Compressed normalized block difference for object tracking
NASA Astrophysics Data System (ADS)
Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge
2018-04-01
Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.
2011-01-01
sensing an attractive technique for estimating LAI. Many vegetation indices, such as Normalized Difference Vegetation Index ( NDVI ), tend to saturate at...little or no improvement over NDVI . Furthermore, indirect ground-sampling techniques often used to evaluate the potential of vegetation indices also...landscapes makes remote sensing an attractive technique for estimating LAI. Many vegetation indices, such as Normalized Difference Vegetation Index ( NDVI
Optical dynamic range maximization for humidity sensing by controlling growth of zinc oxide nanorods
NASA Astrophysics Data System (ADS)
Yusof, Haziezol Helmi Mohd; Harun, Sulaiman Wadi; Dimyati, Kaharudin; Bora, Tanujjal; Mohammed, Waleed S.; Dutta, Joydeep
2018-07-01
An experimental study of the dynamic range maximization with Zinc Oxide (ZnO) nanorods coated glass substrates for humidity and vapor sensing is reported. Growth time of the nanorods and the length of the coated segments were controlled to study the differences between a reference environmental condition (normal humidity or dry condition) and water vapor concentrations. In order to achieve long dynamic range of detection with respect to nanorods coverage, several substrates with triangular patterns of ZnO nanostructures were fabricated by selective hydrothermal growth over different durations of time (5 h, 10 h and 15 h). It was found that maximum dynamic range for the humidity sensing occurs for the combination parameters of normalized length (Z) of 0.23 and normalized scattering coefficient (ζ) of 0.3. A reduction in transmittance by 38% at humidity levels of 80% with reference point as 50% humidity was observed. The results could be correlated to a first order approximation model that assumes uniform growth and the optimum operating conditions for humidity sensing device. This study provides an option to correlate ZnO growth conditions for different vapor sensing applications which can set a platform for compact sensors where modulation of light intensity is followed.
Doi, Ryoichi
2012-09-01
Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.
2012-01-01
Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling approach based on remotely sensed information is potentially useful for counter measures that are putting on at the environmental side, namely vector larvae control via larviciding and water body reforming. PMID:22443452
Dambach, Peter; Machault, Vanessa; Lacaux, Jean-Pierre; Vignolles, Cécile; Sié, Ali; Sauerborn, Rainer
2012-03-23
The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling approach based on remotely sensed information is potentially useful for counter measures that are putting on at the environmental side, namely vector larvae control via larviciding and water body reforming. © 2012 Dambach et al; licensee BioMed Central Ltd.
Brightness discrimination and contrast sensitivity in chronic glaucoma--a clinical study.
Teoh, S L; Allan, D; Dutton, G N; Foulds, W S
1990-04-01
The visual acuity, the difference in sensitivity of the two eyes to light (brightness ratio), and contrast sensitivity were assessed in 28 patients with chronic open angle glaucoma and compared with those of 41 normal controls of similar ages and visual acuity. The results obtained were related to the results of Tübingen visual field analysis in patients with glaucoma. Twenty-four of the 28 glaucoma patients (86%) had a significant disparity in brightness ratio between the two eyes. This was found to match the frequency of visual field loss. Moreover, there was a significant relationship between the interocular differences in brightness sense and the difference in the degree of visual field loss between the two eyes. Of the glaucoma patients 39% had sum contrast sensitivities outside the normal range for age-matched normal controls. No significant correlation was found between the interocular difference in brightness sense and the visual acuity or the interocular difference in sum contrast sensitivity. It is concluded that, in the presence of a normal visual acuity, the brightness ratio test warrants evaluation as a potential screening test for chronic open angle glaucoma.
A NDVI assisted remote sensing image adaptive scale segmentation method
NASA Astrophysics Data System (ADS)
Zhang, Hong; Shen, Jinxiang; Ma, Yanmei
2018-03-01
Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.
A Physically-Based Drought Product Using Thermal Remote Sensing of Evapotranspiration
USDA-ARS?s Scientific Manuscript database
Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonst...
Brightness discrimination and contrast sensitivity in chronic glaucoma--a clinical study.
Teoh, S L; Allan, D; Dutton, G N; Foulds, W S
1990-01-01
The visual acuity, the difference in sensitivity of the two eyes to light (brightness ratio), and contrast sensitivity were assessed in 28 patients with chronic open angle glaucoma and compared with those of 41 normal controls of similar ages and visual acuity. The results obtained were related to the results of Tübingen visual field analysis in patients with glaucoma. Twenty-four of the 28 glaucoma patients (86%) had a significant disparity in brightness ratio between the two eyes. This was found to match the frequency of visual field loss. Moreover, there was a significant relationship between the interocular differences in brightness sense and the difference in the degree of visual field loss between the two eyes. Of the glaucoma patients 39% had sum contrast sensitivities outside the normal range for age-matched normal controls. No significant correlation was found between the interocular difference in brightness sense and the visual acuity or the interocular difference in sum contrast sensitivity. It is concluded that, in the presence of a normal visual acuity, the brightness ratio test warrants evaluation as a potential screening test for chronic open angle glaucoma. PMID:2186795
Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol
2017-10-01
A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.
[Effect of different snow depth and area on the snow cover retrieval using remote sensing data].
Jiang, Hong-bo; Qin, Qi-ming; Zhang, Ning; Dong, Heng; Chen, Chao
2011-12-01
For the needs of snow cover monitoring using multi-source remote sensing data, in the present article, based on the spectrum analysis of different depth and area of snow, the effect of snow depth on the results of snow cover retrieval using normalized difference snow index (NDSI) is discussed. Meanwhile, taking the HJ-1B and MODIS remote sensing data as an example, the snow area effect on the snow cover monitoring is also studied. The results show that: the difference of snow depth does not contribute to the retrieval results, while the snow area affects the results of retrieval to some extents because of the constraints of spatial resolution.
Effect of ankle proprioceptive exercise on static and dynamic balance in normal adults.
Yong, Min-Sik; Lee, Yun-Seob
2017-02-01
[Purpose] The present study was conducted to investigate whether ankle proprioceptive exercise affects static and dynamic balance in normal adults. [Subjects and Methods] Twenty-eight normal adults were recruited to measure their static and dynamic balancing before and after the proprioceptive exercise. A subject stood with bare feet on the round supporting platform of the device for measuring balance, and the investigator entered the age and the height of the subjects and set his/her feet on the central point of the monitor screen. Training of ankle proprioceptive sense for the movements of plantar-flexion and dorsiflexion was performed. In the training of joint position sense in plantar-flexion and dorsiflexion, the plantar-flexion and the dorsiflexion were set as 15°, respectively. [Results] The static balancing did not show significant differences in average, while the dynamic balancing showed significant differences. [Conclusion] Ankle proprioceptive exercise can affect dynamic balance.
Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.
Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol
2017-10-01
A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
S. Panda; D.M. Amatya; G. Hoogenboom
2014-01-01
Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...
USDA-ARS?s Scientific Manuscript database
This study investigates the effect of land use on the Geomorphological Cascade of unequal Linear Reservoirs (GCUR) model. We use the Normalized Difference Vegetation Index (NDVI) derived from remotely sensed data as a measure of land use. Our approach has two important aspects: (i) it considers the ...
McFarland, Tiffany Marie; van Riper, Charles
2013-01-01
Successful management practices of avian populations depend on understanding relationships between birds and their habitat, especially in rare habitats, such as riparian areas of the desert Southwest. Remote-sensing technology has become popular in habitat modeling, but most of these models focus on single species, leaving their applicability to understanding broader community structure and function largely untested. We investigated the usefulness of two Normalized Difference Vegetation Index (NDVI) habitat models to model avian abundance and species richness on the upper San Pedro River in southeastern Arizona. Although NDVI was positively correlated with our bird metrics, the amount of explained variation was low. We then investigated the addition of vegetation metrics and other remote-sensing metrics to improve our models. Although both vegetation metrics and remotely sensed metrics increased the power of our models, the overall explained variation was still low, suggesting that general avian community structure may be too complex for NDVI models.
Perturbative description of the fermionic projector: Normalization, causality, and Furry's theorem
NASA Astrophysics Data System (ADS)
Finster, Felix; Tolksdorf, Jürgen
2014-05-01
The causal perturbation expansion of the fermionic projector is performed with a contour integral method. Different normalization conditions are analyzed. It is shown that the corresponding light-cone expansions are causal in the sense that they only involve bounded line integrals. For the resulting loop diagrams we prove a generalized Furry theorem.
Quantifying Forest Ground Flora Biomass Using Close-range Remote Sensing
Paul F. Doruska; Robert C. Weih; Matthew D. Lane; Don C. Bragg
2005-01-01
Close-range remote sensing was used to estimate biomass of forest ground flora in Arkansas. Digital images of a series of 1-m² plots were taken using Kodak DCS760 and Kodak DCS420CIR digital cameras. ESRI ArcGIS and ERDAS Imagine® software was used to calculate the Normalized Difference Vegetation Index (NDVI) and the Average Visible...
NASA Astrophysics Data System (ADS)
Gantumur, Byambakhuu; Wu, Falin; Zhao, Yan; Vandansambuu, Battsengel; Dalaibaatar, Enkhjargal; Itiritiphan, Fareda; Shaimurat, Dauryenbyek
2017-10-01
Urban growth can profoundly alter the urban landscape structure, ecosystem processes, and local climates. Timely and accurate information on the status and trends of urban ecosystems is critical to develop strategies for sustainable development and to improve the urban residential environment and living quality. Ulaanbaatar city was urbanized very rapidly caused by herders and farmers, many of them migrating from rural places, have played a big role in this urban expansion (sprawl). Today, 1.3 million residents for about 40% of total population are living in the Ulaanbaatar region. Those human activities influenced stronger to green environments. Therefore, the aim of this study is determined to change detection of land use/land cover (LULC) and estimating their areas for the trend of future by remote sensing and statistical methods. The implications of analysis were provided by change detection methods of LULC, remote sensing spectral indices including normalized difference vegetation index (NDVI), normalized difference water index (NDWI) and normalized difference built-up index (NDBI). In addition, it can relate to urban heat island (UHI) provided by Land surface temperature (LST) with local climate issues. Statistical methods for image processing used to define relations between those spectral indices and change detection images and regression analysis for time series trend in future. Remote sensing data are used by Landsat (TM/ETM+/OLI) satellite images over the period between 1990 and 2016 by 5 years. The advantages of this study are very useful remote sensing approaches with statistical analysis and important to detecting changes of LULC. The experimental results show that the LULC changes can image on the present and after few years and determined relations between impacts of environmental conditions.
NASA Astrophysics Data System (ADS)
Zhou, Tingting; Gu, Lingjia; Ren, Ruizhi; Cao, Qiong
2016-09-01
With the rapid development of remote sensing technology, the spatial resolution and temporal resolution of satellite imagery also have a huge increase. Meanwhile, High-spatial-resolution images are becoming increasingly popular for commercial applications. The remote sensing image technology has broad application prospects in intelligent traffic. Compared with traditional traffic information collection methods, vehicle information extraction using high-resolution remote sensing image has the advantages of high resolution and wide coverage. This has great guiding significance to urban planning, transportation management, travel route choice and so on. Firstly, this paper preprocessed the acquired high-resolution multi-spectral and panchromatic remote sensing images. After that, on the one hand, in order to get the optimal thresholding for image segmentation, histogram equalization and linear enhancement technologies were applied into the preprocessing results. On the other hand, considering distribution characteristics of road, the normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used to suppress water and vegetation information of preprocessing results. Then, the above two processing result were combined. Finally, the geometric characteristics were used to completed road information extraction. The road vector extracted was used to limit the target vehicle area. Target vehicle extraction was divided into bright vehicles extraction and dark vehicles extraction. Eventually, the extraction results of the two kinds of vehicles were combined to get the final results. The experiment results demonstrated that the proposed algorithm has a high precision for the vehicle information extraction for different high resolution remote sensing images. Among these results, the average fault detection rate was about 5.36%, the average residual rate was about 13.60% and the average accuracy was approximately 91.26%.
NASA Astrophysics Data System (ADS)
Pan, Xin; Cao, Chen; Yang, Yingbao; Li, Xiaolong; Shan, Liangliang; Zhu, Xi
2018-04-01
The land surface temperature (LST) derived from thermal infrared satellite images is a meaningful variable in many remote sensing applications. However, at present, the spatial resolution of the satellite thermal infrared remote sensing sensor is coarser, which cannot meet the needs. In this study, LST image was downscaled by a random forest model between LST and multiple predictors in an arid region with an oasis-desert ecotone. The proposed downscaling approach was evaluated using LST derived from the MODIS LST product of Zhangye City in Heihe Basin. The primary result of LST downscaling has been shown that the distribution of downscaled LST matched with that of the ecosystem of oasis and desert. By the way of sensitivity analysis, the most sensitive factors to LST downscaling were modified normalized difference water index (MNDWI)/normalized multi-band drought index (NMDI), soil adjusted vegetation index (SAVI)/ shortwave infrared reflectance (SWIR)/normalized difference vegetation index (NDVI), normalized difference building index (NDBI)/SAVI and SWIR/NDBI/MNDWI/NDWI for the region of water, vegetation, building and desert, with LST variation (at most) of 0.20/-0.22 K, 0.92/0.62/0.46 K, 0.28/-0.29 K and 3.87/-1.53/-0.64/-0.25 K in the situation of +/-0.02 predictor perturbances, respectively.
Remote sensing of solar radiation absorbed and reflected by vegetated land surfaces
NASA Technical Reports Server (NTRS)
Myneni, Ranga B.; Asrar, Ghassem; Tanre, Didier; Choudhury, Bhaskar J.
1992-01-01
1D and 3D radiative-transfer models have been used to investigate the problem of remotely sensed determination of vegetated land surface-absorbed and reflected solar radiation. Calculations were conducted for various illumination conditions to determine surface albedo, soil- and canopy-absorbed photosynthetically active and nonactive radiation, and normalized difference vegetation index. Simple predictive models are developed on the basis of the relationships among these parameters.
Ekelin, M; Crang Svalenius, E; Larsson, A-K; Nyberg, P; Marsál, K; Dykes, A-K
2009-10-01
To investigate parents' expectations, experiences and reactions, sense of coherence and anxiety before and after a second-trimester routine ultrasound examination, with normal findings. Before and after ultrasound questionnaires including the scales parents' expectations, experiences and reactions to routine ultrasound examination (PEER-U state of mind index), sense of coherence (SOC) and state and trait anxiety inventory (STAI), were sent to a 1-year cohort of women and their partners. Replies received were 2183. Both parents had significantly less worried state of mind (PEER-U) after the examination than before. Women had a lower grade of state anxiety after than before, but for men there was no significant change. Before the ultrasound, women had a higher degree of worried state of mind, as well as a higher grade of state and trait anxiety and a lower sense of coherence, than men. The women showed a greater reduction in worried state of mind than the men after the ultrasound examination. There were no significant differences in sense of coherence before and after ultrasound. Women and men are affected in their psychological well-being in relation to a routine ultrasound examination, but their sense of coherence remains stable.
Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser
NASA Astrophysics Data System (ADS)
Kalshoven, James E., Jr.; Tierney, Michael R., Jr.; Daughtry, Craig S. T.; McMurtrey, James E., III
1995-05-01
Polarized laser remote-sensing measurements that correlate the yield, the normalized difference vegetation index, and the leaf area index with the depolarized backscattered radiation from corn plots grown with eight different nitrogen fertilization dosages are presented. A polarized Nd:YAG laser emitting at 1064 and 532 nm is used. Depolarization increased significantly with increasing fertilization at the infrared wavelength, and there was a decrease in the depolarization at the green wavelength. The depolarization spectral difference index, defined as the absolute difference in the depolarization at the two wavelengths, is introduced as a parameter that is an indicator of the condition of the internal leaf structure.
Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense.
Zafar, H; Alghadir, A H; Iqbal, Z A
2017-12-01
To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn't affect head-neck relocation error in normal healthy subjects.
Metabolism-independent sugar sensing in central orexin neurons.
González, J Antonio; Jensen, Lise T; Fugger, Lars; Burdakov, Denis
2008-10-01
Glucose sensing by specialized neurons of the hypothalamus is vital for normal energy balance. In many glucose-activated neurons, glucose metabolism is considered a critical step in glucose sensing, but whether glucose-inhibited neurons follow the same strategy is unclear. Orexin/hypocretin neurons of the lateral hypothalamus are widely projecting glucose-inhibited cells essential for normal cognitive arousal and feeding behavior. Here, we used different sugars, energy metabolites, and pharmacological tools to explore the glucose-sensing strategy of orexin cells. We carried out patch-clamp recordings of the electrical activity of individual orexin neurons unambiguously identified by transgenic expression of green fluorescent protein in mouse brain slices. RESULTS- We show that 1) 2-deoxyglucose, a nonmetabolizable glucose analog, mimics the effects of glucose; 2) increasing intracellular energy fuel production with lactate does not reproduce glucose responses; 3) orexin cell glucose sensing is unaffected by glucokinase inhibitors alloxan, d-glucosamine, and N-acetyl-d-glucosamine; and 4) orexin glucosensors detect mannose, d-glucose, and 2-deoxyglucose but not galactose, l-glucose, alpha-methyl-d-glucoside, or fructose. Our new data suggest that behaviorally critical neurocircuits of the lateral hypothalamus contain glucose detectors that exhibit novel sugar selectivity and can operate independently of glucose metabolism.
Sudo, Emi; Suzuki, Yuji; Makino, Amane
2014-11-01
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) strongly limits photosynthesis at lower CO2 concentration [CO2] whereas [corrected] Rubisco limitation is cancelled by elevated [CO2]. Therefore, increase or reduction in Rubisco content by transformation with a sense or an antisense RBCS construct are expected to alter the biomass production under different CO2 levels. RBCS-sense (125% Rubisco of wild-type) and -antisense (35% Rubisco of wild-type) rice (Oryza sativa L.) plants were grown for 63 days at three different CO2 levels: low [CO2] (28 Pa), normal [CO2] (40 Pa) and elevated [CO2] (120 Pa). The biomass of RBCS-sense plants was 32% and 15% greater at low [CO2] and normal [CO2] than that of the wild-type plants, respectively, but did not differ at elevated [CO2]. Conversely, the biomass of RBCS-antisense plants was the smallest at low [CO2]. Thus, overproduction of Rubisco was effective for biomass production at low [CO2]. Greater biomass production at low [CO2] in RBCS-sense plants was caused by an increase in the net assimilation rate, and associated with an increase in the amount of N uptake. Furthermore, Rubisco overproduction in RBCS-sense plants was also promoted at low [CO2]. Although it seems that low [CO2]-growth additionally stimulates the effect of RBCS overexpression, such a phenomenon observed at low [CO2] was mediated through an increase in total leaf N content. Thus, the dependence of the growth improvement in RBCS-sense rice on growth [CO2] was closely related to the degree of Rubisco overproduction which was accompanied not only by leaf N content but also by whole plant N content. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Crop sensors for automation of in-season nitrogen application
USDA-ARS?s Scientific Manuscript database
Crop canopy reflectance sensing can be used to assess in-season crop nitrogen (N) health for automatic control of N fertilization. Typically, sensor data are processed to an established index, such as the Normalized Difference Vegetative Index (NDVI) and differences in that index from a well-fertili...
Reconstruction of time-varying tidal flat topography using optical remote sensing imageries
NASA Astrophysics Data System (ADS)
Tseng, Kuo-Hsin; Kuo, Chung-Yen; Lin, Tang-Huang; Huang, Zhi-Cheng; Lin, Yu-Ching; Liao, Wen-Hung; Chen, Chi-Farn
2017-09-01
Tidal flats (TFs) occupy approximately 7% of the total coastal shelf areas worldwide. However, TFs are unavailable in most global digital elevation models (DEMs) due to water-impermeable nature of existing remote sensing approaches (e.g., radar used for WorldDEM™ and Shuttle Radar Topography Mission DEM and optical stereo-pairs used for ASTER Global Digital Elevation Map Version 2). However, this problem can be circumvented using remote sensing imageries to observe land exposure at different tidal heights during each revisit. This work exploits Landsat-4/-5/-7/-8 Thematic Mapper (TM)/Enhanced TM Plus/Operational Land Imager imageries to reconstruct topography of a TF, namely, Hsiang-Shan Wetland in Taiwan, to unveil its formation and temporal changes since the 1980s. We first classify water areas by applying modified normalized difference water index to each Landsat image and normalize chances of water exposure to create an inundation probability map. This map is then scaled by tidal amplitudes extracted from DTU10 tide model to convert the probabilities into actual elevations. After building DEM at intertidal zone, a water level-area curve is established, and accuracy of DEM is validated by sea level (SL) at the timing of each Landsat snapshot. A 22-year (1992-2013) dataset composed of 227 Landsat scenes are analyzed and compared with tide gauge data. Root-mean-square differences of SL reaches 48 cm with a correlation coefficient of 0.93, indicating that the present technique is useful for constructing accurate coastal DEMs, and that products can be utilized for estimating instant SL. This study shows the possibility of exploring evolution of intertidal zones using an archive of optical remote sensing imageries. The technique developed in the present study potentially helps in quantifying SL from the start of optical remote sensing era.
Study of Burn Scar Extraction Automatically Based on Level Set Method using Remote Sensing Data
Liu, Yang; Dai, Qin; Liu, JianBo; Liu, ShiBin; Yang, Jin
2014-01-01
Burn scar extraction using remote sensing data is an efficient way to precisely evaluate burn area and measure vegetation recovery. Traditional burn scar extraction methodologies have no well effect on burn scar image with blurred and irregular edges. To address these issues, this paper proposes an automatic method to extract burn scar based on Level Set Method (LSM). This method utilizes the advantages of the different features in remote sensing images, as well as considers the practical needs of extracting the burn scar rapidly and automatically. This approach integrates Change Vector Analysis (CVA), Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR) to obtain difference image and modifies conventional Level Set Method Chan-Vese (C-V) model with a new initial curve which results from a binary image applying K-means method on fitting errors of two near-infrared band images. Landsat 5 TM and Landsat 8 OLI data sets are used to validate the proposed method. Comparison with conventional C-V model, OSTU algorithm, Fuzzy C-mean (FCM) algorithm are made to show that the proposed approach can extract the outline curve of fire burn scar effectively and exactly. The method has higher extraction accuracy and less algorithm complexity than that of the conventional C-V model. PMID:24503563
Effect of cooling on thixotropic position-sense error in human biceps muscle.
Sekihara, Chikara; Izumizaki, Masahiko; Yasuda, Tomohiro; Nakajima, Takayuki; Atsumi, Takashi; Homma, Ikuo
2007-06-01
Muscle temperature affects muscle thixotropy. However, it is unclear whether changes in muscle temperature affect thixotropic position-sense errors. We studied the effect of cooling on thixotropic position-sense errors induced by short-length muscle contraction (hold-short conditioning) in the biceps of 12 healthy men. After hold-short conditioning of the right biceps muscle in a cooled (5.0 degrees C) or control (36.5 degrees C) environment, subjects perceived greater extension of the conditioned forearm at 5.0 degrees C. The angle differences between the two forearms following hold-short conditioning of the right biceps muscle in normal or cooled conditions were significantly different (-3.335 +/- 1.680 degrees at 36.5 degrees C vs. -5.317 +/- 1.096 degrees at 5.0 degrees C; P=0.043). Induction of a tonic vibration reflex in the biceps muscle elicited involuntary forearm elevation, and the angular velocities of the elevation differed significantly between arms conditioned in normal and cooled environments (1.583 +/- 0.326 degrees /s at 36.5 degrees C vs. 3.100 +/- 0.555 degrees /s at 5.0 degrees C, P=0.0039). Thus, a cooled environment impairs a muscle's ability to provide positional information, potentially leading to poor muscle performance.
NASA Astrophysics Data System (ADS)
Xu, Saiping; Zhao, Qianjun; Yin, Kai; Cui, Bei; Zhang, Xiupeng
2016-10-01
Hollow village is a special phenomenon in the process of urbanization in China, which causes the waste of land resources. Therefore, it's imminent to carry out the hollow village recognition and renovation. However, there are few researches on the remote sensing identification of hollow village. In this context, in order to recognize the abandoned homesteads by remote sensing technique, the experiment was carried out as follows. Firstly, Gram-Schmidt transform method was utilized to complete the image fusion between multi-spectral images and panchromatic image of WorldView-2. Then the fusion images were made edge enhanced by high pass filtering. The multi-resolution segmentation and spectral difference segmentation were carried out to obtain the image objects. Secondly, spectral characteristic parameters were calculated, such as the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), the normalized difference Soil index (NDSI) etc. The shape feature parameters were extracted, such as Area, Length/Width Ratio and Rectangular Fit etc.. Thirdly, the SEaTH algorithm was used to determine the thresholds and optimize the feature space. Furthermore, the threshold classification method and the random forest classifier were combined, and the appropriate amount of samples were selected to train the classifier in order to determine the important feature parameters and the best classifier parameters involved in classification. Finally, the classification results was verified by computing the confusion matrix. The classification results were continuous and the phenomenon of salt and pepper using pixel classification was avoided effectively. In addition, the results showed that the extracted Abandoned Homesteads were in complete shapes, which could be distinguished from those confusing classes such as Homestead in Use and Roads.
Zuo, Lu; Wang, Huan Jiong; Liu, Rong Gao; Liu, Yang; Shang, Rong
2018-02-01
Vegetation phenology is a comprehensive indictor for the responses of terrestrial ecosystem to climatic and environmental changes. Remote sensing spectrum has been widely used in the extraction of vegetation phenology information. However, there are many differences between phenology extracted by remote sensing and site observations, with their physical meaning remaining unclear. We selected one tile of MODIS data in northeastern China (2000-2014) to examine the SOS and EOS differences derived from the normalized difference vegetation index (NDVI) and the simple ratio vegetation index (SR) based on both the red and near-infrared bands. The results showed that there were significant differences between NDVI-phenology and SR-phenology. SOS derived from NDVI averaged 18.9 days earlier than that from SR. EOS derived from NDVI averaged 19.0 days later than from SR. NDVI-phenology had a longer growing season. There were significant differences in the inter-annual variation of phenology from NDVI and SR. More than 20% of the pixel SOS and EOS derived from NDVI and SR showed the opposite temporal trend. These results caused by the seasonal curve characteristics and noise resistance differences of NDVI and SR. The observed data source of NDVI and SR were completely consistent, only the mathematical expressions were different, but phenology results were significantly different. Our results indicated that vegetation phenology monitoring by remote sensing is highly dependent on the mathematical expression of vegetation index. How to establish a reliable method for extracting vegetation phenology by remote sensing needs further research.
Group normalization for genomic data.
Ghandi, Mahmoud; Beer, Michael A
2012-01-01
Data normalization is a crucial preliminary step in analyzing genomic datasets. The goal of normalization is to remove global variation to make readings across different experiments comparable. In addition, most genomic loci have non-uniform sensitivity to any given assay because of variation in local sequence properties. In microarray experiments, this non-uniform sensitivity is due to different DNA hybridization and cross-hybridization efficiencies, known as the probe effect. In this paper we introduce a new scheme, called Group Normalization (GN), to remove both global and local biases in one integrated step, whereby we determine the normalized probe signal by finding a set of reference probes with similar responses. Compared to conventional normalization methods such as Quantile normalization and physically motivated probe effect models, our proposed method is general in the sense that it does not require the assumption that the underlying signal distribution be identical for the treatment and control, and is flexible enough to correct for nonlinear and higher order probe effects. The Group Normalization algorithm is computationally efficient and easy to implement. We also describe a variant of the Group Normalization algorithm, called Cross Normalization, which efficiently amplifies biologically relevant differences between any two genomic datasets.
Group Normalization for Genomic Data
Ghandi, Mahmoud; Beer, Michael A.
2012-01-01
Data normalization is a crucial preliminary step in analyzing genomic datasets. The goal of normalization is to remove global variation to make readings across different experiments comparable. In addition, most genomic loci have non-uniform sensitivity to any given assay because of variation in local sequence properties. In microarray experiments, this non-uniform sensitivity is due to different DNA hybridization and cross-hybridization efficiencies, known as the probe effect. In this paper we introduce a new scheme, called Group Normalization (GN), to remove both global and local biases in one integrated step, whereby we determine the normalized probe signal by finding a set of reference probes with similar responses. Compared to conventional normalization methods such as Quantile normalization and physically motivated probe effect models, our proposed method is general in the sense that it does not require the assumption that the underlying signal distribution be identical for the treatment and control, and is flexible enough to correct for nonlinear and higher order probe effects. The Group Normalization algorithm is computationally efficient and easy to implement. We also describe a variant of the Group Normalization algorithm, called Cross Normalization, which efficiently amplifies biologically relevant differences between any two genomic datasets. PMID:22912661
Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense
Zafar, Hamayun; Alghadir, Ahmad H.; Iqbal, Zaheen A.
2017-01-01
Objectives: To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. Methods: 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Results: Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. Conclusions: To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn’t affect head-neck relocation error in normal healthy subjects. PMID:29199196
Remotely sensed vegetation indices for seasonal crop yields predictions in the Czech Republic
NASA Astrophysics Data System (ADS)
Hlavinka, Petr; Semerádová, Daniela; Balek, Jan; Bohovic, Roman; Žalud, Zdeněk; Trnka, Miroslav
2015-04-01
Remotely sensed vegetation indices by satellites are valuable tool for vegetation conditions assessment also in the case of field crops. This study is based on the use of NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard Terra satellite. Data available from the year 2000 were analyzed and tested for seasonal yields predictions within selected districts of the Czech Republic (Central Europe). Namely the yields of spring barley, winter wheat and oilseed winter rape during the period from 2000 to 2014 were assessed. Observed yields from 14 districts (NUTS 4) were collected and thus 210 seasons were included. Selected districts differ considerably in their soil fertility and terrain configuration and represent transect across various agroclimatic conditions (from warm and dry to relative cool and wet regions). Two approaches were tested: 1) using of composite remotely sensed data (available in 16 day time step) provided by the USGS (https://lpdaac.usgs.gov/); 2) using daily remotely sensed data in combination with originally developed smoothing method. The yields were successfully predicted based on established regression models (remotely sensed data used as independent parameter). Besides others the impact of severe drought episodes within vegetation were identified and yield reductions at district level predicted (even before harvest). As a result the periods with the best relationship between remotely sensed data and yields were identified. The impact of drought conditions as well as normal or above normal yields of field crops could be predicted by proposed method within study region up to 30 days prior to the harvest. It could be concluded that remotely sensed vegetation conditions assessment should be important part of early warning systems focused on drought. Such information should be widely available for various users (decision makers, farmers, etc.) in order to improve planning, business strategies but also to target the drought relief in case of major drought event. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248, project supported by Czech National Agency of Agricultural Research No. QJ1310123 "Crop modelling as a tool for increasing the production potential and food security of the Czech Republic under Climate Change".
Principal components of wrist circumduction from electromagnetic surgical tracking.
Rasquinha, Brian J; Rainbow, Michael J; Zec, Michelle L; Pichora, David R; Ellis, Randy E
2017-02-01
An electromagnetic (EM) surgical tracking system was used for a functionally calibrated kinematic analysis of wrist motion. Circumduction motions were tested for differences in subject gender and for differences in the sense of the circumduction as clockwise or counter-clockwise motion. Twenty subjects were instrumented for EM tracking. Flexion-extension motion was used to identify the functional axis. Subjects performed unconstrained wrist circumduction in a clockwise and counter-clockwise sense. Data were decomposed into orthogonal flexion-extension motions and radial-ulnar deviation motions. PCA was used to concisely represent motions. Nonparametric Wilcoxon tests were used to distinguish the groups. Flexion-extension motions were projected onto a direction axis with a root-mean-square error of [Formula: see text]. Using the first three principal components, there was no statistically significant difference in gender (all [Formula: see text]). For motion sense, radial-ulnar deviation distinguished the sense of circumduction in the first principal component ([Formula: see text]) and in the third principal component ([Formula: see text]); flexion-extension distinguished the sense in the second principal component ([Formula: see text]). The clockwise sense of circumduction could be distinguished by a multifactorial combination of components; there were no gender differences in this small population. These data constitute a baseline for normal wrist circumduction. The multifactorial PCA findings suggest that a higher-dimensional method, such as manifold analysis, may be a more concise way of representing circumduction in human joints.
Making Sense of a Sequence of Events: A Psychologically Supported AI Implementation
NASA Astrophysics Data System (ADS)
Chassy, Philippe; Prade, Henri
People try to make sense of the usually incomplete reports they receive about events that take place. For doing this, they make use of what they believe the normal course of thing should be. An agenttextquoterights beliefs may be consonant or dissonant with what is reported. For making sense people usually ascribe different types of relations between events. A prototypical example is the ascription of causality between events. The paper proposes a systematic study of consonance and dissonance between beliefs and reports. The approach is shown to be consistent with findings in psychology. An implementation is presented with some illustrative examples.
Construction of an unmanned aerial vehicle remote sensing system for crop monitoring
NASA Astrophysics Data System (ADS)
Jeong, Seungtaek; Ko, Jonghan; Kim, Mijeong; Kim, Jongkwon
2016-04-01
We constructed a lightweight unmanned aerial vehicle (UAV) remote sensing system and determined the ideal method for equipment setup, image acquisition, and image processing. Fields of rice paddy (Oryza sativa cv. Unkwang) grown under three different nitrogen (N) treatments of 0, 50, or 115 kg/ha were monitored at Chonnam National University, Gwangju, Republic of Korea, in 2013. A multispectral camera was used to acquire UAV images from the study site. Atmospheric correction of these images was completed using the empirical line method, and three-point (black, gray, and white) calibration boards were used as pseudo references. Evaluation of our corrected UAV-based remote sensing data revealed that correction efficiency and root mean square errors ranged from 0.77 to 0.95 and 0.01 to 0.05, respectively. The time series maps of simulated normalized difference vegetation index (NDVI) produced using the UAV images reproduced field variations of NDVI reasonably well, both within and between the different N treatments. We concluded that the UAV-based remote sensing technology utilized in this study is potentially an easy and simple way to quantitatively obtain reliable two-dimensional remote sensing information on crop growth.
Beraneck, Mathieu; Bojados, Mickael; Le Séac'h, Anne; Jamon, Marc; Vidal, Pierre-Paul
2012-01-01
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.
Beraneck, Mathieu; Bojados, Mickael; Le Séac’h, Anne; Jamon, Marc; Vidal, Pierre-Paul
2012-01-01
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period. PMID:22808156
USE OF REMOTELY SENSED DATA FOR PARAMETERIZING AND VALIDATING LAND-USE HYDROLOGIC MODELS
Variability in vegetation greenness was determined for the Galveston Bay watershed using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA satellites. NDVI variability was compared with regi...
Electrotactile and vibrotactile displays for sensory substitution systems
NASA Technical Reports Server (NTRS)
Kaczmarek, Kurt A.; Webster, John G.; Bach-Y-rita, Paul; Tompkins, Willis J.
1991-01-01
Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used or with the information processed in some useful way. The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). The relevant sensory physiology of the skin, including the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile, or electrocutaneous, stimulation), is reviewed. The information-processing ability of the tactile sense and its relevance to sensory substitution is briefly summarized. The limitations of current tactile display technologies are discussed.
Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura
2009-01-01
A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484
Mir, Seyed Mohsen; Talebian, Saeed; Naseri, Nasrin; Hadian, Mohammad-Reza
2014-10-01
[Purpose] Knee joint proprioception combines sensory input from a variety of afferent receptors that encompasses the sensations of joint position and motion. Poor proprioception is one of the risk factors of anterior cruciate ligament injury. Most studies have favored testing knee joint position sense in the sagittal plane and non-weight-bearing position. One of the most common mechanisms of noncontact anterior cruciate ligament injury is dynamic knee valgus. No study has measured joint position sense in a manner relevant to the mechanism of injury. Therefore, the aim of this study was to measure knee joint position sense in the noncontact anterior cruciate ligament injury risk position and normal condition. [Subjects and Methods] Thirty healthy male athletes participated in the study. Joint position sense was evaluated by active reproduction of the anterior cruciate ligament injury risk position and normal condition. The dominant knees of subjects were tested. [Results] The results showed less accurate knee joint position sense in the noncontact anterior cruciate ligament injury risk position rather than the normal condition. [Conclusion] The poorer joint position sense in non-contact anterior cruciate ligament injury risk position compared with the normal condition may contribute to the increased incidence of anterior cruciate ligament injury.
Remote Sensing of Soil Moisture Using Airborne Hyperspectral Data
2011-01-01
the relationship between reflec- tance and soil moisture where there is ground cover and ascertain the Normalized Difference Vegetation Index ( NDVI ...in those areas. This could establish a minimum NDVI for ground cover that would allow for estimation of soil moisture. Alternatively, they could
Apali, Zeynep; Bayata, Serdar; Yeşil, Murat; Arikan, Erdinç; Postaci, Nursen
2010-08-01
We aimed to investigate the effect of atrial pacing on left ventricular diastolic function and brain natriuretic peptide (BNP) levels in patients with DDD pacemaker. Thirty patients with complete atrio-ventricular (AV) block and DDD pacemaker were included. All patients had normal left ventricular systolic function. Echocardiographic diastolic function parameters (transmitral and tissue Doppler velocities during early (E and E') and late (A and A') filling) and NT-pro-BNP levels were evaluated prospectively during atrial sensing and pacing periods. Echocardiographic data were compared with paired sample t test and NT-pro-BNP levels were compared with Wilcoxon test. Echocardiographic E/A, E'/A', E/E' ratios were calculated as 0.72+/-0.34, 0.61+/-0.21 and 8.76+/-2.58 during atrial sensing period. Same parameters were found as 0.71+/-0.23, 0.64+/-0.16 and 8.93+/-3.16 respectively during atrial pacing period. Echocardiographic left ventricular diastolic function parameters were not significantly different during atrial pacing and atrial sensing periods. Median plasma NT-pro-BNP levels were measured as 142 pg/ml (min-max 47-563 pg/ml) and 147 pg/ml (min-max 33-1035 pg/ml) during atrial sensing and pacing periods respectively. These levels were not significantly different (p=0.86). The result of this study has shown that, atrial pacing has not any additional detrimental effect on left ventricular diastolic function parameters in paced patients with normal left ventricular systolic function.
NASA Astrophysics Data System (ADS)
Pelz, M.; Heesemann, M.; Scherwath, M.; Owens, D.; Hoeberechts, M.; Moran, K.
2015-12-01
Senses help us learn stuff about the world. We put sense things in, over, and under the water to help people understand water, ice, rocks, life and changes over time out there in the big water. Sense things are like our eyes and ears. We can use them to look up and down, right and left all of the time. We can also use them on top of or near the water to see wind and waves. As the water gets deep, we can use our sense things to see many a layer of different water that make up the big water. On the big water we watch ice grow and then go away again. We think our sense things will help us know if this is different from normal, because it could be bad for people soon if it is not normal. Our sense things let us hear big water animals talking low (but sometimes high). We can also see animals that live at the bottom of the big water and we take lots of pictures of them. Lots of the animals we see are soft and small or hard and small, but sometimes the really big ones are seen too. We also use our sense things on the bottom and sometimes feel the ground shaking. Sometimes, we get little pockets of bad smelling air going up, too. In other areas of the bottom, we feel hot hot water coming out of the rock making new rocks and we watch some animals even make houses and food out of the hot hot water that turns to rock as it cools. To take care of the sense things we use and control water cars and smaller water cars that can dive deep in the water away from the bigger water car. We like to put new things in the water and take things out of the water that need to be fixed at least once a year. Sense things are very cool because you can use the sense things with your computer too. We share everything for free on our computers, which your computer talks to and gets pictures and sounds for you. Sharing the facts from the sense things is the best part about having the sense things because we can get many new ideas about understanding the big water from anyone with a computer!
Comment on Modified Stokes Parameters
NASA Technical Reports Server (NTRS)
Le Vine, D.M.; Utku, C.
2009-01-01
It is common practice in passive microwave remote sensing (microwave radiometry) to express observables as temperatures and in the case of polarimetric radiometry to use what are called "Modified Stokes Parameters in Brightness Temperature" to describe the scene. However, definitions with slightly different normalization (with and without division by bandwidth) have appeared in the literature. The purpose of this manuscript is to present an analysis to clarify the meaning of terms in the definition and resolve the question of the proper normalization.
Systematic changes in position sense accompany normal aging across adulthood.
