoides Ellis): leaf morphology, anatomy, physiology and transcriptome.

    PubMed

    Zhao, Daqiu; Wang, Rong; Meng, Jiasong; Li, Zhiyuan; Wu, Yanqing; Tao, Jun

    2017-09-05

    Cut gardenia (Gardenia jasminoides Ellis) foliage is widely used as a vase material or flower bouquet indoors; however, insufficient indoor light accelerates its senescence, which shortens its viewing time. In this study, applying melatonin to delay gardenia leaf senescence when exposed to extremely low light condition (darkness), and the results showed that 1.0 mM was the effective concentration. At this concentration, chlorophyll contents and chlorophyll fluorescence parameters (Fv/Fm, Fv/F0 and Y(II)) increased, while the carotenoid and flavonoid contents decreased. Meanwhile, stress physiological indices decreased in response to exogenous melatonin application, whereas an increase in glutamine synthetase activity, water and soluble protein contents was observed. Moreover, exogenous melatonin application also reduced leaf programmed cell death under darkness, increased the endogenous melatonin level, expression levels of tryptophan decarboxylase gene, superoxide dismutase and catalase activities and the ascorbate-glutathione cycle, and maintained more intact anatomical structures. Furthermore, transcriptome sequencing revealed that various biological processes responded to exogenous melatonin application, including carbohydrate metabolism, amino acid metabolism, lipid metabolism, plant hormone signal transduction and pigment biosynthesis. Consequently, dark-induced leaf senescence in gardenia was significantly delayed. These results provided a better understanding for improving the ornamental value of cut gardenia foliage using melatonin.

  12. Depletion of Securin Induces Senescence After Irradiation and Enhances Radiosensitivity in Human Cancer Cells Regardless of Functional p53 Expression

    SciTech Connect

    Chen Wenshu; Yu Yichu; Lee Yijang; Chen, J.-H.; Hsu, H.-Y.; Chiu, S.-J.

    2010-06-01

    Purpose: Radiotherapy is one of the best choices for cancer treatment. However, various tumor cells exhibit resistance to irradiation-induced apoptosis. The development of new strategies to trigger cancer cell death besides apoptosis is necessary. This study investigated the role of securin in radiation-induced apoptosis and senescence in human cancer cells. Methods and Materials: Cell survival was determined using clonogenic assays. Western blot analysis was used to analyze levels of securin, caspase-3, PARP, p53, p21, Rb, gamma-H2AX, and phospho-Chk2. Senescent cells were analyzed using a beta-galactosidase staining assay. A securin-expressed vector (pcDNA-securin) was stably transfected into securin-null HCT116 cells. Securin gene knockdown was performed by small interfering RNA and small hairpin RNA in HCT116 and MDA-MB-231 cells, respectively. Results: Radiation was found to induce apoptosis in securin wild type HCT116 cells but induced senescence in securin-null cells. Restoration of securin reduced senescence and increased cell survival in securin-null HCT116 cells after irradiation. Radiation-induced gamma-H2AX and Chk2 phosphorylation were induced transiently in securin-wild-type cells but exhibited sustained activation in securin-null cells. Securin gene knockdown switches irradiation-induced apoptosis to senescence in both HCT116 p53-null and MDA-MB-231 cells. Conclusions: Our results demonstrated that the level of securin expression plays a determining role in the radiosensitivity and fate of cells. Depletion of securin impairs DNA repair after irradiation, increasing DNA damage and promoting senescence in the residual surviving cells regardless of functional p53 expression. The knockdown of securin may contribute to a novel radiotherapy protocol for the treatment of human cancer cells that are resistant to irradiation.

  13. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion

    PubMed Central

    Rodier, Francis; Muñoz, Denise P.; Teachenor, Robert; Chu, Victoria; Le, Oanh; Bhaumik, Dipa; Coppé, Jean-Philippe; Campeau, Eric; Beauséjour, Christian M.; Kim, Sahn-Ho; Davalos, Albert R.; Campisi, Judith

    2011-01-01

    DNA damage can induce a tumor suppressive response termed cellular senescence. Damaged senescent cells permanently arrest growth, secrete inflammatory cytokines and other proteins and harbor persistent nuclear foci that contain DNA damage response (DDR) proteins. To understand how persistent damage foci differ from transient foci that mark repairable DNA lesions, we identify sequential events that differentiate transient foci from persistent foci, which we term ‘DNA segments with chromatin alterations reinforcing senescence’ (DNA-SCARS). Unlike transient foci, DNA-SCARS associate with PML nuclear bodies, lack the DNA repair proteins RPA and RAD51, lack single-stranded DNA and DNA synthesis and accumulate activated forms of the DDR mediators CHK2 and p53. DNA-SCARS form independently of p53, pRB and several other checkpoint and repair proteins but require p53 and pRb to trigger the senescence growth arrest. Importantly, depletion of the DNA-SCARS-stabilizing component histone H2AX did not deplete 53BP1 from DNA-SCARS but diminished the presence of MDC1 and activated CHK2. Furthermore, depletion of H2AX reduced both the p53-dependent senescence growth arrest and p53-independent cytokine secretion. DNA-SCARS were also observed following severe damage to multiple human cell types and mouse tissues, suggesting that they can be used in combination with other markers to identify senescent cells. Thus, DNA-SCARS are dynamically formed distinct structures that functionally regulate multiple aspects of the senescent phenotype. PMID:21118958

  14. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice

    PubMed Central

    Wang, Zhaohai; Wang, Ya; Hong, Xiao; Hu, Daoheng; Liu, Caixiang; Yang, Jing; Li, Yang; Huang, Yunqing; Feng, Yuqi; Gong, Hanyu; Li, Yang; Fang, Gen; Tang, Huiru; Li, Yangsheng

    2015-01-01

    Plant leaf senescence and defence responses are important biological processes, but the molecular mechanisms involved are not well understood. This study identified a new rice mutant, spotted leaf 29 (spl29). The SPL29 gene was identified by map-based cloning, and SPL29 was confirmed as UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) by enzymatic analysis. The mutant spl29 lacks UAP activity. The biological phenotypes for which UAP is responsible have not previously been reported in plants. The spl29 mutant displayed early leaf senescence, confirmed by chlorophyll loss and photosystem II decline as physiological indicators, chloroplast degradation as a cellular characteristic, and both upregulation of senescence transcription factors and senescence-associated genes, and downregulation of photosynthesis-related genes, as molecular evidence. Defence responses were induced in the spl29 mutant, shown by enhanced resistance to bacterial blight inoculation and upregulation of defence response genes. Reactive oxygen species, including O2 – and H2O2, accumulated in spl29 plants; there was also increased malondialdehyde content. Enhanced superoxide dismutase activity combined with normal catalase activity in spl29 could be responsible for H2O2 accumulation. The plant hormones jasmonic acid and abscisic acid also accumulated in spl29 plants. ROS and plant hormones probably play important roles in early leaf senescence and defence responses in the spl29 mutant. Based on these findings, it is suggested that UAP1 is involved in regulating leaf senescence and defence responses in rice. PMID:25399020

  15. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice.

    PubMed

    Wang, Zhaohai; Wang, Ya; Hong, Xiao; Hu, Daoheng; Liu, Caixiang; Yang, Jing; Li, Yang; Huang, Yunqing; Feng, Yuqi; Gong, Hanyu; Li, Yang; Fang, Gen; Tang, Huiru; Li, Yangsheng

    2015-02-01

    Plant leaf senescence and defence responses are important biological processes, but the molecular mechanisms involved are not well understood. This study identified a new rice mutant, spotted leaf 29 (spl29). The SPL29 gene was identified by map-based cloning, and SPL29 was confirmed as UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) by enzymatic analysis. The mutant spl29 lacks UAP activity. The biological phenotypes for which UAP is responsible have not previously been reported in plants. The spl29 mutant displayed early leaf senescence, confirmed by chlorophyll loss and photosystem II decline as physiological indicators, chloroplast degradation as a cellular characteristic, and both upregulation of senescence transcription factors and senescence-associated genes, and downregulation of photosynthesis-related genes, as molecular evidence. Defence responses were induced in the spl29 mutant, shown by enhanced resistance to bacterial blight inoculation and upregulation of defence response genes. Reactive oxygen species, including O2 (-) and H2O2, accumulated in spl29 plants; there was also increased malondialdehyde content. Enhanced superoxide dismutase activity combined with normal catalase activity in spl29 could be responsible for H2O2 accumulation. The plant hormones jasmonic acid and abscisic acid also accumulated in spl29 plants. ROS and plant hormones probably play important roles in early leaf senescence and defence responses in the spl29 mutant. Based on these findings, it is suggested that UAP1 is involved in regulating leaf senescence and defence responses in rice.

  16. Changes in the Level of Peptidase Activities in Pea Ovaries during Senescence and Fruit Set Induced by Gibberellic Acid 1

    PubMed Central

    Carrasco, Pedro; Carbonell, Juan

    1990-01-01

    The activities and changes in the levels of exopeptidase and endopeptidase activities were characterized in unpollinated ovaries of Pisum sativum L. cv Alaska during senescence and early fruit development induced by gibberellic acid (GA3). Two aminopeptidases and one iminopeptidase were electrophoretically separated. These peptidases were sensitive to inhibitors of sulfhydryl proteases. Carboxypeptidase activity was inhibited by phenylmethyl sulfonyl fluoride. An azocasein-degrading endopeptidase, sensitive to thiol protease inhibitors, was also found. An increase in the specific activity of aminopeptidase during both fruit development and ovary senescence was observed. In contrast, the specific activity of carboxypeptidase and endopeptidase increased only during senescence of the ovary. Changes in exopeptidase activity in senescing ovaries could be mainly the consequence of a greater stability to proteolysis while the rise in endopeptidase activity appeared to be due to new or increased synthesis of the enzyme. These results suggest that endopeptidase, and not amino or carboxypeptidase, plays a key role in the senescence of pea ovaries and that the changes in unpollinated ovaries leading to ovary senescence or fruit development can be controlled by gibberellins. Images Figure 1 PMID:16667372

  17. Resveratrol Induced Premature Senescence Is Associated with DNA Damage Mediated SIRT1 and SIRT2 Down-Regulation.

    PubMed

    Kilic Eren, Mehtap; Kilincli, Ayten; Eren, Özkan

    2015-01-01

    The natural polyphenolic compound resveratrol (3,4,5-trihydroxy-trans-stilbene) has broad spectrum health beneficial activities including antioxidant, anti-inflammatory, anti-aging, anti-cancer, cardioprotective, and neuroprotective effects. Remarkably, resveratrol also induces apoptosis and cellular senescence in primary and cancer cells. Resveratrol's anti-aging effects both in vitro and in vivo attributed to activation of a (NAD)-dependent histone deacetylase family member sirtuin-1 (SIRT1) protein. In mammals seven members (SIRT1-7) of sirtuin family have been identified. Among those, SIRT1 is the most extensively studied with perceptive effects on mammalian physiology and suppression of the diseases of aging. Yet no data has specified the role of sirtuins, under conditions where resveratrol treatment induces senescence. Current study was undertaken to investigate the effects of resveratrol in human primary dermal fibroblasts (BJ) and to clarify the role of sirtuin family members in particular SIRT1 and SIRT2 that are known to be involved in cellular stress responses and cell cycle, respectively. Here, we show that resveratrol decreases proliferation of BJ cells in a time and dose dependent manner. In addition the increase in senescence associated β-galactosidase (SA-β-gal) activity and methylated H3K9-me indicate the induction of premature senescence. A significant increase in phosphorylation of γ-H2AX, a surrogate of DNA double strand breaks, as well as in levels of p53, p21CIP1 and p16INK4A is also detected. Interestingly, at concentrations where resveratrol induced premature senescence we show a significant decrease in SIRT1 and SIRT2 levels by Western Blot and quantitative RT-PCR analysis. Conversely inhibition of SIRT1 and SIRT2 via siRNA or sirtinol treatment also induced senescence in BJ fibroblasts associated with increased SA-β-gal activity, γ-H2AX phosphorylation and p53, p21CIP1 and p16INK4A levels. Interestingly DNA damaging agent doxorubicin

  18. Supraphysiological androgen levels induce cellular senescence in human prostate cancer cells through the Src-Akt pathway.

    PubMed

    Roediger, Julia; Hessenkemper, Wiebke; Bartsch, Sophie; Manvelyan, Marina; Huettner, Soeren S; Liehr, Thomas; Esmaeili, Mohsen; Foller, Susan; Petersen, Iver; Grimm, Marc-Oliver; Baniahmad, Aria

    2014-09-12

    Prostate cancer (PCa) is the second leading cause of cancer mortality of men in Western countries. The androgen receptor (AR) and AR-agonists (androgens) are required for the development and progression of the normal prostate as well as PCa. However, it is discussed that in addition to their tumor promoting activity, androgens may also exhibit tumor suppressive effects. A biphasic growth response to androgens a growth-promoting and -inhibition has been observed that suggests that administration of supraphysiological androgen levels mediates growth reduction in AR expressing PCa cells. Detection of senescence markers, three dimensional interphase fluorescence in situ hybridization (3D-iFISH), qRT-PCR, Western blotting, detection of GFP fusions, prostatectomy, ex vivo culturing. Here, we describe that supraphysiological levels of androgens induce cell cycle arrest and markers of cellular senescence in human PCa cells, which may in part explain the growth inhibitory role of androgens. The expression of the senescence associated beta galactosidase is observed by treatment with the natural androgen DHT or the less metabolized synthetic androgen R1881. The induction of senescence marker was detected in human PCa cell lines as well as in human primary PCa tissue derived from prostatectomy treated ex vivo. Using interphase FISH (iFISH) suggests that the androgen-induced cellular senescence is associated with localizing the genomic E2F1 locus to senescence associated heterochromatic foci. Analysis of different signaling pathways in LNCaP cells suggest that the p16-Rb-E2F1 pathway is essential for the induction of cellular senescence since treatment with siRNA directed against p16 reduces the level of androgen-induced cellular senescence. Based on the rapid induction of androgen-mediated cellular senescence we identified the Src-PI3K-Akt-signaling pathway and autophagy being in part involved in androgen regulation. Taken together, our data suggest that AR-agonists at

  19. DNA-damaging imidazoacridinone C-1311 induces autophagy followed by irreversible growth arrest and senescence in human lung cancer cells.

    PubMed

    Polewska, Joanna; Skwarska, Anna; Augustin, Ewa; Konopa, Jerzy

    2013-09-01

    Imidazoacridinone 5-diethylaminoethylamino-8-hydroxyimidazoacridinone (C-1311) is an antitumor inhibitor of topoisomerase II and FMS-like tyrosine kinase 3 receptor. In this study, we describe the unique sequence of cellular responses to C-1311 in human non-small cell lung cancer (NSCLC) cell lines, A549 and H460. In A549 cells, C-1311 (IC80 = 0.08 µM) induced G1 and G2/M arrests, whereas H460 cells (IC80 = 0.051 µM) accumulated predominantly in the G1 phase. In both cell lines, cell cycle arrest was initiated by overexpression of p53 but was sustained for an extended time by elevated levels of p21. Despite prolonged drug exposure (up to 192 hours), no apoptotic response was detected in either cell line. Instead, cells developed a senescent phenotype and did not resume proliferation even after 2 weeks of post-treatment, indicating that C-1311-triggered senescence was permanent. When cell cycle arrest was evident but there were no signs of senescence, C-1311 significantly induced autophagic cells. Pharmacological inhibition of autophagy by 3-methyladenine profoundly reduced the senescent phenotype and slightly sensitized cancer cells to C-1311 by increasing cell death, suggesting a link between both autophagy and senescence. However, a small interfering RNA-mediated knockdown of the autophagy-associated Beclin 1 and ATG5 genes attenuated but failed to block development of senescence. Taken together, our studies suggest that in NSCLC, a C-1311-induced senescence program is preceded and corroborated but not exclusively determined by the induction of autophagy.

  20. Areca nut alkaloids induce irreparable DNA damage and senescence in fibroblasts and may create a favourable environment for tumour progression.

    PubMed

    Rehman, Ambreen; Ali, Sitara; Lone, Mohid Abrar; Atif, Muhammad; Hassona, Yazan; Prime, Stephen Stewart; Pitiyage, Gayani Nadika; James, Emma Louise Naomi; Parkinson, Eric Kenneth

    2016-05-01

    Oral submucous fibrosis (OSMF) is a pre-malignant condition that is strongly associated with the areca nut alkaloids, arecoline (ARC) and arecaidine (ARD). The condition is characterised by the presence of senescent fibroblasts in the subepithelial mesenchyme which have the potential to promote malignancy in the neighbouring epithelial cells. We tested the hypothesis that areca nut alkaloids induce senescence in oral fibroblasts and promote the secretion of invasion-promoting transforming growth factor β (TGF-β) and matrix metalloproteinase-2 (MMP-2). Two oral fibroblast lines were treated for 48h with ARC and ARD. Senescence-associated β-galactosidase (SA-βGal) activity, Ki67 (cycling cells), large 53BP1 foci (irreparable DNA strand breaks) and p16(INK) (4A) (late senescence) were used as markers of cellular senescence and were quantified using indirect immunofluorescence and the ImageJ program. TGF-β and MMP-2 levels were measured using ELISA. Statistical analyses were performed with the two-tailed unpaired t-test where n = 3 and the Wilcoxon-Mann-Whitney test where n = 6. ARC (100 and 300 μM) and ARD (30 and 100 μM) significantly (P < 0.05) induced fibroblast senescence, as determined by the increased expression of SA-βGal, 53BP1 staining and CDKN2A/p16(INK) (4A) ; there was also a non-significant reduction in Ki67 staining. Treated cells also showed a three- fivefold increase in TGF-β and a small non-significant increase in MMP-2. Areca nut alkaloids induce senescence in oral fibroblasts and promote increased secretion of TGF-β and perhaps MMP-2 that may create a tissue environment thought to be critical in the progression of OSMF to malignancy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Cr(VI) induces premature senescence through ROS-mediated p53 pathway in L-02 hepatocytes

    PubMed Central

    Zhang, Yujing; Zhang, Yiyuan; Zhong, Caigao; Xiao, Fang

    2016-01-01

    Hexavalent Chromium [Cr(VI)], which can be found of various uses in industries such as metallurgy and textile dying, can cause a number of human disease including inflammation and cancer. Unlike previous research that focused on Cr(VI)-induced oxidative damage and apoptosis, this study placed emphasis on premature senescence that can be induced by low-dose and long-term Cr(VI) exposure. We found Cr(VI) induced premature senescence in L-02 hepatocytes, as confirmed by increase in senescence associated-β-galactosidase (SA-β-Gal) activity. Cr(VI) stabilized p53 through phosphorylation at Ser15 and increased expression of p53-transcriptional target p21. Mechanism study revealed Cr(VI) targeted and inhibited mitochondrial respiratory chain complex (MRCC) I and II to enhance reactive oxygen species (ROS) production. By applying antioxidant Trolox, we also confirmed that ROS mediated p53 activation. A tetracycline-inducible lentiviral expression system containing shRNA to p53 was used to knockout p53. We found p53 could inhibit pro-survival genes B-cell lymphoma-2 (Bcl-2), myeloid leukemia-1 (Mcl-1) and S phase related cell cycle proteins cyclin-dependent kinase 2 (CDK2), Cyclin E to induce premature senescence, and the functional role of ROS in Cr(VI)-induced premature senescence is depend on p53. The results suggest that Cr(VI) has a role in premature senescence by promoting ROS-dependent p53 activation in L-02 hepatocytes. PMID:27698449

  2. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner

    PubMed Central

    Nishizawa, Hitoshi; Iguchi, Genzo; Fukuoka, Hidenori; Takahashi, Michiko; Suda, Kentaro; Bando, Hironori; Matsumoto, Ryusaku; Yoshida, Kenichi; Odake, Yukiko; Ogawa, Wataru; Takahashi, Yutaka

    2016-01-01

    Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) and cirrhosis determines patient prognosis; however, effective treatment for fibrosis has not been established. Oxidative stress and inflammation activate hepatic stellate cells (HSCs) and promote fibrosis. In contrast, cellular senescence inhibits HSCs’ activity and limits fibrosis. The aim of this study was to explore the effect of IGF-I on NASH and cirrhotic models and to clarify the underlying mechanisms. We demonstrate that IGF-I significantly ameliorated steatosis, inflammation, and fibrosis in a NASH model, methionine-choline-deficient diet-fed db/db mice and ameliorated fibrosis in cirrhotic model, dimethylnitrosamine-treated mice. As the underlying mechanisms, IGF-I improved oxidative stress and mitochondrial function in the liver. In addition, IGF-I receptor was strongly expressed in HSCs and IGF-I induced cellular senescence in HSCs in vitro and in vivo. Furthermore, in mice lacking the key senescence regulator p53, IGF-I did not induce cellular senescence in HSCs or show any effects on fibrosis. Taken together, these results indicate that IGF-I induces senescence of HSCs, inactivates these cells and limits fibrosis in a p53-dependent manner and that IGF-I may be applied to treat NASH and cirrhosis. PMID:27721459

  3. Hepatocellular carcinoma repression by TNFα-mediated synergistic lethal effect of mitosis defect-induced senescence and cell death sensitization.

