Sample records for sense measuring application

  1. Applications for fiber optic sensing in the upstream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Baldwin, Chris S.

    2015-05-01

    Fiber optic sensing has been used in an increasing number of applications in the upstream oil and gas industry over the past 20 years. In some cases, fiber optic sensing is providing measurements where traditional measurement technologies could not. This paper will provide a general overview of these applications and describe how the use of fiber optic sensing is enabling these applications. Technologies such as Bragg gratings, distributed temperature and acoustic sensing, interferometric sensing, and Brillouin scattering will be discussed. Applications for optic sensing include a range of possibilities from a single pressure measurement point in the wellbore to multizone pressure and flow monitoring. Some applications make use of fully distributed measurements including thermal profiling of the well. Outside of the wellbore, fiber optic sensors are used in applications for flowline and pipeline monitoring and for riser integrity monitoring. Applications to be described in this paper include in-flow profiling, well integrity, production monitoring, and steam chamber growth. These applications will cover well types such as injectors, producers, hydraulic fracturing, and thermal recovery. Many of these applications use the measurements provided by fiber optic sensing to improve enhanced oil recovery operations. The growing use of fiber optic sensors is providing improved measurement capabilities leading to the generation of actionable data for enhanced production optimization. This not only increases the recovered amount of production fluids but can also enhance wellbore integrity and safety.

  2. pH measurements of FET-based (bio)chemical sensors using portable measurement system.

    PubMed

    Voitsekhivska, T; Zorgiebel, F; Suthau, E; Wolter, K-J; Bock, K; Cuniberti, G

    2015-01-01

    In this study we demonstrate the sensing capabilities of a portable multiplex measurement system for FET-based (bio)chemical sensors with an integrated microfluidic interface. We therefore conducted pH measurements with Silicon Nanoribbon FET-based Sensors using different measurement procedures that are suitable for various applications. We have shown multiplexed measurements in aqueous medium for three different modes that are mutually specialized in fast data acquisition (constant drain current), calibration-less sensing (constant gate voltage) and in providing full information content (sweeping mode). Our system therefore allows surface charge sensing for a wide range of applications and is easily adaptable for multiplexed sensing with novel FET-based (bio)chemical sensors.

  3. Six-Port Based Interferometry for Precise Radar and Sensing Applications.

    PubMed

    Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan

    2016-09-22

    Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology.

  4. Six-Port Based Interferometry for Precise Radar and Sensing Applications

    PubMed Central

    Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan

    2016-01-01

    Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology. PMID:27669246

  5. Multifuctional integrated sensors (MFISES).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homeijer, Brian D.; Roozeboom, Clifton

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and themore » real world applications of the sensors systems.« less

  6. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    PubMed Central

    2017-01-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications. PMID:29104259

  7. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications.

    PubMed

    Miah, Khalid; Potter, David K

    2017-11-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  8. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  9. New developments in satellite oceanography and current measurements

    NASA Technical Reports Server (NTRS)

    Huang, N. E.

    1979-01-01

    Principal satellite remote sensing techniques and instruments are described and attention is given to the application of such techniques to ocean current measurement. The use of radiometers, satellite tracking drifters, and altimeters for current measurement is examined. Consideration is also given to other applications of satellite remote sensing in physical oceanography, including measurements of surface wind stress, sea state, tides, ice, sea surface temperature, salinity, ocean color, and oceanic leveling.

  10. REVIEW OF METHODS FOR REMOTE SENSING OF ATMOSPHERIC EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    The report reviews the commercially available and developing technologies for the application of remote sensing to the measurement of source emissions. The term 'remote sensing technology', as applied in the report, means the detection or concentration measurement of trace atmosp...

  11. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives

    NASA Astrophysics Data System (ADS)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall

    2017-06-01

    Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real-time utilization of self-sensing materials in structural health monitoring.

  12. Short-term effects of kinesio tape on joint position sense, isokinetic measurements, and clinical parameters in patellofemoral pain syndrome

    PubMed Central

    Kurt, Emine Eda; Büyükturan, Öznur; Erdem, Hatice Rana; Tuncay, Figen; Sezgin, Hicabi

    2016-01-01

    [Purpose] To evaluate the short-term effects of kinesio tape on joint position sense, isokinetic measurements, kinesiophobia, symptoms, and functional limitations in patients with patellofemoral pain syndrome. [Subjects and Methods] A total of 90 patients (112 knees) with patellofemoral pain syndrome were randomized into a kinesio tape group (n=45) or placebo kinesio tape group (n=45). Baseline isokinetic quadriceps muscle tests and measurements of joint position sense were performed in both groups. Pain was measured with a Visual Analog Scale, kinesiophobia with the Tampa kinesiophobia scale, and symptoms and functional limitations with the Kujala pain scale. Measurements were repeated 2 days after kinesio tape application. [Results] No differences were found between baseline isokinetic muscle measurements and those taken 2 days after application. However, significant improvements were observed in the kinesio tape group, with regard to joint position sense, pain, kinesiophobia, symptoms, and functional limitations after treatment. Examination of the differences between pre- and post-treatment values in both groups revealed that the kinesio tape group demonstrated greater improvements compared to the placebo kinesio tape group. [Conclusion] Although short-term kinesio tape application did not increase hamstring muscle strength, it may have improved joint position sense, pain, kinesiophobia, symptoms, and daily limitations. PMID:27512259

  13. REMOTE SENSING IN OCEANOGRAPHY.

    DTIC Science & Technology

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  14. Measuring and modeling of radiofrequency dielectric properties of chicken breast meat

    USDA-ARS?s Scientific Manuscript database

    Dielectric properties of chicken breast meat are important for both dielectric heating and quality sensing applications. In heating applications they allow optimization of energy transfer and uniformity of heating. In sensing applications, they can be used to predict quality attributes of the chicke...

  15. Unmanned aircraft missions for rangeland remote sensing applications in the US National Airspace

    USDA-ARS?s Scientific Manuscript database

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  16. Rangeland remote sensing applications with unmanned aerial systems (UAS) in the national airspace: challenges and experiences

    USDA-ARS?s Scientific Manuscript database

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  17. Feasibility of remote sensing for detecting thermal pollution. Part 1: Feasibility study. Part 2: Implementation plan. [coastal ecology

    NASA Technical Reports Server (NTRS)

    Veziroglu, T. N.; Lee, S. S.

    1973-01-01

    A feasibility study for the development of a three-dimensional generalized, predictive, analytical model involving remote sensing, in-situ measurements, and an active system to remotely measure turbidity is presented. An implementation plan for the development of the three-dimensional model and for the application of remote sensing of temperature and turbidity measurements is outlined.

  18. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications.

    PubMed

    Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun

    2010-12-29

    In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors' architecture on the basis of the type of electric measurement or imaging functionalities.

  19. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of landscape ecological processes.

  20. Thermal remote sensing: theory, sensors, and applications

    USDA-ARS?s Scientific Manuscript database

    Applications of thermal infrared remote sensing for Earth science research are both varied and wide in scope. They range from understanding thermal energy responses that drive land-atmosphere energy exchanges in the hydrologic cycle, to measurement of dielectric surface properties for snow, ice, an...

  1. Cryotherapy impairs knee joint position sense.

    PubMed

    Oliveira, R; Ribeiro, F; Oliveira, J

    2010-03-01

    The effects of cryotherapy on joint position sense are not clearly established; however it is paramount to understand its impact on peripheral feedback to ascertain the safety of using ice therapy before resuming exercise on sports or rehabilitation settings. Thus, the aim of the present study was to determine the effects of cryotherapy, when applied over the quadriceps and over the knee joint, on knee position sense. This within-subjects repeated-measures study encompassed fifteen subjects. Knee position sense was measured by open kinetic chain technique and active positioning at baseline and after cryotherapy application. Knee angles were determined by computer analysis of the videotape images. Twenty-minute ice bag application was applied randomly, in two sessions 48 h apart, over the quadriceps and the knee joint. The main effect for cryotherapy application was significant (F (1.14)=7.7, p=0.015) indicating an increase in both absolute and relative angular errors after the application. There was no significant main effect for the location of cryotherapy application, indicating no differences between the application over the quadriceps and the knee joint. In conclusion, cryotherapy impairs knee joint position sense in normal knees. This deleterious effect is similar when cryotherapy is applied over the quadriceps or the knee joint. Georg Thieme Verlag KG Stuttgart.New York.

  2. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermannsson, Pétur G.; Vannahme, Christoph; Smith, Cameron L. C.

    2015-08-10

    Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can perform measurements at arbitrary number of wavelengths, and requires only amore » minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications.« less

  3. Remote sensing of wildland resources: A state-of-the-art review

    Treesearch

    Robert C. Aldrich

    1979-01-01

    A review, with literature citations, of current remote sensing technology, applications, and costs for wildland resource management, including collection, interpretation, and processing of data gathered through photographic and nonphotographic techniques for classification and mapping, interpretive information for specific applications, measurement of resource...

  4. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications

    PubMed Central

    Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun

    2010-01-01

    In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors’ architecture on the basis of the type of electric measurement or imaging functionalities. PMID:28879978

  5. Polymer planar waveguide Bragg gratings: fabrication, characterization, and sensing applications

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Hessler, S.; Pauer, H.; Girschikofsky, M.; Roth, G. L.; Adelmann, B.; Woern, H.; Schmauss, B.; Hellmann, R.

    2017-02-01

    In this contribution, we give a comprehensive overview of the fabrication, characterization, and application of integrated planar waveguide Bragg gratings (PPBGs) in cyclo-olefin copolymers (COC). Starting with the measurement of the refractive index depth profile of integrated UV-written structures in COC by phase shifting Mach-Zehnder- Interferometry, we analyze the light propagation using numerical simulations. Furthermore, we show the rapid fabrication of humidity insensitive polymer waveguide Bragg gratings in cyclo-olefin copolymers and discuss the influence of the UV-dosage onto the spectral characteristics and the transmission behavior of the waveguide. Based on these measurements we exemplify that our Bragg gratings exhibit a reflectivity of over 99 % and are highly suitable for sensing applications. With regard to a negligible affinity to absorb water and in conjunction with high temperature stability these polymer devices are ideal for mechanical deformation sensing. Since planar structures are not limited to tensile but can also be applied for measuring compressive strain, we manufacture different functional devices and corroborate their applicability as optical sensors. Exemplarily, we highlight a temperature referenced PPBG sensor written into a femtosecond-laser cut tensile test geometry for tensile and compressive strain sensing. Furthermore, a flexible polymer planar shape sensor is presented.

  6. Strain sensing technology for high temperature applications

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan

    1993-01-01

    This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.

  7. Role of remote sensing in documenting living resources

    NASA Technical Reports Server (NTRS)

    Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.

    1978-01-01

    Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.

  8. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    PubMed Central

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  9. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    PubMed

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  10. A coaxial cable Fabry-Perot interferometer for sensing applications.

    PubMed

    Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming

    2013-11-07

    This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed.

  11. Recent Developments Of Optical Fiber Sensors For Automotive Use

    NASA Astrophysics Data System (ADS)

    Sasayama, Takao; Oho, Shigeru; Kuroiwa, Hiroshi; Suzuki, Seikoo

    1987-12-01

    Optical fiber sensing technologies are expected to apply for many future electronic control systems in automobiles, because of their original outstanding features, such as high noise immunity, high heat resistance, and flexible light propagation paths which can be applicable to measure the movements and directions of the mobiles. In this paper, two typical applications of fiber sensing technologies in automobiles have been described in detail. The combustion flame detector is one of the typical applications of a fiber spectroscopic technology which utilizes the feature of high noise and heat resistibility and remote sensibility. Measurements of engine combustion conditions, such as the detonation, the combustion initiation, and the air-fuel ratio, have been demonstrated in an experimental fiber sensing method. Fiber interferometers, such as a fiber gyroscope, have a lot of possibilities in future mobile applications because they are expandable to many kinds of measurements for movements and physical variables. An optical fiber gyroscope utilizing the single polarized optical fiber and optical devices has been developed. Quite an accurate measurement of vehicle position was displayed on a prototype navigation system which installed the fiber gyroscope as a rotational speed sensor.

  12. Principles of thermal remote sensing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The remote sensing of temperature is performed by sensing radiation emitted from solids, liquids, and gases in the thermal infrared region of the spectrum, in which thermal emission is dominant over reflected solar energy. For Earth resources applications, thermal sensing of solids and liquids is performed in two ""windows'' of the atmosphere where atmospheric absorption and emission are at a minimum. Temperature measurement, intrinsic thermal properties, factors in interpreting thermal data, the use of thermal inertia, and the measurements obtained by the heat capacity mapping radiometer are discussed.

  13. Quantitative Infrared Spectroscopy in Challenging Environments: Applications to Passive Remote Sensing and Process Monitoring

    DTIC Science & Technology

    2012-12-01

    IR remote sensing o ers a measurement method to detect gaseous species in the outdoor environment. Two major obstacles limit the application of this... method in quantitative analysis : (1) the e ect of both temperature and concentration on the measured spectral intensities and (2) the di culty and...crucial. In this research, particle swarm optimization, a population- based optimization method was applied. Digital ltering and wavelet processing methods

  14. Utilising the Intel RealSense Camera for Measuring Health Outcomes in Clinical Research.

    PubMed

    Siena, Francesco Luke; Byrom, Bill; Watts, Paul; Breedon, Philip

    2018-02-05

    Applications utilising 3D Camera technologies for the measurement of health outcomes in the health and wellness sector continues to expand. The Intel® RealSense™ is one of the leading 3D depth sensing cameras currently available on the market and aligns itself for use in many applications, including robotics, automation, and medical systems. One of the most prominent areas is the production of interactive solutions for rehabilitation which includes gait analysis and facial tracking. Advancements in depth camera technology has resulted in a noticeable increase in the integration of these technologies into portable platforms, suggesting significant future potential for pervasive in-clinic and field based health assessment solutions. This paper reviews the Intel RealSense technology's technical capabilities and discusses its application to clinical research and includes examples where the Intel RealSense camera range has been used for the measurement of health outcomes. This review supports the use of the technology to develop robust, objective movement and mobility-based endpoints to enable accurate tracking of the effects of treatment interventions in clinical trials.

  15. An inexpensive open-source ultrasonic sensing system for monitoring fluid levels

    USDA-ARS?s Scientific Manuscript database

    Fluid levels are measured in a variety of agricultural applications, and are often measured manually, which can be time-consuming and labor-intensive. Rapid advances in electronic technologies have made a variety of inexpensive sensing, monitoring, and control capabilities available. A monitoring ...

  16. Applications of ultrasensitive magnetic measurement technologies (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Hirschkoff, Eugene C.

    1993-05-01

    The development of reliable, easy-to-use magnetic measurement systems with significantly enhanced levels of sensitivity has opened up a number of broad new areas of application for magnetic sensing. Magnetometers based on optical pumping offer sensitivities at the picotesla level, while those that utilize superconducting quantum interference devices can operate at the femtotesla level. These systems are finding applications in areas as diverse as geophysical exploration, communications, and medical diagnostics. This review briefly surveys the capabilities and application areas for a number of magnetic sensing technologies. The emphasis then focuses on the application of the most sensitive of these to the field of medical diagnostics and functional imaging. Protocols for specific applications to noninvasive presurgical planning and to the noninvasive assay of cortical dysfunction in diseases ranging from epilepsy to migraine and schizophrenia will be described in detail. Data will be presented reporting independent validation of these techniques in ten patients who subsequently underwent surgery. Routine and reliable utilization of this ultrasensitive magnetic sensing technology in the clinic is now feasible and practical.

  17. [Ways to improve measurement accuracy of blood glucose sensing by mid-infrared spectroscopy].

    PubMed

    Wang, Yan; Li, Ning; Xu, Kexin

    2006-06-01

    Mid-infrared (MIR) spectroscopy is applicable to blood glucose sensing without using any reagent, however, due to a result of inadequate accuracy, till now this method has not been used in clinical detection. The principle and key technologies of blood glucose sensing by MIR spectroscopy are presented in this paper. Along with our experimental results, the paper analyzes ways to enhance measurement accuracy and prediction accuracy by the following four methods: selection of optimized spectral region; application of spectra data processing method; elimination of the interference with other components in the blood, and promotion in system hardware. According to these four improving methods, we designed four experiments, i.e., strict determination of the region where glucose concentration changes most sensitively in MIR, application of genetic algorithm for wavelength selection, normalization of spectra for the purpose of enhancing measuring reproduction, and utilization of CO2 laser as light source. The results show that the measurement accuracy of blood glucose concentration is enhanced almost to a clinical detection level.

  18. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    NASA Astrophysics Data System (ADS)

    Belwanshi, Vinod; Topkar, Anita

    2016-05-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  19. Dynamic sensing model for accurate delectability of environmental phenomena using event wireless sensor network

    NASA Astrophysics Data System (ADS)

    Missif, Lial Raja; Kadhum, Mohammad M.

    2017-09-01

    Wireless Sensor Network (WSN) has been widely used for monitoring where sensors are deployed to operate independently to sense abnormal phenomena. Most of the proposed environmental monitoring systems are designed based on a predetermined sensing range which does not reflect the sensor reliability, event characteristics, and the environment conditions. Measuring of the capability of a sensor node to accurately detect an event within a sensing field is of great important for monitoring applications. This paper presents an efficient mechanism for even detection based on probabilistic sensing model. Different models have been presented theoretically in this paper to examine their adaptability and applicability to the real environment applications. The numerical results of the experimental evaluation have showed that the probabilistic sensing model provides accurate observation and delectability of an event, and it can be utilized for different environment scenarios.

  20. A Coaxial Cable Fabry-Perot Interferometer for Sensing Applications

    PubMed Central

    Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming

    2013-01-01

    This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed. PMID:24212121

  1. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera

    PubMed Central

    Leeuw, Thomas; Boss, Emmanuel

    2018-01-01

    HydroColor is a mobile application that utilizes a smartphone’s camera and auxiliary sensors to measure the remote sensing reflectance of natural water bodies. HydroColor uses the smartphone’s digital camera as a three-band radiometer. Users are directed by the application to collect a series of three images. These images are used to calculate the remote sensing reflectance in the red, green, and blue broad wavelength bands. As with satellite measurements, the reflectance can be inverted to estimate the concentration of absorbing and scattering substances in the water, which are predominately composed of suspended sediment, chlorophyll, and dissolved organic matter. This publication describes the measurement method and investigates the precision of HydroColor’s reflectance and turbidity estimates compared to commercial instruments. It is shown that HydroColor can measure the remote sensing reflectance to within 26% of a precision radiometer and turbidity within 24% of a portable turbidimeter. HydroColor distinguishes itself from other water quality camera methods in that its operation is based on radiometric measurements instead of image color. HydroColor is one of the few mobile applications to use a smartphone as a completely objective sensor, as opposed to subjective user observations or color matching using the human eye. This makes HydroColor a powerful tool for crowdsourcing of aquatic optical data. PMID:29337917

  2. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera.

    PubMed

    Leeuw, Thomas; Boss, Emmanuel

    2018-01-16

    HydroColor is a mobile application that utilizes a smartphone's camera and auxiliary sensors to measure the remote sensing reflectance of natural water bodies. HydroColor uses the smartphone's digital camera as a three-band radiometer. Users are directed by the application to collect a series of three images. These images are used to calculate the remote sensing reflectance in the red, green, and blue broad wavelength bands. As with satellite measurements, the reflectance can be inverted to estimate the concentration of absorbing and scattering substances in the water, which are predominately composed of suspended sediment, chlorophyll, and dissolved organic matter. This publication describes the measurement method and investigates the precision of HydroColor's reflectance and turbidity estimates compared to commercial instruments. It is shown that HydroColor can measure the remote sensing reflectance to within 26% of a precision radiometer and turbidity within 24% of a portable turbidimeter. HydroColor distinguishes itself from other water quality camera methods in that its operation is based on radiometric measurements instead of image color. HydroColor is one of the few mobile applications to use a smartphone as a completely objective sensor, as opposed to subjective user observations or color matching using the human eye. This makes HydroColor a powerful tool for crowdsourcing of aquatic optical data.

  3. Remote Sensing of Water Quality in Multipurpose Reservoirs: Case Study Applications in Indonesia, Mexico, and Uruguay

    NASA Astrophysics Data System (ADS)

    Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.

    2017-12-01

    This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops for water resources students, applied scientists, practitioners, reservoir and water quality managers, and other interested stakeholders.

  4. Recent advances and progress in photonic crystal-based gas sensors

    NASA Astrophysics Data System (ADS)

    Goyal, Amit Kumar; Sankar Dutta, Hemant; Pal, Suchandan

    2017-05-01

    This review covers the recent progress made in the photonic crystal-based sensing technology for gas sensing applications. Photonic crystal-based sensing has tremendous potential because of its obvious advantages in sensitivity, stability, miniaturisation, portability, online use, remote monitoring etc. Several 1D and 2D photonic crystal structures including photonic crystal waveguides and cavities for gas sensing applications have been discussed in this review. For each kind of photonic crystal structure, the novelty, measurement principle and their respective gas sensing properties are presented. The reported works and the corresponding results predict the possibility to realize a commercially viable miniaturized and highly sensitive photonic crystal-based optical gas sensor having flexibility in the structure of ultra-compact size with excellent sensing properties.

  5. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    PubMed Central

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J.; Ramírez-Miquet, Evelio E.; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-01-01

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications. PMID:27187406

  6. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications.

    PubMed

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J; Ramírez-Miquet, Evelio E; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-05-13

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  7. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  8. Remote Sensing of Rock Type in the Visible and Near-Infrared,

    DTIC Science & Technology

    Visible and near-infrared spectra of minerals and rocks have been measured and evaluated in terms of remote sensing applications. The authors...difficult or impossible to use in a generalized remote sensing effort in which the composition of all rocks is to be mapped. Instead, this spectral

  9. Ground penetrating radar for underground sensing in agriculture: a review

    NASA Astrophysics Data System (ADS)

    Liu, Xiuwei; Dong, Xuejun; Leskovar, Daniel I.

    2016-10-01

    Belowground properties strongly affect agricultural productivity. Traditional methods for quantifying belowground properties are destructive, labor-intensive and pointbased. Ground penetrating radar can provide non-invasive, areal, and repeatable underground measurements. This article reviews the application of ground penetrating radar for soil and root measurements and discusses potential approaches to overcome challenges facing ground penetrating radar-based sensing in agriculture, especially for soil physical characteristics and crop root measurements. Though advanced data-analysis has been developed for ground penetrating radar-based sensing of soil moisture and soil clay content in civil engineering and geosciences, it has not been used widely in agricultural research. Also, past studies using ground penetrating radar in root research have been focused mainly on coarse root measurement. Currently, it is difficult to measure individual crop roots directly using ground penetrating radar, but it is possible to sense root cohorts within a soil volume grid as a functional constituent modifying bulk soil dielectric permittivity. Alternatively, ground penetrating radarbased sensing of soil water content, soil nutrition and texture can be utilized to inversely estimate root development by coupling soil water flow modeling with the seasonality of plant root growth patterns. Further benefits of ground penetrating radar applications in agriculture rely on the knowledge, discovery, and integration among differing disciplines adapted to research in agricultural management.

  10. Remote sensing as a research tool. [sea ice surveillance from aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Zwally, H. J.

    1986-01-01

    The application of aircraft and spacecraft remote sensing techniques to sea ice surveillance is evaluated. The effects of ice in the air-sea-ice system are examined. The measurement principles and characteristics of remote sensing methods for aircraft and spacecraft surveillance of sea ice are described. Consideration is given to ambient visible light, IR, passive microwave, active microwave, and laser altimeter and sonar systems. The applications of these systems to sea ice surveillance are discussed and examples are provided. Particular attention is placed on the use of microwave data and the relation between ice thickness and sea ice interactions. It is noted that spacecraft and aircraft sensing techniques can successfully measure snow cover; ice thickness; ice type; ice concentration; ice velocity field; ocean temperature; surface wind vector field; and air, snow, and ice surface temperatures.

  11. Historical development of grain moisture measurement and other food quality sensing through electrical properties.

    USDA-ARS?s Scientific Manuscript database

    A review of the use of electrical properties of agricultural products for sensing moisture content and other qualities shows that their use for rapid measurements of the moisture content in grain and seed has been the most successful application. Discovery of useful correlations between the moistur...

  12. Validation plays the role of a "bridge" in connecting remote sensing research and applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Deng, Ying; Fan, Yida

    2018-07-01

    Remote sensing products contribute to improving earth observations over space and time. Uncertainties exist in products of different levels; thus, validation of these products before and during their applications is critical. This study discusses the meaning of validation in depth and proposes a new definition of reliability for use with such products. In this context, validation should include three aspects: a description of the relevant uncertainties, quantitative measurement results and a qualitative judgment that considers the needs of users. A literature overview is then presented evidencing improvements in the concepts associated with validation. It shows that the root mean squared error (RMSE) is widely used to express accuracy; increasing numbers of remote sensing products have been validated; research institutes contribute most validation efforts; and sufficient validation studies encourage the application of remote sensing products. Validation plays a connecting role in the distribution and application of remote sensing products. Validation connects simple remote sensing subjects with other disciplines, and it connects primary research with practical applications. Based on the above findings, it is suggested that validation efforts that include wider cooperation among research institutes and full consideration of the needs of users should be promoted.

  13. Cryotherapy does not impair shoulder joint position sense.

    PubMed

    Dover, Geoffrey; Powers, Michael E

    2004-08-01

    To determine the effects of a cryotherapy treatment on shoulder proprioception. Crossover design with repeated measures. University athletic training and sports medicine research laboratory. Thirty healthy subjects (15 women, 15 men). A 30-minute cryotherapy treatment. Joint position sense was measured in the dominant shoulder by using an inclinometer before and after receiving 30 minutes of either no ice or a 1-kg ice bag application. Skin temperature was measured below the tip of the acromion process and recorded every 5 minutes for the entire 30 minutes and immediately after testing. Three different types of error scores were calculated for data analyses and used to determine proprioception. Separate analyses of absolute, constant, and variable error failed to identify changes in shoulder joint proprioception as a function of the cryotherapy application. Application of an ice bag to the shoulder does not impair joint position sense. The control of proprioception at the shoulder may be more complex than at other joints in the body. Clinical implications may involve modifying rehabilitation considerations when managing shoulder injuries.

  14. Design and Test of a Soft Plantar Force Measurement System for Gait Detection

    PubMed Central

    Zhang, Xuefeng; Zhao, Yulong; Duan, Zhengyong; Liu, Yan

    2012-01-01

    This work describes a plantar force measurement system. The MEMS pressure sensor, as the key sensing element, is designed, fabricated and embedded into a flexible silicon oil-filled bladder made of silicon rubber to constitute a single sensing unit. A conditioning circuit is designed for signal processing and data acquisition. The characteristics of the plantar force sensing unit are investigated by both static and dynamic tests. A comparison of characteristics between the proposed plantar force sensing unit and a commercial flexible force sensor is presented. A practical experiment of plantar force measurement has been carried out to validate the system. The results demonstrate that the proposed measurement system has a potential for success in the application of plantar force measurement during normal gait. PMID:23208558

  15. Resilience among Men Farmers: The Protective Roles of Social Support and Sense of Belonging in the Depression-Suicidal Ideation Relation

    ERIC Educational Resources Information Center

    McLaren, Suzanne; Challis, Chantal

    2009-01-01

    This study investigated the applicability of 3 models of resiliency for the prediction of suicidal ideation from depression (the risk factor) and social support and sense of belonging (the protective factors). A sample of 99 Australian men farmers completed measures of depression, suicidal ideas, social support, and sense of belonging. Sense of…

  16. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review

    PubMed Central

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-01-01

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM technologies in optical sensing industry. PMID:27589754

  17. Advanced Spatial-Division Multiplexed Measurement Systems Propositions-From Telecommunication to Sensing Applications: A Review.

    PubMed

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-08-30

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM technologies in optical sensing industry.

  18. Femtosecond laser-ablated Fresnel zone plate fiber probe and sensing applications

    NASA Astrophysics Data System (ADS)

    Tan, Xiaoling; Geng, Youfu; Chen, Yan; Li, Shiguo; Wang, Xinzhong

    2018-02-01

    We investigate the Fresnel zone plate (FZP) inscribed on multimode fiber endface using femtosecond laser ablation and its application in sensing. The mode transmission through fiber tips with FZP is investigated both by the beam propagation method theoretically and by measuring the beam images with a charge-coupled device camera experimentally, which show a good agreement. Such devices are tested for surface-enhanced Raman scattering (SERS) using the aqueous solution of rhodamine 6G under a Raman spectroscopy. The experimental results demonstrate that the SERS signal is enhanced benefiting from focal ability of FZP, which is a promising method for the particular biochemical spectra sensing applications.

  19. Fiber optic temperature sensor gives rise to thermal analysis in complex product design

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew Y. S.; Pau, Michael C. Y.

    1996-09-01

    A computer-adapted fiber-optic temperature sensing system has been developed which aims to study both the theoretical aspect of fiber temperature sensing and the experimental aspect of such system. The system consists of a laser source, a fiber sensing element, an electronic fringes counting device, and an on-line personal computer. The temperature measurement is achieved by the conventional double beam fringe counting method with optical path length changes in the sensing beam due to the fiber expansion. The system can automatically measure the temperature changes in a sensing fiber arm which provides an insight of the heat generation and dissipation of the measured system. Unlike the conventional measuring devices such as thermocouples or solid state temperature sensors, the fiber sensor can easily be wrapped and shaped to fit the surface of the measuring object or even inside a molded plastic parts such as a computer case, which gives much more flexibility and applicability to the analysis of heat generation and dissipation in the operation of these machine parts. The reference beam is being set up on a temperature controlled optical bench to facilitate high sensitivity and high temperature resolution. The measuring beam has a motorized beam selection device for multiple fiber beam measurement. The project has been demonstrated in the laboratory and the system sensitivity and resolution are found to be as high as 0.01 degree Celsius. It is expected the system will find its application in many design studies which require thermal budgeting.

  20. Reconstruction of atmospheric pollutant concentrations from remote sensing data - An application of distributed parameter observer theory

    NASA Technical Reports Server (NTRS)

    Koda, M.; Seinfeld, J. H.

    1982-01-01

    The reconstruction of a concentration distribution from spatially averaged and noise-corrupted data is a central problem in processing atmospheric remote sensing data. Distributed parameter observer theory is used to develop reconstructibility conditions for distributed parameter systems having measurements typical of those in remote sensing. The relation of the reconstructibility condition to the stability of the distributed parameter observer is demonstrated. The theory is applied to a variety of remote sensing situations, and it is found that those in which concentrations are measured as a function of altitude satisfy the conditions of distributed state reconstructibility.

  1. Yb:YAG Lasers for Space Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ewing, J.J.; Fan, T. Y.

    1998-01-01

    Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.

  2. Measurement Equivalence of Teachers' Sense of Efficacy Scale Using Latent Growth Methods

    ERIC Educational Resources Information Center

    Basokçu, T. Oguz; Ögretmen, T.

    2016-01-01

    This study is based on the application of latent growth modeling, which is one of structural equation models on real data. Teachers' Sense of Efficacy Scale (TSES), which was previously adapted into Turkish was administered to 200 preservice teachers at different time intervals for three times and study data was collected. Measurement equivalence…

  3. The design of optimum remote-sensing instruments

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Flower, D. A.

    1983-01-01

    Remote-sensing instruments allow values for certain properties of a target to be retrieved from measurements of radiation emitted, reflected or transmitted by the target. The retrieval accuracy is affected by random variations in the many target properties which affect the measurements. A method is described, by which statistical properties of the target and theoretical models of its electromagnetic behavior can be used to choose values for the instrument parameters which maximize the retrieval accuracy. The technique is applicable to a wide range of remote-sensing instruments.

  4. Diffraction grating-based sensing optofluidic device for measuring the refractive index of liquids.

    PubMed

    Calixto, Sergio; Bruce, Neil C; Rosete-Aguilar, Martha

    2016-01-11

    We describe a simple and versatile optical sensing device for measuring refractive index of liquids. The sensor consists of a sinusoidal relief grating in a glass cell. Device calibration is done by pouring in the cell different liquids of known refractive indices. Each time a liquid is poured first order intensity is measured. The fabrication process and testing of the prototype device is described. An application in the measurement of temperature is also presented.

  5. Self-Evaluation of PANDA-FBG Based Sensing System for Dynamic Distributed Strain and Temperature Measurement.

    PubMed

    Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi

    2017-10-12

    A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG) distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.

  6. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    Fiber Optic Wing Shape Sensing on Ikhana involves five major areas 1) Algorithm development: Local-strain-to-displacement algorithms have been developed for complex wing shapes for real-time implementation (NASA TP-2007-214612, patent application submitted) 2) FBG system development: Dryden advancements to fiber optic sensing technology have increased data sampling rates to levels suitable for monitoring structures in flight (patent application submitted) 3) Instrumentation: 2880 FBG strain sensors have been successfully installed on the Ikhana wings 4) Ground Testing: Fiber optic wing shape sensing methods for high aspect ratio UAVs have been validated through extensive ground testing in Dryden s Flight Loads Laboratory 5) Flight Testing: Real time fiber Bragg strain measurements successfully acquired and validated in flight (4/28/2008) Real-time fiber optic wing shape sensing successfully demonstrated in flight

  7. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review

    PubMed Central

    Islam, Md. Rajibul; Ali, Muhammad Mahmood; Lai, Man-Hong; Lim, Kok-Sing; Ahmad, Harith

    2014-01-01

    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed. PMID:24763250

  8. Validation of the Chinese Version of the Sense of Self (SOS) Scale

    ERIC Educational Resources Information Center

    King, Ronnel B.; Ganotice, Fraide A., Jr.; Watkins, David A.

    2012-01-01

    This study explored the cross-cultural applicability of the Sense of Self (SOS) Scale in the Hong Kong Chinese cultural context. The SOS Scale is a 26-item questionnaire designed to measure students' sense of purpose, self-reliance, and self-concept in school. Six hundred ninety-seven Hong Kong Chinese high school students participated in the…

  9. Design and Performance of a Multiwavelength Airborne Polarimetric Lidar for Vegetation Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tan, Songxin; Narayanan, Ram M.

    2004-04-01

    The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.

  10. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges.

    PubMed

    Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A

    2014-08-01

    Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Survey of university programs in remote sensing funded under grants from the NASA University-Space Applications program

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    NASA's Office of Space and Terrestrial Applications (OSTA) is currently assessing approaches to transferring NASA technology to both the public and private sectors. As part of this assessment, NASA is evaluating the effectiveness of an ongoing program in remote sensing technology transfer conducted by 20 university contractors/grantees, each supported totally or partially by NASA funds. The University-Space Applications program has as its objective the demonstration of practical benefits from the use of remote sensing technology to a broad spectrum of new users, principally in state and local governments. To evaluate the University-Space Applications program, NASA has a near-term requirement for data on each university effort including total funding, funding sources, length of program, program description, and effectiveness measures.

  12. A preliminary study of the statistical analyses and sampling strategies associated with the integration of remote sensing capabilities into the current agricultural crop forecasting system

    NASA Technical Reports Server (NTRS)

    Sand, F.; Christie, R.

    1975-01-01

    Extending the crop survey application of remote sensing from small experimental regions to state and national levels requires that a sample of agricultural fields be chosen for remote sensing of crop acreage, and that a statistical estimate be formulated with measurable characteristics. The critical requirements for the success of the application are reviewed in this report. The problem of sampling in the presence of cloud cover is discussed. Integration of remotely sensed information about crops into current agricultural crop forecasting systems is treated on the basis of the USDA multiple frame survey concepts, with an assumed addition of a new frame derived from remote sensing. Evolution of a crop forecasting system which utilizes LANDSAT and future remote sensing systems is projected for the 1975-1990 time frame.

  13. Earth Resources. A Continuing Bibliography with Indexes

    DTIC Science & Technology

    1987-11-01

    Airborne microwave Doppler measurements of ocean of Guinea according to ground-based and satellite Coral reef remote sensing applications wave directional...understanding of internal Coral reef remote sensing applications an earth-to-satellite Hadamard transform laser long-path waves in the ocean p 20 A87-32951...classifications of coral reefs , and an are provided and new topographic features that are revealed are autocorrelation technique is being developed to

  14. Contact sensing from force measurements

    NASA Technical Reports Server (NTRS)

    Bicchi, Antonio; Salisbury, J. K.; Brock, David L.

    1993-01-01

    This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.

  15. Dynamic torsional response analysis of mechanoluminescent paint and its application to non-contacting automotive torque transducers

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Kim, Ji-Sik

    2014-01-01

    This paper presents the result of a preliminary experimental study on the dynamic torsional response analysis of mechanoluminescent (ML) paint for potential development as a new type of non-contacting torque transducer. The torsional torque applied to a transmission shaft is measured by sensing the ML intensity emitting from an ML paint coating a transmission shaft. This study provides the fundamental knowledge for the development of new non-contacting torque sensing technology based on the ML intensity detection. The proposed measurement principle appears to offer potential applications in automotive torque measurement systems, even though the loading rate-dependent characteristics of the ML intensity needs to be examined further.

  16. Sensing Random Electromagnetic Fields and Applications

    DTIC Science & Technology

    2015-06-23

    PI: Aristide Dogariu Content: A. Stochastic Electromagnetics for Sensing ……………………………. 2 B. Fluctuation Polarimetry ...field correlations in the two components. 26 B. Fluctuation Polarimetry One of the simplest optical measurements to make is the measurement...imaging polarimetry and correlation techniques, Appl. Opt. 52, 997 (2013) 5. A. Dogariu, S. Sukhov, and J. J. Sáenz, The optically-induced

  17. A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Alyssa Y.; Baruch, Moshe; Ajo-Franklin, Caroline M.

    Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. But, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. We demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new waymore » of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.« less

  18. A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors

    DOE PAGES

    Zhou, Alyssa Y.; Baruch, Moshe; Ajo-Franklin, Caroline M.; ...

    2017-09-15

    Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. But, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. We demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new waymore » of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.« less

  19. Remote temperature distribution sensing using permanent magnets

    DOE PAGES

    Chen, Yi; Guba, Oksana; Brooks, Carlton F.; ...

    2016-10-31

    Remote temperature sensing is essential for applications in enclosed vessels where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely-spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of ninemore » magnets in different configurations over a temperature range of 5 to 60 degrees Celsius and for a sensor-to-magnet distance of up to 35 mm. Furthermore, to show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.« less

  20. Compressed Sensing for Body MRI

    PubMed Central

    Feng, Li; Benkert, Thomas; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo; Chandarana, Hersh

    2016-01-01

    The introduction of compressed sensing for increasing imaging speed in MRI has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than that are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This paper presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and non-linear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the paper discusses current challenges and future opportunities. PMID:27981664

  1. Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook.

    PubMed

    Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Raso, Giovanna; Utzinger, Jürg

    2015-03-17

    Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions. We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised. We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is - in principle - far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from. Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited.

  2. Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications

    NASA Technical Reports Server (NTRS)

    Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.

  3. Progress in distributed fiber optic temperature sensing

    NASA Astrophysics Data System (ADS)

    Hartog, Arthur H.

    2002-02-01

    The paper reviews the adoption of distributed temperature sensing (DTS) technology based on Raman backscatter. With one company alone having installed more than 400 units, the DTS is becoming accepted practice in several applications, notably in energy cable monitoring, specialised fire detection and oil production monitoring. The paper will provide case studies in these applications. In each case the benefit (whether economic or safety) will be addressed, together with key application engineering issues. The latter range from the selection and installation of the fibre sensor, the specific performance requirements of the opto-electronic equipment and the issues of data management. The paper will also address advanced applications of distributed sensing, notably the problem of monitoring very long ranges, which apply in subsea DC energy cables or in subsea oil wells linked to platforms through very long (e.g. 30km flowlines). These applications are creating the need for a new generation of DTS systems able to achieve measurements at up to 40km with very high temperature resolution, without sacrificing spatial resolution. This challenge is likely to drive the development of new concepts in the field of distributed sensing.