Herter, Troy M; Scott, Stephen H; Dukelow, Sean P
2014-03-25
Development of clinical neurological assessments aimed at separating normal from abnormal capabilities requires a comprehensive understanding of how basic neurological functions change (or do not change) with increasing age across adulthood. In the case of proprioception, the research literature has failed to conclusively determine whether or not position sense in the upper limb deteriorates in elderly individuals. The present study was conducted a) to quantify whether upper limb position sense deteriorates with increasing age, and b) to generate a set of normative data that can be used for future comparisons with clinical populations. We examined position sense in 209 healthy males and females between the ages of 18 and 90 using a robotic arm position-matching task that is both objective and reliable. In this task, the robot moved an arm to one of nine positions and subjects attempted to mirror-match that position with the opposite limb. Measures of position sense were recorded by the robotic apparatus in hand-and joint-based coordinates, and linear regressions were used to quantify age-related changes and percentile boundaries of normal behaviour. For clinical comparisons, we also examined influences of sex (male versus female) and test-hand (dominant versus non-dominant) on all measures of position sense. Analyses of hand-based parameters identified several measures of position sense (Variability, Shift, Spatial Contraction, Absolute Error) with significant effects of age, sex, and test-hand. Joint-based parameters at the shoulder (Absolute Error) and elbow (Variability, Shift, Absolute Error) also exhibited significant effects of age and test-hand. The present study provides strong evidence that several measures of upper extremity position sense exhibit declines with age. Furthermore, this data provides a basis for quantifying when changes in position sense are related to normal aging or alternatively, pathology.
3D sensitivity encoded ellipsoidal MR spectroscopic imaging of gliomas at 3T☆
Ozturk-Isik, Esin; Chen, Albert P.; Crane, Jason C.; Bian, Wei; Xu, Duan; Han, Eric T.; Chang, Susan M.; Vigneron, Daniel B.; Nelson, Sarah J.
2010-01-01
Purpose The goal of this study was to implement time efficient data acquisition and reconstruction methods for 3D magnetic resonance spectroscopic imaging (MRSI) of gliomas at a field strength of 3T using parallel imaging techniques. Methods The point spread functions, signal to noise ratio (SNR), spatial resolution, metabolite intensity distributions and Cho:NAA ratio of 3D ellipsoidal, 3D sensitivity encoding (SENSE) and 3D combined ellipsoidal and SENSE (e-SENSE) k-space sampling schemes were compared with conventional k-space data acquisition methods. Results The 3D SENSE and e-SENSE methods resulted in similar spectral patterns as the conventional MRSI methods. The Cho:NAA ratios were highly correlated (P<.05 for SENSE and P<.001 for e-SENSE) with the ellipsoidal method and all methods exhibited significantly different spectral patterns in tumor regions compared to normal appearing white matter. The geometry factors ranged between 1.2 and 1.3 for both the SENSE and e-SENSE spectra. When corrected for these factors and for differences in data acquisition times, the empirical SNRs were similar to values expected based upon theoretical grounds. The effective spatial resolution of the SENSE spectra was estimated to be same as the corresponding fully sampled k-space data, while the spectra acquired with ellipsoidal and e-SENSE k-space samplings were estimated to have a 2.36–2.47-fold loss in spatial resolution due to the differences in their point spread functions. Conclusion The 3D SENSE method retained the same spatial resolution as full k-space sampling but with a 4-fold reduction in scan time and an acquisition time of 9.28 min. The 3D e-SENSE method had a similar spatial resolution as the corresponding ellipsoidal sampling with a scan time of 4:36 min. Both parallel imaging methods provided clinically interpretable spectra with volumetric coverage and adequate SNR for evaluating Cho, Cr and NAA. PMID:19766422
Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2-monoacylglycerol
Kleberg, Karen; Jacobsen, Anne Katrine; Ferreira, Jozelia G; Windeløv, Johanne Agerlin; Rehfeld, Jens F; Holst, Jens Juul; de Araujo, Ivan E; Hansen, Harald S
2015-01-01
Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol, on behavioural, hormonal and dopaminergic responses in behaving mice. Using an operant task in which mice are trained to self-administer lipid emulsions directly into the stomach, we show that inhibiting triacylglycerol digestion disrupts normal behaviour of self-administration in mice, indicating that fat sensing is conditional to digestion. When administered separately, both digestion products, 2-monoacylglycerol and fatty acids, were sensed by the mice, and self-administration patterns of fatty acids were affected by the fatty acid chain length. Peripheral plasma concentrations of the gut hormones GLP-1, GIP, PYY, CCK and insulin did not offer an explanation of the differing behavioural effects produced by 2-monoacylglycerol and fatty acids. However, combined with behavioural responses, striatal dopamine effluxes induced by gut infusions of oleic acid were significantly greater than those produced by equivalent infusions of 2-oleoylglycerol. Our data demonstrate recruitment of different signalling pathways by fatty acids and 2-monoacylglycerol, and suggest that the structural properties of fat rather than total caloric value determine intestinal sensing and the assignment of reward value to lipids. PMID:25639597
Post-hurricane forest damage assessment using satellite remote sensing
W. Wang; J.J. Qu; X. Hao; Y. Liu; J.A. Stanturf
2010-01-01
This study developed a rapid assessment algorithm for post-hurricane forest damage estimation using moderate resolution imaging spectroradiometer (MODIS) measurements. The performance of five commonly used vegetation indices as post-hurricane forest damage indicators was investigated through statistical analysis. The Normalized Difference Infrared Index (NDII) was...
Performance of vegetation indices from Landsat time series in deforestation monitoring
NASA Astrophysics Data System (ADS)
Schultz, Michael; Clevers, Jan G. P. W.; Carter, Sarah; Verbesselt, Jan; Avitabile, Valerio; Quang, Hien Vu; Herold, Martin
2016-10-01
The performance of Landsat time series (LTS) of eight vegetation indices (VIs) was assessed for monitoring deforestation across the tropics. Three sites were selected based on differing remote sensing observation frequencies, deforestation drivers and environmental factors. The LTS of each VI was analysed using the Breaks For Additive Season and Trend (BFAST) Monitor method to identify deforestation. A robust reference database was used to evaluate the performance regarding spatial accuracy, sensitivity to observation frequency and combined use of multiple VIs. The canopy cover sensitive Normalized Difference Fraction Index (NDFI) was the most accurate. Among those tested, wetness related VIs (Normalized Difference Moisture Index (NDMI) and the Tasselled Cap wetness (TCw)) were spatially more accurate than greenness related VIs (Normalized Difference Vegetation Index (NDVI) and Tasselled Cap greenness (TCg)). When VIs were fused on feature level, spatial accuracy was improved and overestimation of change reduced. NDVI and NDFI produced the most robust results when observation frequency varies.
Comparison of Vegetation Indices from Rpas and SENTINEL-2 Imagery for Detecting Permanent Pastures
NASA Astrophysics Data System (ADS)
Piragnolo, M.; Lusiani, G.; Pirotti, F.
2018-04-01
Permanent pastures (PP) are defined as grasslands, which are not subjected to any tillage, but only to natural growth. They are important for local economies in the production of fodder and pastures (Ali et al. 2016). Under these definitions, a pasture is permanent when it is not under any crop-rotation, and its production is related to only irrigation, fertilization and mowing. Subsidy payments to landowners require monitoring activities to determine which sites can be considered PP. These activities are mainly done with visual field surveys by experienced personnel or lately also using remote sensing techniques. The regional agency for SPS subsidies, the Agenzia Veneta per i Pagamenti in Agricoltura (AVEPA) takes care of monitoring and control on behalf of the Veneto Region using remote sensing techniques. The investigation integrate temporal series of Sentinel-2 imagery with RPAS. Indeed, the testing area is specific region were the agricultural land is intensively cultivated for production of hay harvesting four times every year between May and October. The study goal of this study is to monitor vegetation presence and amount using the Normalized Difference Vegetation Index (NDVI), the Soil-adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Built Index (NDBI). The overall objective is to define for each index a set of thresholds to define if a pasture can be classified as PP or not and recognize the mowing.
Importance of unilateral examination in olfactometry.
Furukawa, M; Kamide, M; Miwa, T; Umeda, R
1988-01-01
Hyposmia, the decreased sense of smell, and anosmia, the loss of sense of smell, may be unilateral or bilateral. If the olfactory acuity examined by means of bilateral test is normal, olfactory disorders are not found; unilateral examination is therefore necessary for definite evaluation of olfactory acuity. As evidence, 7 cases out of 94 patients with chronic rhinosinusitis and 6 cases out of 12 patients who received the surgery of anterior cranial fossa showed definite different olfactory threshold between nasal cavities, and there were no patients who recognized the diminished sense of smell in spite of unilateral high olfactory threshold. Additionally, we have experienced that a patient with brain tumor was diagnosed by the help of unilateral olfactory test. We thus strongly recommend the unilateral olfactometry as a method for simple and reliable test in clinical measurement of the sense of smell.
Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China.
Wu, Jingwei; Vincent, Bernard; Yang, Jinzhong; Bouarfa, Sami; Vidal, Alain
2008-11-07
This study used archived remote sensing images to depict the history of changes in soil salinity in the Hetao Irrigation District in Inner Mongolia, China, with the purpose of linking these changes with land and water management practices and to draw lessons for salinity control. Most data came from LANDSAT satellite images taken in 1973, 1977, 1988, 1991, 1996, 2001, and 2006. In these years salt-affected areas were detected using a normal supervised classification method. Corresponding cropped areas were detected from NVDI (Normalized Difference Vegetation Index) values using an unsupervised method. Field samples and agricultural statistics were used to estimate the accuracy of the classification. Historical data concerning irrigation/drainage and the groundwater table were used to analyze the relation between changes in soil salinity and land and water management practices. Results showed that: (1) the overall accuracy of remote sensing in detecting soil salinity was 90.2%, and in detecting cropped area, 98%; (2) the installation/innovation of the drainage system did help to control salinity; and (3) a low ratio of cropped land helped control salinity in the Hetao Irrigation District. These findings suggest that remote sensing is a useful tool to detect soil salinity and has potential in evaluating and improving land and water management practices.
Exploring the mammalian sensory space: co-operations and trade-offs among senses.
Nummela, Sirpa; Pihlström, Henry; Puolamäki, Kai; Fortelius, Mikael; Hemilä, Simo; Reuter, Tom
2013-12-01
The evolution of a particular sensory organ is often discussed with no consideration of the roles played by other senses. Here, we treat mammalian vision, olfaction and hearing as an interconnected whole, a three-dimensional sensory space, evolving in response to ecological challenges. Until now, there has been no quantitative method for estimating how much a particular animal invests in its different senses. We propose an anatomical measure based on sensory organ sizes. Dimensions of functional importance are defined and measured, and normalized in relation to animal mass. For 119 taxonomically and ecologically diverse species, we can define the position of the species in a three-dimensional sensory space. Thus, we can ask questions related to possible trade-off vs. co-operation among senses. More generally, our method allows morphologists to identify sensory organ combinations that are characteristic of particular ecological niches. After normalization for animal size, we note that arboreal mammals tend to have larger eyes and smaller noses than terrestrial mammals. On the other hand, we observe a strong correlation between eyes and ears, indicating that co-operation between vision and hearing is a general mammalian feature. For some groups of mammals we note a correlation, and possible co-operation between olfaction and whiskers.
Dutta, Rishiraj
2013-08-15
This study tries to quantify the effects of green leaf tea parameters that influence tea quality in Northeast India. The study is to identify the different parameters that have a significant influence on tea quality through the use of remote sensing. It investigates the methods for estimating tea quality based on remotely sensed Normalized Difference Vegetation Index (NDVI) data. Attention focused on high yielding TV clones (TV1, TV18, TV22, TV23, TV25 and TV26). NDVI was obtained from ASTER images. Statistical analysis shows that NDVI has a strong significant effect on the caffeine content followed by epicatechin (EC), epigallocatechin (EGC) and to some extent in other chemical parameters. Relationships therefore exist between quality parameters and remote sensing in particular for the TV clones. This leads to the conclusion that NDVI has a large potential to be used for monitoring tea quality of individual cultivars in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jay D. Miller; Eric E. Knapp; Carl H. Key; Carl N. Skinner; Clint J. Isbell; R. Max Creasy; Joseph W. Sherlock
2009-01-01
Multispectral satellite data have become a common tool used in the mapping of wildland fire effects. Fire severity, defined as the degree to which a site has been altered, is often the variable mapped. The Normalized Burn Ratio (NBR) used in an absolute difference change detection protocol (dNBR), has become the remote sensing method of choice for US Federal land...
Changes in Landscape Greenness and Climatic Factors over 25 Years (1989–2013) in the USA
Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can be achieved using the Normalized Difference Vegetation Index (NDVI), an indicator of greenness. However, distinguishing gradual shifts in NDVI (e.g. climate change) versus direct and ...
USDA-ARS?s Scientific Manuscript database
Timely reflectance data from cotton (Gossypium hirsutum L.) production fields provide a useful tool for crop health assessment and site-specific crop management decisions. This field study investigated the relationships among site-specific normalized difference vegetation index (NDVI), soil physical...
Assessing Nitrogen Status of Dryland Wheat Using the Canopy Chlorophyll Content Index
USDA-ARS?s Scientific Manuscript database
Ground-based, active light sensing relies upon the Normalized Difference Vegetation Index (NDVI) for assessing crop nitrogen (N) response and applying N fertilizer. However, NDVI may not work well in semiarid environments where biomass and yields depend upon plant water. This study evaluated the C...
[Age-related changes of sensory system].
Iwamoto, Toshihiko; Hanyu, Haruo; Umahara, Takahiko
2013-10-01
Pathological processes usually superimpose on physiological aging even in the sensory system including visual, hearing, olfactory, taste and somatosensory functions. Representative changes of age-related changes are presbyopia, cataracts, and presbyacusis. Reduced sense of smell is seen in normal aging, but the prominent reduction detected by the odor stick identification test is noticed especially in early stage of Alzheimer or Parkinson disease. Reduced sense of taste is well-known especially in salty sense, while the changes of sweet, bitter, and sour tastes are different among individuals. Finally, deep sensation of vibration and proprioception is decreased with age as well as superficial sensation (touch, temperature, pain). As a result, impaired sensory system could induce deterioration of the activities of daily living and quality of life in the elderly.
Using Remotely Sensed Data to Map Urban Vulnerability to Heat
NASA Technical Reports Server (NTRS)
Stefanov, William L.
2010-01-01
This slide presentation defines remote sensing, and presents examples of remote sensing and astronaut photography, which has been a part of many space missions. The presentation then reviews the project aimed at analyzing urban vulnerability to climate change, which is to test the hypotheses that Exposure to excessively warm weather threatens human health in all types of climate regimes; Heat kills and sickens multitudes of people around the globe every year -- directly and indirectly, and Climate change, coupled with urban development, will impact human health. Using Multiple Endmember Spectral Mixing Analysis (MESMA), and the Phoenix urban area as the example, the Normalized Difference Vegetation Index (NDVI) is calculated, a change detection analysis is shown, and surface temperature is shown.
Layton, Clive; Avenell, Leon
2002-08-01
10 experienced Shotokan karateka were tested on performance time and distance from a marker on the five Heian kata under normal sighted and blind-folded conditions. Whilst each kata's line of movement is different, it is the intention to start and finish at the same location. Analysis showed that despite an average of 16.8 yr. of training, whilst timing was not significantly affected on four of the kata by subjects being deprived of the visual sense, the group's mean change in distance from an original marker was significant for performances on three of the kata.
Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2-monoacylglycerol.
Kleberg, Karen; Jacobsen, Anne Katrine; Ferreira, Jozelia G; Windeløv, Johanne Agerlin; Rehfeld, Jens F; Holst, Jens Juul; de Araujo, Ivan E; Hansen, Harald S
2015-04-15
Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol, on behavioural, hormonal and dopaminergic responses in behaving mice. Using an operant task in which mice are trained to self-administer lipid emulsions directly into the stomach, we show that inhibiting triacylglycerol digestion disrupts normal behaviour of self-administration in mice, indicating that fat sensing is conditional to digestion. When administered separately, both digestion products, 2-monoacylglycerol and fatty acids, were sensed by the mice, and self-administration patterns of fatty acids were affected by the fatty acid chain length. Peripheral plasma concentrations of the gut hormones GLP-1, GIP, PYY, CCK and insulin did not offer an explanation of the differing behavioural effects produced by 2-monoacylglycerol and fatty acids. However, combined with behavioural responses, striatal dopamine effluxes induced by gut infusions of oleic acid were significantly greater than those produced by equivalent infusions of 2-oleoylglycerol. Our data demonstrate recruitment of different signalling pathways by fatty acids and 2-monoacylglycerol, and suggest that the structural properties of fat rather than total caloric value determine intestinal sensing and the assignment of reward value to lipids. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence
NASA Astrophysics Data System (ADS)
Tucker, Compton
2016-04-01
I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.
Wong, Terry T-Y; Ho, Connie S-H; Tang, Joey
2017-01-01
Developmental dyscalculia (DD) is a specific learning disability in mathematics that affects around 6% of the population. Currently, the core deficit of DD remains unknown. While the number sense deficit hypothesis suggests that the core deficit of DD lies in the inability to represent nonsymbolic numerosity, the access deficit hypothesis suggests that the origin of this disability lies in the inability to associate numbers with the underlying magnitude representation. The present study compared the performance of DDs with their low-achieving (LA) and normally achieving peers in nonsymbolic numerosity processing and number-magnitude mapping over 1 year (from kindergarten to 1st grade). The results demonstrated differential impairments in different subgroups of children with mathematics difficulties. While DDs showed deficits in both nonsymbolic numerosity processing and number-magnitude mapping, LAs showed deficit only in the number-magnitude mapping. Furthermore, the deficit in number-magnitude mapping among the DD group was partially explained by their number sense deficit. The number sense deficit hypothesis is supported. Theoretical and practical implications are discussed. © Hammill Institute on Disabilities 2015.
NASA Technical Reports Server (NTRS)
VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.
2009-01-01
A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.
Jiang, Hao; Zhao, Dehua; Cai, Ying; An, Shuqing
2012-01-01
In previous attempts to identify aquatic vegetation from remotely-sensed images using classification trees (CT), the images used to apply CT models to different times or locations necessarily originated from the same satellite sensor as that from which the original images used in model development came, greatly limiting the application of CT. We have developed an effective normalization method to improve the robustness of CT models when applied to images originating from different sensors and dates. A total of 965 ground-truth samples of aquatic vegetation types were obtained in 2009 and 2010 in Taihu Lake, China. Using relevant spectral indices (SI) as classifiers, we manually developed a stable CT model structure and then applied a standard CT algorithm to obtain quantitative (optimal) thresholds from 2009 ground-truth data and images from Landsat7-ETM+, HJ-1B-CCD, Landsat5-TM and ALOS-AVNIR-2 sensors. Optimal CT thresholds produced average classification accuracies of 78.1%, 84.7% and 74.0% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. However, the optimal CT thresholds for different sensor images differed from each other, with an average relative variation (RV) of 6.40%. We developed and evaluated three new approaches to normalizing the images. The best-performing method (Method of 0.1% index scaling) normalized the SI images using tailored percentages of extreme pixel values. Using the images normalized by Method of 0.1% index scaling, CT models for a particular sensor in which thresholds were replaced by those from the models developed for images originating from other sensors provided average classification accuracies of 76.0%, 82.8% and 68.9% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. Applying the CT models developed for normalized 2009 images to 2010 images resulted in high classification (78.0%–93.3%) and overall (92.0%–93.1%) accuracies. Our results suggest that Method of 0.1% index scaling provides a feasible way to apply CT models directly to images from sensors or time periods that differ from those of the images used to develop the original models.
Control System for Prosthetic Devices
NASA Technical Reports Server (NTRS)
Bozeman, Richard J. (Inventor)
1996-01-01
A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that of movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrg position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.
Control method for prosthetic devices
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1995-01-01
A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.
Control system and method for prosthetic devices
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1992-01-01
A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the movable body part through the full-shrug position of the movable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the movable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective movable prosthesis device and its sub-prosthesis.
Normalizing Landsat and ASTER Data Using MODIS Data Products for Forest Change Detection
NASA Technical Reports Server (NTRS)
Gao, Feng; Masek, Jeffrey G.; Wolfe, Robert E.; Tan, Bin
2010-01-01
Monitoring forest cover and its changes are a major application for optical remote sensing. In this paper, we present an approach to integrate Landsat, ASTER and MODIS data for forest change detection. Moderate resolution (10-100m) images (e.g. Landsat and ASTER) acquired from different seasons and times are normalized to one "standard" date using MODIS data products as reference. The normalized data are then used to compute forest disturbance index for forest change detection. Comparing to the results from original data, forest disturbance index from the normalized images is more consistent spatially and temporally. This work demonstrates an effective approach for mapping forest change over a large area from multiple moderate resolution sensors on various acquisition dates.
Helping Children with Sensory Processing Disorders: The Role of Occupational Therapy
ERIC Educational Resources Information Center
Sweet, Margarita
2010-01-01
Normally functioning sensory systems develop through sensory experiences. Children are stimulated through their senses in many different ways. Even though a person's sensory system is intact, he or she may have a sensory processing disorder (SPD), also known as sensory integration dysfunction. This means the person's brain does not correctly…
A remote sensing protocol for identifying rangelands with degraded productive capacity
Matthew C. Reeves; L. Scott Bagget
2014-01-01
Rangeland degradation is a growing problem throughout the world. An assessment process for com-paring the trend and state of vegetation productivity to objectively derived reference conditions wasdeveloped. Vegetation productivity was estimated from 2000 to 2012 using annual maximum Normalized Difference Vegetation Index (NDVI) from the MODIS satellite platform. Each...
Tommy L. Coleman; James H. Miller; Bruce R. Zutter
1992-01-01
The objective of this study was to investigate the regression relations between vegetation indices derived from remotely-sensed data of single and mixed forest regeneration plots. Loblolly pine (Pinus taeda L.) seedlings, sweelgum (Liquidambar styraciflua L.) seedlings and broomsedge (Andropogon virginicus L.)...
Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins
NASA Astrophysics Data System (ADS)
Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.
2017-12-01
Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.
Karan, Shivesh Kishore; Samadder, Sukha Ranjan; Maiti, Subodh Kumar
2016-11-01
The objective of the present study is to monitor reclamation activity in mining areas. Monitoring of these reclaimed sites in the vicinity of mining areas and on closed Over Burden (OB) dumps is critical for improving the overall environmental condition, especially in developing countries where area around the mines are densely populated. The present study evaluated the reclamation success in the Block II area of Jharia coal field, India, using Landsat satellite images for the years 2000 and 2015. Four image processing methods (support vector machine, ratio vegetation index, enhanced vegetation index, and normalized difference vegetation index) were used to quantify the change in vegetation cover between the years 2000 and 2015. The study also evaluated the relationship between vegetation health and moisture content of the study area using remote sensing techniques. Statistical linear regression analysis revealed that Normalized Difference Vegetation Index (NDVI) coupled with Normalized Difference Moisture Index (NDMI) is the best method for vegetation monitoring in the study area when compared to other indices. A strong linear relationship (r(2) > 0.86) was found between NDVI and NDMI. An increase of 21% from 213.88 ha in 2000 to 258.9 ha in 2015 was observed in the vegetation cover of the reclaimed sites for an open cast mine, indicating satisfactory reclamation activity. NDVI results indicated that vegetation health also improved over the years. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of remote sensing indices for monitoring of desert cienegas
Wilson, Natalie R.; Norman, Laura M.; Villarreal, Miguel; Gass, Leila; Tiller, Ron; Salywon, Andrew
2016-01-01
This research considers the applicability of different vegetation indices at 30 m resolution for mapping and monitoring desert wetland (cienega) health and spatial extent through time at Cienega Creek in southeastern Arizona, USA. Multiple stressors including the risk of decadal-scale drought, the effects of current and predicted global warming, and continued anthropogenic pressures threaten aquatic habitats in the southwest and cienegas are recognized as important sites for conservation and restoration efforts. However, cienegas present a challenge to satellite-imagery based analysis due to their small size and mixed surface cover of open water, exposed soils, and vegetation. We created time series of five well-known vegetation indices using annual Landsat Thematic Mapper (TM) images retrieved during the April–June dry season, from 1984 to 2011 to map landscape-level distribution of wetlands and monitor the temporal dynamics of individual sites. Indices included the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Infrared Index (NDII). One topographic index, the Topographic Wetness Index (TWI), was analyzed to examine the utility of topography in mapping distribution of cienegas. Our results indicate that the NDII, calculated using Landsat TM band 5, outperforms the other indices at differentiating cienegas from riparian and upland sites, and was the best means to analyze change. As such, it offers a critical baseline for future studies that seek to extend the analysis of cienegas to other regions and time scales, and has broader applicability to the remote sensing of wetland features in arid landscapes.
Morabito, Michael V.; Ravussin, Yann; Mueller, Bridget R.; Skowronski, Alicja A.; Watanabe, Kazuhisa; Foo, Kylie S.; Lee, Samuel X.; Lehmann, Anders; Hjorth, Stephan; Zeltser, Lori M.; LeDuc, Charles A.; Leibel, Rudolph L.
2017-01-01
Diet-induced obesity (DIO) resulting from consumption of a high fat diet (HFD) attenuates normal neuronal responses to leptin and may contribute to the metabolic defense of an acquired higher body weight in humans; the molecular bases for the persistence of this defense are unknown. We measured the responses of 23 brain regions to exogenous leptin in 4 different groups of weight- and/or diet-perturbed mice. Responses to leptin were assessed by quantifying pSTAT3 levels in brain nuclei 30 minutes following 3 mg/kg intraperitoneal leptin. HFD attenuated leptin sensing throughout the brain, but weight loss did not restore central leptin signaling to control levels in several brain regions important in energy homeostasis, including the arcuate and dorsomedial hypothalamic nuclei. Effects of diet on leptin signaling varied by brain region, with results dependent on the method of weight loss (restriction of calories of HFD, ad lib intake of standard mouse chow). High fat diet attenuates leptin signaling throughout the brain, but some brain regions maintain their ability to sense leptin. Weight loss restores leptin sensing to some degree in most (but not all) brain regions, while other brain regions display hypersensitivity to leptin following weight loss. Normal leptin sensing was restored in several brain regions, with the pattern of restoration dependent on the method of weight loss. PMID:28107353
A Calibration Method for Nanowire Biosensors to Suppress Device-to-device Variation
Ishikawa, Fumiaki N.; Curreli, Marco; Chang, Hsiao-Kang; Chen, Po-Chiang; Zhang, Rui; Cote, Richard J.; Thompson, Mark E.; Zhou, Chongwu
2009-01-01
Nanowire/nanotube biosensors have stimulated significant interest; however the inevitable device-to-device variation in the biosensor performance remains a great challenge. We have developed an analytical method to calibrate nanowire biosensor responses that can suppress the device-to-device variation in sensing response significantly. The method is based on our discovery of a strong correlation between the biosensor gate dependence (dIds/dVg) and the absolute response (absolute change in current, ΔI). In2O3 nanowire based biosensors for streptavidin detection were used as the model system. Studying the liquid gate effect and ionic concentration dependence of strepavidin sensing indicates that electrostatic interaction is the dominant mechanism for sensing response. Based on this sensing mechanism and transistor physics, a linear correlation between the absolute sensor response (ΔI) and the gate dependence (dIds/dVg) is predicted and confirmed experimentally. Using this correlation, a calibration method was developed where the absolute response is divided by dIds/dVg for each device, and the calibrated responses from different devices behaved almost identically. Compared to the common normalization method (normalization of the conductance/resistance/current by the initial value), this calibration method was proved advantageous using a conventional transistor model. The method presented here substantially suppresses device-to-device variation, allowing the use of nanosensors in large arrays. PMID:19921812
[Correlations of telomere length changing and pathogeny of keratoconus].
Wang, Jiao-jiao; Li, Shao-wei; Wang, Yi-qiang; Wang, Ye; Zhong, Wen-xian; Zang, Xin-jie
2009-08-01
To study telomere length, senescence-associated-beta-galactosidase (SA-beta-galactosidase) and senescence marker protein-30 (SMP-30) in the stromal cells of keratoconus or normal corneas respectively, aiming finding the association of these indexes with the phenotype of keratoconus. Experiment research. 37 keratoconus lesions corneas were removed from 32 keratoconus patients who were operated in Shangdong Eye Institute between January 2006 and December 2006, and 20 normal corneas were collected from eye bank. The keratoconus corneas ages were from 13 to 34 years [mean ages (19 + or - 5) years] and the control group consists of 20 normal corneas donor ages from 9 to 30 years [mean ages (19 + or - 4) years]. And there was no statistical difference of ages between keratoconus and normal corneas. Southern blot method was utilized to detect telomere length of genomic DNA. SA-beta-galactosidase was detected by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) staining method respectively in keratoconus and normal corneas. Isolated mRNA from keratoconus and normal corneas were reverse-transcribed to cDNA and SMP-30 was detected using PCR with specific primers (sense: 5' ccg tgg atg cct ttg act at 3'; anti-sense: 5' caa ctt cat gc tgct ttg ga 3'). To compare normal corneas and keratoconus corneas by histopathological study. Statistical analysis by t test. The telomere length in stromal cells in keratoconus corneas were from 10.29 to 14.12 kb, mean (11.54 + or - 1.41) kb, while that of normal corneas were from 12.64 to 15.32 kb, mean (13.45 + or - 0.99) kb. The difference of telomere length in stromal cells of keratoconus and normal corneas reached a statistical significant level (t = 4.753, P < 0.05). That means the telomere length of keratoconus stroma was shorter than that of normal corneal stroma. Light microscopy revealed that collagen fibers in keratoconus corneal stroma were arranged in an irregular manner. Cells density in keratoconus stroma appeared lower than in normal ones but the decrease was not significant. The staining of SA-beta-galactosidase in the keratoconus section was evident, but there was no staining in the normal corneas. SMP-30 was not detectable with RT-PCR method in either keratoconus or normal corneas. Telomeres in the keratoconus stromas manifest higher SA-beta-galactosidase than control, implying that improper senescence might be involved in pathogenesis of keratoconus.
Liao, Congyu; Chen, Ying; Cao, Xiaozhi; Chen, Song; He, Hongjian; Mani, Merry; Jacob, Mathews; Magnotta, Vincent; Zhong, Jianhui
2017-03-01
To propose a novel reconstruction method using parallel imaging with low rank constraint to accelerate high resolution multishot spiral diffusion imaging. The undersampled high resolution diffusion data were reconstructed based on a low rank (LR) constraint using similarities between the data of different interleaves from a multishot spiral acquisition. The self-navigated phase compensation using the low resolution phase data in the center of k-space was applied to correct shot-to-shot phase variations induced by motion artifacts. The low rank reconstruction was combined with sensitivity encoding (SENSE) for further acceleration. The efficiency of the proposed joint reconstruction framework, dubbed LR-SENSE, was evaluated through error quantifications and compared with ℓ1 regularized compressed sensing method and conventional iterative SENSE method using the same datasets. It was shown that with a same acceleration factor, the proposed LR-SENSE method had the smallest normalized sum-of-squares errors among all the compared methods in all diffusion weighted images and DTI-derived index maps, when evaluated with different acceleration factors (R = 2, 3, 4) and for all the acquired diffusion directions. Robust high resolution diffusion weighted image can be efficiently reconstructed from highly undersampled multishot spiral data with the proposed LR-SENSE method. Magn Reson Med 77:1359-1366, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies
NASA Technical Reports Server (NTRS)
Myneni, R. B.; Ganapol, B. D.; Asrar, G.
1992-01-01
The problem of remote sensing the canopy photosynthetic and stomatal conductance efficiencies is investigated with the aid of one- and three-dimensional radiative transfer methods coupled to a semi-empirical mechanistic model of leaf photosynthesis and stomatal conductance. Desertlike vegetation is modeled as clumps of leaves randomly distributed on a bright dry soil with partial ground cover. Normalized difference vegetation index (NDVI), canopy photosynthetic (Ep), and stomatal efficiencies (Es) are calculated for various geometrical, optical, and illumination conditions. The contribution of various radiative fluxes to estimates of Ep is evaluated and the magnitude of errors in bulk canopy formulation of problem parameters are quantified. The nature and sensitivity of the relationship between Ep and Es to NDVI is investigated, and an algorithm is proposed for use in operational remote sensing.
Monitoring Crop Phenology and Growth Stages from Space: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.; Mladenova, I. E.; Kustas, W. P.; Alfieri, J. G.
2014-12-01
Crop growth stages in concert with weather and soil moisture conditions can have a significant impact on crop yields. In the U.S., crop growth stages and conditions are reported by farmers at the county level. These reports are somewhat subjective and fluctuate between different reporters, locations and times. Remote sensing data provide an alternative approach to monitoring crop growth over large areas in a more consistent and quantitative way. In the recent years, remote sensing data have been used to detect vegetation phenology at 1-km spatial resolution globally. However, agricultural applications at field scale require finer spatial resolution remote sensing data. Landsat (30-m) data have been successfully used for agricultural applications. There are many medium resolution sensors available today or in near future. These include Landsat, SPOT, RapidEye, ASTER and future Sentinel-2 etc. Approaches have been developed in the past several years to integrate remote sensing data from different sensors which may have different sensor characteristics, and spatial and temporal resolutions. This allows us opportunities today to map crop growth stages and conditions using dense time-series remote sensing at field scales. However, remotely sensed phenology (or phenological metrics) is normally derived based on the mathematical functions of the time-series data. The phenological metrics are determined by either identifying inflection (curvature) points or some pre-defined thresholds in the remote sensing phenology algorithms. Furthermore, physiological crop growth stages may not be directly correlated to the remotely sensed phenology. The relationship between remotely sensed phenology and crop growth stages is likely to vary for specific crop types and varieties, growing stages, conditions and even locations. In this presentation, we will examine the relationship between remotely sensed phenology and crop growth stages using in-situ measurements from Fluxnet sites and crop progress reports from USDA NASS. We will present remote sensing approaches and focus on: 1) integrating multiple sources of remote sensing data; and 2) extracting crop phenology at field scales. An example in the U.S. Corn Belt area will be presented and analyzed. Future directions for mapping crop growth stages will be discussed.
Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing.
Lin, Hsi-Hui; Lin, Hsiu-Kuan; Lin, I-Hsuan; Chiou, Yu-Wei; Chen, Horn-Wei; Liu, Ching-Yi; Harn, Hans I-Chen; Chiu, Wen-Tai; Wang, Yang-Kao; Shen, Meng-Ru; Tang, Ming-Jer
2015-08-28
The stiffness sensing ability is required to respond to the stiffness of the matrix. Here we determined whether normal cells and cancer cells display distinct mechanical phenotypes. Cancer cells were softer than their normal counterparts, regardless of the type of cancer (breast, bladder, cervix, pancreas, or Ha-RasV12-transformed cells). When cultured on matrices of varying stiffness, low stiffness decreased proliferation in normal cells, while cancer cells and transformed cells lost this response. Thus, cancer cells undergo a change in their mechanical phenotype that includes cell softening and loss of stiffness sensing. Caveolin-1, which is suppressed in many tumor cells and in oncogene-transformed cells, regulates the mechanical phenotype. Caveolin-1-upregulated RhoA activity and Y397FAK phosphorylation directed actin cap formation, which was positively correlated with cell elasticity and stiffness sensing in fibroblasts. Ha-RasV12-induced transformation and changes in the mechanical phenotypes were reversed by re-expression of caveolin-1 and mimicked by the suppression of caveolin-1 in normal fibroblasts. This is the first study to describe this novel role for caveolin-1, linking mechanical phenotype to cell transformation. Furthermore, mechanical characteristics may serve as biomarkers for cell transformation.
An efficient BTX sensor based on ZnO nanoflowers grown by CBD method
NASA Astrophysics Data System (ADS)
Acharyya, D.; Bhattacharyya, P.
2015-04-01
In this paper, sensing performance of ZnO nanoflower like structures derived by chemical bath deposition method (CBD), towards Benzene Toluene and Xylene (BTX) vapors is reported. Relatively higher bath temperature (110 °C) and high pH value (pH: 11) of solution escort to higher growth rate along [0 0 0 1] plane of ZnO, which eventually resulted in pointed edge nanorod based flower like structures after 3 h. After detailed structural characterizations (field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD)), existence of different defect states (viz. oxygen vacancy (Vo), Zinc vacancy (VZn) and Zinc interstitials (Zni)) were authenticated by Photoluminescence (PL) spectroscopy. BTX sensing performance, employing the nanoflowers as the sensing layer, was carried out in resistive mode with two Pd lateral electrodes. The sensor study was performed at different temperatures (150-350 °C) in the concentration range of 0.5-700 ppm of the respective vapors. The highest normalized resistance response (NRR%) was achieved at 200 °C. At this optimum temperature, normalized resistance responses (39.3/92.6%, 45.8/96.9%, and 47.8/99% respectively) were found to be promising towards 0.5/700 ppm of benzene, toluene and xylene. The response time of the sensor towards the target species were also found to be appreciably fast (15 s, 6 s, and 5 s) towards 700 ppm of benzene, toluene and xylene respectively. Detailed sensing mechanism for BTX with such flower like ZnO structures was explained with the help of interaction of band structures (of ZnO) with the corresponding highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the target species.
Cong-Cong, Xia; Cheng-Fang, Lu; Si, Li; Tie-Jun, Zhang; Sui-Heng, Lin; Yi, Hu; Ying, Liu; Zhi-Jie, Zhang
2016-12-02
To explore the technique of maximum entropy model for extracting Oncomelania hupensis snail habitats in Poyang Lake zone. The information of snail habitats and related environment factors collected in Poyang Lake zone were integrated to set up the maximum entropy based species model and generate snail habitats distribution map. Two Landsat 7 ETM+ remote sensing images of both wet and drought seasons in Poyang Lake zone were obtained, where the two indices of modified normalized difference water index (MNDWI) and normalized difference vegetation index (NDVI) were applied to extract snail habitats. The ROC curve, sensitivities and specificities were applied to assess their results. Furthermore, the importance of the variables for snail habitats was analyzed by using Jackknife approach. The evaluation results showed that the area under receiver operating characteristic curve (AUC) of testing data by the remote sensing-based method was only 0.56, and the sensitivity and specificity were 0.23 and 0.89 respectively. Nevertheless, those indices above-mentioned of maximum entropy model were 0.876, 0.89 and 0.74 respectively. The main concentration of snail habitats in Poyang Lake zone covered the northeast part of Yongxiu County, northwest of Yugan County, southwest of Poyang County and middle of Xinjian County, and the elevation was the most important environment variable affecting the distribution of snails, and the next was land surface temperature (LST). The maximum entropy model is more reliable and accurate than the remote sensing-based method for the sake of extracting snail habitats, which has certain guiding significance for the relevant departments to carry out measures to prevent and control high-risk snail habitats.
Biomass and health based forest cover delineation using spectral un-mixing
Mohan Tiruveedhula; Joseph Fan; Ravi R. Sadasivuni; Surya S. Durbha; David L. Evans
2009-01-01
Remote sensing is a well-suited source of information on various forest characteristics such as forest cover type, leaf area, biomass, and health. The use of appropriate layers helps to quantify the variables of interest. For example, normalized difference vegetation index (NDVI) and greenness help explain variability in biomass as well as health of forests....
USDA-ARS?s Scientific Manuscript database
Stem water potential (SWP) has become a very popular tool for farmers to monitor the water status of almond trees. However, it is labor intensive and time consuming to scale up the measurements in the large field. With the development of unmanned aerial vehicles (UAVs) and sensing payload, it become...
Variability in vegetation greenness was determined for the Galveston Bay watershed using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (A VHRR) flown on NOAA satellites. NDVI variability was compared with reg...
Spatial and temporal variability of vegetation greenness have been determined for coastal Texas using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (AVHRR). Results are presented on relationships between grou...
Driving in traffic: short-range sensing for urban collision avoidance
NASA Astrophysics Data System (ADS)
Thorpe, Chuck E.; Duggins, David F.; Gowdy, Jay W.; MacLaughlin, Rob; Mertz, Christoph; Siegel, Mel; Suppe, Arne; Wang, Chieh-Chih; Yata, Teruko
2002-07-01
Intelligent vehicles are beginning to appear on the market, but so far their sensing and warning functions only work on the open road. Functions such as runoff-road warning or adaptive cruise control are designed for the uncluttered environments of open highways. We are working on the much more difficult problem of sensing and driver interfaces for driving in urban areas. We need to sense cars and pedestrians and curbs and fire plugs and bicycles and lamp posts; we need to predict the paths of our own vehicle and of other moving objects; and we need to decide when to issue alerts or warnings to both the driver of our own vehicle and (potentially) to nearby pedestrians. No single sensor is currently able to detect and track all relevant objects. We are working with radar, ladar, stereo vision, and a novel light-stripe range sensor. We have installed a subset of these sensors on a city bus, driving through the streets of Pittsburgh on its normal runs. We are using different kinds of data fusion for different subsets of sensors, plus a coordinating framework for mapping objects at an abstract level.
Finley, Jason R; Brewer, William F; Benjamin, Aaron S
2011-10-01
Emerging "life-logging" technologies have tremendous potential to augment human autobiographical memory by recording and processing vast amounts of information from an individual's experiences. In this experiment undergraduate participants wore a SenseCam, a small, sensor-equipped digital camera, as they went about their normal daily activities for five consecutive days. Pictures were captured either at fixed intervals or as triggered by SenseCam's sensors. On two of five nights, participants watched an end-of-day review of a random subset of pictures captured that day. Participants were tested with a variety of memory measures at intervals of 1, 3, and 8 weeks. The most fruitful of six measures were recognition rating (on a 1-7 scale) and picture-cued recall length. On these tests, end-of-day review enhanced performance relative to no review, while pictures triggered by SenseCam's sensors showed little difference in performance compared to those taken at fixed time intervals. We discuss the promise of SenseCam as a tool for research and for improving autobiographical memory.