    PubMed

    Li, Dan; Fu, Jing; Du, Min; Zhang, Haibin; Li, Lu; Cen, Jin; Li, Weiyun; Chen, Xiaotao; Lin, Yunfei; Conway, Edward M; Pikarsky, Eli; Wang, Hongyan; Pan, Guoyu; Ji, Yuan; Wang, Hong-Yang; Hui, Lijian

    2016-10-01

    Hepatocellular carcinoma (HCC) is a cancer lacking effective therapies. Several measures have been proposed to treat HCCs, such as senescence induction, mitotic inhibition, and cell death promotion. However, data from other cancers suggest that single use of these approaches may not be effective. Here, by genetic targeting of Survivin, an inhibitor of apoptosis protein (IAP) that plays dual roles in mitosis and cell survival, we identified a tumor necrosis factor alpha (TNFα)-mediated synergistic lethal effect between senescence and apoptosis sensitization in malignant HCCs. Survivin deficiency results in mitosis defect-associated senescence in HCC cells, which triggers local inflammation and increased TNFα. Survivin inactivation also sensitizes HCC cells to TNFα-triggered cell death, which leads to marked HCC regression. Based on these findings, we designed a combination treatment using mitosis inhibitor and proapoptosis compounds. This treatment recapitulates the therapeutic effect of Survivin deletion and effectively eliminates HCCs, thus representing a potential strategy for HCC therapy. Survivin ablation dramatically suppresses human and mouse HCCs by triggering senescence-associated TNFα and sensitizing HCC cells to TNFα-induced cell death. Combined use of mitotic inhibitor and second mitochondrial-derived activator of caspases mimetic can induce senescence-associated TNFα and enhance TNFα-induced cell death and synergistically eliminate HCC. (Hepatology 2016;64:1105-1120). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  4. Sprouty1 induces a senescence-associated secretory phenotype by regulating NFκB activity: implications for tumorigenesis

    PubMed Central

    Macià, A; Vaquero, M; Gou-Fàbregas, M; Castelblanco, E; Valdivielso, J M; Anerillas, C; Mauricio, D; Matias-Guiu, X; Ribera, J; Encinas, M

    2014-01-01

    Genes of the Sprouty family (Spry1–4) are feedback inhibitors of receptor tyrosine kinase (RTK) signaling. As such, they restrain proliferation of many cell types and have been proposed as tumor-suppressor genes. Although their most widely accepted target is the Extracellular-regulated kinases (ERK) pathway, the mechanisms by which Spry proteins inhibit RTK signaling are poorly understood. In the present work, we describe a novel mechanism by which Spry1 restricts proliferation, independently of the ERK pathway. In vivo analysis of thyroid glands from Spry1 knockout mice reveals that Spry1 induces a senescence-associated secretory phenotype via activation of the NFκB pathway. Consistently, thyroids from Spry1 knockout mice are bigger and exhibit decreased markers of senescence including Ki67 labeling and senescence-associated β-galactosidase. Although such ‘escape' from senescence is not sufficient to promote thyroid tumorigenesis in adult mice up to 5 months, the onset of Phosphatase and tensin homolog (Pten)-induced tumor formation is accelerated when Spry1 is concomitantly eliminated. Accordingly, we observe a reduction of SPRY1 levels in human thyroid malignancies when compared with non-tumoral tissue. We propose that Spry1 acts as a sensor of mitogenic activity that not only attenuates RTK signaling but also induces a cellular senescence response to avoid uncontrolled proliferation. PMID:24270409

  5. Poly(ADP-ribose) polymerase inhibitor induces accelerated senescence in irradiated breast cancer cells and tumors.

    PubMed

    Efimova, Elena V; Mauceri, Helena J; Golden, Daniel W; Labay, Edwardine; Bindokas, Vytautas P; Darga, Thomas E; Chakraborty, Chaitali; Barreto-Andrade, Juan Camilo; Crawley, Clayton; Sutton, Harold G; Kron, Stephen J; Weichselbaum, Ralph R

    2010-08-01

    Persistent DNA double-strand breaks (DSB) may determine the antitumor effects of ionizing radiation (IR) by inducing apoptosis, necrosis, mitotic catastrophe, or permanent growth arrest. IR induces rapid modification of megabase chromatin domains surrounding DSBs via poly-ADP-ribosylation, phosphorylation, acetylation, and protein assembly. The dynamics of these IR-induced foci (IRIF) have been implicated in DNA damage signaling and DNA repair. As an IRIF reporter, we tracked the relocalization of green fluorescent protein fused to a chromatin binding domain of the checkpoint adapter protein 53BP1 after IR of breast cancer cells and tumors. To block DSB repair in breast cancer cells and tumors, we targeted poly(ADP-ribose) polymerase (PARP) with ABT-888 (veliparib), one of several PARP inhibitors currently in clinical trials. PARP inhibition markedly enhanced IRIF persistence and increased breast cancer cell senescence both in vitro and in vivo, arguing for targeting IRIF resolution as a novel therapeutic strategy.

  6. Sensitization of cervix cancer cells to Adriamycin by Pentoxifylline induces an increase in apoptosis and decrease senescence

    PubMed Central

    2010-01-01

    Background Chemotherapeutic drugs like Adriamycin (ADR) induces apoptosis or senescence in cancer cells but these cells often develop resistance and generate responses of short duration or complete failure. The methylxantine drug Pentoxifylline (PTX) used routinely in the clinics setting for circulatory diseases has been recently described to have antitumor properties. We evaluated whether pretreatment with PTX modifies apoptosis and senescence induced by ADR in cervix cancer cells. Methods HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, ADR or PTX + ADR. The cellular toxicity of PTX and survival fraction were determinated by WST-1 and clonogenic assay respectively. Apoptosis, caspase activation and ADR efflux rate were measured by flow cytometry, senescence by microscopy. IκBα and DNA fragmentation were determinated by ELISA. Proapoptotic, antiapoptotic and senescence genes, as well as HPV-E6/E7 mRNA expression, were detected by time real RT-PCR. p53 protein levels were assayed by Western blot. Results PTX is toxic (WST-1), affects survival (clonogenic assay) and induces apoptosis in cervix cancer cells. Additionally, the combination of this drug with ADR diminished the survival fraction and significantly increased apoptosis of HeLa and SiHa cervix cancer cells. Treatments were less effective in HaCaT cells. We found caspase participation in the induction of apoptosis by PTX, ADR or its combination. Surprisingly, in spite of the antitumor activity displayed by PTX, our results indicate that methylxantine, per se does not induce senescence; however it inhibits senescence induced by ADR and at the same time increases apoptosis. PTX elevates IκBα levels. Such sensitization is achieved through the up-regulation of proapoptotic factors such as caspase and bcl family gene expression. PTX and PTX + ADR also decrease E6 and E7 expression in SiHa cells, but not in HeLa cells. p53 was

  7. Sensitization of cervix cancer cells to Adriamycin by Pentoxifylline induces an increase in apoptosis and decrease senescence.

    PubMed

    Bravo-Cuellar, Alejandro; Ortiz-Lazareno, Pablo C; Lerma-Diaz, Jose M; Dominguez-Rodriguez, Jorge R; Jave-Suarez, Luis F; Aguilar-Lemarroy, Adriana; del Toro-Arreola, Susana; de Celis-Carrillo, Ruth; Sahagun-Flores, Jose E; de Alba-Garcia, Javier E Garcia; Hernandez-Flores, Georgina

    2010-05-19

    Chemotherapeutic drugs like Adriamycin (ADR) induces apoptosis or senescence in cancer cells but these cells often develop resistance and generate responses of short duration or complete failure. The methylxantine drug Pentoxifylline (PTX) used routinely in the clinics setting for circulatory diseases has been recently described to have antitumor properties. We evaluated whether pretreatment with PTX modifies apoptosis and senescence induced by ADR in cervix cancer cells. HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, ADR or PTX + ADR. The cellular toxicity of PTX and survival fraction were determinated by WST-1 and clonogenic assay respectively. Apoptosis, caspase activation and ADR efflux rate were measured by flow cytometry, senescence by microscopy. IkappaBalpha and DNA fragmentation were determinated by ELISA. Proapoptotic, antiapoptotic and senescence genes, as well as HPV-E6/E7 mRNA expression, were detected by time real RT-PCR. p53 protein levels were assayed by Western blot. PTX is toxic (WST-1), affects survival (clonogenic assay) and induces apoptosis in cervix cancer cells. Additionally, the combination of this drug with ADR diminished the survival fraction and significantly increased apoptosis of HeLa and SiHa cervix cancer cells. Treatments were less effective in HaCaT cells. We found caspase participation in the induction of apoptosis by PTX, ADR or its combination. Surprisingly, in spite of the antitumor activity displayed by PTX, our results indicate that methylxantine, per se does not induce senescence; however it inhibits senescence induced by ADR and at the same time increases apoptosis. PTX elevates IkappaBalpha levels. Such sensitization is achieved through the up-regulation of proapoptotic factors such as caspase and bcl family gene expression. PTX and PTX + ADR also decrease E6 and E7 expression in SiHa cells, but not in HeLa cells. p53 was detected only in Si

  8. The thyroid hormone receptor β induces DNA damage and premature senescence

    PubMed Central

    Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M.; Garesse, Rafael

    2014-01-01

    There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate–activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism. PMID:24395638

  9. Helicobacter pylori-induced premature senescence of extragastric cells may contribute to chronic skin diseases.

    PubMed

    Lewinska, Anna; Wnuk, Maciej

    2017-04-01

    Helicobacter pylori, one of the most frequently observed bacterium in the human intestinal flora, has been widely studied since Marshall and Warren documented a link between the presence of H. pylori in the gastrointestinal tract and gastritis and gastric ulcers. Interestingly, H. pylori has also been found in several other epithelial tissues, including the eyes, ears, nose and skin that may have direct or indirect effects on host physiology and may contribute to extragastric diseases, e.g. chronic skin diseases. More recently, it has been shown that H. pylori cytotoxin CagA expression induces cellular senescence of human gastric nonpolarized epithelial cells that may lead to gastrointestinal disorders and systemic inflammation. Here, we hypothesize that also chronic skin diseases may be promoted by stress-induced premature senescence (SIPS) of skin cells, namely fibroblasts and keratinocytes, stimulated with H. pylori cytotoxins. Future studies involving cell culture models and clinical specimens are needed to verify the involvement of H. pylori in SIPS-based chronic skin diseases.

  10. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence

    PubMed Central

    Côté, Marceline; Miller, A. Dusty; Liu, Shan-Lu

    2014-01-01

    The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induce cell cycle arrest and senescence, leading to impaired cell proliferation. PMID:17588532

  11. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence.

    PubMed

    Côté, Marceline; Miller, A Dusty; Liu, Shan-Lu

    2007-08-17

    The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here, we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induces cell cycle arrest and senescence, leading to impaired cell proliferation.

  12. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence

    SciTech Connect

    Cote, Marceline; Miller, A. Dusty; Liu, Shan-Lu . E-mail: shan-lu.liu@mcgill.ca

    2007-08-17

    The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here, we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induces cell cycle arrest and senescence, leading to impaired cell proliferation.

  13. Radiation Promotes Colorectal Cancer Initiation and Progression by Inducing Senescence-Associated Inflammatory Responses

    PubMed Central

    Kim, Sang Bum; Bozeman, Ronald; Kaisani, Aadil; Kim, Wanil; Zhang, Lu; Richardson, James A.; Wright, Woodring E.; Shay, Jerry W.

    2015-01-01

    Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  14. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells

    SciTech Connect

    Igarashi, Kaori; Sakimoto, Ippei; Kataoka, Keiko; Ohta, Keisuke; Miura, Masahiko

    2007-09-10

    The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also found that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis.

  15. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway

    SciTech Connect

    Guterres, Fernanda Augusta de Lima Barbosa; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin; Winnischofer, Sheila Maria Brochado

    2013-11-15

    Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 and p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process. - Highlights: • Lower concentrations of simvastatin can induce senescent phenotype in melanoma cells. • Simvastatin induces senescence in human melanoma cells via p53/p21 pathway. • Senescent phenotype is related with increased intracellular ROS. • Partial detoxification of ROS by catalase/peroxiredoxin-1 could lead cells to senescence rather than apoptosis.

  16. Inactivation of Sag/Rbx2/Roc2 E3 Ubiquitin Ligase Triggers Senescence and Inhibits Kras-Induced Immortalization

    PubMed Central

    Tan, Mingjia; Li, Hua; Sun, Yi

    2015-01-01

    Our recent study showed that SAG/RBX2 E3 ubiquitin ligase regulates apoptosis and vasculogenesis by promoting degradation of NOXA and NF1, and co-operates with Kras to promote lung tumorigenesis by activating NFκB and mTOR pathways via targeted degradation of tumor suppressive substrates including IκB, DEPTOR, p21 and p27. Here we investigated the role of Sag/Rbx2 E3 ligase in cellular senescence and immortalization of mouse embryonic fibroblasts (MEFs) and report that Sag is required for proper cell proliferation and KrasG12D-induced immortalization. Sag inactivation by genetic deletion remarkably suppresses cell proliferation by inducing senescence, which is associated with accumulation of p16, but not p53. Mechanistically, Sag deletion caused accumulation of Jun-B, a substrate of Sag-Fbxw7 E3 ligase and a transcription factor that drives p16 transcription. Importantly, senescence triggered by Sag deletion can be largely rescued by simultaneous deletion of Cdkn2a, the p16 encoding gene, indicating its causal role. Furthermore, KrasG12D-induced immortalization can also be abrogated by Sag deletion via senescence induction, which is again rescued by simultaneous deletion of Cdkn2a. Finally, we found that Sag deletion inactivates KrasG12D activity and block the MAPK signaling pathway, together with accumulated p16, to induce senescence. Taken together, our results demonstrated that Sag is a KrasG12D-cooperating oncogene required for KrasG12D-induced immortalization and transformation, and targeting SAG-SCF E3 ligase may, therefore, have therapeutic value for senescence-based cancer treatment. PMID:25622904

  17. Inactivation of Sag/Rbx2/Roc2 e3 ubiquitin ligase triggers senescence and inhibits kras-induced immortalization.

    PubMed

    Tan, Mingjia; Li, Hua; Sun, Yi

    2015-01-01

    Our recent study showed that SAG/RBX2 E3 ubiquitin ligase regulates apoptosis and vasculogenesis by promoting degradation of NOXA and NF1, and co-operates with Kras to promote lung tumorigenesis by activating NFκB and mTOR pathways via targeted degradation of tumor suppressive substrates including IκB, DEPTOR, p21 and p27. Here we investigated the role of Sag/Rbx2 E3 ligase in cellular senescence and immortalization of mouse embryonic fibroblasts (MEFs) and report that Sag is required for proper cell proliferation and Kras(G12D)-induced immortalization. Sag inactivation by genetic deletion remarkably suppresses cell proliferation by inducing senescence, which is associated with accumulation of p16, but not p53. Mechanistically, Sag deletion caused accumulation of Jun-B, a substrate of Sag-Fbxw7 E3 ligase and a transcription factor that drives p16 transcription. Importantly, senescence triggered by Sag deletion can be largely rescued by simultaneous deletion of Cdkn2a, the p16 encoding gene, indicating its causal role. Furthermore, Kras(G12D)-induced immortalization can also be abrogated by Sag deletion via senescence induction, which is again rescued by simultaneous deletion of Cdkn2a. Finally, we found that Sag deletion inactivates Kras(G12D) activity and block the MAPK signaling pathway, together with accumulated p16, to induce senescence. Taken together, our results demonstrated that Sag is a Kras(G12D)-cooperating oncogene required for Kras(G12D)-induced immortalization and transformation, and targeting SAG-SCF E3 ligase may, therefore, have therapeutic value for senescence-based cancer treatment. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  18. Phenyl 2-pyridyl ketoxime induces cellular senescence-like alterations via nitric oxide production in human diploid fibroblasts.

    PubMed

    Yang, Kyeong Eun; Jang, Hyun-Jin; Hwang, In-Hu; Chung, Young-Ho; Choi, Jong-Soon; Lee, Tae-Hoon; Chung, Yun-Jo; Lee, Min-Seung; Lee, Mi Young; Yeo, Eui-Ju; Jang, Ik-Soon

    2016-04-01

    Phenyl-2-pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near-senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose- and time-dependent manner and resulted in senescence-associated β-galactosidase (SA-β-gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence-associated proteins, such as phosphorylated ERK1/2, caveolin-1, p53, p16(ink4a), and p21(waf1), were elevated in PPKO-treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N-acetylcysteine, 2,2,6,6-tetramethylpiperidinyloxy, and L-buthionine-(S,R)-sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L-NG-nitroarginine methyl ester and L-NG-monomethylarginine, PPKO-induced transient NO production and SA-β-gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence-associated proteins. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. EZH2 mediates lidamycin-induced cellular senescence through regulating p21 expression in human colon cancer cells

    PubMed Central

    Sha, Ming-Quan; Zhao, Xiao-Li; Li, Liang; Li, Li-Hui; Li, Yi; Dong, Tian-Geng; Niu, Wei-Xin; Jia, Li-Jun; Shao, Rong-Guang; Zhen, Yong-Su; Wang, Zhen

    2016-01-01

    Lidamycin (LDM) is a novel member of the enediyne antibiotics identified in China with potent antitumor activity. However, it remains unclear whether LDM has potential molecular targets that may affect its antitumor activity. Enhancer of zeste homolog 2 (EZH2) functions as a histone lysine methyltransferase and mediates trimethylation on histone 3 lysine 27 (H3K27me3). High EZH2 level is found to be positively correlated with the aggressiveness, metastasis and poor prognosis of cancer. Here, we aim to study the role of EZH2 in LDM-induced senescence, as well as in the cytotoxicity of LDM in human colon cancer cells. LDM is found to be relatively more potent in inhibiting the colon cancer cells harboring high EZH2 level and induces irreversible cellular senescence at IC50 dose range, as evidenced by senescence-associated β-galactosidase staining, cell cycle arrest and molecular changes of senescence regulators including p21 in HCT116 and SW620 cells. More importantly, LDM is found to markedly inhibit EZH2 expression at both protein and mRNA levels upon the induction of p21 and cellular senescence. LDM also selectively inhibits EZH2 expression as compared with other histone lysine methyltransferases. Knockdown of p21 with siRNAs abolishes LDM-induced senescence, whereas EZH2 knockdown markedly increases p21 expression and causes senescent phenotype. Enrichment of both EZH2 and H3K27me3 levels in the p21 promoter region is reduced by LDM. Moreover, EZH2 overexpression reduces cellular senescence, p21 expression and DNA damage response upon LDM exposure. LDM also demonstrates potent antitumor efficacy in xenografted animal models. Collectively, our work provides first demonstration that EZH2 may mediate, at least partially, the senescence-inducing effects of LDM by regulating p21 expression and DNA damage effect. Thus, EZH2 may serve as a potential target and biomarker to indicate the clinical efficacy of the potent enediyne antitumor drug. PMID:27882937

  20. Senescent stromal cells induce cancer cell migration via inhibition of RhoA/ROCK/myosin-based cell contractility

    PubMed Central

    Aifuwa, Ivie; Giri, Anjil; Longe, Nick; Lee, Sang Hyuk; An, Steven S.; Wirtz, Denis

    2015-01-01

    Cells induced into senescence exhibit a marked increase in the secretion of pro-inflammatory cytokines termed senescence-associated secretory phenotype (SASP). Here we report that SASP from senescent stromal fibroblasts promote spontaneous morphological changes accompanied by an aggressive migratory behavior in originally non-motile human breast cancer cells. This phenotypic switch is coordinated, in space and time, by a dramatic reorganization of the actin and microtubule filament networks, a discrete polarization of EB1 comets, and an unconventional front-to-back inversion of nucleus-MTOC polarity. SASP-induced morphological/migratory changes are critically dependent on microtubule integrity and dynamics, and are coordinated by the inhibition of RhoA and cell contractility. RhoA/ROCK inhibition reduces focal adhesions and traction forces, while promoting a novel gliding mode of migration. PMID:26483365

  1. Autophagy and senescence, stress responses induced by the DNA-damaging mycotoxin alternariol.

    PubMed

    Solhaug, A; Torgersen, M L; Holme, J A; Lagadic-Gossmann, D; Eriksen, G S

    2014-12-04

    The mycotoxin alternariol (AOH), a frequent contaminant in fruit and grain, is known to induce cellular stress responses such as reactive oxygen production, DNA damage and cell cycle arrest. Cellular stress is often connected to autophagy, and we employed the RAW264.7 macrophage model to test the hypothesis that AOH induces autophagy. Indeed, AOH treatment led to a massive increase in acidic vacuoles often observed upon autophagy induction. Moreover, expression of the autophagy marker LC3 was markedly increased and there was a strong accumulation of LC3-positive puncta. Increased autophagic activity was verified biochemically by measuring the degradation rate of long-lived proteins. Furthermore, AOH induced expression of Sestrin2 and phosphorylation of AMPK as well as reduced phosphorylation of mTOR and S6 kinase, common mediators of signaling pathways involved in autophagy. Transmission electron microscopy analyzes of AOH treated cells not only clearly displayed structures associated with autophagy such as autophagosomes and autolysosomes, but also the appearance of lamellar bodies. Prolonged AOH treatment resulted in changed cell morphology from round into more star-shaped as well as increased β-galactosidase activity. This suggests that the cells eventually entered senescence. In conclusion, our data identify here AOH as an inducer of both autophagy and senescence. These effects are suggested to be to be linked to AOH-induced DSB (via a reported effect on topoisomerase activity), resulting in an activation of p53 and the Sestrin2-AMPK-mTOR-S6K signaling pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Overexpression of a LAM domain containing RNA-binding protein LARP1c induces precocious leaf senescence in Arabidopsis.

    PubMed

    Zhang, Bangyue; Jia, Jianheng; Yang, Min; Yan, Chunxia; Han, Yuzhen

    2012-10-01

    Leaf senescence is the final stage of leaf life history, and it can be regulated by multiple internal and external cues. La-related proteins (LARPs), which contain a well-conserved La motif (LAM) domain and normally a canonical RNA recognition motif (RRM) or noncanonical RRM-like motif, are widely present in eukaryotes. Six LARP genes (LARP1a-1c and LARP6a-6c) are present in Arabidopsis, but their biological functions have not been studied previously. In this study, we investigated the biological roles of LARP1c from the LARP1 family. Constitutive or inducible overexpression of LARP1c caused premature leaf senescence. Expression levels of several senescence-associated genes and defense-related genes were elevated upon overexpression of LARP1c. The LARP1c null mutant 1c-1 impaired ABA-, SA-, and MeJA-induced leaf senescence in detached leaves. Gene expression profiles of LARP1c showed age-dependent expression in rosette leaves. Taken together, our results suggest LARP1c is involved in regulation of leaf senescence.

  3. Overexpression of a LAM Domain Containing RNA-Binding Protein LARP1c Induces Precocious Leaf Senescence in Arabidopsis

    PubMed Central

    Zhang, Bangyue; Jia, Jianheng; Yang, Min; Yan, Chunxia; Han, Yuzhen

    2012-01-01

    Leaf senescence is the final stage of leaf life history, and it can be regulated by multiple internal and external cues. La-related proteins (LARPs), which contain a well-conserved La motif (LAM) domain and normally a canonical RNA recognition motif (RRM) or noncanonical RRM-like motif, are widely present in eukaryotes. Six LARP genes (LARP1a-1c and LARP6a-6c) are present in Arabidopsis, but their biological functions have not been studied previously. In this study, we investigated the biological roles of LARP1c from the LARP1 family. Constitutive or inducible overexpression of LARP1c caused premature leaf senescence. Expression levels of several senescence-associated genes and defense-related genes were elevated upon overexpression of LARP1c. The LARP1c null mutant 1c-1 impaired ABA-, SA-, and MeJA-induced leaf senescence in detached leaves. Gene expression profiles of LARP1c showed age-dependent expression in rosette leaves. Taken together, our results suggest LARP1c is involved in regulation of leaf senescence. PMID:22965746

  4. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest

    PubMed Central

    Dikovskaya, Dina; Cole, John J.; Mason, Susan M.; Nixon, Colin; Karim, Saadia A.; McGarry, Lynn; Clark, William; Hewitt, Rachael N.; Sammons, Morgan A.; Zhu, Jiajun; Athineos, Dimitris; Leach, Joshua D.G.; Marchesi, Francesco; van Tuyn, John; Tait, Stephen W.; Brock, Claire; Morton, Jennifer P.; Wu, Hong; Berger, Shelley L.; Blyth, Karen; Adams, Peter D.