  4. A self-sensing active magnetic bearing based on a direct current measurement approach.

    PubMed

    Niemann, Andries C; van Schoor, George; du Rand, Carel P

    2013-09-11

    Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.

  5. Quantum Sensing and Communications Being Developed for Nanotechnology

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Nguyen, Quang-Viet

    2005-01-01

    An interdisciplinary quantum communications and sensing research effort for application in microdevices has been underway at the NASA Glenn Research Center since 2000. Researchers in Glenn's Instrumentation and Controls, Communications Technology, and Propulsion and Turbomachinery Divisions have been working together to study and develop techniques that utilize quantum effects for sensing and communications. The emerging technology provides an innovative way to communicate faster and farther using less power and to sense, measure, and image environmental properties in ways that are not possible with existing technology.

  6. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed.

  7. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the "reconstructability' of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed.

  8. What Is the Sense of Agency and Why Does it Matter?

    PubMed Central

    Moore, James W.

    2016-01-01

    Sense of agency refers to the feeling of control over actions and their consequences. In this article I summarize what we currently know about sense of agency; looking at how it is measured and what theories there are to explain it. I then explore some of the potential applications of this research, something that the sense of agency research field has been slow to identify and implement. This is a pressing concern given the increasing importance of ‘research impact.’ PMID:27621713

  9. Evaluation of a multiple spin- and gradient-echo (SAGE) EPI acquisition with SENSE acceleration: applications for perfusion imaging in and outside the brain.

    PubMed

    Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad

    2014-12-01

    Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate with muscle oxy-hemoglobin saturation. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Photonic crystal sensors: Physics and applications

    NASA Astrophysics Data System (ADS)

    Dinodiya, Sapna; Suthar, B.; Bhargava, A.

    2018-05-01

    Photonic sensors have evolved rapidly in last few decades because of the major requirement of sensing applications in optical communication and biomedical diagnostics. Photonic crystals are of tremendous use in designing photonic sensors. Any physical phenomenon, for instance temperature, pressure, strain, and presence of chemicals and bio molecules that can alter periodicity and refractive index of structure of the photonic crystal, can be sensed by measuring optical properties like spectral pattern of reflected and transmitted power. The physics and applications of various photonic crystal sensors are presented in this article.

  11. Performance and applications of a hypertemporal hyperspectral Fourier-transform infrared spectroradiometer

    NASA Astrophysics Data System (ADS)

    King, Bruce H.; Ellis, Thomas; Old, Tom E.

    2009-05-01

    A fast-scanning, high-resolution FTIR spectroradiometer has been designed and built for use in remote sensing, stand-off detection, and spectral-temporal characterization of fast, energetic infrared events. The instrument design uses a Michelson-type interferometer with a rotary modulator which is capable of continuous measurement of infrared spectra at a rate of 1000 scans per second with 4 cm-1 resolution in the 2 - 25 micron spectral range. Sensitivity, spectral accuracy, and radiometric precision are discussed along with specific design parameters. This instrument can be used for passive sensing as a stand-alone sensor, or for active sensing as a receiver when used in conjunction with a highenergy excitation source such as a laser. Applications include muzzle flash signature measurement, ordnance detonation characterization, missile plume identification, and rocket motor combustion diagnostics.

  12. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space Station. 13. Space lidar II: Using coherent Doppler lidar to estimate river discharge. 14. Poster session: Lidar technology, optics for lidar. Laser for lidar. Middle atmosphere observations. Tropospheric observations (aerosols, clouds). Boundary layer, urban pollution. Differential absorption lidar. Doppler lidar. and Space lidar.

  13. Biogeochemical cycling in terrestrial ecosystems - Modeling, measurement, and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Matson, P. A.; Lawless, J. G.; Aber, J. D.; Vitousek, P. M.

    1985-01-01

    The use of modeling, remote sensing, and measurements to characterize the pathways and to measure the rate of biogeochemical cycling in forest ecosystems is described. The application of the process-level model to predict processes in intact forests and ecosystems response to disturbance is examined. The selection of research areas from contrasting climate regimes and sites having a fertility gradient in that regime is discussed, and the sites studied are listed. The use of remote sensing in determining leaf area index and canopy biochemistry is analyzed. Nitrous oxide emission is investigated by using a gas measurement instrument. Future research projects, which include studying the influence of changes on nutrient cycling in ecosystems and the effect of pollutants on the ecosystems, are discussed.

  14. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions.

    PubMed

    Heng, Sabrina; McDevitt, Christopher A; Kostecki, Roman; Morey, Jacqueline R; Eijkelkamp, Bart A; Ebendorff-Heidepriem, Heike; Monro, Tanya M; Abell, Andrew D

    2016-05-25

    Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn(2+) sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn(2+) in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (μL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.

  15. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics.

    PubMed

    Wei, Liping; Yan, Wenrong; Ho, Derek

    2017-12-04

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.

  16. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics

    PubMed Central

    Yan, Wenrong; Ho, Derek

    2017-01-01

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568

  17. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  18. Synthesis and humidity sensing analysis of ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Okur, Salih; Üzar, Neslihan; Tekgüzel, Nesli; Erol, Ayşe; Çetin Arıkan, M.

    2012-03-01

    ZnS nanowires synthesized by the vapor-liquid-solid (VLS) method and humidity sensing properties of obtained ZnS nanowires were investigated by quartz crystal microbalance (QCM) method and electrical measurements. The synthesized nanowires were exposed to relative humidity (RH) between 22% and 97% under controlled environment. Our experimental results show that ZnS nanowires have a great potential for humidity sensing applications in room temperature operations.

  19. Smartphones for distributed multimode sensing: biological and environmental sensing and analysis

    NASA Astrophysics Data System (ADS)

    Feitshans, Tyler; Williams, Robert

    2013-05-01

    Active and Agile Environmental and Biological sensing are becoming obligatory to generate prompt warnings for the troops and law enforcements conducting missions in hostile environments. The traditional static sensing mesh networks which provide a coarse-grained (far-field) measurement of the environmental conditions like air quality, radiation , CO2, etc … would not serve the dynamic and localized changes in the environment, which requires a fine-grained (near-field) sensing solutions. Further, sensing the biological conditions of (healthy and injured) personnel in a contaminated environment and providing a personalized analysis of the life-threatening conditions in real-time would greatly aid the success of the mission. In this vein, under SATE and YATE programs, the research team at AFRL Tec^Edge Discovery labs had demonstrated the feasibility of developing Smartphone applications , that employ a suite of external environmental and biological sensors, which provide fine-grained and customized sensing in real-time fashion. In its current state, these smartphone applications leverage a custom designed modular standalone embedded platform (with external sensors) that can be integrated seamlessly with Smartphones for sensing and further provides connectivity to a back-end data architecture for archiving, analysis and dissemination of real-time alerts. Additionally, the developed smartphone applications have been successfully tested in the field with varied environmental sensors to sense humidity, CO2/CO, wind, etc…, ; and with varied biological sensors to sense body temperature and pulse with apt real-time analysis

  20. Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications

    NASA Astrophysics Data System (ADS)

    Tosi, Daniele; Schena, Emiliano; Molardi, Carlo; Korganbayev, Sanzhar

    2018-07-01

    One of the current frontier of optical fiber sensors, and a unique asset of this sensing technology is the possibility to use a whole optical fiber, or optical fiber device, as a sensor. This solution allows shifting the whole sensing paradigm, from the measurement of a single physical parameter (such as temperature, strain, vibrations, pressure) to the measurement of a spatial distribution, or profiling, of a physical parameter along the fiber length. In the recent years, several technologies are achieving this task with unprecedentedly narrow spatial resolution, ranging from the sub-millimeter to the centimeter-level. In this work, we review the main fiber optic sensing technologies that achieve a narrow spatial resolution: Fiber Bragg Grating (FBG) dense arrays, chirped FBG (CFBG) sensors, optical frequency domain reflectometry (OFDR) based on either Rayleigh scattering or reflective elements, and microwave photonics (MWP). In the second part of the work, we present the impact of spatially dense fiber optic sensors in biomedical applications, where they find the main impact, presenting the key results obtained in thermo-therapies monitoring, high-resolution diagnostic, catheters monitoring, smart textiles, and other emerging applicative fields.

  1. A rhenium complex doped in a silica molecular sieve for molecular oxygen sensing: Construction and characterization.

    PubMed

    Yang, Xiaozhou; Li, Yanxiao

    2016-01-15

    This paper reported a diamine ligand and its Re(I) complex for potential application in oxygen sensing. The novelty of this diamine ligand localized at its increased conjugation chain which had a typical electron-withdrawing group of 1,3,4-oxadiazole. Electronic distribution of excited electrons and their lifetime were supposed to be increased, favoring oxygen sensing collision. This hypothesis was confirmed by single crystal analysis, theoretical calculation and photophysical measurement. It was found that this Re(I) complex had a long-lived emission peaking at 545 nm, favoring sensing application. By doping this complex into a silica matrix MCM-41, oxygen sensing performance and mechanism of the resulting composites were discussed in detail. Non-linear Stern-Volmer working curves were observed with maximum sensitivity of 5.54 and short response time of ~6 s. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.

    PubMed

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia

    2015-12-01

    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.

  3. Research on distributed optical fiber sensing data processing method based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing

    2018-01-01

    The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.

  4. Distribution of chlorophyll and harmful algal blooms (HABs): A review on space based studies in the coastal environments of Chinese marginal seas

    NASA Astrophysics Data System (ADS)

    Wei, Guifeng; Tang, Danling; Wang, Sufen

    Monitoring of spatial and temporal distribution of chlorophyll (Chl-a) concentrations in the aquatic milieu is always challenging and often interesting. However, the recent advancements in satellite digital data play a significant role in providing outstanding results for the marine environmental investigations. The present paper is aimed to review ‘remote sensing research in Chinese seas’ within the period of 24 years from 1978 to 2002. Owing to generalized distributional pattern, the Chl-a concentrations are recognized high towards northern Chinese seas than the southern. Moreover, the coastal waters, estuaries, and upwelling zones always exhibit relatively high Chl-a concentrations compared with offshore waters. On the basis of marine Chl-a estimates obtained from satellite and other field measured environmental parameters, we have further discussed on the applications of satellite remote sensing in the fields of harmful algal blooms (HABs), primary production and physical oceanographic currents of the regional seas. Concerned with studies of HABs, satellite remote sensing proved more advantageous than any other conventional methods for large-scale applications. Probably, it may be the only source of authentic information responsible for the evaluation of new research methodologies to detect HABs. At present, studies using remote sensing methods are mostly confined to observe algal bloom occurrences, hence, it is essential to coordinate the mechanism of marine ecological and oceanographic dynamic processes of HABs using satellite remote sensing data with in situ measurements of marine environmental parameters. The satellite remote sensing on marine environment and HABs is believed to have a great improvement with popular application of technology.

  5. Earth Survey Applications Division. [a bibliography

    NASA Technical Reports Server (NTRS)

    Carpenter, L. (Editor)

    1981-01-01

    Accomplishments of research and data analysis conducted to study physical parameters and processes inside the Earth and on the Earth's surface, to define techniques and systems for remotely sensing the processes and measuring the parameters of scientific and applications interest, and the transfer of promising operational applications techniques to the user community of Earth resources monitors, managers, and decision makers are described. Research areas covered include: geobotany, magnetic field modeling, crustal studies, crustal dynamics, sea surface topography, land resources, remote sensing of vegetation and soils, and hydrological sciences. Major accomplishments include: production of global maps of magnetic anomalies using Magsat data; computation of the global mean sea surface using GEOS-3 and Seasat altimetry data; delineation of the effects of topography on the interpretation of remotely-sensed data; application of snowmelt runoff models to water resources management; and mapping of snow depth over wheat growing areas using Nimbus microwave data.

  6. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  7. Novel diode laser-based sensors for gas sensing applications

    NASA Technical Reports Server (NTRS)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  8. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision

    Treesearch

    Jonathan P. Dandois; Erle C. Ellis

    2013-01-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing...

  9. A Review and Analysis of Remote Sensing Capability for Air Quality Measurements as a Potential Decision Support Tool Conducted by the NASA DEVELOP Program

    NASA Technical Reports Server (NTRS)

    Ross, A.; Richards, A.; Keith, K.; Frew, C.; Boseck, J.; Sutton, S.; Watts, C.; Rickman, D.

    2007-01-01

    This project focused on a comprehensive utilization of air quality model products as decision support tools (DST) needed for public health applications. A review of past and future air quality measurement methods and their uncertainty, along with the relationship of air quality to national and global public health, is vital. This project described current and future NASA satellite remote sensing and ground sensing capabilities and the potential for using these sensors to enhance the prediction, prevention, and control of public health effects that result from poor air quality. The qualitative uncertainty of current satellite remotely sensed air quality, the ground-based remotely sensed air quality, the air quality/public health model, and the decision making process is evaluated in this study. Current peer-reviewed literature suggests that remotely sensed air quality parameters correlate well with ground-based sensor data. A satellite remote-sensed and ground-sensed data complement is needed to enhance the models/tools used by policy makers for the protection of national and global public health communities

  10. Compensation of Verdet Constant Temperature Dependence by Crystal Core Temperature Measurement

    PubMed Central

    Petricevic, Slobodan J.; Mihailovic, Pedja M.

    2016-01-01

    Compensation of the temperature dependence of the Verdet constant in a polarimetric extrinsic Faraday sensor is of major importance for applying the magneto-optical effect to AC current measurements and magnetic field sensing. This paper presents a method for compensating the temperature effect on the Faraday rotation in a Bi12GeO20 crystal by sensing its optical activity effect on the polarization of a light beam. The method measures the temperature of the same volume of crystal that effects the beam polarization in a magnetic field or current sensing process. This eliminates the effect of temperature difference found in other indirect temperature compensation methods, thus allowing more accurate temperature compensation for the temperature dependence of the Verdet constant. The method does not require additional changes to an existing Δ/Σ configuration and is thus applicable for improving the performance of existing sensing devices. PMID:27706043

  11. Recent Progress In Optical Oxygen Sensing

    NASA Astrophysics Data System (ADS)

    Wolfbeis, Otto S.; Leiner, Marc J. P.

    1988-06-01

    Following a brief review on the history of optical oxygen sensing (which shows that a variety of ideas exists in the literature that awaits the extension to fiber optic sensing schemes), the present state of probing oxygen by optical methods is discussed in terms of new methods and materials for sensor construction. Promising sensing schemes include simultaneous measurement of parameters such as oxygen and carbon dioxide with one fiber, measurement of fluorescence lifetimes and radiative energy transfer efficiency as well as phosphorescence quenching. New longwave-excitable fluorophores have been introduced recently, two-band emit-ting indicators can help to eliminate drift problems, and new methods have been found by which both indicators and enzymes may be entrapped in silicone rubber, which opens the way for the design of new biosensors. In a final chapter, the application of fiber optic oxygen sensors for blood gas measurement and as transducers in biosensors are presented.

  12. Assessing Green Infrastructure Performance Using Remote Hydologic Monitoring Measures

    EPA Science Inventory

    Two locations in Cincinnati were instrumented with level sensing technologies to measure stormwater flow in porous pavement and bioretention areas. Results indicate good performance of porous pavement and a cost effective application of technology to measure those flows. Result...

  13. Work function measurements of copper nanoparticle intercalated polyaniline nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Patil, U. V.; Ramgir, Niranjan S.; Bhogale, A.; Debnath, A. K.; Muthe, K. P.; Gadkari, S. C.; Kothari, D. C.

    2017-05-01

    The nature of contact between the electrode and the sensing material plays a crucial role in governing the sensing mechanism. Thin films of polyaniline (PANI) and copper-polyaniline nanocomposite (NC) have been deposited at room temperatures by in-situ oxidative polymerization of aniline in the presence of Cu nanoparticles. For sensing applications a thin film Au (gold) ˜100 nm is deposited and used as a conducting electrode. To understand the nature of contact (i.e., ohmic or Schottky) the work function of the conducting polyaniline and nanocomposite films were measured using Kelvin Probe method. I-V characteristics of PANI and NC films investigated at room temperatures further corroborates and confirms the formation of Ohmic contact as evident from work function measurements.

  14. Comparison of Measured Galactic Background Radiation at L-Band with Model

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, William J.; Skou, Niels; Sobjaerg, Sten

    2004-01-01

    Radiation from the celestial sky in the spectral window at 1.413 GHz is strong and an accurate accounting of this background radiation is needed for calibration and retrieval algorithms. Modern radio astronomy measurements in this window have been converted into a brightness temperature map of the celestial sky at L-band suitable for such applications. This paper presents a comparison of the background predicted by this map with the measurements of several modern L-band remote sensing radiometer Keywords-Galactic background, microwave radiometry; remote sensing;

  15. Development of flight experiments for remote measurement of pollution

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Kopia, L. P.

    1973-01-01

    The status as of February 1973 of several NASA-sponsored development projects is reported concerning flight experiments for remote measurement of pollution. Eight passive multispectral instruments for remotely sensing air and water pollutants are described, as well as two active (laser radar) measuring techniques. These techniques are expected to add some new dimensions to the remote sensing of water quality, oceanographic parameters, and earth resources. Multiple applications in these fields are generally possible. Successful completion of the flight demonstration tests and comparisons with simultaneously obtained surface truth measurements may establish these techniques as valid water quality monitoring tools.

  16. Application of remote sensing for prediction and detection of thermal pollution

    NASA Technical Reports Server (NTRS)

    Veziroglu, T. N.; Lee, S. S.

    1974-01-01

    The first phase is described of a three year project for the development of a mathematical model for predicting thermal pollution by use of remote sensing measurements. A rigid-lid model was developed, and results were obtained for different wind conditions at Biscayne Bay in South Florida. The design of the measurement system was completed, and instruments needed for the first stage of experiment were acquired, tested, and calibrated. A preliminary research flight was conducted.

  17. Convergence of Chahine's nonlinear relaxation inversion method used for limb viewing remote sensing

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1985-01-01

    The application of Chahine's (1970) inversion technique to remote sensing problems utilizing the limb viewing geometry is discussed. The problem considered here involves occultation-type measurements and limb radiance-type measurements from either spacecraft or balloon platforms. The kernel matrix of the inversion problem is either an upper or lower triangular matrix. It is demonstrated that the Chahine inversion technique always converges, provided the diagonal elements of the kernel matrix are nonzero.

  18. Physics teaching by infrared remote sensing of vegetation

    NASA Astrophysics Data System (ADS)

    Schüttler, Tobias; Maman, Shimrit; Girwidz, Raimund

    2018-05-01

    Context- and project-based teaching has proven to foster different affective and cognitive aspects of learning. As a versatile and multidisciplinary scientific research area with diverse applications for everyday life, satellite remote sensing is an interesting context for physics education. In this paper we give a brief overview of satellite remote sensing of vegetation and how to obtain your own, individual infrared remote sensing data with affordable converted digital cameras. This novel technique provides the opportunity to conduct individual remote sensing measurement projects with students in their respective environment. The data can be compared to real satellite data and is of sufficient accuracy for educational purposes.

  19. Real-time image mosaicing for medical applications.

    PubMed

    Loewke, Kevin E; Camarillo, David B; Jobst, Christopher A; Salisbury, J Kenneth

    2007-01-01

    In this paper we describe the development of a robotically-assisted image mosaicing system for medical applications. The processing occurs in real-time due to a fast initial image alignment provided by robotic position sensing. Near-field imaging, defined by relatively large camera motion, requires translations as well as pan and tilt orientations to be measured. To capture these measurements we use 5-d.o.f. sensing along with a hand-eye calibration to account for sensor offset. This sensor-based approach speeds up the mosaicing, eliminates cumulative errors, and readily handles arbitrary camera motions. Our results have produced visually satisfactory mosaics on a dental model but can be extended to other medical images.

  20. The Fraunhofer line discriminator: An airborne fluorometer

    NASA Technical Reports Server (NTRS)

    Stoertz, G. E.

    1969-01-01

    An experimental Fraunhofer Line Discriminator (FLD) can differentiate and measure solar-stimulated luminescence when viewed against a background of reflected light. Key elements are two extremely sensitive photomultipliers, two glass-spaced Fabry-Perot filters having a bandwidth less than 1 A, and an analog computer. As in conventional fluorometers, concentration of a fluorescent substance is measured by comparison with standards. Quantitative use is probably accurate only at low altitudes but detection of luminescent substances should be possible from any altitude. Applications of the present FLD include remote sensing of fluorescent dyes used in studies of current dynamics. The basic technique is applicable to detection of oil spills, monitoring of pollutants, and sensing over land areas.

  1. Nonenzymetic glucose sensing using carbon functionalized carbon doped ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Chakraborty, Pinak; Majumder, Tanmoy; Dhar, Saurab; Mondal, Suvra Prakash

    2018-04-01

    Fabrication of highly sensitive, long stability and low cost glucose sensors are attractive for biomedical applications and food industries. Most of the commercial glucose sensors are based on enzymatic detection which suffers from problems underlying in enzyme activities. Development of high sensitive, enzyme free sensors is a great challenge for next generation glucose sensing applications. In our study Zinc oxide nanorod sensing electrodes have been grown using low cost hydrothermal route and their nonenzymatic glucose sensing properties have been demonstrated with carbon functionalized, carbon doped ZnO nanorods (C-ZnO NRs) in neutral medium (0.1M PBS, pH 7.4) using cyclic voltammetry and amperometry measurements. The C-ZnO NRs electrodes demonstrated glucose sensitivity˜ 13.66 µAmM-1cm-2 in the concentration range 0.7 - 14 mM.

  2. Aerospace remote sensing of the coastal zone for water quality and biotic productivity applications

    NASA Technical Reports Server (NTRS)

    Pritchard, E. B.; Harriss, R. C.

    1981-01-01

    Remote sensing can provide the wide area synoptic coverage of surface waters which is required for studies of such phenomena as river plume mixing, phytoplankton dynamics, and pollutant transport and fate, but which is not obtainable by conventional oceanographic techniques. The application of several remote sensors (aircraftborne and spacecraftborne multispectral scanners, passive microwave radiometers, and active laser systems) to coastal zone research is discussed. Current measurement capabilities (particulates, chlorophyll a, temperature, salinity, ocean dumped materials, other pollutants, and surface winds and roughness) are defined and the results of recent remote sensing experiments conducted in the North Atlantic coastal zone are presented. The future development of remote sensing must rely on an integrated laboratory research program in optical physics. Recent results indicate the potential for separation of particulates into subsets by remote sensors.

  3. Validity of an ankle joint motion and position sense measurement system and its application in healthy subjects and patients with ankle sprain.

    PubMed

    Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu

    2016-07-01

    Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p < 0.05). The results demonstrate that the novel ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Electrochemical Sensing and Imaging Based on Ion Transfer at Liquid/Liquid Interfaces

    PubMed Central

    Amemiya, Shigeru; Kim, Jiyeon; Izadyar, Anahita; Kabagambe, Benjamin; Shen, Mei; Ishimatsu, Ryoichi

    2013-01-01

    Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed. PMID:24363454

  5. Applications of Optical Microcavity Resonators in Analytical Chemistry

    PubMed Central

    Wade, James H.; Bailey, Ryan C.

    2018-01-01

    Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. The review begins with a brief description of optical resonator sensor operation followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key recent developments are highlighted, including advancements in biosensing and other applications of optical sensors. Alternative sensing mechanisms and hybrid sensing devices are then discussed in terms of their potential for more sensitive and rapid analyses. Brief concluding statements offer our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry. PMID:27049629

  6. Chemical Gas Sensors for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  7. Polarization interferometry for real-time spectroscopic plasmonic sensing.

    PubMed

    Otto, Lauren M; Mohr, Daniel A; Johnson, Timothy W; Oh, Sang-Hyun; Lindquist, Nathan C

    2015-03-07

    We present quantitative, spectroscopic polarization interferometry phase measurements on plasmonic surfaces for sensing applications. By adding a liquid crystal variable wave plate in our beam path, we are able to measure phase shifts due to small refractive index changes on the sensor surface. By scanning in a quick sequence, our technique is extended to demonstrate real-time measurements. While this optical technique is applicable to different sensor geometries-e.g., nanoparticles, nanogratings, or nanoapertures-the plasmonic sensors we use here consist of an ultrasmooth gold layer with buried linear gratings. Using these devices and our phase measurement technique, we calculate a figure of merit that shows improvement over measuring only surface plasmon resonance shifts from a reflected intensity spectrum. To demonstrate the general-purpose versatility of our phase-resolved measurements, we also show numerical simulations with another common device architecture: periodic plasmonic slits. Since our technique inherently measures both the intensity and phase of the reflected or transmitted light simultaneously, quantitative sensor device characterization is possible.

  8. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    PubMed Central

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  9. Evaluation and calibration of mobile phones for noise monitoring application.

    PubMed

    Ventura, Raphaël; Mallet, Vivien; Issarny, Valérie; Raverdy, Pierre-Guillaume; Rebhi, Fadwa

    2017-11-01

    The increasing number and quality of sensors integrated in mobile phones have paved the way for sensing schemes driven by city dwellers. The sensing quality can drastically depend on the mobile phone, and appropriate calibration strategies are needed. This paper evaluates the quality of noise measurements acquired by a variety of Android phones. The Ambiciti application was developed so as to acquire a larger control over the acquisition process. Pink and narrowband noises were used to evaluate the phones' accuracy at levels ranging from background noise to 90 dB(A) inside the lab. Conclusions of this evaluation lead to the proposition of a calibration strategy that has been embedded in Ambiciti and applied to more than 50 devices during public events. A performance analysis addressed the range, accuracy, precision, and reproducibility of measurements. After identification and removal of a bias, the measurement error standard deviation is below 1.2 dB(A) within a wide range of noise levels [45 to 75 dB(A)], for 12 out of 15 phones calibrated in the lab. In the perspective of citizens-driven noise sensing, in situ experiments were carried out, while additional tests helped to produce recommendations regarding the sensing context (grip, orientation, moving speed, mitigation, frictions, wind).

  10. Application of Compressive Sensing to Gravitational Microlensing Data and Implications for Miniaturized Space Observatories

    NASA Technical Reports Server (NTRS)

    Korde-Patel, Asmita (Inventor); Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is a technique for simultaneous acquisition and compression of data that is sparse or can be made sparse in some domain. It is currently under intense development and has been profitably employed for industrial and medical applications. We here describe the use of this technique for the processing of astronomical data. We outline the procedure as applied to exoplanet gravitational microlensing and analyze measurement results and uncertainty values. We describe implications for on-spacecraft data processing for space observatories. Our findings suggest that application of these techniques may yield significant, enabling benefits especially for power and volume-limited space applications such as miniaturized or micro-constellation satellites.

  11. Applications of synergistic combination of remote sensing and in-situ measurements on urban monitoring of air quality

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Dominguez, Victor; Campmier, Mark; Wu, Yonghua; Arend, Mark; Vladutescu, Daniela Viviana; Gross, Barry; Moshary, Fred

    2017-08-01

    In this study, multiple remote sensing and in-situ measurements are combined in order to obtain a comprehensive understanding of the aerosol distribution in New York City. Measurement of the horizontal distribution of aerosols is performed using a scanning eye-safe elastic-backscatter micro-pulse lidar. Vertical distribution of aerosols is measured with a co-located ceilometer. Furthermore, our analysis also includes in-situ measurements of particulate matter and wind speed and direction. These observations combined show boundary layer dynamics as well as transport and inhomogeneous spatial distribution of aerosols, which are of importance for air quality monitoring.

  12. Underwater lidar system: design challenges and application in pollution detection

    NASA Astrophysics Data System (ADS)

    Gupta, Pradip; Sankolli, Swati; Chakraborty, A.

    2016-05-01

    The present remote sensing techniques have imposed limitations in the applications of LIDAR Technology. The fundamental sampling inadequacy of the remote sensing data obtained from satellites is that they cannot resolve in the third spatial dimension, the vertical. This limits our possibilities of measuring any vertical variability in the water column. Also the interaction between the physical and biological process in the oceans and their effects at subsequent depths cannot be modeled with present techniques. The idea behind this paper is to introduce underwater LIDAR measurement system by using a LIDAR mounted on an Autonomous Underwater Vehicle (AUV). The paper introduces working principles and design parameters for the LIDAR mounted AUV (AUV-LIDAR). Among several applications the papers discusses the possible use and advantages of AUV-LIDAR in water pollution detection through profiling of Dissolved Organic Matter (DOM) in water bodies.

  13. Visible light scattering properties of irregularly shaped silica microparticles using laser based laboratory simulations for remote sensing and medical applications

    NASA Astrophysics Data System (ADS)

    Boruah, Manash J.; Ahmed, Gazi A.

    2018-01-01

    Laser based experimental light scattering studies of irregularly shaped silica microparticles have been performed at three incident wavelengths 543.5 nm, 594.5 nm and 632.8 nm supported by laboratory based computations and 3D realistic simulations, using an indigenously fabricated light scattering setup. A comparative analysis of the computational and experimentally acquired results is done and a good agreement is found in the forward scattering lobes in all cases for each of the measured scattering parameters. This study also provides an efficient way of detecting and measuring particle size distribution for irregular micro- and nanoparticles and is highly applicable in remote sensing, atmospheric, astrophysical, and medical applications and also for finding potential health hazards in the form of inhalable and respirable small particulate matter.

  14. Sensing cantilever beam bending by the optical lever technique and its application to surface stress.

    PubMed

    Evans, Drew R; Craig, Vincent S J

    2006-03-23

    Cantilever beams, both microscopic and macroscopic, are used as sensors in a great variety of applications. An optical lever system is commonly employed to determine the deflection and thereby the profile of the cantilever under load. The sensitivity of the optical lever must be calibrated, and this is usually achieved by application of a known load or deflection to the free end of the cantilever. When the sensing operation involves a different type of load or a combination of types of loadings, the calibration and the deflection values derived from it become invalid. Here we develop a master equation that permits the true deflection of the cantilever to be obtained simply from the measurement of the apparent deflection for uniformly distributed loadings and end-moment loadings. These loadings are relevant to the uniform adsorption or application of material to the cantilever or the application of a surface stress to the cantilever and should assist experimentalists using the optical lever, such as in the atomic force microscope, to measure cantilever deflections in a great variety of sensing applications. We then apply this treatment to the experimental evaluation of surface stress. Three forms of Stoney's equation that relate the apparent deflection to the surface stress, which is valid for both macroscopic and microscopic experiments, are derived. Analysis of the errors arising from incorrect modeling of the loading conditions of the cantilever currently applied in experiments is also presented. It is shown that the reported literature values for surface stress in microscopic experiments are typically 9% smaller than their true value. For macroscopic experiments, we demonstrate that the added mass of the film or coating generally dominates the measured deflection and must be accounted for accurately if surface stress measurements are to be made. Further, the reported measurements generally use a form of Stoney's equation that is in error, resulting in an overestimation of surface stress by a factor >5.

  15. Assessment of corneal hydration sensing in the terahertz band: in vivo results at 100 GHz

    PubMed Central

    Taylor, Zachary; Tewari, Pria; Sung, Shijun; Maccabi, Ashkan; Singh, Rahul; Culjat, Martin; Grundfest, Warren; Hubschman, Jean-Pierre; Brown, Elliott

    2012-01-01

    Abstract. Terahertz corneal hydration sensing has shown promise in ophthalmology applications and was recently shown to be capable of detecting water concentration changes of about two parts in a thousand in ex vivo corneal tissues. This technology may be effective in patient monitoring during refractive surgery and for early diagnosis and treatment monitoring in diseases of the cornea. In this work, Fuchs dystrophy, cornea transplant rejection, and keratoconus are discussed, and a hydration sensitivity of about one part in a hundred is predicted to be needed to successfully distinguish between diseased and healthy tissues in these applications. Stratified models of corneal tissue reflectivity are developed and validated using ex vivo spectroscopy of harvested porcine corneas that are hydrated using polyethylene glycol solutions. Simulation of the cornea’s depth-dependent hydration profile, from 0.01 to 100 THz, identifies a peak in intrinsic reflectivity contrast for sensing at 100 GHz. A 100 GHz hydration sensing system is evaluated alongside the current standard ultrasound pachymetry technique to measure corneal hydration in vivo in four rabbits. A hydration sensitivity, of three parts per thousand or better, was measured in all four rabbits under study. This work presents the first in vivo demonstration of remote corneal hydration sensing. PMID:23085925

  16. Assessment of corneal hydration sensing in the terahertz band: in vivo results at 100 GHz

    NASA Astrophysics Data System (ADS)

    Bennett, David; Taylor, Zachary; Tewari, Pria; Sung, Sijun; Maccabi, Ashkan; Singh, Rahul; Culjat, Martin; Grundfest, Warren; Hubschman, Jean-Pierre; Brown, Elliott

    2012-09-01

    Terahertz corneal hydration sensing has shown promise in ophthalmology applications and was recently shown to be capable of detecting water concentration changes of about two parts in a thousand in ex vivo corneal tissues. This technology may be effective in patient monitoring during refractive surgery and for early diagnosis and treatment monitoring in diseases of the cornea. In this work, Fuchs dystrophy, cornea transplant rejection, and keratoconus are discussed, and a hydration sensitivity of about one part in a hundred is predicted to be needed to successfully distinguish between diseased and healthy tissues in these applications. Stratified models of corneal tissue reflectivity are developed and validated using ex vivo spectroscopy of harvested porcine corneas that are hydrated using polyethylene glycol solutions. Simulation of the cornea's depth-dependent hydration profile, from 0.01 to 100 THz, identifies a peak in intrinsic reflectivity contrast for sensing at 100 GHz. A 100 GHz hydration sensing system is evaluated alongside the current standard ultrasound pachymetry technique to measure corneal hydration in vivo in four rabbits. A hydration sensitivity, of three parts per thousand or better, was measured in all four rabbits under study. This work presents the first in vivo demonstration of remote corneal hydration sensing.

  17. An exploratory study of the application of sense of community in a local festival

    Treesearch

    Alvin H. Yu; Fengfeng Ke

    2012-01-01

    The purpose of this study was to identify and measure the empirical relationships between a festival and one of its possible social effects: residents' perceptions of a sense of community (SOC). A mixed research method was utilized to explore how a multicultural festival in Harrisburg, Pennsylvania affected residents' perceived SOC. Survey questionnaires were...

  18. Fabrication of nano piezoelectric based vibration accelerometer for mechanical sensing

    NASA Astrophysics Data System (ADS)

    Murugan, S.; Prasad, M. V. N.; Jayakumar, K.

    2016-05-01

    An electromechanical sensor unit has been fabricated using nano PZT embedded in PVDF polymer. Such a polymer nano composite has been used as vibration sensor element and sensitivity, detection of mechanical vibration, and linearity measurements have been investigated. It is found from its performance, that this nano composite sensor is suitable for mechanical sensing applications.

  19. Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices

    NASA Technical Reports Server (NTRS)

    Kim, Jong Dae (Inventor); Nagarajaiah, Satish (Inventor); Barrera, Enrique V. (Inventor); Dharap, Prasad (Inventor); Zhiling, Li (Inventor)

    2010-01-01

    The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.

  20. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    NASA Astrophysics Data System (ADS)

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor.

  1. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    PubMed Central

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor. PMID:28134275

  2. Review of Remote Sensing Needs and Applications in Africa

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.

    2007-01-01

    Remote sensing data has had an important role in identifying and responding to inter-annual variations in the African environment during the past three decades. As a largely agricultural region with diverse but generally limited government capacity to acquire and distribute ground observations of rainfall, temperature and other parameters, remote sensing is sometimes the only reliable measure of crop growing conditions in Africa. Thus, developing and maintaining the technical and scientific capacity to analyze and utilize satellite remote sensing data in Africa is critical to augmenting the continent's local weather/climate observation networks as well as its agricultural and natural resource development and management. The report Review of Remote Sensing Needs and Applications in Africa' has as its central goal to recommend to the US Agency for International Development an appropriate approach to support sustainable remote sensing applications at African regional remote sensing centers. The report focuses on "RS applications" to refer to the acquisition, maintenance and archiving, dissemination, distribution, analysis, and interpretation of remote sensing data, as well as the integration of interpreted data with other spatial data products. The report focuses on three primary remote sensing centers: (1) The AGRHYMET Regional Center in Niamey, Niger, created in 1974, is a specialized institute of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), with particular specialization in science and techniques applied to agricultural development, rural development, and natural resource management. (2) The Regional Centre for Maiming of Resources for Development (RCMRD) in Nairobi, Kenya, established in 1975 under the auspices of the United Nations Economic Commission for Africa and the Organization of African Unity (now the African Union), is an intergovernmental organization, with 15 member states from eastern and southern Africa. (3) The Regional Remote Sensing Unit (RRSU) in Gaborone, Botswana, began work in June 1988 and operates under the Agriculture Information Management System (AIMS), as part of the Food, Agriculture and Natural Resources (FANR) Directorate, based at the Southern Africa Development Community (SADC) Secretariat.

  3. Applications of lasers to production metrology, control, and machine 'Vision'

    NASA Astrophysics Data System (ADS)

    Pryor, T. R.; Erf, R. K.; Gara, A. D.

    1982-06-01

    General areas of laser application to production measurement and inspection are reviewed together with the associated laser measurement techniques. The topics discussed include dimensional gauging of part profiles using laser imaging or scanning techniques, laser triangulation for surface contour measurement, surface finish measurement and defect inspection, holography and speckle techniques, and strain measurement. The emerging field of robot guidance utilizing lasers and other sensing means is examined, and, finally, the use of laser marking and reading equipment is briefly discussed.

  4. Watermarking techniques for electronic delivery of remote sensing images

    NASA Astrophysics Data System (ADS)

    Barni, Mauro; Bartolini, Franco; Magli, Enrico; Olmo, Gabriella

    2002-09-01

    Earth observation missions have recently attracted a growing interest, mainly due to the large number of possible applications capable of exploiting remotely sensed data and images. Along with the increase of market potential, the need arises for the protection of the image products. Such a need is a very crucial one, because the Internet and other public/private networks have become preferred means of data exchange. A critical issue arising when dealing with digital image distribution is copyright protection. Such a problem has been largely addressed by resorting to watermarking technology. A question that obviously arises is whether the requirements imposed by remote sensing imagery are compatible with existing watermarking techniques. On the basis of these motivations, the contribution of this work is twofold: assessment of the requirements imposed by remote sensing applications on watermark-based copyright protection, and modification of two well-established digital watermarking techniques to meet such constraints. More specifically, the concept of near-lossless watermarking is introduced and two possible algorithms matching such a requirement are presented. Experimental results are shown to measure the impact of watermark introduction on a typical remote sensing application, i.e., unsupervised image classification.

  5. Remote sensing and urban public health

    NASA Technical Reports Server (NTRS)

    Rush, M.; Vernon, S.

    1975-01-01

    The applicability of remote sensing in the form of aerial photography to urban public health problems is examined. Environmental characteristics are analyzed to determine if health differences among areas could be predicted from the visual expression of remote sensing data. The analysis is carried out on a socioeconomic cross-sectional sample of census block groups. Six morbidity and mortality rates are the independent variables while environmental measures from aerial photographs and from the census constitute the two independent variable sets. It is found that environmental data collected by remote sensing are as good as census data in evaluating rates of health outcomes.

  6. The Radio Frequency Environment at 240-270 MHz with Application to Signal-of-Opportunity Remote Sensing

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James

    2017-01-01

    Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.

  7. Remote sensing and disease control in China: past, present and future

    PubMed Central

    2013-01-01

    Satellite measurements have distinct advantages over conventional ground measurements because they can collect the information repeatedly and automatically. Since 1970 globally and 1985 in China, the availability of remote sensing (RS) techniques has steadily grown and they are becoming increasingly important to improve our understanding of human health. This paper gives the first detailed overview on the developments of RS applications for disease control in China. The problems, challenges and future directions are also discussed with an aim of guiding prospective studies. PMID:23311958

  8. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks

    NASA Astrophysics Data System (ADS)

    De Freitas, J. M.