Yao, Yuan; Ding, Jian-Li; Zhang, Fang; Wang, Gang; Jiang, Hong-Nan
2013-11-01
Soil salinization is one of the most important eco-environment problems in arid area, which can not only induce land degradation, inhibit vegetation growth, but also impede regional agricultural production. To accurately and quickly obtain the information of regional saline soils by using remote sensing data is critical to monitor soil salinization and prevent its further development. Taking the Weigan-Kuqa River Delta Oasis in the northern Tarim River Basin of Xinjiang as test object, and based on the remote sensing data from Landsat-TM images of April 15, 2011 and September 22, 2011, in combining with the measured data from field survey, this paper extracted the characteristic variables modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), and the third principal component from K-L transformation (K-L-3). The decision tree method was adopted to establish the extraction models of soil salinization in the two key seasons (dry and wet seasons) of the study area, and the classification maps of soil salinization in the two seasons were drawn. The results showed that the decision tree method had a higher discrimination precision, being 87.2% in dry season and 85.3% in wet season, which was able to be used for effectively monitoring the dynamics of soil salinization and its spatial distribution, and to provide scientific basis for the comprehensive management of saline soils in arid area and the rational utilization of oasis land resources.
Normalized burn ratios link fire severity with patterns of avian occurrence
Rose, Eli T.; Simons, Theodore R.; Klein, Rob; McKerrow, Alexa
2016-01-01
ContextRemotely sensed differenced normalized burn ratios (DNBR) provide an index of fire severity across the footprint of a fire. We asked whether this index was useful for explaining patterns of bird occurrence within fire adapted xeric pine-oak forests of the southern Appalachian Mountains.ObjectivesWe evaluated the use of DNBR indices for linking ecosystem process with patterns of bird occurrence. We compared field-based and remotely sensed fire severity indices and used each to develop occupancy models for six bird species to identify patterns of bird occurrence following fire.MethodsWe identified and sampled 228 points within fires that recently burned within Great Smoky Mountains National Park. We performed avian point counts and field-assessed fire severity at each bird census point. We also used Landsat™ imagery acquired before and after each fire to quantify fire severity using DNBR. We used non-parametric methods to quantify agreement between fire severity indices, and evaluated single season occupancy models incorporating fire severity summarized at different spatial scales.ResultsAgreement between field-derived and remotely sensed measures of fire severity was influenced by vegetation type. Although occurrence models using field-derived indices of fire severity outperformed those using DNBR, summarizing DNBR at multiple spatial scales provided additional insights into patterns of occurrence associated with different sized patches of high severity fire.ConclusionsDNBR is useful for linking the effects of fire severity to patterns of bird occurrence, and informing how high severity fire shapes patterns of bird species occurrence on the landscape.
Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management
NASA Technical Reports Server (NTRS)
Tucker, Compton; Puma, Michael
2015-01-01
Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.
Multispectral Remote Sensing of the Earth and Environment Using KHawk Unmanned Aircraft Systems
NASA Astrophysics Data System (ADS)
Gowravaram, Saket
This thesis focuses on the development and testing of the KHawk multispectral remote sensing system for environmental and agricultural applications. KHawk Unmanned Aircraft System (UAS), a small and low-cost remote sensing platform, is used as the test bed for aerial video acquisition. An efficient image geotagging and photogrammetric procedure for aerial map generation is described, followed by a comprehensive error analysis on the generated maps. The developed procedure is also used for generation of multispectral aerial maps including red, near infrared (NIR) and colored infrared (CIR) maps. A robust Normalized Difference Vegetation index (NDVI) calibration procedure is proposed and validated by ground tests and KHawk flight test. Finally, the generated aerial maps and their corresponding Digital Elevation Models (DEMs) are used for typical application scenarios including prescribed fire monitoring, initial fire line estimation, and tree health monitoring.
Metal organic frameworks enhanced graphene oxide electrode for humidity sensor
NASA Astrophysics Data System (ADS)
Zhang, Wen; Meng, Siyu; Wang, Hui; He, Yongning
2018-03-01
Copper benzene-1,3,5-tricarboxylate (Cu-BTC), a typical metal organic framework, is deposited on the graphene oxide (GO) film to prepare a resistance humidity sensor (Cu- BTC/GO) for improving humidity sensing. The characteristics of Cu-BTC, GO and Cu- BTC/GO were measured by scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen isotherm adsorption and electrochemical impedance spectroscopy (EIS). The humidity sensing properties of the Cu-BTC/GO were investigated in detail. The obtained Cu-BTC/GO demonstrates good sensitivity and repeatability over 11%-85% relative humidity (RH) measurements. The Cu-BTC/GO coated device shows high normalized response (S) value (6200%), which is much higher than that of pure GO coated device. Sensing mechanism of Cu- BTC/GO is discussed based on different RH and the results indicate that moderate amounts of Cu-BTC deposition can enhance sensing abilities of GO. High specific surface area and interfacial conductivity are crucial factors to fabricate humidity sensors with high performance.
Germeni, Evi; Vallini, Isabella; Bianchetti, Mario G; Schulz, Peter J
2018-04-01
Living with a childhood chronic disease can be challenging, especially if the diagnosis involves a rare condition. This study sought to elucidate how the diagnosis of a rare disease, as compared to a common, chronic condition, may influence maternal experiences of childhood illness. We conducted face-to-face, semi-structured interviews with 26 mothers of children treated in a pediatric hospital in the province of Lecco, Italy. Half of the participants had a child diagnosed with Bartter syndrome (BS), and the rest had a child suffering from celiac disease (CD). Interviews were recorded, transcribed, and analyzed using an inductive thematic approach. We identified three main themes from the analysis of our data: (1) disrupted normality and the need to know, (2) reconstructing normality, and (3) acting "normal." Although most participants experienced the disclosure of diagnosis as a relief, processes that facilitated normality reconstruction in celiac families, notably access to appropriate information, social support, and personal contact with comparison others, were found to be important stressors for mothers living with BS. This comparative qualitative study provides evidence on how well-known problems associated with the rarity of childhood diseases impact on families' efforts to cope with the illness and regain a sense of normality. What is Known: • Families living with a rare disease have been found to experience a range of common problems, directly linked to the rarity of these pathologies. What is New: • Maximization of both emotional and instrumental social support, through provision of appropriate information or establishment of disease-specific support groups, could greatly contribute to rare disease families' efforts to cope with childhood illness and regain a sense of normality.
Core body temperature in obesity.
Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C; Yanovski, Jack A
2011-05-01
A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. In study 1, nonobese [body mass index (BMI; in kg/m(2)) <30] and obese (BMI ≥30) adults swallowed wireless core temperature-sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18-25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P < 0.0001). Obesity is not generally associated with a reduced core body temperature. It may be necessary to study individuals with function-altering mutations in core temperature-regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500.
Core body temperature in obesity123
Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C
2011-01-01
Background: A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. Objective: We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. Design: In study 1, nonobese [body mass index (BMI; in kg/m2) <30] and obese (BMI ≥30) adults swallowed wireless core temperature–sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18–25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Results: Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P < 0.0001). Conclusions: Obesity is not generally associated with a reduced core body temperature. It may be necessary to study individuals with function-altering mutations in core temperature–regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500. PMID:21367952
Monitoring land cover dynamics in the Aral Sea region by remote sensing
NASA Astrophysics Data System (ADS)
Kozhoridze, Giorgi; Orlovsky, Leah; Orlovsky, Nikolai
2012-10-01
The Aral Sea ecological crisis resulted from the USSR government decision in 1960s to deploy agricultural project for cotton production in Central Asia. Consequently water flow in the Aral Sea decreased drastically due to the regulation of Amydarya and Syrdarya Rivers for irrigation purposes from 55-60 km3 in 1950s to 43 km3 in 1970s, 4 km3 in 1980s and 9-10 km3 in 2000s. Expert land cover classification approach gives the opportunity to use the unlimited variable for classification purposes. The band algebra (band5/band4 and Band4/Band3) and remote sensing indices (Normalized differential Salinity Index (NDSI), Salt Pan Index (SPI), Salt Index (SI), Normalized difference Vegetation Index (NDVI), Albedo, Crust Index) utilized for the land cover classification has shown satisfactory result with classification overall accuracy 86.9 % and kappa coefficient 0.85. Developed research algorithm and obtained results can support monitoring system, contingency planning development, and improvement of natural resources rational management.
NASA Technical Reports Server (NTRS)
Van De Griend, A. A.; Owe, M.
1993-01-01
The spatial variation of both the thermal emissivity (8-14 microns) and Normalized Difference Vegetation Index (NDVI) was measured for a series of natural surfaces within a savanna environment in Botswana. The measurements were performed with an emissivity-box and with a combined red and near-IR radiometer, with spectral bands corresponding to NOAA/AVHRR. It was found that thermal emissivity was highly correlated with NDVI after logarithmic transformation, with a correlation coefficient of R = 0.94. This empirical relationship is of potential use for energy balance studies using thermal IR remote sensing. The relationship was used in combination with AVHRR (GAC), AVHRR (LAC), and Landsat (TM) data to demonstrate and compare the spatial variability of various spatial scales.
Illumination invariant feature point matching for high-resolution planetary remote sensing images
NASA Astrophysics Data System (ADS)
Wu, Bo; Zeng, Hai; Hu, Han
2018-03-01
Despite its success with regular close-range and remote-sensing images, the scale-invariant feature transform (SIFT) algorithm is essentially not invariant to illumination differences due to the use of gradients for feature description. In planetary remote sensing imagery, which normally lacks sufficient textural information, salient regions are generally triggered by the shadow effects of keypoints, reducing the matching performance of classical SIFT. Based on the observation of dual peaks in a histogram of the dominant orientations of SIFT keypoints, this paper proposes an illumination-invariant SIFT matching method for high-resolution planetary remote sensing images. First, as the peaks in the orientation histogram are generally aligned closely with the sub-solar azimuth angle at the time of image collection, an adaptive suppression Gaussian function is tuned to level the histogram and thereby alleviate the differences in illumination caused by a changing solar angle. Next, the suppression function is incorporated into the original SIFT procedure for obtaining feature descriptors, which are used for initial image matching. Finally, as the distribution of feature descriptors changes after anisotropic suppression, and the ratio check used for matching and outlier removal in classical SIFT may produce inferior results, this paper proposes an improved matching procedure based on cross-checking and template image matching. The experimental results for several high-resolution remote sensing images from both the Moon and Mars, with illumination differences of 20°-180°, reveal that the proposed method retrieves about 40%-60% more matches than the classical SIFT method. The proposed method is of significance for matching or co-registration of planetary remote sensing images for their synergistic use in various applications. It also has the potential to be useful for flyby and rover images by integrating with the affine invariant feature detectors.
NASA Astrophysics Data System (ADS)
Dai, L.; Sorkin, V.; Zhang, Y. W.
2017-04-01
We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.
Multisensory Integration and Behavioral Plasticity in Sharks from Different Ecological Niches
Gardiner, Jayne M.; Atema, Jelle; Hueter, Robert E.; Motta, Philip J.
2014-01-01
The underwater sensory world and the sensory systems of aquatic animals have become better understood in recent decades, but typically have been studied one sense at a time. A comprehensive analysis of multisensory interactions during complex behavioral tasks has remained a subject of discussion without experimental evidence. We set out to generate a general model of multisensory information extraction by aquatic animals. For our model we chose to analyze the hierarchical, integrative, and sometimes alternate use of various sensory systems during the feeding sequence in three species of sharks that differ in sensory anatomy and behavioral ecology. By blocking senses in different combinations, we show that when some of their normal sensory cues were unavailable, sharks were often still capable of successfully detecting, tracking and capturing prey by switching to alternate sensory modalities. While there were significant species differences, odor was generally the first signal detected, leading to upstream swimming and wake tracking. Closer to the prey, as more sensory cues became available, the preferred sensory modalities varied among species, with vision, hydrodynamic imaging, electroreception, and touch being important for orienting to, striking at, and capturing the prey. Experimental deprivation of senses showed how sharks exploit the many signals that comprise their sensory world, each sense coming into play as they provide more accurate information during the behavioral sequence of hunting. The results may be applicable to aquatic hunting in general and, with appropriate modification, to other types of animal behavior. PMID:24695492
Donders, Gilbert G. G.; Marconi, Camila; Bellen, Gert
2010-01-01
Accessing vaginal pH is fundamental during gynaecological visit for the detection of abnormal vaginal flora (AVF), but use of pH strips may be time-consuming and difficult to interpret. The aim of this study was to evaluate the VS-SENSE test (Common Sense Ltd, Caesarea, Israel) as a tool for the diagnosis of AVF and its correlation with abnormal pH and bacterial vaginosis (BV). The study population consisted of 45 women with vaginal pH ≥ 4.5 and 45 women with normal pH. Vaginal samples were evaluated by VS-SENSE test, microscopy and microbiologic cultures. Comparing with pH strips results, VS-SENSE test specificity was 97.8% and sensitivity of 91%. All severe cases of BV and aerobic vaginitis (AV) were detected by the test. Only one case with normal pH had an unclear result. Concluding, VS-SENSE test is easy to perform, and it correlates with increased pH, AVF, and the severe cases of BV and AV. PMID:20953405
Donders, Gilbert G G; Marconi, Camila; Bellen, Gert
2010-01-01
Accessing vaginal pH is fundamental during gynaecological visit for the detection of abnormal vaginal flora (AVF), but use of pH strips may be time-consuming and difficult to interpret. The aim of this study was to evaluate the VS-SENSE test (Common Sense Ltd, Caesarea, Israel) as a tool for the diagnosis of AVF and its correlation with abnormal pH and bacterial vaginosis (BV). The study population consisted of 45 women with vaginal pH ≥ 4.5 and 45 women with normal pH. Vaginal samples were evaluated by VS-SENSE test, microscopy and microbiologic cultures. Comparing with pH strips results, VS-SENSE test specificity was 97.8% and sensitivity of 91%. All severe cases of BV and aerobic vaginitis (AV) were detected by the test. Only one case with normal pH had an unclear result. Concluding, VS-SENSE test is easy to perform, and it correlates with increased pH, AVF, and the severe cases of BV and AV.
SenseCube—a novel inexpensive wireless multisensor for physics lab experimentations
NASA Astrophysics Data System (ADS)
Mehta, Vedant; Lane, Charles D.
2018-07-01
SenseCube is a multisensor capable of measuring many different real-time events and changes in environment. Most conventional sensors used in introductory-physics labs use their own software and have wires that must be attached to a computer or an alternate device to analyze the data. This makes the standard sensors time consuming, tedious, and space-constricted. SenseCube was developed to overcome these limitations. This research was focused on developing a device that is all-encompassing, cost-effective, wireless, and compact, yet can perform the same tasks as the multiple standard sensors normally used in physics labs. It measures more than twenty distinct types of real-time events and transfers the data via Bluetooth. Both Windows and Mac software were developed so that the data from this device can be retrieved and/or saved on either platform. This paper describes the sensor itself, its development, its capabilities, and its cost comparison with standard sensors.
A real-time MTFC algorithm of space remote-sensing camera based on FPGA
NASA Astrophysics Data System (ADS)
Zhao, Liting; Huang, Gang; Lin, Zhe
2018-01-01
A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.
Topor, Alain; Ljungqvist, Ingemar
2017-10-01
During a 9-month period, 100 persons with SMI were given approx. 73 USD per month above their normal income. Sixteen of the subjects were interviewed. The interviews were analysed according to the methods of thematic analysis. The money was used for personal pleasure and to re-establish reciprocal relations to others. The ways in which different individuals used the money at their disposal impacted their sense of self through experiences of mastery, agency, reciprocity, recognition and security. The findings underline the importance of including social circumstances in our understanding of mental health problems, their trajectories and the recovery process.
BOREAS RSS-7 Regional LAI and FPAR Images From 10-Day AVHRR-LAC Composites
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Chen, Jing; Cihlar, Josef
2000-01-01
The BOReal Ecosystem-Atmosphere Study Remote Sensing Science (BOREAS RSS-7) team collected various data sets to develop and validate an algorithm to allow the retrieval of the spatial distribution of Leaf Area Index (LAI) from remotely sensed images. Advanced Very High Resolution Radiometer (AVHRR) level-4c 10-day composite Normalized Difference Vegetation Index (NDVI) images produced at CCRS were used to produce images of LAI and the Fraction of Photosynthetically Active Radiation (FPAR) absorbed by plant canopies for the three summer IFCs in 1994 across the BOREAS region. The algorithms were developed based on ground measurements and Landsat Thematic Mapper (TM) images. The data are stored in binary image format files.
[Mutations of amyloid precursor protein in early-onset familial Alzheimer's disease].
Naruse, S; Tsuji, S; Miyatake, T
1992-09-01
Genetic linkage studies of familial Alzheimer's disease (FAD) have suggested that some form of early-onset FAD is linked to proximal long arm of chromosome 21. It has been also suggested that some form of late-onset FAD is linked to long arm of chromosome 19. Goate et al have identified a mis-sense mutation (Val to Ile) in exon 17 of the amyloid precursor protein (APP) gene in 2 of 16 early-onset FAD families, and have shown that the FAD locus in an FAD family is tightly linked to the mis-sense mutation. To determine if the mis-sense mutation is observed in different ethnic origine, we have studied some early-onset FAD families. Two early-onset FAD families showed the existence of the mutation. As the mutation has been identified in different ethnic origine and the mutation has not been observed in normal individuals, it strengthen hypothesis that the mutation is pathogenic. Recently, Val to Phe and Val to Gly mutations have been also identified at the same codon (Codon 717) of the APP gene.
NASA Astrophysics Data System (ADS)
Rouini, N.; Lepley, K. S.; Messaoudene, M.
2017-12-01
Remote sensing and dendrochronology are valuable tools in the face of climate change and land use change, yet the connection between these resources remains largely unexploited. Research on forest fragmentation is mainly focused on animal groups, while our work focuses on tree communities. We link tree-rings and remotely-sensed Normalized Difference Vegetation Index (NDVI) using seasonal correlation analysis to investigate forest primary productivity response to fragmentation. Tree core samples from Quercus afares have been taken from two sites within the Guerrouche Forest in northeastern Algeria. The first site is located within a very fragmented area while the second site is intact. Fragmentation is estimated to have occurred with the construction of a road in 1930. We find raw tree-ring width chronologies from each site reveal growth release in the disturbed site after 1930. The means of each chronology for the 1930 to 2016 period are statistically different (p < 0.01). Based on these preliminary results we hypothesize that reconstructed primary productivity (NDVI) will be higher in the fragmented site after fragmentation took place.
Auditory and tactile gap discrimination by observers with normal and impaired hearing.
Desloge, Joseph G; Reed, Charlotte M; Braida, Louis D; Perez, Zachary D; Delhorne, Lorraine A; Villabona, Timothy J
2014-02-01
Temporal processing ability for the senses of hearing and touch was examined through the measurement of gap-duration discrimination thresholds (GDDTs) employing the same low-frequency sinusoidal stimuli in both modalities. GDDTs were measured in three groups of observers (normal-hearing, hearing-impaired, and normal-hearing with simulated hearing loss) covering an age range of 21-69 yr. GDDTs for a baseline gap of 6 ms were measured for four different combinations of 100-ms leading and trailing markers (250-250, 250-400, 400-250, and 400-400 Hz). Auditory measurements were obtained for monaural presentation over headphones and tactile measurements were obtained using sinusoidal vibrations presented to the left middle finger. The auditory GDDTs of the hearing-impaired listeners, which were larger than those of the normal-hearing observers, were well-reproduced in the listeners with simulated loss. The magnitude of the GDDT was generally independent of modality and showed effects of age in both modalities. The use of different-frequency compared to same-frequency markers led to a greater deterioration in auditory GDDTs compared to tactile GDDTs and may reflect differences in bandwidth properties between the two sensory systems.
Nagler, Pamela L.; Sridhar, B.B. Maruthi; Olsson, Aaryn Dyami; Glenn, Edward P.; van Leeuwen, Willem J.D.; Thenkabail, Prasad S.; Huete, Alfredo; Lyon, John G.
2012-01-01
Green vegetation can be distinguished using visible and infrared multi-band and hyperspectral remote sensing methods. The problem has been in identifying and distinguishing the non-photosynthetically active radiation (PAR) landscape components, such as litter and soils, and from green vegetation. Additionally, distinguishing different species of green vegetation is challenging using the relatively few bands available on most satellite sensors. This chapter focuses on hyperspectral remote sensing characteristics that aim to distinguish between green vegetation, soil, and litter (or senescent vegetation). Quantifying litter by remote sensing methods is important in constructing carbon budgets of natural and agricultural ecosystems. Distinguishing between plant types is important in tracking the spread of invasive species. Green leaves of different species usually have similar spectra, making it difficult to distinguish between species. However, in this chapter we show that phenological differences between species can be used to detect some invasive species by their distinct patterns of greening and dormancy over an annual cycle based on hyperspectral data. Both applications require methods to quantify the non-green cellulosic fractions of plant tissues by remote sensing even in the presence of soil and green plant cover. We explore these methods and offer three case studies. The first concerns distinguishing surface litter from soil using the Cellulose Absorption Index (CAI), as applied to no-till farming practices where plant litter is left on the soil after harvest. The second involves using different band combinations to distinguish invasive saltcedar from agricultural and native riparian plants on the Lower Colorado River. The third illustrates the use of the CAI and NDVI in time-series analyses to distinguish between invasive buffelgrass and native plants in a desert environment in Arizona. Together the results show how hyperspectral imagery can be applied to solve problems that are not amendable to solution by the simple band combinations normally used in remote sensing.
Finley, Jason R.; Brewer, William F.; Benjamin, Aaron S.
2011-01-01
Emerging “life-logging” technologies have tremendous potential to augment human autobiographical memory by recording and processing vast amounts of information from an individual’s experiences. In this experiment undergraduate participants wore a SenseCam, a small, sensor-equipped digital camera, as they went about their normal daily activities for five consecutive days. Pictures were captured either at fixed intervals or as triggered by SenseCam’s sensors. On two of five nights, participants watched an end-of-day review of a random subset of pictures captured that day. Participants were tested with a variety of memory measures at intervals of 1, 3, and 8 weeks. The most fruitful of six measures were recognition rating (on a 1–7 scale) and picture-cued recall length. On these tests, end-of-day review enhanced performance relative to no review, while pictures triggered by SenseCam’s sensors showed little difference in performance compared to those taken at fixed time intervals. We discuss the promise of SenseCam as a tool for research and for improving autobiographical memory. PMID:21229457
NASA Technical Reports Server (NTRS)
Lobitz, Brad; Johnson, Lee; Hlavka, Chris; Armstrong, Roy; Bell, Cindy
1997-01-01
High spatial resolution airborne imagery was acquired in California's Napa Valley in 1993 and 1994 as part of the Grapevine Remote sensing Analysis of Phylloxera Early Stress (GRAPES) project. Investigators from NASA, the University of California, the California State University, and Robert Mondavi Winery examined the application of airborne digital imaging technology to vineyard management, with emphasis on detecting the phylloxera infestation in California vineyards. Because the root louse causes vine stress that leads to grapevine death in three to five years, the infested areas must be replanted with resistant rootstock. Early detection of infestation and changing cultural practices can compensate for vine damage. Vineyard managers need improved information to decide where and when to replant fields or sections of fields to minimize crop financial losses. Annual relative changes in leaf area due to phylloxera infestation were determined by using information obtained from computing Normalized Difference Vegetation Index (NDVI) images. Two other methods of monitoring vineyards through imagery were also investigated: optical sensing of the Red Edge Inflection Point (REIP), and thermal sensing. These did not convey the stress patterns as well as the NDVI imagery and require specialized sensor configurations. NDVI-derived products are recommended for monitoring phylloxera infestations.
A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems
NASA Astrophysics Data System (ADS)
Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui
2014-12-01
Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.
NASA Astrophysics Data System (ADS)
Zhang, Zhiming; de Wulf, Robert R.; van Coillie, Frieke M. B.; Verbeke, Lieven P. C.; de Clercq, Eva M.; Ou, Xiaokun
2011-01-01
Mapping of vegetation using remote sensing in mountainous areas is considerably hampered by topographic effects on the spectral response pattern. A variety of topographic normalization techniques have been proposed to correct these illumination effects due to topography. The purpose of this study was to compare six different topographic normalization methods (Cosine correction, Minnaert correction, C-correction, Sun-canopy-sensor correction, two-stage topographic normalization, and slope matching technique) for their effectiveness in enhancing vegetation classification in mountainous environments. Since most of the vegetation classes in the rugged terrain of the Lancang Watershed (China) did not feature a normal distribution, artificial neural networks (ANNs) were employed as a classifier. Comparing the ANN classifications, none of the topographic correction methods could significantly improve ETM+ image classification overall accuracy. Nevertheless, at the class level, the accuracy of pine forest could be increased by using topographically corrected images. On the contrary, oak forest and mixed forest accuracies were significantly decreased by using corrected images. The results also showed that none of the topographic normalization strategies was satisfactorily able to correct for the topographic effects in severely shadowed areas.
Lee, Haeng Ja; Kim, Young Hae; Park, Nam Hee
2006-04-01
The study attempted to find family perception differences between abused children and normal children by Kinetic Family Drawing. The subjects of the study consisted of two groups, 143 abused who were in the upper 25th percentile, and 150 normal who were in the lower 25th percentile. Collected Kinetic Family Drawings were divided into five dimensions such as actions, human figure characteristics, dynamics, styles and symbols, and they was analyzed with SPSS/WIN 10.0. In the perception about their family in action dimension, their family in figure characteristics dimension, their family in dynamics dimensions, and their family in symbols dimension, there is a sharp contrast between the two groups. Putting these results together, abused children feel lower self-esteem and feel more sense of alienation in their family than normal children do. In addition, abused children perceive their parents as negative and aggressive people.
Grating angle magnification enhanced angular sensor and scanner
NASA Technical Reports Server (NTRS)
Sun, Ke-Xun (Inventor); Byer, Robert L. (Inventor)
2009-01-01
An angular magnification effect of diffraction is exploited to provide improved sensing and scanning. This effect is most pronounced for a normal or near-normal incidence angle in combination with a grazing diffraction angle, so such configurations are preferred. Angular sensitivity can be further enhanced because the width of the diffracted beam can be substantially less than the width of the incident beam. Normal incidence configurations with two symmetric diffracted beams are preferred, since rotation and vertical displacement can be readily distinguished. Increased sensitivity to vertical displacement can be provided by incorporating an interferometer into the measurement system. Quad cell detectors can be employed to provide sensitivity to rotation about the grating surface normal. A 2-D grating can be employed to provide sensitivity to angular displacements in two different planes (e.g., pitch and yaw). Combined systems can provide sensitivity to vertical displacement and to all three angular degrees of freedom.
Fuel cell system shutdown with anode pressure control
Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.
2002-01-01
A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.
The Study of Graphic Sense and Its Effects on the Acquisition of Literacy. Final Report.
ERIC Educational Resources Information Center
Hernandez-Chavez, Eduardo; Curtis, Jan
This report describes a study on the development of children's conceptualizations of written language, that is, their graphic sense. The study investigated three issues: (1) whether acquisition of literacy is a developmental process common to all normal children, (2) whether the levels of graphic sense tend to be associated with particular…
NASA Astrophysics Data System (ADS)
Elhag, Mohamed; Bahrawi, Jarbou A.
2017-03-01
Vegetation indices are mostly described as crop water derivatives. The normalized difference vegetation index (NDVI) is one of the oldest remote sensing applications that is widely used to evaluate crop vigor directly and crop water relationships indirectly. Recently, several NDVI derivatives were exclusively used to assess crop water relationships. Four hydrological drought indices are examined in the current research study. The water supply vegetation index (WSVI), the soil-adjusted vegetation index (SAVI), the moisture stress index (MSI) and the normalized difference infrared index (NDII) are implemented in the current study as an indirect tool to map the effect of different soil salinity levels on crop water stress in arid environments. In arid environments, such as Saudi Arabia, water resources are under pressure, especially groundwater levels. Groundwater wells are rapidly depleted due to the heavy abstraction of the reserved water. Heavy abstractions of groundwater, which exceed crop water requirements in most of the cases, are powered by high evaporation rates in the designated study area because of the long days of extremely hot summer. Landsat 8 OLI data were extensively used in the current research to obtain several vegetation indices in response to soil salinity in Wadi ad-Dawasir. Principal component analyses (PCA) and artificial neural network (ANN) analyses are complementary tools used to understand the regression pattern of the hydrological drought indices in the designated study area.
Fingerprint enhancement using a multispectral sensor
NASA Astrophysics Data System (ADS)
Rowe, Robert K.; Nixon, Kristin A.
2005-03-01
The level of performance of a biometric fingerprint sensor is critically dependent on the quality of the fingerprint images. One of the most common types of optical fingerprint sensors relies on the phenomenon of total internal reflectance (TIR) to generate an image. Under ideal conditions, a TIR fingerprint sensor can produce high-contrast fingerprint images with excellent feature definition. However, images produced by the same sensor under conditions that include dry skin, dirt on the skin, and marginal contact between the finger and the sensor, are likely to be severely degraded. This paper discusses the use of multispectral sensing as a means to collect additional images with new information about the fingerprint that can significantly augment the system performance under both normal and adverse sample conditions. In the context of this paper, "multispectral sensing" is used to broadly denote a collection of images taken under different illumination conditions: different polarizations, different illumination/detection configurations, as well as different wavelength illumination. Results from three small studies using an early-stage prototype of the multispectral-TIR (MTIR) sensor are presented along with results from the corresponding TIR data. The first experiment produced data from 9 people, 4 fingers from each person and 3 measurements per finger under "normal" conditions. The second experiment provided results from a study performed to test the relative performance of TIR and MTIR images when taken under extreme dry and dirty conditions. The third experiment examined the case where the area of contact between the finger and sensor is greatly reduced.
Measuring and Estimating Normalized Contrast in Infrared Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2013-01-01
Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.
Honjo, Hisashi; Kawauchi, Akihiro; Nakao, Masahiro; Ukimura, Osamu; Kitakoji, Hiroshi; Miki, Tsuneharu
2010-09-01
Bladder diaries including bladder perception grade were analyzed to assess convenience void (CV) in community-dwelling women 40 years of age or older. A total of 310 women completed a 3-day bladder diary with a grade for bladder perception. The grade was defined on scores 0-5 as follows: 0 = No bladder sensation, 1 = Sensation of bladder filling without desire to void, 2 = Desire to void, 3 = Strong desire to void, 4 = Urgency without urge urinary incontinence (UUI), and 5 = Urge incontinence episode. CV was defined as void without desire to void: when the grade was 0, CV in a narrow sense, and when 0 or 1, CV in a broad sense. The incidence of CV in the broad sense significantly decreased with age. Of the 310 women, 48 (15.5%) had overactive bladder (OAB) symptoms on the medical interview, including 37 (11.9%) without UUI (OAB-Dry) and 11 (3.5%) with UUI (OAB-Wet). Of the remaining 262 women, 111 (35.8%), who had urgency but a urinary frequency of 7 or less, and another 141 (48.7%) were classified into the Normal with Urgency and Normal without Urgency groups, respectively. The incidence of CV in a broad sense in the Normal without Urgency group was significantly greater than that in the Normal with Urgency and OAB-Wet groups. The mean voided volumes of CV in the broad sense in the OAB-Wet group were significantly smaller than those in the other three groups. The evaluation of CV may be a new tool in assessing storage condition and voiding dysfunction. © 2010 Wiley-Liss, Inc.
A tool for NDVI time series extraction from wide-swath remotely sensed images
NASA Astrophysics Data System (ADS)
Li, Zhishan; Shi, Runhe; Zhou, Cong
2015-09-01
Normalized Difference Vegetation Index (NDVI) is one of the most widely used indicators for monitoring the vegetation coverage in land surface. The time series features of NDVI are capable of reflecting dynamic changes of various ecosystems. Calculating NDVI via Moderate Resolution Imaging Spectrometer (MODIS) and other wide-swath remotely sensed images provides an important way to monitor the spatial and temporal characteristics of large-scale NDVI. However, difficulties are still existed for ecologists to extract such information correctly and efficiently because of the problems in several professional processes on the original remote sensing images including radiometric calibration, geometric correction, multiple data composition and curve smoothing. In this study, we developed an efficient and convenient online toolbox for non-remote sensing professionals who want to extract NDVI time series with a friendly graphic user interface. It is based on Java Web and Web GIS technically. Moreover, Struts, Spring and Hibernate frameworks (SSH) are integrated in the system for the purpose of easy maintenance and expansion. Latitude, longitude and time period are the key inputs that users need to provide, and the NDVI time series are calculated automatically.
The Adaptive Effects Of Virtual Interfaces: Vestibulo-Ocular Reflex and Simulator Sickness.
1998-08-07
rearrangement: a pattern of stimulation differing from that existing as a result of normal interactions with the real world. Stimulus rearrangements can...is immersive and interactive . virtual interface: a system of transducers, signal processors, computer hardware and software that create an... interactive medium through which: 1) information is transmitted to the senses in the form of two- and three dimensional virtual images and 2) psychomotor
Richard Tran Mills; Jitendra Kumar; Forrest M. Hoffman; William W. Hargrove; Joseph P. Spruce; Steven P. Norman
2013-01-01
We investigated the use of principal components analysis (PCA) to visualize dominant patterns and identify anomalies in a multi-year land surface phenology data set (231 m à 231 m normalized difference vegetation index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)) used for detecting threats to forest health in the conterminous...
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Eustace, John G.
1990-01-01
Techniques for the quantitative determination of shock position in supersonic flows using direct and indirect methods is presented. A description of an experimental setup is also presented, different configurations of shock position sensing systems are explained, and some experimental results are given. All of the methods discussed are analyzed to determine the ease of technology transfer from the laboratory to in-flight operation.
Serra J. Hoagland; Paul Beier; Danny Lee
2018-01-01
Most uses of remotely sensed satellite data to characterize wildlife habitat have used metrics such as mean NDVI (Normalized Difference Vegetation Index) in a year or season. These simple metrics do not take advantage of the temporal patterns in NDVI within and across years and the spatial arrangement of cells with various temporal NDVI signatures. Here we use 13 years...
Humidity-Responsive Gold Aerogel for Real-Time Monitoring of Human Breath.
Ali, Israt; Chen, Liming; Huang, Youju; Song, Liping; Lu, Xuefei; Liu, Baoqing; Zhang, Lei; Zhang, Jiawei; Hou, Linxi; Chen, Tao
2018-04-24
Humidity sensors have received considerable attention in recent years because of their significance and wide applications in agriculture, industries, goods stores, and medical fields. However, the conventional humidity sensors usually possessed a complex sensing mechanism and low sensitivity and required a time-consuming, labor-intensive process. The exploration for an ideal sensing material to amplify the sensitivity of humidity sensors is still a big challenge. Herein, we developed a simple, low-cost, and scalable fabrication strategy to construct a highly sensitive humidity sensor based on polymer/gold nanoparticle (AuNP) hybrid materials. The hybrid polymer/AuNP aerogel was prepared by a simple freeze-drying method. By taking advantage of the conductivity of AuNPs and high surface area of the highly porous structure, the hybrid poly- N-isopropylacrylamide (PNIPAm)/AuNP aerogel showed high sensitivity to water molecules. Interestingly, the hybrid PNIPAm/AuNP aerogel-based humidity sensor can be used to detect human breath in different states, such as normal breath, fast breath, and deep breath, or in different individuals such as persons with illness, persons who are smoking, and persons who are normal, which is promising in practical flexible wearable devices for human health monitoring. In addition, the humidity sensor can be used in whistle tune recognition.
Robinson, Nathaniel; Allred, Brady; Jones, Matthew; ...
2017-08-21
Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite derived NDVI is not always straight-forward, however, as satellite remote sensing datasets are inherently noisy due to cloud and atmospheric contamination, data processing failures, and instrument malfunction. Readily available NDVI products that account for these complexities are generally at coarse resolution; high resolution NDVI datasets are not conveniently accessible and developing them often presents numerous technical and methodologicalmore » challenges. Here, we address this deficiency by producing a Landsat derived, high resolution (30 m), long-term (30+ years) NDVI dataset for the conterminous United States. We use Google Earth Engine, a planetary-scale cloud-based geospatial analysis platform, for processing the Landsat data and distributing the final dataset. We use a climatology driven approach to fill missing data and validate the dataset with established remote sensing products at multiple scales. We provide access to the composites through a simple web application, allowing users to customize key parameters appropriate for their application, question, and region of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Nathaniel; Allred, Brady; Jones, Matthew
Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite derived NDVI is not always straight-forward, however, as satellite remote sensing datasets are inherently noisy due to cloud and atmospheric contamination, data processing failures, and instrument malfunction. Readily available NDVI products that account for these complexities are generally at coarse resolution; high resolution NDVI datasets are not conveniently accessible and developing them often presents numerous technical and methodologicalmore » challenges. Here, we address this deficiency by producing a Landsat derived, high resolution (30 m), long-term (30+ years) NDVI dataset for the conterminous United States. We use Google Earth Engine, a planetary-scale cloud-based geospatial analysis platform, for processing the Landsat data and distributing the final dataset. We use a climatology driven approach to fill missing data and validate the dataset with established remote sensing products at multiple scales. We provide access to the composites through a simple web application, allowing users to customize key parameters appropriate for their application, question, and region of interest.« less
NASA Astrophysics Data System (ADS)
Foumelis, Michael
2017-01-01
The applicability of the normalized difference water index (NDWI) to the delineation of dam failure-induced floods is demonstrated for the case of the Sparmos dam (Larissa, Central Greece). The approach followed was based on the differentiation of NDWI maps to accurately define the extent of the inundated area over different time spans using multimission Earth observation optical data. Besides using Landsat data, for which the index was initially designed, higher spatial resolution data from Sentinel-2 mission were also successfully exploited. A geospatial analysis approach was then introduced to rapidly identify potentially affected segments of the road network. This allowed for further correlation to actual damages in the following damage assessment and remediation activities. The proposed combination of geographic information systems and remote sensing techniques can be easily implemented by local authorities and civil protection agencies for mapping and monitoring flood events.
Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoudache, Samira; Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou; Moiseyenko, Rayisa
2016-03-21
We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standingmore » waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.« less
Analysis of dynamic thresholds for the normalized difference water index
Ji, Lei; Zhang, Li; Wylie, Bruce K.
2009-01-01
The normalized difference water index (NDWI) has been successfully used to delineate surface water features. However, two major problems have been often encountered: (a) NDWIs calculated from different band combinations [visible, nearinfrared, or shortwave-infrared (SWIR)] can generate different results, and (b) NDWI thresholds vary depending on the proportions of subpixel water/non-water components. We need to evaluate all the NDWIS for determining the best performing index and to establish appropriate thresholds for clearly identifying water features. We used the spectral data obtained from a spectral library to simulate the satellite sensors Landsat ETM+, SPOT-5, ASTER, and MODIS, and calculated the simulated NDWI in different forms. We found that the NDWI calculated from (green - swm)/(green + SWIR), where SWIR is the shorter wavelength region (1.2 to 1.8 ??m), has the most stable threshold. We recommend this NDWI be employed for mapping water, but adjustment of the threshold based on actual situations is necessary. ?? 2009 American Society for Photogrammetry and Remote Sensing.
PI2GIS: processing image to geographical information systems, a learning tool for QGIS
NASA Astrophysics Data System (ADS)
Correia, R.; Teodoro, A.; Duarte, L.
2017-10-01
To perform an accurate interpretation of remote sensing images, it is necessary to extract information using different image processing techniques. Nowadays, it became usual to use image processing plugins to add new capabilities/functionalities integrated in Geographical Information System (GIS) software. The aim of this work was to develop an open source application to automatically process and classify remote sensing images from a set of satellite input data. The application was integrated in a GIS software (QGIS), automating several image processing steps. The use of QGIS for this purpose is justified since it is easy and quick to develop new plugins, using Python language. This plugin is inspired in the Semi-Automatic Classification Plugin (SCP) developed by Luca Congedo. SCP allows the supervised classification of remote sensing images, the calculation of vegetation indices such as NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) and other image processing operations. When analysing SCP, it was realized that a set of operations, that are very useful in teaching classes of remote sensing and image processing tasks, were lacking, such as the visualization of histograms, the application of filters, different image corrections, unsupervised classification and several environmental indices computation. The new set of operations included in the PI2GIS plugin can be divided into three groups: pre-processing, processing, and classification procedures. The application was tested consider an image from Landsat 8 OLI from a North area of Portugal.
'Every pregnant woman needs a midwife'--the experiences of HIV affected women in maternity care.