    2015-01-01

    Summary Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells. PMID:26299965

  5. The matricellular protein CCN1 suppresses lung cancer cell growth by inducing senescence via the p53/p21 pathway.

    PubMed

    Jim Leu, Shr-Jeng; Sung, Jung-Sung; Chen, Mei-Yu; Chen, Chih-Wei; Cheng, Jian-Yu; Wang, Tse-Yen; Wang, Jeng-Jung

    2013-09-01

    CCN1, a secreted matrix-associated molecule, is involved in multiple cellular processes. Previous studies have indicated that expression of CCN1 correlates inversely with the aggressiveness of non-small-cell lung carcinoma (NSCLC); however, the underlying mechanisms remain elusive. Using three NSCLC cell line systems, here we show that long-term treatment of cells with the recombinant CCN1 protein led to a permanent cell cycle arrest in G1 phase; cells remained viable as judged by apoptotic assays. CCN1-treated NSCLC cells acquired a phenotype characteristic of senescent cells, including an enlarged and flattened cell shape and expression of the senescence-associated β-galactosidase. Immunoblot analysis showed that addition of CCN1 increased the abundance of hypo-phosphorylated Rb, as well as accumulation of p53 and p21. Silencing the expression of p53 or p21 by lentivirus-mediated shRNA production in cells blocked the CCN1-induced senescence. Furthermore, a CCN1 mutant defective for binding integrin α6β1 and co-receptor heparan sulfate proteoglycans was incapable of senescence induction. Our finding that direct addition of CCN1 induces senescence in NSCLC cells provides a potential novel strategy for therapeutic intervention of lung cancers.

  6. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest.

    PubMed

    Dikovskaya, Dina; Cole, John J; Mason, Susan M; Nixon, Colin; Karim, Saadia A; McGarry, Lynn; Clark, William; Hewitt, Rachael N; Sammons, Morgan A; Zhu, Jiajun; Athineos, Dimitris; Leach, Joshua D G; Marchesi, Francesco; van Tuyn, John; Tait, Stephen W; Brock, Claire; Morton, Jennifer P; Wu, Hong; Berger, Shelley L; Blyth, Karen; Adams, Peter D

    2015-09-01

    Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.

  7. The hemibiotroph Colletotrichum graminicola locally induces photosynthetically active green islands but globally accelerates senescence on aging maize leaves.

    PubMed

    Behr, Michael; Humbeck, Klaus; Hause, Gerd; Deising, Holger B; Wirsel, Stefan G R

    2010-07-01

    Typically, pathogenesis of the hemibiotroph Colletotrichum graminicola and defense responses of its host, Zea mays, are studied on young leaves. Equivalent studies have not been performed with leaves undergoing senescence, a situation that is relevant in the field. We discovered that, in contrast to anthracnose symptoms formed on young and mature leaves, green islands reminiscent of those known from obligate biotrophs were formed on senescing leaves. Microscopy revealed that the fungus grew in both symptoms from the epidermis towards the bundle sheath. In green islands, tissues remained intact for an extended time period. Imaging PAM (pulse-amplitude-modulation) fluorescence analyses revealed that photosynthesis is transiently maintained at green islands but declined in tissue surrounding the infection. In younger leaves however, photosynthesis was reduced only at infection sites. Support for the local modification of host physiology came from quantitative reverse transcription-polymerase chain reaction analyzing gene expression at high spatial resolution. Decreased transcript levels of the senescence markers see1 and ccp1 corroborated a pathogen-induced delay of senescence. Expression of several genes encoding proteins involved in photosynthesis was strongly reduced by infection. In contrast, transcript levels of incw1, encoding a cell-wall invertase, were increased 70-fold at green islands, suggesting that C. graminicola induced carbon sinks in senescing tissue.

  8. Molecular evidence on the protective effect of ellagic acid on phosalone-induced senescence in rat embryonic fibroblast cells.

    PubMed

    Baeeri, Maryam; Momtaz, Saeideh; Navaei-Nigjeh, Mona; Niaz, Kamal; Rahimifard, Mahban; Ghasemi-Niri, Seyedeh Farnaz; Sanadgol, Nima; Hodjat, Mahshid; Sharifzadeh, Mohammad; Abdollahi, Mohammad

    2017-02-01

    Salient evidence testifies the link between organophosphorus (OPs) exposure and the formation of free radical oxidants; and it is well accepted that free radicals are one of the basic concerns of senescence. To show the oxidative features of phosalone (PLN) as a key member of OPs, to induce senescence in rat embryonic fibroblast (REF) cells and to demonstrate the beneficial effects of the known antioxidant ellagic acid (EA) in diminishing the PLN-induced toxic effects, the levels of cell viability, oxidative stress markers, inflammatory cytokines, telomerase activity, and the expression of the genes related to senescence were investigated. Our results lend support to the hypothesis that PLN enhances the entire premature senescence parameters of REF cells. This accounts for the mechanistic approval of the role of OPs in induction of senescence in rat fibroblasts. Moreover, incorporation of EA diminished PLN toxicity mainly through suppression of p38 and p53 at gene and protein levels, and tempered the inflammation factors (TNF-α, IL-1β, IL-6 and NF-κB), which further affected cell division. Analysis of cell cycle showed that the percentage of G0/G1 arrest, in REF cells treated by EA was elevated as compared to control and PLN treated cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Senescence and cellular immortality].

    PubMed

    Trentesaux, C; Riou, J-F

    2010-11-01

    Senescence was originally described from the observation of the limited ability of normal cells to grow in culture, and may be generated by telomere erosion, accumulation of DNA damages, oxidative stress and modulation of oncogenes or tumor suppressor genes. Senescence corresponds to a cellular response aiming to control tumor progression by limiting cell proliferation and thus constitutes an anticancer barrier. Senescence is observed in pre-malignant tumor stages and disappears from malignant tumors. Agents used in standard chemotherapy also have the potential to induce senescence, which may partly explain their therapeutic activities. It is possible to restore senescence in tumors using targeted therapies that triggers telomere dysfunction or reactivates suppressor genes functions, which are essential for the onset of senescence.

  10. NF1 loss induces senescence during human melanocyte differentiation in an iPSC-based model.

    PubMed

    Larribere, Lionel; Wu, Huizi; Novak, Daniel; Galach, Marta; Bernhardt, Mathias; Orouji, Elias; Weina, Kasia; Knappe, Nathalie; Sachpekidis, Christos; Umansky, Ludmila; Beckhove, Philipp; Umansky, Viktor; De Schepper, Sofie; Kaufmann, Dieter; Ballotti, Robert; Bertolotto, Corine; Utikal, Jochen

    2015-07-01

    Neurofibromatosis type 1 (NF1) is a frequent genetic disease leading to the development of Schwann cell-derived neurofibromas or melanocytic lesions called café-au-lait macules (CALMs). The molecular mechanisms involved in CALMs formation remain largely unknown. In this report, we show for the first time pathophysiological mechanisms of abnormal melanocyte differentiation in a human NF1(+/-) -induced pluripotent stem cell (iPSC)-based model. We demonstrate that NF1 patient-derived fibroblasts can be successfully reprogrammed in NF1(+/-) iPSCs with active RAS signaling and that NF1 loss induces senescence during melanocyte differentiation as well as in patient's-derived CALMs, revealing a new role for NF1 in the melanocyte lineage.

  11. Soluble egg antigens of Schistosoma japonicum induce senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway

    PubMed Central

    Chen, Jinling; Pan, Jing; Wang, Jianxin; Song, Ke; Zhu, Dandan; Huang, Caiqun; Duan, Yinong

    2016-01-01

    Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Recent findings suggest that senescence of activated HSCs might limit the development of liver fibrosis. Based on previously observed anti-fibrotic effects of soluble egg antigens from Schistosoma japonicum in vitro, we hypothesized that SEA might play a crucial role in alleviating liver fibrosis through promoting senescence of activated HSCs. We show here that SEA inhibited expression of α-SMA and pro-collagen I and promoted senescence of activated HSCs in vitro. In addition, SEA induced an increased expression of P-p53 and p21. Knockdown of p53 inhibited the expression of p21 and failed to induce senescence of activated-HSCs. Phosphorylated STAT3 was elevated upon SEA stimulation, while loss of STAT3 decreased the level of p53 and senescence of HSCs. Results from immunoprecipitation analysis demonstrated that SOCS3 might be involved in the SEA-induced senescence in HSCs through its interaction with p53. This study demonstrates the potential capacity of SEA in restricting liver fibrosis through promoting senescence in HSCs. Furthermore, a novel STAT3-p53-p21 pathway might participate in the observed SEA-mediated senescence of HSCs. Our results suggest that SEA might carry potential therapeutic effects of restraining liver fibrosis through promoting senescence. PMID:27489164

  12. 2, 3, 7, 8-Tetrachlorodibenzo-P-dioxin (TCDD) induces premature senescence in human and rodent neuronal cells via ROS-dependent mechanisms.

    PubMed

    Wan, Chunhua; Liu, Jiao; Nie, Xiaoke; Zhao, Jianya; Zhou, Songlin; Duan, Zhiqing; Tang, Cuiying; Liang, Lingwei; Xu, Guangfei

    2014-01-01

    The widespread environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxicant that causes significant neurotoxicity. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that TCDD exposure triggered apparent premature senescence in rat pheochromocytoma (PC12) and human neuroblastoma SH-SY5Y cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that TCDD induced senescence in PC12 neuronal cells at doses as low as 10 nM. TCDD led to F-actin reorganization and the appearance of an alternative senescence marker, γ-H2AX foci, both of which are important features of cellular senescence. In addition, TCDD exposure altered the expression of senescence marker proteins, such as p16, p21 and p-Rb, in both dose- and time-dependent manners. Furthermore, we demonstrated that TCDD promotes mitochondrial dysfunction and the accumulation of cellular reactive oxygen species (ROS) in PC12 cells, leading to the activation of signaling pathways that are involved in ROS metabolism and senescence. TCDD-induced ROS generation promoted significant oxidative DNA damage and lipid peroxidation. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and neuronal senescence. Moreover, we found that TCDD induced a similar ROS-mediated senescence response in human neuroblastoma SH-SY5Y cells. In sum, these results demonstrate for the first time that TCDD induces premature senescence in neuronal cells by promoting intracellular ROS production, supporting the idea that accelerating the onset of neuronal senescence may be an important mechanism underlying TCDD-induced neurotoxic effects.

  13. PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis.

    PubMed

    Zhang, Yongqiang; Liu, Zhongjuan; Chen, Yadi; He, Jun-Xian; Bi, Yurong

    2015-08-01

    Darkness is a known environmental factor that induces plant senescence. Here, Phytochrome-Interacting Factors (PIFs), several bHLH transcription factors involved in plant skotomorphogenesis, were examined for their roles in the regulation of dark-induced senescence and chlorophyll breakdown in Arabidopsis thaliana. After light-grown seedlings were transferred to darkness, green leaves turned yellow, and chlorophyll contents decreased, but membrane lipid peroxidation and cell death increased in wild-type Col-0. These responses were enhanced in overexpression line PIF5OX but decreased in mutant pif5-3. Darkness significantly induced expression of several genes involved in chlorophyll breakdown, including SGR, NYC1, NOL, and PAO, as well as genes encoding for transcription factors that have been shown to be required for dark-induced senescence, including WRKY22, NAP, EIN3, EIL1, and ORE1. These effects on gene expression were also enhanced in PIF5OX but decreased in pif5-3 relative to Col-0. Further analyses using ChIP-qPCR, EMSA, and protoplast transient assays indicated that PIF5 binds to the G-box motifs in the promoters of SGR, NYC1, and ORE1 genes and stimulate their expression. Collectively, our data indicate that PIF5 is a key factor that positively regulates dark-induced senescence upstream of ORE1 and regulates chlorophyll breakdown upstream of SGR and NYC1.

  14. SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC.

    PubMed

    Lee, Namgyu; Ryu, Hye Guk; Kwon, Jung-Hee; Kim, Dae-Kyum; Kim, Sae Rom; Wang, Hee Jung; Kim, Kyong-Tai; Choi, Kwan Yong

    2016-01-01

    The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC.

  15. Gastrokine 1 induces senescence through p16/Rb pathway activation in gastric cancer cells.

    PubMed

    Xing, Rui; Li, Wenmei; Cui, Jiantao; Zhang, Jun; Kang, Bin; Wang, Yuan; Wang, Zhaohui; Liu, Siqi; Lu, Youyong

    2012-01-01

    Gastrokine 1 (GKN1) is a stomach-specific protein that is normally expressed in gastric mucosa but not in primary tumours and cell lines. Based on this evidence, it was presumed that GKN1 might play a role in gastric cancer development; however, its function and molecular mechanism are not clear. A systematic study was initiated that combined multiple approaches to define the molecular mechanism of GKN1 in gastric cancer cells. Proteomics, western blotting and immunohistochemistry were used to measure the expression level of GKN1. Western blotting combined with immunofluorescence was used to monitor the secretory process of this protein. Subsequently, the function and molecular mechanism of GKN1 was explored in vitro and in vivo. It was shown that GKN1 is an autocrine/paracrine protein and inhibits cell growth due to senescence, which resulted from activation of p16/Rb and p21(waf) pathways. Furthermore, sustained activation of Ras/Raf/MEK/ERK signalling was characterised in gastric cancer cells and a xenograft nude mouse model following GKN1 treatment. These results provide comprehensive molecular evidence of GKN1 in inducing senescence of gastric cancer cells, and indicate that GKN1 might be a potential novel target for gastric cancer therapeutics.

  16. SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC

    PubMed Central

    Lee, Namgyu; Ryu, Hye Guk; Kwon, Jung-Hee; Kim, Dae-Kyum; Kim, Sae Rom; Wang, Hee Jung; Kim, Kyong-Tai; Choi, Kwan Yong

    2016-01-01

    The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC. PMID:27824900

  17. Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency

    PubMed Central

    Ohmine, Seiga; Squillace, Karen A.; Hartjes, Katherine A.; Deeds, Michael C.; Armstrong, Adam S.; Thatava, Tayaramma; Sakuma, Toshie; Terzic, Andre; Kudva, Yogish; Ikeda, Yasuhiro

    2012-01-01

    Nuclear reprogramming enables patient-specific derivation of induced pluripotent stem (iPS) cells from adult tissue. Yet, iPS generation from patients with type 2 diabetes (T2D) has not been demonstrated. Here, we report reproducible iPS derivation of epidermal keratinocytes (HK) from elderly T2D patients. Transduced with human OCT4, SOX2, KLF4 and c-MYC stemness factors under serum-free and feeder-free conditions, reprogrammed cells underwent dedifferentiation with mitochondrial restructuring, induction of endogenous pluripotency genes - including NANOG, LIN28, and TERT, and down-regulation of cytoskeletal, MHC class I- and apoptosis-related genes. Notably, derived iPS clones acquired a rejuvenated state, characterized by elongated telomeres and suppressed senescence-related p15INK4b/p16INK4a gene expression and oxidative stress signaling. Stepwise guidance with lineage-specifying factors, including Indolactam V and GLP-1, redifferentiated HK-derived iPS clones into insulin-producing islet-like progeny. Thus, in elderly T2D patients, reprogramming of keratinocytes ensures a senescence-privileged status yielding iPS cells proficient for regenerative applications. PMID:22308265

  18. ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence

    PubMed Central

    Ha, Linan; Ichikawa, Takeshi; Anver, Miriam; Dickins, Ross; Lowe, Scott; Sharpless, Norman E.; Krimpenfort, Paul; DePinho, Ronald A.; Bennett, Dorothy C.; Sviderskaya, Elena V.; Merlino, Glenn

    2007-01-01

    Inactivation of the p53 pathway represents the most common molecular defect of human cancer. But in the setting of melanoma, a highly aggressive and invariably fatal malignancy in its advanced disseminated form, mutation/deletion of p53 is relatively rare, whereas its positive regulator ARF is often lost. Here, we show that genetic deficiency in Arf but not p53 facilitates rapid development of melanoma in a genetically engineered mouse model. This difference is accounted for, at least in part, by the unanticipated observation that, unlike fibroblasts, senescence control in melanocytes is strongly regulated by Arf and not p53. Moreover, oncogenic NRAS collaborates with deficiency in Arf, but not p53, to fully transform melanocytes. Our data demonstrate that ARF and p53, although linked in a common pathway, suppress tumorigenesis through distinct, lineage-dependent mechanisms and suggest that ARF helps restrict melanoma progression by executing the oncogene-induced senescence program in benign nevi. Thus, therapeutics designed to restore wild-type p53 function may be insufficient to counter melanoma and other malignancies in which ARF holds p53-independent tumor suppressor activity. PMID:17576930

  19. MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways

    PubMed Central

    Hu, Zhaoyong; Klein, Janet D.; Mitch, William E.; Zhang, Liping; Martinez, Ivan; Wang, Xiaonan H.

    2014-01-01

    The mechanisms underlying the development of aging-induced muscle atrophy are unclear. By microRNA array and individual qPCR analyses, we found significant up-regulation of miR-29 in muscles of aged rodents vs. results in young. With aging, p85α, IGF-1 and B-myb muscle levels were lower while the expression of certain cell arrest proteins (p53, p16 and pRB) increased. When miR-29 was expressed in muscle progenitor cells (MPC), their proliferation was impaired while SA-βgal expression increased signifying the development of senescence. Impaired MPC proliferation resulted from interactions between miR-29 and the 3'-UTR of p85a, IGF-1 and B-myb, suppressing the translation of these mediators of myoblast proliferation. In vivo, electroporation of miR-29 into muscles of young mice suppressed the proliferation and increased levels of cellular arrest proteins, recapitulating aging-induced responses in muscle. A potential stimulus of miR-29 expression is Wnt-3a since we found that exogenous Wnt-3a stimulated miR-29 expression 2.7-fold in primary cultures of MPCs. Thus, aging-induced muscle senescence results from activation of miR-29 by Wnt-3a leading to suppressed expression of several signaling proteins (p85α, IGF-1 and B-myb) that act coordinately to impair the proliferation of MPCs contributing to muscle atrophy. The increase in miR-29 provides a potential mechanism for aging-induced sarcopenia. PMID:24659628

  20. MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways.

    PubMed

    Hu, Zhaoyong; Klein, Janet D; Mitch, William E; Zhang, Liping; Martinez, Ivan; Wang, Xiaonan H

    2014-03-01

    The mechanisms underlying the development of aging-induced muscle atrophy are unclear. By microRNA array and individual qPCR analyses, we found significant up-regulation of miR-29 in muscles of aged rodents vs. results in young. With aging, p85α, IGF-1 and B-myb muscle levels were lower while the expression of certain cell arrest proteins (p53, p16 and pRB) increased. When miR-29 was expressed in muscle progenitor cells (MPC), their proliferation was impaired while SA-βgal expression increased signifying the development of senescence. Impaired MPC proliferation resulted from interactions between miR-29 and the 3'-UTR of p85a, IGF-1 and B-myb, suppressing the translation of these mediators of myoblast proliferation. In vivo, electroporation of miR-29 into muscles of young mice suppressed the proliferation and increased levels of cellular arrest proteins, recapitulating aging-induced responses in muscle. A potential stimulus of miR-29 expression is Wnt-3a since we found that exogenous Wnt-3a stimulated miR-29 expression 2.7-fold in primary cultures of MPCs. Thus, aging-induced muscle senescence results from activation of miR-29 by Wnt-3a leading to suppressed expression of several signaling proteins (p85α, IGF-1 and B-myb) that act coordinately to impair the proliferation of MPCs contributing to muscle atrophy. The increase in miR-29 provides a potential mechanism for aging-induced sarcopenia.

  1. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    SciTech Connect

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; Hamada, Nobuyuki; Wada, Seiichi; Tanaka, Atsushi; Shinagawa, Masahiko; Ohtsuki, Takahiro; Mori, Takahisa; Saha, Manujendra N.; Hoque, Ariful S.; Islam, Salequl; Kogure, Kimitaka; Funayama, Tomoo; Kobayashi, Yasuhiko

    2010-01-15

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated beta-galactosidase (SA-beta-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependent kinase inhibitor p21{sup WAF1/CIP1} in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells (<1% of initially irradiated cells) could not form a colony: however, they showed a morphological phenotype consistent with cellular senescence, that is, enlarged and flattened appearance. The senescent nature of these attached cells was further indicated by staining for SA-beta-gal. The mean telomere length was not changed after irradiation with C-ions. Phosphorylation of p53 at serine 15 as well as the expression of p21{sup WAF1/CIP1} was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.

  2. Autophagy through 4EBP1 and AMPK regulates oxidative stress-induced premature senescence in auditory cells.

    PubMed

    Tsuchihashi, Nana Akagi; Hayashi, Ken; Dan, Katsuaki; Goto, Fumiyuki; Nomura, Yasuyuki; Fujioka, Masato; Kanzaki, Sho; Komune, Shizuo; Ogawa, Kaoru

    2015-02-28

    The aim of this study was to determine whether autophagy and AMPK contribute to premature senescence in auditory cells. Incubating HEI-OC1 auditory cells with 5 mM H2O2 for 1 h induced senescence, as demonstrated by senescence-associated β-galactosidase (SA-β-gal) staining. H2O2 treatment significantly delayed population-doubling time, leaving cell viability unchanged. Furthermore, the proportion of SA-β-gal-positive cells significantly increased. Autophagy-related protein expression increased, with Atg7 and LC3-II peaking 6 h and Lamp2 peaking 24 h after H2O2 treatment. The expression of these proteins decreased 48 h after treatment. Transmission electron microscopy revealed lipofuscin and aggregates within autolysosomes, which accumulated markedly in the cytoplasm of HEI-OC1 cells 48 h after treatment. Akt and P70S6 phosphorylation markedly decreased after H2O2 treatment, but 4EBP1 phosphorylation significantly increased 48 h after treatment. After RNAi-mediated knockdown (KD) of Atg7 and AMPK, H2O2-treated cells displayed dense SA-β-gal staining. Also, premature senescence was significantly induced. These suggest that a negative feedback loop may exist between autophagy and AMPK signaling pathways in HEI-OC1 cells. In our model, oxidative stress-induced premature senescence occurred due to impaired autophagy function through 4EBP1 phosphorylation. Our results also indicate that AMPK may regulate premature senescence in auditory cells in an autophagy-dependent and independent manner.

  3. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence

    PubMed Central

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data. PMID:26805432

  4. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence.

    PubMed

    Bernadotte, Alexandra; Mikhelson, Victor M; Spivak, Irina M

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data.