    2011-05-01

    This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance.

  9. Remote sensing of subsurface water temperature by Raman scattering.

    PubMed

    Leonard, D A; Caputo, B; Hoge, F E

    1979-06-01

    The application of Raman scattering to remote sensing of subsurface water temperature and salinity is considered, and both theoretical and experimental aspects of the technique are discussed. Recent experimental field measurements obtained in coastal waters and on a trans-Atlantic/Mediterranean research cruise are correlated with theoretical expectations. It is concluded that the Raman technique for remote sensing of subsurface water temperature has been brought from theoretical and laboratory stages to the point where practical utilization can now be developed.

  10. Applications of Microwaves to Remote Sensing of Terrain

    NASA Technical Reports Server (NTRS)

    Porter, R. A.

    1975-01-01

    A survey and study was conducted to define the role that microwaves may play in the measurement of a variety of terrain-related parameters. The survey consisted of discussions with many users and researchers in the field of remote sensing. In addition, a survey questionnaire was prepared and replies were solicited from these and other users and researchers. The results of the survey, and associated bibliography, were studied and conclusions were drawn as to the usefulness of radiometric systems for remote sensing of terrain.

  11. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kevin P.

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less

  12. Evaluation of Small-Sized Platinum Resistance Thermometers with ITS-90 Characteristics

    NASA Astrophysics Data System (ADS)

    Yamazawa, K.; Anso, K.; Widiatmo, J. V.; Tamba, J.; Arai, M.

    2011-12-01

    Many platinum resistance thermometers (PRTs) are applied for high precision temperature measurements in industry. Most of the applications use PRTs that follow the industrial standard of PRTs, IEC 60751. However, recently, some applications, such as measurements of the temperature distribution within equipments, require a more precise temperature scale at the 0.01 °C level. In this article the evaluation of remarkably small-sized PRTs that have temperature-resistance characteristics very close to that of standard PRTs of the International Temperature Scale of 1990 (ITS-90) is reported. Two types of the sensing element were tested, one is 1.2 mm in diameter and 10 mm long, the other is 0.8 mm and 8 mm. The resistance of the sensor is 100 Ω at the triple-point-of-water temperature. The resistance ratio at the Ga melting-point temperature of the sensing elements exceeds 1.11807. To verify the closeness of the temperature-resistance characteristics, comparison measurements up to 157 °C were employed. A pressure-controlled water heat-pipe furnace was used for the comparison measurement. Characteristics of 19 thermometers with these small-sized sensing elements were evaluated. The deviation from the temperature measured using a standard PRT used as a reference thermometer in the comparison was remarkably small, when we apply the same interpolating function for the ITS-90 sub-range to these small thermometers. Results including the stability of the PRTs and the uncertainty evaluation of the comparison measurements, and the comparison results showing the small deviation from the ITS-90 temperature-resistance characteristics are reported. The development of such a PRT might be a good solution for applications such as temperature measurements of small objects or temperature distribution measurements that need the ITS-90 temperature scale.

  13. What is a picture worth? A history of remote sensing

    USGS Publications Warehouse

    Moore, Gerald K.

    1979-01-01

    Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.

  14. A tactile sensing element based on a hetero-core optical fiber for force measurement and texture detection

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro

    2014-05-01

    Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.

  15. Touch Locating and Stretch Sensing Studies of Conductive Hydrogels with Applications to Soft Robots.

    PubMed

    Zhou, Yanmin; He, Bin; Yan, Zhe; Shang, Yinghui; Wang, Qigang; Wang, Zhipeng

    2018-02-13

    Soft robots possess great potential in environmental adaptations, while their environmental sensing abilities are critical. Conductive hydrogels have been suggested to possess sensing abilities. However, their application in soft robots is lacking. In this work, we fabricated a soft and stretchable gel material, introduced its sensing mechanisms, and developed a measurement setup. Both experimental and simulation studies indicate strong nonlinearity of touch locating on a square touch panel with Cartesian coordinates. To simplify the touch locating, we proposed a touch locating system based on round touch panels with polar coordinates. Mathematical calculations and finite element method (FEM) simulations showed that in this system the locating of a touch point was only determined by its polar radius. This was verified by experimental studies. As a resistor, a gel strip's resistance increases with stretching. To demonstrate their applications on soft robots, a 3D printed three-fingered soft gripper was employed with gel strips attached. During finger bending for rod grasping, the resistances of the gel strips increased, indicating stretching of the soft material. Furthermore, the strain and stress of a gel strip increased with a decrease of the rod diameter. These studies advance the application of conductive hydrogels on soft robots.

  16. Applications of Microbial Cell Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of microbial cell sensors have been developed as analytical tools. The microbial cell sensor utilizes microbes as a sensing element and a transducer. The characteristics of microbial cell sensors as sensing devices are a complete contrast to those of enzyme sensors or immunosensors, which are highly specific for the substrates of interest, although the specificity of the microbial cell sensor has been improved by genetic modification of the microbe used as the sensing element. Microbial cell sensors have the advantages of tolerance to measuring conditions, a long lifetime, and good cost performance, and have the disadvantage of a long response time. In this review, applications of microbial cell sensors are summarized.

  17. Microfiber Optical Sensors: A Review

    PubMed Central

    Lou, Jingyi; Wang, Yipei; Tong, Limin

    2014-01-01

    With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors. PMID:24670720

  18. American Society for Photogrammetry and Remote Sensing and ACSM, Fall Convention, Reno, NV, Oct. 4-9, 1987, ASPRS Technical Papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    Recent advances in remote-sensing technology and applications are examined in reviews and reports. Topics addressed include the use of Landsat TM data to assess suspended-sediment dispersion in a coastal lagoon, the use of sun incidence angle and IR reflectance levels in mapping old-growth coniferous forests, information-management systems, Large-Format-Camera soil mapping, and the economic potential of Landsat TM winter-wheat crop-condition assessment. Consideration is given to measurement of ephemeral gully erosion by airborne laser ranging, the creation of a multipurpose cadaster, high-resolution remote sensing and the news media, the role of vegetation in the global carbon cycle, PC applications in analytical photogrammetry,more » multispectral geological remote sensing of a suspected impact crater, fractional calculus in digital terrain modeling, and automated mapping using GP-based survey data.« less

  19. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    PubMed

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-08-24

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).

  20. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    PubMed Central

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912

  1. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  2. The Science and Application of Satellite Based Fire Radiative Energy

    NASA Technical Reports Server (NTRS)

    Ellicott, Evan; Vermote, Eric (Editor)

    2012-01-01

    The accurate measurement of ecosystem biomass is of great importance in scientific, resource management and energy sectors. In particular, biomass is a direct measurement of carbon storage within an ecosystem and of great importance for carbon cycle science and carbon emission mitigation. Remote Sensing is the most accurate tool for global biomass measurements because of the ability to measure large areas. Current biomass estimates are derived primarily from ground-based samples, as compiled and reported in inventories and ecosystem samples. By using remote sensing technologies, we are able to scale up the sample values and supply wall to wall mapping of biomass.

  3. Downhole steam quality measurement

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  4. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    PubMed

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  5. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    PubMed Central

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  6. Singularity Analysis: a powerful image processing tool in remote sensing of the oceans

    NASA Astrophysics Data System (ADS)

    Turiel, A.; Umbert, M.; Hoareau, N.; Ballabrera-Poy, J.; Portabella, M.

    2012-04-01

    The study of fully developed turbulence has given rise to the development of new methods to describe real data of scalars submitted to the action of a turbulent flow. The application of this brand of methodologies (known as Microcanonical Multifractal Formalism, MMF) on remote sensing ocean maps open new ways to exploit those data for oceanographic purposes. The main technique in MMF is that of Singularity Analysis (SA). By means of SA a singularity exponents is assigned to each point of a given image. The singularity exponent of a given point is a dimensionless measure of the regularity or irregularity of the scalar at that point. Singularity exponents arrange in singularity lines, which accurately track the flow streamlines from any scalar, as we have verified with remote sensing and simulated data. Applications of SA include quality assessment of different products, the estimation of surface velocities, the development of fusion techniques for different types of scalars, comparison with measures of ocean mixing, and improvement in assimilation schemes.

  7. Piezo-thermal Probe Array for High Throughput Applications

    PubMed Central

    Gaitas, Angelo; French, Paddy

    2012-01-01

    Microcantilevers are used in a number of applications including atomic-force microscopy (AFM). In this work, deflection-sensing elements along with heating elements are integrated onto micromachined cantilever arrays to increase sensitivity, and reduce complexity and cost. An array of probes with 5–10 nm gold ultrathin film sensors on silicon substrates for high throughput scanning probe microscopy is developed. The deflection sensitivity is 0.2 ppm/nm. Plots of the change in resistance of the sensing element with displacement are used to calibrate the probes and determine probe contact with the substrate. Topographical scans demonstrate high throughput and nanometer resolution. The heating elements are calibrated and the thermal coefficient of resistance (TCR) is 655 ppm/K. The melting temperature of a material is measured by locally heating the material with the heating element of the cantilever while monitoring the bending with the deflection sensing element. The melting point value measured with this method is in close agreement with the reported value in literature. PMID:23641125

  8. One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing

    NASA Astrophysics Data System (ADS)

    Nguyen, Vanthan; Yan, Lihe; Xu, Huanhuan; Yue, Mengmeng

    2018-01-01

    Measuring temperature with greater precision at localized small length scales or in a nonperturbative manner is a necessity in widespread applications, such as integrated photonic devices, micro/nano electronics, biology, and medical diagnostics. To this context, use of nanoscale fluorescent temperature probes is regarded as the most promising method for temperature sensing because they are noninvasive, accurate, and enable remote micro/nanoscale imaging. Here, we propose a novel ratiometric fluorescent sensor for nanothermometry using carbon nanodots (C-dots). The C-dots were synthesized by one-step method using femtosecond laser ablation and exhibit unique multi-emission property due to emissions from abundant functional groups on its surface. The as-prepared C-dots demonstrate excellent ratiometric temperature sensing under single wavelength excitation that achieves high temperature sensitivity with a 1.48% change per °C ratiometric response over wide-ranging temperature (5-85 °C) in aqueous buffer. The ratiometric sensor shows excellent reversibility and stability, holding great promise for the accurate measurement of temperature in many practical applications.

  9. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications.

    PubMed

    Ben-David, Avishai; Embury, Janon F; Davidson, Charles E

    2006-09-10

    A comprehensive analytical radiative transfer model for isothermal aerosols and vapors for passive infrared remote sensing applications (ground-based and airborne sensors) has been developed. The theoretical model illustrates the qualitative difference between an aerosol cloud and a chemical vapor cloud. The model is based on two and two/four stream approximations and includes thermal emission-absorption by the aerosols; scattering of diffused sky radiances incident from all sides on the aerosols (downwelling, upwelling, left, and right); and scattering of aerosol thermal emission. The model uses moderate resolution transmittance ambient atmospheric radiances as boundary conditions and provides analytical expressions for the information on the aerosol cloud that is contained in remote sensing measurements by using thermal contrasts between the aerosols and diffused sky radiances. Simulated measurements of a ground-based sensor viewing Bacillus subtilis var. niger bioaerosols and kaolin aerosols are given and discussed to illustrate the differences between a vapor-only model (i.e., only emission-absorption effects) and a complete model that adds aerosol scattering effects.

  10. Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications

    PubMed Central

    Vegni, Lucio

    2018-01-01

    A modeling and design approach is proposed for nanoparticle-based electromagnetic devices. First, the structure properties were analytically studied using Maxwell’s equations. The method provides us a robust link between nanoparticles electromagnetic response (amplitude and phase) and their geometrical characteristics (shape, geometry, and dimensions). Secondly, new designs based on “metamaterial” concept are proposed, demonstrating great performances in terms of wide-angle range functionality and multi/wide behavior, compared to conventional devices working at the same frequencies. The approach offers potential applications to build-up new advanced platforms for sensing and medical diagnostics. Therefore, in the final part of the article, some practical examples are reported such as cancer detection, water content measurements, chemical analysis, glucose concentration measurements and blood diseases monitoring. PMID:29652853

  11. Phase-sensitive techniques applied to a micromachined vacuum sensor

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn H.; Sawadsky, N.; Juneja, P. P.

    1996-09-01

    Phase sensitive AC measurement techniques are particularly applicable to micromachined sensors detecting temperature changes at a sensor caused by a microheater. The small mass produces rapid thermal response to AC signals which are easily detectable with lock-in amplifiers. Phase sensitive measurements were applied to a CMOS compatible micromachined pressure sensor consisting a polysilicon sense line, 760 microns long, on an oxide microbridge separated by 6 microns on each horizontal side from similar polysilicon heaters, all over a micromachined cavity. Sinusoidal heater signals at 32 Hz induced temperature caused sense line resistance changes at 64 Hz. The lock-in detected this as a first harmonic sense resistor voltage from a DC constant sense current. By observing the first harmonic the lock-in rejects all AC coupling of noise by capacitance or inductance, by measuring only those signals at the 64 Hz frequency and with a fixed phase relationship to the heater driver signals. This sensor produces large signals near atmospheric pressure, declining to 7 (mu) V below 0.1 mTorr. Phase measurements between 760 and 100 Torr where the air's thermal conductivity changes little, combined with amplitude changes at low pressure generate a pressure measurement accurate at 5 percent from 760 Torr to 10 mTorr, sensing of induced temperature changes of 0.001 degree C.

  12. Polarimetric glucose sensing using Brewster reflection applying a rotating retarder analyzer

    NASA Astrophysics Data System (ADS)

    Boeckle, Stefan; Rovati, Luigi L.; Ansari, Rafat R.

    2003-10-01

    Previously, we proposed a polarimetric method, that exploits the Brewster-reflection with the final goal of application to the human eye (reflection off the eye lens) for non-invasive glucose sensing. The linearly polarized reflected light of this optical scheme is rotated by the glucose molecules present in the aqueous humor, thus carries the blood glucose concentration information. A proof-of-concept experimental bench-top setup is presented, applying a multi-wavelength true phase measurement approach and a rotating phase retarder as an analyzer to measure the very small rotation angles and the complete polarization state of the measurement light.

  13. Remote sensing of the atmosphere from environmental satellites

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Wexler, R.; Laughlin, C. R.; Bandeen, W. R.

    1977-01-01

    Various applications of satellite remote sensing of the earth are reviewed, including (1) the use of meteorological satellites to obtain photographic and radiometric data for determining weather conditions; (2) determination of the earth radiation budget from measurements of reflected solar radiation and emitted long wave terrestrial radiation; (3) the use of microwave imagery for measuring ice and snow cover; (4) LANDSAT visual and near infrared observation of floods and crop growth; and (5) the use of the Nimbus 4 backscatter ultraviolet instrument to measure total ozone and vertical ozone distribution. Plans for future activities are also discussed.

  14. A Prototype Hydrologic Observatory for the Neuse River Basin Using Remote Sensing Data as a Part of the CUAHSI-HIS Effort

    NASA Astrophysics Data System (ADS)

    Kanwar, R.; Narayan, U.; Lakshmi, V.

    2005-12-01

    Remote sensing has the potential to immensely advance the science and application of hydrology as it provides multi-scale and multi-temporal measurements of several hydrologic parameters. There is a wide variety of remote sensing data sources available to a hydrologist with a myriad of data formats, access techniques, data quality issues and temporal and spatial extents. It is very important to make data availability and its usage as convenient as possible for potential users. The CUAHSI Hydrologic Information System (HIS) initiative addresses this issue of better data access and management for hydrologists with a focus on in-situ data, that is point measurements of water and energy fluxes which make up the 'more conventional' sources of hydrologic data. This paper explores various sources of remotely sensed hydrologic data available, their data formats and volumes, current modes of data acquisition by end users, metadata associated with data itself, and requirements from potential data models that would allow a seamless integration of remotely sensed hydrologic observations into the Hydrologic Information System. Further, a prototype hydrologic observatory (HO) for the Neuse River Basin is developed using surface temperature, vegetation indices and soil moisture estimates available from remote sensing. The prototype (HO) uses the CUAHSI digital library system (DLS) on the back (server) end. On the front (client) end, a rich visual environment has been developed in order to provide better decision making tools in order to make an optimal choice in the selection of remote sensing data for a particular application. An easy point and click interface to the remote sensing data is also implemented for common users who are just interested in location based query of hydrologic variable values.

  15. Mississippi Sound Remote Sensing Study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  16. Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach; Innovative Approaches to Analysis of Lidar Data for the National Map; Changes in Imperviousness near Military Installations; Geopositional Accuracy Evaluations of QuickBird and OrbView-3: Civil and Commercial Applications Project (CCAP); Geometric Accuracy Assessment: OrbView ORTHO Products; QuickBird Radiometric Calibration Update; OrbView-3 Radiometric Calibration; QuickBird Radiometric Characterization; NASA Radiometric Characterization; Establishing and Verifying the Traceability of Remote-Sensing Measurements to International Standards; QuickBird Applications; Airport Mapping and Perpetual Monitoring Using IKONOS; OrbView-3 Relative Accuracy Results and Impacts on Exploitation and Accuracy Improvement; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Applying High-Resolution Satellite Imagery and Remotely Sensed Data to Local Government Applications: Sioux Falls, South Dakota; Automatic Co-Registration of QuickBird Data for Change Detection Applications; Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources; Automated, Near-Real Time Cloud and Cloud Shadow Detection in High Resolution VNIR Imagery; Science Applications of High Resolution Imagery at the USGS EROS Data Center; Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research; Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems; Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach; Using IKONOS Imagery to Assess Impervious Surface Area, Riparian Buffers and Stream Health in the Mid-Atlantic Region; Commercial Remote Sensing Space Policy Civil Implementation Update; USGS Commercial Remote Sensing Data Contracts (CRSDC); and Commercial Remote Sensing Space Policy (CRSSP): Civil Near-Term Requirements Collection Update.

  17. Development of EPA OTM 10 for Landfill Applications

    EPA Science Inventory

    In 2006, the U.S. Environmental Protection Agency posted a new test method on its website called OTM 10 which describes direct measurement of pollutant mass emission flux from area sources using ground-based optical remote sensing. The method has validated application to relative...

  18. Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode

    PubMed Central

    2015-01-01

    Luminescence‐based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid‐state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle‐based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. PMID:26113255

  19. Extreme temperature robust optical sensor designs and fault-tolerant signal processing

    DOEpatents

    Riza, Nabeel Agha [Oviedo, FL; Perez, Frank [Tujunga, CA

    2012-01-17

    Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

  20. UNITEC SENS-IT

    EPA Science Inventory

    The UniTec Sens-It is a small gas-sensing device that can measure volatile organic compounds (VOCs). This sensor is used to measure VOCs in applications such as urban air quality, roadside pollution, and (solid waste) landfill monitoring. This operating procedure explains what yo...

  1. Miniature piezoelectric triaxial accelerometer measures cranial accelerations

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Rogallo, V. L.

    1966-01-01

    Tiny triaxial accelerometer whose sensing elements are piezoelectric ceramic beams measures human cranial accelerations when a subject is exposed to a centrifuge or other simulators of g environments. This device could be considered for application in dental, medical, and automotive safety research.

  2. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 2 : applications of LiDAR technology in structural evaluation under normal traffic operation and post blast loading.

    DOT National Transportation Integrated Search

    2012-03-01

    This report focused on two potential applications of terrestrial LiDAR scans on highway : bridges: 1) vehicle crossing effects measured by3-D, terrestrial LiDAR scans of highway bridges : measuring clearance distance; and 2) bridge post-blast geometr...

  3. The calibration of video cameras for quantitative measurements

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.; Shortis, Mark R.

    1993-01-01

    Several different recent applications of velocimetry at Langley Research Center are described in order to show the need for video camera calibration for quantitative measurements. Problems peculiar to video sensing are discussed, including synchronization and timing, targeting, and lighting. The extension of the measurements to include radiometric estimates is addressed.

  4. Analysis of the detection materials as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Zboril, Ondrej; Bednarek, Lukas; Novak, Martin; Witas, Karel; Vasinek, Vladimir

    2017-05-01

    Fiber-optic sensors (FOS), today among the most widespread measuring sensors and during various types of measuring, are irreplaceable. Among the distinctive features include immunity to electromagnetic interference, passivity regarding power supply and high sensitivity. One of the representatives FOS is the interferometric sensors working on the principle of interference of light. Authors of this article focused on the analysis of the detection material as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations (low frequencies). A typical example is the use of interferometer sensors in automobile traffic while sensing a vibration response from the roadway while passing the cars. For analysis was used sensor with Mach-Zehnder interferometer. Defined were different detection materials about different size and thickness. We analyzed the influence on the sensitivity (amplitude response) of the interferometer. Based on the results we have defined the best material for sensing mechanical vibrations. The signal was processed by applications created in LabView development environment. The results were verified by repeated testing in laboratory conditions.

  5. ZnO based potentiometric and amperometric nanosensors.

    PubMed

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-09-01

    The existence of nanomaterials provides the solid platform for sensing applications due to owing of high sensitivity and a low concentration limit of detection. More likely used nanomaterials for sensing applications includes gold nanoparticles, carbon nanotubes, magnetic nanoparticles such as Fe3O4, quantum dots and metal oxides etc. Recently nanomaterial and biological detection becomes an interdisciplinary field and is very much focussed by the researchers. Among metal oxides ZnO is largely considered due to its less toxic nature, biocompatible, cheap and easy to synthesis. ZnO nanomaterial is highly used for the chemical sensing, especially electrochemical sensing due to its fascinating properties such as high surface to volume ratio, atoxic, biosafe and biocompatible. Moreover, ZnO nanostructures exhibit unique features which could expose a suitable nanoenviroment for the immobilization of proteineous material such as enzymes, DNA, antibodies, etc. and in doing so it retains the biological efficiency of the immobilized bio sensitive material. The following review describes the two different coatings (i.e., ionophore and enzyme) on the surface of ZnO nanorods for the chemical sensing of zinc ion detection, thallium (I) ion detection, and L-lactic acid and the measurement of galactose molecules. ZnO nanorods provide the excellent transducing properties in the generation of strong electrical signals. Moreover, this review is very much focused on the applications of ZnO nanostructures in the sensing field.

  6. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection

    PubMed Central

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-01-01

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%. PMID:27941636

  7. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.

    PubMed

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-12-08

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  8. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices

    PubMed Central

    O'Toole, Martina; Diamond, Dermot

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements. PMID:27879829

  9. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.

    PubMed

    O'Toole, Martina; Diamond, Dermot

    2008-04-07

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.

  10. Self-mixing interferometry: a novel yardstick for mechanical metrology

    NASA Astrophysics Data System (ADS)

    Donati, Silvano

    2016-11-01

    A novel configuration of interferometry, SMI (self-mixing interferometry), is described in this paper. SMI is attractive because it doesn't require any optical part external to the laser and can be employed in a variety of measurements - indeed it is sometimes indicated as the "interferometer for measuring without an interferometer". On processing the phase carried by the optical field upon propagation to the target under test, a number of applications have been developed, including traditional measurements related to metrology and mechanical engineering - like displacement, distance, small-amplitude vibrations, attitude angles, velocity, as well as new measurements, like mechanical stress-strain hysterisis and microstructure/MEMS electro-mechanical response. In another field, sensing of motility finds direct application in a variety of biophysical measurements, like blood pulsation, respiratory sounds, chest acoustical impedance, and blood velocity profile. And, we may also look at the amplitude of the returning signal in a SMI, and we can measure weak optical echoes - for return loss and isolation factor measurements, CD readout and scroll sensing, and THz-wave detection. Last, the fine details of the SMI waveform reveal physical parameters of the laser like the laser linewidth, coherence length, and alpha factor. Worth to be noted, SMI is also a coherent detection scheme, and measurement close to the quantum limit of received field with minimum detectable displacements of 100 pm/√Hz are currently achieved upon operation on diffusive targets, whereas in detection mode returning signal can be sensed down to attenuations of -80dB.

  11. Fiber optic shape sensing for monitoring of flexible structures

    NASA Astrophysics Data System (ADS)

    Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.

    2012-04-01

    Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows

  12. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    NASA Astrophysics Data System (ADS)

    Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.

    2012-12-01

    DARLA is 5-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced data assimilation (DA) modeling to (a) evaluate and improve remote sensing retrieval algorithms for environmental parameters, (b) determine the extent to which remote sensing data can be used in place of in situ data in models, and (c) infer bathymetry for littoral environments by combining remotely-sensed parameters and data assimilation models. The project uses microwave, electro-optical, and infrared techniques to characterize the littoral ocean with a focus on wave and current parameters required for DA modeling. In conjunction with the RIVET (River and Inlets) Project, extensive in situ measurements provide ground truth for both the remote sensing retrieval algorithms and the DA modeling. Our goal is to use remote sensing to constrain data assimilation models of wave and circulation dynamics in a tidal inlet and surrounding beaches. We seek to improve environmental parameter estimation via remote sensing fusion, determine the success of using remote sensing data to drive DA models, and produce a dynamically consistent representation of the wave, circulation, and bathymetry fields in complex environments. The objectives are to test the following three hypotheses: 1. Environmental parameter estimation using remote sensing techniques can be significantly improved by fusion of multiple sensor products. 2. Data assimilation models can be adequately constrained (i.e., forced or guided) with environmental parameters derived from remote sensing measurements. 3. Bathymetry on open beaches, river mouths, and at tidal inlets can be inferred from a combination of remotely-sensed parameters and data assimilation models. Our approach is to conduct a series of field experiments combining remote sensing and in situ measurements to investigate signature physics and to gather data for developing and testing DA models. A preliminary experiment conducted at the Field Research Facility at Duck, NC in September 2010 focused on assimilation of tower-based electo-optical, infrared, and radar measurements in predictions of longshore currents. Here we provide an overview of our contribution to the RIVET I experiment at New River Inlet, NC in May 2012. During the course of the 3-week measurement period, continuous tower-based remote sensing measurements were made using electro-optical, infrared, and radar techniques covering the nearshore zone and the inlet mouth. A total of 50 hours of airborne measurements were made using high-resolution infrared imagers and a customized along track interferometric synthetic aperture radar (ATI SAR). The airborne IR imagery provides kilometer-scale mapping of frontal features that evolve as the inlet flow interacts with the oceanic wave and current fields. The ATI SAR provides maps of the two-dimensional surface currents. Near-surface measurements of turbulent velocities and surface waves using SWIFT drifters, designed to measures near-surface properties relevant to remote sensing, complimented the extensive in situ measurements by RIVET investigators.

  13. Lateral access to the holes of photonic crystal fibers selective filling and sensing applications

    NASA Astrophysics Data System (ADS)

    Cordeiro, Cristiano M. B.; Dos Santos, Eliane M.; Brito Cruz, C. H.; de Matos, Christiano J.; Ferreiira, Daniel S.

    2006-09-01

    A new, simple, technique is demonstrated to laterally access the cladding holes of solid-core photonic crystal fibers (PCFs) or the central hole of hollow-core PCFs by blowing a hole through the fiber wall (using a fusion splicer and the application of pressure). For both fiber types material was subsequently and successfully inserted into the holes. The proposed method compares favorably with other reported selective filling techniques in terms of simplicity and reproducibility. Also, since the holes are laterally filled, simultaneous optical access to the PCFs is possible, which can prove useful for practical sensing applications. As a proof-of-concept experiment, Rhodamine fluorescence measurements are shown.

  14. Advanced haptic sensor for measuring human skin conditions

    NASA Astrophysics Data System (ADS)

    Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami

    2009-12-01

    This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.

  15. Advanced haptic sensor for measuring human skin conditions

    NASA Astrophysics Data System (ADS)

    Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami

    2010-01-01

    This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.

  16. Out-of-equilibrium body potential measurements in pseudo-MOSFET for sensing applications

    NASA Astrophysics Data System (ADS)

    Benea, Licinius; Bawedin, Maryline; Delacour, Cécile; Ionica, Irina

    2018-05-01

    The aim of this paper is to present the out-of-equilibrium body potential behaviour in the Ψ-MOSFET configuration. Consistent measurements in this experimental setup succeeded in providing a substantial understanding of its characteristics in the depletion region. The final objective of this work is to envision this new measurement technique for biochemical sensor applications. Among its advantages, the most important are its simplicity, the good sensitivity, the measurement of a potential instead of a current and the low bias needed for detection compared to the conventional drain current measurements.

  17. Remote Sensing Applications to Water Quality Management in Florida

    NASA Astrophysics Data System (ADS)

    Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.

    2013-12-01

    Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria

  18. Next Generation Air Measurements for Fugitive, Area Source, and Fence Line Applications

    EPA Science Inventory

    Next generation air measurements (NGAM) is an EPA term for the advancing field of air pollutant sensor technologies, data integration concepts, and geospatial modeling strategies. Ranging from personal sensors to satellite remote sensing, NGAM systems may provide revolutionary n...

  19. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  20. Application of remote sensing data for measuring freshwater ecosystems changes below the Zeya dam in the Russian Far East

    NASA Astrophysics Data System (ADS)

    Nikitina, Oxana I.; Bazarov, Kirill Y.; Egidarev, Evgeny G.

    2018-06-01

    The large Zeya hydropower dam is located on the Zeya River, the largest left-bank tributary of the Amur-Heilong River in Russia. The dam had been constructed by 1980 and its operation has significantly transformed the flow regime of the Zeya River. The flow regulation has reduced the magnitude of periodic flooding of the floodplain areas located downstream from the Zeya dam and disrupted habitats of flora and fauna. An estimation of the transformation of the freshwater ecosystems is required to develop measures necessary either to maintain or restore disrupted ecosystems. Application of remote sensing methods allows measuring characteristics of the ecosystem's components. Two sections of a floodplain below the Zeya dam were considered for analysis in order to detect changes in objects at each site during the comparison of remote data from 1969/1971 and 2016.

  1. A novel plasmonic interferometry and the potential applications

    NASA Astrophysics Data System (ADS)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.

    2018-03-01

    In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.

  2. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    PubMed

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range.

  3. Human-centric sensing.

    PubMed

    Srivastava, Mani; Abdelzaher, Tarek; Szymanski, Boleslaw

    2012-01-13

    The first decade of the century witnessed a proliferation of devices with sensing and communication capabilities in the possession of the average individual. Examples range from camera phones and wireless global positioning system units to sensor-equipped, networked fitness devices and entertainment platforms (such as Wii). Social networking platforms emerged, such as Twitter, that allow sharing information in real time. The unprecedented deployment scale of such sensors and connectivity options ushers in an era of novel data-driven applications that rely on inputs collected by networks of humans or measured by sensors acting on their behalf. These applications will impact domains as diverse as health, transportation, energy, disaster recovery, intelligence and warfare. This paper surveys the important opportunities in human-centric sensing, identifies challenges brought about by such opportunities and describes emerging solutions to these challenges.

  4. High Efficiency, 100 mJ per pulse, Nd:YAG Oscillator Optimized for Space-Based Earth and Planetary Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.

    2014-01-01

    We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.

  5. Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing

    NASA Astrophysics Data System (ADS)

    Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.

    2018-05-01

    The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.

  6. Applications of Synthetic Microchannel and Nanopore Systems

    NASA Astrophysics Data System (ADS)

    Hinkle, Thomas Preston

    This thesis describes research conducted on the physics and applications of micro- and nanoscale ion-conducting channels. Making use of the nanoscale physics that takes place in the vicinity of charged surfaces, there is the possibility that nanopores, holes on the order of 1 nm in size, could be used to make complex integrated ionic circuits. For inspiration on what such circuits could achieve we only need to look to biology systems, immensely complex machines that at their most basic level require precise control of ions and intercellular electric potentials to function. In order to contribute to the ever expanding field of nanopore research, we engineered novel hybrid insulator-conductor nanopores that behave analagously to ionic diodes, which allow passage of current flow in one direction but severely limit the current in the opposite direction. The experiments revealed that surface polarization of the conducting material can induce the formation of an electrical double layer in the same way static surface charges can. Furthermore, we showed that the hybrid device behaved similar to an ionic diode, and could see potential use as a standard rectifying element in ionic circuits. Another application based on ion conducting channels is resistive pulse sensing, a single particle detection and characterization method. We present three main experiments that expand the capacity of resistive pulse sensing for particle characterization. First, we demonstrate how resistive pulse sensing in pores with longitudinal irregularities can be used to measure the lengths of individual nanoparticles. Then, we describe an entirely new hybrid approach to resistive pulse sensing, whereby the electrical measurements are combined with simultaneous optical imaging. The hybrid method allows for validation of the resistive pulse signals and will greatly contribute to their interpretability. We present experiments that explore some of the possibilities of the hybrid method. Then, building off the hybrid method we present experiments performed to measure single particle deformability with resistive pulse sensing. Using a novel microfluidic channel design, we were able to reproducibily induce bidirectional deformation of cells. We describe how these deformations could be detected with the resistive pulse signal alone, paving the way for resistive pulse sensing based cell deformability cytometers.

  7. Shape sensing methods: Review and experimental comparison on a wing-shaped plate

    NASA Astrophysics Data System (ADS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano

    2018-05-01

    Shape sensing, i.e., the reconstruction of the displacement field of a structure from some discrete surface strain measurements, is a fundamental capability for the structural health management of critical components. In this paper, a review of the shape sensing methodologies available in the open literature and of the different applications is provided. Then, for the first time, an experimental comparative study is presented among the main approaches in order to highlight their relative merits in presence of uncertainties affecting real applications. These approaches are, namely, the inverse Finite Element Method, the Modal Method and Ko's Displacement Theory. A brief description of these methods is followed by the presentation of the experimental test results. A cantilevered, wing-shaped aluminum plate is let deform under its own weight, leading to bending and twisting. Using the experimental strain measurements as input data, the deflection field of the plate is reconstructed using the three aforementioned approaches and compared with the actual measured deflection. The inverse Finite Element Method is proven to be slightly more accurate and particularly attractive because it is versatile with respect to the boundary conditions and it does not require any information about material properties and loading conditions.

  8. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.

  9. Cooperative remote sensing and actuation using networked unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Chao, Haiyang

    This dissertation focuses on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes in the current information-rich world. The target scenarios are environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks, etc. AggieAir, a small and low-cost unmanned aircraft system, is designed based on the remote sensing requirements from environmental monitoring missions. The state estimation problem and the advanced lateral flight controller design problem are further attacked focusing on the small unmanned aerial vehicle (UAV) platform. Then the UAV-based remote sensing problem is focused with further flight test results. Given the measurements from unmanned vehicles, the actuation algorithms are needed for missions like the diffusion control. A consensus-based central Voronoi tessellation (CVT) algorithm is proposed for better control of the diffusion process. Finally, the dissertation conclusion and some new research suggestions are presented.

  10. Development of new muscle contraction sensor to replace sEMG for using in muscles analysis fields.

    PubMed

    Zhang, D; Matsuoka, Y; Kong, W; Imtiaz, U; Bartolomeo, L; Cosentino, S; Zecca, M; Sessa, S; Ishii, H; Takanishi, A

    2014-01-01

    Nowadays, the technologies for detecting, processing and interpreting bioelectrical signals have improved tremendously. In particular, surface electromyography (sEMG) has gained momentum in a wide range of applications in various fields. However, sEMG sensing has several shortcomings, the most important being: measurements are heavily sensible to individual differences, sensors are difficult to position and very expensive. In this paper, the authors will present an innovative muscle contraction sensing device (MC sensor), aiming to replace sEMG sensing in the field of muscle movement analysis. Compared with sEMG, this sensor is easier to position, setup and use, less dependent from individual differences, and less expensive. Preliminary experiments, described in this paper, confirm that MC sensing is suitable for muscle contraction analysis, and compare the results of sEMG and MC sensor for the measurement of forearm muscle contraction.

  11. Detecting submerged features in water: modeling, sensors, and measurements

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Bassetti, Luce

    2004-11-01

    It is becoming more important to understand the remote sensing systems and associated autonomous or semi-autonomous methodologies (robotic & mechatronics) that may be utilized in freshwater and marine aquatic environments. This need comes from several issues related not only to advances in our scientific understanding and technological capabilities, but also from the desire to insure that the risk associated with UXO (unexploded ordnance), related submerged mines, as well as submerged targets (such as submerged aquatic vegetation) and debris left from previous human activities are remotely sensed and identified followed by reduced risks through detection and removal. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems now being constructed within our laboratory and other laboratories, as well as future systems. New remote sensing systems - moving or fixed sensing systems, as well as autonomous or semi-autonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons. These remote sensing systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring in ambient environments.

  12. SiC-Based Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai

    1997-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor arrays for versatile high temperature gas sensing applications.

  13. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  14. Potential Pitfalls Related to Space-Based Lidar Remote Sensing of the Earth with an Emphasis on Wind Measurement

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Spiers, Gary D.; Frehlich, Rod G.; Arnold, James E. (Technical Monitor)

    2000-01-01

    A collection of issues is discussed that are potential pitfalls, if handled incorrectly, for earth-orbiting lidar remote sensing instruments. These issues arise due to the long target ranges, high lidar-to-target relative velocities, low signal levels, use of laser scanners, and other unique aspects of using lasers in earth orbit. Consequences of misunderstanding these topics range from minor inconvenience to improper calibration to total failure. We will focus on wind measurement using coherent detection Doppler lidar, but many of the potential pitfalls apply also to noncoherent lidar wind measurement, and to measurement of parameters other than wind. Each area will be identified as to its applicability.

  15. Preamplifiers for non-contact capacitive biopotential measurements.

    PubMed

    Peng, GuoChen; Ignjatovic, Zeljko; Bocko, Mark F

    2013-01-01

    Non-contact biopotential sensing is an attractive measurement strategy for a number of health monitoring applications, primarily the ECG and the EEG. In all such applications a key technical challenge is the design of a low-noise trans-impedance preamplifier for the typically low-capacitance, high source impedance sensing electrodes. In this paper, we compare voltage and charge amplifier designs in terms of their common mode rejection ratio, noise performance, and frequency response. Both amplifier types employ the same operational-transconductance amplifier (OTA), which was fabricated in a 0.35 um CMOS process. The results show that a charge amplifier configuration has advantages for small electrode-to-subject coupling capacitance values (less than 10 pF--typical of noncontact electrodes) and that the voltage amplifier configuration has advantages for electrode capacitances above 10 pF.

  16. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters.

    PubMed

    Albert, A; Mobley, C

    2003-11-03

    Subsurface remote sensing signals, represented by the irradiance re fl ectance and the remote sensing re fl ectance, were investigated. The present study is based on simulations with the radiative transfer program Hydrolight using optical properties of Lake Constance (German: Bodensee) based on in-situ measurements of the water constituents and the bottom characteristics. Analytical equations are derived for the irradiance re fl ectance and remote sensing re fl ectance for deep and shallow water applications. The input of the parameterization are the inherent optical properties of the water - absorption a(lambda) and backscattering bb(lambda). Additionally, the solar zenith angle thetas, the viewing angle thetav , and the surface wind speed u are considered. For shallow water applications the bottom albedo RB and the bottom depth zB are included into the parameterizations. The result is a complete set of analytical equations for the remote sensing signals R and Rrs in deep and shallow waters with an accuracy better than 4%. In addition, parameterizations of apparent optical properties were derived for the upward and downward diffuse attenuation coefficients Ku and Kd.