Kelly, Carmel; Alderdice, Fiona; Lohan, Maria; Spence, Dale
2013-02-01
'Every pregnant woman needs a midwife'-the experiences of HIV affected women in Northern Ireland. to explore HIV positive women's experiences of pregnancy and maternity care, with a focus on their interactions with midwives. a prospective qualitative study. regional HIV unit in Northern Ireland. 22 interviews were conducted with 10 women at different stages of their reproductive trajectories. the pervasive presence of HIV related stigma threatened the women's experience of pregnancy and care. The key staff attributes that facilitated a positive experience were knowledge and experience, empathy and understanding of their unique needs and continuity of care. pregnancy in the context of HIV, whilst offering a much needed sense of normality, also increases woman's sense of anxiety and vulnerability and therefore the need for supportive interventions that affirm normality is intensified. A maternity team approach, with a focus on providing 'balanced care' could meet all of the woman and child's medical needs, whilst also emphasising the normalcy of pregnancy. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
New generation of α-MnO2 nanowires @PDMS composite as a hydrogen gas sensor
NASA Astrophysics Data System (ADS)
Hamidi, Seyedeh Mehri; Mosivand, Alireza; Mahboubi, Mina; Arabi, Hadi; Azad, Narin; Jamal, Murtada Riyadh
2018-03-01
New hydrogen gas sensor has been prepared by α-MnO2 nanowires in polydimethylsiloxane matrix. For this purpose, the high aspect ratio α-MnO2 nanowires has been prepared by the aid of hydrothermal method and then dispersed into poly-dimethyl siloxane polymer media. For gas sensing, the samples have been exposed under different gas concentrations from 0 to 5%. The sensor responses have been examined by normalized ellipsometric parameter with respect to the chamber filled with N2 Gas. Our results indicate linear behavior of resonance wavelength in ellipsometric parameter as a function of gas concentrations which can open a new insight for the sample's capability to hydrogen gas sensing applications.
Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming
2018-01-01
There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893
Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming
2018-02-07
There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.
Buratti, Susanna; Malegori, Cristina; Benedetti, Simona; Oliveri, Paolo; Giovanelli, Gabriella
2018-05-15
The aim of this work was to investigate the applicability of e-senses (electronic nose, electronic tongue and electronic eye) for the characterization of edible olive oils (extra virgin, olive and pomace) and for the assessment of extra virgin olive oil and olive oil quality decay during storage at different temperatures. In order to obtain a complete description of oil samples, physico-chemical analyses on quality and nutritional parameters were also performed. Data were processed by PCA and a targeted data processing flow-sheet has been applied to physico-chemical and e-senses dataset starting from data pre-processing introducing an innovative normalization method, called t0 centering. On e-senses data a powerful mid-level data fusion approach has been employed to extract relevant information from different analytical sources combining their individual contributions. On physico-chemical data, an alternative approach for grouping extra virgin olive oil and olive oil samples on the basis of their freshness was applied and two classes were identified: fresh and oxidized. A k-NN classification rule was developed to test the performance of e-senses to classify samples in the two classes of freshness and the average value of correctly classified samples was 94%. Results demonstrated that the combined application of e-senses and the innovative data processing strategy allows to characterize edible olive oils of different categories on the basis of their sensorial properties and also to follow the evolution during storage of extra-virgin olive oil and olive oil sensorial properties thus assessing the quality decay of oils. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tuia, Devis; Marcos, Diego; Camps-Valls, Gustau
2016-10-01
Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corresponding band to be matched between the images. An alternative builds upon manifold alignment. Manifold alignment performs a multidimensional relative normalization of the data prior to product generation that can cope with data of different dimensionality (e.g. different number of bands) and possibly unpaired examples. Aligning data distributions is an appealing strategy, since it allows to provide data spaces that are more similar to each other, regardless of the subsequent use of the transformed data. In this paper, we study a methodology that aligns data from different domains in a nonlinear way through kernelization. We introduce the Kernel Manifold Alignment (KEMA) method, which provides a flexible and discriminative projection map, exploits only a few labeled samples (or semantic ties) in each domain, and reduces to solving a generalized eigenvalue problem. We successfully test KEMA in multi-temporal and multi-source very high resolution classification tasks, as well as on the task of making a model invariant to shadowing for hyperspectral imaging.
Billups, B; Szatkowski, M; Rossi, D; Attwell, D
1998-01-01
We have described how a combination of electrical, ion-sensing, and glutamate-sensing techniques has advanced our understanding of glutamate uptake into isolated salamander retinal glial cells. The next steps in understanding glutamate transport will inevitably depend strongly on molecular biological methods, as described elsewhere in this book, but will also require more detailed study of transporters in their normal environment, perhaps by using patch-clamping or imaging techniques to study cells in situ.
Vegetation shifts observed in arctic tundra 17 years after fire
Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius
2012-01-01
With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.
Using SPOT-5 images in rice farming for detecting BPH (Brown Plant Hopper)
NASA Astrophysics Data System (ADS)
Ghobadifar, F.; Wayayok, A.; Shattri, M.; Shafri, H.
2014-06-01
Infestation of rice plant-hopper such as Brown Plant Hopper (BPH) (Nilaparvata lugens) is one of the most notable risk in rice yield in tropical areas especially in Asia. In order to use visible and infrared images to detect stress in rice production caused by BPH infestation, several remote sensing techniques have been developed. Initial recognition of pest infestation by means of remote sensing will spreads, for precision farming practice. To address this issue, detection of sheath blight in rice farming was examined by using SPOT-5 images. Specific image indices such as Normalized decrease food production costs, limit environmental hazards, and enhance natural pest control before the problem Normalized Difference Vegetation Index (NDVI), Standard difference indices (SDI) and Ratio Vegetation Index (RVI) were used for analyses using ENVI 4.8 and SPSS software. Results showed that all the indices to recognize infected plants are significant at α = 0.01. Examination of the association between the disease indices indicated that band 3 (near infrared) and band 4 (mid infrared) have a relatively high correlation. The selected indices declared better association for detecting healthy plants from diseased ones. Consequently, these sorts of indices especially NDVI could be valued as indicators for developing techniques for detecting the sheath blight of rice by using remote sensing. This infers that they are useful for crop disease detection but the spectral resolution is probably not sufficient to distinguish plants with light infections (low severity level). Using the index as an indicator can clarify the threshold for zoning the outbreaks. Quick assessment information is very useful in precision farming to practice site specific management such as pesticide application.
Normal birth, magical birth: the role of the 36-week birth talk in caseload midwifery practice.
Kemp, Joy; Sandall, Jane
2010-04-01
to obtain a detailed description of the 36-week birth talk, and how it is delivered to and perceived by women and their birth partners. two qualitative methods: ethnography and interpretative phenomenological analysis. Non-participant observation of five birth talks and in-depth semi-structured interviews with midwives, women and their birth partners. two caseload midwifery practices in an inner city area of England, and women's homes. five birth talks, five case-loading midwives, five childbearing women and five birth partners. a rich description of the content and conduct of the birth talk emerged from the data. In addition, three master themes were identified: a new philosophy for birth ('don't forget the magic'); the construction of authoritative midwifery knowledge ('they make you believe that you can have what you want'); and achieving a sense of coherence ('making sense of the birth'). IMPLICATIONS FOR PRACTICE, POLICY, EDUCATION AND RESEARCH: the majority of data from this study suggest that the effectiveness of a birth talk cannot be separated from the philosophy and continuity associated with caseload midwifery practice. The birth talk is therefore probably not transferable per se into different models of care in order to achieve higher rates of normal birth. Further evaluation of the effectiveness of the birth talk in clinical practice, and further research into alternative birth philosophies in different settings is now required. Caseload midwifery practice has been shown to benefit women and midwives. This study would seem to concur with these previous findings. The sense of coherence concept could prove to be a useful tool to measure outcomes in future midwifery research. Copyright 2008 Elsevier Ltd. All rights reserved.
2014-07-01
a different impact on spectral normalized water leaving radiances and the derived ocean color products (inherent optical properties, chlorophyll ). We...leaving radiances and the derived ocean color products (inherent optical properties, chlorophyll ). We evaluated the influence of gains from open and...34gain" on ocean color products. These products include the spectral Remote Sensing Reflectance (RRS), chlorophyll concentration, and Inherent Optical
Cuizhen Wang; Hong S. He; John M. Kabrick
2008-01-01
Forests in the Ozark Highlands underwent widespread oak decline affected by severe droughts in 1999-2000. In this study, the differential normalized difference water index was calculated to detect crown dieback. A multi-factor risk rating system was built to map risk levels of stands. As a quick response to drought, decline in 2000 mostly occurred in stands at low to...
Compositing multitemporal remote sensing data sets
Qi, J.; Huete, A.R.; Hood, J.; Kerr, Y.
1993-01-01
To eliminate cloud and atmosphere-affected pixels, the compositing of multi temporal remote sensing data sets is done by selecting the maximum vale of the normalized different vegetation index (NDVI) within a compositing period. The NDVI classifier, however, is strongly affected by surface type and anisotropic properties, sensor viewing geometries, and atmospheric conditions. Consequently, the composited, multi temporal, remote sensing data contain substantial noise from these external conditions. Consequently, the composited, multi temporal, remote sensing data contain substantial noise from these external effects. To improve the accuracy of compositing products, two key approaches can be taken: one is to refine the compositing classifier (NDVI) and the other is to improve existing compositing algorithms. In this project, an alternative classifier was developed and an alternative pixel selection criterion was proposed for compositing. The new classifier and the alternative compositing algorithm were applied to an advanced very high resolution radiometer data set of different biome types in the United States. The results were compared with the maximum value compositing and the best index slope extraction algorithms. The new approaches greatly reduced the high frequency noises related to the external factors and repainted more reliable data. The results suggest that the geometric-optical canopy properties of specific biomes may be needed in compositing. Limitations of the new approaches include the dependency of pixel selection on the length of the composite period and data discontinuity.
NASA Astrophysics Data System (ADS)
Sridhar, B. B. Maruthi; Vincent, Robert K.; Roberts, Sheila J.; Czajkowski, Kevin
2011-08-01
The accumulation of heavy metals in the biosolid amended soils and the risk of their uptake into different plant parts is a topic of great concern. This study examines the accumulation of several heavy metals and nutrients in soybeans grown on biosolid applied soils and the use of remote sensing to monitor the metal uptake and plant stress. Field and greenhouse studies were conducted with soybeans grown on soils applied with biosolids at varying rates. The plant growth was monitored using Landsat TM imagery and handheld spectroradiometer in field and greenhouse studies, respectively. Soil and plant samples were collected and then analyzed for several elemental concentrations. The chemical concentrations in soils and roots increased significantly with increase in applied biosolid concentrations. Copper (Cu) and Molybdenum (Mo) accumulated significantly in the shoots of the metal-treated plants. Our spectral and Landsat TM image analysis revealed that the Normalized Difference Vegetative Index (NDVI) can be used to distinguish the metal stressed plants. The NDVI showed significant negative correlation with increase in soil Cu concentrations followed by other elements. This study suggests the use of remote sensing to monitor soybean stress patterns and thus indirectly assess soil chemical characteristics.
NASA Astrophysics Data System (ADS)
Dekhter, Rimma; Lewis, Aaron; Kokotov, Sophia; Hamra, Patricia; Fleischman, Boaz; Taha, Hesham
2013-03-01
Near-field optical effects have generally been detected using photodetectors. There are no reports on the use of the temperature changes caused by electromagnetic radiation using thermal sensing probes for scanned probe microscopy. In this paper we apply our development of such probes to monitor the effects of electromagnetic radiation at a number of different wavelengths using the heating caused in a sample by specific wavelengths and their propagation. The paper will catalogue effects over a wide spectrum of wavelengths from the near to mid infrared. The thermal sensing probes are based on glass nanopipettes that have metal wires that make a contact at the very tip of a tapered glass structure. These probes are cantilevered and use normal force tuning fork methodology to bring them either into contact or near-contact since this feedback method has no jump to contact instability associated with it. Data will be shown that defines the resolution of such thermal sensing to at least the 32 nm level. In addition the probes have the important attribute of having a highly exposed tip that allows for either optical sensing methodologies with a lens either from directly above or below or heat sensing with a single or additional probe in a multiprobe scanning probe system.
Cryotherapy impairs knee joint position sense.
Oliveira, R; Ribeiro, F; Oliveira, J
2010-03-01
The effects of cryotherapy on joint position sense are not clearly established; however it is paramount to understand its impact on peripheral feedback to ascertain the safety of using ice therapy before resuming exercise on sports or rehabilitation settings. Thus, the aim of the present study was to determine the effects of cryotherapy, when applied over the quadriceps and over the knee joint, on knee position sense. This within-subjects repeated-measures study encompassed fifteen subjects. Knee position sense was measured by open kinetic chain technique and active positioning at baseline and after cryotherapy application. Knee angles were determined by computer analysis of the videotape images. Twenty-minute ice bag application was applied randomly, in two sessions 48 h apart, over the quadriceps and the knee joint. The main effect for cryotherapy application was significant (F (1.14)=7.7, p=0.015) indicating an increase in both absolute and relative angular errors after the application. There was no significant main effect for the location of cryotherapy application, indicating no differences between the application over the quadriceps and the knee joint. In conclusion, cryotherapy impairs knee joint position sense in normal knees. This deleterious effect is similar when cryotherapy is applied over the quadriceps or the knee joint. Georg Thieme Verlag KG Stuttgart.New York.
A comparison of minimum distance and maximum likelihood techniques for proportion estimation
NASA Technical Reports Server (NTRS)
Woodward, W. A.; Schucany, W. R.; Lindsey, H.; Gray, H. L.
1982-01-01
The estimation of mixing proportions P sub 1, P sub 2,...P sub m in the mixture density f(x) = the sum of the series P sub i F sub i(X) with i = 1 to M is often encountered in agricultural remote sensing problems in which case the p sub i's usually represent crop proportions. In these remote sensing applications, component densities f sub i(x) have typically been assumed to be normally distributed, and parameter estimation has been accomplished using maximum likelihood (ML) techniques. Minimum distance (MD) estimation is examined as an alternative to ML where, in this investigation, both procedures are based upon normal components. Results indicate that ML techniques are superior to MD when component distributions actually are normal, while MD estimation provides better estimates than ML under symmetric departures from normality. When component distributions are not symmetric, however, it is seen that neither of these normal based techniques provides satisfactory results.
Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen
2015-12-01
The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.
Home care after early discharge: impact on healthy mothers and newborns.
Askelsdottir, Björk; Lam-de Jonge, Willemien; Edman, Gunnar; Wiklund, Ingela
2013-08-01
to compare early discharge with home care versus standard postpartum care in terms of mothers' sense of security; contact between mother, newborn and partner; emotions towards breast feeding; and breast-feeding duration at one and three months after birth. retrospective case-control study. a labour ward unit in Stockholm, Sweden handling both normal and complicated births. 96 women with single, uncomplicated pregnancies and births, and their healthy newborns. early discharge at 12-24 hours post partum with 2-3 home visits during the first week after birth. The intervention group consisted of women who had a normal vaginal birth (n=45). This group was compared with healthy controls who received standard postnatal care at the hospital (n=51). mothers' sense of security was measured using the Parents' Postnatal Sense of Security Scale. Contact between mother, child and father, and emotions towards breast feeding were measured using the Alliance Scale, and breast-feeding rates at one and three months post partum were recorded. women in the intervention group reported a greater sense of security in the first postnatal week but had more negative emotions towards breast feeding compared with the control group. At three months post partum, 74% of the newborns in the intervention group were fully breast fed versus 93% in the control group (p=0.021). Contact between the mother, newborn and partner did not differ between the groups. early discharge with home care is a feasible option for healthy women and newborns, but randomised controlled studies are needed to investigate the effects of home care on breast-feeding rates. Copyright © 2012 Elsevier Ltd. All rights reserved.
EGFR and HER2 activate rigidity sensing only on rigid matrices
NASA Astrophysics Data System (ADS)
Saxena, Mayur; Liu, Shuaimin; Yang, Bo; Hajal, Cynthia; Changede, Rishita; Hu, Junqiang; Wolfenson, Haguy; Hone, James; Sheetz, Michael P.
2017-07-01
Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15-20 min, but diminish by tenfold after 4 h. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in the absence of EGF both for normal and cancerous growth.
Duan, Zheng; Peng, Ting; Zhu, Shiming; Lian, Ming; Li, Yiyun; Wei, Fu; Xiong, Jiabao; Svanberg, Sune; Zhao, Quanzhi; Hu, Jiandong; Zhao, Guangyu
2018-05-01
Chinese hybrid rice of different varieties, growing in paddies in the Pingqiao district, north of Xinyang city, Henan province, China, was studied in detailed spectroscopic characteristics using laser-induced fluorescence. The base for the studies was the new South China Normal University mobile lidar laboratory, which was dispatched on site, providing facilities both for laboratory studies using a 405 nm excitation source as well as remote sensing measurements at ranges from around 40 m-120 m, mostly employing the 532 nm output from a Nd:YAG laser. We, in particular, studied the spectral influence of the species varieties as well as the level of nitrogen fertilization supplied. Specially developed contrast functions as well as multivariate techniques with principal components and Fisher's discriminate analyses were applied, and useful characterization of the rice could be achieved. The chlorophyll content mapping of the 30 zones was obtained with the remote sensing measurements.
EGFR and HER2 Activate Rigidity Sensing Only on Rigid Matrices
Saxena, Mayur; Liu, Shuaimin; Yang, Bo; Hajal, Cynthia; Changede, Rishita; Hu, Junqiang
2017-01-01
Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15–20 min, but diminish by 10-fold after 4 hours. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in absence of EGF both for normal and cancerous growth. PMID:28459445
Bühler, Tim; Kindler, Jochen; Schneider, Rahel C; Strik, Werner; Dierks, Thomas; Hubl, Daniela; Koenig, Thomas
2016-09-01
A 'sense of self' is essentially the ability to distinguish between self-generated and external stimuli. It consists of at least two very basic senses: a sense of agency and a sense of ownership. Disturbances seem to provide a basic deficit in many psychiatric diseases. The aim of our study was to manipulate those qualities separately in 28 patients with schizophrenia (14 auditory hallucinators and 14 non-hallucinators) and 28 healthy controls (HC) and to investigate the effects on the topographies and the power of the event-related potential (ERP). We performed a 76-channel EEG while the participants performed the task as in our previous paper. We computed ERPs and difference maps for the conditions and compared the amount of agency and ownership between the HC and the patients. Furthermore, we compared the global field power and the topographies of these effects. Our data showed effects of agency and ownership in the healthy controls and the hallucinator group and to a lesser degree in the non-hallucinator group. We found a reduction of the N100 during the presence of agency, and a bilateral temporal negativity related to the presence of ownership. For the agency effects, we found significant differences between HC and the patients. Contrary to the expectations, our findings were more pronounced in non-hallucinators, suggesting a more profoundly disturbed sense of agency compared to hallucinators. A contemporary increase of global field power in both patient groups indicates a compensatory recruitment of other mechanisms not normally associated with the processing of agency and ownership.
NASA Astrophysics Data System (ADS)
Goswami, S.; Gamon, J. A.; Tweedie, C. E.
2012-12-01
Understanding the future state of the earth system requires improved knowledge of ecosystem dynamics and long term observations of how ecosystem structures and functions are being impacted by global change. Improving remote sensing methods is essential for such advancement because satellite remote sensing is the only means by which landscape to continental-scale change can be observed. The Arctic appears to be impacted by climate change more than any other region on Earth. Arctic terrestrial ecosystems comprise only 6% of the land surface area on Earth yet contain an estimated 25% of global soil organic carbon, most of which is stored in permafrost. If projected increases in plant productivity do not offset forecast losses of soil carbon to the atmosphere as greenhouse gases, regional to global greenhouse warming could be enhanced. Soil moisture is an important control of land-atmosphere carbon exchange in arctic terrestrial ecosystems. However, few studies to date have examined using remote sensing, or developed remote sensing methods for observing the complex interplay between soil moisture and plant phenology and productivity in arctic landscapes. This study was motivated by this knowledge gap and addressed the following questions as a contribution to a large scale, multi investigator flooding and draining experiment funded by the National Science Foundation near Barrow, Alaska from 2005 - 2009. 1. How can optical remote sensing be used to monitor the surface hydrology of arctic landscapes? 2. What are the spatio-temporal dynamics of land-surface phenology (NDVI) in the study area and do hydrological treatment has any effect on inter-annual patterns? A new spectral index, the normalized difference surface water index (NDSWI) was developed and tested at multiple spatial and temporal scales. NDSWI uses the 460nm (blue) and 1000nm (IR) bands and was developed to capture surface hydrological dynamics in the study area using the robotic tram system. When applied to high spatial resolution satellite imagery, NDSWI was also able to capture changes in surface hydrology at the landscape scale. Interannual patterns of landsurface phenology (measured with the normalized difference vegetation index - NDVI) unexpectedly lacked marked differences under experimental conditions. Measurement of NDVI was, however, compromised when WTD was above ground level. NDVI and NDSWI were negatively correlated when WTD was above ground level, which held when scaled to MODIS imagery collected from satellite, suggesting that published findings showing a 'greening of the Arctic' may be related to a 'drying of the Arctic' in landscapes dominated by vegetated landscapes where WTD is close to ground level.
Tucker, Eric; D'Archangel, Jeffrey; Boreman, Glenn
2017-03-06
Three different size gold square loop structures were fabricated as arrays on ZnS over a ground plane and designed to have absorptive fundamental, second order, and third order resonances at a wavelength of 10.6 µm and 60° off-normal. The angular dependent far-field spectral absorptivity was investigated over the mid-infrared for each size loop array. It was found that the second order modes were dark at normal incidence, but became excited at off-normal incidence, which is consistent with previous work for similar geometry structures. Furthermore, near-field measurements and simulations at a wavelength of 10.6 µm and 60° off-normal showed that the second order mode (quadrupolar) of the medium size loop yielded a near-field response similar in magnitude to the fundamental mode (dipolar) of the small size loop, which can be important for sensing related applications where both strong near-field enhancement and more uniform or less localized field is beneficial.
Identification, recognition and misidentification syndromes: a psychoanalytical perspective
Thibierge, Stéphane; Morin, Catherine
2013-01-01
Misidentification syndromes are currently often understood as cognitive disorders of either the “sense of uniqueness” (Margariti and Kontaxakis, 2006) or the recognition of people (Ellis and Lewis, 2001). It is however, necessary to consider how a normal “sense of uniqueness” or normal person recognition are acquired by normal or neurotic subjects. It will be shown here that the normal conditions of cognition can be considered as one of the possible forms of a complex structure and not as just a setting for our sense and perception data. The consistency and the permanency of the body image in neurosis is what permits the recognition of other people and ourselves as unique beings. This consistency and permanency are related to object repression, as shown by neurological disorders of body image (somatoparaphrenia), which cause the object to come to the foreground in the patient’s words (Thibierge and Morin, 2010). In misidentification syndromes, as in other psychotic syndromes, one can also observe damage to the specular image as well as an absence of object repression. This leads us to question whether, in the psychiatric disorders related to a damaged specular image, disorders of cognition can be studied and managed using the same methods as for neurotic patients. PMID:24298262
NASA Astrophysics Data System (ADS)
Katsuhama, N.; Ikeda, K.; Imai, M.; Watanabe, K.; Marpaung, F.; Yoshii, T.; Naruse, N.; Takahashi, Y.
2016-12-01
Since 2008, coffee leaf rust fungus (Hemileia vastatrix) has expanded its infection in Latin America, and early trimming and burning infected trees have been only effective countermeasures to prevent spreading infection. Although some researchers reported a case about the monitoring of coffee leaf rust using satellite remote sensing in 1970s, the spatial resolution was unsatisfied, and therefore, further technological development has been required. The purpose of this research is to develop effective method of discovering coffee leaf rust infected areas using satellite remote sensing. Annual changes of vegetation indices, i.e. Normalized Difference Vegetation Index (NDVI) and Modified Structure Insensitive Pigment Index (MSIPI), around Cuchumatanes Mountains, Republic of Guatemala, were analyzed by Landsat 7 images. Study fields in the research were limited by the coffee farm areas based on a previous paper about on site surveys in different damage areas. As the result of the analysis, the annual change of NDVI at the coffee farm areas with damages tended to be lower than those without damages. Moreover, the decline of NDVI appear from 2008 before the damage was reported. On the other hand, the change of MSIPI had no significant difference. NDVI and MSIPI are mainly related to the amount of chlorophyll and carotenoid in the leaves respectively. This means that the infected coffee leaves turned yellow without defoliation. This situation well matches the symptom of coffee leaf rust. The research concluded that the property of infected leaves turning yellow is effective to monitoring of infection areas by satellite remote sensing.
NASA Technical Reports Server (NTRS)
Mcgwire, K.; Friedl, M.; Estes, J. E.
1993-01-01
This article describes research related to sampling techniques for establishing linear relations between land surface parameters and remotely-sensed data. Predictive relations are estimated between percentage tree cover in a savanna environment and a normalized difference vegetation index (NDVI) derived from the Thematic Mapper sensor. Spatial autocorrelation in original measurements and regression residuals is examined using semi-variogram analysis at several spatial resolutions. Sampling schemes are then tested to examine the effects of autocorrelation on predictive linear models in cases of small sample sizes. Regression models between image and ground data are affected by the spatial resolution of analysis. Reducing the influence of spatial autocorrelation by enforcing minimum distances between samples may also improve empirical models which relate ground parameters to satellite data.
Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele
2017-12-27
A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.
2017-01-01
A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters. PMID:29280979
Acquiring Information from Wider Scope to Improve Event Extraction
2012-05-01
solve all the problems might be hard or even impossible: Word sense disambiguation is already a hard NLP task, and normalizing different expressions...blindfolded woman seen being shot in the head by a hooded militant on a video obtained but not aired by the Arab television station Al-Jazeera. She...imbalance Why are we interested in unsupervised topic features? There is a problem that arises in the evaluation of almost all the tasks in NLP , concerning
NASA Astrophysics Data System (ADS)
Han, Xinlei; Yao, Fengmei; Zhang, Jiahua; Waqar, Mirza Muhammad; Zha, Yong; He, Junliang
2016-04-01
This paper presents the development of index to detect haze from moderate resolution imaging spectroradiometer remote sensing data. Detection of haze over a large area has always been a problem. This study focuses on Beijing, Tianjin, and Shijiazhuang cities in China. These cities have suffered the worst hazy weather in recent years. The spectral influence of haze on surface features was determined through analysis of the spectral variations of surface covers between hazy and haze-free days. A spectral index known as modified normalized difference haze index (m-NDHI) is developed that can be used to monitor haze distribution and intensity. Correlation analysis of the derived m-NDHI and previously developed NDHI with in situ PM2.5 (particulate matter with diameter <2.5 μm) data reveals that m-NDHI over water bodies has a coefficient of 0.7096, 0.5864, and 0.4857 and NDHI has coefficient of 0.5625, 0.5321, and 0.4618 with PM2.5 for Beijing, Tianjin, and Shijiazhuang, respectively, in winter. Moreover, the correlation of m-NDHI with PM2.5 is 0.4097, 0.8092, and 0.5546 during the spring, summer, and autumn, respectively, in Beijing. This developed index can be a much easier and more effective method to detect haze in large scales from remotely sensing data and characterize the situation of urban atmospheric pollution.
Distributed gas sensing with optical fibre photothermal interferometry.
Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan
2017-12-11
We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.
Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index Composites
,
2005-01-01
The Advanced Very High Resolution Radiometer (AVHRR) is a broad-band scanner with four to six bands, depending on the model. The AVHRR senses in the visible, near-, middle-, and thermal- infrared portions of the electromagnetic spectrum. This sensor is carried on a series of National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), beginning with the Television InfraRed Observation Satellite (TIROS-N) in 1978. Since 1989, the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has been mapping the vegetation condition of the United States and Alaska using satellite information from the AVHRR sensor. The vegetation condition composites, more commonly called greenness maps, are produced every week using the latest information on the growth and condition of the vegetation. One of the most important aspects of USGS greenness mapping is the historical archive of information dating back to 1989. This historical stretch of information has allowed the USGS to determine a 'normal' vegetation condition. As a result, it is possible to compare the current week's vegetation condition with normal vegetation conditions. An above normal condition could indicate wetter or warmer than normal conditions, while a below normal condition could indicate colder or dryer than normal conditions. The interpretation of departure from normal will depend on the season and geography of a region.
Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.
1993-01-01
Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.
NASA Astrophysics Data System (ADS)
Lavers, Chris R.; Mason, Travis
2017-07-01
High-resolution satellite imagery permits verification of human rights land clearance violations across international borders as a result of unstable regimes or socio-economic upheaval. Without direct access to these areas to validate allegations of human rights abuse, the use of remote sensing tools, techniques, and data is extremely important. Humanitarian assessment can benefit from software-based solutions, involving radiometrically calibrated normalized difference vegetation index and temporal change imagery. We discuss the introduction of a matrix filter approach for change detection studies to help assist rapid building detection over large search areas against a bright background to evaluate internally displaced people in the 2005 Porta Farm Zimbabwe clearances. Future wide-scale near real-time space-based monitoring with a range of digital filters would be of great benefit to international human rights observers and human rights networks.
[Study of red tide spectral characteristics and its mechanism].
Cui, Ting-Wei; Zhang, Jie; Ma, Yi; Sun, Ling
2006-05-01
In situ spectral data of different red tide, whose dominant species are leptocylindrus danicus, chattonella marina, skeletonema costatum, and mesodinium rubrum, were acquired by above water method utilizing spectrometer manufactured by FieldSpec Dual VNIR (USA). It is emphasized that the characteristic reflectance peak lying between 687 and 728 nm can be used to distinguish between red tide and normal sea water. Also the spectral discrepancy between different dominant species of red tide is pointed out, which could be utilized to identify certain red tide species by remote sensing technique. Mechanisms of phytoplankton red tide spectra peaks and vales are given. Spectral characteristics of mesodinium rubrum, a kind of protozoan, may be related to its symbiotic alga in its body and phytoplankton pigment crumb. So, research on ingestion preference, symbiotic property with algae, and fluorescence emission character of such symbiotic algae under normal temperature may be helpful for the deep understanding of mechanism of mesodinium rubrum spectra.
Frost, Julia; Grose, Jane; Britten, Nicky
2017-05-01
This article explores how people with progressive multiple sclerosis give meaning to their experiences. It builds upon the self-management literature, which has captured the tension between the desire for retaining normalcy and the increasing burden of self-management associated with chronic disease progression. This repeat interview study is empirically grounded in 28 interviews with 14 people with progressive multiple sclerosis. We identified gender differences in diagnosis-seeking which impacted subsequent sense-making. Male respondents found a diagnosis of multiple sclerosis difficult to come to terms with, and an enduring sense of loss or anger could inhibit further sense-making. A diagnosis of multiple sclerosis was more difficult to obtain for women respondents, and any sense of certainty that diagnosis provided framed their subsequent sense-making strategies. The complex sequelae of multiple sclerosis require that self-management strategies are both contextual and timely, although even the most accomplished self-managers can lose their sense of self with neurodegeneration. Disease progression can be associated with suicidal ideation, suggesting the need for greater dialogue to ensure that people with multiple sclerosis are adequately supported to fulfil their quality of life at all stages of neurodegeneration. These lay perspectives emphasise the articulation of affect rather than the rendering of a medical diagnosis, although diagnosis may provide a degree of certainty in the short term. The ethos of self-management ensures people attempt to retain their sense of 'normality' and existent social roles for as long as possible, but this ethos can negate both one's ability to self-manage and the management of self.
Remote sensing of water and nitrogen stress in broccoli
NASA Astrophysics Data System (ADS)
Elsheikha, Diael-Deen Mohamed
Remote sensing is being used in agriculture for crop management. Ground based remote sensing data acquisition system was used for collection of high spatial and temporal resolution data for irrigated broccoli crop. The system was composed of a small cart that ran back and forth on a rail system that was mounted on a linear move irrigation system. The cart was equipped with a sensor that had 4 discrete wavelengths; 550 nm, 660 nm, 720 nm, and 810 nm, and an infrared thermometer, all had 10 nm bandwidth. A global positioning system was used to indicate the cart position. The study consisted of two parts; the first was to evaluate remotely sensed reflectance and indices in broccoli during the growing season, and determine whether remotely sensed indices or standard deviation of indices can distinguish between nitrogen and water stress in broccoli, and the second part of the study was to evaluate remotely sensed indices and standard deviation of remotely sensed indices in broccoli during daily changes in solar zenith angle. Results indicated that nitrogen was detected using Ratio Vegetation index, RVI, Normalized Difference Vegetation Index, NDVI, Canopy Chlorophyll Concentration Index, CCCI, and also using the reflectance in the Near-Infrared, NIR, bands. The Red reflectance band capability of showing stress was not as clear as the previous indices and bands reflectance. The Canopy Chlorophyll Concentration Index, CCCI, was the most successful index. The Crop Water Stress Index was able to detect water stress but it was highly affected by the solar zenith angle change along the day.
Persinger, M A; Roll, W G; Tiller, S G; Koren, S A; Cook, C M
2002-06-01
In the present study, the artist Ingo Swann, who helped develop the process of remote viewing (awareness of distant objects or places without employing normal senses), was exposed during a single setting of 30 min. to specific patterns of circumcerebral magnetic fields that significantly altered his subjective experiences. Several times during subsequent days, he was asked to sit in a quiet chamber and to sketch and to describe verbally distant stimuli (pictures or places) beyond his normal senses. The proportions of unusual 7-Hz spike and slow wave activity over the occipital lobes per trial were moderately correlated (rho=.50) with the ratings of accuracy between these distal, hidden stimuli and his responses. A neuropsychological assessment and Magnetic Resonance Imaging indicated a different structural and functional organization within the parieto-occipital region of the subject's right hemisphere from organizations typically noted. The results suggest that this type of paranormal phenomenon, often dismissed as methodological artifact or accepted as proofs of spiritual existence, is correlated with neurophysiological processes and physical events. Remote viewing may be enhanced by complex experimentally generated magnetic fields designed to interact with the neuromagnetic "binding factor" of consciousness.
Gao, Lin; Li, Chang-chun; Wang, Bao-shan; Yang Gui-jun; Wang, Lei; Fu, Kui
2016-01-01
With the innovation of remote sensing technology, remote sensing data sources are more and more abundant. The main aim of this study was to analyze retrieval accuracy of soybean leaf area index (LAI) based on multi-source remote sensing data including ground hyperspectral, unmanned aerial vehicle (UAV) multispectral and the Gaofen-1 (GF-1) WFV data. Ratio vegetation index (RVI), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), difference vegetation index (DVI), and triangle vegetation index (TVI) were used to establish LAI retrieval models, respectively. The models with the highest calibration accuracy were used in the validation. The capability of these three kinds of remote sensing data for LAI retrieval was assessed according to the estimation accuracy of models. The experimental results showed that the models based on the ground hyperspectral and UAV multispectral data got better estimation accuracy (R² was more than 0.69 and RMSE was less than 0.4 at 0.01 significance level), compared with the model based on WFV data. The RVI logarithmic model based on ground hyperspectral data was little superior to the NDVI linear model based on UAV multispectral data (The difference in E(A), R² and RMSE were 0.3%, 0.04 and 0.006, respectively). The models based on WFV data got the lowest estimation accuracy with R2 less than 0.30 and RMSE more than 0.70. The effects of sensor spectral response characteristics, sensor geometric location and spatial resolution on the soybean LAI retrieval were discussed. The results demonstrated that ground hyperspectral data were advantageous but not prominent over traditional multispectral data in soybean LAI retrieval. WFV imagery with 16 m spatial resolution could not meet the requirements of crop growth monitoring at field scale. Under the condition of ensuring the high precision in retrieving soybean LAI and working efficiently, the approach to acquiring agricultural information by UAV remote sensing could yet be regarded as an optimal plan. Therefore, in the case of more and more available remote sensing information sources, agricultural UAV remote sensing could become an important information resource for guiding field-scale crop management and provide more scientific and accurate information for precision agriculture research.
Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua
2009-08-01
Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.
Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly; ...
2017-01-07
Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less
Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Picotte, Joshua J.; Howard, Danny; Smith, Kelcy; Nelson, Kurtis
2016-01-01
Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data) may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI) were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD) between the predicted and actual NDVI (scaled NDVI, value from 0–200) and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MADtraining = 2.5 and MADtesting = 2.4), which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.
Normal Science Education and Its Dangers: The Case of School Chemistry.
ERIC Educational Resources Information Center
Van Berkel, Berry; De Vos, Wobbe; Verdonk, Adri H.; Pilot, Albert
2000-01-01
Attempts to solve the problem of hidden structure in school chemistry. Argues that normal chemistry education is isolated from common sense, everyday life and society, the history and philosophy of science, technology, school physics, and chemical research. (Author/CCM)
Pilarska, Aleksandra; Suchańska, Anna
2015-01-01
The aim of the presented studies was to empirically analyze the relation between the symptoms of personality disorders and the structure of identity-related senses. The analyses were conducted within two models - based on Millon's theory of personality and DSM-IV personality disorder classification system. In the studies, a total of 197 university students of various majors were included. The authors used Polish version of the Millon Index of Personality Styles that assess personality styles and offers a Clinical Index to evaluate psychological adjustment, and Personality Disorder Types Questionnaire to obtain DSM-IV diagnoses. The intensity of the identity-related senses was measured using the Multidimensional Identity Inventory. Data were tested for normality, and then Student's t-tests and ANOVA tests were used to compare the structure of identity-related senses in individuals with a healthy personality and disordered personality. Within Millon's model, three different patterns of disordered personality were found, and they all manifested some identity deficits. Most of the personality disorders covered by DSM-IV also significantly differed on the identity dimensions from healthy personality. The results show that identity deficits should be considered as an important symptom of personality disorders, regardless of the adopted model of personality. The most disordered identity is observed in individuals falling into the group with odd or eccentric disorders and into the anxious or fearful cluster. The group with dramatic, emotional or erratic disorders is the most heterogeneous in terms of the level of identity disorganization.
A GIS-based Model for Urban Change and Implications for Water Quality in the Pontchartrain Basin
NASA Astrophysics Data System (ADS)
Carstens, D.; Amer, R. M.
2017-12-01
The combination of remote sensing techniques and Geographic Information Systems (GIS) to measure water quality allows researchers to monitor changes in various water quality parameters over temporal and spatial scales that are not always readily apparent from in situ measurements. Water has a distinct spectral behavior in comparison to soil, vegetation and urban, and therefore can be distinguished from surrounding environments. This study involves using remote sensing and GIS methods to map urban sprawl and its resulting influences on water quality in the Pontchartrain Basin over the last three decades. Two images of Landsat Thematic Mapper (TM) were taken in October 1985 and two images of Landsat Operational Land Imager (OLI) were taken in 2015 were atmospherically corrected and processed to map urban sprawl and influences on water quality of Pontchartrain Basin in the last three decades. To accomplish this, a normalized difference building index (NDBI) was developed for Landsat images. The NDBI was calculated from (NIR - SWIR) / (NIR + SWIR), where SWIR is the longest wavelength. The normalized difference vegetation index (NDVI), the normalized difference soil index (NDSI), and the normalized difference water index (NDWI) were also calculated for Landsat images. A GIS model was developed by integrating the NDBI, NDVI, NDSI, and NDWI, and yielded urban/non-urban/water boundary maps with 30-m resolution. Results indicate that urban areas have increased approximately from 25,643 km2 to 26,677 km2, which represents about 4.0% change from non-urban to urban in the last 3 decades. The results are in a good agreement with the U.S. Census data, which indicated that there is a 12.25% increase in population over the last 25 years in the 16 parishes of the Pontchartrain Basin. Urban changes were compared with changes of water quality parameters in PONTCHARTRAIN BASIN, which include pH, specific conductance, nitrogen, phosphorous, and dissolved oxygen. The results show that decrease in dissolved oxygen and phosphorus, and the increase in specific conductance, nitrogen and pH from 1985 to 2015 are consistent with the rate of urban sprawl that occurred during this time period. Future work will include analysis of changes in agricultural and industrial activities and correlation with changes of water quality parameters.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... dishwashers with a separate soil- sensing cycle, and the normal cycle definition, power supply and detergent... Soiling Requirements 5. Detergent Dosing Specifications E. Incorporation by Reference of an Updated AHAM...: (1) The addition of a method to rate the efficiency of soil-sensing products; (2) the addition of a...