  5. Angiotensin II Requires Zinc and Downregulation of the Zinc Transporters ZnT3 and ZnT10 to Induce Senescence of Vascular Smooth Muscle Cells

    PubMed Central

    Patrushev, Nikolay; Seidel-Rogol, Bonnie; Salazar, Gloria

    2012-01-01

    Senescence, a hallmark of mammalian aging, is associated with the onset and progression of cardiovascular disease. Angiotensin II (Ang II) signaling and zinc homeostasis dysfunction are increased with age and are linked to cardiovascular disease, but the relationship among these processes has not been investigated. We used a model of cellular senescence induced by Ang II in vascular smooth muscle cells (VSMCs) to explore the role of zinc in vascular dysfunction. We found that Ang II-induced senescence is a zinc-dependent pathway mediated by the downregulation of the zinc transporters ZnT3 and ZnT10, which work to reduce cytosolic zinc. Zinc mimics Ang II by increasing reactive oxygen species (ROS), activating NADPH oxidase activity and Akt, and by downregulating ZnT3 and ZnT10 and inducing senescence. Zinc increases Ang II-induced senescence, while the zinc chelator TPEN, as well as overexpression of ZnT3 or ZnT10, decreases ROS and prevents senescence. Using HEK293 cells, we found that ZnT10 localizes in recycling endosomes and transports zinc into vesicles to prevent zinc toxicity. Zinc and ZnT3/ZnT10 downregulation induces senescence by decreasing the expression of catalase. Consistently, ZnT3 and ZnT10 downregulation by siRNA increases ROS while downregulation of catalase by siRNA induces senescence. Zinc, siZnT3 and siZnT10 downregulate catalase by a post-transcriptional mechanism mediated by decreased phosphorylation of ERK1/2. These data demonstrate that zinc homeostasis dysfunction by decreased expression of ZnT3 or ZnT10 promotes senescence and that Ang II-induced senescence is a zinc and ROS-dependent process. Our studies suggest that zinc might also affect other ROS-dependent processes induced by Ang II, such as hypertrophy and migration of smooth muscle cells. PMID:22427991

  6. Salidroside protects human fibroblast cells from premature senescence induced by H(2)O(2) partly through modulating oxidative status.

    PubMed

    Mao, Gen-xiang; Wang, Yan; Qiu, Qiang; Deng, Hong-bin; Yuan, Long-guo; Li, Rui-guo; Song, Dan-qing; Li, Yi-yang Yvonne; Li, Dian-dong; Wang, Zhen

    2010-01-01

    Although salidroside and salidroside-like compounds are considered as most critical constitutes needed and responsible for multiple therapeutic benefits of Rhodiola rosea L., including anti-aging, direct demonstration regarding the role of salidroside in anti-aging process is still deficient. In this study, we selected the H(2)O(2)-induced premature senescence model in human fetal lung diploid fibroblasts to investigate the protection of salidroside against aging in vitro and associated molecular mechanisms. We found that salidroside considerably reversed senescence-like phenotypes in the oxidant challenged model, including alterations of morphology, cell cycle, SA-β-gal staining, DNA damage, as well as related molecules expression such as p53, p21 and p16. The protection occurred in a dose-dependent manner, with 5μM offering best efficacy. The proposed antioxidant property of the compound was confirmed in this cellular system, and thus at least partially accounted for the protection of the compound against premature senescence. Similar protection of salidroside against replicative senescence was observed as well. Interestingly, the regulation of senescence-related molecules by salidroside involved ROS-irrelevant mechanisms in both models. This finding presents salidroside as an attractive agent with potential to retard aging and attenuate age-related diseases in humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Efficacy of low-power laser irradiation in the prevention of D-galactose-induced senescence in human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; Wu, Shengnan; Xing, Da

    2011-03-01

    Low-power laser (He-Ne) irradiation (LPLI) has been found to modulate various biological effects, especially those involved in promoting cell proliferation and metabolic regulation. However, the underlying mechanisms that LPLI prevents human cell senescence remain undefined. Herein, we devised a model enabling cell senescence using D-galactose for two days then treat with or without LPLI(< 15J/cm2), and investigated whether LPLI delays cell senescent in human dermal fibroblasts cells (HDF-a). First in this study, using SA-β-gal staining, compared with control cell we detected a lower frequency of SA-β-gal staining under the treatment of LPLI. Moreover, we found the growth rates of cell with LPLI was higher using CCK-8 analysis. Additionally, we also found LPLI induced HDF-a entered the irreversible G1 arrest measured by flow cytometry system. Therefore, LPLI may promote cell proliferation by stimulating cell-cycle progression and delay human cell senescence. Taken together, Low-power laser irradiation delay HDF-a cells senescence provides new information for the mechanisms of biological effects of LPLI.

  8. Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells.

    PubMed

    Kobashigawa, Shinko; Kashino, Genro; Mori, Hiromu; Watanabe, Masami

    2015-03-01

    Ionizing radiation-induced cellular senescence is thought to be caused by nuclear DNA damage that cannot be repaired. However, here we found that radiation induces delayed increase of intracellular oxidative stress after irradiation. We investigated whether the relief of delayed oxidative stress by ascorbic acid would suppress the radiation-induced cellular senescence in Syrian golden hamster embryo (SHE) cells. We observed that the level of oxidative stress was drastically increased soon after irradiation, then declined to the level in non-irradiated cells, and increased again with a peak on day 3 after irradiation. We found that the inductions of cellular senescence after X-irradiation were reduced along with suppression of the delayed induction of oxidative stress by treatment with ascorbic acid, but not when oxidative stress occurred immediately after irradiation. Moreover, treatment of ascorbic acid inhibited p53 accumulation at 3 days after irradiation. Our data suggested a delayed increase of intracellular oxidative stress levels plays an important role in the process of radiation-induced cellular senescence by p53 accumulation.

  9. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    SciTech Connect

    Chuang, Jian-Ying; Hung, Jan-Jong

    2011-04-15

    Highlights: {yields} Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. {yields} Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. {yields} Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  10. Autophagy mediates the mitotic senescence transition.

    PubMed

    Young, Andrew R J; Narita, Masako; Ferreira, Manuela; Kirschner, Kristina; Sadaie, Mahito; Darot, Jeremy F J; Tavaré, Simon; Arakawa, Satoko; Shimizu, Shigeomi; Watt, Fiona M; Narita, Masashi

    2009-04-01

    As a stress response, senescence is a dynamic process involving multiple effector mechanisms whose combination determines the phenotypic quality. Here we identify autophagy as a new effector mechanism of senescence. Autophagy is activated during senescence and its activation is correlated with negative feedback in the PI3K-mammalian target of rapamycin (mTOR) pathway. A subset of autophagy-related genes are up-regulated during senescence: Overexpression of one of those genes, ULK3, induces autophagy and senescence. Furthermore, inhibition of autophagy delays the senescence phenotype, including senescence-associated secretion. Our data suggest that autophagy, and its consequent protein turnover, mediate the acquisition of the senescence phenotype.

  11. A prostatic intraepithelial neoplasia-dependent p27kip1 checkpoint induces senescence, inhibits cell proliferation and cancer progression

    PubMed Central

    Majumder, Pradip K.; Grisanzio, Chiara; O’Connell, Fionnuala; Barry, Marc; Brito, Joseph M.; Xu, Qing; Guney, Isil; Berger, Raanan; Herman, Paula; Bikoff, Rachel; Fedele, Giuseppe; Baek, Won-Ki; Wang, Shunyou; Ellwood-Yen, Katharine; Wu, Hong; Sawyers, Charles L.; Signoretti, Sabina; Hahn, William C.; Loda, Massimo; Sellers, William R.

    2008-01-01

    SUMMARY Transgenic expression of activated AKT1 in the murine prostate induces Prostatic Intraepithelial Neoplasia (PIN) that does not progress to invasive prostate cancer (CaP). In luminal epithelial cells of Akt-driven PIN we show the concomitant induction of p27kip1 and senescence. Genetic ablation of p27Kip1 led to down regulation of senescence markers and progression to cancer. In humans, p27Kip1 and senescence markers were elevated in PIN not associated with CaP, but were decreased and absent, respectively in cancer-associated PIN and in CaP. Importantly, p27Kip1 up-regulation in mouse and human in situ lesions did not depend upon mTOR or Akt activation but was instead specifically associated with alterations in cellular polarity, architecture and adhesion molecules. These data suggest that a p27Kip1-driven checkpoint limits progression of PIN to CaP. PMID:18691549

  12. Id4 Promotes Senescence and Sensitivity to Doxorubicin-induced Apoptosis in DU145 Prostate Cancer Cells

    PubMed Central

    Carey, Jason P.; Knowell, Ashley Evans; Chinaranagari, Swathi; Chaudhary, Jaideep

    2014-01-01

    Inhibitor of differentiation proteins (Id1, 2, 3 and 4) are dominant negative regulators of basic helix loop helix transcription factors and play dominant roles in cancer cells, spanning several molecular pathways including senescence, invasion, metastasis, proliferation and apoptosis. In contrast to high Id1, Id2 and Id3 expression, the expression of Id4 is epigenetically silenced in prostate cancer. In the present study we demonstrated a novel role of Id4, that of promotion of cellular senescence in prostate cancer cells. Materials and Methods: Id4 was ectopically expressed in DU145 cells (DU145+Id4). The cells treated with Doxorubicin (0–500 nm) or vehicle control were analyzed for apoptosis, senescence (SA-beta Galactosidase), and expression of CDKN1A (p21), CDKN1B(p27), CDKN2A (p16), E2F1, vimentin and E-cadherin by immuno-histochemistry and/or Western blot. Results: In the present study we demonstrated that Id4 promotes cellular senescence in prostate cancer cell line DU145. Ectopic overexpression of Id4 in androgen receptor-negative DU145 prostate cancer cells resulted in increased expression of p16, p21, p27, E-cadherin and vimentin but down-regulated E2F1 expression. Id4 also potentiated the effect of doxorubicin induced senescence and apoptosis. Conclusion: The absence of functional p16, pRB and p53 in DU145 suggests that Id4 could alter additional molecular pathways such as those involving E2F1 to promote senescence and increased sensitivity to doxorubicin-induced apoptosis. The results of the present study support the role of Id4 as a tumor suppressor in prostate cancer. PMID:24122992

  13. Mitogen-activated protein kinase 6 mediates nuclear translocation of ORE3 to promote ORE9 gene expression in methyl jasmonate-induced leaf senescence.

    PubMed

    Zhang, Yushan; Liu, Jian; Chai, Jinyu; Xing, Da

    2016-01-01

    Methyl jasmonate (MeJA) is a potent promoter of plant senescence. ORESARA3 (ORE3)/ETHYLENE INSENSITIVE2 (EIN2), a protein similar to the members of the disease-related Nramp metal transporter family, is involved in cross-talk among several senescence processes related to abscisic acid, ethylene, MeJA, age and darkness. Nevertheless, the mechanism involved in the regulation of ORE3/EIN2 in exogenous MeJA-induced leaf senescence remains unclear. The C-terminal end of ORE3/EIN2 (CEND) was cleaved from ORE3/EIN2 located in the endoplasmic reticulum and then transferred to the nucleus during MeJA-induced senescence. Further analyses showed that mitogen-activated protein kinase 6 (MPK6) promoted CEND cleavage and nuclear translocation. Nuclear CEND accumulated ETHYLENE INSENSITIVE3 (EIN3), a transcription factor that accelerates MeJA-induced leaf senescence wherein ORESARA9 (ORE9) expression was suppressed in ein3, ore3, and mpk6 mutant plants. ChIP experiments revealed that EIN3 bound directly to the ORE9 promoter and this binding was enhanced in MeJA-induced leaf senescence. This study revealed the effect of the signalling pathway involving MPK6-ORE3-EIN3-ORE9 on regulating leaf senescence and provided insights into the mechanism of MeJA in promoting leaf senescence in Arabidopsis thaliana.

  14. Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose.

    PubMed

    Lu, Xiaoling; Zhou, Yanhua; Wu, Tao; Hao, Lei

    2014-11-01

    This study investigated the ameliorative effect of black rice anthocyanin (BACN) in senescent mice induced by D-galactose. The male mice were randomly divided into five groups, namely, the normal group, the model group and dosage groups (15, 30 and 60 mg kg(-1) of BACN). The model group and three dosage groups were continuously injected subcutaneously with D-galactose. The results suggested that superoxide dismutase (SOD) and catalase (CAT) were significantly increased upon black rice anthocyanin treatment, while MDA and the activity of monoamine oxidase (MAO) significantly decreased. The expressions of superoxide dismutase genes (SOD1 and SOD2) in liver were up-regulated in black rice anthocyanin group, while the expression of the MAO-B gene was down-regulated. These findings demonstrated that the ameliorative effect of BACN might be achieved partly by altering endogenous antioxidant enzymatic and aging-related enzymatic activities and regulating SOD1, SOD2 and MAO-B gene expressions.

  15. Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress.

    PubMed

    Orendi, G; Zimmermann, P; Baar, C; Zentgraf, U

    2001-07-01

    Different stress conditions can induce changes in the activity of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6). The enzyme activities of all SOD and APX isoforms detected in young Arabidopsis leaves remained unaffected or slightly decreased after moderate paraquat treatment. While CAT2 activity also remained unaffected under these conditions, CAT3 enzyme activity was enhanced. In contrast to the enzyme activities, mRNA levels of both cat2 and cat3 were enhanced under oxidative stress induced by either paraquat or the fungal toxin cercosporin. This indicates that, with respect to enzyme activity level, CAT3 is the enzyme which is most sensitive to oxidative stress in this developmental stage and that the enzyme activity of CAT2 is possibly regulated at the post-transcriptional level. Interestingly, cat3 mRNA level and CAT3 activity are not elevated by paraquat treatment in senescing leaves. In contrast, the response to other stress conditions, such as water stress induced by flooding of detached leaves and heat stress, is maintained in senescing leaves. Since changes in stress response are not a general phenomenon in leaf senescence but appear to be restricted to oxidative stress, this might be a specific mechanism to promote senescence in Arabidopsis thaliana.

  16. Downregulation of peroxiredoxin-3 by hydrophobic bile acid induces mitochondrial dysfunction and cellular senescence in human trophoblasts

    PubMed Central

    Wu, Wei-Bin; Menon, Ramkumar; Xu, Yue-Ying; Zhao, Jiu-Ru; Wang, Yan-Lin; Liu, Yuan; Zhang, Hui-Juan

    2016-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific disorder characterised by raised bile acids in foetal-maternal circulation, which threatens perinatal health. During the progression of ICP, the effect of oxidative stress is underscored. Peroxiredoxin-3 (PRDX3) is a mitochondrial antioxidant enzyme that is crucial to balance intracellular oxidative stress. However, the role of PRDX3 in placental trophoblast cells under ICP is not fully understood. We demonstrated that the level of PRDX3 was downregulated in ICP placentas as well as bile acids–treated trophoblast cells and villous explant in vitro. Toxic levels of bile acids and PRDX3 knockdown induced oxidative stress and mitochondrial dysfunction in trophoblast cells. Moreover, silencing of PRDX3 in trophoblast cell line HTR8/SVneo induced growth arrest and cellular senescence via activation of p38-mitogen-activated protein kinase (MAPK) and induction of p21WAF1/CIP and p16INK4A. Additionally, enhanced cellular senescence, determined by senescence-associated beta-galactosidase staining, was obviously attenuated by p38-MAPK inhibitor SB203580. Our data determined that exposure to bile acid decreased PRDX3 level in human trophoblasts. PRDX3 protected trophoblast cells against mitochondrial dysfunction and cellular senescence induced by oxidative stress. Our results suggest that decreased PRDX3 by excessive bile acids in trophoblasts plays a critical role in the pathogenesis and progression of ICP. PMID:27958341

  17. Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression.

    PubMed

    Katlinskaya, Yuliya V; Katlinski, Kanstantsin V; Yu, Qiujing; Ortiz, Angelica; Beiting, Daniel P; Brice, Angela; Davar, Diwakar; Sanders, Cindy; Kirkwood, John M; Rui, Hallgeir; Xu, Xiaowei; Koumenis, Constantinos; Diehl, J Alan; Fuchs, Serge Y

    2016-04-05

    Oncogene activation induces DNA damage responses and cell senescence. We report a key role of type I interferons (IFNs) in oncogene-induced senescence. IFN signaling-deficient melanocytes expressing activated Braf do not exhibit senescence and develop aggressive melanomas. Restoration of IFN signaling in IFN-deficient melanoma cells induces senescence and suppresses melanoma progression. Additional data from human melanoma patients and mouse transplanted tumor models suggest the importance of non-cell-autonomous IFN signaling. Inactivation of the IFN pathway is mediated by the IFN receptor IFNAR1 downregulation that invariably occurs during melanoma development. Mice harboring an IFNAR1 mutant, which is partially resistant to downregulation, delay melanoma development, suppress metastatic disease, and better respond to BRAF or PD-1 inhibitors. These results suggest that IFN signaling is an important tumor-suppressive pathway that inhibits melanoma development and progression and argue for targeting IFNAR1 downregulation to prevent metastatic disease and improve the efficacy of molecularly target and immune-targeted melanoma therapies.

  18. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome.

    PubMed

    Yoshimoto, Shin; Loo, Tze Mun; Atarashi, Koji; Kanda, Hiroaki; Sato, Seidai; Oyadomari, Seiichi; Iwakura, Yoichiro; Oshima, Kenshiro; Morita, Hidetoshi; Hattori, Masahira; Hattori, Masahisa; Honda, Kenya; Ishikawa, Yuichi; Hara, Eiji; Ohtani, Naoko

    2013-07-04

    Obesity has become more prevalent in most developed countries over the past few decades, and is increasingly recognized as a major risk factor for several common types of cancer. As the worldwide obesity epidemic has shown no signs of abating, better understanding of the mechanisms underlying obesity-associated cancer is urgently needed. Although several events were proposed to be involved in obesity-associated cancer, the exact molecular mechanisms that integrate these events have remained largely unclear. Here we show that senescence-associated secretory phenotype (SASP) has crucial roles in promoting obesity-associated hepatocellular carcinoma (HCC) development in mice. Dietary or genetic obesity induces alterations of gut microbiota, thereby increasing the levels of deoxycholic acid (DCA), a gut bacterial metabolite known to cause DNA damage. The enterohepatic circulation of DCA provokes SASP phenotype in hepatic stellate cells (HSCs), which in turn secretes various inflammatory and tumour-promoting factors in the liver, thus facilitating HCC development in mice after exposure to chemical carcinogen. Notably, blocking DCA production or reducing gut bacteria efficiently prevents HCC development in obese mice. Similar results were also observed in mice lacking an SASP inducer or depleted of senescent HSCs, indicating that the DCA-SASP axis in HSCs has key roles in obesity-associated HCC development. Moreover, signs of SASP were also observed in the HSCs in the area of HCC arising in patients with non-alcoholic steatohepatitis, indicating that a similar pathway may contribute to at least certain aspects of obesity-associated HCC development in humans as well. These findings provide valuable new insights into the development of obesity-associated cancer and open up new possibilities for its control.

  19. Senescence accelerated mouse strain is sensitive to neurodegeneration induced by mild impairment of oxidative metabolism.

    PubMed

    Zhang, Qipeng; Ding, Hanqing; Li, Wenxia; Fan, Zhiqin; Sun, Anyang; Luo, Jia; Ke, Zun-Ji

    2009-04-06

    Neuronal loss and impairment of oxidative metabolism are frequently observed in aging associated neurodegenerative diseases. Thiamine deficiency (TD) induces the region selective neuronal loss in the brain, which has been used to model neurodegeneration, accompanied by mild impairment of oxidative metabolism. C57BL/6 mice were commonly used animals for TD experiments; however, the individual variations among C57BL/6 mice in response to TD limited the consistence of brain pathology. The senescence accelerated prone 8 (SAMP8) mouse strain exhibits age-related morphological changes in the brain and deficits in learning and memory. In this study, we compared the effects of TD on SAMP8 mice, senescence accelerated resistant 1 (SAMR1) mice and C57BL/6 mice. TD-induced body weight loss in SAMP8 mice was much greater than in SAMR1 and C57BL/6 mice. In addition, earlier and more severe loss of neurons in the submedial thalamic nucleus (SmTN) of the thalamus was detected in the SAMP8 mice. After 8 days of TD (TD8), the loss of NeuN-positive neurons in the SmTN of SAMP8, SAMR1 and C57BL/6 mice was 65%, 50%, and 36%, respectively. TD also caused accumulation of amyloid precursor protein (APP) in the thalamus. After TD10, APP immunoreactivity in the thalamus of SAMP8 was much more intense than that of SAMR1 and C57BL/6 mice. These results suggest that SAMP8 mice are sensitive to TD and therefore offer a useful model for studying aging related neurodegeneration caused by the impairment of oxidative metabolism.

  20. SU5416 induces premature senescence in endothelial progenitor cells from patients with age-related macular degeneration

    PubMed Central

    Berna, Marc J.; Kunst, Frank; Wege, Henning; Strunnikova, Natalya V.; Gordiyenko, Natalya; Grierson, Rebecca; Richard, Gisbert; Csaky, Karl G.