  17. Revolutionary optical sensor for physiological monitoring in the battlefield

    NASA Astrophysics Data System (ADS)

    Kingsley, Stuart A.; Sriram, Sriram; Pollick, Andrea; Marsh, John

    2004-09-01

    SRICO has developed a revolutionary approach to physiological status monitoring using state-of-the-art optical chip technology. The company"s patent pending Photrode is a photonic electrode that uses unique optical voltage sensing technology to measure and monitor electrophysiological parameters. The optical-based monitoring system enables dry-contact measurements of EEG and ECG signals that require no surface preparation or conductive gel and non-contact measurements of ECG signals through the clothing. The Photrode applies high performance optical integrated circuit technology, that has been successfully implemented in military & commercial aerospace, missile, and communications applications for sensing and signal transmission. SRICO"s award winning Photrode represents a new paradigm for the measurement of biopotentials in a reliable, convenient, and non-intrusive manner. Photrode technology has significant applications on the battlefield for rapid triage to determine the brain dead from those with viable brain function. An ECG may be obtained over the clothing without any direct skin contact. Such applications would enable the combat medic to receive timely medical information and to make important decisions regarding identification, location, triage priority and treatment of casualties. Other applications for the Photrode include anesthesia awareness monitoring, sleep medicine, mobile medical monitoring for space flight, emergency patient care, functional magnetic resonance imaging, various biopotential signal acquisition (EMG, EOG), and routine neuro and cardio diagnostics.

  18. Touch Locating and Stretch Sensing Studies of Conductive Hydrogels with Applications to Soft Robots

    PubMed Central

    He, Bin; Yan, Zhe; Shang, Yinghui; Wang, Qigang; Wang, Zhipeng

    2018-01-01

    Soft robots possess great potential in environmental adaptations, while their environmental sensing abilities are critical. Conductive hydrogels have been suggested to possess sensing abilities. However, their application in soft robots is lacking. In this work, we fabricated a soft and stretchable gel material, introduced its sensing mechanisms, and developed a measurement setup. Both experimental and simulation studies indicate strong nonlinearity of touch locating on a square touch panel with Cartesian coordinates. To simplify the touch locating, we proposed a touch locating system based on round touch panels with polar coordinates. Mathematical calculations and finite element method (FEM) simulations showed that in this system the locating of a touch point was only determined by its polar radius. This was verified by experimental studies. As a resistor, a gel strip’s resistance increases with stretching. To demonstrate their applications on soft robots, a 3D printed three-fingered soft gripper was employed with gel strips attached. During finger bending for rod grasping, the resistances of the gel strips increased, indicating stretching of the soft material. Furthermore, the strain and stress of a gel strip increased with a decrease of the rod diameter. These studies advance the application of conductive hydrogels on soft robots. PMID:29438318

  19. Spatial and temporal structure within moisture measurements of a stormwater control system

    EPA Science Inventory

    Moisture sensing is a mature soil research technology commonly applied to agriculture. Such sensors may be appropriated for use in novel stormwater research applications. Knowledge of moisture (with respect to space and time) in infiltration based stormwater control measures (SCM...

  20. Thermal infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements

    NASA Technical Reports Server (NTRS)

    Salisbury, J. W.; Wald, A.; Daria, D. M.

    1993-01-01

    Kirchoff's Law, as originally conceived, applies only to samples in thermal equilibrium with their surroundings. Most laboratory measurements of emissivity only approach this condition and it never applies in remote sensing applications. In particular, the background is often much cooler than the radiating sample, and this has led to a long controversy about the applicability of Kirchhoff's Law under such conditions. It has also led to field and laboratory measurement techniques that use some form of the 'emissivity box' approach, which surrounds the sample with a background as close as possible to the sample temperature. In our experiments, we have heated soil samples in air on a hot plate in the laboratory to a much higher temperature than the room temperature background. Spectral emissivity was measured, except the known emissivities of both the primary and secondary Christiansen features were used, instead of assuming an emissivity of unity at these wavelengths. The results from this investigation are discussed in brief.

  1. Boron-doped diamond nano/microelectrodes for bio-sensing and in vitro measurements

    PubMed Central

    Dong, Hua; Wang, Shihua; Galligan, James J.; Swain, Greg M.

    2015-01-01

    Since the fabrication of the first diamond electrode in the mid 1980s, repid progress has been made on the development and application of this new type of electrode material. Boron-doped diamond (BDD) electrodes exhibit outstanding properties compared to oxygen-containing sp2 carbon electrodes. These properties make BDD electrodes an ideal choice for use in complex samples. In recent years, BDD microelectrodes have been applied to in vitro and in vivo measurements of biological molecules in animals, tissues and cells. This review will summarize recent progress in the development and applications of BDD electrodes in bio-sensing and in vitro measurements of biomolecules. In the first section, the methods for BDD nanocrystalline diamond film deposition and BDD microelectrodes preparation are described. This is followed by a description and discussion of several approaches for characterization of the BDD electrode surface structure, morphology, and electrochemical activity. Further, application of BDD microelectrodes for use in the in vitro analysis of norepinephrine (NE), serotonin (5-HT), nitric oxide (NO), histamine, and adenosine from tissues are summarized and finally some of the remaining challenges are discussed. PMID:21196394

  2. Overall design of imaging spectrometer on-board light aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhongqi, H.; Zhengkui, C.; Changhua, C.

    1996-11-01

    Aerial remote sensing is the earliest remote sensing technical system and has gotten rapid development in recent years. The development of aerial remote sensing was dominated by high to medium altitude platform in the past, and now it is characterized by the diversity platform including planes of high-medium-low flying altitude, helicopter, airship, remotely controlled airplane, glider, and balloon. The widely used and rapidly developed platform recently is light aircraft. Early in the close of 1970s, Beijing Research Institute of Uranium Geology began aerial photography and geophysical survey using light aircraft, and put forward the overall design scheme of light aircraftmore » imaging spectral application system (LAISAS) in 19905. LAISAS is comprised of four subsystem. They are called measuring platform, data acquiring subsystem, ground testing and data processing subsystem respectively. The principal instruments of LAISAS include measuring platform controlled by inertia gyroscope, aerial spectrometer with high spectral resolution, imaging spectrometer, 3-channel scanner, 128-channel imaging spectrometer, GPS, illuminance-meter, and devices for atmospheric parameters measuring, ground testing, data correction and processing. LAISAS has the features of integrity from data acquisition to data processing and to application; of stability which guarantees the image quality and is comprised of measuring, ground testing device, and in-door data correction system; of exemplariness of integrated the technology of GIS, GPS, and Image Processing System; of practicality which embodied LAISAS with flexibility and high ratio of performance to cost. So, it can be used in the fields of fundamental research of Remote Sensing and large-scale mapping for resource exploration, environmental monitoring, calamity prediction, and military purpose.« less

  3. Simultaneous transmission of accurate time, stable frequency, data, and sensor system over one fiber with ITU 100 GHz grid

    NASA Astrophysics Data System (ADS)

    Horvath, Tomas; Munster, Petr; Vojtech, Josef; Velc, Radek; Oujezsky, Vaclav

    2018-01-01

    Optical fiber is the most used medium for current telecommunication networks. Besides data transmissions, special advanced applications like accurate time or stable frequency transmissions are more common, especially in research and education networks. On the other hand, new applications like distributed sensing are in ISP's interest because e.g. such sensing allows new service: protection of fiber infrastructure. Transmission of all applications in a single fiber can be very cost efficient but it is necessary to evaluate possible interaction before real application and deploying the service, especially if standard 100 GHz grid is considered. We performed laboratory measurement of simultaneous transmission of 100 G data based on DP-QPSK modulation format, accurate time, stable frequency and sensing system based on phase sensitive OTDR through two types of optical fibers, G.655 and G.653. These fibers are less common than G.652 fiber but thanks to their slightly higher nonlinear character, there are suitable for simulation of the worst case which can arise in a real network.

  4. Laser applications in meteorology and earth and atmospheric remote sensing; Proceedings of the Meeting, Los Angeles, CA, Jan. 16-18, 1989

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M. (Editor)

    1989-01-01

    Various papers on laser applications in meteorology and earth and atmospheric remote sensing are presented. The individual topics addressed include: solid state lasers for the mid-IR region, tunable chromium lasers, GaInAsSb/AlGaAsSb injection lasers for remote sensing applications, development and design of an airborne autonomous wavemeter for laser tuning, fabrication of lightweight Si/SiC lidar mirrors, low-cost double heterostructure and quantum-well laser array development, nonlinear optical processes for the mid-IR region, simulated space-based Doppler lidar performance in regions of backscatter inhomogeneities, design of CO2 recombination catalysts for closed-cycle CO2 lasers, density measurements with combined Raman-Rayleigh lidar, geodynamics applications of spaceborne laser ranging, use of aircraft laser ranging data for forest mensuration, remote active spectrometer, multiwavelngth and triple CO2 lidars for trace gas detection, analysis of laser diagnostics in plumes, laser atmospheric wind sounder, compact Doppler lidar system using commercial off-the-shelf components, and preliminary design for a laser atmospheric wind sounder.

  5. Optical Fiber Distributed Sensing Structural Health Monitoring (SHM) Strain Measurements Taken During Cryotank Y-Joint Test Article Load Cycling at Liquid Helium Temperatures

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, Winfred S.

    2007-01-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240 C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  6. Nasa's Land Remote Sensing Plans for the 1980's

    NASA Technical Reports Server (NTRS)

    Higg, H. C.; Butera, K. M.; Settle, M.

    1985-01-01

    Research since the launch of LANDSAT-1 has been primarily directed to the development of analysis techniques and to the conduct of applications studies designed to address resource information needs in the United States and in many other countries. The current measurement capabilities represented by MSS, TM, and SIR-A and B, coupled with the present level of remote sensing understanding and the state of knowledge in the discipline earth sciences, form the foundation for NASA's Land Processes Program. Science issues to be systematically addressed include: energy balance, hydrologic cycle, biogeochemical cycles, biological productivity, rock cycle, landscape development, geological and botanical associations, and land surface inventory, monitoring, and modeling. A global perspective is required for using remote sensing technology for problem solving or applications context. A successful model for this kind of activity involves joint research with a user entity where the user provides a test site and ground truth and NASA provides the remote sensing techniques to be tested.

  7. Exploration of Data Fusion between Polarimetric Radar and Multispectral Image Data

    DTIC Science & Technology

    2012-09-01

    target decomposition theorems in radar polarimetry . Transactions on Geoscience and Remote Sensing, 34(2), 498–518. Cloude, S. R. (1985). Target...Proceedings of the Journees Internationales De La Polarimetrie Radar (JIPR ‘90), Nantes, France. Huynen, J. R. (1965). Measurement of theTarget scattering...J. A. (2006). Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 45(22), 5453–5469. Vanzyl, J., Zebker, H

  8. Application of airborne hyperspectral remote sensing for the retrieval of forest inventory parameters

    NASA Astrophysics Data System (ADS)

    Dmitriev, Yegor V.; Kozoderov, Vladimir V.; Sokolov, Anton A.

    2016-04-01

    Collecting and updating forest inventory data play an important part in the forest management. The data can be obtained directly by using exact enough but low efficient ground based methods as well as from the remote sensing measurements. We present applications of airborne hyperspectral remote sensing for the retrieval of such important inventory parameters as the forest species and age composition. The hyperspectral images of the test region were obtained from the airplane equipped by the produced in Russia light-weight airborne video-spectrometer of visible and near infrared spectral range and high resolution photo-camera on the same gyro-stabilized platform. The quality of the thematic processing depends on many factors such as the atmospheric conditions, characteristics of measuring instruments, corrections and preprocessing methods, etc. An important role plays the construction of the classifier together with methods of the reduction of the feature space. The performance of different spectral classification methods is analyzed for the problem of hyperspectral remote sensing of soil and vegetation. For the reduction of the feature space we used the earlier proposed stable feature selection method. The results of the classification of hyperspectral airborne images by using the Multiclass Support Vector Machine method with Gaussian kernel and the parametric Bayesian classifier based on the Gaussian mixture model and their comparative analysis are demonstrated.

  9. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  10. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths.

    PubMed

    Liehr, Sascha; Breithaupt, Mathias; Krebber, Katerina

    2017-03-31

    Distributed measurement of humidity is a sought-after capability for various fields of application, especially in the civil engineering and structural health monitoring sectors. This article presents a method for distributed humidity sensing along polymethyl methacrylate (PMMA) polymer optical fibers (POFs) by analyzing wavelength-dependent Rayleigh backscattering and attenuation characteristics at 500 nm and 650 nm wavelengths. Spatially resolved humidity sensing is obtained from backscatter traces of a dual-wavelength optical time domain reflectometer (OTDR). Backscatter dependence, attenuation dependence as well as the fiber length change are characterized as functions of relative humidity. Cross-sensitivity effects are discussed and quantified. The evaluation of the humidity-dependent backscatter effects at the two wavelength measurements allows for distributed and unambiguous measurement of relative humidity. The technique can be readily employed with low-cost standard polymer optical fibers and commercial OTDR devices.

  11. Dissipative quantum error correction and application to quantum sensing with trapped ions.

    PubMed

    Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A

    2017-11-28

    Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

  12. Fraunhofer line-dept sensing applied to water

    NASA Technical Reports Server (NTRS)

    Stoertz, G. E.

    1969-01-01

    An experimental Fraunhofer line discriminator is basically an airborne fluorometer, capable of quantitatively measuring the concentration of fluorescent substances dissolved in water. It must be calibrated against standards and supplemented by ground-truth data on turbidity and on approximate vertical distribution of the fluorescent substance. Quantitative use requires that it be known in advance what substance is the source of the luminescence emission; qualitative sensing, or detection of luminescence is also possible. The two approaches are fundamentally different, having different purposes, different applications, and different instruments. When used for sensing of Rhodamine WT dye in coastal waters and estuaries, the FLD is sensing in the spectral region permitting nearly maximum depth of light penetration.

  13. NASA applications project in Miami County, Indiana

    NASA Technical Reports Server (NTRS)

    Johannsen, Chris J.; Fernandez, R. Norberto; Lozano-Garcia, D. Fabian

    1990-01-01

    This project was designed to acquaint county government officials and their clientele with remote sensing and geographic information systems (GIS) products that contain information about land conditions and land use. The specific project objectives are: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements, and land use evaluation; (2) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity; (3) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (4) to evaluate the market potential of products derived from the above projects.

  14. Measuring Speed Using a Computer--Several Techniques.

    ERIC Educational Resources Information Center

    Pearce, Jon M.

    1988-01-01

    Introduces three different techniques to facilitate the measurement of speed and the associated kinematics and dynamics using a computer. Discusses sensing techniques using optical or ultrasonic sensors, interfacing with a computer, software routines for the interfaces, and other applications. Provides circuit diagrams, pictures, and a program to…

  15. Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2018-03-01

    Seven rare earth (Sm3+, Eu3+ and Nd3+) doped lead alumino phosphate glasses were prepared. The protective and sensing measures from gamma rays were analysed in terms of parameters viz. density (ρ), refractive index, energy band gap (Eg), mean free path (mfp), effective atomic number (Zeff) and buildup factors (energy absorption EABF as well as exposure buildup factor EBF). The energy dependent parameters (mfp, Zeff, EABF and EBF) were investigated in the energy region from 15 keV to 15 MeV. EABF and EBF values were observed to be maximum in the intermediate energy region. Besides, the EABF and EBF values for the prepared samples are shown to have strong dependence on chemical composition of the glass at lower energy, whereas, it is almost independent of chemical composition in higher energy region. The prepared glass samples are found to have potential applications in radiation shielding as well as radiation sensing, which further find numerous applications in the field of medicine and industry.

  16. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications.

    PubMed

    Washburn, Adam L; Bailey, Ryan C

    2011-01-21

    By leveraging advances in semiconductor microfabrication technologies, chip-integrated optical biosensors are poised to make an impact as scalable and multiplexable bioanalytical measurement tools for lab-on-a-chip applications. In particular, waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization, and, as a result, the recent literature is replete with examples of chip-integrated waveguide sensing platforms developed to address a wide range of contemporary analytical challenges. As an overview of the most recent advances within this dynamic field, this review highlights work from the last 2-3 years in the areas of grating-coupled, interferometric, photonic crystal, and microresonator waveguide sensors. With a focus towards device integration, particular emphasis is placed on demonstrations of biosensing using these technologies within microfluidically controlled environments. In addition, examples of multiplexed detection and sensing within complex matrices--important features for real-world applicability--are given special attention.

  17. Macrobend optical sensing for pose measurement in soft robot arms

    NASA Astrophysics Data System (ADS)

    Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar

    2015-12-01

    This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic tracking system (NDI Aurora) for validation.

  18. Mechanically switchable polymer fibers for sensing in biological conditions

    NASA Astrophysics Data System (ADS)

    McMillan, Sean; Rader, Chris; Jorfi, Mehdi; Pickrell, Gary; Foster, E. Johan

    2017-02-01

    The area of in vivo sensing using optical fibers commonly uses materials such as silica and polymethyl methacrylate, both of which possess much higher modulus than human tissue. The mechanical mismatch between materials and living tissue has been seen to cause higher levels of glial encapsulation, scarring, and inflammation, leading to failure of the implanted medical device. We present the use of a fiber made from polyvinyl alcohol (PVA) for use as an implantable sensor as it is an easy to work with functionalized polymer that undergoes a transition from rigid to soft when introduced to water. This ability to switch from stiff to soft reduces the severity of the immune response. The fabricated PVA fibers labeled with fluorescein for sensing applications showed excellent response to various stimuli while exhibiting mechanical switchability. For the dry fibers, a tensile storage modulus of 4700 MPa was measured, which fell sharply to 145 MPa upon wetting. The fibers showed excellent response to changing pH levels, producing values that were detectable in a range consistent with those seen in the literature and in proposed applications. The results show that these mechanically switchable fibers are a viable option for future sensing applications.

  19. Thermal Flow Sensors for Harsh Environments.

    PubMed

    Balakrishnan, Vivekananthan; Phan, Hoang-Phuong; Dinh, Toan; Dao, Dzung Viet; Nguyen, Nam-Trung

    2017-09-08

    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.

  20. Thermal Flow Sensors for Harsh Environments

    PubMed Central

    Dinh, Toan; Dao, Dzung Viet

    2017-01-01

    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application. PMID:28885595

  1. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

    PubMed

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L

    2018-03-13

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  2. Nonimaging applications for microbolometer arrays

    NASA Astrophysics Data System (ADS)

    Picard, Francis; Jerominek, Hubert; Pope, Timothy D.; Zhang, Rose; Ngo, Linh P.; Tremblay, Bruno; Tasker, Nick; Grenier, Carol; Bilodeau, Ghislain; Cayer, Felix; Lehoux, Mario; Alain, Christine; Larouche, Carl; Savard, Simon

    2001-10-01

    In an effort to leverage uncooled microbolometer technology, testing of bolometer performance in various nonimaging applications has been performed. One of these applications makes use of an uncooled microbolometer array as the sensing element for a laser beam analyzer. Results of the characterization of cw CO2 laser beams with this analyzer are given. A comparison with the results obtained with a commercial laser beam analyzer is made. Various advantages specific to microbolometer arrays for this application are identified. A second application makes use of microbolometers for absolute temperature measurements. The experimental method and results are described. The technique's limitations and possible implementations are discussed. Finally, the third application evaluated is related to the rapidly expanding field of biometry. It consists of using a modified microbolometer array for fingerprint sensing. The basic approach allowing the use of microbolometers for such an application is discussed. The results of a proof-of-principle experiment are described. Globally, the described work illustrates the fact that microbolometer array fabrication technology can be exploited for many important applications other than IR imaging.

  3. Combining remotely sensed and other measurements for hydrologic areal averages

    NASA Technical Reports Server (NTRS)

    Johnson, E. R.; Peck, E. L.; Keefer, T. N.

    1982-01-01

    A method is described for combining measurements of hydrologic variables of various sampling geometries and measurement accuracies to produce an estimated mean areal value over a watershed and a measure of the accuracy of the mean areal value. The method provides a means to integrate measurements from conventional hydrological networks and remote sensing. The resulting areal averages can be used to enhance a wide variety of hydrological applications including basin modeling. The correlation area method assigns weights to each available measurement (point, line, or areal) based on the area of the basin most accurately represented by the measurement. The statistical characteristics of the accuracy of the various measurement technologies and of the random fields of the hydrologic variables used in the study (water equivalent of the snow cover and soil moisture) required to implement the method are discussed.

  4. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  5. Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode.

    PubMed

    Wolfbeis, Otto S

    2015-08-01

    Luminescence-based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid-state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle-based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. © 2015 The Author. Bioessays published by WILEY Periodicals, Inc.

  6. NIST activities in support of space-based radiometric remote sensing

    NASA Astrophysics Data System (ADS)

    Rice, Joseph P.; Johnson, B. Carol

    2001-06-01

    We provide an historical overview of NIST research and development in radiometry for space-based remote sensing. The applications in this field can be generally divided into two areas: environmental and defense. In the environmental remote sensing area, NIST has had programs with agencies such as the National Aeronautical and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to verify and improve traceability of the radiometric calibration of sensors that fly on board Earth-observing satellites. These produce data used in climate models and weather prediction. Over the years, the scope of activities has expanded from existing routine calibration services for artifacts such as lamps, diffusers, and filters, to development and off-site deployment of portable radiometers for radiance- and irradiance-scale intercomparisons. In the defense remote sensing area, NIST has had programs with agencies such as the Department of Defense (DOD) for support of calibration of small, low-level infrared sources in a low infrared background. These are used by the aerospace industry to simulate ballistic missiles in a cold space background. Activities have evolved from calibration of point-source cryogenic blackbodies at NIST to measurement of irradiance in off-site calibration chambers by a portable vacuum/cryogenic radiometer. Both areas of application required measurements on the cutting edge of what was technically feasible, thus compelling NIST to develop a state-of-the-art radiometric measurement infrastructure to meet the needs. This infrastructure has led to improved dissemination of the NIST spectroradiometric quantities.

  7. Characteristics of TiO2/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    NASA Astrophysics Data System (ADS)

    Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana

    2016-07-01

    In this study, titanium dioxide (TiO2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.

  8. Characteristics of TiO{sub 2}/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Rohanieza Abdul, E-mail: rohanieza.abdrahman@gmail.com; Zulkefle, Muhammad Al Hadi, E-mail: alhadizulkefle@gmail.com; Abdullah, Wan Fazlida Hanim, E-mail: wanfaz@salam.uitm.edu.my

    In this study, titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO{sub 2}/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V)more » biasing interfacing circuit. TiO{sub 2}/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.« less

  9. Ocean experiments and remotely sensed images of chemically dispersed oil spills

    NASA Technical Reports Server (NTRS)

    Croswell, W. F.; Fedors, J. C.; Hoge, F. E.; Swift, R. N.; Johnson, J. C.

    1983-01-01

    A series of experiments was performed at sea where the effectiveness of dispersants applied from a helicopter was tested on fresh and weathered crude oils released from a surface research vessel. In conjunction with these experiments, remote sensing measurements using an array of airborne optical and microwave sensors were performed in order to aid in the interpretation of the dispersant effectiveness and to obtain quantitative images of oil on the sea under controlled conditions. Surface oil thickness and volume are inferred from airborne measurements using a dual-channel microwave imaging radiometer, aerial color photography, and an airborne oceanographic lidar. The remotely sensed measurements are compared with point sampled data obtained using a research vessel. The mass balance computations of surface versus subsurface oil volume using remotely sensed and point sampled data are consistent with each other and with the volumes of oil released. Data collected by the several techniques concur in indicating that, for the oils used and under the sea conditions encountered, the dispersant and application method are primarily useful when applied to fresh oil.

  10. Quantum sensing with arbitrary frequency resolution

    NASA Astrophysics Data System (ADS)

    Boss, J. M.; Cujia, K. S.; Zopes, J.; Degen, C. L.

    2017-05-01

    Quantum sensing takes advantage of well-controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe and limited only by the stability of an external synchronization clock. Our concept makes use of quantum lock-in detection to continuously probe a signal of interest. Using the electronic spin of a single nitrogen-vacancy center in diamond, we demonstrate detection of oscillating magnetic fields with a frequency resolution of 70 microhertz over a megahertz bandwidth. The continuous sampling further guarantees an enhanced sensitivity, reaching a signal-to-noise ratio in excess of 104 for a 170-nanotesla test signal measured during a 1-hour interval. Our technique has applications in magnetic resonance spectroscopy, quantum simulation, and sensitive signal detection.

  11. Solid State Laser Technology Development for Atmospheric Sensing Applications

    NASA Technical Reports Server (NTRS)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  12. Strain Wave Acquisition by a Fiber Optic Coherent Sensor for Impact Monitoring

    PubMed Central

    Sbarufatti, Claudio; Beligni, Alessio; Gilioli, Andrea; Ferrario, Maddalena; Mattarei, Marco; Martinelli, Mario; Giglio, Marco

    2017-01-01

    A novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required. For active Lamb wave monitoring, this results in a sensing fiber arranged in multiple loops glued on an aluminum thin panel in order to increase the phase signal only in correspondence to the sensing points of interest. Instead, for passive impact identification, the required sensitivity is guaranteed by simply exploiting a longer gauge length glued to the structure. The fiber optic coherent (FOC) sensor is exploited to detect the strain waves emitted by a piezoelectric transducer placed on the aluminum panel or generated by an impulse hammer, respectively. The FOC sensor measurements have been compared with both a numerical model based on Finite Elements and traditional piezoelectric sensors, confirming a good agreement between experimental and simulated results for both active and passive impact monitoring scenarios. PMID:28773154

  13. National Aerospace Leadership Initiative - Phase 2

    DTIC Science & Technology

    2010-03-01

    components) for turbine airfoils and larger sized components (e.g., combustor, augmenter, and nozzle applications). Substrate material properties ...material property impact to sensing, measurement and breakthrough detection. Establishment of CCAT’s Laser Applications Laboratory that includes next...generation and materials property (and component) validation. Task IV - Total Supply Chain Enterprise Effectiveness The competitiveness and

  14. Physical vapor deposited thin films of lignins extracted from sugar cane bagasse: morphology, electrical properties, and sensing applications.

    PubMed

    Volpati, Diogo; Machado, Aislan D; Olivati, Clarissa A; Alves, Neri; Curvelo, Antonio A S; Pasquini, Daniel; Constantino, Carlos J L

    2011-09-12

    The concern related to the environmental degradation and to the exhaustion of natural resources has induced the research on biodegradable materials obtained from renewable sources, which involves fundamental properties and general application. In this context, we have fabricated thin films of lignins, which were extracted from sugar cane bagasse via modified organosolv process using ethanol as organic solvent. The films were made using the vacuum thermal evaporation technique (PVD, physical vapor deposition) grown up to 120 nm. The main objective was to explore basic properties such as electrical and surface morphology and the sensing performance of these lignins as transducers. The PVD film growth was monitored via ultraviolet-visible (UV-vis) absorption spectroscopy and quartz crystal microbalance, revealing a linear relationship between absorbance and film thickness. The 120 nm lignin PVD film morphology presented small aggregates spread all over the film surface on the nanometer scale (atomic force microscopy, AFM) and homogeneous on the micrometer scale (optical microscopy). The PVD films were deposited onto Au interdigitated electrode (IDE) for both electrical characterization and sensing experiments. In the case of electrical characterization, current versus voltage (I vs V) dc measurements were carried out for the Au IDE coated with 120 nm lignin PVD film, leading to a conductivity of 3.6 × 10(-10) S/m. Using impedance spectroscopy, also for the Au IDE coated with the 120 nm lignin PVD film, dielectric constant of 8.0, tan δ of 3.9 × 10(-3), and conductivity of 1.75 × 10(-9) S/m were calculated at 1 kHz. As a proof-of-principle, the application of these lignins as transducers in sensing devices was monitored by both impedance spectroscopy (capacitance vs frequency) and I versus time dc measurements toward aniline vapor (saturated atmosphere). The electrical responses showed that the sensing units are sensible to aniline vapor with the process being reversible. AFM images conducted directly onto the sensing units (Au IDE coated with 120 nm lignin PVD film) before and after the sensing experiments showed a decrease in the PVD film roughness from 5.8 to 3.2 nm after exposing to aniline.

  15. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    PubMed

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  16. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  17. Crack displacement sensing and measurement in concrete using circular grating moire fringes and pattern matching

    NASA Astrophysics Data System (ADS)

    Chan, H. M.; Yen, K. S.; Ratnam, M. M.

    2008-09-01

    The moire method has been extensively studied in the past and applied in various engineering applications. Several techniques are available for generating the moire fringes in these applications, which include moire interferometry, projection moire, shadow moire, moire deflectometry etc. Most of these methods use the superposition of linear gratings to generate the moire patterns. The use of non-linear gratings, such as circular, radial and elongated gratings has received less attention from the research community. The potential of non-linear gratings in engineering measurement has been realized in a limited number of applications, such as rotation measurement, measurement of linear displacement, measurement of expansion coefficients of materials and measurement of strain distribution. In this work, circular gratings of different pitch were applied to the sensing and measurement of crack displacement in concrete structures. Gratings of pitch 0.50 mm and 0.55 mm were generated using computer software and attached to two overlapping acrylic plates that were bonded to either side of the crack. The resulting moire patterns were captured using a standard digital camera and compared with a set of reference patterns generated using a precision positioning stage. Using several image pre-processing stages, such as filtering and morphological operations, and pattern matching the magnitude displacements along two orthogonal axes can be detected with a resolution of 0.05 mm.

  18. Airborne and spaceborne lasers for terrestrial geophysical sensing; Proceedings of the Meeting, Los Angeles, CA, Jan. 14, 15, 1988

    NASA Technical Reports Server (NTRS)

    Allario, Frank (Editor)

    1988-01-01

    The present conference on airborne and spaceborne remote sensing laser applications discusses topics in atmospheric and geophysical sciences-related sensors, lidar and DIAL component and subsystem technologies, and coherent laser experiments and semiconductor laser technologies. Attention is given to airborne lidar measurement of aerosols, a ground-based injection-locked pulsed TEA laser for wind measurements, chemical/biological agent standoff detection methods, lidars for wind shear erosion, laser tuning to selected gas absorption lines in the atmosphere, the NASA lidar-in-space technology experiment, and the Laser Atmospheric Wind Sounder.

  19. Optical remote measurement of toxic gases

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Kagann, R. H.; McClenny, W. A.

    1992-01-01

    Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.

  20. Raman spectroscopy measurement of CH4 gas and CH4 dissolved in water for laser remote sensing in water

    NASA Astrophysics Data System (ADS)

    Somekawa, Toshihiro; Fujita, Masayuki

    2018-04-01

    We examined the applicability of Raman spectroscopy as a laser remote sensing tool for monitoring CH4 in water. The Raman technique has already been used successfully for measurements of CO2 gas in water. In this paper, considering the spectral transmittance of water, third harmonics of Q-switched Nd:YAG laser at 355 nm (UV region) was used for detection of CH4 Raman signals. The Raman signal at 2892 cm-1 from CH4 dissolved in water was detected at a tail of water Raman signal.

  1. Meter for very slow flows

    NASA Technical Reports Server (NTRS)

    Baxter, W. J., Jr.; Frant, M. S.; West, S. J.

    1978-01-01

    Solid-state sensing unit developed for use with NASA's Water-Quality Monitoring System can detect small velocity changes in slow moving fluid. Nonprotruding sensor is applicable to numerous other uses requiring sensitive measurement of slow flows.

  2. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  3. Preamplifiers for non-contact capacitive biopotential measurements*

    PubMed Central

    Peng, GuoChen; Ignjatovic, Zeljko; Bocko, Mark F.

    2014-01-01

    Non-contact biopotential sensing is an attractive measurement strategy for a number of health monitoring applications, primarily the ECG and the EEG. In all such applications a key technical challenge is the design of a low-noise trans-impedance preamplifier for the typically low-capacitance, high source impedance sensing electrodes. In this paper, we compare voltage and charge amplifier designs in terms of their common mode rejection ratio, noise performance, and frequency response. Both amplifier types employ the same operational-transconductance amplifier (OTA), which was fabricated in a 0.35um CMOS process. The results show that a charge amplifier configuration has advantages for small electrode-to-subject coupling capacitance values (less than 10 pF - typical of noncontact electrodes) and that the voltage amplifier configuration has advantages for electrode capacitances above 10 pF. PMID:24109979

  4. A coactive interdisciplinary research program with NASA

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.

    1972-01-01

    The applications area of the Texas A&M University remote sensing program consists of a series of coactive projects with NASA/MSC personnel. In each case, the Remote Sensing Center has served to complement and enhance the research capability within the Manned Spacecraft Center. In addition to the applications study area, the Texas A&M University program includes coordinated projects in sensors and data analysis. Under the sensors area, an extensive experimental study of microwave radiometry for soil moisture determination established the effect of soil moisture on the measured brightness temperature for several different soil types. The data analysis area included a project which ERTS-A and Skylab data were simulated using aircraft multispectral scanner measurements at two altitudes. This effort resulted in development of a library of computer programs which provides an operational capability in classification analysis of multispectral data.

  5. PolarBRDF: A general purpose Python package for visualization and quantitative analysis of multi-angular remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh

    2016-11-01

    The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.

  6. PolarBRDF: A general purpose Python package for visualization and quantitative analysis of multi-angular remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Singh, M.; Gautam, R.; Gatebe, C. K.

    2016-12-01

    The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR)- http://car.gsfc.nasa.gov/. Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.

  7. Polarbrdf: A General Purpose Python Package for Visualization Quantitative Analysis of Multi-Angular Remote Sensing Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh

    2016-01-01

    The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wild fire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.

  8. Autonomous sensing of composites with carbon nanotubes for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Yekani Fard, Masoud; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-04-01

    The development of structural health monitoring techniques leads to the integration of sensing capability within engineering structures. This study investigates the application of multi walled carbon nanotubes in polymer matrix composites for autonomous damage detection through changes in electrical resistance. The autonomous sensing capabilities of fiber reinforced nanocomposites are studied under multiple loading conditions including tension loads. Single-lap joints with different joint lengths are tested. Acoustic emission sensing is used to validate the matrix crack propagation. A digital image correlation system is used to measure the shear strain field of the joint area. The joints with 1.5 inch length have better autonomous sensing capabilities than those with 0.5 inch length. The autonomous sensing capabilities of nanocomposites are found to be sensitive to crack propagation and can revolutionize the research on composite structural health management in the near future.

  9. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  10. Forestry applications project/timber resource. Sam Houston National forest inventory and development of a survey planning model

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1976-01-01

    The Forestry Applications Project has been directed towards solving the problem of meeting informational needs of the resource managers utilizing remote sensing data sources including satellite data, conventional aerial photography, and direct measurement on the ground in such combinations as needed to best achieve these goals. It is recognized that sampling plays an important role in generating relevant information for managing large geographic populations. The central problem, therefore, is to define the kind and amount of sampling and the place of remote sensing data sources in that sampling system to do the best possible job of meeting the manager's informational needs.

  11. Review on thin-film transistor technology, its applications, and possible new applications to biological cells

    NASA Astrophysics Data System (ADS)

    Tixier-Mita, Agnès; Ihida, Satoshi; Ségard, Bertrand-David; Cathcart, Grant A.; Takahashi, Takuya; Fujita, Hiroyuki; Toshiyoshi, Hiroshi

    2016-04-01

    This paper presents a review on state-of-the-art of thin-film transistor (TFT) technology and its wide range of applications, not only in liquid crystal displays (TFT-LCDs), but also in sensing devices. The history of the evolution of the technology is first given. Then the standard applications of TFT-LCDs, and X-ray detectors, followed by state-of-the-art applications in the field of chemical and biochemical sensing are presented. TFT technology allows the fabrication of dense arrays of independent and transparent microelectrodes on large glass substrates. The potential of these devices as electrical substrates for biological cell applications is then described. The possibility of using TFT array substrates as new tools for electrical experiments on biological cells has been investigated for the first time by our group. Dielectrophoresis experiments and impedance measurements on yeast cells are presented here. Their promising results open the door towards new applications of TFT technology.

  12. Comparison of stimulated and spontaneous laser-radar methods for the remote sensing of ocean physical properties

    NASA Astrophysics Data System (ADS)

    Leonard, Donald A.; Sweeney, Harold E.

    1990-09-01

    The physical properties of ocean water, in the top few ten meters, are of great interest in the scientific, engineering, and general oceanographic communities. Subsurface profiles of temperature, salinity, and sound speed measured by laser radar in real time on a synoptic basis over a wide area from an airborne platform would provide valuable information complementary to the data that is now readily available. The laser-radar technique specifically applicable to ocean sensing uses spectroscopic analysis of the inelastic backscattered optical signal. Two methods have received considerable attention for remote sensing and both have been demonstrated in field experiments. These are spontaneous Raman1 and spontaneous Brillouin2 scattering. A discussion of these two processes and a comparison of their properties that are useful for remote sensing was presented3 at SPIE Ocean Optics IX. This paper compares ocean remote sensing using stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) processes with better known spontaneous methods. The results of laboratory measurements of temperature using SBS and some preliminary results of SRS are presented with extensions to performance estimates of potential field systems.

  13. Fabrication of a self-sensing electroactive polymer bimorph actuator based on polyvinylidene fluoride and its electrostrictive terpolymer

    NASA Astrophysics Data System (ADS)

    Engel, Leeya; Van Volkinburg, Kyle R.; Ben-David, Moti; Washington, Gregory N.; Krylov, Slava; Shacham-Diamand, Yosi

    2016-04-01

    In this paper, we report on the fabrication of a self-sensing electroactive polymer cantilevered bimorph beam actuator and its frequency response. Tip deflections of the beam, induced by applying an AC signal across ferroelectric relaxor polyvinylidene fluoride-trifluoroethylene chlorotrifluoroethylene (P(VDF-TrFE-CTFE)), reached a magnitude of 350μm under a field of ~55MV/m and were recorded externally using a laser Doppler vibrometer (LDV). Deflections were determined simultaneously by applying a sensing model to the voltage measured across the bimorph's integrated layer of piezoelectric polymer polyvinylidene fluoride (PVDF). The sensing model treats the structure as a simple Euler- Bernoulli cantilevered beam with two distributed active elements represented through the use of generalized functions and offers a method through which real time tip deflection can be measured without the need for external visualization. When not being used as a sensing element, the PVDF layer can provide an additional means for actuation of the beam via the converse piezoelectric effect, resulting in bidirectional control of the beam's deflections. Integration of flexible sensing elements together with modeling of the electroactive polymer beam can benefit the developing field of polymer microactuators which have applications in soft robotics as "smart" prosthetics/implants, haptic displays, tools for less invasive surgery, and sensing.

  14. Remote Distributed Vibration Sensing Through Opaque Media Using Permanent Magnets

    DOE PAGES

    Chen, Yi; Mazumdar, Anirban; Brooks, Carlton F.; ...

    2018-04-05

    Vibration sensing is critical for a variety of applications from structural fatigue monitoring to understanding the modes of airplane wings. In particular, remote sensing techniques are needed for measuring the vibrations of multiple points simultaneously, assessing vibrations inside opaque metal vessels, and sensing through smoke clouds and other optically challenging environments. Here, in this paper, we propose a method which measures high-frequency displacements remotely using changes in the magnetic field generated by permanent magnets. We leverage the unique nature of vibration tracking and use a calibrated local model technique developed specifically to improve the frequency-domain estimation accuracy. The results showmore » that two-dimensional local models surpass the dipole model in tracking high-frequency motions. A theoretical basis for understanding the effects of electronic noise and error due to correlated variables is generated in order to predict the performance of experiments prior to implementation. Simultaneous measurements of up to three independent vibrating components are shown. The relative accuracy of the magnet-based displacement tracking with respect to the video tracking ranges from 40 to 190 μm when the maximum displacements approach ±5 mm and when sensor-to-magnet distances vary from 25 to 36 mm. Finally, vibration sensing inside an opaque metal vessel and mode shape changes due to damage on an aluminum beam are also studied using the wireless permanent-magnet vibration sensing scheme.« less

  15. Remote Distributed Vibration Sensing Through Opaque Media Using Permanent Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Mazumdar, Anirban; Brooks, Carlton F.