A Sensitivity Analysis of NDWI and SRWI to Different types of Vegetation Moisture
NASA Astrophysics Data System (ADS)
Chai, Linna; Chen, Zhizhong
2017-04-01
There are many definitions of vegetation moisture, such as fuel moisture content (FMC), gravimetric water content (GWC), relative water content (RWC), leaf water content (LWC), canopy water content (CWC) and vegetation water content (VWC). They were introduced because of different applications. For example, FMC is with superiority in monitoring wildfire potential, and GWC responses well to determine whether the plant is in health. RWC is suitable for estimating vegetation water stress. LWC and CWC are often used in optical remote sensing and are always related to equivalent water thickness (EWT). For VWC, the main application is for improving retrievals of soil moisture content from microwave sensors. For optical remote sensing technique, the absorption features of liquid water in plant leaves are readily detectable by spectroscopy. Spectral reflectance at 970nm, 1200nm, 1450nm, 1930nm and 2500nm are the basis of numerous remote-sensing indices that could be used in estimating vegetation moisture. Foregoing studies have introduced different spectral indices based on these bands to retrieve vegetation moisture. These spectral indices often fall into two categories, one is Normalized Different Water Index (NDWI), and the other is Simple Ratio Water Index (SRWI). NDWIs take the form of normalized difference spectral index, while SRWIs are in the form of ratio type. They were calculated from different combinations of spectral channels. Since the sensitivities to vegetation moisture of reflectance at different spectral channel are distinguished from each other, the capabilities of these NDWIs and SRWIs in estimating different types of vegetation moisture will be distinguished from one to one. In this work, based on in-situ measurements collected in the north China plain from wheat and corn (Fig. 1), a sensitivity analysis of NDWI and SRWI to different types of vegetation moisture, such as VWC, FMC and GWC, was carried out. They were calculated from different combinations of spectral channels of MODIS and Landsat-8 OLI. Result shows that: 1) NDWI and SRWI are more sensitive to VWC than to FMC and GWC; 2) SRWI and NDWI calculated from reflectances of green band at about 550nm and shortwave infrared band at about 1240nm often yielded relatively higher correlation coefficients with VWC; 3) For a fixed two-band combination, SRWI shows a slight superiority to NDWI. PIC Fig.1 The north China plain and the experimental area with corn and winter wheat sample locations A detailed description to this study work will be demonstrated in the fullpaper.
Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation
NASA Astrophysics Data System (ADS)
Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro
2017-01-01
Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.
Edge Response and NIIRS Estimates for Commercial Remote Sensing Satellites
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Ryan, Robert E.; Pagnutti, mary; Stanley, Thomas
2006-01-01
Spatial resolution of panchromatic imagery from commercial remote sensing satellites was characterized based on edge response measurements using edge targets and the tilted-edge technique. Relative Edge Response (RER) was estimated as a geometric mean of normalized edge response differences measured in two directions of image pixels at points distanced from the edge by -0.5 and 0.5 of ground sample distance. RER is one of the engineering parameters used in the General Image Quality Equation to provide predictions of imaging system performance expressed in terms of the National Imagery Interpretability Rating Scale (NIIRS). By assuming a plausible range of signal-to-noise ratio and assessing the effects of Modulation Transfer Function compensation, the NIIRS estimates were made and then compared with vendor-provided values and evaluations conducted by the National Geospatial-Intelligence Agency.
Remote Sensing of Vineyard FPAR, with Implications for Irrigation Scheduling
NASA Technical Reports Server (NTRS)
Johnson, Lee F.; Scholasch, Thibaut
2004-01-01
Normalized difference vegetation index (NDVI) data, acquired at two-meter resolution by an airborne ADAR System 5500, were compared with fraction of photosynthetically active radiation (FPAR) absorbed by commercial vineyards in Napa Valley, California. An empirical line correction was used to transform image digital counts to surface reflectance. "Apparent" NDVI (generated from digital counts) and "corrected" NDVI (from reflectance) were both strongly related to FPAR of range 0.14-0.50 (both r(sup 2) = 0.97, P < 0.01). By suppressing noise, corrected NDVI should form a more spatially and temporally stable relationship with FPAR, reducing the need for repeated field support. Study results suggest the possibility of using optical remote sensing to monitor the transpiration crop coefficient, thus providing an enhanced spatial resolution component to crop water budget calculations and irrigation management.
Remote sensing study of the impact of vegetation on thermal environment in different contexts
NASA Astrophysics Data System (ADS)
Xie, Qijiao; Wu, Yingjiao; Zhou, Zhixiang; Wang, Zhengxiang
2018-02-01
Satellite remote sensing technology provides informative data for detecting the land surface temperature (LST) distribution and urban heat island (UHI) effect remotely and regionally. In this study, two Landsat Thematic Mapper (TM) images acquired on September 26, 1987 and September 17, 2013 were used to derive LST and the normalized difference vegetation index (NDVI) values in Wuhan, China. The relationships between NDVI and LST were examined in different contexts, namely built-up area, farmland, grassland and forest. Results showed that negative correlations between the mean NDVI and LST were detected in all observed land covers, which meant that vegetation was efficient in decreasing surface temperatures and mitigating UHI effect. The cooling efficiency of vegetation on thermal environment varied with different contexts. As mean NDVI increased at each 0.1, the decreased LST values in built-up area, farmland, grassland and forest were 1.4 °C, 1.4 °C, 1.1 °C, 1.9 °C in 1987 and 1.4 °C, 1.7 °C, 1.3 °C, 1.8 °C in 2013, respectively. This finding encourages urban planners and greening designers to devote more efforts in protecting urban forests.
High-speed optical 3D sensing and its applications
NASA Astrophysics Data System (ADS)
Watanabe, Yoshihiro
2016-12-01
This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.
Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin
2013-11-13
A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.
Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin
2013-01-01
A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results. PMID:24233027
Zhang, Yan; Xiao, Jian; Lv, Qiying; Wang, Lu; Dong, Xulin; Asif, Muhammad; Ren, Jinghua; He, Wenshan; Sun, Yimin; Xiao, Fei; Wang, Shuai
2017-11-08
In this work, we develop a new type of freestanding nanohybrid paper electrode assembled from 3D ionic liquid (IL) functionalized graphene framework (GF) decorated by gold nanoflowers (AuNFs), and explore its practical application in in situ electrochemical sensing of live breast cell samples by real-time tracking biomarker H 2 O 2 released from cells. The AuNFs modified IL functionalized GF (AuNFs/IL-GF) was synthesized via a facile and efficient dopamine-assisted one-pot self-assembly strategy. The as-obtained nanohybrid assembly exhibits a typical 3D hierarchical porous structure, where the highly active electrocatalyst AuNFs are well dispersed on IL-GF scaffold. And the graft of hydrophilic IL molecules (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate, BMIMBF 4 ) on graphene nanosheets not only avoids their agglomeration and disorder stacking during the self-assembly but also endows the integrated IL-GF monolithic material with unique hydrophilic properties, which enables it to be readily dispersed in aqueous solution and processed into freestanding paperlike material. Because of the unique structural properties and the combinational advantages of different components in the AuNFs/IL-GF composite, the resultant nanohybrid paper electrode exhibits good nonenzymatic electrochemical sensing performance toward H 2 O 2 . When used in real-time tracking H 2 O 2 secreted from different breast cells attached to the paper electrode without or with radiotherapy treatment, the proposed electrochemical sensor based on freestanding AuNFs/IL-GF paper electrode can distinguish the normal breast cell HBL-100 from the cancer breast cells MDA-MB-231 and MCF-7 cells, and assess the radiotherapy effects to different breast cancer cells, which opens a new horizon in real-time monitoring cancer cells by electrochemical sensing platform.
West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Young, Nicholas E.; Stohlgren, Thomas J.; Talbert, Colin; Talbert, Marian; Morisette, Jeffrey; Anderson, Ryan
2016-01-01
Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tamarix spp.) along the Arkansas River in Southeastern Colorado. The models tested included boosted regression trees (BRT), Random Forest (RF), multivariate adaptive regression splines (MARS), generalized linear model (GLM), and Maxent. These analyses were conducted using a newly developed software package called the Software for Assisted Habitat Modeling (SAHM). All models were trained with 499 presence points, 10,000 pseudo-absence points, and predictor variables acquired from the Landsat 5 Thematic Mapper (TM) sensor over an eight-month period to distinguish tamarisk from native riparian vegetation using detection of phenological differences. From the Landsat scenes, we used individual bands and calculated Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and tasseled capped transformations. All five models identified current tamarisk distribution on the landscape successfully based on threshold independent and threshold dependent evaluation metrics with independent location data. To account for model specific differences, we produced an ensemble of all five models with map output highlighting areas of agreement and areas of uncertainty. Our results demonstrate the usefulness of species distribution models in analyzing remotely sensed data and the utility of ensemble mapping, and showcase the capability of SAHM in pre-processing and executing multiple complex models.
West, Amanda M; Evangelista, Paul H; Jarnevich, Catherine S; Young, Nicholas E; Stohlgren, Thomas J; Talbert, Colin; Talbert, Marian; Morisette, Jeffrey; Anderson, Ryan
2016-10-11
Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tamarix spp.) along the Arkansas River in Southeastern Colorado. The models tested included boosted regression trees (BRT), Random Forest (RF), multivariate adaptive regression splines (MARS), generalized linear model (GLM), and Maxent. These analyses were conducted using a newly developed software package called the Software for Assisted Habitat Modeling (SAHM). All models were trained with 499 presence points, 10,000 pseudo-absence points, and predictor variables acquired from the Landsat 5 Thematic Mapper (TM) sensor over an eight-month period to distinguish tamarisk from native riparian vegetation using detection of phenological differences. From the Landsat scenes, we used individual bands and calculated Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and tasseled capped transformations. All five models identified current tamarisk distribution on the landscape successfully based on threshold independent and threshold dependent evaluation metrics with independent location data. To account for model specific differences, we produced an ensemble of all five models with map output highlighting areas of agreement and areas of uncertainty. Our results demonstrate the usefulness of species distribution models in analyzing remotely sensed data and the utility of ensemble mapping, and showcase the capability of SAHM in pre-processing and executing multiple complex models.
NASA Astrophysics Data System (ADS)
Nascimento, Micael; Ferreira, Marta S.; Pinto, João. L.
2017-08-01
In this work, an optical fiber sensing network has been developed to assess the impact of different environmental conditions on lithium batteries performance through the real time thermal monitoring. The battery is submitted to constant current charge and different discharge C-rates, under normal and abusive operating conditions. The results show that for the discharge C-rate of 5.77C, the LiB under cold and dry climates had 32.5% and 27.2% lower temperature variations, when compared with temperate climates, respectively. The higher temperature shift detected in the temperate climate was related to the battery better performance regarding discharge capacity and power capabilities.
Fusari, A; Molina, J A
The sense of smell, which was once studied because of its biological and evolutionary significance, is today one of the centres of interest in research on normal and pathological ageing. The latest scientific developments point to an inversely proportional relationship between age and olfactory sensitivity. In certain neurodegenerative diseases this sensory decline is one of the first symptoms of the disorder and is correlated with the progression of the disease. In this work we are going to review the scientific knowledge on loss of sense of smell in ageing and in neurodegenerative diseases, with special attention given to Alzheimer's and Parkinson's diseases. A survey of studies that have examined the olfactory deficits in ageing and in some neurodegenerative diseases offers conclusive results about the presence of these impairments in the early stages of these disorders and even among healthy elderly persons. Although a number of causes contribute to these sensory losses in physiological ageing, a common neurological foundation has been proposed for Alzheimer's and Parkinson's diseases. Nevertheless, despite certain initial similarities, the olfactory deficits shown in these disorders seem to be qualitatively different.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronand; Russell, Jeff; Prados, Don; Stanley, Thomas
2005-01-01
Remotely sensed ground reflectance is the foundation of any interoperability or change detection technique. Satellite intercomparisons and accurate vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), require the generation of accurate reflectance maps (NDVI is used to describe or infer a wide variety of biophysical parameters and is defined in terms of near-infrared (NIR) and red band reflectances). Accurate reflectance-map generation from satellite imagery relies on the removal of solar and satellite geometry and of atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance has been widely applied to a few systems only. The ability to obtain atmospherically corrected imagery and products from various satellites is essential to enable widescale use of remotely sensed, multitemporal imagery for a variety of applications. An atmospheric correction approach derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that can be applied to high-spatial-resolution satellite imagery under many conditions was evaluated to demonstrate a reliable, effective reflectance map generation method. Additional information is included in the original extended abstract.
Compression Stiffening of Brain and its Effect on Mechanosensing by Glioma Cells
NASA Astrophysics Data System (ADS)
Pogoda, Katarzyna
The stiffness of tissues, often characterized by their time-dependent elastic properties, is tightly controlled under normal condition and central nervous system tissue is among the softest tissues. Changes in tissue and organ stiffness occur in some physiological conditions and are frequently symptoms of diseases such as fibrosis, cardiovascular disease and many forms of cancer. Primary cells isolated from various tissues often respond to changes in the mechanical properties of their substrates, and the range of stiffness over which these responses occur appear to be limited to the tissue elastic modulus from which they are derived. Our goal was to test the hypotheses that the stiffness of tumors derived from CNS tissue differs from that of normal brain, and that transformed cells derived from such tumors exhibit mechanical responses that differ from those of normal glial cells. Unlike breast and some other cancers where the stroma and the tumor itself is substantially stiffer than the surrounding normal tissue, our data suggest that gliomas can arise without a gross change in the macroscopic tissue stiffness when measured at low strains without compression. However, both normal brain and glioma samples stiffen with compression, but not in elongation and increased shear strains. On the other hand, different classes of immortalized cells derived from human glioblastoma show substantially different responses to the stiffness of substrates in vitrowhen grown on soft polyacrylamide and hyaluronic acid gels. This outcome supports the hypothesis that compression stiffening, which might occur with increased vascularization and interstitial pressure gradients that are characteristic of tumors, effectively stiffens the environment of glioma cells, and that in situ, the elastic resistance these cells sense might be sufficient to trigger the same responses that are activated in vitro by increased substrate stiffness.
Jungho Im; John R. Jensen; Mark Coleman; Eric Nelson
2009-01-01
Hyperspectral remote sensing research was conducted to document the biophysical and biochemical characteristics of controlled forest plots subjected to various nutrient and irrigation treatments. The experimental plots were located on the Savannah River Site near Aiken, SC. AISA hyperspectral imagery were analysed using three approaches, including: (1) normalized...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly
Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less
Hand-Held Volatilome Analyzer Based on Elastically Deformable Nanofibers.
Yucel, Muge; Akin, Osman; Cayoren, Mehmet; Akduman, Ibrahim; Palaniappan, Alagappan; Liedberg, Bo; Hizal, Gurkan; Inci, Fatih; Yildiz, Umit Hakan
2018-04-17
This study reports on a hand-held volatilome analyzer for selective determination of clinically relevant biomarkers in exhaled breath. The sensing platform is based on electrospun polymer nanofiber-multiwalled carbon nanotube (MWCNT) sensing microchannels. Polymer nanofibers of poly(vinylidene fluoride) (PVDF), polystyrene (PS), and poly(methyl methacrylate) (PMMA) incorporated with MWCNT exhibits a stable response to interferences of humidity and CO 2 and provides selective deformations upon exposure of exhaled breath target volatilomes acetone and toluene, exhibiting correlation to diabetes and lung cancer, respectively. The sensing microchannels "P1" (PVDF-MWCNT), "P2" (PS-MWCNT), and "P3" (PMMA-MWCNT) are integrated with a microfluidic cartridge (μ-card) that facilitates collection and concentration of exhaled breath. The volatilome analyzer consists of a conductivity monitoring unit, signal conditioning circuitries and a low energy display module. A combinatorial operation algorithm was developed for analyzing normalized resistivity changes of the sensing microchannels upon exposure to breath in the concentration ranges between 35 ppb and 3.0 ppm for acetone and 1 ppb and 10 ppm for toluene. Subsequently, responses of volatilomes from individuals in the different risk groups of diabetes were evaluated for validation of the proposed methodology. We foresee that proposed methodology provides an avenue for rapid detection of volatilomes thereby enabling point of care diagnosis in high-risk group individuals.
NASA Astrophysics Data System (ADS)
Peterson, K. T.; Wulamu, A.
2017-12-01
Water, essential to all living organisms, is one of the Earth's most precious resources. Remote sensing offers an ideal approach to monitor water quality over traditional in-situ techniques that are highly time and resource consuming. Utilizing a multi-scale approach, incorporating data from handheld spectroscopy, UAS based hyperspectal, and satellite multispectral images were collected in coordination with in-situ water quality samples for the two midwestern watersheds. The remote sensing data was modeled and correlated to the in-situ water quality variables including chlorophyll content (Chl), turbidity, and total dissolved solids (TDS) using Normalized Difference Spectral Indices (NDSI) and Partial Least Squares Regression (PLSR). The results of the study supported the original hypothesis that correlating water quality variables with remotely sensed data benefits greatly from the use of more complex modeling and regression techniques such as PLSR. The final results generated from the PLSR analysis resulted in much higher R2 values for all variables when compared to NDSI. The combination of NDSI and PLSR analysis also identified key wavelengths for identification that aligned with previous study's findings. This research displays the advantages and future for complex modeling and machine learning techniques to improve water quality variable estimation from spectral data.
Temporal Forest Change Detection and Forest Health Assessment using Remote Sensing
NASA Astrophysics Data System (ADS)
Ya'acob, Norsuzila; Mohd Azize, Aziean Binti; Anis Mahmon, Nur; Laily Yusof, Azita; Farhana Azmi, Nor; Mustafa, Norfazira
2014-03-01
This paper presents the detection of Angsi and Berembun Reserve Forest change for years 1996 and 2013. Forest is an important part of our ecosystem. The main function is to absorb carbon oxide and produce oxygen in their cycle of photosynthesis to maintain a balance and healthy atmosphere. However, forest changes as time changes. Some changes are necessary as to give way for economic growth. Nevertheless, it is important to monitor forest change so that deforestation and development can be planned and the balance of ecosystem is still preserved. It is important because there are number of unfavorable effects of deforestation that include environmental and economic such as erosion of soil, loss of biodiversity and climate change. The forest change detection can be studied with reference of several satellite images using remote sensing application. Forest change detection is best done with remote sensing due to large and remote study area. The objective of this project is to detect forest change over time and to compare forest health indicated by Normalized Difference Vegetation Index (NDVI) using remote sensing and image processing. The forest under study shows depletion of forest area by 12% and 100% increment of deforestation activities. The NDVI value which is associated with the forest health also shows 13% of reduction.
On the Normal Force Mechanotransduction of Human Umbilical Vein Endothelial Cells
NASA Astrophysics Data System (ADS)
Vahabikashi, Amir; Wang, Qiuyun; Wilson, James; Wu, Qianhong; Vucbmss Team
2016-11-01
In this paper, we report a cellular biomechanics study to examine the normal force mechanotransduction of Human Umbilical Vein Endothelial Cells (HUVECs) with their implications on hypertension. Endothelial cells sense mechanical forces and adjust their structure and function accordingly. The mechanotransduction of normal forces plays a vital role in hypertension due to the higher pressure buildup inside blood vessels. Herein, HUVECs were cultured to full confluency and then exposed to different mechanical loadings using a novel microfluidic flow chamber. One various pressure levels while keeps the shear stress constant inside the flow chamber. Three groups of cells were examined, the control group (neither shear nor normal stresses), the normal pressure group (10 dyne/cm2 of shear stress and 95 mmHg of pressure), and the hypertensive group (10 dyne/cm2 of shear stress and 142 mmHg of pressure). Cellular response characterized by RT-PCR method indicates that, COX-2 expressed under normal pressure but not high pressure; Mn-SOD expressed under both normal and high pressure while this response was stronger for normal pressure; FOS and e-NOS did not respond under any condition. The differential behavior of COX-2 and Mn-SOD in response to changes in pressure, is instrumental for better understanding the pathogenesis of hypertensive cardiovascular diseases. This research was supported by the National Science Foundation under Award #1511096.
Examining Differences in Patterns of Sensory and Motor Recovery After Stroke With Robotics.
Semrau, Jennifer A; Herter, Troy M; Scott, Stephen H; Dukelow, Sean P
2015-12-01
Developing a better understanding of the trajectory and timing of stroke recovery is critical for developing patient-centered rehabilitation approaches. Here, we quantified proprioceptive and motor deficits using robotic technology during the first 6 months post stroke to characterize timing and patterns in recovery. We also make comparisons of robotic assessments to traditional clinical measures. One hundred sixteen subjects with unilateral stroke were studied at 4 time points: 1, 6, 12, and 26 weeks post stroke. Subjects performed robotic assessments of proprioceptive (position sense and kinesthesia) and motor function (unilateral reaching task and bimanual object hit task), as well as several clinical measures (Functional Independence Measure, Purdue Pegboard, and Chedoke-McMaster Stroke Assessment). One week post stroke, many subjects displayed proprioceptive (48% position sense and 68% kinesthesia) and motor impairments (80% unilateral reaching and 85% bilateral movement). Interindividual recovery on robotic measures was highly variable. However, we characterized recovery as early (normal by 6 weeks post stroke), late (normal by 26 weeks post stroke), or incomplete (impaired at 26 weeks post stroke). Proprioceptive and motor recovery often followed different timelines. Across all time points, robotic measures were correlated with clinical measures. These results highlight the need for more sensitive, targeted identification of sensory and motor deficits to optimize rehabilitation after stroke. Furthermore, the trajectory of recovery for some individuals with mild to moderate stroke may be much longer than previously considered. © 2015 American Heart Association, Inc.
Information extraction with object based support vector machines and vegetation indices
NASA Astrophysics Data System (ADS)
Ustuner, Mustafa; Abdikan, Saygin; Balik Sanli, Fusun
2016-07-01
Information extraction through remote sensing data is important for policy and decision makers as extracted information provide base layers for many application of real world. Classification of remotely sensed data is the one of the most common methods of extracting information however it is still a challenging issue because several factors are affecting the accuracy of the classification. Resolution of the imagery, number and homogeneity of land cover classes, purity of training data and characteristic of adopted classifiers are just some of these challenging factors. Object based image classification has some superiority than pixel based classification for high resolution images since it uses geometry and structure information besides spectral information. Vegetation indices are also commonly used for the classification process since it provides additional spectral information for vegetation, forestry and agricultural areas. In this study, the impacts of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) on the classification accuracy of RapidEye imagery were investigated. Object based Support Vector Machines were implemented for the classification of crop types for the study area located in Aegean region of Turkey. Results demonstrated that the incorporation of NDRE increase the classification accuracy from 79,96% to 86,80% as overall accuracy, however NDVI decrease the classification accuracy from 79,96% to 78,90%. Moreover it is proven than object based classification with RapidEye data give promising results for crop type mapping and analysis.
RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing
NASA Astrophysics Data System (ADS)
Gui, Guan; Xu, Li; Adachi, Fumiyuki
2014-12-01
Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.
Grassland Aboveground Biomass in Inner Mongolia: Dynamics (2001-2016) and Driving force
NASA Astrophysics Data System (ADS)
Li, F.; Zeng, Y.; Chen, J.; Wu, B.
2017-12-01
Plant biomass is the most critical measure of carbon stored in an ecosystem, yet it remains imprecisely modeled for many terrestrial biomes. This lack of modeling capacity for biomass and its change through time and space has impeded scientists from making headway concerning issues in the geographic and social sciences. Satellite remote sensing techniques excel at detecting changes in the Earth's surface; however, accurate estimates of biomass for the heterogeneous biome landscapes based on remote sensing techniques are few and far between, which has led to many repetitive studies. Here, we argued that our ability to assess biomass in a heterogeneous landscape using satellite remote sensing techniques would be effectively enhanced through a stratification of landscapes, i.e homogenizing landscapes. Specifically, above-ground biomass (AGB) for an extended heterogeneous grassland biome over the entirety of Inner Mongolia during the past 16 years (2001-2016) was explored using remote sensing time series data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Massive and extensive in-situ measurement AGB data and pure vegetation index (PVI) models, developed from normal remote sensing vegetation indices such as the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI), were highlighted in the accomplishment of this study. Taking into full consideration the landscape heterogeneity for the grassland biome over Inner Mongolia, we achieved a series of AGB models with high R2 (>0.85) and low RMSE ( 20.85 g/m2). The total average amount of fresh AGB for the entirety of Inner Mongolia grasslands over the past 16 years was estimated as 87 Tg with an inter-annual standard deviation of 9 Tg. Overall, the grassland AGB for Inner Mongolia increased sporadically. We found that the dynamics of AGB in the grassland biome of Inner Mongolia were substantially dominated by variation in precipitation despite the accommodation of a huge population of livestock in this area over the past few decades. Concerning the production of grassland AGB for the future, we emphasized that the impacts of the frequently warming-drying climate associated with climate change across the Mongolia Plateau should be paid more attention.
NASA Astrophysics Data System (ADS)
Fgeppert, E.
1984-09-01
Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.
A model of regional primary production for use with coarse resolution satellite data
NASA Technical Reports Server (NTRS)
Prince, S. D.
1991-01-01
A model of crop primary production, which was originally developed to relate the amount of absorbed photosynthetically active radiation (APAR) to net production in field studies, is discussed in the context of coarse resolution regional remote sensing of primary production. The model depends on an approximately linear relationship between APAR and the normalized difference vegetation index. A more comprehensive form of the conventional model is shown to be necessary when different physiological types of plants or heterogeneous vegetation types occur within the study area. The predicted variable in the new model is total assimilation (net production plus respiration) rather than net production alone or harvest yield.
NASA Astrophysics Data System (ADS)
Tan, Chenyan; Fang, Weihua; Li, Jian
2016-04-01
In 2005, Typhoon Damery (200518) caused severe damage to the rubber trees in Hainan Island with its destructive winds and rainfall. Selection of proper vegetation indices using multi-source remote sensing data is critical to the assessment of forest disturbance and damage loss for this event. In this study, we will compare the performance of seven vegetation indices derived from MODIS and Landsat TM imageries prior to and after typhoon Damery, in order to select an optimal index for identifying rubber tree disturbance. The indices to be compared are normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Infrared Index (NDII), Enhanced vegetation index (EVI), Leaf area index (LAI), forest z-score (IFZ), and Disturbance Index (DI). The ground truth data of rubber tree damage collected through field investigation was used to verify and compare the results. Our preliminary result for the area with ground-truth data shows that DI has the most significant performance for disturbance detection for this typhoon event. This index DI is then applied to all the areas in Hainan Island hit by Darmey to evaluate the overall forest damage severity. At last, rubber tree damage severity is analyzed with other typhoon hazard factors such as wind, topography, soil and precipitation.
Inertial sensing microelectromechanical (MEM) safe-arm device
Roesler, Alexander W [Tijeras, NM; Wooden, Susan M [Sandia Park, NM
2009-05-12
Microelectromechanical (MEM) safe-arm devices comprise a substrate upon which a sense mass, that can contain an energetic material, is constrained to move along a pathway defined by a track disposed on the surface of the substrate. The pathway has a first end comprising a "safe" position and a second end comprising an "armed" position, whereat the second end the sense mass can be aligned proximal to energetic materials comprising the explosive train, within an explosive component. The sense mass can be confined in the safe position by a first latch, operable to release the sense mass by an acceleration acting in a direction substantially normal to the surface of the substrate. A second acceleration, acting in a direction substantially parallel to the surface of the substrate, can cause the sense mass to traverse the pathway from the safe position to the armed position.
NASA Astrophysics Data System (ADS)
Gholizadeh, Hamed
Photosynthesis in aquatic and terrestrial ecosystems is the key component of the food chain and the most important driver of the global carbon cycle. Therefore, estimation of photosynthesis at large spatial scales is of great scientific importance and can only practically be achieved by remote sensing data and techniques. In this dissertation, remotely sensed information and techniques, as well as field measurements, are used to improve current approaches of assessing photosynthetic processes. More specifically, three topics are the focus here: (1) investigating the application of spectral vegetation indices as proxies for terrestrial chlorophyll in a mangrove ecosystem, (2) evaluating and improving one of the most common empirical ocean-color algorithms (OC4), and (3) developing an improved approach based on sunlit-to-shaded scaled photochemical reflectance index (sPRI) ratios for detecting drought signals in a deciduous forest at eastern United States. The results indicated that although the green normalized difference vegetation index (GNDVI) is an efficient proxy for terrestrial chlorophyll content, there are opportunities to improve the performance of vegetation indices by optimizing the band weights. In regards to the second topic, we concluded that the parameters of the OC4 algorithm and similar empirical models should be tuned regionally and the addition of sea-surface temperature makes the global ocean-color approaches more valid. Results obtained from the third topic showed that considering shaded and sunlit portions of the canopy (i.e., two-leaf models instead of single big leaf models) and taking into account the divergent stomatal behavior of the species (i.e. isohydric and anisohydric) can improve the capability of sPRI in detecting drought. In addition to investigating the photosynthetic processes, the other common theme of the three research topics is the evaluation of "off- the-shelf" solutions to remote-sensing problems. Although widely used approaches such as normalized difference vegetation index (NDVI) are easy to apply and are often efficient choices in remote sensing applications, the use of these approaches should be justified and their shortcomings need to be considered in the context of the research application. When developing new remote sensing approaches, special attention should be paid to (1) initial data analysis such as statistical data transformations (e.g. Tukey ladder-of-powers transformation) and (2) rigorous validation design by creating separate training and validation data sets preferably using both field measurements and satellite-based data. Developing a sound approach and applying a rigorous validation methodology go hand in hand. In sum, all approaches have advantages and disadvantages or as George Box puts it, "all models are wrong but some are useful".
NASA Astrophysics Data System (ADS)
Tedrow, Christine Atkins
The primary goal in this study was to explore remote sensing, ecological niche modeling, and Geographic Information Systems (GIS) as aids in predicting candidate Rift Valley fever (RVF) competent vector abundance and distribution in Virginia, and as means of estimating where risk of establishment in mosquitoes and risk of transmission to human populations would be greatest in Virginia. A second goal in this study was to determine whether the remotely-sensed Normalized Difference Vegetation Index (NDVI) can be used as a proxy variable of local conditions for the development of mosquitoes to predict mosquito species distribution and abundance in Virginia. As part of this study, a mosquito surveillance database was compiled to archive the historical patterns of mosquito species abundance in Virginia. In addition, linkages between mosquito density and local environmental and climatic patterns were spatially and temporally examined. The present study affirms the potential role of remote sensing imagery for species distribution prediction, and it demonstrates that ecological niche modeling is a valuable predictive tool to analyze the distributions of populations. The MaxEnt ecological niche modeling program was used to model predicted ranges for potential RVF competent vectors in Virginia. The MaxEnt model was shown to be robust, and the candidate RVF competent vector predicted distribution map is presented. The Normalized Difference Vegetation Index (NDVI) was found to be the most useful environmental-climatic variable to predict mosquito species distribution and abundance in Virginia. However, these results indicate that a more robust prediction is obtained by including other environmental-climatic factors correlated to mosquito densities (e.g., temperature, precipitation, elevation) with NDVI. The present study demonstrates that remote sensing and GIS can be used with ecological niche and risk modeling methods to estimate risk of virus establishment in mosquitoes and transmission to humans. Maps delineating the geographic areas in Virginia with highest risk for RVF establishment in mosquito populations and RVF disease transmission to human populations were generated in a GIS using human, domestic animal, and white-tailed deer population estimates and the MaxEnt potential RVF competent vector species distribution prediction. The candidate RVF competent vector predicted distribution and RVF risk maps presented in this study can help vector control agencies and public health officials focus Rift Valley fever surveillance efforts in geographic areas with large co-located populations of potential RVF competent vectors and human, domestic animal, and wildlife hosts. Keywords. Rift Valley fever, risk assessment, Ecological Niche Modeling, MaxEnt, Geographic Information System, remote sensing, Pearson's Product-Moment Correlation Coefficient, vectors, mosquito distribution, mosquito density, mosquito surveillance, United States, Virginia, domestic animals, white-tailed deer, ArcGIS
Chen, Xuexia; Vogelmann, James E.; Rollins, Matt; Ohlen, Donald; Key, Carl H.; Yang, Limin; Huang, Chengquan; Shi, Hua
2011-01-01
It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas.
NASA Astrophysics Data System (ADS)
Keonuchan, Ammala; Liu, Yaolin
2008-12-01
Forest resource is the important material foundation of national sustainable development. And it need to master the status and change of forest resource timely for reasonable exploitation of forest and its renewal. Laos is located in the heart of the Indochinese peninsular, in southeast Asia, latitude 14° to 23 °north and longitude 100°to 108°east, covered a total 236, 800 square kilometers, and country of nearly 6 million people. The forest of Laos dropped from close to two-third in the 1970's to less than half by the 1990's. This deforestation has been attributed to two human activities : a traditional of shifting cultivation or slash and burn farming, and logging without reforestation. Remote sensing and GIS are the most modern technologies which have been widely used in the field of natural resource management and monitoring. These technologies provide very powerful tools to observe and collect information on natural resources and dynamic phenomenon on the earth surface, and ability to integrate different data and present data in different formats. In this study, using forest cover map and Landsat 7 ETM data, we analyze and compare forest cover change from 1997 to 2002. And the maximum likelihood method of supervised classification was used to classify the remote sensing data, we processed Spectral Enhancement, including Normalized Difference Vegetation Index (NDVI) ,and re-classify data again base on Principle Components Analysis (PCA) and NDVI.
Integrated polymer micro-ring resonators for optical sensing applications
NASA Astrophysics Data System (ADS)
Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume
2015-03-01
Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.
Objected-oriented remote sensing image classification method based on geographic ontology model
NASA Astrophysics Data System (ADS)
Chu, Z.; Liu, Z. J.; Gu, H. Y.
2016-11-01
Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.
NASA Astrophysics Data System (ADS)
Zhang, Dianjun; Zhou, Guoqing
2015-12-01
Soil moisture (SM) is a key variable that has been widely used in many environmental studies. Land surface temperature versus vegetation index (LST-VI) space becomes a common way to estimate SM in optical remote sensing applications. Normalized LST-VI space is established by the normalized LST and VI to obtain the comparable SM in Zhang et al. (Validation of a practical normalized soil moisture model with in situ measurements in humid and semiarid regions [J]. International Journal of Remote Sensing, DOI: 10.1080/01431161.2015.1055610). The boundary conditions in the study were set to limit the point A (the driest bare soil) and B (the wettest bare soil) for surface energy closure. However, no limitation was installed for point D (the full vegetation cover). In this paper, many vegetation types are simulated by the land surface model - Noah LSM 3.2 to analyze the effects on soil moisture estimation, such as crop, grass and mixed forest. The locations of point D are changed with vegetation types. The normalized LST of point D for forest is much lower than crop and grass. The location of point D is basically unchanged for crop and grass.
Human Facial Shape and Size Heritability and Genetic Correlations.
Cole, Joanne B; Manyama, Mange; Larson, Jacinda R; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Li, Mao; Mio, Washington; Klein, Ophir D; Santorico, Stephanie A; Hallgrímsson, Benedikt; Spritz, Richard A
2017-02-01
The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences. Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania. Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore, for over half of facial traits, >90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships among different facial features as well as overall facial development. Copyright © 2017 by the Genetics Society of America.
Pain Perception Is Increased in Congenital but Not Late Onset Blindness
Slimani, Hocine; Danti, Sabrina; Ptito, Maurice; Kupers, Ron
2014-01-01
There is now ample evidence that blind individuals outperform sighted individuals in various tasks involving the non-visual senses. In line with these results, we recently showed that visual deprivation from birth leads to an increased sensitivity to pain. As many studies have shown that congenitally and late blind individuals show differences in their degree of compensatory plasticity, we here address the question whether late blind individuals also show hypersensitivity to nociceptive stimulation. We therefore compared pain thresholds and responses to supra-threshold nociceptive stimuli in congenitally blind, late blind and normally sighted volunteers. Participants also filled in questionnaires measuring attention and anxiety towards pain in everyday life. Results show that late blind participants have pain thresholds and ratings of supra-threshold heat nociceptive stimuli similar to the normally sighted, whereas congenitally blind participants are hypersensitive to nociceptive thermal stimuli. Furthermore, results of the pain questionnaires did not allow to discriminate late blind from normal sighted participants, whereas congenitally blind individuals had a different pattern of responses. Taken together, these results suggest that enhanced sensitivity to pain following visual deprivation is likely due to neuroplastic changes related to the early loss of vision. PMID:25244529
NASA Astrophysics Data System (ADS)
Zhang, Jingchuan; Zhang, Wen; Lv, Jianfeng; Liang, Shuo; Wang, Lei; Li, Xiyuan
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, FBG on sleeve compactly single model fiber with two typical different kind of connection such as fiber splicing and optical fiber connector are researched. Influence of the different connection to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, experimental program of influence on FBG reflection spectrum characteristics is designed. Then, a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG with two typical different connections under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different single-mode optical fiber connection dropped to -196 °C from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 °C temperature cycle).
NASA Technical Reports Server (NTRS)
Quirein, J. A.
1973-01-01
The case is considered of n distinct, normally distributed classes or populations of two dimensional response vectors x = (lambda sub 1, lambda sub 2), where lambda sub i is a measurement of the relative reponse of x along channel i. The problem dealt with is to determine the best channel in the sense of divergence and in the sense of minimizing the probability of misclassification.
Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1985-01-01
Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters.
A Master Trainer Class for Professionals in Teaching the UltraCane Electronic Travel Device
ERIC Educational Resources Information Center
Penrod, William; Corbett, Michael D.; Blasch, Bruce
2005-01-01
Electronic travel devices are used to transform information about the environment that would normally be perceived through the visual sense into a form that can be perceived by people who are blind or have low vision through another sense (Blasch, Long, & Griffin-Shirley, 1989). They are divided into two broad categories: primary devices and…
NASA Workshop on Animal Gravity-Sensing Systems
NASA Technical Reports Server (NTRS)
Corcoran, M. L. (Editor)
1986-01-01
The opportunity for space flight has brought about the need for well-planned research programs that recognize the significance of space flight as a scientific research tool for advancing knowledge of life on Earth, and that utilize each flight opportunity to its fullest. For the first time in history, gravity can be almost completely eliminated. Thus, studies can be undertaken that will help to elucidate the importance of gravity to the normal functioning of living organisms, and to determine the effects microgravity may have on an organism. This workshop was convened to organize a plan for space research on animal gravity-sensing systems and the role that gravity plays in the development and normal functioning of these systems. Scientists working in the field of animal gravity-sensing systems use a wide variety of organisms in their research. The workshop presentations dealt with topics which ranged from the indirect gravity receptor of the water flea, Daphnia (whose antennal setae apparently act as current-sensing receptors as the animal moves up and down in water), through specialized statocyst structures found in jellyfish and gastropods, to the more complex vestibular systems that are characteristic of amphibians, avians, and mammals.
Clausi, Laura; Schneider, Margaret
The purpose of this study was to explore the lived experiences of young women with type 1 diabetes and the ways in which their self-management of their illness may influence their perceived sense of self. Semistructured interviews were conducted with 7 women aged 18 to 22 years who had been formally given a diagnosis of type 1 diabetes. Interviews were audiotaped and transcribed verbatim, and subsequent member checks were completed. Returned member checks and transcriptions were then analyzed using a form of thematic analysis. Three main themes emerged from the data including (1) "I just want to be more free, I guess"; (2) "It's just, like another part of me"; and (3) "I just kind of want to be normal, like I don't even have diabetes." A number of subthemes within each theme were also identified. Findings indicated that many aspects of the young women's day-to-day illness management routine impacted the way in which they viewed themselves. Key aspects that were identified by these women included issues with wanting to feel more free in terms of how they self-manage, trying to stay positive, and wanting to be normal, yet feeling as though they are still different from their peers.
Muñoz-Organero, Mario; Davies, Richard; Mawson, Sue
2017-01-01
Insole pressure sensors capture the force distribution patterns during the stance phase while walking. By comparing patterns obtained from healthy individuals to patients suffering different medical conditions based on a given similarity measure, automatic impairment indexes can be computed in order to help in applications such as rehabilitation. This paper uses the data sensed from insole pressure sensors for a group of healthy controls to train an auto-encoder using patterns of stochastic distances in series of consecutive steps while walking at normal speeds. Two experiment groups are compared to the healthy control group: a group of patients suffering knee pain and a group of post-stroke survivors. The Mahalanobis distance is computed for every single step by each participant compared to the entire dataset sensed from healthy controls. The computed distances for consecutive steps are fed into the previously trained autoencoder and the average error is used to assess how close the walking segment is to the autogenerated model from healthy controls. The results show that automatic distortion indexes can be used to assess each participant as compared to normal patterns computed from healthy controls. The stochastic distances observed for the group of stroke survivors are bigger than those for the people with knee pain.
A remote sensing based vegetation classification logic for global land cover analysis
Running, Steven W.; Loveland, Thomas R.; Pierce, Lars L.; Nemani, R.R.; Hunt, E. Raymond
1995-01-01
This article proposes a simple new logic for classifying global vegetation. The critical features of this classification are that 1) it is based on simple, observable, unambiguous characteristics of vegetation structure that are important to ecosystem biogeochemistry and can be measured in the field for validation, 2) the structural characteristics are remotely sensible so that repeatable and efficient global reclassifications of existing vegetation will be possible, and 3) the defined vegetation classes directly translate into the biophysical parameters of interest by global climate and biogeochemical models. A first test of this logic for the continental United States is presented based on an existing 1 km AVHRR normalized difference vegetation index database. Procedures for solving critical remote sensing problems needed to implement the classification are discussed. Also, some inferences from this classification to advanced vegetation biophysical variables such as specific leaf area and photosynthetic capacity useful to global biogeochemical modeling are suggested.
NASA Astrophysics Data System (ADS)
Chasmer, L. E.; Hopkinson, C. D.; Petrone, R. M.; Sitar, M.