    2011-01-01

    Purpose We recently demonstrated increased frequency and growth potential of late outgrowth endothelial progenitor cells (OECs) in patients with neovascular age-related macular degeneration (nvAMD). This study investigated the effects of short- and long-term in vitro inhibition of vascular endothelial growth factor (VEGF) Receptor-2 (VEGFR-2) signaling by SU5416 and other inhibitors of the VEGF signaling pathway in OECs. Methods OECs, from the peripheral blood of patients with nvAMD, and human umbilical vein endothelial cells were grown in the presence of SU5416, other VEGFR-2 tyrosine kinase inhibitors (TKIs), and inhibitors of phosphatidylinositol 3′-Kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) in complete angiogenic medium. Apotosis was assessed after 48 h using the fluorescein isothiocyanate Annexin V method. Cell counts were performed for 10 days, and features of senescence were analyzed using senescence-associated β-galactosidase staining, the telomeric repeat amplification protocol for telomerase activity, Southern blot analysis for mean telomere length, flow cytometric analysis for cell-cycle arrest, and western blot for p53 and p21. Control OECs, cells treated for 7 days with inhibitors, as well as naturally senescent OECs were analyzed for expression of different endothelial antigens, including VEGFR-2 and the receptor for stromal cell-derived factor 1, chemokine receptor 4 (CXCR-4). Migration in vitro to VEGF and stromal cell-derived factor 1 of OECs was assessed. Results SU5416, other VEGFR-2 TKIs, and inhibitors of PI3K, Akt, and PKC induced apoptosis, inhibited long-term proliferation, reduced telomerase activity, and induced premature senescence and cell-cycle arrest in OECs as well as in human umbilical vein endothelial cells. Naturally senescent cells and cells rendered senescent by VEGFR-2 TKIs had reduced VEGFR-2 and CXCR-4 expression and demonstrated reduced migratory ability to VEGF. Conclusions This study demonstrates

  1. Protective mechanism of morin against ultraviolet B-induced cellular senescence in human keratinocyte stem cells.

    PubMed

    Lee, Jienny; Shin, Yeun-Kyung; Song, Jae-Young; Lee, Kyung-Woo

    2014-01-01

    Ultraviolet-B (UVB) irradiation is a major inducer of DNA damage in the epidermis. Here we investigated the protective mechanism of polyphenolic phytonutrient, morin against UVB-induced DNA damage in human keratinocyte stem cells (KSC). After confirming the characteristics of the KSC, we examined the protective ability of morin against the cell damage of KSC under UVB irradiation condition. As a result, morin significantly inhibited the UVB-induced damage to KSC. These inhibitory effects by morin were also confirmed by the senescence-associated beta-galactosidase and alkaline comet assays. Next, we monitored the effects of morin on the UVB-induced production of inflammatory cytokines. Morin significantly decreased the production of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the UVB-irradiated KSC. Also, morin significantly inhibited the UVB-induced phosphorylation of ataxia telangiectasia mutated (ATM), serine threonine kinase checkpoint kinase 2, tumor suppressor protein 53 (p53), c-Jun N-terminal kinase/stress-activated protein kinase, p38/mitogen-activated protein kinase, S6 ribosomal protein, and histone 2A family member X in KSC. Furthermore, while UVB irradiation induced p53 reporter activation in KSC, morin significantly inhibited UVB-induced p53 reporter activation in KSC. In addition, mouse double minute 2 homolog (MDM2, p53 E3 ubiquitin protein ligase) inhibitor significantly increased the p53 reporter activation in the UVB-irradiated KSC, but morin decreased the MDM2 inhibitor-mediated increase in p53 reporter activation. On the contrary, ATM inhibitor did not affect the protective effect of morin in UVB irradiation-induced p53 reporter activation. Collectively, these findings suggest that morin could effectively enrich the p53 specific ligasing ability of MDM2 in UVB irradiation-induced p53 activation.

  2. Involvement of autophagy induction in penta-1,2,3,4,6-O-galloyl-β-D-glucose-induced senescence-like growth arrest in human cancer cells.

    PubMed

    Dong, Yinhui; Yin, Shutao; Jiang, Cheng; Luo, Xiaohe; Guo, Xiao; Zhao, Chong; Fan, Lihong; Meng, Yubing; Lu, Junxuan; Song, Xinhua; Zhang, Xudong; Chen, Ni; Hu, Hongbo

    2014-02-01

    Growing evidence has demonstrated that autophagy plays important and paradoxical roles in carcinogenesis, while senescence is considered to be a crucial tumor-suppressor mechanism in cancer prevention and treatment. In the present study we demonstrated that both autophagy and senescence were induced in response to penta-1,2,3,4,6-O-galloyl-β-D-glucose (PGG), a chemopreventive polyphonolic compound, in multiple types of cancer cells. Analysis of these 2 events over the experimental time course indicated that autophagy and senescence occurred in parallel early in the process and dissociated later. The long-term culture study suggested that a subpopulation of senescent cells may have the capacity to reenter the cell cycle. Inhibition of autophagy by either a chemical inhibitor or RNA interference led to a significant reduction of PGG-induced senescence, followed by induction of apoptosis. These results suggested that autophagy promoted senescence induction by PGG and that PGG might exert its anticancer activity through autophagy-mediated senescence. For the first time, these findings uncovered the relationships among autophagy, senescence, and apoptosis induced by PGG. In addition, we identified that unfolded protein response signaling played a pivotal role in the autophagy-mediated senescence phenotype. Furthermore, our data showed that activation of MAPK8/9/10 (mitogen-activated protein kinase 8/9/10/c-Jun N-terminal kinases) was an essential upstream signal for PGG-induced autophagy. Finally, the key in vitro results were validated in vivo in a xenograft mouse model of human HepG2 liver cancer. Our findings provided novel insights into understanding the mechanisms and functions of PGG-induced autophagy and senescence in human cancer cells.

  3. NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis.

    PubMed

    Matallana-Ramirez, Lilian P; Rauf, Mamoona; Farage-Barhom, Sarit; Dortay, Hakan; Xue, Gang-Ping; Dröge-Laser, Wolfgang; Lers, Amnon; Balazadeh, Salma; Mueller-Roeber, Bernd

    2013-09-01

    Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana; however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BIFUNCTIONAL NUCLEASE1 (BFN1), a well-known senescence-enhanced gene, is directly regulated by ORE1. We detected elevated expression of BFN1 already 2 h after induction of ORE1 in estradiol-inducible ORE1 overexpression lines and 6 h after transfection of Arabidopsis mesophyll cell protoplasts with a 35S:ORE1 construct. ORE1 and BFN1 expression patterns largely overlap, as shown by promoter-reporter gene (GUS) fusions, while BFN1 expression in senescent leaves and the abscission zones of maturing flower organs was virtually absent in ore1 mutant background. In vitro binding site assays revealed a bipartite ORE1 binding site, similar to that of ORS1, a paralog of ORE1. A bipartite ORE1 binding site was identified in the BFN1 promoter; mutating the cis-element within the context of the full-length BFN1 promoter drastically reduced ORE1-mediated transactivation capacity in transiently transfected Arabidopsis mesophyll cell protoplasts. Furthermore, chromatin immunoprecipitation (ChIP) demonstrates in vivo binding of ORE1 to the BFN1 promoter. We also demonstrate binding of ORE1 in vivo to the promoters of two other senescence-associated genes, namely SAG29/SWEET15 and SINA1, supporting the central role of ORE1 during senescence.

  4. MERTK Inhibition Induces Polyploidy and Promotes Cell Death and Cellular Senescence in Glioblastoma Multiforme

    PubMed Central

    Sufit, Alexandra; Lee-Sherick, Alisa B.; DeRyckere, Deborah; Rupji, Manali; Dwivedi, Bhakti; Varella-Garcia, Marileila; Pierce, Angela M.; Kowalski, Jeanne; Wang, Xiaodong; Frye, Stephen V.; Earp, H. Shelton

    2016-01-01

    Background MER receptor tyrosine kinase (MERTK) is expressed in a variety of malignancies, including glioblastoma multiforme (GBM). Our previous work demonstrated that inhibition of MERTK using RNA interference induced cell death and chemosensitivity in GBM cells, implicating MERTK as a potential therapeutic target. Here we investigate whether a novel MERTK-selective small molecule tyrosine kinase inhibitor, UNC2025, has similar anti-tumor effects in GBM cell lines. Methods Correlations between expression of GAS6, a MERTK ligand, and prognosis were determined using data from the TCGA database. GBM cell lines (A172, SF188, U251) were treated in vitro with increasing doses of UNC2025 (50-400nM). Cell count and viability were determined by trypan blue exclusion. Cell cycle profiles and induction of apoptosis were assessed by flow cytometric analysis after BrdU or Po-Pro-1/propidium iodide staining, respectively. Polyploidy was detected by propidium iodide staining and metaphase spread. Cellular senescence was determined by β-galactosidase staining and senescence-associated secretory cytokine analysis. Results Decreased overall survival significantly correlated with high levels of GAS6 expression in GBM, highlighting the importance of TAM kinase signaling in GBM tumorigenesis and/or therapy resistance and providing strong rationale for targeting these pathways in the clinic. All three GBM cell lines exhibited dose dependent reductions in cell number and colony formation (>90% at 200nM) after treatment with UNC2025. Cell cycle analysis demonstrated accumulation of cells in the G2/M phase and development of polyploidy. After extended exposure, 60–80% of cells underwent apoptosis. The majority of surviving cells (65–95%) were senescent and did not recover after drug removal. Thus, UNC2025 mediates anti-tumor activity in GBM by multiple mechanisms. Conclusions The findings described here provide further evidence of oncogenic roles for MERTK in GBM, demonstrate the

  5. Knockdown of CDK2AP1 in Primary Human Fibroblasts Induces p53 Dependent Senescence

    PubMed Central

    Alsayegh, Khaled N.; Gadepalli, Venkat S.; Iyer, Shilpa; Rao, Raj R.

    2015-01-01

    , our results show that knockdown of CDK2AP1 in primary human fibroblasts reduced proliferation and induced premature senescence, with the observed phenotype being p53 dependent. PMID:25785833

  6. 1,25(OH)2D3 Deficiency Induces Colon Inflammation via Secretion of Senescence-Associated Inflammatory Cytokines.

    PubMed

    Liu, Yun; Chen, Lulu; Zhi, Chunchun; Shen, Ming; Sun, Weiwei; Miao, Dengshun; Yuan, Xiaoqin

    2016-01-01

    Epidemiological studies showed that 1,25-Dihydroxyvitamin D[1,25(OH)2D3] insufficiency appears to be associated with aging and colon cancer while underlying biological mechanisms remain largely unknown. Inflammatory bowel disease is one of the risk factors for colon cancer. In this study, we investigated whether 1,25(OH)2D3 deficiency has an impact on the colon of 25-hydroxyvitamin D 1α-hydroxylase knockout [Cyp27b1(-/-)] mice fed on a rescue diet (high calcium, phosphate, and lactose) from weaning to 10 months of age. We found that 1,25(OH)2D3 deficient mice displayed significant colon inflammation phenotypes including shortened colon length, thinned and disordered mucosal structure, and inflammatory cell infiltration. DNA damage, cellular senescence and the production of senescence-associated inflammatory cytokines were also increased significantly in the colon of Cyp27b1(-/-)mice. Furthermore, the levels of ROS in the colon were increased significantly, whereas the expression levels of antioxidative genes were down-regulated dramatically in the colon of Cyp27b1(-/-)mice. Taken together, our results demonstrated that 1,25(OH)2D3 deficiency could induce colon inflammation, which may result from increased oxidative stress and DNA damage, subsequently, induced cell senescence and overproduction of senescence-associated secretory factors. Therefore, our findings suggest that 1,25(OH)2D3 may play an important role in preventing the development and progression of colon inflammation and colon cancer.

  7. A subcellular distribution of estrogen receptor-alpha is changed during artificially induced senescence of PC12 pheochromocytoma cells.

    PubMed

    Lee, Eunju; Mun, Ga Hee; Oh, Chang Seok; Chung, Yoon Hee; Cha, Choong Lk; Lee, Young Soo; Shin, Dong Hoon

    2004-11-30

    Although estrogen has been considered as a sex hormone for decades, recent reports suggest that estrogen might modulate the development and physiological function of the brain. In addition, the subcellular localization of estrogen receptors (ERs) has shown their presence within both the perinuclear cytoplasm and nuclei, suggesting that these ERs may differ functionally. We, therefore, assayed changes in the subcellular localization of ER-alpha immunoreactivity (IR) in rat pheochromocytoma PC12 cells during the artificial senescence induced by the telomerase inhibitor, 3'-azido-3'-deoxythymidine (AZT). After 2 months of culture with AZT, PC12 cells showed morphological and biochemical characteristics of cellular senescence. In the cells showing artificial senescence, the ER-alpha IR was mainly localized within the cytoplasm, whereas in control cells, ER-alpha IR was found only in the nuclei. Since senescence was induced by AZT, which inhibits the action of telomerase whenever the cells divide, the change in subcellular distribution of ER-alpha IR may be correlated with the length of the telomere.

  8. Silence of long noncoding RNA PANDAR switches low-dose curcumin-induced senescence to apoptosis in colorectal cancer cells

    PubMed Central

    Chen, Tao; Yang, Peng; Wang, Hui; He, Zhen-Yu

    2017-01-01

    Long noncoding RNAs (lncRNAs) are emerging as having multiple roles in cancer progression. However, roles of lncRNAs in chemotherapy for colorectal cancer (CRC) remain unclear. This study investigated the biological functions of lncRNA PANDAR in CRC cells treated with curcumin chemotherapy. Herein, we identified that PANDAR expression was not notably differential in CRC tissues compared with the corresponding normal tissues. Consistently, in vitro experiments revealed that knockdown of PANDAR could not change the proliferation, apoptosis, or senescence of CRC cells. Further analyses showed that low-dose curcumin could induce senescence in CRC cells without affecting cell apoptosis. Moreover, expression of PANDAR was increased in curcumin-treated CRC cells. Furthermore, silencing PANDAR in curcumin-treated cells increased apoptosis and greatly attenuated senescence possibly by stimulating the expression of PUMA. Together, these findings indicate that knockdown of lncRNA PANDAR switches curcumin-induced senescence to apoptosis, which may be potentially valuable in CRC therapy. PMID:28176943

  9. Male reproductive senescence: the price of immune-induced oxidative damage on sexual attractiveness in the blue-footed booby.

    PubMed

    Torres, Roxana; Velando, Alberto

    2007-11-01

    In animals, male reproduction is commonly a function of sexual attractiveness, based on the expression of sexually dimorphic traits that advertise genuinely the male's quality. Male performance may decline with age because physiological functions underlying sexual attractiveness may be affected by senescence. Here we show that a sexual signal (foot colour) declines with age, due probably to the deleterious effects of oxidative damage. We found that in the blue-footed booby Sula nebouxii foot colour during courtship was less attractive in senescent than in middle-aged males. In addition, we increased reactive oxygen species experimentally by immunizing males with lipopolysaccharide, a bacterial cell wall component that induces marked oxidative stress in animals. The immune system activation induced greater lipid peroxidation and invoked changes on colour expression (less attractive), particularly in senescent males. These results support the idea that oxidative stress affects reproductive senescence, and suggest that oxidative damage might be a proximal mechanism underlying age-reproductive patterns in long-lived animals.

  10. Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment.

    PubMed

    Bodas, Manish; Van Westphal, Colin; Carpenter-Thompson, Rhett; K Mohanty, Dillip; Vij, Neeraj

    2016-08-01

    Waterpipe smoking and e-cigarette vaping, the non-combustible sources of inhaled nicotine exposure are increasingly becoming popular and marketed as safer alternative to cigarette smoking. Hence, this study was designed to investigate the impact of inhaled nicotine exposure on disease causing COPD-emphysema mechanisms. For in vitro studies, human bronchial epithelial cells (Beas2b) were treated with waterpipe smoke extract (WPSE, 5%), nicotine (5mM), and/or cysteamine (250μM, an autophagy inducer and anti-oxidant drug), for 6hrs. We observed significantly (p<0.05) increased ubiquitinated protein-accumulation in the insoluble protein fractions of Beas2b cells treated with WPSE or nicotine that could be rescued by cysteamine treatment, suggesting aggresome-formation and autophagy-impairment. Moreover, our data also demonstrate that both WPSE and nicotine exposure significantly (p<0.05) elevates Ub-LC3β co-localization to aggresome-bodies while inducing Ub-p62 co-expression/accumulation, verifying autophagy-impairment. We also found that WPSE and nicotine exposure impacts Beas2b cell viability by significantly (p<0.05) inducing cellular apoptosis/senescence via ROS-activation, as it could be controlled by cysteamine, which is known to have an anti-oxidant property. For murine studies, C57BL/6 mice were administered with inhaled nicotine (intranasal, 500μg/mouse/day for 5 days), as an experimental model of non-combustible nicotine exposure. The inhaled nicotine exposure mediated oxidative-stress induces autophagy-impairment in the murine lungs as seen by significant (p<0.05, n=4) increase in the expression levels of nitrotyrosine protein-adduct (oxidative-stress marker, soluble-fraction) and Ub/p62/VCP (impaired-autophagy marker, insoluble-fraction). Overall, our data shows that nicotine, a common component of WPS, e-cigarette vapor and cigarette smoke, induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment as a potential

  11. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    PubMed

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant

  12. Oxidative Stress-induced Inhibition of Sirt1 by Caveolin-1 Promotes p53-dependent Premature Senescence and Stimulates the Secretion of Interleukin 6 (IL-6)*

    PubMed Central

    Volonte, Daniela; Zou, Huafei; Bartholomew, Janine N.; Liu, Zhongmin; Morel, Penelope A.; Galbiati, Ferruccio

    2015-01-01

    Oxidative stress can induce premature cellular senescence. Senescent cells secrete various growth factors and cytokines, such as IL-6, that can signal to the tumor microenvironment and promote cancer cell growth. Sirtuin 1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including senescence. We found that caveolin-1, a structural protein component of caveolar membranes, is a direct binding partner of Sirt1, as shown by the binding of the scaffolding domain of caveolin-1 (amino acids 82–101) to the caveolin-binding domain of Sirt1 (amino acids 310–317). Our data show that oxidative stress promotes the sequestration of Sirt1 into caveolar membranes and the interaction of Sirt1 with caveolin-1, which lead to inhibition of Sirt1 activity. Reactive oxygen species stimulation promotes acetylation of p53 and premature senescence in wild-type but not caveolin-1 null mouse embryonic fibroblasts (MEFs). Either down-regulation of Sirt1 expression or re-expression of caveolin-1 in caveolin-1 null MEFs restores reactive oxygen species-induced acetylation of p53 and premature senescence. In addition, overexpression of caveolin-1 induces stress induced premature senescence in p53 wild-type but not p53 knockout MEFs. Phosphorylation of caveolin-1 on tyrosine 14 promotes the sequestration of Sirt1 into caveolar membranes and activates p53/senescence signaling. We also identified IL-6 as a caveolin-1-specific cytokine that is secreted by senescent fibroblasts following the caveolin-1-mediated inhibition of Sirt1. The caveolin-1-mediated secretion of IL-6 by senescent fibroblasts stimulates the growth of cancer cells. Therefore, by inhibiting Sirt1, caveolin-1 links free radicals to the activation of the p53/senescence pathway and the protumorigenic properties of IL-6. PMID:25512378

  13. Oxidative stress-induced inhibition of Sirt1 by caveolin-1 promotes p53-dependent premature senescence and stimulates the secretion of interleukin 6 (IL-6).

    PubMed

    Volonte, Daniela; Zou, Huafei; Bartholomew, Janine N; Liu, Zhongmin; Morel, Penelope A; Galbiati, Ferruccio

    2015-02-13

    Oxidative stress can induce premature cellular senescence. Senescent cells secrete various growth factors and cytokines, such as IL-6, that can signal to the tumor microenvironment and promote cancer cell growth. Sirtuin 1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including senescence. We found that caveolin-1, a structural protein component of caveolar membranes, is a direct binding partner of Sirt1, as shown by the binding of the scaffolding domain of caveolin-1 (amino acids 82-101) to the caveolin-binding domain of Sirt1 (amino acids 310-317). Our data show that oxidative stress promotes the sequestration of Sirt1 into caveolar membranes and the interaction of Sirt1 with caveolin-1, which lead to inhibition of Sirt1 activity. Reactive oxygen species stimulation promotes acetylation of p53 and premature senescence in wild-type but not caveolin-1 null mouse embryonic fibroblasts (MEFs). Either down-regulation of Sirt1 expression or re-expression of caveolin-1 in caveolin-1 null MEFs restores reactive oxygen species-induced acetylation of p53 and premature senescence. In addition, overexpression of caveolin-1 induces stress induced premature senescence in p53 wild-type but not p53 knockout MEFs. Phosphorylation of caveolin-1 on tyrosine 14 promotes the sequestration of Sirt1 into caveolar membranes and activates p53/senescence signaling. We also identified IL-6 as a caveolin-1-specific cytokine that is secreted by senescent fibroblasts following the caveolin-1-mediated inhibition of Sirt1. The caveolin-1-mediated secretion of IL-6 by senescent fibroblasts stimulates the growth of cancer cells. Therefore, by inhibiting Sirt1, caveolin-1 links free radicals to the activation of the p53/senescence pathway and the protumorigenic properties of IL-6.

  14. Prevention of BMS-777607-induced polyploidy/senescence by mTOR inhibitor AZD8055 sensitizes breast cancer cells to cytotoxic chemotherapeutics.

    PubMed

    Sharma, Sharad; Yao, Hang-Ping; Zhou, Yong-Qing; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai

    2014-05-01

    Targeted inhibition of MET/RON signaling by tyrosine kinase inhibitor BMS-777607 for cancer treatment is currently under clinical trials. We have previously shown that BMS-777607 induces chemoresistance in vitro by causing polyploidy, which hampers therapeutic efficacy. Here, we studied polyploidy-associated senescence induced by BMS-777607 in breast cancer cells and its prevention by mTOR inhibitor AZD8055, leading to increased chemosensitivity. In breast cancer T-47D and ZR-75-1 cells, BMS-777607 induced phenotypic changes including enlarged cellular size, flattened morphology, increased DNA content, and activity of senescence-associated β-galactosidase. These changes were accompanied by increased p21/WAF1 expression and decreased Retinoblastoma Ser(780) phosphorylation, indicating that BMS-777607 induces not only polyploidy but also senescence. The appearance of senescence was associated with polyploidy in which β-galactosidase is exclusively expressed in polyploid cells. Survivin expression was increased in polyploid/senescent cells as analyzed by Western blotting. Increased survivin accumulated both in the nucleus and cytoplasm and dissociated with condensed DNA and mitotic spindle at the metaphase. Abnormal accumulation of survivin also rendered polyploid/senescent cells insensitive to cytotoxic activities of YM155, a DNA damaging agent with a suppressive effect on survivin gene transcription. AZD8055, a specific mTOR inhibitor, effectively prevented BMS-777607-induced polyploidy and senescence and restored survivin expression and its nuclear localization to normal levels. Although a synergism was not observed, BMS-777607 plus AZD8055 increased cancer cell sensitivity toward different cytotoxic chemotherapeutics. In conclusion, BMS-777607-induced chemoresistance is associated with cell polyploidy and senescence. Inhibition of mTOR signaling by AZD8055 prevents BMS-777607-induced polyploidy/senescence and increases breast cancer cell chemosensitivity

  15. ABA receptor PYL9 promotes drought resistance and leaf senescence

    PubMed Central

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A.; Zhu, Jian-Kang

    2016-01-01

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress. PMID:26831097

  16. ABA receptor PYL9 promotes drought resistance and leaf senescence.

    PubMed

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A; Zhu, Jian-Kang

    2016-02-16

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress.

  17. Suppression of RAD21 Induces Senescence of MDA-MB-231 Human Breast Cancer Cells Through RB1 Pathway Activation Via c-Myc Downregulation.