    Vibration sensing is critical for a variety of applications from structural fatigue monitoring to understanding the modes of airplane wings. In particular, remote sensing techniques are needed for measuring the vibrations of multiple points simultaneously, assessing vibrations inside opaque metal vessels, and sensing through smoke clouds and other optically challenging environments. Here, in this paper, we propose a method which measures high-frequency displacements remotely using changes in the magnetic field generated by permanent magnets. We leverage the unique nature of vibration tracking and use a calibrated local model technique developed specifically to improve the frequency-domain estimation accuracy. The results showmore » that two-dimensional local models surpass the dipole model in tracking high-frequency motions. A theoretical basis for understanding the effects of electronic noise and error due to correlated variables is generated in order to predict the performance of experiments prior to implementation. Simultaneous measurements of up to three independent vibrating components are shown. The relative accuracy of the magnet-based displacement tracking with respect to the video tracking ranges from 40 to 190 μm when the maximum displacements approach ±5 mm and when sensor-to-magnet distances vary from 25 to 36 mm. Finally, vibration sensing inside an opaque metal vessel and mode shape changes due to damage on an aluminum beam are also studied using the wireless permanent-magnet vibration sensing scheme.« less

  16. Remote sensing science for the Nineties; Proceedings of IGARSS '90 - 10th Annual International Geoscience and Remote Sensing Symposium, University of Maryland, College Park, May 20-24, 1990. Vols. 1, 2, & 3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.

  17. AHIMSA - Ad hoc histogram information measure sensing algorithm for feature selection in the context of histogram inspired clustering techniques

    NASA Technical Reports Server (NTRS)

    Dasarathy, B. V.

    1976-01-01

    An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.

  18. Building sustainable communities using sense of place indicators in three Hudson River Valley, NY, tourism destinations: An application of the limits of acceptable change process

    Treesearch

    Laura E. Sullivan; Rudy M. Schuster; Diane M. Kuehn; Cheryl S. Doble; Duarte Morais

    2010-01-01

    This study explores whether measures of residents' sense of place can act as indicators in the Limits of Acceptable Change (LAC) process to facilitate tourism planning and management. Data on community attributes valued by residents and the associated values and meanings were collected through focus groups with 27 residents in three Hudson River Valley, New York,...

  19. Challenges in paper-based fluorogenic optical sensing with smartphones

    NASA Astrophysics Data System (ADS)

    Ulep, Tiffany-Heather; Yoon, Jeong-Yeol

    2018-05-01

    Application of optically superior, tunable fluorescent nanotechnologies have long been demonstrated throughout many chemical and biological sensing applications. Combined with microfluidics technologies, i.e. on lab-on-a-chip platforms, such fluorescent nanotechnologies have often enabled extreme sensitivity, sometimes down to single molecule level. Within recent years there has been a peak interest in translating fluorescent nanotechnology onto paper-based platforms for chemical and biological sensing, as a simple, low-cost, disposable alternative to conventional silicone-based microfluidic substrates. On the other hand, smartphone integration as an optical detection system as well as user interface and data processing component has been widely attempted, serving as a gateway to on-board quantitative processing, enhanced mobility, and interconnectivity with informational networks. Smartphone sensing can be integrated to these paper-based fluorogenic assays towards demonstrating extreme sensitivity as well as ease-of-use and low-cost. However, with these emerging technologies there are always technical limitations that must be addressed; for example, paper's autofluorescence that perturbs fluorogenic sensing; smartphone flash's limitations in fluorescent excitation; smartphone camera's limitations in detecting narrow-band fluorescent emission, etc. In this review, physical optical setups, digital enhancement algorithms, and various fluorescent measurement techniques are discussed and pinpointed as areas of opportunities to further improve paper-based fluorogenic optical sensing with smartphones.

  20. REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH

    EPA Science Inventory

    Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...

  1. Acoustic Transducers as Passive Cooperative Targets for Wireless Sensing of the Sub-Surface World: Challenges of Probing with Ground Penetrating RADAR

    PubMed Central

    Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile

    2018-01-01

    Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement. PMID:29337914

  2. Acoustic Transducers as Passive Cooperative Targets for Wireless Sensing of the Sub-Surface World: Challenges of Probing with Ground Penetrating RADAR.

    PubMed

    Friedt, Jean-Michel; Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile

    2018-01-16

    Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement.

  3. Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles.

    PubMed

    Sun, Xiao-Ting; Zhang, Ying; Zheng, Dong-Hua; Yue, Shuai; Yang, Chun-Guang; Xu, Zhang-Run

    2017-06-15

    A visualized sensing method for glucose and cholesterol was developed based on the hemispheres of the same Janus hydrogel microparticles. Single-phase and Janus hydrogel microparticles were both generated using a centrifugal microfluidic chip. For glucose sensing, concanavalin A and fluorescein labeled dextran used for competitive binding assay were encapsulated in alginate microparticles, and the fluorescence of the microparticles was positively correlated with glucose concentration. For cholesterol sensing, the microparticles embedded with γ-Fe 2 O 3 nanoparticles were used as catalyst for the oxidation of 3,3',5,5'-Tetramethylbenzidine by H 2 O 2 , an enzymatic hydrolysis product of cholesterol. And the color transition was more sensitive in the microparticles than in solutions, indicating the microparticles are more applicable for visualized determination. Furthermore, Janus microparticles were employed for multitarget sensing in the two hemespheres, and glucose and cholesterol were detected within the same microparticles without obvious interference. Besides, the particles could be manipulated by an external magnetic field. The glucose and cholesterol levels were measured in human serum utilizing the microparticles, which confirmed the potential application of the microparticles in real sample detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Wireless sensors and sensor networks for homeland security applications.

    PubMed

    Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R

    2012-11-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

  5. Pseudorandom Noise Code-Based Technique for Cloud and Aerosol Discrimination Applications

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.; Harrison, Fenton Wallace

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a PN code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths. Keywords: ASCENDS, CO2 sensing, O2 sensing, PN codes, CW lidar

  6. MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy.

    PubMed

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-03-17

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users' health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users' physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson's disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  7. Spectral Imaging from Uavs Under Varying Illumination Conditions

    NASA Astrophysics Data System (ADS)

    Hakala, T.; Honkavaara, E.; Saari, H.; Mäkynen, J.; Kaivosoja, J.; Pesonen, L.; Pölönen, I.

    2013-08-01

    Rapidly developing unmanned aerial vehicles (UAV) have provided the remote sensing community with a new rapidly deployable tool for small area monitoring. The progress of small payload UAVs has introduced greater demand for light weight aerial payloads. For applications requiring aerial images, a simple consumer camera provides acceptable data. For applications requiring more detailed spectral information about the surface, a new Fabry-Perot interferometer based spectral imaging technology has been developed. This new technology produces tens of successive images of the scene at different wavelength bands in very short time. These images can be assembled in spectral data cubes with stereoscopic overlaps. On field the weather conditions vary and the UAV operator often has to decide between flight in sub optimal conditions and no flight. Our objective was to investigate methods for quantitative radiometric processing of images taken under varying illumination conditions, thus expanding the range of weather conditions during which successful imaging flights can be made. A new method that is based on insitu measurement of irradiance either in UAV platform or in ground was developed. We tested the methods in a precision agriculture application using realistic data collected in difficult illumination conditions. Internal homogeneity of the original image data (average coefficient of variation in overlapping images) was 0.14-0.18. In the corrected data, the homogeneity was 0.10-0.12 with a correction based on broadband irradiance measured in UAV, 0.07-0.09 with a correction based on spectral irradiance measurement on ground, and 0.05-0.08 with a radiometric block adjustment based on image data. Our results were very promising, indicating that quantitative UAV based remote sensing could be operational in diverse conditions, which is prerequisite for many environmental remote sensing applications.

  8. Displacement and Strain Measurement up to 1000 °C Using a Hollow Coaxial Cable Fabry-Perot Resonator.

    PubMed

    Zhu, Chen; Chen, Yizheng; Zhuang, Yiyang; Huang, Jie

    2018-04-24

    We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments.

  9. Displacement and Strain Measurement up to 1000 °C Using a Hollow Coaxial Cable Fabry-Perot Resonator

    PubMed Central

    Chen, Yizheng; Zhuang, Yiyang

    2018-01-01

    We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments. PMID:29695063

  10. Acetaminophen and acetone sensing capabilities of nickel ferrite nanostructures

    NASA Astrophysics Data System (ADS)

    Mondal, Shrabani; Kumari, Manisha; Madhuri, Rashmi; Sharma, Prashant K.

    2017-07-01

    Present work elucidates the gas sensing and electrochemical sensing capabilities of sol-gel-derived nickel ferrite (NF) nanostructures based on the electrical and electrochemical properties. In current work, the choices of target species (acetone and acetaminophen) are strictly governed by their practical utility and concerning the safety measures. Acetone, the target analyte for gas sensing measurement is a common chemical used in varieties of application as well as provides an indirect way to monitor diabetes. The gas sensing experiments were performed within a homemade sensing chamber designed by our group. Acetone gas sensor (NF pellet sensor) response was monitored by tracking the change in resistance both in the presence and absence of acetone. At optimum operating temperature 300 °C, NF pellet sensor exhibits selective response for acetone in the presence of other common interfering gases like ethanol, benzene, and toluene. The electrochemical sensor fabricated to determine acetaminophen is prepared by coating NF onto the surface of pre-treated/cleaned pencil graphite electrode (NF-PGE). The common name of target analyte acetaminophen is paracetamol (PC), which is widespread worldwide as a well-known pain killer. Overdose of PC can cause renal failure even fatal diseases in children and demand accurate monitoring. Under optimal conditions NF-PGE shows a detection limit as low as 0.106 μM with selective detection ability towards acetaminophen in the presence of ascorbic acid (AA), which co-exists in our body. Use of cheap and abundant PGE instead of other electrodes (gold/Pt/glassy carbon electrode) can effectively reduce the cost barrier of such sensors. The obtained results elucidate an ample appeal of NF-sensors in real analytical applications viz. in environmental monitoring, pharmaceutical industry, drug detection, and health monitoring.

  11. Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel.

    PubMed

    Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua

    2016-08-19

    This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov's linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy.

  12. Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel

    PubMed Central

    Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua

    2016-01-01

    This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov’s linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy. PMID:27548178

  13. Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging

    PubMed Central

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2010-01-01

    An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245

  14. Probe-pin device for optical neurotransmitter sensing in the brain

    NASA Astrophysics Data System (ADS)

    Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Park, Yeonjoon; Choi, Sang H.; Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In; Lee, Uhn

    2015-04-01

    Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.

  15. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  16. Distributed Aerodynamic Sensing and Processing Toolbox

    NASA Technical Reports Server (NTRS)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  17. Reconstructing high-dimensional two-photon entangled states via compressive sensing

    PubMed Central

    Tonolini, Francesco; Chan, Susan; Agnew, Megan; Lindsay, Alan; Leach, Jonathan

    2014-01-01

    Accurately establishing the state of large-scale quantum systems is an important tool in quantum information science; however, the large number of unknown parameters hinders the rapid characterisation of such states, and reconstruction procedures can become prohibitively time-consuming. Compressive sensing, a procedure for solving inverse problems by incorporating prior knowledge about the form of the solution, provides an attractive alternative to the problem of high-dimensional quantum state characterisation. Using a modified version of compressive sensing that incorporates the principles of singular value thresholding, we reconstruct the density matrix of a high-dimensional two-photon entangled system. The dimension of each photon is equal to d = 17, corresponding to a system of 83521 unknown real parameters. Accurate reconstruction is achieved with approximately 2500 measurements, only 3% of the total number of unknown parameters in the state. The algorithm we develop is fast, computationally inexpensive, and applicable to a wide range of quantum states, thus demonstrating compressive sensing as an effective technique for measuring the state of large-scale quantum systems. PMID:25306850

  18. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-11-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete.

  19. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  20. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  1. Biomedical sensing analyzer (BSA) for mobile-health (mHealth)-LTE.

    PubMed

    Adibi, Sasan

    2014-01-01

    The rapid expansion of mobile-based systems, the capabilities of smartphone devices, as well as the radio access and cellular network technologies are the wind beneath the wing of mobile health (mHealth). In this paper, the concept of biomedical sensing analyzer (BSA) is presented, which is a novel framework, devised for sensor-based mHealth applications. The BSA is capable of formulating the Quality of Service (QoS) measurements in an end-to-end sense, covering the entire communication path (wearable sensors, link-technology, smartphone, cell-towers, mobile-cloud, and the end-users). The characterization and formulation of BSA depend on a number of factors, including the deployment of application-specific biomedical sensors, generic link-technologies, collection, aggregation, and prioritization of mHealth data, cellular network based on the Long-Term Evolution (LTE) access technology, and extensive multidimensional delay analyses. The results are studied and analyzed in a LabView 8.5 programming environment.

  2. Spatial Indexing for Data Searching in Mobile Sensing Environments.

    PubMed

    Zhou, Yuchao; De, Suparna; Wang, Wei; Moessner, Klaus; Palaniswami, Marimuthu S

    2017-06-18

    Data searching and retrieval is one of the fundamental functionalities in many Web of Things applications, which need to collect, process and analyze huge amounts of sensor stream data. The problem in fact has been well studied for data generated by sensors that are installed at fixed locations; however, challenges emerge along with the popularity of opportunistic sensing applications in which mobile sensors keep reporting observation and measurement data at variable intervals and changing geographical locations. To address these challenges, we develop the Geohash-Grid Tree, a spatial indexing technique specially designed for searching data integrated from heterogeneous sources in a mobile sensing environment. Results of the experiments on a real-world dataset collected from the SmartSantander smart city testbed show that the index structure allows efficient search based on spatial distance, range and time windows in a large time series database.

  3. Spatial Indexing for Data Searching in Mobile Sensing Environments

    PubMed Central

    Zhou, Yuchao; De, Suparna; Wang, Wei; Moessner, Klaus; Palaniswami, Marimuthu S.

    2017-01-01

    Data searching and retrieval is one of the fundamental functionalities in many Web of Things applications, which need to collect, process and analyze huge amounts of sensor stream data. The problem in fact has been well studied for data generated by sensors that are installed at fixed locations; however, challenges emerge along with the popularity of opportunistic sensing applications in which mobile sensors keep reporting observation and measurement data at variable intervals and changing geographical locations. To address these challenges, we develop the Geohash-Grid Tree, a spatial indexing technique specially designed for searching data integrated from heterogeneous sources in a mobile sensing environment. Results of the experiments on a real-world dataset collected from the SmartSantander smart city testbed show that the index structure allows efficient search based on spatial distance, range and time windows in a large time series database. PMID:28629156

  4. Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry

    NASA Astrophysics Data System (ADS)

    Thornton, Douglas E.; Spencer, Mark F.; Perram, Glen P.

    2017-09-01

    The effects of deep turbulence in long-range imaging applications presents unique challenges to properly measure and correct for aberrations incurred along the atmospheric path. In practice, digital holography can detect the path-integrated wavefront distortions caused by deep turbulence, and di erent recording geometries offer different benefits depending on the application of interest. Previous studies have evaluated the performance of the off-axis image and pupil plane recording geometries for deep-turbulence sensing. This study models digital holography in the on-axis phase shifting recording geometry using wave optics simulations. In particular, the analysis models spherical-wave propagation through varying deep-turbulence conditions to estimate the complex optical field, and performance is evaluated by calculating the field-estimated Strehl ratio and RMS wavefront error. Altogether, the results show that digital holography in the on-axis phase shifting recording geometry is an effective wavefront-sensing method in the presence of deep turbulence.

  5. Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films

    NASA Astrophysics Data System (ADS)

    Vinoth, E.; Gowrishankar, S.; Gopalakrishnan, N.

    2018-06-01

    Thin films of Mg-free and Mg-doped (3, 10 and 20 mol%) ZnO thin films have been deposited on Si (100) substrates by RF magnetron sputtering for gas-sensing application. Preferential orientation along (002) plane with hexagonal wurtzite structure has been observed in X-ray diffraction analysis. The conductivity, resistivity, and mobility of the deposited films have been measured by Hall effect measurement. The bandgap of the films has been calculated from the UV-Vis-NIR spectroscopy. It has been found that the bandgap was increased from 3.35 to 3.91 eV with Mg content in ZnO due to the radiative recombination of excitons. The change in morphology of the grown films has been investigated by scanning electron microscope. Gas-sensing measurements have been conducted for fabricated films. The sensor response, selectivity, and stability measurement were done for the fabricated films. Though better response was found towards ethanol, methanol, and ammonia for MZ2 (Mg at 10 mol%) film and maximum gas response was observed towards ammonia. The selectivity measurement reveals maximum sensitivity about 42% for ammonia. The low response time of 123 s and recovery time of 152 s towards ammonia were observed for MZ2 (Mg at 10 mol%). Stability of the Mg-doped ZnO thin film confirmed by the continuous sensing measurements for 4 months.

  6. Design of Compressed Sensing Algorithm for Coal Mine IoT Moving Measurement Data Based on a Multi-Hop Network and Total Variation.

    PubMed

    Wang, Gang; Zhao, Zhikai; Ning, Yongjie

    2018-05-28

    As the application of a coal mine Internet of Things (IoT), mobile measurement devices, such as intelligent mine lamps, cause moving measurement data to be increased. How to transmit these large amounts of mobile measurement data effectively has become an urgent problem. This paper presents a compressed sensing algorithm for the large amount of coal mine IoT moving measurement data based on a multi-hop network and total variation. By taking gas data in mobile measurement data as an example, two network models for the transmission of gas data flow, namely single-hop and multi-hop transmission modes, are investigated in depth, and a gas data compressed sensing collection model is built based on a multi-hop network. To utilize the sparse characteristics of gas data, the concept of total variation is introduced and a high-efficiency gas data compression and reconstruction method based on Total Variation Sparsity based on Multi-Hop (TVS-MH) is proposed. According to the simulation results, by using the proposed method, the moving measurement data flow from an underground distributed mobile network can be acquired and transmitted efficiently.

  7. Remote Sensing Proxies for Vector-borne Disease Risk Assessment (Invited)

    NASA Astrophysics Data System (ADS)

    Anyamba, A.

    2010-12-01

    The spread of re-emerging vector-borne diseases such Rift Valley fever (RVF) and Chikungunya (CHIK) is a major issue of global public health concern. This combined with a variable climate regime has opened an avenue for satellite remote sensing to contribute towards a comprehensive understanding of some of the drivers influencing such vector-borne disease outbreaks. Satellite derived measurements such as vegetation indices, rainfall estimates, and land-surface temperature; can be used to infer the complex mosaic of factors that influence ecology and habitat suitability, emergence and population dynamics of disease vectors. However, there are still some gaps in application including appropriate temporal resolution of remote sensing measurements, the complexity of the virus-vector-disease-ecology system and human components that contribute to disease risk that need to be addressed. Geographic Distribution of Recent Rift Valley fever oubreaks

  8. Proceedings of the 1974 Lyndon B. Johnson Space Center Wheat-Yield Conference

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Barger, G. L.

    1975-01-01

    The proceedings of the 1974 Lyndon B. Johnson Space Center Wheat-Yield Conference are presented. The state of art of wheat-yield forecasting and the feasibility of incorporating remote sensing into this forecasting were discussed with emphasis on formulating common approach to wheat-yield forecasting, primarily using conventional meteorological measurements, which can later include the various applications of remote sensing. Papers are presented which deal with developments in the field of crop modelling.

  9. Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.

    1992-01-01

    Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.

  10. Evaluation of Physical Information Gathering Methods for the Upper Mississippi River. Stages I and II.

    DTIC Science & Technology

    1980-05-01

    be used for certain applications include: drogues, dye , drifters, mathematical modeling, and, to some degree, remote sensing. The use of Lagrangian...type measurements, which include droques, dye , and drifters was eliminated from further consideration. These methods are generally used to follow water...ENVIRONMENTAL SCIENCES Determining water velocity in a river by remote sensing techniques is limited to the tracking of a marker (e.g. a float or dye ) over

  11. HTS flux concentrator for non-invasive sensing of charged particle beams

    NASA Astrophysics Data System (ADS)

    Hao, L.; Gallop, J. C.; Macfarlane, J. C.; Carr, C.; Donaldson, G. B.

    2001-12-01

    The principle of the superconducting cryogenic current comparator (CCC) is applied to the non-invasive sensing of charged-particle beams (ions, electrons). With the use of HTS components it is feasible to envisage applications, for example, in precision mass spectrometry and real-time monitoring of ion-beam implantation currents. Recent simulations and experimental measurements of the flux concentration ratio, frequency response and linearity of a prototype HTS-CCC operating at 77 K are described.

  12. Awareness and Learning in Participatory Noise Sensing

    PubMed Central

    Becker, Martin; Caminiti, Saverio; Fiorella, Donato; Francis, Louise; Gravino, Pietro; Haklay, Mordechai (Muki); Hotho, Andreas; Loreto, Vittorio; Mueller, Juergen; Ricchiuti, Ferdinando; Servedio, Vito D. P.; Sîrbu, Alina; Tria, Francesca

    2013-01-01

    The development of ICT infrastructures has facilitated the emergence of new paradigms for looking at society and the environment over the last few years. Participatory environmental sensing, i.e. directly involving citizens in environmental monitoring, is one example, which is hoped to encourage learning and enhance awareness of environmental issues. In this paper, an analysis of the behaviour of individuals involved in noise sensing is presented. Citizens have been involved in noise measuring activities through the WideNoise smartphone application. This application has been designed to record both objective (noise samples) and subjective (opinions, feelings) data. The application has been open to be used freely by anyone and has been widely employed worldwide. In addition, several test cases have been organised in European countries. Based on the information submitted by users, an analysis of emerging awareness and learning is performed. The data show that changes in the way the environment is perceived after repeated usage of the application do appear. Specifically, users learn how to recognise different noise levels they are exposed to. Additionally, the subjective data collected indicate an increased user involvement in time and a categorisation effect between pleasant and less pleasant environments. PMID:24349102

  13. Soil Macronutrient Sensing for Precision Agriculture

    USDA-ARS?s Scientific Manuscript database

    Accurate measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient agricultural production, including site-specific crop management (SSCM), where fertilizer nutrient application rates are adjusted spatially based on local requirements. Rapid, non-destru...

  14. Research on calibration method of downhole optical fiber temperature measurement and its application in SAGD well

    NASA Astrophysics Data System (ADS)

    Lu, Zhiwei; Han, Li; Hu, Chengjun; Pan, Yong; Duan, Shengnan; Wang, Ningbo; Li, Shijian; Nuer, Maimaiti

    2017-10-01

    With the development of oil and gas fields, the accuracy and quantity requirements of real-time dynamic monitoring data needed for well dynamic analysis and regulation are increasing. Permanent, distributed downhole optical fiber temperature and pressure monitoring and other online real-time continuous data monitoring has become an important data acquisition and transmission technology in digital oil field and intelligent oil field construction. Considering the requirement of dynamic analysis of steam chamber developing state in SAGD horizontal wells in F oil reservoir in Xinjiang oilfield, it is necessary to carry out real-time and continuous temperature monitoring in horizontal section. Based on the study of the principle of optical fiber temperature measurement, the factors that cause the deviation of optical fiber temperature sensing are analyzed, and the method of fiber temperature calibration is proposed to solve the problem of temperature deviation. Field application in three wells showed that it could attain accurate measurement of downhole temperature by temperature correction. The real-time and continuous downhole distributed fiber temperature sensing technology has higher application value in the reservoir management of SAGD horizontal wells. It also has a reference for similar dynamic monitoring in reservoir production.

  15. Characteristics and applications of small, portable gaseous air pollution monitors.

    PubMed

    McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K

    2017-04-01

    Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed or acknowledged for the given use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Plasmonic Nanoholes in a Multi-Channel Microarray Format for Parallel Kinetic Assays and Differential Sensing

    PubMed Central

    Im, Hyungsoon; Lesuffleur, Antoine; Lindquist, Nathan C.; Oh, Sang-Hyun

    2009-01-01

    We present nanohole arrays in a gold film integrated with a 6-channel microfluidic chip for parallel measurements of molecular binding kinetics. Surface plasmon resonance effects in the nanohole arrays enable real-time label-free measurements of molecular binding events in each channel, while adjacent negative reference channels can record measurement artifacts such as bulk solution index changes, temperature variations, or changing light absorption in the liquid. Using this platform, streptavidin-biotin specific binding kinetics are measured at various concentrations with negative controls. A high-density microarray of 252 biosensing pixels is also demonstrated with a packing density of 106 sensing elements/cm2, which can potentially be coupled with a massively parallel array of microfluidic channels for protein microarray applications. PMID:19284776

  17. Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications.

    PubMed

    Jiang, Xiqian; Wang, Lingfei; Carroll, Shaina L; Chen, Jianwei; Wang, Meng C; Wang, Jin

    2018-02-16

    The concentrations of reactive oxygen/nitrogen species (ROS/RNS) are critical to various biochemical processes. Small-molecule fluorescent probes have been widely used to detect and/or quantify ROS/RNS in many redox biology studies and serve as an important complementary to protein-based sensors with unique applications. Recent Advances: New sensing reactions have emerged in probe development, allowing more selective and quantitative detection of ROS/RNS, especially in live cells. Improvements have been made in sensing reactions, fluorophores, and bioavailability of probe molecules. In this review, we will not only summarize redox-related small-molecule fluorescent probes but also lay out the challenges of designing probes to help redox biologists independently evaluate the quality of reported small-molecule fluorescent probes, especially in the chemistry literature. We specifically highlight the advantages of reversibility in sensing reactions and its applications in ratiometric probe design for quantitative measurements in living cells. In addition, we compare the advantages and disadvantages of small-molecule probes and protein-based probes. The low physiological relevant concentrations of most ROS/RNS call for new sensing reactions with better selectivity, kinetics, and reversibility; fluorophores with high quantum yield, wide wavelength coverage, and Stokes shifts; and structural design with good aqueous solubility, membrane permeability, low protein interference, and organelle specificity. Antioxid. Redox Signal. 00, 000-000.

  18. Resistive-pulse and rectification sensing with glass and carbon nanopipettes

    PubMed Central

    Wang, Yixian; Wang, Dengchao

    2017-01-01

    Along with more prevalent solid-state nanopores, glass or quartz nanopipettes have found applications in resistive-pulse and rectification sensing. Their advantages include the ease of fabrication, small physical size and needle-like geometry, rendering them useful for local measurements in small spaces and delivery of nanoparticles/biomolecules. Carbon nanopipettes fabricated by depositing a thin carbon layer on the inner wall of a quartz pipette provide additional means for detecting electroactive species and fine-tuning the current rectification properties. In this paper, we discuss the fundamentals of resistive-pulse sensing with nanopipettes and our recent studies of current rectification in carbon pipettes. PMID:28413354

  19. Resistive-pulse and rectification sensing with glass and carbon nanopipettes.

    PubMed

    Wang, Yixian; Wang, Dengchao; Mirkin, Michael V

    2017-03-01

    Along with more prevalent solid-state nanopores, glass or quartz nanopipettes have found applications in resistive-pulse and rectification sensing. Their advantages include the ease of fabrication, small physical size and needle-like geometry, rendering them useful for local measurements in small spaces and delivery of nanoparticles/biomolecules. Carbon nanopipettes fabricated by depositing a thin carbon layer on the inner wall of a quartz pipette provide additional means for detecting electroactive species and fine-tuning the current rectification properties. In this paper, we discuss the fundamentals of resistive-pulse sensing with nanopipettes and our recent studies of current rectification in carbon pipettes.

  20. Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber

    NASA Astrophysics Data System (ADS)

    Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel

    2018-02-01

    We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.

  1. The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: the state-of-the-art and ongoing research topics.

    PubMed

    Al-Fakih, Ebrahim; Abu Osman, Noor Azuan; Mahamd Adikan, Faisal Rafiq

    2012-09-25

    In recent years, fiber Bragg gratings (FBGs) are becoming increasingly attractive for sensing applications in biomechanics and rehabilitation engineering due to their advantageous properties like small size, light weight, biocompatibility, chemical inertness, multiplexing capability and immunity to electromagnetic interference (EMI). They also offer a high-performance alternative to conventional technologies, either for measuring a variety of physical parameters or for performing high-sensitivity biochemical analysis. FBG-based sensors demonstrated their feasibility for specific sensing applications in aeronautic, automotive, civil engineering structure monitoring and undersea oil exploration; however, their use in the field of biomechanics and rehabilitation applications is very recent and its practicality for full-scale implementation has not yet been fully established. They could be used for detecting strain in bones, pressure mapping in orthopaedic joints, stresses in intervertebral discs, chest wall deformation, pressure distribution in Human Machine Interfaces (HMIs), forces induced by tendons and ligaments, angles between body segments during gait, and many others in dental biomechanics. This article aims to provide a comprehensive overview of all the possible applications of FBG sensing technology in biomechanics and rehabilitation and the status of ongoing researches up-to-date all over the world, demonstrating the FBG advances over other existing technologies.

  2. The Use of Fiber Bragg Grating Sensors in Biomechanics and Rehabilitation Applications: The State-of-the-Art and Ongoing Research Topics

    PubMed Central

    Al-Fakih, Ebrahim; Osman, Noor Azuan Abu; Adikan, Faisal Rafiq Mahamd

    2012-01-01

    In recent years, fiber Bragg gratings (FBGs) are becoming increasingly attractive for sensing applications in biomechanics and rehabilitation engineering due to their advantageous properties like small size, light weight, biocompatibility, chemical inertness, multiplexing capability and immunity to electromagnetic interference (EMI). They also offer a high-performance alternative to conventional technologies, either for measuring a variety of physical parameters or for performing high-sensitivity biochemical analysis. FBG-based sensors demonstrated their feasibility for specific sensing applications in aeronautic, automotive, civil engineering structure monitoring and undersea oil exploration; however, their use in the field of biomechanics and rehabilitation applications is very recent and its practicality for full-scale implementation has not yet been fully established. They could be used for detecting strain in bones, pressure mapping in orthopaedic joints, stresses in intervertebral discs, chest wall deformation, pressure distribution in Human Machine Interfaces (HMIs), forces induced by tendons and ligaments, angles between body segments during gait, and many others in dental biomechanics. This article aims to provide a comprehensive overview of all the possible applications of FBG sensing technology in biomechanics and rehabilitation and the status of ongoing researches up-to-date all over the world, demonstrating the FBG advances over other existing technologies. PMID:23201977

  3. Discrete range clustering using Monte Carlo methods

    NASA Technical Reports Server (NTRS)

    Chatterji, G. B.; Sridhar, B.

    1993-01-01

    For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.

  4. Application of Temperature-Dependent Fluorescent Dyes to the Measurement of Millimeter Wave Absorption in Water Applied to Biomedical Experiments

    PubMed Central

    Popenko, Oleksandr

    2014-01-01

    Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects. PMID:25435859

  5. Application of temperature-dependent fluorescent dyes to the measurement of millimeter wave absorption in water applied to biomedical experiments.

    PubMed

    Kuzkova, Nataliia; Popenko, Oleksandr; Yakunov, Andrey

    2014-01-01

    Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects.

  6. The application of compressed sensing to long-term acoustic emission-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alessandro; Park, Gyuhae; Farrar, Charles; Mascareñas, David

    2012-04-01

    The acoustic emission (AE) phenomena generated by a rapid release in the internal stress of a material represent a promising technique for structural health monitoring (SHM) applications. AE events typically result in a discrete number of short-time, transient signals. The challenge associated with capturing these events using classical techniques is that very high sampling rates must be used over extended periods of time. The result is that a very large amount of data is collected to capture a phenomenon that rarely occurs. Furthermore, the high energy consumption associated with the required high sampling rates makes the implementation of high-endurance, low-power, embedded AE sensor nodes difficult to achieve. The relatively rare occurrence of AE events over long time scales implies that these measurements are inherently sparse in the spike domain. The sparse nature of AE measurements makes them an attractive candidate for the application of compressed sampling techniques. Collecting compressed measurements of sparse AE signals will relax the requirements on the sampling rate and memory demands. The focus of this work is to investigate the suitability of compressed sensing techniques for AE-based SHM. The work explores estimating AE signal statistics in the compressed domain for low-power classification applications. In the event compressed classification finds an event of interest, ι1 norm minimization will be used to reconstruct the measurement for further analysis. The impact of structured noise on compressive measurements is specifically addressed. The suitability of a particular algorithm, called Justice Pursuit, to increase robustness to a small amount of arbitrary measurement corruption is investigated.

  7. Air pollution measurements from satellites

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Griggs, M.; Malkmus, W.; Bartle, E. R.

    1973-01-01

    A study is presented on the remote sensing of gaseous and particulate air pollutants which is an extension of a previous report. Pollutants can be observed by either active or passive remote sensing systems. Calculations discussed herein indicate that tropospheric CO, CO2, SO2, NO2, NH3, HCHO, and CH4 can be measured by means of nadir looking passive systems. Additional species such as NO, HNO3, O3, and H2O may be measured in the stratosphere through a horizon experiment. A brief theoretical overview of resonance Raman scattering and resonance fluorescence is given. It is found that radiance measurements are most promising for general global applications, and that stratospheric aerosols may be measured using a sun occultation technique. The instrumentation requirements for both active and passive systems are examined and various instruments now under development are described.

  8. A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding

    PubMed Central

    Montero, David Sánchez; Lallana, Pedro Contreras; Vázquez, Carmen

    2012-01-01

    A low-cost intensity-based polymer optical fiber (POF) sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S.), and sensitivity around 0.5 V per bend are obtained. Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S. PMID:22778637

  9. Evaluation and application of new AVIRIS data for the study of coral reefs in Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Wei, J.; Lee, Z.

    2017-12-01

    During the HyspIRI Hawaii campaign in early 2017, we collected hyperspectral remote sensing reflectance over coral reef environments in Kaneohe Bay in Oahu and the coastal waters of Maui Island. Based on in-situ measurements, we evaluated the data quality of reflectance measurements by the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS). Further, these data were used to refine the remote sensing algorithms for identification of live corals, water bathymetry, and water clarity for the entire flight lines. Our results suggested great improvement in our understanding and capabilities of using HyspIRI-like data to observe and monitor coral reef environments.

  10. Non-contact Doppler radar monitoring of cardiorespiratory motion for Siberian sturgeon.

    PubMed

    Hafner, Noah; Massagram, Wansuree; Lubecke, Victor

    2012-01-01

    This paper presents the first reported use of Doppler radar to remotely sense heart and ventilation rates of fish. The Radar reported 35 to 40 BPM heart rate and 115 to 145 BPM ventilation rates for Siberian Sturgeon, with agreement from a video reference. Conventional fish vital signs measurements require invasive surgery and human handling--these are problematic for large scale monitoring, for measuring deep sea fish, and other situations which preclude human interaction with each individual subject. These results show a useful application of radar to augment existing cardiovascular and ventilatory activity sensing techniques and enable monitoring in a wider range of situations.

  11. Raman Spectroscopic Measurements of Co2 Dissolved in Seawater for Laser Remote Sensing in Water

    NASA Astrophysics Data System (ADS)

    Somekawa, Toshihiro; Fujita, Masayuki

    2016-06-01

    We examined the applicability of Raman lidar technique as a laser remote sensing tool in water. The Raman technique has already been used successfully for measurements of CO2 gas dissolved in water and bubbles. Here, the effect of seawater on CO2 Raman spectra has been evaluated. A frequency doubled Q-switched Nd:YAG laser (532 nm) was irradiated to CO2 gas dissolved in a standard seawater. In seawater, the Raman signals at 984 and 1060-1180 cm-1 from SO42- were detected, which shows no spectral interference caused by Raman signals derived from CO2.

  12. Fibre optic microarrays.

    PubMed

    Walt, David R

    2010-01-01

    This tutorial review describes how fibre optic microarrays can be used to create a variety of sensing and measurement systems. This review covers the basics of optical fibres and arrays, the different microarray architectures, and describes a multitude of applications. Such arrays enable multiplexed sensing for a variety of analytes including nucleic acids, vapours, and biomolecules. Polymer-coated fibre arrays can be used for measuring microscopic chemical phenomena, such as corrosion and localized release of biochemicals from cells. In addition, these microarrays can serve as a substrate for fundamental studies of single molecules and single cells. The review covers topics of interest to chemists, biologists, materials scientists, and engineers.

  13. Sensing and Storing the Blood Pressure Measure by Patients through A Platform and Mobile Devices †.

    PubMed

    Villarreal, Vladimir; Nielsen, Mel; Samudio, Manuel

    2018-06-03

    In this article, we present a platform that allows for the integration of different applications for the follow-up of patients with chronic diseases. We developed two elements: a mobile and a web application. The mobile application allows the capture and processing of vital signs for patients with high blood pressure (hypertension). This application allows for the patient to store the data obtained, provides historical information and trends of the stored measures, and provides alerts and recommendations according to ranges of measures that were obtained. The web application allows the doctor and patients to obtain updated information of the disease behavior through the measures obtained. We used different biometric devices including an efimomanometer, glucometer, scale, and a thermometer with a wi-fi connection. Through this web application, we also generated information about average measures at a given time, by age, by region, and by a specific date. The developed system was evaluated in a medical center with different types of patients.

  14. An assessment of clinical chemical sensing technology for potential use in space station health maintenance facility

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A Health Maintenance Facility is currently under development for space station application which will provide capabilities equivalent to those found on Earth. This final report addresses the study of alternate means of diagnosis and evaluation of impaired tissue perfusion in a microgravity environment. Chemical data variables related to the dysfunction and the sensors required to measure these variables are reviewed. A technology survey outlines the ability of existing systems to meet these requirements. How the candidate sensing system was subjected to rigorous testing is explored to determine its suitability. Recommendations for follow-on activities are included that would make the commercial system more appropriate for space station applications.

  15. Radar activities of the DFVLR Institute for Radio Frequency Technology

    NASA Technical Reports Server (NTRS)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  16. Compressed Sensing for Chemistry

    NASA Astrophysics Data System (ADS)

    Sanders, Jacob Nathan

    Many chemical applications, from spectroscopy to quantum chemistry, involve measuring or computing a large amount of data, and then compressing this data to retain the most chemically-relevant information. In contrast, compressed sensing is an emergent technique that makes it possible to measure or compute an amount of data that is roughly proportional to its information content. In particular, compressed sensing enables the recovery of a sparse quantity of information from significantly undersampled data by solving an ℓ 1-optimization problem. This thesis represents the application of compressed sensing to problems in chemistry. The first half of this thesis is about spectroscopy. Compressed sensing is used to accelerate the computation of vibrational and electronic spectra from real-time time-dependent density functional theory simulations. Using compressed sensing as a drop-in replacement for the discrete Fourier transform, well-resolved frequency spectra are obtained at one-fifth the typical simulation time and computational cost. The technique is generalized to multiple dimensions and applied to two-dimensional absorption spectroscopy using experimental data collected on atomic rubidium vapor. Finally, a related technique known as super-resolution is applied to open quantum systems to obtain realistic models of a protein environment, in the form of atomistic spectral densities, at lower computational cost. The second half of this thesis deals with matrices in quantum chemistry. It presents a new use of compressed sensing for more efficient matrix recovery whenever the calculation of individual matrix elements is the computational bottleneck. The technique is applied to the computation of the second-derivative Hessian matrices in electronic structure calculations to obtain the vibrational modes and frequencies of molecules. When applied to anthracene, this technique results in a threefold speed-up, with greater speed-ups possible for larger molecules. The implementation of the method in the Q-Chem commercial software package is described. Moreover, the method provides a general framework for bootstrapping cheap low-accuracy calculations in order to reduce the required number of expensive high-accuracy calculations.

  17. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  18. Photonic molecules for application in silicon-on-insulator optical sensors

    NASA Astrophysics Data System (ADS)

    Barea, Luis A. M.; Souza, Mario C. M. M.; Moras, Andre L.; Catellan, Alvaro R. G.; Cirino, Giuseppe A.; Von Zuben, Antonio A. G.; Bassani, Jose W. M.; Frateschi, Newton C.