2017-12-01
Accuracy of depth of burn (an indicator of consumption) in peatland soils using prefire and postfire airborne light detection and ranging (lidar) data is determined within a wetland-upland forest environment near Fort McMurray, Alberta, Canada. The relationship between peat soil burn depth and an "active" normalized burn ratio (ANBR) is also examined beneath partially and fully burned forest and understory canopies using state-of-the-art active reflectance from a multispectral lidar compared with normalized burn ratio (NBR) derived from Landsat 7 ETM+. We find significant correspondence between depth of burn, lidar-derived ANBR, and difference NBR (dNBR) from Landsat. However, low-resolution optical imagery excludes peatland burn losses in transition zones, which are highly sensitive to peat loss via combustion. The findings presented here illustrate the utility of this new remote sensing technology for expanding an area of research where it has previously been challenging to spatially detect and quantify such wildfire burn losses.
Cheng, Fei; Yang, Xiaodong; Gao, Jie
2014-06-01
An infrared refractive index sensor based on plasmonic perfect absorbers for glucose concentration sensing is experimentally demonstrated. Utilizing substantial absorption contrast between a perfect absorber (∼98% at normal incidence) and a non-perfect absorber upon the refractive index change, a maximum value of figure of merit (FOM*) about 55 and a bulk wavelength sensitivity about 590 nm/RIU are achieved. The demonstrated sensing platform provides great potential in improving the performance of plasmonic refractive index sensors and developing future surface enhanced infrared spectroscopy.
Allum, J H; Honegger, F
1993-01-01
Future developments of neuroprosthetic control will probably permit locomotion and posture to be maintained without the aid of crutches and will therefore require some form of balance control. Three fundamental questions will arise. First, the question of the location of imbalance-sensing transducers must be assessed. Secondly, the synergy, which is the relative amplitude and timing of muscle activity, and/or the strategy of joint torques required to re-establish a stable posture for different types of balance disturbances must be addressed. Thirdly, the control laws that map either trunk muscle activity or imbalance-sensing transducer outputs into multi-joint postural control of standing by paraplegic individuals must be generated. The most appropriate means of gathering the relevant information applicable to neuroprosthetic control systems is through the detailed analysis of normal and non-normal human models. In order to gain such detailed insights into normal balance control and its dependence on head angular and linear accelerations, the synergy and strategy of balance corrections in normal subjects or patients with vestibular deficits were investigated for two types of support surface perturbation, a dorsiflexion rotation (ROT) and a rearward translation (TRANS). These experimentally induced perturbations to upright stance were adjusted to cause equal amplitudes of ankle dorsiflexion, thus providing additional information about the role of lower leg proprioception on balance control. Synergies defined on the basis of peak cross-correlations of each recorded muscle's EMG to that of the largest muscle response were significantly different for TRANS and ROT. Translation synergies consisted of a sequential coactivation at several levels (soleus and abdominals some 30 msec before hamstrings, and trapezius some 15 msec before paraspinals), whereas the sequential activation of paraspinals and tibialis anterior dominated the balance synergy to ROT. Likewise, response strategies, defined using cross-correlations of joint torques, differed. That for TRANS was organised as a multi-link strategy with neck torques leading those of all other joints by 40 msec or more; hip joint lead ankle torques by 30 msec. That for ROT was organised around hip and ankle torques without a major correlation to neck torques. Vestibulary deficient subjects developed weaker synergies with respect to subjects with normal balance systems under eyes-open conditions and there was no clear synergy with eyes closed. Consequently, hip torques were delayed some 180 msec with respect to ankle torques, and correlations to neck torques were completely out of phase under eyes-closed conditions. Fundamental changes in TRANS synergies and strategies also occurred in vestibulary deficient subjects for eyes-open and eyes-closed conditions.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Wang, Junbang; Sun, Wenyi
2014-11-01
Remote sensing is widely applied in the study of terrestrial primary production and the global carbon cycle. The researches on the spatial heterogeneity in images with different sensors and resolutions would improve the application of remote sensing. In this study two sites on alpine meadow grassland in Qinghai, China, which have distinct fractal vegetation cover, were used to test and analyze differences between Normalized Difference Vegetation Index (NDVI) and enhanced vegetation index (EVI) derived from the Huanjing (HJ) and Landsat Thematic Mapper (TM) sensors. The results showed that: 1) NDVI estimated from HJ were smaller than the corresponding values from TM at the two sites whereas EVI were almost the same for the two sensors. 2) The overall variance represented by HJ data was consistently about half of that of Landsat TM although their nominal pixel size is approximately 30m for both sensors. The overall variance from EVI is greater than that from NDVI. The difference of the range between the two sensors is about 6 pixels at 30m resolution. The difference of the range in which there is not more corrective between two vegetation indices is about 1 pixel. 3) The sill decreased when pixel size increased from 30m to 1km, and then decreased very quickly when pixel size is changed to 250m from 30m or 90m but slowly when changed from 250m to 500m. HJ can capture this spatial heterogeneity to some extent and this study provides foundations for the use of the sensor for validation of net primary productivity estimates obtained from ecosystem process models.
Kokaly, Raymond F.; Hoefen, Todd M.; Livo, K. Eric; Swayze, Gregg A.; Leifer, Ira; McCubbin, Ian B.; Eastwood, Michael L.; Green, Robert O.; Lundeen, Sarah R.; Sarture, Charles M.; Steele, Denis; Ryan, Thomas; Bradley, Eliza S.; Roberts, Dar A.; ,
2010-01-01
This report describes a method to create color-composite images indicative of thick oil:water emulsions on the surface of clear, deep ocean water by using normalized difference ratios derived from remotely sensed data collected by an imaging spectrometer. The spectral bands used in the normalized difference ratios are located in wavelength regions where the spectra of thick oil:water emulsions on the ocean's surface have a distinct shape compared to clear water and clouds. In contrast to quantitative analyses, which require rigorous conversion to reflectance, the method described is easily computed and can be applied rapidly to radiance data or data that have been atmospherically corrected or ground-calibrated to reflectance. Examples are shown of the method applied to Airborne Visible/Infrared Imaging Spectrometer data collected May 17 and May 19, 2010, over the oil spill from the Deepwater Horizon offshore oil drilling platform in the Gulf of Mexico.
An Experimental Optical Three-axis Tactile Sensor Featured with Hemispherical Surface
NASA Astrophysics Data System (ADS)
Ohka, Masahiro; Kobayashi, Hiroaki; Takata, Jumpei; Mitsuya, Yasunaga
We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force to mount on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the silicone rubber comprises one columnar feeler and eight conical feelers. The contact areas of the conical feelers, which maintain contact with the acrylic dome, detect the three-axis force applied to the tip of the sensing element. Normal and shearing forces are then calculated from integration and centroid displacement of the grayscale value derived from the conical feeler's contacts. To evaluate the present tactile sensor, we conducted a series of experiments using an x-z stage, a rotational stage, and a force gauge. Although we discovered that the relationship between the integrated grayscale value and normal force depends on the sensor's latitude on the hemispherical surface, it is easy to modify the sensitivity based on the latitude to make the centroid displacement of the grayscale value proportional to the shearing force. When we examined the repeatability of the present tactile sensor with 1,000 load/unload cycles, the error was 2%.
NASA Astrophysics Data System (ADS)
Alonso, Carmelo; Tarquis, Ana M.; Zuñiga, Ignacio; Benito, Rosa M.
2017-04-01
Vegetation indexes, such as Normalized Difference Vegetation Index (NDVI) and enhanced Vegetation index (EVI), can been used to estimate root zone soil moisture through high resolution remote sensing images. These indexes are based in red (R), near infrared (NIR) and blue (B) wavelengths data. In this work we have studied the scaling properties of both vegetation indexes analyzing the information contained in two satellite data: Landsat-7 and Ikonos. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends possible data archives from present time to over several decades back. For this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. To study the influence of the spatial resolution the vegetation indexes map estimated with Ikonos-2 coded in 8 bits, with a resolution of 4m, have been compared through a multifractal analysis with the ones obtained with Lansat-7 8 bits, of 30 m. resolution, on the same area of study. The scaling behaviour of NDVI and EVI presents several differences that will be discussed based on the multifractal parameters extracted from the analysis. REFERENCES Alonso, C., Tarquis, A. M., Benito, R. M. and Zuñiga, I. Correlation scaling properties between soil moisture and vegetation indices. Geophysical Research Abstracts, 11, EGU2009-13932, 2009. Alonso, C., Tarquis, A. M. and Benito, R. M. Comparison of fractal dimensions based on segmented NDVI fields obtained from different remote sensors. Geophysical Research Abstracts, 14, EGU2012-14342, 2012. Escribano Rodriguez, J., Alonso, C., Tarquis, A.M., Benito, R.M. and Hernandez Diaz-Ambrona, C. Comparison of NDVI fields obtained from different remote sensors. Geophysical Research Abstracts,15, EGU2013-14153, 2013. Lovejoy, S., Tarquis, A., Gaonac'h, H. and Schertzer, D. Single and multiscale remote sensing techniques, multifractals and MODIS derived vegetation and soil moisture, Vadose Zone J., 7, 533-546, 2008. Renosh, P. R., Schmitt, F. G., and Loisel, H.: Scaling analysis of ocean surface turbulent heterogeneities from satellite remote sensing: use of 2D structure functions. PLoS ONE, 10, e0126975, 2015. Tarquis, A.M., Platonov, A., Matulka, A., Grau, J., Sekula, E., Diez, M. and Redondo J. M. Application of multifractal analysis to the study of SAR features and oil spills on the ocean surface. Nonlin. Processes Geophys., 21, 439-450, 2014.
Monitoring and Evaluation of Alcoholic Fermentation Processes Using a Chemocapacitor Sensor Array
Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope
2014-01-01
The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument. PMID:25184490
Ricotta, C.; Reed, B.C.; Tieszen, L.T.
2003-01-01
Time integrated normalized difference vegetation index (??NDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989-1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ??NDVI and the ??NDVI coefficient of variation (CV ??NDVI) used as a proxy for interranual climate variability is analysed. Results suggest that the differences in the long-term climate control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primary C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ??NDVI values.
Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang
2015-03-27
Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.
Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang
2015-01-01
Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975
NASA Technical Reports Server (NTRS)
Roy, D. P.; Kovalskyy, V.; Zhang, H. K.; Vermote, E. F.; Yan, L.; Kumar, S. S.; Egorov, A.
2016-01-01
At over 40 years, the Landsat satellites provide the longest temporal record of space-based land surface observations, and the successful 2013 launch of the Landsat-8 is continuing this legacy. Ideally, the Landsat data record should be consistent over the Landsat sensor series. The Landsat-8 Operational Land Imager (OLI) has improved calibration, signal to noise characteristics, higher 12-bit radiometric resolution, and spectrally narrower wavebands than the previous Landsat-7 Enhanced Thematic Mapper (ETM+). Reflective wavelength differences between the two Landsat sensors depend also on the surface reflectance and atmospheric state which are difficult to model comprehensively. The orbit and sensing geometries of the Landsat- 8 OLI and Landsat-7 ETM+ provide swath edge overlapping paths sensed only one day apart. The overlap regions are sensed in alternating backscatter and forward scattering orientations so Landsat bi-directional reflectance effects are evident but approximately balanced between the two sensors when large amounts of time series data are considered. Taking advantage of this configuration a total of 59 million 30m corresponding sensor observations extracted from 6,317 Landsat-7 ETM+ and Landsat-8 OLI images acquired over three winter and three summer months for all the conterminous United States (CONUS) are compared. Results considering different stages of cloud and saturation filtering, and filtering to reduce one day surface state differences, demonstrate the importance of appropriate per-pixel data screening. Top of atmosphere (TOA) and atmospherically corrected surface reflectance for the spectrally corresponding visible, near infrared and shortwave infrared bands, and derived normalized difference vegetation index (NDVI), are compared and their differences quantified. On average the OLI TOA reflectance is greater than the ETM+ TOA reflectance for all bands, with greatest differences in the near-infrared (NIR) and the shortwave infrared bands due to the quite different spectral response functions between the sensors. The atmospheric correction reduces the mean difference in the NIR and shortwave infrared but increases the mean difference in the visible bands. Regardless of whether TOA or surface reflectance are used to generate NDVI, on average, for vegetated soil and vegetation surfaces (0 = NDVI = 1), the OLI NDVI is greater than the ETM+ NDVI. Statistical functions to transform between the comparable sensor bands and sensor NDVI values are presented so that the user community may apply them in their own research to improve temporal continuity between the Landsat-7 ETM+ and Landsat-8 OLI sensor data. The transformation functions were developed using ordinary least squares (OLS) regression and were fit quite reliably (r2 values is greater than 0.7 for the reflectance data and greater than 0.9 for the NDVI data, p-values less than 0.0001).
Ko, Seung-Nam
2017-01-01
Posterior cruciate ligament (PCL) reconstruction for patients with PCL insufficiency has been associated with postoperative improvements in proprioceptive function due to mechanoreceptor regeneration. However, it is unclear whether reconstructed PCL or contralateral normal knees have better proprioceptive function outcomes. This meta-analysis was designed to compare the proprioceptive function of reconstructed PCL or contralateral normal knees in patients with PCL insufficiency. All studies that compared proprioceptive function, as assessed with threshold to detect passive movement (TTDPM) or joint position sense (JPS) in PCL reconstructed or contralateral normal knees were included. JPS was calculated by reproducing passive positioning (RPP). Five studies met the inclusion/exclusion criteria for the meta-analysis. The proprioceptive function, defined as TTDPM (95% CI: 0.25 to 0.51°; P<0.00001) and RPP (95% CI: 0.19 to 0.45°; P<0.00001), was significantly different between the reconstructed PCL and contralateral normal knees. The mean difference in angle of error between the reconstructed PCL and contralateral normal knees was 0.06° greater in TTDPM than by RPP. In addition, results from subgroup analyses, based on the starting angles and the moving directions of the knee, that evaluated TTDPM at 15° flexion to 45° extension, TTDPM at 45° flexion to 110° flexion, RPP in flexion, and RPP in extension demonstrated that mean angles of error were significantly greater, by 0.38° (P = 0.0001), 0.36° (P = 0.02), 0.36° (P<0.00001), and 0.23° (P = 0.04), respectively, in reconstructed PCL than in contralateral normal knees. The proprioceptive function of PCL reconstructed knees was decreased, compared with contralateral normal knees, as determined by both TTDPM and RPP. In addition, the amount of loss of proprioception was greater in TTDPM than in RPP, even with minute differences. Results from subgroup analysis, that evaluated the mean angles of error in moving directions through RPP, suggested that the moving direction of flexion has a significantly greater mean for angles of error than the moving direction of extension. Although the level of differences between various parameters were statistically significant, further studies are needed to determine whether the small differences (>1°) of the loss of proprioception are clinically relevant. PMID:28922423
The systems biology of uric acid transporters: the role of remote sensing and signaling.
Nigam, Sanjay K; Bhatnagar, Vibha
2018-07-01
Uric acid homeostasis in the body is mediated by a number of SLC and ABC transporters in the kidney and intestine, including several multispecific 'drug' transporters (e.g., OAT1, OAT3, and ABCG2). Optimization of uric acid levels can be viewed as a 'systems biology' problem. Here, we consider uric acid transporters from a systems physiology perspective using the framework of the 'Remote Sensing and Signaling Hypothesis.' This hypothesis explains how SLC and ABC 'drug' and other transporters mediate interorgan and interorganismal communication (e.g., gut microbiome and host) via small molecules (e.g., metabolites, antioxidants signaling molecules) through transporters expressed in tissues lining body fluid compartments (e.g., blood, urine, cerebrospinal fluid). The list of uric acid transporters includes: SLC2A9, ABCG2, URAT1 (SLC22A12), OAT1 (SLC22A6), OAT3 (SLC22A8), OAT4 (SLC22A11), OAT10 (SLC22A13), NPT1 (SLC17A1), NPT4 (SLC17A3), MRP2 (ABCC2), MRP4 (ABCC4). Normally, SLC2A9, - along with URAT1, OAT1 and OAT3, - appear to be the main transporters regulating renal urate handling, while ABCG2 appears to regulate intestinal transport. In chronic kidney disease (CKD), intestinal ABCG2 becomes much more important, suggesting remote organ communication between the injured kidney and the intestine. The remote sensing and signaling hypothesis provides a useful systems-level framework for understanding the complex interplay of uric acid transporters expressed in different tissues involved in optimizing uric acid levels under normal and diseased (e.g., CKD, gut microflora dysbiosis) conditions.
Salinity modeling by remote sensing in central and southern Iraq
NASA Astrophysics Data System (ADS)
Wu, W.; Mhaimeed, A. S.; Platonov, A.; Al-Shafie, W. M.; Abbas, A. M.; Al-Musawi, H. H.; Khalaf, A.; Salim, K. A.; Chrsiten, E.; De Pauw, E.; Ziadat, F.
2012-12-01
Salinization, leading to a significant loss of cultivated land and crop production, is one of the most active land degradation phenomena in the Mesopotamian region in Iraq. The objectives of this study (under the auspices of ACIAR and Italian Government) are to investigate the possibility to use remote sensing technology to establish salinity-sensitive models which can be further applied to local and regional salinity mapping and assessment. Case studies were conducted in three pilot sites namely Musaib, Dujaila and West Garraf in the central and southern Iraq. Fourteen spring (February - April), seven June and four summer Landsat ETM+ images in the period 2009-2012, RapidEye data (April 2012), and 95 field EM38 measurements undertaken in this spring and summer, 16 relevant soil laboratory analysis result (Dujaila) were employed in this study. The procedure we followed includes: (1) Atmospheric correction using FLAASH model; (2) Multispectral transformation of a set of vegetation and non-vegetation indices such as GDVI (Generalized Difference Vegetation Index), NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil Adjusted Vegetation Index), SARVI (Soil Adjusted and Atmospherically Resistant Vegetation Index), NDII (Normalized Difference Infrared Index), Principal Components and surface temperature (T); (3) Derivation of the spring maximum (Musaib) and annual maximum (Dujaila and West Garraf) value in each pixel of each index of the observed period to avoid problems related to crop rotation (e.g. fallow) and the SLC-Off gaps in ETM+ images; (4) Extraction of the values of each vegetation and non-vegetation index corresponding to the field sampling locations (about 3 to 5 controversial samples very close to the roads or located in fallow were excluded); and (5) Coupling remote sensing indices with the available EM38 and soil electrical conductivity (EC) data using multiple linear least-square regression model at the confidence level of 95% in a stepwise (forward) manner. The results reveal that soil salinity and EM38 readings are negatively correlated with the different vegetation indices, especially, GDVI and NDVI, and positively correlated with T. The models obtained for the pilot sites are presented in Table 1. Although we are still waiting for more laboratory analytical result and satellite imagery for more comprehensive analysis, it is clearly possible to build up salinity models by remote sensing, on which further salinity mapping and assessment can be based. It is also noted that among all the vegetation indices, GDVI is the best salinity indicator followed by NDVI and T. RapidEye image shows lower correlation with EM38 measurements and EC because fallow and crop rotation issue cannot be sorted out by one acquisition image.Table 1: Salinity models obtained from the pilot sitesNote: EMV- Vertical reading of EM38, EC - Electrical conductivity in dS/m
Rational suicide: an impoverished self-transformation.
Maris, R
1982-01-01
The normal human condition is such that even with the best that life can offer suicide is understandable. Life is short, often painful, unpredictable, and lonely. In addition the lives of some individuals are in effect "suicidal careers" in that the harshness of normal life is combined for them with extra suicidal catalysts. Suicide makes sense. Minimally suicide resolves the life problem for the suicide. At the same time suicide is an impoverished self-transformation. Life, as trying and despairing as it can be, is still all we have, The suicide resolves the life problem by obliterating life itself, rather than by transforming self, history, and society. The suicide gives his or her life back inappropriately. In this sense no suicide is ever rational.
Polarimetric passive remote sensing of periodic surfaces
NASA Technical Reports Server (NTRS)
Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.
1991-01-01
The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.
Geographic techniques and recent applications of remote sensing to landscape-water quality studies
Griffith, J.A.
2002-01-01
This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.
Evaluating ESA CCI soil moisture in East Africa.
McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R; Wang, Shugong; Peters-Lidard, Christa D; Verdin, James P
2016-06-01
To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.
A motion sensing-based framework for robotic manipulation.
Deng, Hao; Xia, Zeyang; Weng, Shaokui; Gan, Yangzhou; Fang, Peng; Xiong, Jing
2016-01-01
To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human-machine interaction in a novel and natural interface using gestures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipulation. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a general hardware interface layer was also developed in the framework. Simulation and physical experiments have been conducted for preliminary validation. The results have shown that the proposed framework is an effective approach for general robotic manipulation with motion sensing control.
VoPham, Trang; Wilson, John P; Ruddell, Darren; Rashed, Tarek; Brooks, Maria M; Yuan, Jian-Min; Talbott, Evelyn O; Chang, Chung-Chou H; Weissfeld, Joel L
2015-08-01
Accurate pesticide exposure estimation is integral to epidemiologic studies elucidating the role of pesticides in human health. Humans can be exposed to pesticides via residential proximity to agricultural pesticide applications (drift). We present an improved geographic information system (GIS) and remote sensing method, the Landsat method, to estimate agricultural pesticide exposure through matching pesticide applications to crops classified from temporally concurrent Landsat satellite remote sensing images in California. The image classification method utilizes Normalized Difference Vegetation Index (NDVI) values in a combined maximum likelihood classification and per-field (using segments) approach. Pesticide exposure is estimated according to pesticide-treated crop fields intersecting 500 m buffers around geocoded locations (e.g., residences) in a GIS. Study results demonstrate that the Landsat method can improve GIS-based pesticide exposure estimation by matching more pesticide applications to crops (especially temporary crops) classified using temporally concurrent Landsat images compared to the standard method that relies on infrequently updated land use survey (LUS) crop data. The Landsat method can be used in epidemiologic studies to reconstruct past individual-level exposure to specific pesticides according to where individuals are located.
Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing
Dhawan, Anuj; Canva, Michael; Vo-Dinh, Tuan
2011-01-01
We present a novel surface plasmon resonance (SPR) configuration based on narrow groove (sub-15 nm) plasmonic nano-gratings such that normally incident radiation can be coupled into surface plasmons without the use of prism-coupling based total internal reflection, as in the classical Kretschmann configuration. This eliminates the angular dependence requirements of SPR-based sensing and allows development of robust miniaturized SPR sensors. Simulations based on Rigorous Coupled Wave Analysis (RCWA) were carried out to numerically calculate the reflectance - from different gold and silver nano-grating structures - as a function of the localized refractive index of the media around the SPR nano-gratings as well as the incident radiation wavelength and angle of incidence. Our calculations indicate substantially higher differential reflectance signals, on localized change of refractive index in the narrow groove plasmonic gratings, as compared to those obtained from conventional SPR-based sensing systems. Furthermore, these calculations allow determination of the optimal nano-grating geometric parameters - i. e. nanoline periodicity, spacing between the nanolines, as well as the height of the nanolines in the nano-grating - for highest sensitivity to localized change of refractive index, as would occur due to binding of a biomolecule target to a functionalized nano-grating surface. PMID:21263620
Cytochalasin D does not inhibit gravitropism in roots
NASA Technical Reports Server (NTRS)
Staves, M. P.; Wayne, R.; Leopold, A. C.
1997-01-01
It is generally thought that sedimenting plastids are responsible for gravity sensing in higher plants. We directly tested the model generated by the current statolith hypothesis that the gravity sensing that leads to gravitropism results from an interaction between the plastids and actin microfilaments. We find that the primary roots of rice, corn, and cress undergo normal gravitropism and growth even when exposed to cytochalasin D, a disruptor of actin microfilaments. These results indicate that an interaction between amyloplasts and the actin cytoskeleton is not critical for gravity sensing in higher plants and weaken the current statolith hypothesis.
Melo, Renato de Souza; Amorim da Silva, Polyanna Waleska; Souza, Robson Arruda; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica
2013-10-01
Introduction Head sense position is coordinated by sensory activity of the vestibular system, located in the inner ear. Children with sensorineural hearing loss may show changes in the vestibular system as a result of injury to the inner ear, which can alter the sense of head position in this population. Aim Analyze the head alignment in students with normal hearing and students with sensorineural hearing loss and compare the data between groups. Methods This prospective cross-sectional study examined the head alignment of 96 students, 48 with normal hearing and 48 with sensorineural hearing loss, aged between 7 and 18 years. The analysis of head alignment occurred through postural assessment performed according to the criteria proposed by Kendall et al. For data analysis we used the chi-square test or Fisher exact test. Results The students with hearing loss had a higher occurrence of changes in the alignment of the head than normally hearing students (p < 0.001). Forward head posture was the type of postural change observed most, occurring in greater proportion in children with hearing loss (p < 0.001), followed by the side slope head posture (p < 0.001). Conclusion Children with sensorineural hearing loss showed more changes in the head posture compared with children with normal hearing.
Melo, Renato de Souza; Amorim da Silva, Polyanna Waleska; Souza, Robson Arruda; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica
2013-01-01
Introduction Head sense position is coordinated by sensory activity of the vestibular system, located in the inner ear. Children with sensorineural hearing loss may show changes in the vestibular system as a result of injury to the inner ear, which can alter the sense of head position in this population. Aim Analyze the head alignment in students with normal hearing and students with sensorineural hearing loss and compare the data between groups. Methods This prospective cross-sectional study examined the head alignment of 96 students, 48 with normal hearing and 48 with sensorineural hearing loss, aged between 7 and 18 years. The analysis of head alignment occurred through postural assessment performed according to the criteria proposed by Kendall et al. For data analysis we used the chi-square test or Fisher exact test. Results The students with hearing loss had a higher occurrence of changes in the alignment of the head than normally hearing students (p < 0.001). Forward head posture was the type of postural change observed most, occurring in greater proportion in children with hearing loss (p < 0.001), followed by the side slope head posture (p < 0.001). Conclusion Children with sensorineural hearing loss showed more changes in the head posture compared with children with normal hearing. PMID:25992037
Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C
2007-05-21
The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties.
Characterization and analysis of pasture degradation in Rondonia using remote sensing
NASA Astrophysics Data System (ADS)
Numata, Izaya
2006-04-01
Although pasture degradation has been a regional concern in Amazonian ecosystems, our ability to characterize and monitor pasture degradation under different environmental and human-related conditions is still limited. This dissertation evaluated pasture degradation as it varied due to environmental and human factors across different scales by combining field measures, ancillary data, and remote sensing. To better understand the link between pasture nutrients and soil chemistry, samples were analyzed in the laboratory demonstrating that pasture soil fertility and grass nutrients varied significantly according to soil order. Pastures established on Alfisols, nutrient-rich soils, had higher levels of Phosphorus in soil and grass compared to pastures established on Oxisols and Ultisols. To evaluate remote sensing measures of pasture biophysical properties related to pasture degradation, remote sensing analysis focused on a variety of sensors that provide a range in spatial, spectral and temporal scales, including Landsat Thematic Mapper (TM), a field spectrometer, Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). Of the measures derived from Landsat, degraded pastures were best characterized by high non-photosynthetic vegetation (NPV) and low shade fractions, while pastures with high biomass were characterized by high green vegetation and low NPV fractions. Absorption features calculated from hyperspectral spectra collected in the field, including water and ligno-cellulose absorption depth and area, provided the best estimates of field grass measures. Temporal MODIS Normalized Difference Vegetation Index (NDVI) data were used to characterize changes in pasture quality across the region and through time. Degraded pastures were characterized by low temporal NDVI variation and occurred in dry or very wet climate conditions and on nutrient poor soils. Productive pastures were characterized by high temporal NDVI variation, were predominantly found more in the central part of the state, and were located in areas with milder climate conditions and relatively more fertile soils. As a general trend of regional pasture change in Rondonia, the proportions of productive pastures decreased and degraded pastures increased as pastures aged. The results obtained in this dissertation will contribute to understanding pasture sustainability needs for the future of Rondonia and provide the first step in monitoring pasture degradation in the Amazon using remote sensing.
An Improved Forwarding of Diverse Events with Mobile Sinks in Underwater Wireless Sensor Networks.
Raza, Waseem; Arshad, Farzana; Ahmed, Imran; Abdul, Wadood; Ghouzali, Sanaa; Niaz, Iftikhar Azim; Javaid, Nadeem
2016-11-04
In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.
Thompson, Alison L.; Thorp, Kelly R.; Conley, Matthew; Andrade-Sanchez, Pedro; Heun, John T.; Dyer, John M.; White, Jeffery W.
2018-01-01
Field-based high-throughput phenotyping is an emerging approach to quantify difficult, time-sensitive plant traits in relevant growing conditions. Proximal sensing carts represent an alternative platform to more costly high-clearance tractors for phenotyping dynamic traits in the field. A proximal sensing cart and specifically a deployment protocol, were developed to phenotype traits related to drought tolerance in the field. The cart-sensor package included an infrared thermometer, ultrasonic transducer, multi-spectral reflectance sensor, weather station, and RGB cameras. The cart deployment protocol was evaluated on 35 upland cotton (Gossypium hirsutum L.) entries grown in 2017 at Maricopa, AZ, United States. Experimental plots were grown under well-watered and water-limited conditions using a (0,1) alpha lattice design and evaluated in June and July. Total collection time of the 0.87 hectare field averaged 2 h and 27 min and produced 50.7 MB and 45.7 GB of data from the sensors and RGB cameras, respectively. Canopy temperature, crop water stress index (CWSI), canopy height, normalized difference vegetative index (NDVI), and leaf area index (LAI) differed among entries and showed an interaction with the water regime (p < 0.05). Broad-sense heritability (H2) estimates ranged from 0.097 to 0.574 across all phenotypes and collections. Canopy cover estimated from RGB images increased with counts of established plants (r = 0.747, p = 0.033). Based on the cart-derived phenotypes, three entries were found to have improved drought-adaptive traits compared to a local adapted cultivar. These results indicate that the deployment protocol developed for the cart and sensor package can measure multiple traits rapidly and accurately to characterize complex plant traits under drought conditions. PMID:29868041
Risk factors for mental disorders develop early in German students of dentistry.
Scholz, M; Neumann, C; Ropohl, A; Paulsen, F; Burger, P H M
2016-11-01
We investigated mental risk factors such as symptoms of burnout and sense of coherence in students of dental medicine at the University of Erlangen in the context of a learning type survey. Our aim was to assess the presence of analogies to the results we had previously determined for students of human medicine. We surveyed a total of 163 dentistry students during the first 2.5 years, up to the first state examination. To ensure comparability, the data were collected from all students at the beginning of each semester. Standardized, validated questionnaires on burnout symptoms (Burnout Screening Scales; BOSS-II), sense of coherence (Sense of Coherence Scale; SOC-L9) and learning type according to Kolb were used in the survey. A total of about 90% of the students provided responses to the voluntary survey. The extent and manifest dynamics of the stress levels observed can be characterized as dramatic. Having started out at cognitive and emotional stress levels typical of the normal populace, a massive deterioration of these parameters was observed in the students by the time they were facing their first state examination in the 5th semester. At the same time, their sense of coherence also suffered a pronounced drop-off. No significant learning type-correlated differences were determined in a mean comparison of the measured parameters. Based on the results obtained, we see a need for preventive course offerings to students of dentistry to reduce the prevalence of mental disorders in this group. We discern additional potential for enhancement of mental health with courses more specifically geared to the different learning styles among the students. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Yongguang; Li, Chuanrong; Ma, Lingling; Tang, Lingli; Wang, Ning; Zhou, Chuncheng; Qian, Yonggang
2017-10-01
Time series of satellite reflectance data have been widely used to characterize environmental phenomena, describe trends in vegetation dynamics and study climate change. However, several sensors with wide spatial coverage and high observation frequency are usually designed to have large field of view (FOV), which cause variations in the sun-targetsensor geometry in time-series reflectance data. In this study, on the basis of semiempirical kernel-driven BRDF model, a new semi-empirical model was proposed to normalize the sun-target-sensor geometry of remote sensing image. To evaluate the proposed model, bidirectional reflectance under different canopy growth conditions simulated by Discrete Anisotropic Radiative Transfer (DART) model were used. The semi-empirical model was first fitted by using all simulated bidirectional reflectance. Experimental result showed a good fit between the bidirectional reflectance estimated by the proposed model and the simulated value. Then, MODIS time-series reflectance data was normalized to a common sun-target-sensor geometry by the proposed model. The experimental results showed the proposed model yielded good fits between the observed and estimated values. The noise-like fluctuations in time-series reflectance data was also reduced after the sun-target-sensor normalization process.
The Influence of Backrest Inclination on Buttock Pressure
Park, Un Jin
2011-01-01
Objective To assess the effects of backrest inclination of a wheelchair on buttock pressures in spinal cord injured (SCI) patients and normal subjects. Method The participants were 22 healthy subjects and 22 SCI patients. Buttock pressures of the participants were measured by a Tekscan® pressure sensing mat and software while they were sitting in a reclining wheelchair. Buttock pressures were recorded for 90°, 100°, 110°, 120° and 130° seat-to-back angles at the ischial tuberosity (IT) and sacrococcygeal (SC) areas. Recordings were made at each angle over four seconds at a sampling rate of 10 Hz. Results The side-to-side buttock pressure differences in the IT area for the SCI patients was significantly greater than for the normal subjects. There was no significant difference between the SCI patients and the normal subjects in the buttock pressure change pattern of the IT area. Significant increases in pressure on the SC area were found as backrest inclination angle was changed to 90°, 100° and 110° in the normal subjects, but no significant differences were found in the SCI patients. Conclusion Most of the SCI patients have freeform posture in wheelchairs, and this leads to an uneven distribution of buttock pressure. In the SCI patients, the peak pressure in the IT area reduced as the backrest angle was increased, but peak pressure at the SC area remained relatively unchanged. To reduce buttock pressure and prevent pressure ulcers and enhance ulcer healing, it can be helpful for tetraplegic patients, to have wheelchair seat-to-back angles above 120°. PMID:22506220
Choi, Won Seok; Kim, Tae Wan; Kim, Ja Hyun; Lee, Sang Hyuk; Hur, Woon Je; Choe, Young Gil; Lee, Sang Hyuk; Park, Jung Ho; Sohn, Chong Il
2013-10-01
Globus is a foreign body sense in the throat without dysphagia, odynophagia, esophageal motility disorders, or gastroesophageal reflux. The etiology is unclear. Previous studies suggested that increased upper esophageal sphincter pressure, gastroesophageal reflux and hypertonicity of esophageal body were possible etiologies. This study was to quantify the upper esophageal sphincter (UES) pressure, contractile front velocity (CFV), proximal contractile integral (PCI), distal contractile integral (DCI) and transition zone (TZ) in patient with globus gastroesophageal reflux disease (GERD) without globus, and normal controls to suggest the correlation of specific high-resolution manometry (HRM) findings and globus. Fifty-seven globus patients, 24 GERD patients and 7 normal controls were studied with HRM since 2009. We reviewed the reports, and selected 5 swallowing plots suitable for analysis in each report, analyzed each individual plot with ManoView. The 5 parameters from each plot in 57 globus patients were compared with that of 24 GERD patients and 7 normal controls. There was no significant difference in the UES pressure, CFV, PCI and DCI. TZ (using 30 mmHg isobaric contour) in globus showed significant difference compared with normal controls and GERD patients. The median values of TZ were 4.26 cm (interquartile range [IQR], 2.30-5.85) in globus patients, 5.91 cm (IQR, 3.97-7.62) in GERD patients and 2.26 cm (IQR, 1.22-2.92) in normal controls (P = 0.001). HRM analysis suggested that UES pressure, CFV, PCI and DCI were not associated with globus. Instead increased length of TZ may be correlated with globus. Further study comparing HRM results in globus patients within larger population needs to confirm their correlation.
Choi, Won Seok; Kim, Tae Wan; Kim, Ja Hyun; Lee, Sang Hyuk; Hur, Woon Je; Choe, Young Gil; Lee, Sang Hyuk; Park, Jung Ho
2013-01-01
Background/Aims Globus is a foreign body sense in the throat without dysphagia, odynophagia, esophageal motility disorders, or gastroesophageal reflux. The etiology is unclear. Previous studies suggested that increased upper esophageal sphincter pressure, gastroesophageal reflux and hypertonicity of esophageal body were possible etiologies. This study was to quantify the upper esophageal sphincter (UES) pressure, contractile front velocity (CFV), proximal contractile integral (PCI), distal contractile integral (DCI) and transition zone (TZ) in patient with globus gastroesophageal reflux disease (GERD) without globus, and normal controls to suggest the correlation of specific high-resolution manometry (HRM) findings and globus. Methods Fifty-seven globus patients, 24 GERD patients and 7 normal controls were studied with HRM since 2009. We reviewed the reports, and selected 5 swallowing plots suitable for analysis in each report, analyzed each individual plot with ManoView. The 5 parameters from each plot in 57 globus patients were compared with that of 24 GERD patients and 7 normal controls. Results There was no significant difference in the UES pressure, CFV, PCI and DCI. TZ (using 30 mmHg isobaric contour) in globus showed significant difference compared with normal controls and GERD patients. The median values of TZ were 4.26 cm (interquartile range [IQR], 2.30-5.85) in globus patients, 5.91 cm (IQR, 3.97-7.62) in GERD patients and 2.26 cm (IQR, 1.22-2.92) in normal controls (P = 0.001). Conclusions HRM analysis suggested that UES pressure, CFV, PCI and DCI were not associated with globus. Instead increased length of TZ may be correlated with globus. Further study comparing HRM results in globus patients within larger population needs to confirm their correlation. PMID:24199007
Alcaraz-Segura, Domingo; Cabello, Javier; Paruelo, José M; Delibes, Miguel
2009-01-01
Baseline assessments and monitoring of protected areas are essential for making management decisions, evaluating the effectiveness of management practices, and tracking the effects of global changes. For these purposes, the analysis of functional attributes of ecosystems (i.e., different aspects of the exchange of matter and energy) has advantages over the traditional use of structural attributes, like a quicker response to disturbances and the fact that they are easily monitored through remote sensing. In this study, we described the spatiotemporal patterns of different aspects of the ecosystem functioning of the Spanish national parks and their response to environmental changes between 1982 and 2006. To do so, we used the NOAA/AVHRR-GIMMS dataset of the Normalized Difference Vegetation Index (NDVI), a linear estimator of the fraction of photosynthetic active radiation intercepted by vegetation, which is the main control of carbon gains. Nearly all parks have significantly changed during the last 25 years: The radiation interception has increased, the contrast between the growing and nongrowing seasons has diminished, and the dates of maximum and minimum interception have advanced. Some parks concentrated more changes than others and the degree of change varied depending on their different environmental conditions, management, and conservation histories. Our approach identified reference conditions and temporal changes for different aspects of ecosystem functioning, which can be used for management purposes of protected areas in response to global changes.
Poller, Wolfram C; Dreger, Henryk; Schwerg, Marius; Melzer, Christoph
2015-01-01
Optimization of the AV-interval (AVI) in DDD pacemakers improves cardiac hemodynamics and reduces pacemaker syndromes. Manual optimization is typically not performed in clinical routine. In the present study we analyze the prevalence of E/A wave fusion and A wave truncation under resting conditions in 160 patients with complete AV block (AVB) under the pre-programmed AVI. We manually optimized sub-optimal AVI. We analyzed 160 pacemaker patients with complete AVB, both in sinus rhythm (AV-sense; n = 129) and under atrial pacing (AV-pace; n = 31). Using Doppler analyses of the transmitral inflow we classified the nominal AVI as: a) normal, b) too long (E/A wave fusion) or c) too short (A wave truncation). In patients with a sub-optimal AVI, we performed manual optimization according to the recommendations of the American Society of Echocardiography. All AVB patients with atrial pacing exhibited a normal transmitral inflow under the nominal AV-pace intervals (100%). In contrast, 25 AVB patients in sinus rhythm showed E/A wave fusion under the pre-programmed AV-sense intervals (19.4%; 95% confidence interval (CI): 12.6-26.2%). A wave truncations were not observed in any patient. All patients with a complete E/A wave fusion achieved a normal transmitral inflow after AV-sense interval reduction (mean optimized AVI: 79.4 ± 13.6 ms). Given the rate of 19.4% (CI 12.6-26.2%) of patients with a too long nominal AV-sense interval, automatic algorithms may prove useful in improving cardiac hemodynamics, especially in the subgroup of atrially triggered pacemaker patients with AV node diseases.