    PubMed

    Zhu, Shan; Zhao, Li; Li, Yueyang; Hou, Pingfu; Yao, Ruosi; Tan, Jiang; Liu, Dongxu; Han, Liping; Huang, Baiqu; Lu, Jun; Zhang, Yu

    2016-06-01

    Cellular senescence impedes cancer progression by limiting uncontrolled cell proliferation. To identify new genetic events controlling senescence, we performed a small interfering RNA screening human cancer cells and identified a number of targets potentially involved in senescence of MDA-MB-231 human breast cancer cells. Importantly, we showed that knockdown of RAD21 resulted in the appearance of several senescent markers, including enhanced senescence-associated β-galactosidase activity and heterochromatin focus formation, as well as elevated p21 protein levels and RB1 pathway activation. Further biochemical analyses revealed that RAD21 knockdown led to the downregulation of c-Myc and its targets, including CDK4, a negative regulator of RB1, and blockedRB1 phosphorylation (pRB1), and the RB1-mediated transcriptional repression of E2F. Moreover, c-Myc downregulation was partially mediated by proteasome-dependent degradation within promyelocytic leukemia (PML) nuclear bodies, which were found to be highly abundant during RAD21 knockdown-induced senescence. Exogenous c-Myc reconstitution rescued cells from RAD21 silencing-induced senescence. Altogether, data arising from this study implicate a novel function of RAD21 in cellular senescence in MDA-MB-231 cells that is mainly dependent onRB1 pathway activation via c-Myc downregulation. © 2015 Wiley Periodicals, Inc.

  18. Oncogene-induced senescence and its evasion in a mouse model of thyroid neoplasia.

    PubMed

    Bellelli, Roberto; Vitagliano, Donata; Federico, Giorgia; Marotta, Pina; Tamburrino, Anna; Salerno, Paolo; Paciello, Orlando; Papparella, Serenella; Knauf, Jeffrey A; Fagin, James A; Refetoff, Samuel; Troncone, Giancarlo; Santoro, Massimo

    2017-06-23

    Here we describe a conditional doxycycline-dependent mouse model of RET/PTC3 (NCOA4-RET) oncogene-induced thyroid tumorigenesis. In these mice, after 10 days of doxycycline (dox) administration, RET/PTC3 expression induced mitogen activated protein kinase (MAPK) stimulation and a proliferative response which resulted in the formation of hyperplastic thyroid lesions. This was followed, after 2 months, by growth arrest accompanied by typical features of oncogene-induced senescence (OIS), including upregulation of p16INK4A and p21CIP, positivity at the Sudan black B, activation of the DNA damage response (DDR) markers γH2AX and pChk2 T68, and induction of p53 and p19ARF. After 5 months, about half of thyroid lesions escaped OIS and formed tumors that remained dependent on RET/PTC3 expression. This progression was accompanied by activation of AKT-FOXO1/3a pathway and increased serum TSH levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Malvidin Protects WI-38 Human Fibroblast Cells Against Stress-induced Premature Senescence

    PubMed Central

    Seo, Hye Rin; Choi, Mi Jin; Choi, Ji Myung; Ko, Jong Cheol; Ko, Jee Yeon; Cho, Eun Ju

    2016-01-01

    Background: Malvidin is one of the most abundant components in red wines and black rice. The effects of malvidin on aging and lifespan under oxidative stress have not been fully understood. This study focused on the anti-aging effect of malvidin on stress-induced premature senescence (SIPS) in WI-38 human lung-derived diploid fibroblasts. Methods: In order to determine the viability of WI-38 cells, MTT assay was conducted, and malondialdehyde level was determined using thiobarbituric acid-reactive substance assay. Protein expression of inflammation-related factors was also evaluated by Western blot analysis. Results: Acute and chronic oxidative stress via hydrogen peroxide (H2O2) treatment led to SIPS in WI-38 cells, which showed decreased cell viability, increased lipid peroxidation, and a shortened lifespan in comparison with non-H2O2-treated WI-38 cells. However, malvidin treatment significantly attenuated H2O2-induced oxidative stress by inhibiting lipid peroxidation and increasing cell viability. Furthermore, the lifespan of WI-38 cells was prolonged by malvidin treatment. In addition, malvidin downregulated the expression of oxidative stress-related proteins, including NF-κB, COX-2, and inducible nitric oxide synthase. Furthermore, protein expression levels of p53, p21, and Bax were also regulated by malvidin treatment in WI-38 cells undergoing SIPS. Conclusions: Malvidin may potentially inhibit the aging process by controlling oxidative stress. PMID:27051647

  20. Targeting protein neddylation with an NEDD8-activating enzyme inhibitor MLN4924 induced apoptosis or senescence in human lymphoma cells.

    PubMed

    Wang, Yanchun; Luo, Zhongguang; Pan, Yongfu; Wang, Weige; Zhou, Xiaoyan; Jeong, Lak Shin; Chu, Yiwei; Liu, Jie; Jia, Lijun

    2015-01-01

    Recent studies indicate that post-translational protein neddylation is required for the maintenance of cell viability in several lymphoma cell lines, while inhibition of the neddylation pathway with an NEDD8-activating enzyme (NAE) inhibitor MLN4924 induces apoptosis in lymphoma cells. However, the mechanism by which neddylation inhibition induces apoptosis in lymphoma cells has not been fully elucidated. Moreover, it is unknown whether neddylation inhibition triggers non-apoptotic cell-killing responses, such as cell senescence, in lymphoma cells. Here, we report that MLN4924 specifically inhibited protein neddylation, inactivated cullin-RING E3 ligase (CRL), the best-known neddylation substrate, and induced the accumulation of tumor-suppressive CRL substrates in lymphoma cells. Moreover, MLN4924 potently suppressed the growth of lymphoma cells by inducing G2 cell-cycle arrest, followed by apoptosis or senescence in a cell line-dependent manner. MLN4924-induced apoptosis was mediated by intrinsic apoptotic signaling with substantial up-regulation of pro-apoptotic Bik and Noxa as well as down-regulation of anti-apoptotic XIAP, c-IAP1 and c-IAP2, while senescence induction upon neddylation inhibition seemed dependent on the expression of tumor suppressor p21/p27. Together, these findings expand our understanding on how lymphoma cells respond to neddylation inhibition and support the development of neddylation inhibitors (e.g. MLN4924) for the treatment of lymphoma.

  1. p53 is required for metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells.

    PubMed

    Li, Puyu; Zhao, Ming; Parris, Amanda B; Feng, Xiaoshan; Yang, Xiaohe

    2015-09-04

    The p53 tumor repressor gene is commonly mutated in human cancers. The tumor inhibitory effect of metformin on p53-mutated breast cancer cells remains unclear. Data from the present study demonstrated that p53 knockdown or mutation has a negative effect on metformin or phenformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. We also found that p53 reactivating agent nutlin-3α and CP/31398 promoted metformin-induced growth inhibition, senescence and apoptosis in MCF-7 (wt p53) and MDA-MB-231 (mt p53) cells, respectively. Treatment of MCF-7 cells with metformin or phenformin induced increase in p53 protein levels and the transcription of its downstream target genes, Bax and p21, in a dose-dependent manner. Moreover, we demonstrated that AMPK-mTOR signaling played a role in metformin-induced p53 up-regulation. The present study showed that p53 is required for metformin or phenformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. The combination of metformin with p53 reactivating agents, like nutlin-3α and CP/31398, is a promising strategy for improving metformin-mediated anti-cancer therapy, especially for tumors with p53 mutations. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Senescence Meets Dedifferentiation

    PubMed Central

    Givaty Rapp, Yemima; Ransbotyn, Vanessa; Grafi, Gideon

    2015-01-01

    Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation) or to red (due to de novo synthesis of anthocyanins coupled with chlorophyll degradation) and frequently culminates in programmed death of leaves. However, the breakdown of chlorophyll and macromolecules such as proteins and RNAs that occurs during leaf senescence does not necessarily represent a one-way road to death but rather a reversible process whereby senescing leaves can, under certain conditions, re-green and regain their photosynthetic capacity. This phenomenon essentially distinguishes senescence from programmed cell death, leading researchers to hypothesize that changes occurring during senescence might represent a process of trans-differentiation, that is the conversion of one cell type to another. In this review, we highlight attributes common to senescence and dedifferentiation including chromatin structure and activation of transposable elements and provide further support to the notion that senescence is not merely a deterioration process leading to death but rather a unique developmental state resembling dedifferentiation. PMID:27135333

  3. Loss of DLK expression in WI-38 human diploid fibroblasts induces a senescent-like proliferation arrest

    SciTech Connect

    Daviau, Alex; Couture, Jean-Philippe; Blouin, Richard

    2011-09-23

    Highlights: {yields} Role of DLK in cell proliferation. {yields} Modulation of DLK expression during cell cycle progression. {yields} DLK knockdown induces proliferation arrest and senescence. {yields} DLK-depleted cells display loss of cyclin D1 and up-regulation of p21. {yields} DLK participates in cell proliferation by modulating cell cycle regulator expression. -- Abstract: DLK, a serine/threonine kinase that functions as an upstream activator of the mitogen-activated protein kinase (MAPK) pathways, has been shown to play a role in development, cell differentiation, apoptosis and neuronal response to injury. Interestingly, recent studies have shown that DLK may also be required for cell proliferation, although little is known about its specific functions. To start addressing this issue, we studied how DLK expression is modulated during cell cycle progression and what effect DLK depletion has on cell proliferation in WI-38 fibroblasts. Our results indicate that DLK protein levels are low in serum-starved cells, but that serum addition markedly stimulated it. Moreover, RNA interference experiments demonstrate that DLK is required for ERK activity, expression of the cell cycle regulator cyclin D1 and proliferation of WI-38 cells. DLK-depleted cells also show a senescent phenotype as revealed by senescence-associated galactosidase activity and up-regulation of the senescence pathway proteins p53 and p21. Consistent with a role for p53 in this response, inhibition of p53 expression by RNA interference significantly alleviated senescence induced by DLK knockdown. Together, these findings indicate that DLK participates in cell proliferation and/or survival, at least in part, by modulating the expression of cell cycle regulatory proteins.

  4. Transcriptional factor HBP1 targets P16(INK4A), upregulating its expression and consequently is involved in Ras-induced premature senescence.

    PubMed

    Li, H; Wang, W; Liu, X; Paulson, K E; Yee, A S; Zhang, X

    2010-09-09

    Oncogene-mediated premature senescence has emerged as a potential tumor-suppressive mechanism in early cancer transitions. Many studies showed that Ras and p38 mitogen-activated protein kinase (MAPK) participate in premature senescence. Our previous work indicated that the HMG box-containing protein 1 (HBP1) transcription factor is involved in Ras- and p38 MAPK-induced premature senescence, but the mechanism of which has not yet been identified. Here, we showed that the p16(INK4A) cyclin-dependent kinase inhibitor is a novel target of HBP1 participating in Ras-induced premature senescence. The promoter of the p16(INK4A) gene contains an HBP1-binding site at position -426 to -433 bp from the transcriptional start site. HBP1 regulates the expression of the endogenous p16(INK4A) gene through direct sequence-specific binding. With HBP1 expression and the subsequent increase of p16(INK4A) gene expression, Ras induces premature senescence in primary cells. The data suggest a model in which Ras and p38 MAPK signaling engage HBP1 and p16(INK4A) to trigger premature senescence. In addition, we report that HBP1 knockdown is also required for Ras-induced transformation. All the data indicate that the mechanism of HBP1-mediated transcriptional regulation is important for not only premature senescence but also tumorigenesis.

  5. Proteomics and transcriptomics of broccoli subjected to exogenously supplied and transgenic senescence-induced cytokinin for amelioration of postharvest yellowing.

    PubMed

    Liu, Mao-Sen; Li, Hui-Chun; Lai, Ying-Mi; Lo, Hsiao-Feng; Chen, Long-Fang O

    2013-11-20

    Previously, we investigated transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and mimics the action of exogenous supplied CK in delaying postharvest senescence of broccoli. Here, we used proteomics and transcriptomics to compare the mechanisms of ipt-transgenic and N(6)-benzylaminopurine (BA) CK treatment of broccoli during postharvest storage. The 2 treatments conferred common and distinct mechanisms. BA treatment decreased the quantity of proteins involved in energy and carbohydrate metabolism and amino acid metabolism, and ipt-transgenic treatment increased that of stress-related proteins and molecular chaperones and slightly affected levels of carbohydrate metabolism proteins. Both treatments regulated genes involved in CK signaling, sugar transport, energy and carbohydrate metabolism, amino acid metabolism and lipid metabolism, although ipt-transgenic treatment to a lesser extent. BA treatment induced genes encoding molecular chaperones, whereas ipt-transgenic treatment induced stress-related genes for cellular protection during storage. Both BA and ipt-transgenic treatments acted antagonistically on ethylene functions. We propose a long-term acclimation of metabolism and protection systems with ipt-transgenic treatment of broccoli and short-term modulation of metabolism and establishment of a protection system with both BA and ipt-transgenic treatments in delaying senescence of broccoli florets. Transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and N(6)-benzylaminopurine (BA) CK treated broccoli both showed retardation of postharvest senescence during storage. The mechanisms underlying the two treatments were compared. The combination of proteomic and transcriptomic evidences revealed that the 2 treatments conferred common

  6. MLN4924 suppresses neddylation and induces cell cycle arrest, senescence, and apoptosis in human osteosarcoma.

    PubMed

    Zhang, Yi; Shi, Cheng-Cheng; Zhang, Hua-Peng; Li, Gong-Quan; Li, Shan-Shan

    2016-07-19

    Neddylation is a post-translational protein modification process associated with carcinogenesis and cancer development. MLN4924, a pharmaceutical neddylation inhibitor, induces potent anti-cancer effects in multiple types of cancers. In this study, we investigated the effects of MLN4924 on human osteosarcoma (OS). Levels of both NEDD8 activating enzyme E1 (NAE1) and ubiquitin-conjugating enzyme E2M (Ube2M), two critical components of the neddylation pathway, were much higher in OS tissues and cells than in normal osseous tissues and cells. MLN4924 treatment led to DNA damage, reduced cell viability, senescence and apoptosis in OS cells. Moreover, MLN4924 inhibited OS xenograft tumor growth in mice. Mechanistically, MLN4924 blocked the neddylation of cullins and induced accumulation of several tumor-suppressive substrates of Cullin-RING E3 ubiquitin ligases (CRLs), including CDT1, Wee1, p21, p27, Noxa, and p16. These results suggest clinical studies investigating the utility of MLN4924 for the treatment of OS are warranted.

  7. Hydrogen Treatment Protects against Cell Death and Senescence Induced by Oxidative Damage.

    PubMed

    Han, A Lum; Park, Seong-Hoon; Park, Mi Sung

    2017-02-28

    Hydrogen has potential for preventive and therapeutic applications as an antioxidant. However, micro- and macroparticles of hydrogen in water disappear easily over time. In order to eliminate reactive oxygen species (ROS) related with the aging process, we used functional water containing nanoparticle hydrogen. Nanoparticle hydrogen does not disappear easily and collapse under water after long periods of time. We used murine embryonic fibroblasts that were isolated from 12.5-day embryos of C57BL/6 mice. We investigated the ability of nanoparticle hydrogen in water to suppress hydroxyurea-induced ROS production, cytotoxicity, and the accumulation of β-galactosidase (an indicator of aging), and promote cell proliferation. The accumulation of β-galactosidase in the cytoplasm and the appearance of abnormal nuclei were inhibited by daily treatment of cells with hydrogen water. When the aging process was accelerated by hydroxyurea-induced oxidative stress, the effect of hydrogen water was even more remarkable. Thus, this study showed the antioxidant and anti-senescence effects of hydrogen water. Nanoparticle hydrogen water is potentially a potent anti-aging agent.

  8. WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation.

    PubMed

    Kim, Jung Jin; Lee, Seung Baek; Yi, Sang-Yeop; Han, Sang-Ah; Kim, Sun-Hyun; Lee, Jong-Min; Tong, Seo-Yun; Yin, Ping; Gao, Bowen; Zhang, Jun; Lou, Zhenkun

    2017-02-01

    Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions.

  9. Senescent stromal cell-induced divergence and therapeutic resistance in T cell acute lymphoblastic leukemia/lymphoma

    PubMed Central

    Habiel, David M.; Krepostman, Nicolas; Lilly, Michael; Cavassani, Karen; Coelho, Ana Lucia; Shibata, Takehiko; Elenitoba-Johnson, Kojo; Hogaboam, Cory M.

    2016-01-01

    T cell Acute Lymphoblastic Leukemia/Lymphoma (T-ALL/LBL) is a precursor T cell leukemia/lymphoma that represents approximately 15% of all childhood and 25% of adult acute lymphoblastic leukemia. Although a high cure rate is observed in children, therapy resistance is often observed in adults and mechanisms leading to this resistance remain elusive. Utilizing public gene expression datasets, a fibrotic signature was detected in T-LBL but not T-ALL biopsies. Further, using a T-ALL cell line, CCRF-CEM (CEM) cells, we show that CEM cells induce pulmonary remodeling in immunocompromised mice, suggesting potential interaction between these cells and lung fibroblasts. Co-culture studies suggested that fibroblasts-induced phenotypic and genotypic divergence in co-cultured CEM cells leading to diminished therapeutic responses in vitro. Senescent rather than proliferating stromal cells induced these effects in CEM cells, due, in part, to the enhanced production of oxidative radicals and exosomes containing miRNAs targeting BRCA1 and components of the Mismatch Repair pathway (MMR). Collectively, our studies demonstrate that there may be bidirectional interaction between leukemic cells and stroma, where leukemic cells induce stromal development in vivo and senescent stromal cells generates genomic alterations in the leukemic cells rendering them therapeutic resistant. Thus, targeting senescent stroma might prove beneficial in T-ALL/LBL patients. PMID:27835864

  10. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4.

    PubMed

    Kang, Chanhee; Xu, Qikai; Martin, Timothy D; Li, Mamie Z; Demaria, Marco; Aron, Liviu; Lu, Tao; Yankner, Bruce A; Campisi, Judith; Elledge, Stephen J

    2015-09-25

    Cellular senescence is a terminal stress-activated program controlled by the p53 and p16(INK4a) tumor suppressor proteins. A striking feature of senescence is the senescence-associated secretory phenotype (SASP), a pro-inflammatory response linked to tumor promotion and aging. We have identified the transcription factor GATA4 as a senescence and SASP regulator. GATA4 is stabilized in cells undergoing senescence and is required for the SASP. Normally, GATA4 is degraded by p62-mediated selective autophagy, but this regulation is suppressed during senescence, thereby stabilizing GATA4. GATA4 in turn activates the transcription factor NF-κB to initiate the SASP and facilitate senescence. GATA4 activation depends on the DNA damage response regulators ATM and ATR, but not on p53 or p16(INK4a). GATA4 accumulates in multiple tissues, including the aging brain, and could contribute to aging and its associated inflammation. Copyright © 2015, American Association for the Advancement of Science.

  11. Senescence induced by RECQL4 dysfunction contributes to Rothmund–Thomson syndrome features in mice

    PubMed Central

    Lu, H; Fang, E F; Sykora, P; Kulikowicz, T; Zhang, Y; Becker, K G; Croteau, D L; Bohr, V A

    2014-01-01

    Cellular senescence refers to irreversible growth arrest of primary eukaryotic cells, a process thought to contribute to aging-related degeneration and disease. Deficiency of RecQ helicase RECQL4 leads to Rothmund–Thomson syndrome (RTS), and we have investigated whether senescence is involved using cellular approaches and a mouse model. We first systematically investigated whether depletion of RECQL4 and the other four human RecQ helicases, BLM, WRN, RECQL1 and RECQL5, impacts the proliferative potential of human primary fibroblasts. BLM-, WRN- and RECQL4-depleted cells display increased staining of senescence-associated β-galactosidase (SA-β-gal), higher expression of p16INK4a or/and p21WAF1 and accumulated persistent DNA damage foci. These features were less frequent in RECQL1- and RECQL5-depleted cells. We have mapped the region in RECQL4 that prevents cellular senescence to its N-terminal region and helicase domain. We further investigated senescence features in an RTS mouse model, Recql4-deficient mice (Recql4HD). Tail fibroblasts from Recql4HD showed increased SA-β-gal staining and increased DNA damage foci. We also identified sparser tail hair and fewer blood cells in Recql4HD mice accompanied with increased senescence in tail hair follicles and in bone marrow cells. In conclusion, dysfunction of RECQL4 increases DNA damage and triggers premature senescence in both human and mouse cells, which may contribute to symptoms in RTS patients. PMID:24832598

  12. Senescence induced by RECQL4 dysfunction contributes to Rothmund-Thomson syndrome features in mice.

    PubMed

    Lu, H; Fang, E F; Sykora, P; Kulikowicz, T; Zhang, Y; Becker, K G; Croteau, D L; Bohr, V A

    2014-05-15

    Cellular senescence refers to irreversible growth arrest of primary eukaryotic cells, a process thought to contribute to aging-related degeneration and disease. Deficiency of RecQ helicase RECQL4 leads to Rothmund-Thomson syndrome (RTS), and we have investigated whether senescence is involved using cellular approaches and a mouse model. We first systematically investigated whether depletion of RECQL4 and the other four human RecQ helicases, BLM, WRN, RECQL1 and RECQL5, impacts the proliferative potential of human primary fibroblasts. BLM-, WRN- and RECQL4-depleted cells display increased staining of senescence-associated β-galactosidase (SA-β-gal), higher expression of p16(INK4a) or/and p21(WAF1) and accumulated persistent DNA damage foci. These features were less frequent in RECQL1- and RECQL5-depleted cells. We have mapped the region in RECQL4 that prevents cellular senescence to its N-terminal region and helicase domain. We further investigated senescence features in an RTS mouse model, Recql4-deficient mice (Recql4(HD)). Tail fibroblasts from Recql4(HD) showed increased SA-β-gal staining and increased DNA damage foci. We also identified sparser tail hair and fewer blood cells in Recql4(HD) mice accompanied with increased senescence in tail hair follicles and in bone marrow cells. In conclusion, dysfunction of RECQL4 increases DNA damage and triggers premature senescence in both human and mouse cells, which may contribute to symptoms in RTS patients.

  13. In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves.

    PubMed

    Carrión, Cristian A; Costa, María Lorenza; Martínez, Dana E; Mohr, Christina; Humbeck, Klaus; Guiamet, Juan J

    2013-11-01

    Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.