    2018-02-01

    Optical sensors based on integrated photonics have experienced impressive advancements in the past few decades and represent one of the main sensing solutions in many areas including environmental sensing and medical diagnostics. In this context, optical microcavities are extensively employed as refractive index (RI) sensors, providing sharp optical resonances that allow the detection of very small variations in the surrounding RI. With increased sensitivity, however, the device is subjected to environmental perturbations that can also change the RI, such as temperature variations, and therefore compromise their reliability. In this work, we present the concept and experimental realization of a photonic sensor based on coupled microcavities or Photonic Molecules (PM) in which only one cavity is exposed to the sensing solution, allowing a differential measurement of the RI change. The device consists of an exposed 5-μm radius microdisk resonator coupled to an external clad microring resonator fabricated on silicon-on-insulator (SOI) platform. This design allows good sensitivity (26 nm/RIU) for transverse electrical mode (TE-mode) in a compact footprint (40 × 40 μm2), representing a good solution for real-life applications in which measurement conditions are not easily controllable.

  19. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    PubMed

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  20. Remote Sensing the Thermal and Humidity Structure of the Earth's Atmosphere Using the GPS Radio Occultation Technique: Applications in Climate Studies

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.; Verkhoglyadova, O. P.; Iijima, B.

    2017-12-01

    This presentation introduces the fundamentals of the Global Positioning System radio occultation (GPS RO) remote sensing technique in retrieving atmospheric temperature and humidity information and presents the use of these observations in climate research. Our objective is to demonstrate and establish the GPS RO remote sensing technique as a complementary data set to existing state-of-the-art space-based platforms for climate studies. We show how GPS RO measurements at 1.2-1.6 GHz frequency band can be used to infer the upper tropospheric water vapor and temperature feedbacks and we present a decade-long specific humidity (SH) record from January 2007 until December 2015. We cross-compare the GPS RO-estimated climate feedbacks and the SH long-record with independent data sets from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), the European Center for Medium-range Weather Forecasts Re-Analysis Interim (ERA-Interim), and the Atmospheric Infrared Sounder (AIRS) instrument. These cross-comparisons serve as a performance guide for the GPS-RO observations with respect to other data sets by providing an independent measure of climate feedbacks and humidity short-term trends.

  1. Infrared super-resolution imaging based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Sui, Xiubao; Chen, Qian; Gu, Guohua; Shen, Xuewei

    2014-03-01

    The theoretical basis of traditional infrared super-resolution imaging method is Nyquist sampling theorem. The reconstruction premise is that the relative positions of the infrared objects in the low-resolution image sequences should keep fixed and the image restoration means is the inverse operation of ill-posed issues without fixed rules. The super-resolution reconstruction ability of the infrared image, algorithm's application area and stability of reconstruction algorithm are limited. To this end, we proposed super-resolution reconstruction method based on compressed sensing in this paper. In the method, we selected Toeplitz matrix as the measurement matrix and realized it by phase mask method. We researched complementary matching pursuit algorithm and selected it as the recovery algorithm. In order to adapt to the moving target and decrease imaging time, we take use of area infrared focal plane array to acquire multiple measurements at one time. Theoretically, the method breaks though Nyquist sampling theorem and can greatly improve the spatial resolution of the infrared image. The last image contrast and experiment data indicate that our method is effective in improving resolution of infrared images and is superior than some traditional super-resolution imaging method. The compressed sensing super-resolution method is expected to have a wide application prospect.

  2. Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhang, Jian

    2018-06-01

    A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.

  3. In vivo THz sensing of the cornea of the eye

    NASA Astrophysics Data System (ADS)

    Ozheredov, Ilya; Prokopchuk, Mikhail; Mischenko, Mikhail; Safonova, Tatiana; Solyankin, Petr; Larichev, Andrey; Angeluts, Andrey; Balakin, Alexei; Shkurinov, Alexander

    2018-05-01

    Measurement of the absolute value of the humidity of the cornea of the human eye and its dynamics is of paramount importance for the preservation of eyesight. In the present paper we have demonstrated that terahertz technologies can be practically applied for quantitative measurement of the physiological dynamics of tear film and sensing of corneal tissue hydration. We suggest uses of the equipment for application in clinics and a method for absolute calibration of the values for measurement. The proposed method is fundamentally different from existing and currently available methods of ophthalmological diagnosis. This suggests that the developed technique may have high diagnostic significance and can be used in the study and treatment of several diseases of the ocular surface.

  4. Mobile Phones Democratize and Cultivate Next-Generation Imaging, Diagnostics and Measurement Tools

    PubMed Central

    Ozcan, Aydogan

    2014-01-01

    In this article, I discuss some of the emerging applications and the future opportunities and challenges created by the use of mobile phones and their embedded components for the development of next-generation imaging, sensing, diagnostics and measurement tools. The massive volume of mobile phone users, which has now reached ~7 billion, drives the rapid improvements of the hardware, software and high-end imaging and sensing technologies embedded in our phones, transforming the mobile phone into a cost-effective and yet extremely powerful platform to run e.g., biomedical tests and perform scientific measurements that would normally require advanced laboratory instruments. This rapidly evolving and continuing trend will help us transform how medicine, engineering and sciences are practiced and taught globally. PMID:24647550

  5. Adaptive compressive ghost imaging based on wavelet trees and sparse representation.

    PubMed

    Yu, Wen-Kai; Li, Ming-Fei; Yao, Xu-Ri; Liu, Xue-Feng; Wu, Ling-An; Zhai, Guang-Jie

    2014-03-24

    Compressed sensing is a theory which can reconstruct an image almost perfectly with only a few measurements by finding its sparsest representation. However, the computation time consumed for large images may be a few hours or more. In this work, we both theoretically and experimentally demonstrate a method that combines the advantages of both adaptive computational ghost imaging and compressed sensing, which we call adaptive compressive ghost imaging, whereby both the reconstruction time and measurements required for any image size can be significantly reduced. The technique can be used to improve the performance of all computational ghost imaging protocols, especially when measuring ultra-weak or noisy signals, and can be extended to imaging applications at any wavelength.

  6. Modern fibre-optic coherent lidars for remote sensing

    NASA Astrophysics Data System (ADS)

    Hill, Chris

    2015-10-01

    This paper surveys some growth areas in optical sensing that exploit near-IR coherent laser sources and fibreoptic hardware from the telecoms industry. Advances in component availability and performance are promising benefits in several military and commercial applications. Previous work has emphasised Doppler wind speed measurements and wind / turbulence profiling for air safety, with recent sharp increases in numbers of lidar units sold and installed, and with wider recognition that different lidar / radar wavebands can and should complement each other. These advances are also enabling fields such as microDoppler measurement of sub-wavelength vibrations and acoustic waves, including non-lineof- sight acoustic sensing in challenging environments. To shed light on these different applications we review some fundamentals of coherent detection, measurement probe volume, and parameter estimation - starting with familiar similarities and differences between "radar" and "laser radar". The consequences of changing the operating wavelength by three or four orders of magnitude - from millimetric or centimetric radar to a typical fibre-optic lidar working near 1.5 μm - need regular review, partly because of continuing advances in telecoms technology and computing. Modern fibre-optic lidars tend to be less complicated, more reliable, and cheaper than their predecessors; and they more closely obey the textbook principles of easily adjusted and aligned Gaussian beams. The behaviours of noises and signals, and the appropriate processing strategies, are as expected different for the different wavelengths and applications. For example, the effective probe volumes are easily varied (e.g. by translating a fibre facet) through six or eight orders of magnitude; as the average number of contributing scatterers varies, from <<1 through ~1 to >>1, we should review any assumptions about "many" scatterers and Gaussian statistics. Finally, some much older but still relevant scientific work (by A G Bell, E H Armstrong and their colleagues) is recalled, in the context of remote sensing of acoustic vibrations.

  7. Ultra-Long-Distance Hybrid BOTDA/Ф-OTDR

    PubMed Central

    Fu, Yun; Zhu, Richeng; Xue, Naitian; Lu, Chongyu; Zhang, Bin; Yang, Le; Atubga, David; Rao, Yunjiang

    2018-01-01

    In the distributed optical fiber sensing (DOFS) domain, simultaneous measurement of vibration and temperature/strain based on Rayleigh scattering and Brillouin scattering in fiber could have wide applications. However, there are certain challenges for the case of ultra-long sensing range, including the interplay of different scattering mechanisms, the interaction of two types of sensing signals, and the competition of pump power. In this paper, a hybrid DOFS system, which can simultaneously measure temperature/strain and vibration over 150 km, is elaborately designed via integrating the Brillouin optical time-domain analyzer (BOTDA) and phase-sensitive optical time-domain reflectometry (Ф-OTDR). Distributed Raman and Brillouin amplifications, frequency division multiplexing (FDM), wavelength division multiplexing (WDM), and time division multiplexing (TDM) are delicately fused to accommodate ultra-long-distance BOTDA and Ф-OTDR. Consequently, the sensing range of the hybrid system is 150.62 km, and the spatial resolution of BOTDA and Ф-OTDR are 9 m and 30 m, respectively. The measurement uncertainty of the BOTDA is ± 0.82 MHz. To the best of our knowledge, this is the first time that such hybrid DOFS is realized with a hundred-kilometer length scale. PMID:29587407

  8. Visual Sensing for Urban Flood Monitoring

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201

  9. Field Data Collection: an Essential Element in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Pettinger, L. R.

    1971-01-01

    Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.

  10. Future Plans in US Flight Missions: Using Laser Remote Sensing for Climate Science Observations

    NASA Technical Reports Server (NTRS)

    Callahan, Lisa W.

    2010-01-01

    Laser Remote Sensing provides critical climate science observations necessary to better measure, understand, model and predict the Earth's water, carbon and energy cycles. Laser Remote Sensing applications for studying the Earth and other planets include three dimensional mapping of surface topography, canopy height and density, atmospheric measurement of aerosols and trace gases, plume and cloud profiles, and winds measurements. Beyond the science, data from these missions will produce new data products and applications for a multitude of end users including policy makers and urban planners on local, national and global levels. NASA Missions in formulation including Ice, Cloud, and land Elevation Satellite (ICESat 2) and the Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI), and future missions such as the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS), will incorporate the next generation of LIght Detection And Ranging (lidar) instruments to measure changes in the surface elevation of the ice, quantify ecosystem carbon storage due to biomass and its change, and provide critical data on CO 2 in the atmosphere. Goddard's plans for these instruments and potential uses for the resulting data are described below. For the ICESat 2 mission, GSFC is developing a micro-pulse multi-beam lidar. This instrument will provide improved ice elevation estimates over high slope and very rough areas and result in improved lead detection for sea ice estimates. Data about the sea ice and predictions related to sea levels will continue to help inform urban planners as the changes in the polar ice accelerate. DESDynI is planned to be launched in 2017 and includes both lidar and radar instruments. GSFC is responsible for the lidar portion of the DESDynI mission and is developing a scanning laser altimeter that will measure the Earth's topography, the structure of tree canopies, biomass, and surface roughness. The DESDynI lidar will also measure and predict the response of ice masses to climate change and impact on sea level. Data from the lidar will ultimately be fused with radar data products with heretofore unseen results and applications. The 3-D structure of forests is critical to understanding the impact of land use and associated landscape changes on the habitat of life forms and consequently on their biodiversity. Lidar instruments are also under development to measure trace gases in the atmospheric such as CO2 and methane. GSFC is developing an active measurement approach to determine the CO2 column density and surface pressure for the proposed ASCENDS mission. The objective of this approach is to produce data on the amounts of anthropogenic and organic CO2 in the atmosphere with sufficient accuracy to meet the needs of target users including state, federal and international users as well as policy-related legislative, regulatory, and voluntary carbon-related management groups local to international interests. In summary, NASA will continue to rely on laser remote sensing for critical climate science observations and is committed to the development of the next generation of lidar instruments for a range of applications.

  11. A high throughput geocomputing system for remote sensing quantitative retrieval and a case study

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting

    2011-12-01

    The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.

  12. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  13. Development of a pulsed 9.5 micron lidar for regional scale O3 measurement

    NASA Technical Reports Server (NTRS)

    Stewart, R. W.

    1980-01-01

    A pulsed infrared lidar system designed for application to the remote sensing of atmospheric trace gases from an airborne platform is described. The system is also capable of measuring the infrared backscatter characteristics of the ocean surface, terrain, cloud, and aerosol targets. The lidar employed is based on dual wavelength pulse energy measurements in the 9-11 micrometer wavelength region.

  14. Mapping CDOM Concentration in Waters Influenced by the Mississippi River Plume

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; DelCastillo, Carlos E.; Powell, Rodney T.; DSa, Eurico; Spiering, Bruce

    2002-01-01

    Colored dissolved organic matter (CDOM) is often an important component of the organic carbon pool in river-dominated coastal margins. CDOM directly influences remote sensing applications through its strong absorption in the UV and blue regions of the spectrum. This effect can complicate the use of chlorophyll a retrieval algorithms and phytoplankton production models that are based on remotely sensed ocean color. As freshwater input is the principle source of CDOM in coastal margins, CDOM distribution can often be described by conservative mixing with open ocean waters and may serve as an optical tracer of riverine water. Hence, there is considerable interest in the ability to accurately measure and map CDOM concentrations as well as understand the processes that govern the optical properties and distribution of CDOM in coastal environments. We are examining CDOM dynamics in the waters influenced by the Mississippi River plume. Our program incorporates discrete samples, flow-through measurements, and remote sensing. CDOM absorption spectra of discrete samples are measured at sea using a portable, multiple pathlength waveguide system. A SAFire multi-spectral fluorescence meter provides spectral characterization of CDOM (fluorescence and absorption) using a ship flow-through system for continuous surface mapping. In situ reflectance spectra are obtained by a hand held spectroradiometer. Remotely sensed images are obtained from the SeaWiFS and CRIS (Coastal Research Imaging Spectrometer) instruments. We describe here the instruments used, sampling protocols employed, and the relationships derived between in situ measurements and remotely sensed data for this optically complex environment.

  15. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentile, Carmelo; Luzi, Guido

    2014-05-27

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions,more » with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.« less

  16. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  17. Airborne remote sensing assessment of the damage to cotton caused by spray drift from aerially applied glyphosate through spray deposition measurements

    USDA-ARS?s Scientific Manuscript database

    Off-target drift of aerially applied glyphosate can cause plant injury, which is of great concern to farmers and aerial applicators. To determine the extent of crop injury due to near-field drift, an experiment was conducted with a single aerial application of glyphosate. For identification of the d...

  18. Polarimetric Hyperspectral Imaging Systems and Applications

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Mahoney, Colin; Reyes, George; Baw, Clayton La; Li, G. P.

    1996-01-01

    This paper reports activities in the development of AOTF Polarimetric Hyperspectral Imaging (PHI) Systems at JPL along with field observation results for illustrating the technology capabilities and advantages in remote sensing. In addition, the technology was also used to measure thickness distribution and structural imperfections of silicon-on-silicon wafers using white light interference phenomenon for demonstrating the potential in scientific and industrial applications.

  19. Ringing phenomenon based whispering-gallery-mode sensing

    PubMed Central

    Ye, Ming-Yong; Shen, Mei-Xia; Lin, Xiu-Min

    2016-01-01

    Highly sensitive sensing is one of the most important applications of whispering-gallery-mode (WGM) microresonators, which is usually accomplished through a tunable continuous-wave laser sweeping over a whispering-gallery mode with the help of a fiber taper in a relative slow speed. It is known that if a tunable continuous-wave laser sweeps over a high quality whispering-gallery mode in a fast speed, a ringing phenomenon will be observed. The ringing phenomenon in WGM microresonators is mainly used to measure the Q factors and mode-coupling strengths. Here we experimentally demonstrate that the WGM sensing can be achieved based on the ringing phenomenon. This kind of sensing is accomplished in a much shorter time and is immune to the noise caused by the laser wavelength drift. PMID:26796871

  20. Effective application of optical sensing technology for sustainable liquid level sensing and rainfall measurement

    NASA Astrophysics Data System (ADS)

    Afzal, Muhammad Hassan Bin

    2015-05-01

    Rainfall measurement is performed on regular basis to facilitate effectively the weather stations and local inhabitants. Different types of rain gauges are available with different measuring principle for rainfall measurement. In this research work, a novel optical rain sensor is designed, which precisely calculate the rainfall level according to rainfall intensity. This proposed optical rain sensor model introduced in this paper, which is basically designed for remote sensing of rainfall and it designated as R-ORMS (Remote Optical Rainfall Measurement sensor). This sensor is combination of some improved method of tipping bucket rain gauge and most of the optical hydreon rain sensor's principle. This optical sensor can detect the starting time and ending time of rain, rain intensity and rainfall level. An infrared beam from Light Emitting Diode (LED) through powerful convex lens can accurately determines the diameter of each rain drops by total internal reflection principle. Calculations of these accumulative results determine the rain intensity and rainfall level. Accurate rainfall level is determined by internal optical LED based sensor which is embedded in bucket wall. This internal sensor is also following the total internal reflection (TIR) principle and the Fresnel's law. This is an entirely novel design of optical sensing principle based rain sensor and also suitable for remote sensing rainfall level. The performance of this proposed sensor has been comprehensively compared with other sensors with similar attributes and it showed better and sustainable result. Future related works have been proposed at the end of this paper, to provide improved and enhanced performance of proposed novel rain sensor.

  1. Sensitivity Analysis in RIPless Compressed Sensing

    DTIC Science & Technology

    2014-10-01

    SECURITY CLASSIFICATION OF: The compressive sensing framework finds a wide range of applications in signal processing and analysis. Within this...Analysis of Compressive Sensing Solutions Report Title The compressive sensing framework finds a wide range of applications in signal processing and...compressed sensing. More specifically, we show that in a noiseless and RIP-less setting [11], the recovery process of a compressed sensing framework is

  2. Sea Ice Remote Sensing Using Surface Reflected GPS Signals

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Maslanik, James; Zavorotny, Valery U.; Axelrad, Penina; Katzberg, Stephen J.

    2000-01-01

    This paper describes a new research effort to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. Our experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and freshwater ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska indicating correlation between forward-scattered GPS returns and RADARSAT backscattered measurements.

  3. A temperature control design for a tapered element oscillating microbalance sensing surface

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A design study is presented which shows that a tapered element oscillating microbalance can be adapted for temperature control under space application by mating with multistage thermoelectric coolers in such a way that an integral structure evolves. The control of the temperature of the sensing surface can be achieved in a number of ways. An indirect method which uses a measurement of the absorbed power is recommended. The design goals can be met if a relaxation of the power requirement can be considered.

  4. Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research

    USGS Publications Warehouse

    Maxwell, S.K.; Meliker, J.R.; Goovaerts, P.

    2010-01-01

    In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps.

  5. A simple condition for uniqueness of the absolutely continuous ergodic measure and its application to economic models

    NASA Astrophysics Data System (ADS)

    Sato, Kenji; Yano, Makoto

    2012-09-01

    Unique existence of the absolutely continuous ergodic measure, or existence of ergodic chaos (in a strong sense), has been considered important in economics since it explains the mechanism underlying economic fluctuations. In the present study, a simple sufficient condition for ergodic chaos is proved and applied to economic models.

  6. Bioluminescence Risk Detection Aid

    DTIC Science & Technology

    2010-01-01

    Delivery Vehicle, or diver) bioluminescence, based on local environmental data, in-situ measurements, and simple radiative transfer models. This work...vehicle diving to 5.5 m. Green = REMUS vehicle diving to 6.5 m. Observations were corrected for the angle of observation. IMPACT /APPLICATIONS...will sense vehicle-stimulated bioluminesce, measure local environmental conditions and ingest the information to solve a simple radiative transfer

  7. Elastic and plastic strain measurement in high temperature environment using laser speckle

    NASA Technical Reports Server (NTRS)

    Chiang, Fu-Pen

    1992-01-01

    Two laser speckle methods are described to measure strain in high temperature environment and thermal strain caused by high temperature. Both are non-contact, non-destructive and remote sensing techniques that can be automated. The methods have different but overlapping ranges of application with one being more suitable for large plastic deformation.

  8. Low-cost scalable quartz crystal microbalance array for environmental sensing

    NASA Astrophysics Data System (ADS)

    Muckley, Eric S.; Anazagasty, Cristain; Jacobs, Christopher B.; Hianik, Tibor; Ivanov, Ilia N.

    2016-09-01

    Proliferation of environmental sensors for internet of things (IoT) applications has increased the need for low-cost platforms capable of accommodating multiple sensors. Quartz crystal microbalance (QCM) crystals coated with nanometer-thin sensor films are suitable for use in high-resolution ( 1 ng) selective gas sensor applications. We demonstrate a scalable array for measuring frequency response of six QCM sensors controlled by low-cost Arduino microcontrollers and a USB multiplexer. Gas pulses and data acquisition were controlled by a LabVIEW user interface. We test the sensor array by measuring the frequency shift of crystals coated with different compositions of polymer composites based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) while films are exposed to water vapor and oxygen inside a controlled environmental chamber. Our sensor array exhibits comparable performance to that of a commercial QCM system, while enabling high-throughput 6 QCM testing for under $1,000. We use deep neural network structures to process sensor response and demonstrate that the QCM array is suitable for gas sensing, environmental monitoring, and electronic-nose applications.

  9. Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing

    NASA Astrophysics Data System (ADS)

    Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin

    2016-03-01

    New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.

  10. Accuracy Dimensions in Remote Sensing

    NASA Astrophysics Data System (ADS)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.

    2018-04-01

    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice-oriented approaches are evaluated too, finally widely-used dimension metrics like Root Mean Squared Error (RMSE) or confusion matrix are discussed. The authors present data quality features of well-defined and poorly defined object. The central part of the study is the land cover mapping, describing its accuracy management model, presented relevance and uncertainty measures of its influencing quality dimensions. In the paper theory is supported by a case study, where the remote sensing technology is used for supporting the area-based agricultural subsidies of the European Union, in Hungarian administration.

  11. Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY.

    PubMed

    Wang, Yixian; Kececi, Kaan; Mirkin, Michael V; Mani, Vigneshwaran; Sardesai, Naimish; Rusling, James F

    2013-02-01

    Solid-state nanopores have been widely employed in sensing applications from Coulter counters to DNA sequencing devices. The analytical signal in such experiments is the change in ionic current flowing through the orifice caused by the large molecule or nanoparticle translocation through the pore. Conceptually similar nanopipette-based sensors can offer several advantages including the ease of fabrication and small physical size essential for local measurements and experiments in small spaces. This paper describes the first evaluation of nanopipettes with well characterized geometry for resistive-pulse sensing of Au nanoparticles (AuNP), nanoparticles coated with an allergen epitope peptide layer, and AuNP-peptide particles with bound antipeanut antibodies (IgY) on the peptide layer. The label-free signal produced by IgY-conjugated particles was strikingly different from those obtained with other analytes, thus suggesting the possibility of selective and sensitive resistive-pulse sensing of antibodies.

  12. Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY†

    PubMed Central

    Wang, Yixian; Kececi, Kaan; Mani, Vigneshwaran; Sardesai, Naimish

    2013-01-01

    Solid-state nanopores have been widely employed in sensing applications from Coulter counters to DNA sequencing devices. The analytical signal in such experiments is the change in ionic current flowing through the orifice caused by the large molecule or nanoparticle translocation through the pore. Conceptually similar nanopipette-based sensors can offer several advantages including the ease of fabrication and small physical size essential for local measurements and experiments in small spaces. This paper describes the first evaluation of nanopipettes with well characterized geometry for resistive-pulse sensing of Au nanoparticles (AuNP), nanoparticles coated with an allergen epitope peptide layer, and AuNP–peptide particles with bound antipeanut antibodies (IgY) on the peptide layer. The label-free signal produced by IgY-conjugated particles was strikingly different from those obtained with other analytes, thus suggesting the possibility of selective and sensitive resistive-pulse sensing of antibodies. PMID:23991282

  13. A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587

  14. Digital FMCW for ultrawideband spectrum sensing

    NASA Astrophysics Data System (ADS)

    Cheema, A. A.; Salous, S.

    2016-08-01

    An ultrawideband digital frequency-modulated continuous wave sensing engine is proposed as an alternative technique for cognitive radio applications. A dual-band demonstrator capable of sensing 750 MHz bandwidth in 204.8 µs is presented. Its performance is illustrated from both bench tests and from real-time measurements of the GSM 900 band and the 2.4 GHz wireless local area network (WLAN) band. The measured sensitivity and noise figure values are -90 dBm for a signal-to-noise ratio margin of at least 10 dB and ~13-14 dB, respectively. Data were collected over 24 h and were analyzed by using the energy detection method. The obtained results show the time variability of occupancy, and considerable sections of the spectrum are unoccupied. In addition, unlike the cyclic temporal variations of spectrum occupancy in the GSM 900 band, the detected variations in the 2.4 GHz WLAN band have an impulsive nature.

  15. FBG in PVC foils for monitoring the knee joint movement during the rehabilitation process.

    PubMed

    Rocha, R P; Silva, A F; Carmo, J P; Correia, J H

    2011-01-01

    This paper presents a sensing electronic-free wearable solution for monitoring the body kinematics. The measuring of the knee movements, flexion and extension, with the corresponding joint acting as the rotation axis is shown as working principle. The proposed sensing system is based on a single optical Fiber-Bragg Grating (FBG) with a resonance wavelength of 1547.76 nm. The optical fiber with the FBG is placed inside a new polymeric foil composed by three flexible layers which facilitates its placement in the anatomic parts under investigation while maintaining full sensing capabilities. The way the device is placed in the specific body part to be measured enables the clear detection of the movements in respect to the joint. The proposed solution was tested using a prototype that was built to evaluate the device under different condition tests and also to assess the system's consistency. The designed and fabricated system demonstrates clear advantages in medical fields like physical therapy applications as optical fiber is not affected by electromagnetic interference nor does the system needs complex and expensive electronic systems and mechanical parts. Another advantage is the possibility to measure, record and evaluate specific mechanical parameters of the limbs' motion. Patients with bone, muscular and joint related health conditions, as well as athletes, are within the most important end-user applications.

  16. Flexible corner cube retroreflector array for temperature and strain sensing† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13284k

    PubMed Central

    Khalid, Muhammad Waqas; Ahmed, Rajib; Yetisen, Ali K.

    2018-01-01

    Optical sensors for detecting temperature and strain play a crucial role in the analysis of environmental conditions and real-time remote sensing. However, the development of a single optical device that can sense temperature and strain simultaneously remains a challenge. Here, a flexible corner cube retroreflector (CCR) array based on passive dual optical sensing (temperature and strain) is demonstrated. A mechanical embossing process was utilised to replicate a three-dimensional (3D) CCR array in a soft flexible polymer film. The fabricated flexible CCR array samples were experimentally characterised through reflection measurements followed by computational modelling. As fabricated samples were illuminated with a monochromatic laser beam (635, 532, and 450 nm), a triangular shape reflection was obtained at the far-field. The fabricated flexible CCR array samples tuned retroreflected light based on external stimuli (temperature and strain as an applied force). For strain and temperature sensing, an applied force and temperature, in the form of weight suspension, and heat flow was applied to alter the replicated CCR surface structure, which in turn changed its optical response. Directional reflection from the heated flexible CCR array surface was also measured with tilt angle variation (max. up to 10°). Soft polymer CCRs may have potential in remote sensing applications, including measuring the temperature in space and in nuclear power stations. PMID:29568510

  17. Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging.

    PubMed

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2009-03-01

    A magnetic resonance spectroscopic imaging (MRSI) pulse sequence based on proton-echo-planar-spectroscopic-imaging (PEPSI) is introduced that measures two-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3-T whole-body scanner equipped with a 12-channel array coil. Four-step interleaved phase encoding and fourfold SENSE acceleration were used to encode a 16 x 16 spatial matrix with a 390-Hz spectral width. Comparison with conventional PEPSI and PEPSI with fourfold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor-related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of inositol, choline, creatine, and N-acetyl-aspartate (NAA) in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement.

  18. Experimental Investigation on Acousto-Ultrasonic Sensing Using Polarization-Maintaining Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wang, Gang; Banks, Curtis E.

    2015-01-01

    This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while using reduced number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor in a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves and they are oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It is shown that the PM-FBG sensor system is able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acousto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications.

  19. Experimental Investigation on Acousto-ultrasonic Sensing Using Polarization-Maintaining Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wang, Gag; Banks, Curtis E.

    2016-01-01

    This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while reducing the number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor attached to a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves that were oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It was shown that the PM-FBG sensor system was able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acouto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications. Nomenclature.

  20. Mobile robot sense net

    NASA Astrophysics Data System (ADS)

    Konolige, Kurt G.; Gutmann, Steffen; Guzzoni, Didier; Ficklin, Robert W.; Nicewarner, Keith E.

    1999-08-01

    Mobile robot hardware and software is developing to the point where interesting applications for groups of such robots can be contemplated. We envision a set of mobots acting to map and perform surveillance or other task within an indoor environment (the Sense Net). A typical application of the Sense Net would be to detect survivors in buildings damaged by earthquake or other disaster, where human searchers would be put a risk. As a team, the Sense Net could reconnoiter a set of buildings faster, more reliably, and more comprehensibly than an individual mobot. The team, for example, could dynamically form subteams to perform task that cannot be done by individual robots, such as measuring the range to a distant object by forming a long baseline stereo sensor form a pari of mobots. In addition, the team could automatically reconfigure itself to handle contingencies such as disabled mobots. This paper is a report of our current progress in developing the Sense Net, after the first year of a two-year project. In our approach, each mobot has sufficient autonomy to perform several tasks, such as mapping unknown areas, navigating to specific positions, and detecting, tracking, characterizing, and classifying human and vehicular activity. We detail how some of these tasks are accomplished, and how the mobot group is tasked.

  1. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy

    PubMed Central

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-01-01

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users’ health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users’ physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson’s disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy. PMID:25808763

  2. Blood flow measurement in extracorporeal circulation using self-mixing laser diode

    NASA Astrophysics Data System (ADS)

    Cattini, Stefano; Norgia, Michele; Pesatori, Alessandro; Rovati, Luigi

    2010-02-01

    To measure blood flow rate in ex-vivo circulation, we propose an optical Doppler flowmeter based on the self-mixing effect within a laser diode (SM-LD). Advantages in adopting SM-LD techniques derive from reduced costs, ease of implementation and limited size. Moreover, the provided contactless sensing allows sensor reuse, hence further cost reduction. Preliminary measurements performed on bovine blood are reported, thus demonstrating the applicability of the proposed measurement method.

  3. Mathematics at the Mall.

    ERIC Educational Resources Information Center

    Fennell, Francis (Skip)

    1998-01-01

    Presents two activities involving number sense in and around the shopping mall. Activities include estimation, measurement, and applications using percent. Concludes that it is appropriate to help students visualize numbers, particularly large numbers, in a context that is familiar and will be constantly reinforced. (ASK)

  4. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  5. Quantum control and engineering of single spins in diamond

    NASA Astrophysics Data System (ADS)

    Toyli, David M.

    The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical properties, these measurements suggest that NV center sensors could be employed in a diverse range of applications such as intracellular thermometry, microfuidic thermometry, and scanning thermal microscopy. Finally, while the development of NV center technologies is motivated by the desirable properties of isolated defects in bulk diamond, the realization of many of these technologies, such as those using the spin as a proximal sensor, require a means to control the placement of NV centers within the diamond lattice. We demonstrate a method to pattern defect formation on sub-100-nm length scales using ion implantation and electron beam lithography techniques. The ability to engineer large scale arrays of NV centers with this method holds promise for a variety of applications in quantum information science and nanoscale sensing.

  6. a New Approach for Accuracy Improvement of Pulsed LIDAR Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Huang, W.; Zhou, X.; He, C.; Li, X.; Huang, Y.; Zhang, L.

    2018-05-01

    In remote sensing applications, the accuracy of time interval measurement is one of the most important parameters that affect the quality of pulsed lidar data. The traditional time interval measurement technique has the disadvantages of low measurement accuracy, complicated circuit structure and large error. A high-precision time interval data cannot be obtained in these traditional methods. In order to obtain higher quality of remote sensing cloud images based on the time interval measurement, a higher accuracy time interval measurement method is proposed. The method is based on charging the capacitance and sampling the change of capacitor voltage at the same time. Firstly, the approximate model of the capacitance voltage curve in the time of flight of pulse is fitted based on the sampled data. Then, the whole charging time is obtained with the fitting function. In this method, only a high-speed A/D sampler and capacitor are required in a single receiving channel, and the collected data is processed directly in the main control unit. The experimental results show that the proposed method can get error less than 3 ps. Compared with other methods, the proposed method improves the time interval accuracy by at least 20 %.

  7. Resonant efficiency improvement design of piezoelectric biosensor for bacteria gravimetric sensing.

    PubMed

    Tsai, Jang-Zern; Chen, Ching-Jung; Shie, Dung-Ting; Liu, Jen-Tsai

    2014-01-01

    The piezoelectric biosensor have been widely used in ultra-small mass detection of biomolecular, based on PZT piezoelectric material can create a variety of compositions geometrically; it could widely develop a high-frequency resonator and measure the change of the slightest mass while improve the limited detection simultaneously. Therefore, the piezoelectric biosensor of this study was fabricated by a spin-coating method and backside etching process for improving the characteristic of piezoelectric biosensor. The result exhibited that the 250 μm × 250 μm working size has the most favorable piezoelectric characteristic. The tunability was approximately 38.56 % and it showed that reducing the substrate thickness could obtain a clear resonance signal in a range of 60 to 380 MHz. In theory calculated for gravimetric sensing, it could achieve 0.1 ng sensing sensitivity. In gravimetric sensing, the sensing range was between 50,000~100,000 CFU/ml. Sensing range was lower in clinical urinary tract infection (100,000 CFU/ml), thus demonstrating its usefulness for preventive medicine. It can understand the piezoelectric sensor of this study has potential application in the future for biomedical gravimetric sensing.

  8. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization of sensor positioning for measuring soil moisture are scopes of this work and initial results of these issues will be presented.

  9. Development and experimental characterization of a new non contact sensor for blade tip timing

    NASA Astrophysics Data System (ADS)

    Brouckaert, Jean-Francois; Marsili, Roberto; Rossi, Gianluca; Tomassini, Roberto

    2012-06-01

    Performances of blade tip timing measurement systems (BTT), recently used for non contact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics. The sensors used for BTT generate pulses, to be used also for precise measurements of turbine blades time of arrival. All the literature on this measurement techniques do not address this problem in a clear way, defining the relevant dynamic and static sensor characteristics, fundamental for this application. Till now proximity sensors used are based on optical, capacitive, eddy current and microwave measuring principle. Also pressure sensors has been used. In this paper a new sensing principle is proposed. A proximity sensor based on magnetoresistive sensing element has been assembled end tested. A simple and portable test bench with variable speed, blade tip width, variable clearance was built and used in order to characterize the main sensor performances.

  10. Added value products for imaging remote sensing by processing actual GNSS reflectometry delay doppler maps

    NASA Astrophysics Data System (ADS)

    Schiavulli, Domenico; Frappart, Frédéric; Ramilien, Guillaume; Darrozes, José; Nunziata, Ferdinando; Migliaccio, Maurizio

    2016-04-01

    Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative and promising tool for remote sensing. It is based on the exploitation of GNSS signals reflected off Earth's surface as signals of opportunity to infer geophysical information of the reflecting surface. The main advantages of GNSS-R with respect dedicated sensors are: the unprecedented spatial-temporal coverage due to the availability of a great amount of transmitting satellite, e.g. GPS, Galileo, Glonass, etc…, long term GNSS mission life and cost effectiveness. In fact only a simple receiver is needed. In the last years several works demonstrated the meaningful of this technique in several Earth Observation applications. All these applications presented results obtained by using a receiver mounted on an aircraft or on a fixed platform. Moreover, space borne missions have been launched or are planned: UK-DMC, TechDemoSat-1 (TDS-1), NASA CYGNSS, Geros ISS. Practically, GNSS-R can be seen as a bistatic radar system where the GNSS satellites continuously transmit the L-band all-weather night-and-day signals that are reflected off a surface, called Glistening Zone (GZ), and a receiver measures the scattered microwave signals in terms of Delay-Doppler maps (DDMs) or delay waveforms. These two products have been widely studied in the literature to extract compact parameters for different remote sensing applications. However, products measured in the Delay Doppler (DD) domain are not able to provide any spatial information of the scattering scene. This could represent a drawback for applications related to imaging remote sensing, e.g. target detection, sea/land and sea/ice transition, oil spill detection, etc…. To overcome these limitations some deconvolution techniques have been proposed in the state of the art aiming at the reconstruction of a radar image of the observed scene by processing the measured DDMs. These techniques have been tested on DDMs related to simulated marine scenario including areas with different wind speed, oil spill, non-homogeneous area and cyclone. In this work a deconvolution technique based on the 2-D Truncated Singular Value Decomposition (TSVD) approach is used to process, for the first time, a real DDM measured by the TDS-1 mission to generate a radar image of the observed scene. The considered DDMs are related to marine scenario including non-homogenous area, i.e. sea/land and sea/ice transition. These non-homogeneous area provide a strong scattering contribution in the DD domain but it is not possible to extract any other information by analyzing the DDM. In the other hand, after the 2-D TSVD technique application a radar image of the observed scenario is provided where the transition between sea and non-homogeneous elements is reconstructed and well located in the spatial domain. Finally, in this work we demonstrate the soundness of the proposed approach able to provide an added value product for imaging remote sensing to improve/complement dedicated sensors.

  11. Distributed fiber optical sensing of oxygen with optical time domain reflectometry.

    PubMed

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-05-31

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.

  12. Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry

    PubMed Central

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-01-01

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. PMID:23727953

  13. Tenth Biennial Coherent Laser Radar Technology and Applications Conference

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Compiler)

    1999-01-01

    The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.

  14. Remote sensing applications for transportation and traffic engineering studies: A review of the literature

    NASA Technical Reports Server (NTRS)

    Epps, J. W.

    1973-01-01

    Current references were surveyed for the application of remote sensing to traffic and transportation studies. The major problems are presented that concern traffic engineers and transportation managers, and the literature references that discuss remote sensing applications are summarized.

  15. Utilization of Infrared Fiber Optic in the Automotive Industry

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  16. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression

    PubMed Central

    Baeza, F. Javier; Garcés, Pedro

    2017-01-01

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material’s strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure. PMID:29186797

  17. Investigation of the confocal wavefront sensor and its application to biological microscopy.

    PubMed

    Shaw, Michael; O'Holleran, Kevin; Paterson, Carl

    2013-08-12

    Wavefront sensing in the presence of background light sources is complicated by the need to restrict the effective depth of field of the wavefront sensor. This problem is particularly significant in direct wavefront sensing adaptive optic (AO) schemes for correcting imaging aberrations in biological microscopy. In this paper we investigate how a confocal pinhole can be used to reject out of focus light whilst still allowing effective wavefront sensing. Using a scaled set of phase screens with statistical properties derived from measurements of wavefront aberrations induced by C. elegans specimens, we investigate and quantify how the size of the pinhole and the aberration amplitude affect the transmitted wavefront. We suggest a lower bound for the pinhole size for a given aberration strength and quantify the optical sectioning provided by the system. For our measured aberration data we find that a pinhole of size approximately 3 Airy units represents a good compromise, allowing effective transmission of the wavefront and thin optical sections. Finally, we discuss some of the practical implications of confocal wavefront sensing for AO systems in microscopy.

  18. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression.

    PubMed

    Galao, Oscar; Baeza, F Javier; Zornoza, Emilio; Garcés, Pedro

    2017-11-24

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material's strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure.

  19. Predicting fruit fly's sensing rate with insect flight simulations.

    PubMed

    Chang, Song; Wang, Z Jane

    2014-08-05

    Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.