Women's needs and expectations during normal labor and delivery
Iravani, Mina; Zarean, Elahe; Janghorbani, Mohsen; Bahrami, Masod
2015-01-01
Background: Pregnancy and birth are unique processes for women. Women and families hold different expectation during childbearing based on their knowledge, experiences, belief systems, culture, and social and family backgrounds. These differences should be understood and respected, and care is adapted and organized to meet the individualized needs of women and families. The purpose of this study was to explore Iranian parturient needs, values and preferences during normal labor and delivery. Materials and Methods: An exploratory qualitative study was used. Twenty-four parturient women from three governmental medical training centers in Isfahan, Iran were recruited using purposive sampling. Participants were recruited to low-risk women after they had given birth, but before they were discharged from hospital. Data were collected through semi-structured in-depth interviews, informal observations and field notes. Interviews were transcribed verbatim and analyzed by the conventional content analysis according to Graneheim and Lundman approach. Results: Women's needs and expectations fell into seven main categories: Physiological, psychological, informational, social and relational, esteem, security and medical needs. All of the key needs in these data relates to a fundamental need, named “sense of control and empowerment in childbirth.” Conclusion: Knowing a woman's needs, values, preferences and expectations during normal labor and delivery assists healthcare professionals especially midwives in providing high-quality care to parturient women. PMID:25767817
Pathogen-Sensing and Regulatory T Cells: Integrated Regulators of Immune Responses
Grossman, Zvi; Paul, William E.
2014-01-01
We present the concept that pathogen-sensing and Tregs mutually regulate immune responses to conventional and tumor antigens through countervailing effects on dendritic cells. Normally, conventional CD4 T cells recognizing their cognate antigen-presented by a dendritic cell will respond only if the dendritic cell also receives a signal through its pathogen-sensing/ danger / adjuvant recognition systems (the pathogen-sensing triad). However, if Tregs capable of interacting with the same DC are absent, dendritic cells are competent to present antigens, both foreign and self, even without the stimulation provided by the pathogen-sensing triad. Tregs recognizing an antigen presented by the DC that is also presenting antigen to a conventional CD4 T cell will prevent such responses but a signal delivered by a member of the pathogen-sensing traid will overcome the Tregs’inhibitory action and will allow responses to go forward. These considerations take on special meaning for responses to “weak antigens” such as many of the antigens displayed by spontaneous human tumors. PMID:24894087
NASA Astrophysics Data System (ADS)
Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro
2014-05-01
Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.
The myth of the boiling point.
Chang, Hasok
2008-01-01
Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.
Developing satellite-derived estimates of surface moisture status
NASA Technical Reports Server (NTRS)
Nemani, Ramakhrishna; Pierce, Lars; Running, Steve; Goward, Samuel
1993-01-01
An evaluation is made of the remotely sensed surface temperature (Ts)/normalized difference vegetation index (NDVI) relationship in studies of the influence of biome type on the slope of Ts/NDVI, and of the automation of the process of defining the relationship so that the surface moisture status can be compared with Ts/NDVI at continental scales. The analysis is conducted using the NOAA AVHRR over a 300 x 300 km area in western Montana, as well as biweekly composite AVHRR data. A strong negative relationship is established between NDVI and Ts over all biome types.
Maximum likelihood clustering with dependent feature trees
NASA Technical Reports Server (NTRS)
Chittineni, C. B. (Principal Investigator)
1981-01-01
The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.
Song, Youngkeun; Njoroge, John B; Morimoto, Yukihiro
2013-05-01
Drought-induced anomalies in vegetation condition over wide areas can be observed by using time-series satellite remote sensing data. Previous methods to assess the anomalies may include limitations in considering (1) the seasonality in terms of each vegetation-cover type, (2) cumulative damage during the drought event, and (3) the application to various types of land cover. This study proposed an improved methodology to assess drought impact from the annual vegetation responses, and discussed the result in terms of diverse landscape mosaics in the Mt. Kenya region (0.4° N 35.8° E ~ 1.6° S 38.4° E). From the 30-year annual rainfall records at the six meteorological stations in the study area, we identified 2000 as the drought year and 2001, 2004, and 2007 as the normal precipitation years. The time-series profiles of vegetation condition in the drought and normal precipitation years were obtained from the values of Enhanced Vegetation Index (EVI; Huete et al. 2002), which were acquired from Terra MODIS remote sensing dataset (MOD13Q1) taken every 16 days at the scale of 250-m spatial resolution. The drought impact was determined by integrating the annual differences in EVI profiles between drought and normal conditions, per pixel based on nearly same day of year. As a result, we successfully described the distribution of landscape vulnerability to drought, considering the seasonality of each vegetation-cover type at every MODIS pixel. This result will contribute to the large-scale landscape management of Mt. Kenya region. Future study should improve this method by considering land-use change occurred during the long-term monitoring period.
Shock-Wave Boundary Layer Interactions
1986-02-01
Security Classification of Document UNCLASSIFIED 6. Title TURBULENT SHOCK-WAVE/BOUNDARY-LAYER INTERACTION 7. Presented at 8. Author(s)/Editor(s...contrary effects. The above demonstration puts an emphasis on inertia forces in the sense that the "fullness" for the Incoming boundary-layer profile is...expression "quasi-normal" means that in most transonic streams, the shocks are strong oblique shock, in the sense of the strong solution of the oblique shock
Living Well? Strategies Used by Women Living With Metastatic Breast Cancer.
Lewis, Sophie; Willis, Karen; Yee, Jasmine; Kilbreath, Sharon
2016-07-01
Metastatic breast cancer is a disease of changing status-once an imminent death sentence, now a chronic (albeit incurable) disease. Medical intervention advances mean women with metastatic breast cancer now have symptoms alleviated and, potentially, life extended. Living with this disease, however, requires more than a medical approach to symptoms. We were interested to know whether women manage, and if so, how, to "live well" with metastatic cancer. We conducted interviews with 18 women. Women differed in the approaches they used. Most common was the attempt to reestablish a sense of normality in their lives. However, a second group reevaluated and reprioritized their lives; and a third group was restricted in their capacity to live well because of symptoms. The findings provide the foundation for future research exploring normalization of experiences of metastatic cancer, and other chronic illnesses, where people are living with knowledge that they have contracted time. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Njemanze, Philip; Njemanze, Philip; Peters, Constance; Uwaeziozi, Amarachukwu
More than 1 million Africans die from malaria each year. Remote sensing (RS) and geographic information system (GIS) technologies could be applied to study the risk of malaria epidemic. The patient population included 45,140 of persons aged 0-85 years seen at primary health centers in 18 different local government areas (LGAs) of Imo State. Maps of old Imo State were converted to digital form using ARC/INFO GIS software, and the resulting coverages included hydrology, towns, and villages. Remote sensing images from Advanced Very High Resolution Radiometer (AVHRR) data set were used to obtain color-coded monthly normalized-difference vegetation index or NDVI. Three groups were distinguished as: group A LGAs using water from natural hydrology and bore-holes, group B - using rain water harvesting from roof tops into surface water reservoirs, and group C - using ground surface catchment of rain water with ground ponds. These stagnant ponds were Anopheles mosquito breeding sites. The NDVI values were used to determine water availability, and were least in January/February each year, and highest in April/May. Probabilistic layer analysis (PLA) was used to determine the Odds Ratio (OR), Relative Risk (RR) and Attributable Risk (AR) for malaria in groups A, B, C. Significant risk for malaria was associated with local water conservation methods in group C, compared to A, (OR = 4.55; RR = 4.46, AR = 77.6
Hand disorders, hand function, and activities of daily living in elderly men with type 2 diabetes.
Cederlund, Ragnhild I; Thomsen, Niels; Thrainsdottir, Soley; Eriksson, Karl-Fredrik; Sundkvist, Göran; Dahlin, Lars B
2009-01-01
This study aimed to examine hand disorders, symptoms, overall hand function, activities of daily living (ADLs), and life satisfaction in elderly men with type 2 diabetes mellitus (DM), impaired glucose tolerance (IGT), and normal glucose tolerance (NGT). Subjects were interviewed and evaluated with a battery of clinical and laboratory tests, including hand assessment, and a questionnaire. HbA1c differed between groups (highest in DM, especially in long-term DM). Limited joint motion (LJM), for example, prayer sign and Dupuytren's contracture, was most common in individuals with DM, followed by individuals with IGT, as compared to those with NGT. Vibrotactile sense was impaired symmetrically in the index and little fingers in DM. However, there were no differences for sensibility, dexterity, grip strength, and cold intolerance between groups. Individuals with long-term (>15 years) DM were more affected regarding sensibility and ADL than individuals with short-term DM, who had more sleep disturbances. ADL difficulties were less among IGT subjects. Vibrotactile sense showed correlations with Semmes-Weinstein monofilament test and static two-point discrimination. Dupuytren's contracture and impaired vibrotactile sense in finger pulps occurred in patients with DM but not in those with IGT, although LJM occurred in both IGT and DM patients. A longer duration of DM was associated with more severe neuropathy and ADL difficulties. Life satisfaction was high, and hand disorders did not have a significant impact on ADL.
Horton, Forrest; Lee, Jeffrey; Hacker, Bradley; Bowman-Kamaha'o, Meilani; Cosca, Michael A.
2015-01-01
A general lack of consensus about the origin of Himalayan gneiss domes hinders accurate thermomechanical modeling of the orogen. To test whether doming resulted from tectonic contraction (e.g., thrust duplex formation, antiformal bending above a thrust ramp, etc.), channel flow, or via the buoyant rise of anatectic melts, this study investigates the depth and timing of doming processes for Gianbul dome in the western Himalaya. The dome is composed of Greater Himalayan Sequence migmatite, Paleozoic orthogneiss, and metasedimentary rock cut by multiple generations of leucogranite dikes. These rocks record a major penetrative D2 deformational event characterized by a domed foliation and associated NE-SW–trending stretching lineation, and they are flanked by the top-down-to-the-SW (normal-sense) Khanjar shear zone and the top-down-to-the-NE (normal sense) Zanskar shear zone (the western equivalent of the South Tibetan detachment system). Monazite U/Th-Pb geochronology records (1) Paleozoic emplacement of the Kade orthogneiss and associated granite dikes; (2) prograde Barrovian metamorphism from 37 to 33 Ma; (3) doming driven by upper-crustal extension and positive buoyancy of decompression melts between 26 and 22 Ma; and (4) the injection of anatectic melts into the upper levels of the dome—neutralizing the effects of melt buoyancy and potentially adding strength to the host rock—by ca. 22.6 Ma on the southwestern flank and ca. 21 Ma on the northeastern flank. As shown by a northeastward decrease in 40Ar/39Ar muscovite dates from 22.4 to 20.2 Ma, ductile normal-sense displacement within the Zanskar shear zone ended by ca. 22 Ma, after which the Gianbul dome was exhumed as part of a rigid footwall block below the brittle Zanskar normal fault, tilting an estimated 5°–10°SW into its present orientation.
Wavefront Sensing Analysis of Grazing Incidence Optical Systems
NASA Technical Reports Server (NTRS)
Rohrbach, Scott; Saha, Timo
2012-01-01
Wavefront sensing is a process by which optical system errors are deduced from the aberrations in the image of an ideal source. The method has been used successfully in near-normal incidence, but not for grazing incidence systems. This innovation highlights the ability to examine out-of-focus images from grazing incidence telescopes (typically operating in the x-ray wavelengths, but integrated using optical wavelengths) and determine the lower-order deformations. This is important because as a metrology tool, this method would allow the integration of high angular resolution optics without the use of normal incidence interferometry, which requires direct access to the front surface of each mirror. Measuring the surface figure of mirror segments in a highly nested x-ray telescope mirror assembly is difficult due to the tight packing of elements and blockage of all but the innermost elements to normal incidence light. While this can be done on an individual basis in a metrology mount, once the element is installed and permanently bonded into the assembly, it is impossible to verify the figure of each element and ensure that the necessary imaging quality will be maintained. By examining on-axis images of an ideal point source, one can gauge the low-order figure errors of individual elements, even when integrated into an assembly. This technique is known as wavefront sensing (WFS). By shining collimated light down the optical axis of the telescope and looking at out-of-focus images, the blur due to low-order figure errors of individual elements can be seen, and the figure error necessary to produce that blur can be calculated. The method avoids the problem of requiring normal incidence access to the surface of each mirror segment. Mirror figure errors span a wide range of spatial frequencies, from the lowest-order bending to the highest order micro-roughness. While all of these can be measured in normal incidence, only the lowest-order contributors can be determined through this WFS technique.
Design and Test of a Soft Plantar Force Measurement System for Gait Detection
Zhang, Xuefeng; Zhao, Yulong; Duan, Zhengyong; Liu, Yan
2012-01-01
This work describes a plantar force measurement system. The MEMS pressure sensor, as the key sensing element, is designed, fabricated and embedded into a flexible silicon oil-filled bladder made of silicon rubber to constitute a single sensing unit. A conditioning circuit is designed for signal processing and data acquisition. The characteristics of the plantar force sensing unit are investigated by both static and dynamic tests. A comparison of characteristics between the proposed plantar force sensing unit and a commercial flexible force sensor is presented. A practical experiment of plantar force measurement has been carried out to validate the system. The results demonstrate that the proposed measurement system has a potential for success in the application of plantar force measurement during normal gait. PMID:23208558
Swaney, Kristen F.; Huang, Chuan-Hsiang; Devreotes, Peter N.
2015-01-01
Chemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton. Directional sensing is mediated by a system that detects temporal and spatial stimuli and biases motility toward the gradient. Polarity gives cells morphologically and functionally distinct leading and lagging edges by relocating proteins or their activities selectively to the poles. By exploiting the genetic advantages of Dictyostelium, investigators are working out the complex network of interactions between the proteins that have been implicated in the chemotactic processes of motility, directional sensing, and polarity. PMID:20192768
Neuronal regulation of homeostasis by nutrient sensing.
Lam, Tony K T
2010-04-01
In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.
Sense of agency in the human brain.
Haggard, Patrick
2017-04-01
In adult life, people normally know what they are doing. This experience of controlling one's own actions and, through them, the course of events in the outside world is called 'sense of agency'. It forms a central feature of human experience; however, the brain mechanisms that produce the sense of agency have only recently begun to be investigated systematically. This recent progress has been driven by the development of better measures of the experience of agency, improved design of cognitive and behavioural experiments, and a growing understanding of the brain circuits that generate this distinctive but elusive experience. The sense of agency is a mental and neural state of cardinal importance in human civilization, because it is frequently altered in psychopathology and because it underpins the concept of responsibility in human societies.
Contact sensing from force measurements
NASA Technical Reports Server (NTRS)
Bicchi, Antonio; Salisbury, J. K.; Brock, David L.
1993-01-01
This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.
Brown, Dana R. N.; Jorgenson, M. Torre; Kielland, Knut; Verbyla, David L.; Prakash, Anupma; Koch, Joshua C.
2016-01-01
Climate change coupled with an intensifying wildfire regime is becoming an important driver of permafrost loss and ecosystem change in the northern boreal forest. There is a growing need to understand the effects of fire on the spatial distribution of permafrost and its associated ecological consequences. We focus on the effects of fire a decade after disturbance in a rocky upland landscape in the interior Alaskan boreal forest. Our main objectives were to (1) map near-surface permafrost distribution and drainage classes and (2) analyze the controls over landscape-scale patterns of post-fire permafrost degradation. Relationships among remote sensing variables and field-based data on soil properties (temperature, moisture, organic layer thickness) and vegetation (plant community composition) were analyzed using correlation, regression, and ordination analyses. The remote sensing data we considered included spectral indices from optical datasets (Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI)), the principal components of a time series of radar backscatter (Advanced Land Observing Satellite—Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR)), and topographic variables from a Light Detection and Ranging (LiDAR)-derived digital elevation model (DEM). We found strong empirical relationships between the normalized difference infrared index (NDII) and post-fire vegetation, soil moisture, and soil temperature, enabling us to indirectly map permafrost status and drainage class using regression-based models. The thickness of the insulating surface organic layer after fire, a measure of burn severity, was an important control over the extent of permafrost degradation. According to our classifications, 90% of the area considered to have experienced high severity burn (using the difference normalized burn ratio (dNBR)) lacked permafrost after fire. Permafrost thaw, in turn, likely increased drainage and resulted in drier surface soils. Burn severity also influenced plant community composition, which was tightly linked to soil temperature and moisture. Overall, interactions between burn severity, topography, and vegetation appear to control the distribution of near-surface permafrost and associated drainage conditions after disturbance.
Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies
Zhang, Yuping; Li, Tongtong; Chen, Qi; ...
2015-12-22
We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We also employ a design scheme with graphene integration, which allows independent tuning of individual absorption frequencies by electrostatically changing the Fermi energy of the graphene layer. High absorbance is maintained over a wide incident angle range up to 50 degrees for both TE and TM polarizations. Thus, it enables a promising way to design electrically tunable absorbers, which maymore » contribute toward the realization of frequency selective detectors for sensing applications.« less
Ion-selective electrolyte-gated field-effect transistors: prerequisites for proper functioning
NASA Astrophysics Data System (ADS)
Kofler, Johannes; Schmoltner, Kerstin; List-Kratochvil, Emil J. W.
2014-10-01
Electrolyte-gated organic field-effect transistors (EGOFETs) used as transducers and amplifiers in potentiometric sensors have recently attracted a significant amount of scientific interest. For that reason, the fundamental prerequisites to achieve a proper potentiometric signal amplification and transduction are examined. First, polarizable as well as non-polarizable semiconductor- and gate-electrolyte- interface combinations are investigated by normal pulse voltammetry. The results of these measurements are correlated with the corresponding transistor characteristics, clarifying the functional principle of EGOFETs and the requirements for high signal amplification. In addition to a good electrical performance, the EGOFET-transducers should also be compatible with the targeted sensing application. Accordingly, the influence of different gate materials and electrolytes on the sensing abilities, are discussed. Even though all physical requirements are met, EGOFETs typically exhibit irreversible degradation, if the gate potential exceeds a certain level. For that reason, EGOFETs have to be operated using a constant source-drain operation mode which is presented by means of an H+ (pH) sensitive ion-sensor.
Global remote sensing of water-chlorophyll ratio in terrestrial plant leaves.
Kushida, Keiji
2012-10-01
I evaluated the use of global remote sensing techniques for estimating plant leaf chlorophyll a + b (C(ab); μg cm(-2)) and water (C(w); mg cm(-2)) concentrations as well as the ratio of C(w)/C(ab) with the PROSAIL model under possible distributions for leaf and soil spectra, leaf area index (LAI), canopy geometric structure, and leaf size. First, I estimated LAI from the normalized difference vegetation index. I found that, at LAI values <2, C(ab), C(w), and C(w)/C(ab) could not be reliably estimated. At LAI values >2, C(ab) and C(w) could be estimated for only restricted ranges of the canopy structure; however, the ratio of C(w)/C(ab) could be reliably estimated for a variety of possible canopy structures with coefficients of determination (R(2)) ranging from 0.56 to 0.90. The remote estimation of the C(w)/C(ab) ratio from satellites offers information on plant condition at a global scale.
Estimation of photosynthetic capacity using MODIS polarization: 1988 proposal to NASA Headquarters
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern C.
1992-01-01
The remote sensing community has clearly identified the utility of NDVI (normalized difference vegetation index) and SR (simple ratio) and other vegetation indices for estimating such metrics of landscape ecology as green foliar biomass, photosynthetic capacity, and net primary production. Both theoretical and empirical investigations have established cause and effect relationships between the photosynthetic process in plant canopies and these combinations of remotely sensed data. Yet it has also been established that the relationships exhibit considerable variability that appears to be ecosystem-dependent and may represent a source of ecologically important information. The overall hypothesis of this proposal is that the ecosystem-dependent variability in the various vegetation indices is in part attributable to the effects of specular reflection. The polarization channels on MODIS provide the potential to estimate this specularly reflected light and allow the modification of the vegetation indices to better measure the photosynthetic process in plant canopies. In addition, these polarization channels potentially provide additional ecologically important information about the plant canopy.
NASA Technical Reports Server (NTRS)
Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.
1989-01-01
The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.
Development of an Algorithm for Satellite Remote Sensing of Sea and Lake Ice
NASA Astrophysics Data System (ADS)
Dorofy, Peter T.
Satellite remote sensing of snow and ice has a long history. The traditional method for many snow and ice detection algorithms has been the use of the Normalized Difference Snow Index (NDSI). This manuscript is composed of two parts. Chapter 1, Development of a Mid-Infrared Sea and Lake Ice Index (MISI) using the GOES Imager, discusses the desirability, development, and implementation of alternative index for an ice detection algorithm, application of the algorithm to the detection of lake ice, and qualitative validation against other ice mapping products; such as, the Ice Mapping System (IMS). Chapter 2, Application of Dynamic Threshold in a Lake Ice Detection Algorithm, continues with a discussion of the development of a method that considers the variable viewing and illumination geometry of observations throughout the day. The method is an alternative to Bidirectional Reflectance Distribution Function (BRDF) models. Evaluation of the performance of the algorithm is introduced by aggregating classified pixels within geometrical boundaries designated by IMS and obtaining sensitivity and specificity statistical measures.
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Heidebrecht, Kathleen B.
2001-01-01
Remote sensing of vegetation cover and condition is critically needed to understand the impacts of land use and climate variability in and and semi-arid regions. However, remote sensing of vegetation change in these environments is difficult for several reasons. First, individual plant canopies are typically small and do not reach the spatial scale of typical Landsat-like satellite image pixels. Second, the phenological status and subsequent dry carbon (or non-photosynthetic) fraction of plant canopies varies dramatically in both space and time throughout and and semi-arid regions. Detection of only the 'green' part of the vegetation using a metric such as the normalized difference vegetation index (NDVI) thus yields limited information on the presence and condition of plants in these ecosystems. Monitoring of both photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) is needed to understand a range of ecosystem characteristics including vegetation presence, cover and abundance, physiological and biogeochemical functioning, drought severity, fire fuel load, disturbance events and recovery from disturbance.
NASA Astrophysics Data System (ADS)
Fu, Yu; Liu, Huan; Hu, Qi; Xie, Jiecheng
2017-05-01
Photoacoustic/photothermal spectroscopy is an established technique for trace detection of chemicals and explosives. Normally high-sensitive microphone or PZT sensor is used to detect the signal in photoacoustic cell. In recent years, laser Doppler vibrometer (LDV) is proposed to remote-sense photoacoustic signal on various substrates. It is a highsensitivity sensor with a displacement resolution of <10pm. In this research, the photoacoustic effect of various chemicals and explosives is excited by a quantum cascade laser (QCL) at their absorbance peak. A home-developed differential LDV at 1550nm wavelength is applied to detect the vibration signal at 100m. A differential configuration is applied to minimize the environment factors, such as environment noise and vibration, air turbulence, etc. and increase the detection sensitivity. The photo-vibrational signal of chemicals and explosives on different substrates are detected. The results show the potential of the proposed technique on detection of trace chemicals and explosives at long standoff distance.
Positive experiences for participants in suicide bereavement groups: a grounded theory model.
Groos, Anita D; Shakespeare-Finch, Jane
2013-01-01
Grounded Theory was used to examine the experiences of 13 participants who had attended psycho-educational support groups for those bereaved by suicide. Results demonstrated core and central categories that fit well with group therapeutic factors developed by I. D. Yalom (1995) and emphasized the importance of universality, imparting information and instilling hope, catharsis and self-disclosure, and broader meaning-making processes surrounding acceptance or adjustment. Participants were commonly engaged in a lengthy process of oscillating between loss-oriented and restoration-focused reappraisals. The functional experience of the group comprised feeling normal within the group, providing a sense of permission to feel and to express emotions and thoughts and to bestow meaning. Structural variables of information and guidance and different perspectives on the suicide and bereavement were gained from other participants, the facilitators, group content, and process. Personal changes, including in relationships and in their sense of self assisted participants to develop an altered and more positive personal narrative.
Estimation of Monthly Near Surface Air Temperature Using Geographically Weighted Regression in China
NASA Astrophysics Data System (ADS)
Wang, M. M.; He, G. J.; Zhang, Z. M.; Zhang, Z. J.; Liu, X. G.
2018-04-01
Near surface air temperature (NSAT) is a primary descriptor of terrestrial environment conditions. The availability of NSAT with high spatial resolution is deemed necessary for several applications such as hydrology, meteorology and ecology. In this study, a regression-based NSAT mapping method is proposed. This method is combined remote sensing variables with geographical variables, and uses geographically weighted regression to estimate NSAT. The altitude was selected as geographical variable; and the remote sensing variables include land surface temperature (LST) and Normalized Difference vegetation index (NDVI). The performance of the proposed method was assessed by predict monthly minimum, mean, and maximum NSAT from point station measurements in China, a domain with a large area, complex topography, and highly variable station density, and the NSAT maps were validated against the meteorology observations. Validation results with meteorological data show the proposed method achieved an accuracy of 1.58 °C. It is concluded that the proposed method for mapping NSAT is very operational and has good precision.
NASA Technical Reports Server (NTRS)
Huemmrich, Karl F.
2013-01-01
The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Knyazikhin, Yuri
2017-01-01
EPIC (Earth Polychromatic Imaging Camera) is a 10-channel spectroradiometer onboard DSCOVR (Deep Space Climate Observatory) spacecraft. In addition to the near-infrared (NIR, 780 nm) and the 'red' (680 nm) channels, EPIC also has the O2 A-band (764+/-0.2 nm) and B-band (687.75+/-0.2 nm). The EPIC Normalized Difference Vegetation Index (NDVI) is defined as the difference between NIR and 'red' channels normalized to their sum. However, the use of the O2 B-band instead of the 'red' channel mitigates the effect of atmosphere on remote sensing of surface reflectance because O2 reduces contribution from the radiation scattered by the atmosphere. Applying the radiative transfer theory and the spectral invariant approximation to EPIC observations, the paper provides supportive arguments for using the O2 band instead of the red channel for monitoring vegetation dynamics. Our results suggest that the use of the O2 B-band enhances the sensitivity of the top-of-atmosphere NDVI to the presence of vegetation.
Remote Sensing of Soil Moisture: A Comparison of Optical and Thermal Methods
NASA Astrophysics Data System (ADS)
Foroughi, H.; Naseri, A. A.; Boroomandnasab, S.; Sadeghi, M.; Jones, S. B.; Tuller, M.; Babaeian, E.
2017-12-01
Recent technological advances in satellite and airborne remote sensing have provided new means for large-scale soil moisture monitoring. Traditional methods for soil moisture retrieval require thermal and optical RS observations. In this study we compared the traditional trapezoid model parameterized based on the land surface temperature - normalized difference vegetation index (LST-NDVI) space with the recently developed optical trapezoid model OPTRAM parameterized based on the shortwave infrared transformed reflectance (STR)-NDVI space for an extensive sugarcane field located in Southwestern Iran. Twelve Landsat-8 satellite images were acquired during the sugarcane growth season (April to October 2016). Reference in situ soil moisture data were obtained at 22 locations at different depths via core sampling and oven-drying. The obtained results indicate that the thermal/optical and optical prediction methods are comparable, both with volumetric moisture content estimation errors of about 0.04 cm3 cm-3. However, the OPTRAM model is more efficient because it does not require thermal data and can be universally parameterized for a specific location, because unlike the LST-soil moisture relationship, the reflectance-soil moisture relationship does not significantly vary with environmental variables (e.g., air temperature, wind speed, etc.).
Thin Cloud Detection Method by Linear Combination Model of Cloud Image
NASA Astrophysics Data System (ADS)
Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.
2018-04-01
The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.
Remote sensing assessment of carbon storage by urban forest
NASA Astrophysics Data System (ADS)
Kanniah, K. D.; Muhamad, N.; Kang, C. S.
2014-02-01
Urban forests play a crucial role in mitigating global warming by absorbing excessive CO2 emissions due to transportation, industry and house hold activities in the urban environment. In this study we have assessed the role of trees in an urban forest, (Mutiara Rini) located within the Iskandar Development region in south Johor, Malaysia. We first estimated the above ground biomass/carbon stock of the trees using allometric equations and biometric data (diameter at breast height of trees) collected in the field. We used remotely sensed vegetation indices (VI) to develop an empirical relationship between VI and carbon stock. We used five different VIs derived from a very high resolution World View-2 satellite data. Results show that model by [1] and Normalized Difference Vegetation Index are correlated well (R2 = 0.72) via a power model. We applied the model to the entire study area to obtain carbon stock of urban forest. The average carbon stock in the urban forest (mostly consisting of Dipterocarp species) is ~70 t C ha-1. Results of this study can be used by the Iskandar Regional Development Authority to better manage vegetation in the urban environment to establish a low carbon city in this region.
Seasonal decoupling between vegetation greenness and function over northern high latitude forests
NASA Astrophysics Data System (ADS)
Jeong, S. J.; Schimel, D.; Frankenberg, C.; Drewry, D.; Fisher, J. B.; Verma, M.; Berry, J. A.; Lee, J. E.; Joiner, J.; Guanter, L.
2014-12-01
It is still unclear how seasonal variations in vegetation greenness relate to vegetation function (i.e., photosynthesis). Currently, normalized difference vegetation index (NDVI) is a widely used proxy for the period of terrestrial carbon uptake. However, new complementary measures are now available. In this study, we compare the seasonal cycle of NDVI with remote sensing of solar-induced chlorophyll fluorescence (SIF) and data-driven gross primary productivity (GPP) over the Northern Hemisphere high latitude forests (40°-55°N). Comparison of the seasonal cycle between these three datasets shows that the NDVI-based phenology has a longer estimated growing season than the growing season estimated using SIF/GPP. The differences are largely explained by a slower decrease in NDVI in the fall relative to SIF/GPP. In the transition seasons, NDVI is linearly related to temperature, while SIF/GPP show nonlinear relationships with respect to temperature. These results imply that autumn greening related to warming found in recent studies may not result in enhanced photosynthesis. Our method of combining remote sensing of NDVI and SIF can help improve our understanding of the large-scale vegetation structural and functional changes.
Ricotta, C.; Reed, Bradley C.; Tieszen, Larry L.
2003-01-01
Time integrated normalized difference vegetation index (ΣNDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989–1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ΣNDVI and the ΣNDVI coefficient of variation (CV ΣNDVI) used as a proxy for interannual climate variability is analysed. Results suggest that the differences in the long-term climatic control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primarily C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ΣNDVI values.
Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.
Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog
2017-09-07
We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.
Flood mapping from Sentinel-1 and Landsat-8 data: a case study from river Evros, Greece
NASA Astrophysics Data System (ADS)
Kyriou, Aggeliki; Nikolakopoulos, Konstantinos
2015-10-01
Floods are suddenly and temporary natural events, affecting areas which are not normally covered by water. The influence of floods plays a significant role both in society and the natural environment, therefore flood mapping is crucial. Remote sensing data can be used to develop flood map in an efficient and effective way. This work is focused on expansion of water bodies overtopping natural levees of the river Evros, invading the surroundings areas and converting them in flooded. Different techniques of flood mapping were used using data from active and passive remote sensing sensors like Sentinlel-1 and Landsat-8 respectively. Space borne pairs obtained from Sentinel-1 were processed in this study. Each pair included an image during the flood, which is called "crisis image" and another one before the event, which is called "archived image". Both images covering the same area were processed producing a map, which shows the spread of the flood. Multispectral data From Landsat-8 were also processed in order to detect and map the flooded areas. Different image processing techniques were applied and the results were compared to the respective results of the radar data processing.
Szantoi, Zoltan; Escobedo, Francisco J; Abd-Elrahman, Amr; Pearlstine, Leonard; Dewitt, Bon; Smith, Scot
2015-05-01
Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge fromremotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using highspatial resolutionimagery and machine learning image classification algorithms for mapping heterogeneouswetland plantcommunities. This study addresses this void by analyzing whether machine learning classifierssuch as decisiontrees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedgecommunities usinghigh resolution aerial imagery and image texture data in the Everglades National Park, Florida.In addition tospectral bands, the normalized difference vegetation index, and first- and second-order texturefeatures derivedfrom the near-infrared band were analyzed. Classifier accuracies were assessed using confusiontablesand the calculated kappa coefficients of the resulting maps. The results indicated that an ANN(multilayerperceptron based on backpropagation) algorithm produced a statistically significantly higheraccuracy(82.04%) than the DT (QUEST) algorithm (80.48%) or the maximum likelihood (80.56%)classifier (α<0.05). Findings show that using multiple window sizes provided the best results. First-ordertexture featuresalso provided computational advantages and results that were not significantly different fromthose usingsecond-order texture features.
NASA Astrophysics Data System (ADS)
Falco, N.; Pedersen, G. B. M.; Vilmunandardóttir, O. K.; Belart, J. M. M. C.; Sigurmundsson, F. S.; Benediktsson, J. A.
2016-12-01
The project "Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS)" aims at providing fast and reliable mapping and monitoring techniques on a big spatial scale with a high temporal resolution of the Icelandic landscape. Such mapping and monitoring will be crucial to both mitigate and understand the scale of processes and their often complex interlinked feedback mechanisms.In the EMMIRS project, the Hekla volcano area is one of the main sites under study, where the volcanic eruptions, extreme weather and human activities had an extensive impact on the landscape degradation. The development of innovative remote sensing approaches to compute earth observation variables as automatically as possible is one of the main tasks of the EMMIRS project. Furthermore, a temporal remote sensing archive is created and composed by images acquired by different sensors (Landsat, RapidEye, ASTER and SPOT5). Moreover, historical aerial stereo photos allowed decadal reconstruction of the landscape by reconstruction of digital elevation models. Here, we propose a novel architecture for automatic unsupervised change detection analysis able to ingest multi-source data in order to detect landscape changes in the Hekla area. The change detection analysis is based on multi-scale analysis, which allows the identification of changes at different level of abstraction, from pixel-level to region-level. For this purpose, operators defined in mathematical morphology framework are implemented to model the contextual information, represented by the neighbour system of a pixel, allowing the identification of changes related to both geometrical and spectral domains. Automatic radiometric normalization strategy is also implemented as pre-processing step, aiming at minimizing the effect of different acquisition conditions. The proposed architecture is tested on multi-temporal data sets acquired over different time periods coinciding with the last three eruptions (1980-1981, 1991, 2000) occurred on Hekla volcano. The results reveal emplacement of new lava flows and the initial vegetation succession, providing insightful information on the evolving of vegetation in such environment. Shadow and snow patch changes are resolved in post-processing by exploiting the available spectral information.
Three-dimensional movement analysis of handwriting in subjects with mild hemiparesis.
Harada, Takako; Okajima, Yasutomo; Takahashi, Hidetoshi
2010-08-01
To investigate the effects of hemiparesis on handwriting using a 3-dimensional movement analyzer. Comparative case study. Ambulatory care clinic. Right-handed patients (n=25; mean age +/- SD, 62.3+/-10y) with mild right hemiparesis secondary to subcortical stroke, and age-matched (n=10; 65.6+/-13y) and age-unmatched (n=15; 32.4+/-10y) control subjects. Not applicable. Time required to write a Japanese character of 2 different sizes and average speed of handwriting at the pen tip. Average radii of tracks of the moving pen tip, metacarpal head of the index finger, and distal end of the forearm during writing. Correlation coefficients of the instantaneous speed-time graph of the pen tip with that of the index finger and with that of the distal forearm during writing. Time for writing with the hemiparetic right hand was longer than that with the unaffected left hand (P=.05 approximately .03), while it was shorter in healthy control subjects (P=.07 approximately .05). In contrast with the left-hand writing, the track radius of the pen tip of the right-hand writing in patients with hemiparesis with normal joint position sense was significantly larger than that of the finger or distal forearm (P=.01). The finding was the same as in the young and elderly control subjects. This right-left difference disappeared in the patients with hemiparesis with position sense impairment. The correlation coefficient of speed between the pen tip and the finger was larger in right-hand than left-hand writing in the control and sensory-normative patients with hemiparesis even though the difference was significant only in the healthy elderly subjects (P=.03). Irrespective of the right or left hand use, the correlation coefficient between the pen tip and the finger or distal forearm significantly increased as the character size increased (P=.03 approximately 6 x10(-6)) in all subjects and patients. However, this size-related difference was less significant in the patients with sensory impairment. The characteristics of handwriting movement by the dominant hand were preserved in patients with mild dominant-hand hemiparesis when joint position sense was normative but were lost in those with position sense impairment.
Chemosensory interaction: acquired olfactory impairment is associated with decreased taste function.
Landis, Basile N; Scheibe, Mandy; Weber, Cornelia; Berger, Robert; Brämerson, Annika; Bende, Mats; Nordin, Steven; Hummel, Thomas
2010-08-01
Olfaction, taste and trigeminal function are three distinct modalities. However, in daily life they are often activated concomitantly. In health and disease, it has been shown that in two of these senses, the trigeminal and olfactory senses, modification of one sense leads to changes in the other sense and vice versa. The objective of the study was to investigate whether and (if so) how, the third modality, taste, is influenced by olfactory impairment. We tested 210 subjects with normal (n = 107) or impaired (n = 103) olfactory function for their taste identification capacities. Validated tests were used for olfactory and gustatory testing (Sniffin' Sticks, Taste Strips). In an additional experiment, healthy volunteers underwent reversible olfactory cleft obstruction to investigate short-time changes of gustatory function after olfactory alteration. Mean gustatory identification (taste strip score) for the subjects with impaired olfaction was 19.4 +/- 0.6 points and 22.9 +/- 0.5 points for those with normal olfactory function (t = 4.6, p < 0.001). The frequencies of both, smell and taste impairments interacted significantly (Chi(2), F = 16.4, p < 0.001), and olfactory and gustatory function correlated (r (210) = 0.30, p < 0.001). Neither age nor olfactory impairment cause effects interfered with this olfactory-gustatory interaction. In contrast, after short-lasting induced olfactory decrease, gustatory function remained unchanged. The present study suggests that longstanding impaired olfactory function is associated with decreased gustatory function. These findings seem to extend previously described mutual chemosensory interactions also to smell and taste. It further raises the question whether chemical senses in general decrease mutually after acquired damage.
Evaluating ESA CCI Soil Moisture in East Africa
NASA Technical Reports Server (NTRS)
McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R.; Wang, Shugong; Peters-Lidard, Christa D.; Verdin, James P.
2016-01-01
To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASAs Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R greater than 0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.
Monitoring crop coefficient of orange orchards using energy balance and the remote sensed NDVI
NASA Astrophysics Data System (ADS)
Consoli, Simona; Cirelli, Giuseppe Luigi; Toscano, Attilio
2006-09-01
The structure of vegetation is paramount in regulating the exchange of mass and energy across the biosphereatmosphere interface. In particular, changes in vegetation density affected the partitioning of incoming solar energy into sensible and latent heat fluxes that may result in persistent drought through reductions in agricultural productivity and in the water resources availability. Limited research with citrus orchards has shown improvements to irrigation scheduling due to better water-use estimation and more appropriate timing of irrigation when crop coefficient (Kc) estimate, derived from remotely sensed multispectral vegetation indices (VIs), are incorporated into irrigation-scheduling algorithms. The purpose of this article is the application of an empirical reflectance-based model for the estimation of Kc and evapotranspiration fluxes (ET) using ground observations on climatic data and high-resolution VIs from ASTER TERRA satellite imagery. The remote sensed Kc data were used in developing the relationship with the normalized difference vegetation index (NDVI) for orange orchards during summer periods. Validation of remote sensed data on ET, Kc and vegetation features was deal through ground data observations and the resolution of the energy balance to derive latent heat flux density (λE), using measures of net radiation (Rn) and soil heat flux density (G) and estimate of sensible heat flux density (H) from high frequency temperature measurements (Surface Renewal technique). The chosen case study is that of an irrigation area covered by orange orchards located in Eastern Sicily, Italy) during the irrigation seasons 2005 and 2006.
Broadband Phase Retrieval for Image-Based Wavefront Sensing
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2007-01-01
A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature wavefront sensing, and Shack-Hartmann sensing, all of which entail disadvantages in comparison with image-based methods. The main disadvantages of these non-image based methods are complexity of test equipment and the need for a wavefront reference.
Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements.
Chavana-Bryant, Cecilia; Malhi, Yadvinder; Wu, Jin; Asner, Gregory P; Anastasiou, Athanasios; Enquist, Brian J; Cosio Caravasi, Eric G; Doughty, Christopher E; Saleska, Scott R; Martin, Roberta E; Gerard, France F
2017-05-01
Leaf aging is a fundamental driver of changes in leaf traits, thereby regulating ecosystem processes and remotely sensed canopy dynamics. We explore leaf reflectance as a tool to monitor leaf age and develop a spectra-based partial least squares regression (PLSR) model to predict age using data from a phenological study of 1099 leaves from 12 lowland Amazonian canopy trees in southern Peru. Results demonstrated monotonic decreases in leaf water (LWC) and phosphorus (P mass ) contents and an increase in leaf mass per unit area (LMA) with age across trees; leaf nitrogen (N mass ) and carbon (C mass ) contents showed monotonic but tree-specific age responses. We observed large age-related variation in leaf spectra across trees. A spectra-based model was more accurate in predicting leaf age (R 2 = 0.86; percent root mean square error (%RMSE) = 33) compared with trait-based models using single (R 2 = 0.07-0.73; %RMSE = 7-38) and multiple (R 2 = 0.76; %RMSE = 28) predictors. Spectra- and trait-based models established a physiochemical basis for the spectral age model. Vegetation indices (VIs) including the normalized difference vegetation index (NDVI), enhanced vegetation index 2 (EVI2), normalized difference water index (NDWI) and photosynthetic reflectance index (PRI) were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Working memory in Farsi-speaking children with normal development and cochlear implant.