  14. Herbal pre-conditioning induces proliferation and delays senescence in Wharton's Jelly Mesenchymal Stem Cells.

    PubMed

    Sanap, Avinash; Chandravanshi, Bhawna; Shah, Tejas; Tillu, Girish; Dhanushkodi, Anand; Bhonde, Ramesh; Joshi, Kalpana

    2017-09-01

    Mesenchymal Stem Cells (MSCs) are multipotent stem cells which are being explored for various clinical applications. Isolation and in-vitro expansion of MSCs remain important in achieving desired cell number for the therapy. However, in-vitro proliferation of MSCs is often associated with senescence and early onset of apoptosis which limits its therapeutic ability and long term clinical use. Tinospora cordifolia and Withania somnifera are used widely in Ayurveda: the traditional Indian system of medicine and are reported to have rejuvenating and anti-aging potential. In the present study, we investigated the effect of Tinospora cordifolia and Withania somnifera on proliferation and senescence of wharton's jelly MSCs (WJMSCs) in-vitro. WJMSCs were treated in culture medium with Tinospora cordifolia leaf and Withania somnifera root extracts to examine their effect on proliferation and senescence properties of WJMSCs. Proliferation of WJMSCs was assayed by cell count, MTT, BrdU incorporation assay, cell cycle analysis and Ki67 mRNA expression. Senescence was demonstrated using β-galactosidase senescence assay and associated mRNA markers. Culture medium supplemented with Tinospora cordifolia leaf and Withania somnifera root extracts exhibited significant increase in proliferation of WJMSCs as evidenced by cell count and MTT assay. Cell cycle analysis using propidium iodide showed increase in G2/M phase and decrease in apoptotic cells. BrdU incorporation and upregulation of proliferation marker ki67 by RT PCR showed increased DNA synthesis/proliferation in Tinospora cordifolia and Withania somnifera extract treated MSCs. Delayed senescence was confirmed by β-galactosidase senescence assay and down regulation of senescence marker p21. Our results demonstrate for the first time that Tinospora cordifolia and Withania somnifera extracts support proliferation and inhibit senescence in WJMSCs making them suitable candidates as supplements for in-vitro expansion without

  15. Arabidopsis RabF1 (ARA6) Is Involved in Salt Stress and Dark-Induced Senescence (DIS)

    PubMed Central

    Yin, Congfei; Karim, Sazzad; Zhang, Hongsheng; Aronsson, Henrik

    2017-01-01

    Arabidopsis small GTPase RabF1 (ARA6) functions in endosomal vesicle transport and may play a crucial role in recycling and degradation of molecules, thus involved in stress responses. Here we have reported that complementary overexpression lines RabF1OE (overexpression), GTPase mutants RabF1Q93L (constitutively active) and RabF1S47N (dominant negative) lines show longer root growth than wild-type, rabF1 knockout and N-myristoylation deletion (Δ1−29, N-terminus) complementary overexpression mutant plants under salt induced stress, which indicates that N-myristoylation of RabF1 is indispensable for salt tolerance. Moreover, RabF1 is highly expressed during senescence and RabF1OE lines were more tolerant of dark-induced senescence (DIS) than wild-type and rabF1. PMID:28157156

  16. Probucol inhibits JAK2-STAT pathway activation and protects human glomerular mesangial cells from tert-butyl hydroperoxide induced premature senescence.

    PubMed

    Zhou, Hongli; Huang, Bo; Han, Yarong; Jin, Ruixia; Chen, Shuo

    2013-09-01

    Human mesangial cells (HMCs) have a finite lifespan and eventually enter irreversible growth arrest known as cellular senescence, which is thought to contribute to kidney ageing and age-related kidney disorders such as chronic kidney disease. The JAK2-STAT pathway plays a pivotal role in transmitting cytokine signals, including cell proliferation, apoptosis, and differentiation, but whether it could regulate HMC senescence still remains to be explored. In our study, tert-butyl hydroperoxide (tBHP)-induced cells accelerated HMC senescence, as judged by increased senescence-associated β-galactosidase stained positive cells, morphological changes, and G0-G1 cell cycle arrest. STAT1 and STAT3 activity were increased in tBHP-induced cells. After tBHP treatment, Bcl-2 protein expression decreased and Bax protein expression increased. Blocking the JAK2-STAT pathway with AG490 and using probucol significantly inhibited the progression of HMC senescence. Bax protein expression decreased, but Bcl-2 protein expression increased after AG490 and probucol treatment. Our results indicated that the JAK2-STAT pathway might mediate tBHP-induced HMC senescence through the Bcl-2-Bax pathway, and that probucol could attenuate HMC senescence by regulating STATs.

  17. DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progression

    PubMed Central

    Borghesan, Michela; Fusilli, Caterina; Rappa, Francesca; Panebianco, Concetta; Rizzo, Giovanni; Oben, Jude A.; Mazzoccoli, Gianluigi; Faulkes, Chris; Pata, Illar; Agodi, Antonella; Rezaee, Farhad; Minogue, Shane; Warren, Alessandra; Peterson, Abigail; Sedivy, John M.; Douet, Julien; Buschbeck, Marcus; Cappello, Francesco; Mazza, Tommaso; Pazienza, Valerio; Vinciguerra, Manlio

    2016-01-01

    Aging is a major risk factor for progression of liver diseases to hepatocellular carcinoma (HCC). Cellular senescence contributes to age-related tissue dysfunction, but the epigenetic basis underlying drug-induced senescence remains unclear.macroH2A1, a variant of histone H2A, is a marker of senescence-associated heterochromatic foci that synergizes with DNA methylation to silence tumor-suppressor genes in human fibroblasts. In this study, we investigated the relationship between macroH2A1 splice variants, macroH2A1.1 and macroH2A1.2, and liver carcinogenesis. We found that protein levels of both macroH2A1 isoforms were increased in the livers of very elderly rodents and humans, and were robust immunohistochemical markers of human cirrhosis and HCC. In response to the chemotherapeutic and DNA-demethylating agent 5-aza-deoxycytidine (5-aza-dC), transgenic expression of macroH2A1 isoforms in HCC cell lines prevented the emergence of a senescent-like phenotype and induced synergistic global DNA hypomethylation. Conversely, macroH2A1 depletion amplified the antiproliferative effects of 5-aza-dC in HCC cells, but failed to enhance senescence. Senescence-associated secretory phenotype and whole-transcriptome analyses implicated the p38 MAPK/IL8 pathway in mediating macroH2A1-dependent escape of HCC cells from chemotherapy-induced senescence. Furthermore, chromatin immunoprecipitation sequencing revealed that this hepatic antisenescence state also required active transcription that could not be attributed to genomic occupancy of these histones. Collectively, our findings reveal a new mechanism by which drug-induced senescence is epigenetically regulated by macroH2A1 and DNA methylation and suggest macroH2A1 as a novel biomarker of hepatic senescence that could potentially predict prognosis and disease progression. PMID:26772755

  18. DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progression.

    PubMed

    Borghesan, Michela; Fusilli, Caterina; Rappa, Francesca; Panebianco, Concetta; Rizzo, Giovanni; Oben, Jude A; Mazzoccoli, Gianluigi; Faulkes, Chris; Pata, Illar; Agodi, Antonella; Rezaee, Farhad; Minogue, Shane; Warren, Alessandra; Peterson, Abigail; Sedivy, John M; Douet, Julien; Buschbeck, Marcus; Cappello, Francesco; Mazza, Tommaso; Pazienza, Valerio; Vinciguerra, Manlio

    2016-02-01

    Aging is a major risk factor for progression of liver diseases to hepatocellular carcinoma (HCC). Cellular senescence contributes to age-related tissue dysfunction, but the epigenetic basis underlying drug-induced senescence remains unclear. macroH2A1, a variant of histone H2A, is a marker of senescence-associated heterochromatic foci that synergizes with DNA methylation to silence tumor-suppressor genes in human fibroblasts. In this study, we investigated the relationship between macroH2A1 splice variants, macroH2A1.1 and macroH2A1.2, and liver carcinogenesis. We found that protein levels of both macroH2A1 isoforms were increased in the livers of very elderly rodents and humans, and were robust immunohistochemical markers of human cirrhosis and HCC. In response to the chemotherapeutic and DNA-demethylating agent 5-aza-deoxycytidine (5-aza-dC), transgenic expression of macroH2A1 isoforms in HCC cell lines prevented the emergence of a senescent-like phenotype and induced synergistic global DNA hypomethylation. Conversely, macroH2A1 depletion amplified the antiproliferative effects of 5-aza-dC in HCC cells, but failed to enhance senescence. Senescence-associated secretory phenotype and whole-transcriptome analyses implicated the p38 MAPK/IL8 pathway in mediating macroH2A1-dependent escape of HCC cells from chemotherapy-induced senescence. Furthermore, chromatin immunoprecipitation sequencing revealed that this hepatic antisenescence state also required active transcription that could not be attributed to genomic occupancy of these histones. Collectively, our findings reveal a new mechanism by which drug-induced senescence is epigenetically regulated by macroH2A1 and DNA methylation and suggest macroH2A1 as a novel biomarker of hepatic senescence that could potentially predict prognosis and disease progression. ©2016 American Association for Cancer Research.

  19. Hepatitis B virus X protein overcomes stress-induced premature senescence by repressing p16(INK4a) expression via DNA methylation.

    PubMed

    Kim, Ye-Jin; Jung, Jin Kyu; Lee, Sun Young; Jang, Kyung Lib

    2010-02-28

    Cellular senescence is an important tumor suppression process under diverse oncogenic conditions, entering a state of irreversible growth arrest to prevent damaged cells from undergoing aberrant proliferation. Developing a means of evading senescence thus seems to be a fundamental task that all cancer cells should solve early on. Here, we show that an oncogenic X protein of hepatitis B virus (HBx) overcomes cellular senescence provoked by a universal premature senescence inducer, H(2)O(2), in human hepatoma cells, as demonstrated by impaired induction of senescence-associated biomarkers, including morphological change, G(1) arrest, and beta-galactosidase activity, in the presence of HBx. HBx induced DNA hypermethylation of p16(INK4a) promoter and subsequently interfered action of transcription factors like Ets1 and Ets2 activated by H(2)O(2) through the p38(MAPK) pathway, resulting in inhibition of its transcription. Down-regulation of p16(INK4a) expression by HBx subsequently led to activation of G(1)-CDKs, phosphorylation of Rb, activation of E2F1, and finally evasion from G(1) arrest induced by H(2)O(2). Levels of another senescence regulator, p21(waf1), however, were not affected by HBx under our senescence-inducing conditions. In addition, the potentials of HBx to inactivate Rb and subsequently inhibit cellular senescence almost completely disappeared when levels of p16(INK4a) were recovered either by exogenous complementation or inhibition of the promoter hypermethylation. To our knowledge, our present study represents the first report that an oncogenic virus evades cellular senescence through epigenetic down-regulation of p16(INK4a) expression. 2009 Elsevier Ireland Ltd. All rights reserved.

  20. Ovarian cancer-derived ascitic fluids induce a senescence-dependent pro-cancerogenic phenotype in normal peritoneal mesothelial cells.

    PubMed

    Mikuła-Pietrasik, Justyna; Uruski, Paweł; Matuszkiewicz, Kinga; Szubert, Sebastian; Moszyński, Rafał; Szpurek, Dariusz; Sajdak, Stefan; Tykarski, Andrzej; Książek, Krzysztof

    2016-10-01

    After the seeding ovarian cancer cells into the peritoneal cavity, ascitic fluid creates a microenvironment in which these cells can survive and disseminate. The exact nature of the interactions between malignant ascitic fluids and peritoneal mesothelial cells (HPMCs) in ovarian cancer progression has so far remained elusive. Here we assessed whether malignant ascitic fluids may promote the senescence of HPMCs and, by doing so, enhance the acquisition of their pro-cancerogenic phenotype. Primary omentum-derived HPMCs, ovarian cancer-derived cell lines (A2780, OVCAR-3, SKOV-3), malignant ascitic fluids and benign ascitic fluids from non-cancerous patients were used in this study. Ovarian cancer cell proliferation, as well as HPMC proliferation and senescence, were determined using flow cytometry and β-galactosidase assays, respectively. Ovarian cancer cell migration was quantified using a Transwell assay. The concentrations of soluble agents in ascitic fluids, conditioned media and cell lysates were measured using DuoSet® Immunoassay Development kits. We found that HPMCs, when exposed to malignant ascitic fluids, exhibited decreased proliferation and increased senescence rates. The malignant ascitic fluids were found to contain elevated levels of HGF, TGF-β1 and GRO-1, of which HGF and GRO-1 were able to induce senescence in HPMCs. We also found that HPMCs subjected to malignant ascitic fluids or exogenously added HGF and GRO-1 stimulated ovarian cancer cell progression, which was manifested by an increased production of HA (adhesion), uPA (proliferation), IL-8 and MCP-1 (migration). Our results indicate that malignant ascitic fluids may contribute to ovarian cancer progression by accelerating the senescence of HPMCs.

  1. Extreme sports: extreme physiology. Exercise-induced pulmonary oedema.

    PubMed

    Ma, Joyce Lok Gee; Dutch, Martin John

    2013-08-01

    We report five patients who presented to an on-site medical team with concurrent haemoptysis and shortness of breath at a recent triathlon event. After initial management in the field, three of the five patients were transported to hospital via ambulance for further management, resulting in patients with haemoptysis and dyspnoea being 17 times more likely to require hospital transport. It is important to consider the differential diagnoses for this presentation, particularly exercise-induced pulmonary oedema.

  2. The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells.

    PubMed

    Bianchessi, Valentina; Badi, Ileana; Bertolotti, Matteo; Nigro, Patrizia; D'Alessandra, Yuri; Capogrossi, Maurizio C; Zanobini, Marco; Pompilio, Giulio; Raucci, Angela; Lauri, Andrea

    2015-04-01

    Age-associated cardiovascular diseases are at least partially ascribable to vascular cell senescence. Replicative senescence (RS) and stress-induced premature senescence (SIPS) are provoked respectively by endogenous (telomere erosion) and exogenous (H2O2, UV) stimuli resulting in cell cycle arrest in G1 and G2 phases. In both scenarios, mitochondria-derived ROS are important players in senescence initiation. We aimed to define whether a mtDNA-transcribed long-non-coding-RNA (lncRNA), ASncmtRNA-2, has a role in vascular aging and senescence. Aortas of old mice, characterized by increased senescence, showed an increment in ASncmtRNA-2 expression. In vitro analysis of Endothelial Cells (EC) and Vascular Smooth Muscle Cells (VSMC) established that ASncmtRNA-2 is induced in EC, but not in VSMC, during RS. Surprisingly, ASncmtRNA-2 is not upregulated in two different EC SIPS scenarios, treated with H2O2 and UV. The p16 gene displayed similar ASncmtRNA-2 expression patterns, suggesting a possible co-regulation of the two genes. Interestingly, the expression of two miRNAs, hsa-miR-4485 and hsa-miR-1973, with perfect homology to the double strand region of ASncmtRNA-2 and originating at least in part from a mitochondrial transcript, was induced in RS, opening to the possibility that this lncRNA functions as a non-canonical precursor of these miRNAs. Cell cycle analysis of EC transiently over-expressing ASncmtRNA-2 revealed an accumulation of EC in the G2/M phase, but not in the G1 phase. We propose that ASncmtRNA-2 in EC might be involved in the RS establishment by participating in the cell cycle arrest in G2/M phase, possibly through the production of hsa-miR-4485 and hsa-miR-1973. This article is part of a Special Issue entitled: Mitochondria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. CBX8 suppresses Sirtinol-induced premature senescence in human breast cancer cells via cooperation with SIRT1.

    PubMed

    Lee, Sang Hyup; Um, Soo-Jong; Kim, Eun-Joo

    2013-07-28

    Stress-induced premature senescence (SIPS) has been implicated in the suppression of carcinogenesis. We identified chromodomain protein 8 (CBX8), a Polycomb group (PcG) protein, as a novel binding partner of SIRT1. The interaction between CBX8 and SIRT1 was demonstrated by immunoprecipitation, GST pull-down, fluorescence microscopy, and cooperation for transcriptional repression. Like SIRT1, CBX8 repressed premature senescence and growth arrest induced by the SIRT1 inhibitor Sirtinol in MCF7 cells, which was reversed by depleting CBX8. CBX8 cooperated with SIRT1 for suppressing p53 acetylation induced by Sirtinol and etoposide/TSA. Upon ectopic expression, CBX8 or SIRT1 repressed the expression of p21(WAF1) by inhibiting p53 binding to the promoter. We provide the first evidence that CBX8 plays a potential role in regulating premature senescence in human breast cancer cells through cooperation with SIRT1. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Stress-Induced Premature Senescence of Endothelial and Endothelial Progenitor Cells

    PubMed Central

    Goligorsky, M.S.; Hirschi, K.

    2016-01-01

    This brief overview of premature senescence of dysfunctional endothelial and endothelial progenitor cells provides information on endothelial cell differentiation and specialization, their ontogeny, and controversies related to endothelial stem and progenitor cells. Stressors responsible for the dysfunction of endothelial and endothelial progenitor cells, as well as cellular mechanisms and consequences of endothelial cell dysfunction are presented. Metabolic signatures of dysfunctional endothelial cells and senescence pathways are described. Emerging strategies to rejuvenate endothelial and endothelial progenitor cells conclude the review. PMID:27451101

  5. Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence

    PubMed Central

    Ramachandran, I; Ganapathy, V; Gillies, E; Fonseca, I; Sureban, S M; Houchen, C W; Reis, A; Queimado, L

    2014-01-01

    Hyperactivation of the Wingless-type (Wnt)/β-catenin pathway promotes tumor initiation, tumor growth and metastasis in various tissues. Although there is evidence for the involvement of Wnt/β-catenin pathway activation in salivary gland tumors, the precise mechanisms are unknown. Here we report for the first time that downregulation of the Wnt inhibitory factor 1 (WIF1) is a widespread event in salivary gland carcinoma ex-pleomorphic adenoma (CaExPA). We also show that WIF1 downregulation occurs in the CaExPA precursor lesion pleomorphic adenoma (PA) and indicates a higher risk of progression from benign to malignant tumor. Our results demonstrate that diverse mechanisms including WIF1 promoter hypermethylation and loss of heterozygosity contribute to WIF1 downregulation in human salivary gland tumors. In accordance with a crucial role in suppressing salivary gland tumor progression, WIF1 re-expression in salivary gland tumor cells inhibited cell proliferation, induced more differentiated phenotype and promoted cellular senescence, possibly through upregulation of tumor-suppressor genes, such as p53 and p21. Most importantly, WIF1 significantly diminished the number of salivary gland cancer stem cells and the anchorage-independent cell growth. Consistent with this observation, WIF1 caused a reduction in the expression of pluripotency and stemness markers (OCT4 and c-MYC), as well as adult stem cell self-renewal and multi-lineage differentiation markers, such as WNT3A, TCF4, c-KIT and MYB. Furthermore, WIF1 significantly increased the expression of microRNAs pri-let-7a and pri-miR-200c, negative regulators of stemness and cancer progression. In addition, we show that WIF1 functions as a positive regulator of miR-200c, leading to downregulation of BMI1, ZEB1 and ZEB2, with a consequent increase in downstream targets such as E-cadherin. Our study emphasizes the prognostic and therapeutic potential of WIF1 in human salivary gland CaExPA. Moreover, our findings

  6. The Stress-Induced Soybean NAC Transcription Factor GmNAC81 Plays a Positive Role in Developmentally Programmed Leaf Senescence.

    PubMed

    Pimenta, Maiana Reis; Silva, Priscila Alves; Mendes, Giselle Camargo; Alves, Janaína Roberta; Caetano, Hanna Durso Neves; Machado, Joao Paulo Batista; Brustolini, Otavio José Bernardes; Carpinetti, Paola Avelar; Melo, Bruno Paes; Silva, José Cleydson Ferreira; Rosado, Gustavo Leão; Ferreira, Márcia Flores Silva; Dal-Bianco, Maximillir; Picoli, Edgard Augusto de Toledo; Aragao, Francisco José Lima; Ramos, Humberto Josué Oliveira; Fontes, Elizabeth Pacheco Batista

    2016-05-01

    The onset of leaf senescence is a highly regulated developmental change that is controlled by both genetics and the environment. Senescence is triggered by massive transcriptional reprogramming, but functional information about its underlying regulatory mechanisms is limited. In the current investigation, we performed a functional analysis of the soybean (Glycine max) osmotic stress- and endoplasmic reticulum (ER) stress-induced NAC transcription factor GmNAC81 during natural leaf senescence using overexpression studies and reverse genetics. GmNAC81-overexpressing lines displayed accelerated flowering and leaf senescence but otherwise developed normally. The precocious leaf senescence of GmNAC81-overexpressing lines was associated with greater Chl loss, faster photosynthetic decay and higher expression of hydrolytic enzyme-encoding GmNAC81 target genes, including the vacuolar processing enzyme (VPE), an executioner of vacuole-triggered programmed cell death (PCD). Conversely, virus-induced gene silencing-mediated silencing of GmNAC81 delayed leaf senescence and was associated with reductions in Chl loss, lipid peroxidation and the expression of GmNAC81 direct targets. Promoter-reporter studies revealed that the expression pattern of GmNAC81 was associated with senescence in soybean leaves. Our data indicate that GmNAC81 is a positive regulator of age-dependent senescence and may integrate osmotic stress- and ER stress-induced PCD responses with natural leaf senescence through the GmNAC81/VPE regulatory circuit. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Bacteroids Are Stable during Dark-Induced Senescence of Soybean Root Nodules 12

    PubMed Central

    Sarath, Gautam; Pfeiffer, Nancy E.; Sodhi, C. S.; Wagner, Fred W.

    1986-01-01

    Physiological and biochemical markers of metabolic competence were assayed in bacteroids isolated from root nodules of control, dark-stressed, and recovered plants of Glycine max Merr. cv `Woodworth.' Nitrogenase-dependent acetylene reduction by the whole plant decreased to 8% of control rates after 4 days of dark stress and could not be detected in plants dark stressed for 8 days. However, in bacteroids isolated anaerobically, almost 50% of initial acetylene reduction activity remained after 4 days of dark stress but was totally lost after 8 days of dark stress. Bacteroid acetylene reduction activity recovered faster than whole plant acetylene reduction activity when plants were dark stressed for 8 days and returned to a normal light regimen. Significant changes were not measured in bacteroid respiration, protein content, sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles, or in bacteroid proteolytic activity throughout the experiment. Immunoblots of bacteroid extracts revealed the presence of nitrogenase component II in control, 4-day dark-stressed, and 8-day dark-stressed plants that were allowed to recover under a normal light regimen, but not in 8-day dark-stressed plants. Our data indicate that dark stress does not greatly affect bacteroid metabolism or induce bacteroid senescence. Images Fig. 2 Fig. 3 PMID:16665033

  8. Abrogation of age-induced microRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase

    PubMed Central

    Okada, Motoi; Kim, Ha Won; Matsu-ura, Kaoru; Wang, Yi-Gang; Xu, Meifeng; Ashraf, Muhammad

    2016-01-01

    Previously, we reported that a novel sub-population of young mesenchymal stem cells (YMSCs) existed in old bone marrow, which possessed high anti-aging properties as well as excellent efficacy for cardiac repair. MicroRNAs (miRNAs) have emerged as key regulators in post-transcriptional gene expression programs, and however, it is unknown whether miRNAs directly control stem cell senescence. Here we present the first evidence that miR-195 overexpressed in old MSCs induces stem cell senescence deteriorating their regenerative ability by directly deactivating telomerase reverse transcriptase (Tert), and abrogation of miR-195 can reverse stem cell aging. MiRNAs profiling analysis in YMSCs and OMSCs by microarray showed that miR-140, miR-146a/b and miR-195 were significantly upregulated in OMSCs, which led us to hypothesize that these are age-induced miRNAs involved in stem cell senescence. Of these miRNAs, we found miR-195 directly targeted 3′-untranslated region of Tert gene by computational target prediction analysis and luciferase assay, and knockdown of miR-195 significantly increased Tert expression in OMSCs. Strikingly, miR-195 inhibition significantly induced telomere re-lengthening in OMSCs along with reduced expression of senescence-associated β-galactosidase. Moreover, silencing miR-195 in OMSCs by transfection of miR-195 inhibitor significantly restored anti-aging factors expression including Tert and Sirt1 as well as phosphorylation of Akt and FOXO1. Notably, abrogation of miR-195 markedly restored proliferative abilities in OMSCs. Transplantation of OMSCs with knocked out miR-195 reduced infarction size and improved LV function. In conclusion, rejuvenation of aged stem cells by miR-195 inhibition would be a promising autologous therapeutic strategy for cardiac repair in the elderly patients. PMID:26390028

  9. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin induces premature senescence of astrocytes via WNT/β-catenin signaling and ROS production.