  20. A survey of natural aggregate properties and characteristics important in remote sensing and airborne geophysics

    USGS Publications Warehouse

    Knepper, D.H.; Langer, W.H.; Miller, S.

    1995-01-01

    Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.

  1. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    NASA Astrophysics Data System (ADS)

    Anheier, N. C., Jr.; McDonald, C. E.; Cuta, J. M.; Cuta, F. M.; Olsen, K. B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. Pacific Northwest Laboratory (PNL) researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH4(+)). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  2. Continuous and embedded solutions for SHM of concrete structures using changing electrical potential in self-sensing cement-based composites

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Garcia-Macias, Enrique; D'Alessandro, Antonella; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo

    2017-04-01

    Interest in the concept of self-sensing structural materials has grown in recent years due to its potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for monitoring applications due to their numerous possible field applications, their ease of use and long-term stability. Additionally, cement-based sensors offer a unique opportunity for structural health monitoring of civil structures because of their compatibility with new or existing infrastructure. Particularly, the addition of conductive carbon nanofillers into a cementitious matrix provides a self-sensing structural material with piezoresistive characteristics sensitive to deformations. The strain-sensing ability is achieved by correlating the external loads with the variation of specific electrical parameters, such as the electrical resistance or impedance. Selection of the correct electrical parameter for measurement to correlate with features of interest is required for the condition assessment task. In this paper, we investigate the potential of using altering electrical potential in cement-based materials doped with carbon nanotubes to measure strain and detect damage in concrete structures. Experimental validation is conducted on small-scale specimens including a steel-reinforced beam of conductive cement paste. Comparisons are made with constant electrical potential and current methods commonly found in the literature. Experimental results demonstrate the ability of the changing electrical potential at detecting features important for assessing the condition of a structure.

  3. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  4. Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation

    USDA-ARS?s Scientific Manuscript database

    Surface soil moisture is critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purpo...

  5. Compensating for environmental variability in the thermal inertia approach to remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.

    1976-01-01

    A procedure is developed for removing data scatter in the thermal-inertia approach to remote sensing of soil moisture which arises from environmental variability in time and space. It entails the utilization of nearby National Weather Service air temperature measurements to normalize measured diurnal surface temperature variations to what they would have been for a day of standard diurnal air temperature variation, arbitrarily assigned to be 18 C. Tests of the procedure's basic premise on a bare loam soil and a crop of alfalfa indicate it to be conceptually sound. It is possible that the technique could also be useful in other thermal-inertia applications, such as lithographic mapping.

  6. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  7. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    PubMed

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  8. A numerical analysis of GeO2-doped multi-step index single-mode fiber for stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Ren, G.; Dong, Y.; Li, H.; Xiao, S.; Wu, B.; Jian, S.

    2018-06-01

    A numerical analysis of a GeO2-doped single-mode optical fiber with a multi-step index core toward stimulated Brillouin scattering (SBS) based dual-parameter sensing applications is proposed. Adjusting the parameters in the fiber design, higher-order acoustic modes are sufficiently enhanced, making the fiber feasible for discriminative measurements of temperature and strain in the meantime. Numerical simulations indicate that the Brillouin frequency shifts and peak SBS efficiencies are strongly dependent on the doping concentration and the thickness of low-index ring in the proposed fiber. With appropriate structural and optical parameters, this fiber could support two distinct acoustic modes with comparable peak SBS efficiencies and well-spaced Brillouin frequency shifts. The sensing characteristics contributed by the dual-peak feature in the Brillouin gain spectrum are explored. Calculated accuracies of temperature and strain in simultaneous measurements can be up to 0.64 °C and 15.4 με, respectively. The proposed fiber might have potential applications for long-haul distributed dual-parameter simultaneous measurements.

  9. Polarization-based index of refraction and reflection angle estimation for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Voelz, David G.; Creusere, Charles D.

    2007-10-01

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  10. Evaluation of the amperex 56 TVP photomultiplier. [characteristics: photoelectron time spread, anode pulse amplitude and photocathode sensing area

    NASA Technical Reports Server (NTRS)

    Lo, C. C.; Leskovar, B.

    1976-01-01

    Characteristics were measured for the Amperex 56 TVP 42 mm-diameter photomultiplier. Some typical photomultiplier characteristics-such as gain, dark current, transit and rise times-are compared with data provided. Photomultiplier characteristics generally not available such as the single photoelectron time spread, the relative collection efficiency, the relative anode pulse amplitude as a function of the voltage between the photocathode and focusing electrode, and the position of the photocathode sensing area were measured and are discussed for two 56 TVP's. The single photoelectron time spread, the relative collection efficiency, and the transit time difference as a function of the voltage between photocathode and focusing electrode were also measured and are discussed, particularly with respect to the optimization of photomultiplier operating conditions for timing applications.

  11. Local Positioning Systems in (Game) Sports

    PubMed Central

    Leser, Roland; Baca, Arnold; Ogris, Georg

    2011-01-01

    Position data of players and athletes are widely used in sports performance analysis for measuring the amounts of physical activities as well as for tactical assessments in game sports. However, positioning sensing systems are applied in sports as tools to gain objective information of sports behavior rather than as components of intelligent spaces (IS). The paper outlines the idea of IS for the sports context with special focus to game sports and how intelligent sports feedback systems can benefit from IS. Henceforth, the most common location sensing techniques used in sports and their practical application are reviewed, as location is among the most important enabling techniques for IS. Furthermore, the article exemplifies the idea of IS in sports on two applications. PMID:22163725

  12. Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.

  13. Silicon Mach-Zehnder interferometer racetrack microring for sensing

    NASA Astrophysics Data System (ADS)

    Xiong, Yule; Ye, Winnie N.

    2014-03-01

    SOI-based microring resonators (MRRs) have attracted extensive attentions as ultra-compact sensors. Recently, a new structure design combining a ring and a Mach-Zehnder interferometer (MZI) was proposed as sensors for biomedical applications, and as modulators for communications applications. In this design, the MZI uses two identical couplers, where one arm is formed by connecting the access waveguide of the couplers, while the other arm is part of the microring. Such a device may have only one major resonance with a high extinction ratio in a very broad wavelength span (quasi-free spectral range, quasi-FSR), which offers a very large measurement range for sensing applications. 2×2 multimode interference (MMI) couplers are used to couple the microring and the bus waveguides as MMI couplers have broader wavelength responses. We present the first experimental demonstration of the MMI-coupled MZI racetrack microrings for sensing applications. Two types of MMI-coupled MZI racetrack microrings are discussed: one with wire waveguides, and the other using slotted waveguides. For the MZI racetrack microring using wire waveguides, we achieve a quasi-FSR of 34.3 nm near the wavelength of 1520 nm. The corresponding major resonance of the MZI racetrack microring demonstrates a high extinction ratio of ~22.4 dB with a full-width-half-maximum (FWHM) of 1.94 nm, and a quality factor Q of ~800. On the other hand, the quasi-FSR of the MZI racetrack microring with slot waveguides is 23.2 nm near the wavelength of 1540 nm; and the extinction ratio of the major resonance is ~24.5 dB with λFWHM=0.82 nm and Q=~1,900. To demonstrate the uses for sensing applications, we measure the resonance shifts corresponding to the concentration change of the ambient aqueous solutions of sucrose. DI water is used as the reference for calibration to avoid any other variations, e.g. temperature change. Experiments show that the sensitivities of the MZI racetrack microring sensors with wire and slot waveguides are 101.7 nm/RIU and 166.7 nm/RIU, respectively.

  14. Validation testing of a soil macronutrient sensing system

    USDA-ARS?s Scientific Manuscript database

    Rapid on-site measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for site-specific crop management, where fertilizer nutrient application rates are adjusted spatially based on local requirements. This study reports on validation testing of a previously develop...

  15. Applications of space technology to water resources management

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1977-01-01

    Space technology transfer is discussed in terms of applying visible and infrared remote sensing measurement to water resources management. Mapping and monitoring of snowcovered areas, hydrologic land use, and surface water areas are discussed, using information acquired from LANDSAT and NOAA satellite systems.

  16. Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing

    NASA Astrophysics Data System (ADS)

    Seddon, Angela B.; Abdel-Moneim, Nabil S.; Zhang, Lian; Pan, Wei J.; Furniss, David; Mellor, Christopher J.; Kohoutek, Tomas; Orava, Jiri; Wagner, Tomas; Benson, Trevor M.

    2014-07-01

    The versatility of hot embossing for shaping photonic components on-chip for mid-infrared (IR) integrated optics, using a hard mold, is demonstrated. Hot embossing via fiber-on-glass (FOG), thermally evaporated films, and radio frequency (RF)-sputtered films on glass are described. Mixed approaches of combined plasma etching and hot embossing increase the versatility still further for engineering optical circuits on a single platform. Application of these methodologies for fabricating molecular-sensing devices on-chip is discussed with a view to biomedical sensing. Future prospects for using photonic integration for the new field of mid-IR molecular sensing are appraised. Also, common methods of measuring waveguide optical loss are critically compared, regarding their susceptibility to artifacts which tend artificially to depress, or enhance, the waveguide optical loss.

  17. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  18. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  19. Drying Temperature Dependence of Sol-gel Spin Coated Bilayer Composite ZnO/TiO2 Thin Films for Extended Gate Field Effect Transistor pH Sensor

    NASA Astrophysics Data System (ADS)

    Rahman, R. A.; Zulkefle, M. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-03-01

    This study presents an investigation on zinc oxide (ZnO) and titanium dioxide (TiO2) bilayer film applied as the sensing membrane for extended-gate field effect transistor (EGFET) for pH sensing application. The influences of the drying temperatures on the pH sensing capability of ZnO/TiO2 were investigated. The sensing performance of the thin films were measured by connecting the thin film to a commercial MOSFET to form the extended gates. By varying the drying temperature, we found that the ZnO/TiO2 thin film dried at 150°C gave the highest sensitivity compared to other drying conditions, with the sensitivity value of 48.80 mV/pH.

  20. Resistive pulse sensing of magnetic beads and supraparticle structures using tunable pores

    PubMed Central

    Willmott, Geoff R.; Platt, Mark; Lee, Gil U.

    2012-01-01

    Tunable pores (TPs) have been used for resistive pulse sensing of 1 μm superparamagnetic beads, both dispersed and within a magnetic field. Upon application of this field, magnetic supraparticle structures (SPSs) were observed. Onset of aggregation was most effectively indicated by an increase in the mean event magnitude, with data collected using an automated thresholding method. Simulations enabled discrimination between resistive pulses caused by dimers and individual particles. Distinct but time-correlated peaks were often observed, suggesting that SPSs became separated in pressure-driven flow focused at the pore constriction. The distinct properties of magnetophoretic and pressure-driven transport mechanisms can explain variations in the event rate when particles move through an asymmetric pore in either direction, with or without a magnetic field applied. Use of TPs for resistive pulse sensing holds potential for efficient, versatile analysis and measurement of nano- and microparticles, while magnetic beads and particle aggregation play important roles in many prospective biosensing applications. PMID:22662090

  1. Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications

    NASA Astrophysics Data System (ADS)

    Sökmen, Ü.; Stranz, A.; Waag, A.; Ababneh, A.; Seidel, H.; Schmid, U.; Peiner, E.

    2010-06-01

    We report on a micro-machined resonator for mass sensing applications which is based on a silicon cantilever excited with a sputter-deposited piezoelectric aluminium nitride (AlN) thin film actuator. An inductively coupled plasma (ICP) cryogenic dry etching process was applied for the micro-machining of the silicon substrate. A shift in resonance frequency was observed, which was proportional to a mass deposited in an e-beam evaporation process on top. We had a mass sensing limit of 5.2 ng. The measurements from the cantilevers of the two arrays revealed a quality factor of 155-298 and a mass sensitivity of 120.34 ng Hz-1 for the first array, and a quality factor of 130-137 and a mass sensitivity of 104.38 ng Hz-1 for the second array. Furthermore, we managed to fabricate silicon cantilevers, which can be improved for the detection in the picogram range due to a reduction of the geometrical dimensions.

  2. Metal-organic frameworks as biosensors for luminescence-based detection and imaging

    PubMed Central

    Miller, Sophie E.; Teplensky, Michelle H.; Moghadam, Peyman Z.; Fairen-Jimenez, David

    2016-01-01

    Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses. PMID:27499847

  3. Spatialized Application of Remotely Sensed Data Assimilation Methods for Farmland Drought Monitoring Using Two Different Crop Models

    NASA Astrophysics Data System (ADS)

    Silvestro, Paolo Cosmo; Casa, Raffaele; Pignatti, Stefano; Castaldi, Fabio; Yang, Hao; Guijun, Yang

    2016-08-01

    The aim of this work was to develop a tool to evaluate the effect of water stress on yield losses at the farmland and regional scale, by assimilating remotely sensed biophysical variables into crop growth models. Biophysical variables were retrieved from HJ1A, HJ1B and Landsat 8 images, using an algorithm based on the training of artificial neural networks on PROSAIL.For the assimilation, two crop models of differing degree of complexity were used: Aquacrop and SAFY. For Aquacrop, an optimization procedure to reduce the difference between the remotely sensed and simulated CC was developed. For the modified version of SAFY, the assimilation procedure was based on the Ensemble Kalman Filter.These procedures were tested in a spatialized application, by using data collected in the rural area of Yangling (Shaanxi Province) between 2013 and 2015Results were validated by utilizing yield data both from ground measurements and statistical survey.

  4. Smart Photonic Carbon Brush: FBG Length as Sensing Parameter

    NASA Astrophysics Data System (ADS)

    Morozov, O. G.; Nureev, I. I.; Kuznetsov, A. A.; Artemiev, V. I.

    2018-04-01

    This article deals with problem of carbon brush’s length measurements. There are many applications where regular inspection is not feasible because of a number of factors including, for example, time, labor, cost and disruptions due to down time. Thus, there is a need for a system that can monitor the brush’s length to calculate it’s wear rate, while the component is in operation or without removing of the component from its operational position. We propose a novel method for characterization of carbon brush’s length. This method based on the usage of advantages of the multiplicative response of FBGs and FBG arrays: spectral parameters depend on several aspects, such as grating’s period, refractive index, it’s physical length and so on. We are the first, in our point of view, who proposed to use third parameter for sensing application and prospectively all three parameters for complex measurement: the change of FBG’s length is used to measure length of the brush and it’s wear rate, grating’s central wavelength shift for temperature (due to refractive index change) and mechanical stress (due to grating’s period variations) measurements. The results of modelling and experiments are presented.

  5. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition.

    PubMed

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang

    2016-01-06

    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.

  6. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition

    PubMed Central

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang

    2016-01-01

    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users. PMID:26751445

  7. Advances in satellite remote sensing of environmental variables for epidemiological applications.

    PubMed

    Goetz, S J; Prince, S D; Small, J

    2000-01-01

    Earth-observing satellites have provided an unprecedented view of the land surface but have been exploited relatively little for the measurement of environmental variables of particular relevance to epidemiology. Recent advances in techniques to recover continuous fields of air temperature, humidity, and vapour pressure deficit from remotely sensed observations have significant potential for disease vector monitoring and related epidemiological applications. We report on the development of techniques to map environmental variables with relevance to the prediction of the relative abundance of disease vectors and intermediate hosts. Improvements to current methods of obtaining information on vegetation properties, canopy and surface temperature and soil moisture over large areas are also discussed. Algorithms used to measure these variables incorporate visible, near-infrared and thermal infrared radiation observations derived from time series of satellite-based sensors, focused here primarily but not exclusively on the Advanced Very High Resolution Radiometer (AVHRR) instruments. The variables compare favourably with surface measurements over a broad array of conditions at several study sites, and maps of retrieved variables captured patterns of spatial variability comparable to, and locally more accurate than, spatially interpolated meteorological observations. Application of multi-temporal maps of these variables are discussed in relation to current epidemiological research on the distribution and abundance of some common disease vectors.

  8. Mobile Phone Middleware Architecture for Energy and Context Awareness in Location-Based Services

    PubMed Central

    Galeana-Zapién, Hiram; Torres-Huitzil, César; Rubio-Loyola, Javier

    2014-01-01

    The disruptive innovation of smartphone technology has enabled the development of mobile sensing applications leveraged on specialized sensors embedded in the device. These novel mobile phone applications rely on advanced sensor information processes, which mainly involve raw data acquisition, feature extraction, data interpretation and transmission. However, the continuous accessing of sensing resources to acquire sensor data in smartphones is still very expensive in terms of energy, particularly due to the periodic use of power-intensive sensors, such as the Global Positioning System (GPS) receiver. The key underlying idea to design energy-efficient schemes is to control the duty cycle of the GPS receiver. However, adapting the sensing rate based on dynamic context changes through a flexible middleware has received little attention in the literature. In this paper, we propose a novel modular middleware architecture and runtime environment to directly interface with application programming interfaces (APIs) and embedded sensors in order to manage the duty cycle process based on energy and context aspects. The proposed solution has been implemented in the Android software stack. It allows continuous location tracking in a timely manner and in a transparent way to the user. It also enables the deployment of sensing policies to appropriately control the sampling rate based on both energy and perceived context. We validate the proposed solution taking into account a reference location-based service (LBS) architecture. A cloud-based storage service along with online mobility analysis tools have been used to store and access sensed data. Experimental measurements demonstrate the feasibility and efficiency of our middleware, in terms of energy and location resolution. PMID:25513821

  9. Mobile phone middleware architecture for energy and context awareness in location-based services.

    PubMed

    Galeana-Zapién, Hiram; Torres-Huitzil, César; Rubio-Loyola, Javier

    2014-12-10

    The disruptive innovation of smartphone technology has enabled the development of mobile sensing applications leveraged on specialized sensors embedded in the device. These novel mobile phone applications rely on advanced sensor information processes, which mainly involve raw data acquisition, feature extraction, data interpretation and transmission. However, the continuous accessing of sensing resources to acquire sensor data in smartphones is still very expensive in terms of energy, particularly due to the periodic use of power-intensive sensors, such as the Global Positioning System (GPS) receiver. The key underlying idea to design energy-efficient schemes is to control the duty cycle of the GPS receiver. However, adapting the sensing rate based on dynamic context changes through a flexible middleware has received little attention in the literature. In this paper, we propose a novel modular middleware architecture and runtime environment to directly interface with application programming interfaces (APIs) and embedded sensors in order to manage the duty cycle process based on energy and context aspects. The proposed solution has been implemented in the Android software stack. It allows continuous location tracking in a timely manner and in a transparent way to the user. It also enables the deployment of sensing policies to appropriately control the sampling rate based on both energy and perceived context. We validate the proposed solution taking into account a reference location-based service (LBS) architecture. A cloud-based storage service along with online mobility analysis tools have been used to store and access sensed data. Experimental measurements demonstrate the feasibility and efficiency of our middleware, in terms of energy and location resolution.

  10. Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution

    NASA Astrophysics Data System (ADS)

    Wisniewiski, David

    2015-03-01

    Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.

  11. Stable measures of number sense accuracy in math learning disability: Is it time to proceed from basic science to clinical application?

    PubMed

    Júlio-Costa, Annelise; Starling-Alves, Isabella; Lopes-Silva, Júlia Beatriz; Wood, Guilherme; Haase, Vitor Geraldi

    2015-12-01

    Math learning disability (MLD) or developmental dyscalculia is a highly prevalent and persistent difficulty in learning arithmetic that may be explained by different cognitive mechanisms. The accuracy of the number sense has been implicated by some evidence as a core deficit in MLD. However, research on this topic has been mainly conducted in demographically selected samples, using arbitrary cut-off scores to characterize MLD. The clinical relevance of the association between number sense and MLD remains to be investigated. In this study, we aimed at assessing the stability of a number sense accuracy measure (w) across five experimental sessions, in two clinically defined cases of MLD. Stable measures of number sense accuracy estimate are required to clinically characterize subtypes of MLD and to make theoretical inferences regarding the underlying cognitive mechanisms. G. A. was a 10-year-old boy with MLD in the context of dyslexia and phonological processing impairment and his performance remained steadily in the typical scores range. The performance of H. V., a 9-year-old girl with MLD associated with number sense inaccuracy, remained consistently impaired across measurements, with a nonsignificant tendency to worsen. Qualitatively, H. V.'s performance was also characterized by greater variability across sessions. Concomitant clinical observations suggested that H. V.'s difficulties could be aggravated by developing symptoms of mathematics anxiety. Results in these two cases are in line with the hypotheses that at least two reliable patterns of cognitive impairment may underlie math learning difficulties in MLD, one related to number sense inaccuracy and the other to phonological processing impairment. Additionally, it indicates the need for more translational research in order to examine the usefulness and validity of theoretical advances in numerical cognition to the clinical neuropsychological practice with MLD. © 2015 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  12. Field observations using an AOTF polarimetric imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Hamilton, Mike; Mahoney, Colin; Reyes, George

    1993-01-01

    This paper reports preliminary results of recent field observations using a prototype acousto-optic tunable filter (AOTF) polarimetric imaging spectrometer. The data illustrate application potentials for geoscience. The operation principle of this instrument is different from that of current airborne multispectral imaging instruments, such as AVIRIS. The AOTF instrument takes two orthogonally polarized images at a desired wavelength at one time, whereas AVIRIS takes a spectrum over a predetermined wavelength range at one pixel at a time and the image is constructed later. AVIRIS does not have any polarization measuring capability. The AOTF instrument could be a complement tool to AVIRIS. Polarization measurement is a desired capability for many applications in remote sensing. It is well know that natural light is often polarized due to various scattering phenomena in the atmosphere. Also, scattered light from canopies is reported to have a polarized component. To characterize objects of interest correctly requires a remote sensing imaging spectrometer capable of measuring object signal and background radiation in both intensity and polarization so that the characteristics of the object can be determined. The AORF instrument has the capability to do so. The AOTF instrument has other unique properties. For example, it can provide spectral images immediately after the observation. The instrument can also allow observations to be tailored in real time to perform the desired experiments and to collect only required data. Consequently, the performance in each mission can be increased with minimal resources. The prototype instrument was completed in the beginning of this year. A number of outdoor field experiments were performed with the objective to evaluate the capability of this new technology for remote sensing applications and to determine issues for further improvements.

  13. Simultaneous measurement of magnetic field and temperature based on an etched TCFMI cascaded with an FBG

    NASA Astrophysics Data System (ADS)

    Yan, Guofeng; Zhang, Liang; He, Sailing

    2016-04-01

    In this paper, a dual-parameter measurement scheme based on an etched thin core fiber modal interferometer (TCMI) cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. The magnetic field and temperature responses of the packaged TCFMI were first investigated, which showed that the magnetic field sensitivity could be highly enhanced by decreasing of the TCF diameter and the temperature-cross sensitivities were up to 3-7 Oe/°C at 1550 nm. Then, the theoretical analysis and experimental demonstration of the proposed dual-parameter sensing scheme were conducted. Experimental results show that, the reflection of the FBG has a magnetic field intensity and temperature sensitivities of -0.017 dB/Oe and 0.133 dB/°C, respectively, while the Bragg wavelength of the FBG is insensitive to magnetic field and has a temperature sensitivity of 13.23 pm/°C. Thus by using the sensing matrix method, the intensity of the magnetic field and the temperature variance can be measured, which enables magnetic field sensing under strict temperature environments. In the on-off time response test, the fabricated sensor exhibited high repeatability and short response time of ∼19.4 s. Meanwhile the reflective sensing probe type is more compact and practical for applications in hard-to-reach conditions.

  14. Polarimetric Interferometry - Remote Sensing Applications

    DTIC Science & Technology

    2007-02-01

    This lecture is mainly based on the work of S.R. Cloude and presents examples for remote sensing applications Polarimetric SAR Interferometry...PolInSAR). PolInSAR has its origins in remote sensing and was first developed for applications in 1997 using SIRC L-Band data [1,2]. In its original form it

  15. Application of remote sensing to solution of ecological problems

    NASA Technical Reports Server (NTRS)

    Adelman, A.

    1972-01-01

    The application of remote sensing techniques to solving ecological problems is discussed. The three phases of environmental ecological management are examined. The differences between discovery and exploitation of natural resources and their ecological management are described. The specific application of remote sensing to water management is developed.

  16. Development and Application of Gas Sensing Technologies to Enable Boiler Balancing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Prabir

    2008-12-31

    Identifying gas species and their quantification is important for optimization of many industrial applications involving high temperatures, including combustion processes. CISM (Center for Industrial Sensors and Measurements) at the Ohio State University has developed CO, O{sub 2}, NO{sub x}, and CO{sub 2} sensors based on TiO{sub 2} semiconducting oxides, zirconia and lithium phosphate based electrochemical sensors and sensor arrays for high-temperature emission control. The underlying theme in our sensor development has been the use of materials science and chemistry to promote high-temperature performance with selectivity. A review article presenting key results of our studies on CO, NO{sub x}, CO{sub 2}more » and O{sub 2} sensors is described in: Akbar, Sheikh A.; Dutta, Prabir K. Development and Application of Gas Sensing Technologies for Combustion Processes, PowerPlant Chemistry, 9(1) 2006, 28-33.« less

  17. Removing non-stationary noise in spectrum sensing using matrix factorization

    NASA Astrophysics Data System (ADS)

    van Bloem, Jan-Willem; Schiphorst, Roel; Slump, Cornelis H.

    2013-12-01

    Spectrum sensing is key to many applications like dynamic spectrum access (DSA) systems or telecom regulators who need to measure utilization of frequency bands. The International Telecommunication Union (ITU) recommends a 10 dB threshold above the noise to decide whether a channel is occupied or not. However, radio frequency (RF) receiver front-ends are non-ideal. This means that the obtained data is distorted with noise and imperfections from the analog front-end. As part of the front-end the automatic gain control (AGC) circuitry mainly affects the sensing performance as strong adjacent signals lift the noise level. To enhance the performance of spectrum sensing significantly we focus in this article on techniques to remove the noise caused by the AGC from the sensing data. In order to do this we have applied matrix factorization techniques, i.e., SVD (singular value decomposition) and NMF (non-negative matrix factorization), which enables signal space analysis. In addition, we use live measurement results to verify the performance and to remove the effects of the AGC from the sensing data using above mentioned techniques, i.e., applied on block-wise available spectrum data. In this article it is shown that the occupancy in the industrial, scientific and medical (ISM) band, obtained by using energy detection (ITU recommended threshold), can be an overestimation of spectrum usage by 60%.

  18. Distributed Stress Sensing and Non-Destructive Tests Using Mechanoluminescence Materials

    NASA Astrophysics Data System (ADS)

    Rahimi, Mohammad Reza

    Rapid aging of infrastructure systems is currently pervasive in the US and the anticipated cost until 2020 for rehabilitation of aging lifeline will reach 3.6 trillion US dollars (ASCE 2013). Reliable condition or serviceability assessment is critically important in decision-making for economic and timely maintenance of the infrastructure systems. Advanced sensors and nondestructive test (NDT) methods are the key technologies for structural health monitoring (SHM) applications that can provide information on the current state of structures. There are many traditional sensors and NDT methods, for examples, strain gauges, ultrasound, radiography and other X-ray, etc. to detect any defect on the infrastructure. Considering that civil infrastructure is typically large-scale and exhibits complex behavior, estimation of structural conditions by the local sensing and NDT methods is a challenging task. Non-contact and distributed (or full-field) sensing and NDT method are desirable that can provide rich information on the civil infrastructure's state. Materials with the ability of emitting light, especially in the visible range, are named as luminescent materials. Mechanoluminescence (ML) phenomenon is the light emission from luminescent materials as a response of an induced mechanical stress. ML materials offer new opportunities for SHM that can directly visualize the stress and crack distributions on the surface of structures through ML light emission. Although material research for ML phenomena have been made substantially, applications of the ML sensors to full-field stress and crack visualization are still at infant stage and have yet to be full-fledged. Moreover, practical applications of the ML sensors for SHM of civil infrastructure have difficulties since numerous challenging problems (e.g. environmental effect) arise in actual applications. In order to realize a practical SHM system employing ML sensors, more research needs to be conducted, for examples, fundamental understandings of physics of ML phenomenon, method for quantitative stress measurements, calibration method for ML sensors, improvement of sensitivity, optimal manufacturing and design of ML sensors, environmental effects of ML phenomenon (e.g. temperature), image processing and analysis, etc. In this research, fundamental ML phenomena of two most promising ML sensing materials were experimentally studied and a methodology for full-field quantitative strain measurements, for the first time, was proposed along with a standardized calibration method. Characteristics and behavior of ML composites and thin films coated on the structure have been studied under various material tests including compression, tension, pure shear, bending, etc. In addition, ML emission sensitivity to the manufacturing parameters and experimental conditions was addressed in order to find optimal design the ML sensor. A phenomenological stress-optics transduction model for predicting the ML light intensity from a thin-film ML coating sensor subjected to in-plane stresses was proposed. A new full-field quantitative strain measuring methodology by ML thin film sensor was developed, for the first time, in order to visualize and measure the strain field. The results from the ML sensor were compared and verified by finite element simulation results. For NDT applications of ML sensors, experimental tests were conducted to visualize the cracks on structural surfaces and detect damages on structural components. In summary, this research proposes and realizes a new distributed stress sensor and NDT method using ML sensing materials. The proposed method is experimentally validated to be effective for stress measurement and crack visualizations. Successful completion of this research provides a leap toward a commercial light intensity-based optic sensor to be used as a new full-field stress measurement technology and NDT method.

  19. Tunable 3D Nanoresonators for Gas-Sensing Applications

    DOE PAGES

    Arnold, Georg; Winkler, Robert; Stermitz, Martin; ...

    2018-03-15

    Here, the detection of gas species with high sensitivity is a significant task for fundamental sciences as well as for industrial applications. Similarly, the ongoing trend for device miniaturization brings new challenges for advanced fabrication including on–demand functionality tuning. Following this motivation, here the additive, direct–write fabrication of freestanding 3D nanoarchitectures is introduced, which can be brought into mechanical resonance via electric AC fields. Specifically, this study focuses on the 3D nanostructure synthesis, the subsequent determination of Young's modulus, and demonstrates a postgrowth procedure, which can precisely tune the material modulus. As–fabricated resonators reveal a Young's modulus of 9–13 GPa,more » which can be increased by a factor greater than 5. Next, the electric readout of the resonance behavior is demonstrated via electric current measurement as an essential element for the resonance sensor applications. Finally, the implications of gas–physisorption and gas–chemisorption on the resonance frequencies are studied, representing a proof–of–principle for sensing applications by the here presented approach.« less

  20. Tunable 3D Nanoresonators for Gas-Sensing Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Georg; Winkler, Robert; Stermitz, Martin

    Here, the detection of gas species with high sensitivity is a significant task for fundamental sciences as well as for industrial applications. Similarly, the ongoing trend for device miniaturization brings new challenges for advanced fabrication including on–demand functionality tuning. Following this motivation, here the additive, direct–write fabrication of freestanding 3D nanoarchitectures is introduced, which can be brought into mechanical resonance via electric AC fields. Specifically, this study focuses on the 3D nanostructure synthesis, the subsequent determination of Young's modulus, and demonstrates a postgrowth procedure, which can precisely tune the material modulus. As–fabricated resonators reveal a Young's modulus of 9–13 GPa,more » which can be increased by a factor greater than 5. Next, the electric readout of the resonance behavior is demonstrated via electric current measurement as an essential element for the resonance sensor applications. Finally, the implications of gas–physisorption and gas–chemisorption on the resonance frequencies are studied, representing a proof–of–principle for sensing applications by the here presented approach.« less

  1. Optical Oxygen Micro- and Nanosensors for Plant Applications

    PubMed Central

    Ast, Cindy; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd; van Dongen, Joost T.

    2012-01-01

    Pioneered by Clark's microelectrode more than half a century ago, there has been substantial interest in developing new, miniaturized optical methods to detect molecular oxygen inside cells. While extensively used for animal tissue measurements, applications of intracellular optical oxygen biosensors are still scarce in plant science. A critical aspect is the strong autofluorescence of the green plant tissue that interferes with optical signals of commonly used oxygen probes. A recently developed dual-frequency phase modulation technique can overcome this limitation, offering new perspectives for plant research. This review gives an overview on the latest optical sensing techniques and methods based on phosphorescence quenching in diverse tissues and discusses the potential pitfalls for applications in plants. The most promising oxygen sensitive probes are reviewed plus different oxygen sensing structures ranging from micro-optodes to soluble nanoparticles. Moreover, the applicability of using heterologously expressed oxygen binding proteins and fluorescent proteins to determine changes in the cellular oxygen concentration are discussed as potential non-invasive cellular oxygen reporters. PMID:22969334

  2. Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping

    1994-01-01

    Remote sensing has become important in the ocean sciences, especially for research involving large spatial scales. To estimate the in-water constituents through remote sensing, whether carried out by satellite or airplane, the signal emitted from beneath the sea surface, the so called water-leaving radiance (L(w)), is of prime importance. The magnitude of L(w) depends on two terms: one is the intensity of the solar input, and the other is the reflectance of the in-water constituents. The ratio of the water-leaving radiance to the downwelling irradiance (E(d)) above the sear surface (remote-sensing reflectance, R(sub rs)) is independent of the intensity of the irradiance input, and is largely a function of the optical properties of the in-water constituents. In this work, a model is developed to interpret r(sub rs) for ocean water in the visible-infrared range. In addition to terms for the radiance scattered from molecules and particles, the model includes terms that describe contributions from bottom reflectance, fluorescence of gelbstoff or colored dissolved organic matter (CDOM), and water Raman scattering. By using this model, the measured R(sub rs) of waters from the West Florida Shelf to the Mississippi River plume, which covered a (concentration of chlorophyll a) range of 0.07 - 50 mg/cu m, were well interpreted. The average percentage difference (a.p.d.) between the measured and modeled R(sub rs) is 3.4%, and, for the shallow waters, the model-required water depth is within 10% of the chart depth. Simple mathematical simulations for the phytoplankton pigment absorption coefficient (a(sub theta)) are suggested for using the R(sub rs) model. The inverse problem of R(sub rs), which is to analytically derive the in-water constituents from R(sub rs) data alone, can be solved using the a(sub theta) functions without prior knowledge of the in-water optical properties. More importantly, this method avoids problems associated with a need for knowledge of the shape and value of the chlorophyll-specific absorption coefficient. The simulation was tested for a wide range of water types, including waters from Monterey Bay, the West Florida Shelf, and the Mississippi River plume. Using the simulation, the R(sub rs)-derived in-water absorption coefficients were consistent with the values from in-water measurements (r(exp 2) greater than 0.94, slope approximately 1.0). In the remote-sensing applications, a new approach is suggested for the estimation of primary production based on remote sensing. Using this approach, the calculated primary production (PP) values based upon remotely sensed data were very close to the measured values for the euphotic zone (r(exp 2) = 0.95, slope 1.26, and 32% average difference), while traditional, pigment-based PP model provided values only one-third the size of the measured data. This indicates a potential to significantly improve the accuracy of the estimation of primary production based upon remote sensing.

  3. Effects of the Ionosphere on Passive Microwave Remote Sensing of Ocean Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Abaham, Saji; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Among the remote sensing applications currently being considered from space is the measurement of sea surface salinity. The salinity of the open ocean is important for understanding ocean circulation and for modeling energy exchange with the atmosphere. Passive microwave remote sensors operating near 1.4 GHz (L-band) could provide data needed to fill the gap in current coverage and to complement in situ arrays being planned to provide subsurface profiles in the future. However, the dynamic range of the salinity signal in the open ocean is relatively small and propagation effects along the path from surface to sensor must be taken into account. In particular, Faraday rotation and even attenuation/emission in the ionosphere can be important sources of error. The purpose or this work is to estimate the magnitude of these effects in the context of a future remote sensing system in space to measure salinity in L-band. Data will be presented as a function of time location and solar activity using IRI-95 to model the ionosphere. The ionosphere presents two potential sources of error for the measurement of salinity: Rotation of the polarization vector (Faraday rotation) and attenuation/emission. Estimates of the effect of these two phenomena on passive remote sensing over the oceans at L-band (1.4 GHz) are presented.

  4. Remote sensing of three-dimensional cirrus clouds from satellites: application to continuous-wave laser atmospheric transmission and backscattering.

    PubMed

    Liou, K N; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey

    2006-09-10

    A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.

  5. Greenhouse Gas Sensing Using Small Unmanned Aerial Systems - Field Experiment Results and Future Directions

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Christensen, L. E.; Brockers, R.; Thompson, D. R.

    2014-12-01

    Requirements for greenhouse gas point source detection and quantification often require high spatial resolution on the order of meters. These applications, which help close the gap in emissions estimate uncertainties, also demand sensing with high sensitivity and in a fashion that accounts for spatiotemporal variability on the order of seconds to minutes. Low-cost vertical takeoff and landing (VTOL) small unmanned aerial systems (sUAS) provide a means to detect and identify the location of point source gas emissions while offering ease of deployment and high maneuverability. Our current fielded gas sensing sUAS platforms are able to provide instantaneous in situ concentration measurements at locations within line of sight of the operator. Recent results from field experiments demonstrating methane detection and plume characterization will be discussed here, including performance assessment conducted via a controlled release experiment in 2013. The logical extension of sUAS gas concentration measurement is quantification of flux rate. We will discuss the preliminary strategy for quantitative flux determination, including intrinsic challenges and heritage from airborne science campaigns, associated with this point source flux quantification. This system approach forms the basis for intelligent autonomous quantitative characterization of gas plumes, which holds great value for applications in commercial, regulatory, and safety environments.

  6. Doppler radar sensing of fish physiological motion

    NASA Astrophysics Data System (ADS)

    Hafner, Noah

    The monitoring vital of signs for fish is critical for advancing the study of trophic and energetic strategies, distributions and behavior, environmental impact, and aquaculture approaches. Presented here is a new approach for monitoring fish metabolic state without the trauma and stress associated with capture, surgical ECG, or other implanted sensing systems. Original research contributions include analysis for radar operation under water, development of radar systems for aquatic operation, and application of these systems to non invasively sense the heart and gill motion of fish. Tilapia and Sturgeon were studied to test the efficacy across varied fish body shapes and sizes, ranging from 0.1 to 1.3m in snout to tail length. Monitoring experiments were conducted with eleven tilapia and three sturgeons to assess activity level participated in these experiments, the results from which include activity level monitoring (tilapia: still or fidgeting 94% of time observed), ventilation rate (tilapia: 42 bpm, sturgeon: 145 bpm), and heart rate (tilapia: 41 bpm, sturgeon: 35 bpm). Bland-Altman analysis of radar and ECG measured heart rate indicate agreement between the two measurement techniques and the suitability of radar as an alternative to ECG. The initial steps for developing a system for practical application is also presented including designs for radar system miniaturization and discussion on further characterization steps with less constrained environments.

  7. Remote sensing of three-dimensional cirrus clouds from satellites: application to continuous-wave laser atmospheric transmission and backscattering

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey

    2006-09-01

    A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.

  8. Fluid flow sensing with ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.

    2016-04-01

    Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.

  9. Summaries of the thematic conferences on remote sensing for exploration geology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Thematic Conference series was initiated to address the need for concentrated discussion of particular remote sensing applications. The program is primarily concerned with the application of remote sensing to mineral and hydrocarbon exploration, with special emphasis on data integration, methodologies, and practical solutions for geologists. Some fifty invited papers are scheduled for eleven plenary sessions, formulated to address such important topics as basement tectonics and their surface expressions, spectral geology, applications for hydrocarbon exploration, and radar applications and future systems. Other invited presentations will discuss geobotanical remote sensing, mineral exploration, engineering and environmental applications, advanced image processing, and integration and mapping.

  10. Experiments with data assimilation in comprehensive air quality models: Impacts on model predictions and observation requirements (Invited)

    NASA Astrophysics Data System (ADS)

    Mathur, R.