    PubMed

    Nie, Xiaoke; Liang, Lingwei; Xi, Hanqing; Jiang, Shengyang; Jiang, Junkang; Tang, Cuiying; Liu, Xipeng; Liu, Suyi; Wan, Chunhua; Zhao, Jianya; Yang, Jianbin

    2015-07-01

    2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant that could exert significant neurotoxicity in the human nervous system. Nevertheless, the molecular mechanism underlying TCDD-mediated neurotoxicity has not been clarified clearly. Herein, we investigated the potential role of TCDD in facilitating premature senescence in astrocytes and the underlying molecular mechanisms. Using the senescence-associated β-galactosidase (SA-β-Gal) assay, we demonstrated that TCDD exposure triggered significant premature senescence of astrocyte cells, which was accompanied by a marked activation of the Wingless and int (WNT)/β-catenin signaling pathway. In addition, TCDD altered the expression of senescence marker proteins, such as p16, p21 and GFAP, which together have been reported to be upregulated in aging astrocytes, in both dose- and time-dependent manners. Further, TCDD led to cell-cycle arrest, F-actin reorganization and the accumulation of cellular reactive oxygen species (ROS). Moreover, the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and astrocyte senescence. Notably, the application of XAV939, an inhibitor of WNT/β-catenin signaling pathway, ameliorated the effect of TCDD on cellular β-catenin level, ROS production, cellular oxidative damage and premature senescence in astrocytes. In summary, our findings indicated that TCDD might induce astrocyte senescence via WNT/β-catenin and ROS-dependent mechanisms.

  10. LDH inhibition impacts on heat shock response and induces senescence of hepatocellular carcinoma cells.

    PubMed

    Manerba, Marcella; Di Ianni, Lorenza; Govoni, Marzia; Roberti, Marinella; Recanatini, Maurizio; Di Stefano, Giuseppina

    2017-07-15

    In normal cells, heat shock response (HSR) is rapidly induced in response to a variety of harmful conditions and represents one of the most efficient defense mechanism. In cancer tissues, constitutive activation converts HSR into a life-threatening process, which plays a major role in helping cell survival and proliferation. Overexpression of heat shock proteins (HSPs) has been widely reported in human cancers and was found to correlate with tumor progression. Hepatocellular carcinoma is one of the conditions in which HSR activation was shown to have the highest clinical significance. Transcription of HSPs is induced by HSF-1, which also activates glycolytic metabolism and increases the expression of LDH-A, the master regulator of the Warburg effect. In this paper, we tried to explore the relationship between HSR and LDH-A. In cultured hepatocellular carcinoma cells, by using two enzyme inhibitors (oxamate and galloflavin), we found that the reduction of LDH-A activity led to decreased level and function of the major HSPs involved in tumorigenesis. Galloflavin (a polyphenol) also inhibited the ATPase activity of two of the examined HSPs. Finally, hindering HSR markedly lowered the alpha-fetoprotein cellular levels and induced senescence. Specific inhibitors of single HSPs are currently under evaluation in different neoplastic diseases. However, one of the effects usually observed during treatment is a compensatory elevation of other HSPs, which decreases treatment efficacy. Our results highlight a connection between LDH and HSR and suggest LDH inhibition as a way to globally impact on this tumor promoting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rb protein is essential to the senescence-associated heterochromatic foci formation induced by HMGA2 in primary WI38 cells.

    PubMed

    Shi, Xi; Tian, Baoqing; Liu, Lingxia; Gao, Yanyan; Ma, Chi; Mwichie, Namusamba; Ma, Wenlong; Han, Liping; Huang, Baiqu; Lu, Jun; Zhang, Yu

    2013-08-20

    Cellular senescence is an irreversible form of cell cycle arrest that provides a barrier to neoplastic transformation. The integrity of the Rb (Retinoblastoma) pathway is necessary for the formation of the senescence-associated heterochromatin foci (SAHF) that offers a molecular basis for the stability of the senescent state. Surprisingly, although high mobility group A2 protein (HMGA2) can promote tumorigenesis and inhibit Rb function in tumor cells, high-level expression of HMGA2 is sufficient to induce SAHF formation in primary cells. It therefore becomes significant to determine whether Rb protein is necessary in HMGA2-induced SAHF formation. In this study, we established the cellular senescence and SAHF assembly WI38 cell model by ectopic expression of HMGA2, in which typical senescent markers were seen, including notable upregulation of p53, p21 and p16, and elevated SA-β-galactosidase staining together with downregulation of E2F target genes. We then showed that the Rb pathway inhibitor E7 protein was able to partly abolish the ability of SAHF formation after HMGA2 expression in WI38 cells, indicating that Rb is a crucial factor for HMGA2-induced SAHF formation. However, Rb depletion did not completely rescue the cell growth arrest induced by HMGA2, suggesting that Rb is not an exclusive pathway for HMGA2-induced senescence in WI38 cells.

  12. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae)

    PubMed Central

    Shane, Michael W.; Stigter, Kyla; Fedosejevs, Eric T.; Plaxton, William C.

    2014-01-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native ‘extremophile’ plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors’ knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested. PMID:25170100

  13. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae).

    PubMed

    Shane, Michael W; Stigter, Kyla; Fedosejevs, Eric T; Plaxton, William C

    2014-11-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native 'extremophile' plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors' knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested. © The Author 2014. Published by Oxford University Press on behalf of the Society for

  14. DGCR8-mediated disruption of miRNA biogenesis induces cellular senescence in primary fibroblasts.

    PubMed

    Gómez-Cabello, Daniel; Adrados, Isabel; Gamarra, David; Kobayashi, Hikaru; Takatsu, Yoshihiro; Takatsu, Kyoko; Gil, Jesús; Palmero, Ignacio

    2013-10-01

    The regulation of gene expression by microRNAs (miRNAs) is critical for normal development and physiology. Conversely, miRNA function is frequently impaired in cancer, and other pathologies, either by aberrant expression of individual miRNAs or dysregulation of miRNA synthesis. Here, we have investigated the impact of global disruption of miRNA biogenesis in primary fibroblasts of human or murine origin, through the knockdown of DGCR8, an essential mediator of the synthesis of canonical miRNAs. We find that the inactivation of DGCR8 in these cells results in a dramatic antiproliferative response, with the acquisition of a senescent phenotype. Senescence triggered by DGCR8 loss is accompanied by the upregulation of the cell-cycle inhibitor p21CIP1. We further show that a subset of senescence-associated miRNAs with the potential to target p21CIP1 is downregulated during DGCR8-mediated senescence. Interestingly, the antiproliferative response to miRNA biogenesis disruption is retained in human tumor cells, irrespective of p53 status. In summary, our results show that defective synthesis of canonical microRNAs results in cell-cycle arrest and cellular senescence in primary fibroblasts mediated by specific miRNAs, and thus identify global miRNA disruption as a novel senescence trigger. © 2013 The Anatomical Society and John Wiley & Sons Ltd.

  15. Drying without senescence in resurrection plants

    PubMed Central

    Griffiths, Cara A.; Gaff, Donald F.; Neale, Alan D.

    2014-01-01

    Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in

  16. Drying without senescence in resurrection plants.

    PubMed

    Griffiths, Cara A; Gaff, Donald F; Neale, Alan D

    2014-01-01

    Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in

  17. Cellular senescence in renal ageing and disease.

    PubMed

    Sturmlechner, Ines; Durik, Matej; Sieben, Cynthia J; Baker, Darren J; van Deursen, Jan M

    2017-02-01

    The senescence programme is implicated in diverse biological processes, including embryogenesis, tissue regeneration and repair, tumorigenesis, and ageing. Although in vivo studies of senescence are in their infancy, evidence suggesting that senescent cells are a heterogeneous cell type is accumulating: senescence can be induced by different stressors, and senescent cells have varying degrees of genomic and epigenomic instability and different cell origins, contributing to their diversity. Two main classes of senescent cells have been identified: acute and chronic senescent cells. Acute senescent cells are generated during coordinated, beneficial biological processes characterized by a defined senescence trigger, transient senescent-cell signalling functions, and eventual senescent-cell clearance. In contrast, chronic senescent cells arise more slowly from cumulative, diverse stresses and are inefficiently eliminated, leading to their accumulation and deleterious effects through a secretory phenotype. Senescent cells have been identified in many tissues and organs, including the kidney. Here, we discuss the emerging roles of senescent cells in renal development, homeostasis, and pathology. We also address how senotherapy, or targeting of senescent cells, might be used to improve renal function with normal ageing, disease, or therapy-induced damage.

  18. Retinoids induce cellular senescence in breast cancer cells by RAR-β dependent and independent pathways: Potential clinical implications (Review).

    PubMed

    Shilkaitis, Anne; Green, Albert; Christov, Konstantin

    2015-07-01

    Most studies on cellular senescence (CS) have been performed in vitro by employing cytotoxic agents, irradiation, chromatin and telomerase modulators or by activating certain oncogenes. All these approaches usually lead to DNA damage, gene instability and/or chromatin alterations that primarily affect p53-p21 signaling. Little is known on whether retinoids and rexinoids, which are cell differentiation agents, can also induce CS in vitro and in vivo, and which molecular mechanisms are involved in promoting the senescent phenotype. We reviewed the recent publications on CS induced by retinoids and rexinoids in ER+ and ER- breast cancer cell lines and in corresponding animal models of mammary carcinogenesis which simulate those of human breast cancer. The role of retinoic acid receptors β2 and 5 (RARβ2 and RARβ5) and of receptor independent genes involved in mediating the senescence program of retinoids and rexinoids in ER+ and ER- breast cancer cells is discussed. Potential strategists for clinical implication of CS as biomarker of prognosis and of response to treatment with retinoids, rexinoids and with other cell differentiation and antitumor agents are outlined.

  19. Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells.

    PubMed

    Wang, Yiping; Wong, Matthew Man-Kin; Zhang, Xiaojian; Chiu, Sung-Kay

    2015-11-15

    When cells are grown to confluence, cell-cell contact inhibition occurs and drives the cells to enter reversible quiescence rather than senescence. Confluent retinal pigment epithelial (RPE) cells exhibiting contact inhibition was used as a model in this study to examine the role of overexpression of transcription factor AP4, a highly expressed transcription factor in many types of cancer, in these cells during long-term culture. We generated stable inducible RPE cell clones expressing AP4 or AP4 without the DNA binding domain (DN-AP4) and observed that, when cultured for 24 days, RPE cells with a high level of AP4 exhibit a large, flattened morphology and even cease proliferating; these changes were not observed in DN-AP4-expressing cells or non-induced cells. In addition, AP4-expressing cells exhibited senescence-associated β-galactosidase activity and the senescence-associated secretory phenotype. We demonstrated that the induced cellular senescence was mediated by enhanced p53 expression and that AP4 regulates the p53 gene by binding directly to two of the three E-boxes present on the promoter of the p53 gene. Moreover, we showed that serum is essential for AP4 in inducing p53-associated cellular senescence. Collectively, we showed that overexpression of AP4 mediates cellular senescence involving in activation of p53 in long-term post-confluent RPE cells.

  20. Anti-ageing effects of Sonchus oleraceus L. (pūhā) leaf extracts on H₂O₂-induced cell senescence.

    PubMed

    Ou, Zong-Quan; Rades, Thomas; McDowell, Arlene

    2015-03-12

    Antioxidants protect against damage from free radicals and are believed to slow the ageing process. Previously, we have reported the high antioxidant activity of 70% methanolic Sonchus oleraceus L. (Asteraceae) leaf extracts. We hypothesize that S. oleraceus extracts protect cells against H2O2-induced senescence by mediating oxidative stress. Premature senescence of young WI-38 cells was induced by application of H2O2. Cells were treated with S. oleraceus extracts before or after H2O2 stress. The senescence- associated β-galactosidase (SA-β-gal) activity was used to indicate cell senescence. S. oleraceus extracts showed higher cellular antioxidant activity than chlorogenic acid in WI-38 cells. S. oleraceus extracts suppressed H2O2 stress-induced premature senescence in a concentration-dependent manner. At 5 and 20 mg/mL, S. oleraceus extracts showed better or equivalent effects of reducing stress-induced premature senescence than the corresponding ascorbic acid treatments. These findings indicate the potential of S. oleraceus extracts to be formulated as an anti-ageing agent.

  1. Cloning and Characterization of TPE4A, a Thiol-Protease Gene Induced during Ovary Senescence and Seed Germination in Pea1

    PubMed Central

    Cercós, Manuel; Santamaría, Salvador; Carbonell, Juan

    1999-01-01

    A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization. PMID:10198093

  2. Pseudolaric acid B-induced autophagy contributes to senescence via enhancement of ROS generation and mitochondrial dysfunction in murine fibrosarcoma L929 cells.

    PubMed

    Qi, Min; Fan, Simiao; Yao, Guodong; Li, Zhao; Zhou, Haiyan; Tashiro, Shin-ichi; Onodera, Satoshi; Xia, Mingyu; Ikejima, Takashi

    2013-01-01

    Pseudolaric acid B (PAB) is the primary biologically active compound isolated from the root bark of P. kaempferi Gordon. Our previous study demonstrated that PAB induced mitotic catastrophe in L929 cells and indicated that only a small percentage (12%) of the cells undergoing mitotic catastrophe displayed an apoptotic phenotype after PAB treatment for 72 h. In this study, we found that a minority of the cells undergoing mitotic catastrophe ended in apoptosis, and a majority of them entered a period of senescence. Further data confirmed that PAB induced autophagy, reactive oxygen species (ROS) generation, and mitochondrial dysfunction in L929 cells. Subsequently, we found that autophagy inhibitors significantly delayed the senescence process, indicating that autophagy facilitated senescence. Moreover, ROS scavenger significantly decreased the autophagic level and improved mitochondrial function. Additionally, autophagy inhibitors effectively reduced ROS levels and ameliorated mitochondrial function. In conclusion, autophagy promoted senescence via enhancement of ROS generation and mitochondrial dysfunction in PAB-treated L929 cells.

  3. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence

    PubMed Central

    Skinner, Heath D.; Sandulache, Vlad C.; Ow, Thomas J.; Meyn, Raymond E.; Yordy, John S.; Beadle, Beth M.; Fitzgerald, Alison L.; Giri, Uma; Ang, K. Kian; Myers, Jeffrey N.

    2011-01-01

    Purpose Mortality of patients with head and neck squamous cell carcinoma (HNSCC) is primarily driven by tumor cell radioresistance leading to locoregional recurrence (LRR). In this study, we use a classification of TP53 mutation (disruptive vs. nondisruptive) and examine impact on clinical outcomes and radiation sensitivity. Experimental Design Seventy-four patients with HNSCC treated with surgery and postoperative radiation and 38 HNSCC cell lines were assembled; for each, TP53 was sequenced and in vitro radioresistance measured using clonogenic assays. p53 protein expression was inhibited using shRNA and over-expressed using a retrovirus. Radiation-induced apoptosis, mitotic cell death, senescence, and ROS assays were performed. The effect of the drug metformin on overcoming mutant p53-associated radiation resistance was examined in vitro as well as in vivo, using an orthotopic xenograft model. Results Mutant TP53 alone was not predictive of LRR; however, disruptive TP53 mutation strongly predicted LRR (p=0.03). Cell lines with disruptive mutations were significantly more radioresistant (p<0.05). Expression of disruptive TP53 mutations significantly decreased radiation-induced senescence, as measured by SA-beta-gal staining, p21 expression, and release of reactive oxygen species (ROS). The mitochondrial agent metformin potentiated the effects of radiation in the presence of a disruptive TP53 mutation partially via senescence. Examination of our patient cohort showed that LRR was decreased in patients taking metformin. Conclusions Disruptive TP53 mutations in HNSCC tumors predicts for LRR, due to increased radioresistance via the inhibition of senescence. Metformin can serve as a radiosensitizer for HNSCC with disruptive TP53, presaging the possibility of personalizing HNSCC treatment. PMID:22090360

  4. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence.

    PubMed

    Skinner, Heath D; Sandulache, Vlad C; Ow, Thomas J; Meyn, Raymond E; Yordy, John S; Beadle, Beth M; Fitzgerald, Alison L; Giri, Uma; Ang, K Kian; Myers, Jeffrey N

    2012-01-01

    Mortality of patients with head and neck squamous cell carcinoma (HNSCC) is primarily driven by tumor cell radioresistance leading to locoregional recurrence (LRR). In this study, we use a classification of TP53 mutation (disruptive vs. nondisruptive) and examine impact on clinical outcomes and radiation sensitivity. Seventy-four patients with HNSCC treated with surgery and postoperative radiation and 38 HNSCC cell lines were assembled; for each, TP53 was sequenced and the in vitro radioresistance measured using clonogenic assays. p53 protein expression was inhibited using short hairpin RNA (shRNA) and overexpressed using a retrovirus. Radiation-induced apoptosis, mitotic cell death, senescence, and reactive oxygen species (ROS) assays were carried out. The effect of the drug metformin on overcoming mutant p53-associated radiation resistance was examined in vitro as well as in vivo, using an orthotopic xenograft model. Mutant TP53 alone was not predictive of LRR; however, disruptive TP53 mutation strongly predicted LRR (P = 0.03). Cell lines with disruptive mutations were significantly more radioresistant (P < 0.05). Expression of disruptive TP53 mutations significantly decreased radiation-induced senescence, as measured by SA-β-gal staining, p21 expression, and release of ROS. The mitochondrial agent metformin potentiated the effects of radiation in the presence of a disruptive TP53 mutation partially via senescence. Examination of our patient cohort showed that LRR was decreased in patients taking metformin. Disruptive TP53 mutations in HNSCC tumors predicts for LRR, because of increased radioresistance via the inhibition of senescence. Metformin can serve as a radiosensitizer for HNSCC with disruptive TP53, presaging the possibility of personalizing HNSCC treatment. © 2011 AACR.

  5. A Potential Role of Flag Leaf Potassium in Conferring Tolerance to Drought-Induced Leaf Senescence in Barley

    PubMed Central

    Hosseini, Seyed A.; Hajirezaei, Mohammad R.; Seiler, Christiane; Sreenivasulu, Nese; von Wirén, Nicolaus

    2016-01-01

    Terminal drought stress decreases crop yields by inducing abscisic acid (ABA) and premature leaf senescence. As potassium (K) is known to interfere with ABA homeostasis we addressed the question whether there is genetic variability regarding the role of K nutrition in ABA homeostasis and drought tolerance. To compare their response to drought stress, two barley lines contrasting in drought-induced leaf senescence were grown in a pot experiment under high and low K supply for the analysis of flag leaves from the same developmental stage. Relative to the drought-sensitive line LPR, the line HPR retained more K in its flag leaves under low K supply and showed delayed flag leaf senescence under terminal drought stress. High K retention was further associated with a higher leaf water status, a higher concentration of starch and other primary carbon metabolites. With regard to ABA homeostasis, HPR accumulated less ABA but higher levels of the ABA degradation products phaseic acid (PA) and dehydro-PA. Under K deficiency this went along with higher transcript levels of ABA8′-HYDROXYLASE, encoding a key enzyme in ABA degradation. The present study provides evidence for a positive impact of the K nutritional status on ABA homeostasis and carbohydrate metabolism under drought stress. We conclude that genotypes with a high K nutritional status in the flag leaf show superior drought tolerance by promoting ABA degradation but attenuating starch degradation which delays flag leaf senescence. Flag leaf K levels may thus represent a useful trait for the selection of drought-tolerant barley cultivars. PMID:26955376

  6. Oxidative stress inhibits adhesion and transendothelial migration, and induces apoptosis and senescence of induced pluripotent stem cells.

    PubMed

    Wu, Yi; Zhang, Xueqing; Kang, Xueling; Li, Ning; Wang, Rong; Hu, Tiantian; Xiang, Meng; Wang, Xinhong; Yuan, Wenjun; Chen, Alex; Meng, Dan; Chen, Sifeng

    2013-09-01

    Oxidative stress caused by cellular accumulation of reactive oxygen species (ROS) is a major contributor to disease and cell death. However, how induced pluripotent stem cells (iPSC) respond to different levels of oxidative stress is largely unknown. Here, we investigated the effect of H2 O2 -induced oxidative stress on iPSC function in vitro. Mouse iPSC were treated with H2 O2 (25-100 μmol/L). IPSC adhesion, migration, viability, apoptosis and senescence were analysed. Expression of adhesion-related genes, stress defence genes, and osteoblast- and adipocyte-associated genes were determined by reverse transcription polymerase chain reaction. The present study found that H2 O2 (25-100 μmol/L) decreased iPSC adhesion to matrix proteins and endothelial cells, and downregulated gene expression levels of adhesion-related molecules, such as integrin alpha 7, cadherin 1 and 5, melanoma cell adhesion molecule, vascular cell adhesion molecule 1, and monocyte chemoattractant protein-1. H2 O2 (100 μmol/L) decreased iPSC viability and inhibited the capacity of iPSC migration and transendothelial migration. iPSC were sensitive to H2 O2 -induced G2/M arrest, senescence and apoptosis when exposed to H2 O2 at concentrations above 25 μmol/L. H2 O2 increased the expression of stress defence genes, including catalase, cytochrome B alpha, lactoperoxidase and thioredoxin domain containing 2. H2 O2 upregulated the expression of osteoblast- and adipocyte-associated genes in iPSC during their differentiation; however, short-term H2 O2 -induced oxidative stress did not affect the protein expression of the pluripotency markers, octamer-binding transcription factor 4 and sex-determining region Y-box 2. The present results suggest that iPSC are sensitive to H2 O2 toxicity, and inhibition of oxidative stress might be a strategy for improving their functions.