    2009-12-01

    Emerging regional scale atmospheric simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions. Sophisticated air quality modeling systems are needed to develop effective abatement strategies that focus on simultaneously controlling multiple criteria pollutants as well as use in providing short term air quality forecasts. In recent years the applications of such models is continuously being extended to address atmospheric pollution phenomenon from local to hemispheric spatial scales over time scales ranging from episodic to annual. The need to represent interactions between physical and chemical atmospheric processes occurring at these disparate spatial and temporal scales requires the use of observation data beyond traditional in-situ networks so that the model simulations can be reasonably constrained. Preliminary applications of assimilation of remote sensing and aloft observations within a comprehensive regional scale atmospheric chemistry-transport modeling system will be presented: (1) A methodology is developed to assimilate MODIS aerosol optical depths in the model to represent the impacts long-range transport associated with the summer 2004 Alaskan fires on surface-level regional fine particulate matter (PM2.5) concentrations across the Eastern U.S. The episodic impact of this pollution transport event on PM2.5 concentrations over the eastern U.S. during mid-July 2004, is quantified through the complementary use of the model with remotely-sensed, aloft, and surface measurements; (2) Simple nudging experiments with limited aloft measurements are performed to identify uncertainties in model representations of physical processes and assess the potential use of such measurements in improving the predictive capability of atmospheric chemistry-transport models. The results from these early applications will be discussed in context of uncertainties in the model and in the remote sensing data and needs for defining a future optimum observing strategy.

  11. Development of an online platform for streamlining highway LiDAR data collection, sharing, and processing.

    DOT National Transportation Integrated Search

    2016-12-01

    Lidar (a portmanteau of "light" and "radar.") is a remote sensing technology that measures distance by illuminating a target with a laser and analyzing the reflected light. Among other applications, lidar is particularly useful for detailed mapping o...

  12. Multiparametric methane sensor for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Borecki, M.; Duk, M.; Kociubiński, A.; Korwin-Pawlowski, M. L.

    2016-12-01

    Today, methane sensors find applications mostly in safety alarm installations, gas parameters detection and air pollution classification. Such sensors and sensors elements exists for industry and home use. Under development area of methane sensors application is dedicated to ground gases monitoring. Proper monitoring of soil gases requires reliable and maintenance-free semi-constant and longtime examination at relatively low cost of equipment. The sensors for soil monitoring have to work on soil probe. Therefore, sensor is exposed to environment conditions, as a wide range of temperatures and a full scale of humidity changes, as well as rain, snow and wind, that are not specified for classical methane sensors. Development of such sensor is presented in this paper. The presented sensor construction consists of five commercial non dispersive infra-red (NDIR) methane sensing units, a set of temperature and humidity sensing units, a gas chamber equipped with a micro-fan, automated gas valves and also a microcontroller that controls the measuring procedure. The electronics part of sensor was installed into customized 3D printed housing equipped with self-developed gas valves. The main development of proposed sensor is on the side of experimental evaluation of construction reliability and results of data processing included safety procedures and function for hardware error correction. Redundant methane sensor units are used providing measurement error correction as well as improved measurement accuracy. The humidity and temperature sensors are used for internal compensation of methane measurements as well as for cutting-off the sensor from the environment when the conditions exceed allowable parameters. Results obtained during environment sensing prove that the gas concentration readings are not sensitive to gas chamber vertical or horizontal position. It is important as vertical sensor installation on soil probe is simpler that horizontal one. Data acquired during six month of environment monitoring prove that error correction of methane sensing units was essential for maintenance free sensor operation, despite used safety procedures.

  13. Progress of 2-micron Detectors for Application to Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, Tamer F.; Ismail, Syed; Koch, Grady; Singh, Upendra N.

    2008-01-01

    AlGaAsSb/InGaAsSb heterojunction phototransistors were developed at Astropower, Inc under Laser Risk Reduction Program (LRRP) for operation in the 2-micron region. These phototransistors were optimized for 2-micron detection and have high quantum efficiency (>60%), high gain (>10(exp 3)) and low noise-equivalent- power (<5x10(exp -14) W/Hz), while operating at low bias voltage. One of these phototransistors was tested in lidar mode using the 2-micron CO2 Differential Absorption Lidar (DIAL) system currently under development under the Instrument Incubator Program (IIP) at NASA Langley. Lidar measurements included detecting atmospheric structures consisting of thin clouds in the mid-altitude and near-field boundary layer. These test results are very promising for the application of phototransistors for the two-micron lidar remote sensing. In addition, HgCdTe avalanche photodiodes (APD) acquired from Raytheon were used in atmospheric testing at 2-microns. A discussion of these measurements is also presented in this paper.

  14. What quantum measurements measure

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2017-09-01

    A solution to the second measurement problem, determining what prior microscopic properties can be inferred from measurement outcomes ("pointer positions"), is worked out for projective and generalized (POVM) measurements, using consistent histories. The result supports the idea that equipment properly designed and calibrated reveals the properties it was designed to measure. Applications include Einstein's hemisphere and Wheeler's delayed choice paradoxes, and a method for analyzing weak measurements without recourse to weak values. Quantum measurements are noncontextual in the original sense employed by Bell and Mermin: if [A ,B ]=[A ,C ]=0 ,[B ,C ]≠0 , the outcome of an A measurement does not depend on whether it is measured with B or with C . An application to Bohm's model of the Einstein-Podolsky-Rosen situation suggests that a faulty understanding of quantum measurements is at the root of this paradox.

  15. Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram

    2001-01-01

    Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.

  16. Methods of satellite oceanography

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  17. Radar studies related to the earth resources program. [remote sensing programs

    NASA Technical Reports Server (NTRS)

    Holtzman, J.

    1972-01-01

    The radar systems research discussed is directed toward achieving successful application of radar to remote sensing problems in such areas as geology, hydrology, agriculture, geography, forestry, and oceanography. Topics discussed include imaging radar and evaluation of its modification, study of digital processing for synthetic aperture system, digital simulation of synthetic aperture system, averaging techniques studies, ultrasonic modeling of panchromatic system, panchromatic radar/radar spectrometer development, measuring octave-bandwidth response of selected targets, scatterometer system analysis, and a model Fresnel-zone processor for synthetic aperture imagery.

  18. Future remote-sensing programs

    NASA Technical Reports Server (NTRS)

    Schweickart, R. L.

    1975-01-01

    User requirements and methods developed to fulfill them are discussed. Quick-look data, data storage on computer-compatible tape, and an integrated capability for production of images from the whole class of earth-viewing satellites are among the new developments briefly described. The increased capability of LANDSAT-C and Nimbus G and the needs of specialized applications such as, urban land use planning, cartography, accurate measurement of small agricultural fields, thermal mapping and coastal zone management are examined. The affect of the space shuttle on remote sensing technology through increased capability is considered.

  19. Applications of remote sensing to estuarine management

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.; Hennigar, H. F.

    1977-01-01

    Remote sensing was used in the resolution of estuarine problems facing federal and Virginia governmental agencies. A prototype Elizabeth River Surface Circulation Atlas was produced from photogrammetry to aid in oil spill cleanup and source identification. Aerial photo analysis twice led to selection of alternative plans for dredging and spoil disposal which minimized marsh damage. Marsh loss due to a mud wave from a highway dyke was measured on sequential aerial photographs. An historical aerial photographic sequence gave basis to a potential Commonwealth of Virginia legal claim to accreting and migrating coastal islands.

  20. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. Part 1; Overview

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John

    1998-01-01

    Knowledge of the amount of water in the soil is of great importance to many earth science disciplines. Soil moisture is a key variable in controlling the exchange of water and energy between the land surface and the atmosphere. Thus, soil moisture information is valuable in a wide range of applications including weather and climate, runoff potential and flood control, early warning of droughts, irrigation, crop yield forecasting, soil erosion, reservoir management, geotechnical engineering, and water quality. Despite the importance of soil moisture information, widespread and continuous measurements of soil moisture are not possible today. Although many earth surface conditions can be measured from satellites, we still cannot adequately measure soil moisture from space. Research in soil moisture remote sensing began in the mid 1970s shortly after the surge in satellite development. Recent advances in remote sensing have shown that soil moisture can be measured, at least qualitatively, by several methods. Quantitative measurements of moisture in the soil surface layer have been most successful using both passive and active microwave remote sensing, although complications arise from surface roughness and vegetation type and density. Early attempts to measure soil moisture from space-borne microwave instruments were hindered by what is now considered sub-optimal wavelengths (shorter than 5 cm) and the coarse spatial resolution of the measurements. L-band frequencies between 1 and 3 GHz (10-30 cm) have been deemed optimal for detection of soil moisture in the upper few centimeters of soil. The Electronically Steered Thinned Array Radiometer (ESTAR), an aircraft-based instrument operating a 1,4 GHz, has shown great promise for soil moisture determination. Initiatives are underway to develop a similar instrument for space. Existing space-borne synthetic aperture radars (SARS) operating at C- and L-band have also shown some potential to detect surface wetness. The advantage of radar is its much higher resolution than passive microwave systems, but it is currently hampered by surface roughness effects and the lack of a good algorithm based on a single frequency and single polarization. In addition, its repeat frequency is generally low (about 40 days). In the meantime, two new radiometers offer some hope for remote sensing of soil moisture from space. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), launched in November 1997, possesses a 10.65 GHz channel and the Advanced Microwave Scanning Radiometer (AMSR) on both the ADEOS-11 and Earth Observing System AM-1 platforms to be launched in 1999 possesses a 6.9 GHz channel. Aside from issues about interference from vegetation, the coarse resolution of these data will provide considerable challenges pertaining to their application. The resolution of TMI is about 45 km and that of AMSR is about 70 km. These resolutions are grossly inconsistent with the scale of soil moisture processes and the spatial variability of factors that control soil moisture. Scale disparities such as these are forcing us to rethink how we assimilate data of various scales in hydrologic models. Of particular interest is how to assimilate soil moisture data by reconciling the scale disparity between what we can expect from present and future remote sensing measurements of soil moisture and modeling soil moisture processes. It is because of this disparity between the resolution of space-based sensors and the scale of data needed for capturing the spatial variability of soil moisture and related properties that remote sensing of soil moisture has not met with more widespread success. Within a single footprint of current sensors at the wavelengths optimal for this application, in most cases there is enormous heterogeneity in soil moisture created by differences in landcover, soils and topography, as well as variability in antecedent precipitation. It is difficult to interpret the meaning of 'mean' soil moisture under such conditions and even more difficult to apply such a value. Because of the non-linear relationships between near-surface soil moisture and other variables of interest, such as surface energy fluxes and runoff, mean soil moisture has little applicability at such large scales. It is for these reasons that the use of remote sensing in conjunction with a hydrologic model appears to be of benefit in capturing the complete spatial and temporal structure of soil moisture. This paper is Part I of a four-part series describing a method for intermittently assimilating remotely-sensed soil moisture information to improve performance of a distributed land surface hydrology model. The method, summarized in section II, involves the following components, each of which is detailed in the indicated section of the paper or subsequent papers in this series: Forward radiative transfer model methods (section II and Part IV); Use of a Kalman filter to assimilate remotely-sensed soil moisture estimates with the model profile (section II and Part IV); Application of a soil hydrology model to capture the continuous evolution of the soil moisture profile within and below the root zone (section III); Statistical aggregation techniques (section IV and Part II); Disaggregation techniques using a neural network approach (section IV and Part III); and Maximum likelihood and Bayesian algorithms for inversely solving for the soil moisture profile in the upper few cm (Part IV).

  1. Applying the Common Sense Model to Understand Representations of Arsenic Contaminated Well Water

    PubMed Central

    Severtson, Dolores J.; Baumann, Linda C.; Brown, Roger L.

    2015-01-01

    Theory-based research is needed to understand how people respond to environmental health risk information. The common sense model of self-regulation and the mental models approach propose that information shapes individual’s personal understandings that influence their decisions and actions. We compare these frameworks and explain how the common sense model (CSM) was applied to describe and measure mental representations of arsenic contaminated well water. Educational information, key informant interviews, and environmental risk literature were used to develop survey items to measure dimensions of cognitive representations (identity, cause, timeline, consequences, control) and emotional representations. Surveys mailed to 1067 private well users with moderate and elevated arsenic levels yielded an 84% response rate (n=897). Exploratory and confirmatory factor analyses of data from the elevated arsenic group identified a factor structure that retained the CSM representational structure and was consistent across moderate and elevated arsenic groups. The CSM has utility for describing and measuring representations of environmental health risks thus supporting its application to environmental health risk communication research. PMID:18726811

  2. Noninvasive blood glucose sensing on human body with near-infrared reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zhen-hao; Hao, Chang-ning; Zhang, Lin-lin; Huang, Yan-chao; Shi, Yi-qin; Jiang, Geng-ru; Duan, Jun-li

    2011-08-01

    The non-invasive blood glucose sensing method has shown its high impact on the clinic application. This can make the measurement on the clinically relevant concentrations of glucose be free from the pain of patient. The transmission spectrum study indicates that the dependence of glucose concentration on the absorbance is in linear manner for the glucose concentration in the region of 30mg/dL to 4.5×104mg/dL. By the near infrared reflection spectroscopy of fiber spectrometer, the reflection band between 1.2μm and 1.35μm can be used to correlated with the glucose concentration in the range of 30 to 300 mg/dL. This reflection band is finally used to measure the glucose concentration effect in non-invasive manner, which gives the statistical significance of P value 0.02. Our experiment result shows that it is possible to get the glucose concentration by the near infrared reflection spectrum measurement on the human forefinger. This non-invasive blood glucose sensing method may useful in clinic after more experiment for different people.

  3. Remote Sensing of Cryosphere: Estimation of Mass Balance Change in Himalayan Glaciers

    NASA Astrophysics Data System (ADS)

    Ambinakudige, Shrinidhi; Joshi, Kabindra

    2012-07-01

    Glacial changes are an important indicator of climate change. Our understanding mass balance change in Himalayan glaciers is limited. This study estimates mass balance of some major glaciers in the Sagarmatha National Park (SNP) in Nepal using remote sensing applications. Remote sensing technique to measure mass balance of glaciers is an important methodological advance in the highly rugged Himalayan terrain. This study uses ASTER VNIR, 3N (nadir view) and 3B (backward view) bands to generate Digital Elevation Models (DEMs) for the SNP area for the years 2002, 2003, 2004 and 2005. Glacier boundaries were delineated using combination of boundaries available in the Global land ice measurement (GLIMS) database and various band ratios derived from ASTER images. Elevation differences, glacial area, and ice densities were used to estimate the change in mass balance. The results indicated that the rate of glacier mass balance change was not uniform across glaciers. While there was a decrease in mass balance of some glaciers, some showed increase. This paper discusses how each glacier in the SNP area varied in its annual mass balance measurement during the study period.

  4. Dynamic tire pressure sensor for measuring ground vibration.

    PubMed

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  5. Collection of in situ forest canopy spectra using a helicopter - A discussion of methodology and preliminary results

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Walthall, C. L.; Goward, S. N.

    1984-01-01

    An important part of fundamental remote sensing research is based on the measurement and analysis of spectral reflectance from earth surface materials in situ. It has been found that for an effective analysis of the target of interest, different applications of remotely sensed data require spectral measurements from different portions of the electromagnetic spectrum. It is pointed out that the detailed spectral reflectance characteristics of forest vegetation are currently not well understood, particularly in the middle infrared wavelength region. Details regarding the need for in situ forest canopy measurements are examined, taking into account certain difficulties arising in the case of satellite observations. Because of these difficulties, the present paper provides a discussion of methodology and preliminary spectra based on an experiment to use a helicopter as an observing platform for in situ forest canopy spectra measurement.

  6. Dynamic Tire Pressure Sensor for Measuring Ground Vibration

    PubMed Central

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L.

    2012-01-01

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application. PMID:23202206

  7. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter

    PubMed Central

    Chowdhury, Amor; Sarjaš, Andrej

    2016-01-01

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197

  8. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    PubMed

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  9. Photopolarimetric properties of leaf and vegetation covers over a wide range of measurement directions

    NASA Astrophysics Data System (ADS)

    Sun, Zhongqiu; Peng, Zhiyan; Wu, Di; Lv, Yunfeng

    2018-02-01

    The optical scattering property of the target is the essential signal for passive remote sensing applications. To deepen our understanding of the light reflected from vegetation, we present results of photopolarimetric laboratory measurements from single leaf and two vegetation covers (planophile and erectophile) over a wide range of viewing directions. The bidirectional polarized reflectance factor (BPRF) was used to characterize the polarization property of our samples. We observed positive and negative polarization (-BPRFQ) of all samples in the forward scattering and backward scattering directions, respectively. Based on the comparison of the BPRF among single leaf, planophile vegetation and erectophile vegetation, our measurements demonstrate that the orientation of the leaf is a key factor in describing the amount of polarization in the forward scattering direction. Our measurements also validated certain model results stating that (1) specular reflection generates a portion of polarization in the forward scattering direction and diffuses scattering of polarized light in all hemisphere directions, (2) BPRFU is anti-symmetric in the principal plane from a recent study in which the authors simulated the polarized reflectance of vegetation cover using the vector radiative transfer theory. These photopolarimetric measurement results, which can be completely explained by the theoretical results, are useful in remote sensing applications to vegetation.

  10. Diverse Planning for UAV Control and Remote Sensing

    PubMed Central

    Tožička, Jan; Komenda, Antonín

    2016-01-01

    Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs. PMID:28009831

  11. Measuring grassland structure for recovery of grassland species at risk

    NASA Astrophysics Data System (ADS)

    Guo, Xulin; Gao, Wei; Wilmshurst, John

    2005-09-01

    An action plan for recovering species at risk (SAR) depends on an understanding of the plant community distribution, vegetation structure, quality of the food source and the impact of environmental factors such as climate change at large scale and disturbance at small scale, as these are fundamental factors for SAR habitat. Therefore, it is essential to advance our knowledge of understanding the SAR habitat distribution, habitat quality and dynamics, as well as developing an effective tool for measuring and monitoring SAR habitat changes. Using the advantages of non-destructive, low cost, and high efficient land surface vegetation biophysical parameter characterization, remote sensing is a potential tool for helping SAR recovery action. The main objective of this paper is to assess the most suitable techniques for using hyperspectral remote sensing to quantify grassland biophysical characteristics. The challenge of applying remote sensing in semi-arid and arid regions exists simply due to the lower biomass vegetation and high soil exposure. In conservation grasslands, this problem is enhanced because of the presence of senescent vegetation. Results from this study demonstrated that hyperspectral remote sensing could be the solution for semi-arid grassland remote sensing applications. Narrow band raw data and derived spectral vegetation indices showed stronger relationships with biophysical variables compared to the simulated broad band vegetation indices.

  12. Diverse Planning for UAV Control and Remote Sensing.

    PubMed

    Tožička, Jan; Komenda, Antonín

    2016-12-21

    Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs.

  13. Design of a Novel Flexible Capacitive Sensing Mattress for Monitoring Sleeping Respiratory

    PubMed Central

    Chang, Wen-Ying; Huang, Chien-Chun; Chen, Chi-Chun; Chang, Chih-Cheng; Yang, Chin-Lung

    2014-01-01

    In this paper, an algorithm to extract respiration signals using a flexible projected capacitive sensing mattress (FPCSM) designed for personal health assessment is proposed. Unlike the interfaces of conventional measurement systems for poly-somnography (PSG) and other alternative contemporary systems, the proposed FPCSM uses projected capacitive sensing capability that is not worn or attached to the body. The FPCSM is composed of a multi-electrode sensor array that can not only observe gestures and motion behaviors, but also enables the FPCSM to function as a respiration monitor during sleep using the proposed approach. To improve long-term monitoring when body movement is possible, the FPCSM enables the selection of data from the sensing array, and the FPCSM methodology selects the electrodes with the optimal signals after the application of a channel reduction algorithm that counts the reversals in the capacitive sensing signals as a quality indicator. The simple algorithm is implemented in the time domain. The FPCSM system is used in experimental tests and is simultaneously compared with a commercial PSG system for verification. Multiple synchronous measurements are performed from different locations of body contact, and parallel data sets are collected. The experimental comparison yields a correlation coefficient of 0.88 between FPCSM and PSG, demonstrating the feasibility of the system design. PMID:25420152

  14. All-optical non-mechanical fiber-coupled sensor for liquid- and airborne sound detection.

    NASA Astrophysics Data System (ADS)

    Rohringer, Wolfgang; Preißer, Stefan; Fischer, Balthasar

    2017-04-01

    Most fiber-optic devices for pressure, strain or temperature measurements are based on measuring the mechanical deformation of the optical fiber by various techniques. While excellently suited for detecting strain, pressure or structure-borne sound, their sensitivity to liquid- and airborne sound is so far not comparable with conventional capacitive microphones or piezoelectric hydrophones. Here, we present an all-optical acoustic sensor which relies on the detection of pressure-induced changes of the optical refractive index inside a rigid, millimeter-sized, fiber-coupled Fabry-Pérot interferometer (FPI). No mechanically movable or deformable parts take part in the signal transduction chain. Therefore, due to the absence of mechanical resonances, this sensing principle allows for high sensitivity as well as a flat frequency response over an extraordinary measurement bandwidth. As a fiber-coupled device, it can be integrated easily into already available distributed fiber-optic networks for geophysical sensing. We present characterization measurements demonstrating the sensitivity, frequency response and directivity of the device for sound and ultrasound detection in air and water. We show that low-frequency temperature and pressure drifts can be recorded in addition to acoustic sensing. Finally, selected application tests of the laser-based hydrophone and microphone implementation are presented.

  15. Surveillance system for air pollutants by combination of the decision support system COMPAS and optical remote sensing systems

    NASA Astrophysics Data System (ADS)

    Flassak, Thomas; de Witt, Helmut; Hahnfeld, Peter; Knaup, Andreas; Kramer, Lothar

    1995-09-01

    COMPAS is a decision support system designed to assist in the assessment of the consequences of accidental releases of toxic and flammable substances. One of the key elements of COMPAS is a feedback algorithm which allows us to calculate the source term with the aid of concentration measurements. Up to now the feedback technique is applied to concentration measurements done with test tubes or conventional point sensors. In this paper the extension of the actual method is presented which is the combination of COMPAS and an optical remote sensing system like the KAYSER-THREDE K300 FTIR system. Active remote sensing methods based on FTIR are, among other applications, ideal for the so-called fence line monitoring of the diffuse emissions and accidental releases from industrial facilities, since from the FTIR spectra averaged concentration levels along the measurement path can be achieved. The line-averaged concentrations are ideally suited as on-line input for COMPAS' feedback technique. Uncertainties in the assessment of the source term related with both shortcomings of the dispersion model itself and also problems of a feedback strategy based on point measurements are reduced.

  16. Sensing our Environment: Remote sensing in a physics classroom

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora. The teams then processed their data and presented it to their foreign partners for evaluation in a video conference call. Alongside exciting insights about their respective environments and living conditions, the young scientists had daily access to live satellite sensors and remote sensing through the DLR_School_Lab in Germany and the Earth and Planetary Image Facility in Israel. This paper provides an overview regarding the project, the techniques used and the evaluation results following a pre-past-questionnaire design, and above all demonstrates the use of remote sensing as an application for physics teaching in a significant learning environment.

  17. Feasibility of 4D flow MR imaging of the brain with either Cartesian y-z radial sampling or k-t SENSE: comparison with 4D Flow MR imaging using SENSE.

    PubMed

    Sekine, Tetsuro; Amano, Yasuo; Takagi, Ryo; Matsumura, Yoshio; Murai, Yasuo; Kumita, Shinichiro

    2014-01-01

    A drawback of time-resolved 3-dimensional phase contrast magnetic resonance (4D Flow MR) imaging is its lengthy scan time for clinical application in the brain. We assessed the feasibility for flow measurement and visualization of 4D Flow MR imaging using Cartesian y-z radial sampling and that using k-t sensitivity encoding (k-t SENSE) by comparison with the standard scan using SENSE. Sixteen volunteers underwent 3 types of 4D Flow MR imaging of the brain using a 3.0-tesla scanner. As the standard scan, 4D Flow MR imaging with SENSE was performed first and then followed by 2 types of acceleration scan-with Cartesian y-z radial sampling and with k-t SENSE. We measured peak systolic velocity (PSV) and blood flow volume (BFV) in 9 arteries, and the percentage of particles arriving from the emitter plane at the target plane in 3 arteries, visually graded image quality in 9 arteries, and compared these quantitative and visual data between the standard scan and each acceleration scan. 4D Flow MR imaging examinations were completed in all but one volunteer, who did not undergo the last examination because of headache. Each acceleration scan reduced scan time by 50% compared with the standard scan. The k-t SENSE imaging underestimated PSV and BFV (P < 0.05). There were significant correlations for PSV and BFV between the standard scan and each acceleration scan (P < 0.01). The percentage of particles reaching the target plane did not differ between the standard scan and each acceleration scan. For visual assessment, y-z radial sampling deteriorated the image quality of the 3 arteries. Cartesian y-z radial sampling is feasible for measuring flow, and k-t SENSE offers sufficient flow visualization; both allow acquisition of 4D Flow MR imaging with shorter scan time.

  18. Air Quality Research and Applications Using AURA OMi Data

    NASA Technical Reports Server (NTRS)

    Bhartia, P.K.; Gleason, J.F.; Torres, O.; Levelt, P.; Liu, X.; Ziemke, J.; Chandra, S.; Krotkov, N.

    2007-01-01

    The Ozone Monitoring Instrument (OMI) on EOS Aura is a new generation of satellite remote sensing instrument designed to measure trace gas and aerosol absorption at the UV and blue wavelengths. These measurements are made globally at urban scale resolution with no inter-orbital gaps that make them potentially very useful for air quality research, such as the determination of the sources and processes that affect global and regional air quality, and to develop applications such as air quality forecast. However, the use of satellite data for such applications is not as straight forward as satellite data have been for stratospheric research. There is a need for close interaction between the satellite product developers, in-situ measurement programs, and the air quality research community to overcome some of the inherent difficulties in interpreting data from satellite-based remote sensing instruments. In this talk we will discuss the challenges and opportunities in using OMI products for air quality research and applications. A key conclusion of this work is that to realize the full potential of OMI measurements it will be necessary to combine OMI data with data from instruments such as MLS, MODIS, AIRS, and CALIPSO that are currently flying in the "A-train" satellite constellation. In addition similar data taken by satellites crossing the earth at different local times than the A-train (e.g., the recently MetOp satellite) would need to be processed in a consistent manner to study diurnal variability, and to capture the effects on air quality of rapidly changing events such as wild fires.

  19. Local Learning Strategies for Wake Identification

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Alsalman, Mohamad; Kanso, Eva

    2017-11-01

    Swimming agents, biological and engineered alike, must navigate the underwater environment to survive. Tasks such as autonomous navigation, foraging, mating, and predation require the ability to extract critical cues from the hydrodynamic environment. A substantial body of evidence supports the hypothesis that biological systems leverage local sensing modalities, including flow sensing, to gain knowledge of their global surroundings. The nonlinear nature and high degree of complexity of fluid dynamics makes the development of algorithms for implementing localized sensing in bioinspired engineering systems essentially intractable for many systems of practical interest. In this work, we use techniques from machine learning for training a bioinspired swimmer to learn from its environment. We demonstrate the efficacy of this strategy by learning how to sense global characteristics of the wakes of other swimmers measured only from local sensory information. We conclude by commenting on the advantages and limitations of this data-driven, machine learning approach and its potential impact on broader applications in underwater sensing and navigation.

  20. An investigation of satellite sounding products for the remote sensing of the surface energy balance and soil moisture

    NASA Technical Reports Server (NTRS)

    Diak, George R.

    1989-01-01

    Improved techniques for the remote sensing of the land surface energy balance (SEB) and soil moisture would greatly improve prediction of climate and weather as well as be of benefit to agriculture, hydrology and many associated fields. Most of the satellite remote sensing methods which were researched to date rely upon satellite-measured infrared surface temperatures or their time changes as a remote sensing signal. Optimistically, only four or five levels of information (wet to dry) in surface heating/evaporation are discernable by surface temperature methods and a good understanding of atmospheric conditions is necessary to bring them to this accuracy level. Skin temperature methods were researched as well as begun work on several new methods for the remote sensing of the SEB, some elements of which are applicable to current and retrospective data sources and some which will rely on instrumentation from the Earth Observing System (EOS) program in the 1990s.

  1. Mobile Autonomous Sensing Unit (MASU): A Framework That Supports Distributed Pervasive Data Sensing

    PubMed Central

    Medina, Esunly; Lopez, David; Meseguer, Roc; Ochoa, Sergio F.; Royo, Dolors; Santos, Rodrigo

    2016-01-01

    Pervasive data sensing is a major issue that transverses various research areas and application domains. It allows identifying people’s behaviour and patterns without overwhelming the monitored persons. Although there are many pervasive data sensing applications, they are typically focused on addressing specific problems in a single application domain, making them difficult to generalize or reuse. On the other hand, the platforms for supporting pervasive data sensing impose restrictions to the devices and operational environments that make them unsuitable for monitoring loosely-coupled or fully distributed work. In order to help address this challenge this paper present a framework that supports distributed pervasive data sensing in a generic way. Developers can use this framework to facilitate the implementations of their applications, thus reducing complexity and effort in such an activity. The framework was evaluated using simulations and also through an empirical test, and the obtained results indicate that it is useful to support such a sensing activity in loosely-coupled or fully distributed work scenarios. PMID:27409617

  2. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    PubMed Central

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  3. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.

    PubMed

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-02-11

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  4. Secure distribution for high resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Sun, Jing; Xu, Zheng Q.

    2010-09-01

    The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.

  5. Reference-free Shack-Hartmann wavefront sensor.

    PubMed

    Zhao, Liping; Guo, Wenjiang; Li, Xiang; Chen, I-Ming

    2011-08-01

    The traditional Shack-Hartmann wavefront sensing (SHWS) system measures the wavefront slope by calculating the centroid shift between the sample and a reference piece, and then the wavefront is reconstructed by a suitable iterative reconstruction method. Because of the necessity of a reference, many issues are brought up, which limit the system in most applications. This Letter proposes a reference-free wavefront sensing (RFWS) methodology, and an RFWS system is built up where wavefront slope changes are measured by introducing a lateral disturbance to the sampling aperture. By using Southwell reconstruction two times to process the measured data, the form of the wavefront at the sampling plane can be well reconstructed. A theoretical simulation platform of RFWS is established, and various surface forms are investigated. Practical measurements with two measurement systems-SHWS and our RFWS-are conducted, analyzed, and compared. All the simulation and measurement results prove and demonstrate the correctness and effectiveness of the method. © 2011 Optical Society of America

  6. Noncontact vibration measurements using magnetoresistive sensing elements

    NASA Astrophysics Data System (ADS)

    Tomassini, R.; Rossi, G.

    2016-06-01

    Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.

  7. Cervical joint position sense in neck pain. Immediate effects of muscle vibration versus mental training interventions: a RCT.

    PubMed

    Beinert, K; Preiss, S; Huber, M; Taube, W

    2015-12-01

    Impaired cervical joint position sense is a feature of chronic neck pain and is commonly argued to rely on abnormal cervical input. If true, muscle vibration, altering afferent input, but not mental interventions, should have an effect on head repositioning acuity and neck pain perception. The aim of the present study was to determine the short-term effects of neck muscle vibration, motor imagery, and action observation on cervical joint position sense and pressure pain threshold in people with chronic neck pain. Forty-five blinded participants with neck pain received concealed allocation and were randomized in three treatment groups. A blinded assessor performed pre- and post-test measurement. Patients were recruited from secondary outpatient clinics in the southwest of Germany. Chronic, non specific neck pain patients without arm pain were recruited for this study. A single intervention session of 5 minutes was delivered to each blinded participant. Patients were either allocated to one of the following three interventions: (1) neck muscle vibration; (2) motor imagery; (3) action observation. Primary outcomes were cervical joint position sense acuity and pressure pain threshold. Repeated measures ANOVAs were used to evaluate differences between groups and subjects. Repositioning acuity displayed significant time effects for vibration, motor imagery, and action observation (all P<0.05), but revealed no time*group effect. Pressure pain threshold demonstrated a time*group effect (P=0.042) as only vibration significantly increased pressure pain threshold (P=0.01). Although motor imagery and action observation did not modulate proprioceptive, afferent input, they nevertheless improved cervical joint position sense acuity. This indicates that, against the common opinion, changes in proprioceptive input are not prerequisite to improve joint repositioning performance. However, the short-term applications of these cognitive treatments had no effect on pressure pain thresholds, whereas vibration reduced pressure pain thresholds. This implies different underlying mechanisms after vibration and mental training. Mental interventions were effective in improving cervical joint position sense and are easy to integrate in rehabilitation regimes. Neck muscle vibration is effective in improving cervical joint position sense and pressure pain thresholds within 5 minutes of application.

  8. Beaufort/Bering 1979 microwave remote sensing data catalog report, 14-24 March 1979

    NASA Technical Reports Server (NTRS)

    Hirstein, W. S.; Hennigar, H. F.; Schaffner, S. K.; Delnore, V. E.; Grantham, W. L.

    1983-01-01

    The airborne microwave remote sending measurements obtained by the Langley Research Center in support of the 1979 Sea-Ice Radar Experiment (SIRE) in the Beaufort and Bering Seas are discussed. The remote sensing objective of SIRE was to define correlations between both active and passive microwave signatures and ice phenomena assocated with practical applications in the Arctic. The instruments used by Langley during SIRE include the stepped frequency microwave radiometer (SFMR), the airborne microwave scatterometer (AMSCAT), the precision radiation thermometer (PRT-5), and metric aerial photography. Remote sensing data are inventoried and cataloged in a user-friendly format. The data catalog is presented as time-history plots when and where data were obtained as well as the sensor configuration.

  9. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.

    PubMed

    Zheng, Tianyu; Bott, Steven; Huo, Qun

    2016-08-24

    Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications.

  10. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  11. Voltage Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under a Lewis Research Center Small Business Innovation Research contract, SRICO, Inc. developed a fiber optic voltage sensor to measure voltage in electronic systems in spacecraft. The sensor uses glass and light to sense and transmit electricity, and is relatively safe and accurate. SRICO then commercialized the sensor for measurement of electric field and voltage in applications such as electric power systems and hazardous environments, lightning detection, and fiber optic communication systems.

  12. Earth sciences, GIS and geomatics for natural hazards assessment and risks mitigation: a civil protection perspective

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi; Conte, Riccardo; Lanfranco, Massimo; Perrone, Gianluigi; Giardino, Marco; Ratto, Sara

    2010-05-01

    Geo-information and remote sensing are proper tools to enhance functional strategies for increasing awareness on natural hazards and risks and for supporting research and operational activities devoted to disaster reduction. An improved Earth Sciences knowledge coupled with Geomatics advanced technologies has been developed by the joint research group and applied by the ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) centre, within its partnership with the UN World Food Programme (WFP) with the goal of reducing human, social, economic and environmental losses due to natural hazards and related disasters. By cooperating with local and regional authorities (Municipalities, Centro Funzionale of the Aosta Valley, Civil Protection Agency of Regione Piemonte), data on natural hazards and risks have been collected, compared to national and global data, then interpreted for helping communities and civil protection agencies of sensitive mountain regions to make strategic choices and decisions to better mitigation and adaption measures. To enhance the application of GIS and Remote-sensing technologies for geothematic mapping of geological and geomorphological risks of mountain territories of Europe and Developing Countries, research activities led to the collection and evaluation of data from scientific literature and historical technical archives, for the definition of predisposing/triggering factors and evolutionary processes of natural instability phenomena (landslides, floods, storms, …) and for the design and implementation of early-warning and early-impact systems. Geodatabases, Remote Sensing and Mobile-GIS applications were developed to perform analysis of : 1) large climate-related disaster (Hurricane Mitch, Central America), by the application of remote sensing techniques, either for early warning or mitigation measures at the national and international scale; 2) distribution of slope instabilities at the regional scale (Aosta Valley, NW-Italy), for preventing and recovering measures; 3) geological and geomorphological controlling factors of seismicity, to provide microzonation maps and scenarios for co-seismic response of instable zones (Dronero, NW- Italian Alps); 4) earthquake effects on ground and infrastructures, in order to register early assessment for awareness situations and for compile damage inventories (Asti-Alessandria seismic events, 2000, 2001, 2003). The research results has been able to substantiate early warning models by structuring geodatabases on natural disasters, and to support humanitarian relief and disaster management activities by creating and testing SRG2, a mobile-GIS application for field-data collection on natural hazards and risks.

  13. Monitoring Crop Phenology and Growth Stages from Space: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.; Mladenova, I. E.; Kustas, W. P.; Alfieri, J. G.

    2014-12-01

    Crop growth stages in concert with weather and soil moisture conditions can have a significant impact on crop yields. In the U.S., crop growth stages and conditions are reported by farmers at the county level. These reports are somewhat subjective and fluctuate between different reporters, locations and times. Remote sensing data provide an alternative approach to monitoring crop growth over large areas in a more consistent and quantitative way. In the recent years, remote sensing data have been used to detect vegetation phenology at 1-km spatial resolution globally. However, agricultural applications at field scale require finer spatial resolution remote sensing data. Landsat (30-m) data have been successfully used for agricultural applications. There are many medium resolution sensors available today or in near future. These include Landsat, SPOT, RapidEye, ASTER and future Sentinel-2 etc. Approaches have been developed in the past several years to integrate remote sensing data from different sensors which may have different sensor characteristics, and spatial and temporal resolutions. This allows us opportunities today to map crop growth stages and conditions using dense time-series remote sensing at field scales. However, remotely sensed phenology (or phenological metrics) is normally derived based on the mathematical functions of the time-series data. The phenological metrics are determined by either identifying inflection (curvature) points or some pre-defined thresholds in the remote sensing phenology algorithms. Furthermore, physiological crop growth stages may not be directly correlated to the remotely sensed phenology. The relationship between remotely sensed phenology and crop growth stages is likely to vary for specific crop types and varieties, growing stages, conditions and even locations. In this presentation, we will examine the relationship between remotely sensed phenology and crop growth stages using in-situ measurements from Fluxnet sites and crop progress reports from USDA NASS. We will present remote sensing approaches and focus on: 1) integrating multiple sources of remote sensing data; and 2) extracting crop phenology at field scales. An example in the U.S. Corn Belt area will be presented and analyzed. Future directions for mapping crop growth stages will be discussed.

  14. Atmospheric pollution measurement by optical cross correlation methods - A concept

    NASA Technical Reports Server (NTRS)

    Fisher, M. J.; Krause, F. R.

    1971-01-01

    Method combines standard spectroscopy with statistical cross correlation analysis of two narrow light beams for remote sensing to detect foreign matter of given particulate size and consistency. Method is applicable in studies of generation and motion of clouds, nuclear debris, ozone, and radiation belts.

  15. Directly coupled vs conventional time domain reflectometry in soils

    USDA-ARS?s Scientific Manuscript database

    Time domain reflectometry (TDR), a technique for estimation of soil water, measures the travel time of an electromagnetic pulse on electrodes embedded in the soil, but has limited application in commercial agriculture due to costs, labor, and sensing depth. Conventional TDR systems have employed ana...

  16. Testing of Cerex Open-Path Ultraviolet Differential Optical Absorption Spectroscopy Systems for Fenceline Monitoring Applications

    EPA Science Inventory

    Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...

  17. Testing of Cerex Open-Path Ultraviolet Differential Optical Absorption Spectroscopy System for Fenceline Monitoring Applications

    EPA Science Inventory

    Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...

  18. Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope.

    PubMed

    Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie

    2017-03-15

    By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes.

  19. Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope

    PubMed Central

    Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie

    2017-01-01

    By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes. PMID:28294995

  20. Radar Remote Sensing of Waves and Currents in the Nearshore Zone

    DTIC Science & Technology

    2006-01-01

    and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.

Top