Soleymani, Zahra; Amidfar, Meysam; Dadgar, Hooshang; Jalaie, Shohre
2014-04-01
Working memory has an important role in language acquisition and development of cognition skills. The ability of encoding, storage and retrieval of phonological codes, as activities of working memory, acquired by audition sense. Children with cochlear implant experience a period that they are not able to perceive sounds. In order to assess the effect of hearing on working memory, we investigated working memory as a cognition skill in children with normal development and cochlear implant. Fifty students with normal hearing and 50 students with cochlear implant aged 5-7 years participated in this study. Children educated in the preschool, the first and second grades. Children with normal development were matched based on age, gender, and grade of education with cochlear implant. Two components of working memory including phonological loop and central executive were compared between two groups. Phonological loop assessed by nonword repetition task and forward digit span. To assess central executive component backward digit span was used. The developmental trend was studied in children with normal development and cochlear implant as well. The effect of age at implantation in children with cochlear implants on components of working memory was investigated. There are significant differences between children with normal development and cochlear implant in all tasks that assess working memory (p < 0.001). The children's age at implantation was negatively correlated with all tasks (p < 0.001). In contrast, duration of usage of cochlear implant set was positively correlated with all tasks (p < 0.001). The comparison of working memory between different grades showed significant differences both in children with normal development and in children with cochlear implant (p < 0.05). These results implied that children with cochlear implant may experience difficulties in working memory. Therefore, these children have problems in encoding, practicing, and repeating phonological units. The results also suggested working memory develops when the child grows up. In cochlear implant children, with decreasing age at implantation and increasing their experience in perceiving sound, working memory skills improved. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Lausch, Angela; Pause, Marion; Merbach, Ines; Zacharias, Steffen; Doktor, Daniel; Volk, Martin; Seppelt, Ralf
2013-02-01
Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the "One Sensor at Different Scales" (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R (2) of 0.83, which was transferred to airborne hyperspectral data on the local and regional scales. For this purpose, hyperspectral imagery was collected at three altitudes over a land cover gradient of 25 km within a timeframe of a few minutes, yielding a spatial resolution from 1 to 3 m. For all recorded spatial scales, both the LAI and the NDVI were determined. The spatial properties of LAI and NDVI of all recorded hyperspectral images were compared using semivariance metrics derived from the variogram. The first results show spatial differences in the heterogeneity of LAI and NDVI from 1 to 3 m with the recorded hyperspectral data. That means that differently recorded data on different scales might not sufficiently maintain the spatial properties of high spatial resolution hyperspectral images.
Is the deleterious effect of cryotherapy on proprioception mitigated by exercise?
Ribeiro, F; Moreira, S; Neto, J; Oliveira, J
2013-05-01
This study aimed to examine the acute effects of cryotherapy on knee position sense and to determine the time period necessary to normalize joint position sense when exercising after cryotherapy. 12 subjects visited the laboratory twice, once for cryotherapy followed by 30 min of exercise on a cycloergometer and once for cryotherapy followed by 30 min of rest. Sessions were randomly determined and separated by 48 h. Cryotherapy was applied in the form of ice bag, filled with 1 kg of crushed ice, for 20 min. Knee position sense was measured at baseline, after cryotherapy and every 5 min after cryotherapy removal until a total of 30 min. The main effect of cryotherapy was significant showing an increase in absolute (F7,154=43.76, p<0.001) and relative (F7,154=7.97, p<0.001) errors after cryotherapy. The intervention after cryotherapy (rest vs. exercise) revealed a significant main effect only for absolute error (F7,154=4.05, p<0.001), i.e., when subjects exercised after cryotherapy, the proprioceptive acuity reached the baseline values faster (10 min vs. 15 min). Our results indicated that the deleterious effect of cryotherapy on proprioception is mitigated by low intensity exercise, being the time necessary to normalize knee position sense reduced from 15 to 10 min. © Georg Thieme Verlag KG Stuttgart · New York.
Bones, Oliver; Plack, Christopher J
2015-03-04
When two musical notes with simple frequency ratios are played simultaneously, the resulting musical chord is pleasing and evokes a sense of resolution or "consonance". Complex frequency ratios, on the other hand, evoke feelings of tension or "dissonance". Consonance and dissonance form the basis of harmony, a central component of Western music. In earlier work, we provided evidence that consonance perception is based on neural temporal coding in the brainstem (Bones et al., 2014). Here, we show that for listeners with clinically normal hearing, aging is associated with a decline in both the perceptual distinction and the distinctiveness of the neural representations of different categories of two-note chords. Compared with younger listeners, older listeners rated consonant chords as less pleasant and dissonant chords as more pleasant. Older listeners also had less distinct neural representations of consonant and dissonant chords as measured using a Neural Consonance Index derived from the electrophysiological "frequency-following response." The results withstood a control for the effect of age on general affect, suggesting that different mechanisms are responsible for the perceived pleasantness of musical chords and affective voices and that, for listeners with clinically normal hearing, age-related differences in consonance perception are likely to be related to differences in neural temporal coding. Copyright © 2015 Bones and Plack.
Plack, Christopher J.
2015-01-01
When two musical notes with simple frequency ratios are played simultaneously, the resulting musical chord is pleasing and evokes a sense of resolution or “consonance”. Complex frequency ratios, on the other hand, evoke feelings of tension or “dissonance”. Consonance and dissonance form the basis of harmony, a central component of Western music. In earlier work, we provided evidence that consonance perception is based on neural temporal coding in the brainstem (Bones et al., 2014). Here, we show that for listeners with clinically normal hearing, aging is associated with a decline in both the perceptual distinction and the distinctiveness of the neural representations of different categories of two-note chords. Compared with younger listeners, older listeners rated consonant chords as less pleasant and dissonant chords as more pleasant. Older listeners also had less distinct neural representations of consonant and dissonant chords as measured using a Neural Consonance Index derived from the electrophysiological “frequency-following response.” The results withstood a control for the effect of age on general affect, suggesting that different mechanisms are responsible for the perceived pleasantness of musical chords and affective voices and that, for listeners with clinically normal hearing, age-related differences in consonance perception are likely to be related to differences in neural temporal coding. PMID:25740534
NASA Astrophysics Data System (ADS)
Pei, Yifei; Zhang, Jingchuan; Zhang, Luosha; Liu, Yang; Zhang, Lina; Chen, Shiyu
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, two different kinds of sleeve compactly single model fiber covered by acrylate and polyimide are researched. Influence of the cover to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, transmission characteristic of single model fiber in high vacuum thermal environment is analyzed by solve the equation of heat conduction. Then, experimental program of influence on FBG reflection spectrum characteristics is designed and a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG in different coating single-mode transmission fiber under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different coating single-mode transmission fiber dropped to -196 ° from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the theoretical and experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 ° 25 ° temperature cycle) .
Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing
NASA Astrophysics Data System (ADS)
Sun, K.; Chao, X.; Sur, R.; Jeffries, J. B.; Hanson, R. K.
2013-03-01
A general model for 1 f-normalized wavelength modulation absorption spectroscopy with nf detection (i.e., WMS- nf) is presented that considers the performance of injection-current-tuned diode lasers and the reflective interference produced by other optical components on the line-of-sight (LOS) transmission intensity. This model explores the optimization of sensitive detection of optical absorption by species with structured spectra at elevated pressures. Predictions have been validated by comparison with measurements of the 1 f-normalized WMS- nf (for n = 2-6) lineshape of the R(11) transition in the 1st overtone band of CO near 2.3 μm at four different pressures ranging from 5 to 20 atm, all at room temperature. The CO mole fractions measured by 1 f-normalized WMS-2 f, 3 f, and 4 f techniques agree with calibrated mixtures within 2.0 %. At conditions where absorption features are significantly broadened and large modulation depths are required, uncertainties in the WMS background signals due to reflective interference in the optical path can produce significant error in gas mole fraction measurements by 1 f-normalized WMS-2 f. However, such potential errors can be greatly reduced by using the higher harmonics, i.e., 1 f-normalized WMS- nf with n > 2. In addition, less interference from pressure-broadened neighboring transitions has been observed for WMS with higher harmonics than for WMS-2 f.
Graham, Kyran T; Martin-Iverson, Mathew T; Holmes, Nicholas P; Jablensky, Assen; Waters, Flavie
2014-01-01
Individuals with schizophrenia, particularly those with passivity symptoms, may not feel in control of their actions, believing them to be controlled by external agents. Cognitive operations that contribute to these symptoms may include abnormal processing in agency as well as body representations that deal with body schema and body image. However, these operations in schizophrenia are not fully understood, and the questions of general versus specific deficits in individuals with different symptom profiles remain unanswered. Using the projected-hand illusion (a digital video version of the rubber-hand illusion) with synchronous and asynchronous stroking (500 ms delay), and a hand laterality judgment task, we assessed sense of agency, body image, and body schema in 53 people with clinically stable schizophrenia (with a current, past, and no history of passivity symptoms) and 48 healthy controls. The results revealed a stable trait in schizophrenia with no difference between clinical subgroups (sense of agency) and some quantitative (specific) differences depending on the passivity symptom profile (body image and body schema). Specifically, a reduced sense of self-agency was a common feature of all clinical subgroups. However, subgroup comparisons showed that individuals with passivity symptoms (both current and past) had significantly greater deficits on tasks assessing body image and body schema, relative to the other groups. In addition, patients with current passivity symptoms failed to demonstrate the normal reduction in body illusion typically seen with a 500 ms delay in visual feedback (asynchronous condition), suggesting internal timing problems. Altogether, the results underscore self-abnormalities in schizophrenia, provide evidence for both trait abnormalities and state changes specific to passivity symptoms, and point to a role for internal timing deficits as a mechanistic explanation for external cues becoming a possible source of self-body input.
Electromechanical Coupling Factor of Breast Tissue as a Biomarker for Breast Cancer.
Park, Kihan; Chen, Wenjin; Chekmareva, Marina A; Foran, David J; Desai, Jaydev P
2018-01-01
This research aims to validate a new biomarker of breast cancer by introducing electromechanical coupling factor of breast tissue samples as a possible additional indicator of breast cancer. Since collagen fibril exhibits a structural organization that gives rise to a piezoelectric effect, the difference in collagen density between normal and cancerous tissue can be captured by identifying the corresponding electromechanical coupling factor. The design of a portable diagnostic tool and a microelectromechanical systems (MEMS)-based biochip, which is integrated with a piezoresistive sensing layer for measuring the reaction force as well as a microheater for temperature control, is introduced. To verify that electromechanical coupling factor can be used as a biomarker for breast cancer, the piezoelectric model for breast tissue is described with preliminary experimental results on five sets of normal and invasive ductal carcinoma (IDC) samples in the 25-45 temperature range. While the stiffness of breast tissues can be captured as a representative mechanical signature which allows one to discriminate among tissue types especially in the higher strain region, the electromechanical coupling factor shows more distinct differences between the normal and IDC groups over the entire strain region than the mechanical signature. From the two-sample -test, the electromechanical coupling factor under compression shows statistically significant differences ( 0.0039) between the two groups. The increase in collagen density in breast tissue is an objective and reproducible characteristic of breast cancer. Although characterization of mechanical tissue property has been shown to be useful for differentiating cancerous tissue from normal tissue, using a single parameter may not be sufficient for practical usage due to inherent variation among biological samples. The portable breast cancer diagnostic tool reported in this manuscript shows the feasibility of measuring multiple parameters of breast tissue allowing for practical application.
NASA Astrophysics Data System (ADS)
Halverson, G. H.; Fisher, J.; Magnuson, M.; John, L.
2017-12-01
An operational system to produce and disseminate remotely sensed evapotranspiration using the PT-JPL model and support its analysis and use in water resources decision making is being integrated into the New Mexico state government. A partnership between the NASA Western Water Applications Office (WWAO), the Jet Propulsion Laboratory (JPL), and the New Mexico Office of the State Engineer (NMOSE) has enabled collaboration with a variety of state agencies to inform decision making processes for agriculture, rangeland, and forest management. This system improves drought understanding and mobilization, litigation support, and economic, municipal, and ground-water planning through interactive mapping of daily rates of evapotranspiration at 1 km spatial resolution with near real-time latency. This is facilitated by daily remote sensing acquisitions of land-surface temperature and near-surface air temperature and humidity from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite as well as the short-term composites of Normalized Difference Vegetation Index (NDVI) and albedo provided by MODIS. Incorporating evapotranspiration data into agricultural water management better characterizes imbalances between water requirements and supplies. Monitoring evapotranspiration over rangeland areas improves remediation and prevention of aridification. Monitoring forest evapotranspiration improves wildlife management and response to wildfire risk. Continued implementation of this decision support system should enhance water and food security.
NASA Astrophysics Data System (ADS)
Gampe, David; Huber García, Verena; Marzahn, Philip; Ludwig, Ralf
2017-04-01
Actual evaporation (Eta) is an essential variable to assess water availability, drought risk and food security, among others. Measurements of Eta are however limited to a small footprint, hampering a spatially explicit analysis and application and are very often not available at all. To overcome the problem of data scarcity, Eta can be assessed by various remote sensing approaches such as the Triangle Method (Jiang & Islam, 1999). Here, Eta is estimated by using the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST). In this study, the R-package 'TriangleMethod' was compiled to efficiently perform the calculations of NDVI and processing LST to finally derive Eta from the applied data set. The package contains all necessary calculation steps and allows easy processing of a large data base of remote sensing images. By default, the parameterization for the Landsat TM and ETM+ sensors are implemented, however, the algorithms can be easily extended to additional sensors. The auxiliary variables required to estimate Eta with this method, such as elevation, solar radiation and air temperature at the overpassing time, can be processed as gridded information to allow for a better representation of the study area. The package was successfully applied in various studies in Spain, Palestine, Costa Rica and Canada.
Remote sensing and malaria risk for military personnel in Africa.
Machault, Vanessa; Orlandi-Pradines, Eve; Michel, Rémy; Pagès, Frédéric; Texier, Gaëtan; Pradines, Bruno; Fusaï, Thierry; Boutin, Jean-Paul; Rogier, Christophe
2008-01-01
Nonimmune travelers in malaria-endemic areas are exposed to transmission and may experience clinical malaria attacks during or after their travel despite using antivectorial devices or chemoprophylaxis. Environment plays an essential role in the epidemiology of this disease. Remote-sensed environmental information had not yet been tested as an indicator of malaria risk among nonimmune travelers. A total of 1,189 personnel from 10 French military companies traveling for a short-duration mission (about 4 mo) in sub-Saharan Africa from February 2004 to February 2006 were enrolled in a prospective longitudinal cohort study. Incidence rate of clinical malaria attacks occurring during or after the mission was analyzed according to individual characteristics, compliance with antimalaria prophylactic measures, and environmental information obtained from earth observation satellites for all the locations visited during the missions. Age, the lack of compliance with the chemoprophylaxis, and staying in areas with an average Normalized Difference Vegetation Index higher than 0.35 were risk factors for clinical malaria. Remotely sensed environmental data can provide important planning information on the likely level of malaria risk among nonimmune travelers who could be briefly exposed to malaria transmission and could be used to standardize for the risk of malaria transmission when evaluating the efficacy of antimalaria prophylactic measures.
On event-based optical flow detection
Brosch, Tobias; Tschechne, Stephan; Neumann, Heiko
2015-01-01
Event-based sensing, i.e., the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition by standard cameras. Here, we systematically investigate the implications of event-based sensing in the context of visual motion, or flow, estimation. Starting from a common theoretical foundation, we discuss different principal approaches for optical flow detection ranging from gradient-based methods over plane-fitting to filter based methods and identify strengths and weaknesses of each class. Gradient-based methods for local motion integration are shown to suffer from the sparse encoding in address-event representations (AER). Approaches exploiting the local plane like structure of the event cloud, on the other hand, are shown to be well suited. Within this class, filter based approaches are shown to define a proper detection scheme which can also deal with the problem of representing multiple motions at a single location (motion transparency). A novel biologically inspired efficient motion detector is proposed, analyzed and experimentally validated. Furthermore, a stage of surround normalization is incorporated. Together with the filtering this defines a canonical circuit for motion feature detection. The theoretical analysis shows that such an integrated circuit reduces motion ambiguity in addition to decorrelating the representation of motion related activations. PMID:25941470
Detection of potato beetle damage using remote sensing from small unmanned aircraft systems
NASA Astrophysics Data System (ADS)
Hunt, E. Raymond; Rondon, Silvia I.
2017-04-01
Colorado potato beetle (CPB) adults and larvae devour leaves of potato and other solanaceous crops and weeds, and may quickly develop resistance to pesticides. With early detection of CPB damage, more options are available for precision integrated pest management, which reduces the amount of pesticides applied in a field. Remote sensing with small unmanned aircraft systems (sUAS) has potential for CPB detection because low flight altitudes allow image acquisition at very high spatial resolution. A five-band multispectral sensor and up-looking incident light sensor were mounted on a six-rotor sUAS, which was flown at altitudes of 60 and 30 m in June 2014. Plants went from visibly undamaged to having some damage in just 1 day. Whole-plot normalized difference vegetation index (NDVI) and the number of pixels classified as damaged (0.70≤NDVI≤0.80) were not correlated with visible CPB damage ranked from least to most. Area of CPB damage estimated using object-based image analysis was highly correlated to the visual ranking of damage. Furthermore, plant height calculated using structure-from-motion point clouds was related to CPB damage, but this method required extensive operator intervention for success. Object-based image analysis has potential for early detection based on high spatial resolution sUAS remote sensing.
Pahlavan, Pedram; Najarian, Siamak; Afshari, Elnaz; Moini, Majid
2013-01-01
Artificial palpation is one of the most valuable achievements of artificial tactile sensing approach that can be used in various fields of medicine and more specifically in surgery. These techniques cause different surgical maneuvers to be done more precisely and noninvasively. In this study, considering the present problems and limitations of cross-clamping an artery during laparoscopic vascular surgeries, a new tactile sensory system will be introduced.Having imitated surgeon's palpation during open vascular surgeries and modeled it conceptually, the optimal amount of the total angular displacement of each robot joint in order to cross-clamping an artery without damaging to the artery surrounding tissues will be calculated. The elastic governing equation of contact occurred between the tactile sensor placed on the first link of the robot and the surrounding tissues around the artery were developed. A finite element model is coupled with genetic algorithm optimization method so that the normal stress and displacements in contact surface of the robot and artery's surrounding tissues would be minimized. Thus, reliability and accuracy of artificial tactile sensing method in artery cross-clamping will be demonstrated. Finally, the functional principles of the new tactile system capable of cross-clamping an artery during laparoscopic surgeries will be presented.
Automatic Multi-sensor Data Quality Checking and Event Detection for Environmental Sensing
NASA Astrophysics Data System (ADS)
LIU, Q.; Zhang, Y.; Zhao, Y.; Gao, D.; Gallaher, D. W.; Lv, Q.; Shang, L.
2017-12-01
With the advances in sensing technologies, large-scale environmental sensing infrastructures are pervasively deployed to continuously collect data for various research and application fields, such as air quality study and weather condition monitoring. In such infrastructures, many sensor nodes are distributed in a specific area and each individual sensor node is capable of measuring several parameters (e.g., humidity, temperature, and pressure), providing massive data for natural event detection and analysis. However, due to the dynamics of the ambient environment, sensor data can be contaminated by errors or noise. Thus, data quality is still a primary concern for scientists before drawing any reliable scientific conclusions. To help researchers identify potential data quality issues and detect meaningful natural events, this work proposes a novel algorithm to automatically identify and rank anomalous time windows from multiple sensor data streams. More specifically, (1) the algorithm adaptively learns the characteristics of normal evolving time series and (2) models the spatial-temporal relationship among multiple sensor nodes to infer the anomaly likelihood of a time series window for a particular parameter in a sensor node. Case studies using different data sets are presented and the experimental results demonstrate that the proposed algorithm can effectively identify anomalous time windows, which may resulted from data quality issues and natural events.
Climatological Modeling of Monthly Air Temperature and Precipitation in Egypt through GIS Techniques
NASA Astrophysics Data System (ADS)
El Kenawy, A.
2009-09-01
This paper describes a method for modeling and mapping four climatic variables (maximum temperature, minimum temperature, mean temperature and total precipitation) in Egypt using a multiple regression approach implemented in a GIS environment. In this model, a set of variables including latitude, longitude, elevation within a distance of 5, 10 and 15 km, slope, aspect, distance to the Mediterranean Sea, distance to the Red Sea, distance to the Nile, ratio between land and water masses within a radius of 5, 10, 15 km, the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Normalized Difference Temperature Index (NDTI) and reflectance are included as independent variables. These variables were integrated as raster layers in MiraMon software at a spatial resolution of 1 km. Climatic variables were considered as dependent variables and averaged from quality controlled and homogenized 39 series distributing across the entire country during the period of (1957-2006). For each climatic variable, digital and objective maps were finally obtained using the multiple regression coefficients at monthly, seasonal and annual timescale. The accuracy of these maps were assessed through cross-validation between predicted and observed values using a set of statistics including coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean bias Error (MBE) and D Willmott statistic. These maps are valuable in the sense of spatial resolution as well as the number of observatories involved in the current analysis.
Developing a Method to Mask Trees in Commercial Multispectral Imagery
NASA Astrophysics Data System (ADS)
Becker, S. J.; Daughtry, C. S. T.; Jain, D.; Karlekar, S. S.
2015-12-01
The US Army has an increasing focus on using automated remote sensing techniques with commercial multispectral imagery (MSI) to map urban and peri-urban agricultural and vegetative features; however, similar spectral profiles between trees (i.e., forest canopy) and other vegetation result in confusion between these cover classes. Established vegetation indices, like the Normalized Difference Vegetation Index (NDVI), are typically not effective in reliably differentiating between trees and other vegetation. Previous research in tree mapping has included integration of hyperspectral imagery (HSI) and LiDAR for tree detection and species identification, as well as the use of MSI to distinguish tree crowns from non-vegetated features. This project developed a straightforward method to model and also mask out trees from eight-band WorldView-2 (1.85 meter x 1.85 meter resolution at nadir) satellite imagery at the Beltsville Agricultural Research Center in Beltsville, MD spanning 2012 - 2015. The study site included tree cover, a range of agricultural and vegetative cover types, and urban features. The modeling method exploits the product of the red and red edge bands and defines accurate thresholds between trees and other land covers. Results show this method outperforms established vegetation indices including the NDVI, Soil Adjusted Vegetation Index, Normalized Difference Water Index, Simple Ratio, and Normalized Difference Red Edge Index in correctly masking trees while preserving the other information in the imagery. This method is useful when HSI and LiDAR collection are not possible or when using archived MSI.
Quantification of Local Warming Trend: A Remote Sensing-Based Approach
Rahaman, Khan Rubayet; Hassan, Quazi K.
2017-01-01
Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961–2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming. PMID:28072857
Evaluation of Motor Control Using Haptic Device
NASA Astrophysics Data System (ADS)
Nuruki, Atsuo; Kawabata, Takuro; Shimozono, Tomoyuki; Yamada, Masafumi; Yunokuchi, Kazutomo
When the kinesthesia and the touch act at the same time, such perception is called haptic perception. This sense has the key role in motor information on the force and position control. The haptic perception is important in the field where the evaluation of the motor control is needed. The purpose of this paper is to evaluate the motor control, perception of heaviness and distance in normal and fatigue conditions using psychophysical experiment. We used a haptic device in order to generate precise force and distance, but the precedent of the evaluation system with the haptic device has been few. Therefore, it is another purpose to examine whether the haptic device is useful as evaluation system for the motor control. The psychophysical quantity of force and distance was measured by two kinds of experiments. Eight healthy subjects participated in this study. The stimulation was presented by haptic device [PHANTOM Omni: SensAble Company]. The subjects compared between standard and test stimulation, and answered it had felt which stimulation was strong. In the result of the psychophysical quantity of force, just noticeable difference (JND) had a significant difference, and point of subjective equality (PSE) was not different between normal and muscle fatigue. On the other hand, in the result of the psychophysical quantity of distance, JND and PSE were not difference between normal and muscle fatigue. These results show that control of force was influenced, but control of distance was not influenced in muscle fatigue. Moreover, these results suggested that the haptic device is useful as the evaluation system for the motor control.
A review of spatial downscaling of satellite remotely sensed soil moisture
NASA Astrophysics Data System (ADS)
Peng, Jian; Loew, Alexander; Merlin, Olivier; Verhoest, Niko E. C.
2017-06-01
Satellite remote sensing technology has been widely used to estimate surface soil moisture. Numerous efforts have been devoted to develop global soil moisture products. However, these global soil moisture products, normally retrieved from microwave remote sensing data, are typically not suitable for regional hydrological and agricultural applications such as irrigation management and flood predictions, due to their coarse spatial resolution. Therefore, various downscaling methods have been proposed to improve the coarse resolution soil moisture products. The purpose of this paper is to review existing methods for downscaling satellite remotely sensed soil moisture. These methods are assessed and compared in terms of their advantages and limitations. This review also provides the accuracy level of these methods based on published validation studies. In the final part, problems and future trends associated with these methods are analyzed.
NASA Technical Reports Server (NTRS)
Kalayeh, H. M.; Landgrebe, D. A.
1983-01-01
A criterion which measures the quality of the estimate of the covariance matrix of a multivariate normal distribution is developed. Based on this criterion, the necessary number of training samples is predicted. Experimental results which are used as a guide for determining the number of training samples are included. Previously announced in STAR as N82-28109
Code of Federal Regulations, 2012 CFR
2012-01-01
... water heating to above 120 °F in at least one wash phase of the normal cycle. 2.Testing conditions: 2... dishwasher does not heat water in the normal cycle. 2.6.2Non-soil-sensing dishwashers to be tested at a... cycle. 3.4Water pressure gauge. The water pressure gauge must have a resolution of one pound per square...
Visual Image Sensor Organ Replacement
NASA Technical Reports Server (NTRS)
Maluf, David A.
2014-01-01
This innovation is a system that augments human vision through a technique called "Sensing Super-position" using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks. Three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. Because the human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns, the translation of images into sounds reduces the risk of accidentally filtering out important clues. The VISOR device was developed to augment the current state-of-the-art head-mounted (helmet) display systems. It provides the ability to sense beyond the human visible light range, to increase human sensing resolution, to use wider angle visual perception, and to improve the ability to sense distances. It also allows compensation for movement by the human or changes in the scene being viewed.
The normalization heuristic: an untested hypothesis that may misguide medical decisions.
Aberegg, Scott K; O'Brien, James M
2009-06-01
Medical practice is increasingly informed by the evidence from randomized controlled trials. When such evidence is not available, clinical hypotheses based on pathophysiological reasoning and common sense guide clinical decision making. One commonly utilized general clinical hypothesis is the assumption that normalizing abnormal laboratory values and physiological parameters will lead to improved patient outcomes. We refer to the general use of this clinical hypothesis to guide medical therapeutics as the "normalization heuristic". In this paper, we operationally define this heuristic and discuss its limitations as a rule of thumb for clinical decision making. We review historical and contemporaneous examples of normalization practices as empirical evidence for the normalization heuristic and to highlight its frailty as a guide for clinical decision making.
Intracellular diffusion of oxygen and hypoxic sensing: role of mitochondrial respiration.
Takahashi, Eiji; Sato, Michihiko
2010-01-01
In vivo, diffusional O(2) gradients from the capillary blood to the intracellular space determine O(2) availability at the O(2) sensing molecules in the cell. With a novel technique for imaging intracellular O(2) levels using green fluorescent protein (GFP), we examined the possibility that diffusional O(2) concentration gradients might be involved in the cellular hypoxic sensing in cultured Hep3B cells. In the present study, we failed to demonstrate significant gradients of intracellular O(2) when mitochondrial respiration was maximally elevated by an uncoupler of oxidative phosphorylation. Thus, we conclude that intracellular O(2) gradients may be negligible at normal mitochondrial O(2) demand in these cells.
NASA Technical Reports Server (NTRS)
Collamore, Frank N.
1989-01-01
The development of a miniature multifunction turbomachinery shaft displacement sensor using state-of-the-art non-contract capacitive sensing technology is described. Axial displacement, radial displacement, and speed are sensed using a single probe within the envelope normally required for a single function. A survey of displacement sensing technology is summarized including inductive, capacitive, optical and ultrasonic techniques. The design and operation of an experimental triple function sensor is described. Test results are included showing calibration tests and simultaneous dynamic testing of multiple functions. Recommendations for design changes are made to improve low temperature performance, reliability, and for design of a flight type signal conditioning unit.
NASA Astrophysics Data System (ADS)
Presley, Tennille D.
2016-12-01
Biophysics of the Senses connects fundamental properties of physics to biological systems, relating them directly to the human body. It includes discussions of the role of charges and free radicals in disease and homeostasis, how aspects of mechanics impact normal body functions, human bioelectricity and circuitry, forces within the body, and biophysical sensory mechanisms. This is an exciting view of how sensory aspects of biophysics are utilized in everyday life for students who are curious but struggle with the connection between biology and physics.
NASA Astrophysics Data System (ADS)
Zhang, Yuxuan; Zeng, Wen; Ye, Hong; Li, Yanqiong
2018-06-01
In the present study, crystal-facet-dependent gas sensing performance was thoroughly investigated and sensing mechanism of TiO2 was elaborated in depth. Anatase TiO2 nano-polyhedron with highly reactive (0 0 1) facet was successfully synthesized via a one-pot hydrothermal method using fluoride as facet stabilizer and was utilized for fabrication of carbon monoxide gas sensors, followed by characterization of microstructure, phase-purity and gas-sensing properties. Chemiresistive properties of (0 0 1)-dominated gas sensor exhibit superior response to CO with a maximum response of 27.9 at 300 ppm in optimum working temperature as 350 °C. Particularly, first-principle calculation was carried out to expound the sensing mechanism, which shows that CO adsorption on (0 0 1) facet is more stable and favorable than that on normally exposed (1 0 1) facet, corroborating the reactive nature of (0 0 1) facet.
Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui
2014-03-24
We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.
Bernstein, Lynne E.; Eberhardt, Silvio P.; Auer, Edward T.
2014-01-01
Training with audiovisual (AV) speech has been shown to promote auditory perceptual learning of vocoded acoustic speech by adults with normal hearing. In Experiment 1, we investigated whether AV speech promotes auditory-only (AO) perceptual learning in prelingually deafened adults with late-acquired cochlear implants. Participants were assigned to learn associations between spoken disyllabic C(=consonant)V(=vowel)CVC non-sense words and non-sense pictures (fribbles), under AV and then AO (AV-AO; or counter-balanced AO then AV, AO-AV, during Periods 1 then 2) training conditions. After training on each list of paired-associates (PA), testing was carried out AO. Across all training, AO PA test scores improved (7.2 percentage points) as did identification of consonants in new untrained CVCVC stimuli (3.5 percentage points). However, there was evidence that AV training impeded immediate AO perceptual learning: During Period-1, training scores across AV and AO conditions were not different, but AO test scores were dramatically lower in the AV-trained participants. During Period-2 AO training, the AV-AO participants obtained significantly higher AO test scores, demonstrating their ability to learn the auditory speech. Across both orders of training, whenever training was AV, AO test scores were significantly lower than training scores. Experiment 2 repeated the procedures with vocoded speech and 43 normal-hearing adults. Following AV training, their AO test scores were as high as or higher than following AO training. Also, their CVCVC identification scores patterned differently than those of the cochlear implant users. In Experiment 1, initial consonants were most accurate, and in Experiment 2, medial consonants were most accurate. We suggest that our results are consistent with a multisensory reverse hierarchy theory, which predicts that, whenever possible, perceivers carry out perceptual tasks immediately based on the experience and biases they bring to the task. We point out that while AV training could be an impediment to immediate unisensory perceptual learning in cochlear implant patients, it was also associated with higher scores during training. PMID:25206344
Bernstein, Lynne E; Eberhardt, Silvio P; Auer, Edward T
2014-01-01
Training with audiovisual (AV) speech has been shown to promote auditory perceptual learning of vocoded acoustic speech by adults with normal hearing. In Experiment 1, we investigated whether AV speech promotes auditory-only (AO) perceptual learning in prelingually deafened adults with late-acquired cochlear implants. Participants were assigned to learn associations between spoken disyllabic C(=consonant)V(=vowel)CVC non-sense words and non-sense pictures (fribbles), under AV and then AO (AV-AO; or counter-balanced AO then AV, AO-AV, during Periods 1 then 2) training conditions. After training on each list of paired-associates (PA), testing was carried out AO. Across all training, AO PA test scores improved (7.2 percentage points) as did identification of consonants in new untrained CVCVC stimuli (3.5 percentage points). However, there was evidence that AV training impeded immediate AO perceptual learning: During Period-1, training scores across AV and AO conditions were not different, but AO test scores were dramatically lower in the AV-trained participants. During Period-2 AO training, the AV-AO participants obtained significantly higher AO test scores, demonstrating their ability to learn the auditory speech. Across both orders of training, whenever training was AV, AO test scores were significantly lower than training scores. Experiment 2 repeated the procedures with vocoded speech and 43 normal-hearing adults. Following AV training, their AO test scores were as high as or higher than following AO training. Also, their CVCVC identification scores patterned differently than those of the cochlear implant users. In Experiment 1, initial consonants were most accurate, and in Experiment 2, medial consonants were most accurate. We suggest that our results are consistent with a multisensory reverse hierarchy theory, which predicts that, whenever possible, perceivers carry out perceptual tasks immediately based on the experience and biases they bring to the task. We point out that while AV training could be an impediment to immediate unisensory perceptual learning in cochlear implant patients, it was also associated with higher scores during training.
Visual influences on auditory spatial learning
King, Andrew J.
2008-01-01
The visual and auditory systems frequently work together to facilitate the identification and localization of objects and events in the external world. Experience plays a critical role in establishing and maintaining congruent visual–auditory associations, so that the different sensory cues associated with targets that can be both seen and heard are synthesized appropriately. For stimulus location, visual information is normally more accurate and reliable and provides a reference for calibrating the perception of auditory space. During development, vision plays a key role in aligning neural representations of space in the brain, as revealed by the dramatic changes produced in auditory responses when visual inputs are altered, and is used throughout life to resolve short-term spatial conflicts between these modalities. However, accurate, and even supra-normal, auditory localization abilities can be achieved in the absence of vision, and the capacity of the mature brain to relearn to localize sound in the presence of substantially altered auditory spatial cues does not require visuomotor feedback. Thus, while vision is normally used to coordinate information across the senses, the neural circuits responsible for spatial hearing can be recalibrated in a vision-independent fashion. Nevertheless, early multisensory experience appears to be crucial for the emergence of an ability to match signals from different sensory modalities and therefore for the outcome of audiovisual-based rehabilitation of deaf patients in whom hearing has been restored by cochlear implantation. PMID:18986967
Vision-based gait impairment analysis for aided diagnosis.
Ortells, Javier; Herrero-Ezquerro, María Trinidad; Mollineda, Ramón A
2018-02-12
Gait is a firsthand reflection of health condition. This belief has inspired recent research efforts to automate the analysis of pathological gait, in order to assist physicians in decision-making. However, most of these efforts rely on gait descriptions which are difficult to understand by humans, or on sensing technologies hardly available in ambulatory services. This paper proposes a number of semantic and normalized gait features computed from a single video acquired by a low-cost sensor. Far from being conventional spatio-temporal descriptors, features are aimed at quantifying gait impairment, such as gait asymmetry from several perspectives or falling risk. They were designed to be invariant to frame rate and image size, allowing cross-platform comparisons. Experiments were formulated in terms of two databases. A well-known general-purpose gait dataset is used to establish normal references for features, while a new database, introduced in this work, provides samples under eight different walking styles: one normal and seven impaired patterns. A number of statistical studies were carried out to prove the sensitivity of features at measuring the expected pathologies, providing enough evidence about their accuracy. Graphical Abstract Graphical abstract reflecting main contributions of the manuscript: at the top, a robust, semantic and easy-to-interpret feature set to describe impaired gait patterns; at the bottom, a new dataset consisting of video-recordings of a number of volunteers simulating different patterns of pathological gait, where features were statistically assessed.
NASA Astrophysics Data System (ADS)
Knowles, John F.; Lestak, Leanne R.; Molotch, Noah P.
2017-06-01
We used multiple sources of remotely sensed and ground based information to evaluate the spatiotemporal variability of snowpack accumulation, potential evapotranspiration (PET), and Normalized Difference Vegetation Index (NDVI) throughout the Southern Rocky Mountain ecoregion, USA. Relationships between these variables were used to establish baseline values of expected forest productivity given water and energy inputs. Although both the snow water equivalent (SWE) and a snow aridity index (SAI), which used SWE to normalize PET, were significant predictors of the long-term (1989-2012) NDVI, SAI explained 11% more NDVI variability than SWE. Deviations from these relationships were subsequently explored in the context of widespread forest mortality due to bark beetles. Over the entire study area, NDVI was lower per unit SAI in beetle-disturbed compared to undisturbed areas during snow-related drought; however, both SAI and NDVI were spatially heterogeneous within this domain. As a result, we selected three focus areas inside the larger study area within which to isolate the relative impacts of SAI and disturbance on NDVI using multivariate linear regression. These models explained 66%-85% of the NDVI and further suggested that both SAI and disturbance effects were significant, although the disturbance effect was generally greater. These results establish the utility of SAI as a measure of moisture limitation in snow-dominated systems and demonstrate a reduction in forest productivity due to bark beetle disturbance that is particularly evident during drought conditions resultant from low snow accumulation during the winter.
A Survey on Gas Sensing Technology
Liu, Xiao; Cheng, Sitian; Liu, Hong; Hu, Sha; Zhang, Daqiang; Ning, Huansheng
2012-01-01
Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches. PMID:23012563
Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.
Simis, Stefan G H; Ylöstalo, Pasi; Kallio, Kari Y; Spilling, Kristian; Kutser, Tiit
2017-01-01
Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data.
Stoy, Paul C; Quaife, Tristan
2015-01-01
Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes.
Stoy, Paul C.; Quaife, Tristan
2015-01-01
Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes. PMID:26067835
Calcium-sensing receptor 20 years later
Alfadda, Tariq I.; Saleh, Ahmad M. A.; Houillier, Pascal
2014-01-01
The calcium-sensing receptor (CaSR) has played an important role as a target in the treatment of a variety of disease states over the past 20 plus years. In this review, we give an overview of the receptor at the cellular level and then provide details as to how this receptor has been targeted to modulate cellular ion transport mechanisms. As a member of the G protein-coupled receptor (GPCR) family, it has a high degree of homology with a variety of other members in this class, which could explain why this receptor has been identified in so many different tissues throughout the body. This diversity of locations sets it apart from other members of the family and may explain how the receptor interacts with so many different organ systems in the body to modulate the physiology and pathophysiology. The receptor is unique in that it has two large exofacial lobes that sit in the extracellular environment and sense changes in a wide variety of environmental cues including salinity, pH, amino acid concentration, and polyamines to name just a few. It is for this reason that there has been a great deal of research associated with normal receptor physiology over the past 20 years. With the ongoing research, in more recent years a focus on the pathophysiology has emerged and the effects of receptor mutations on cellular and organ physiology have been identified. We hope that this review will enhance and update the knowledge about the importance of this receptor and stimulate future potential investigations focused around this receptor in cellular, organ, and systemic physiology and pathophysiology. PMID:24871857
Lin, Yun-Bin; Lin, Yu-Pin; Deng, Dong-Po; Chen, Kuan-Wei
2008-02-19
In Taiwan, earthquakes have long been recognized as a major cause oflandslides that are wide spread by floods brought by typhoons followed. Distinguishingbetween landslide spatial patterns in different disturbance regimes is fundamental fordisaster monitoring, management, and land-cover restoration. To circumscribe landslides,this study adopts the normalized difference vegetation index (NDVI), which can bedetermined by simply applying mathematical operations of near-infrared and visible-redspectral data immediately after remotely sensed data is acquired. In real-time disastermonitoring, the NDVI is more effective than using land-cover classifications generatedfrom remotely sensed data as land-cover classification tasks are extremely time consuming.Directional two-dimensional (2D) wavelet analysis has an advantage over traditionalspectrum analysis in that it determines localized variations along a specific direction whenidentifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series ofsolutions developed based on Open Geospatial Consortium specifications that can beapplied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2Dwavelet analysis of real-time NDVI images to effectively identify landslide patterns andshare resulting patterns via open geospatial techniques. As a case study, this study analyzedNDVI images derived from SPOT HRV images before and after the ChiChi earthquake(7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images aftertwo large typhoons (Xangsane and Toraji) to delineate the spatial patterns of landslidescaused by major disturbances. Disturbed spatial patterns of landslides that followed theseevents were successfully delineated using 2D wavelet analysis, and results of patternrecognitions of landslides were distributed simultaneously to other agents using geographymarkup language. Real-time information allows successive platforms (agents) to work withlocal geospatial data for disaster management. Furthermore, the proposed is suitable fordetecting landslides in various regions on continental, regional, and local scales usingremotely sensed data in various resolutions derived from SPOT HRV, IKONOS, andQuickBird multispectral images.
Remote sensing of the Canadian Arctic: Modelling biophysical variables
NASA Astrophysics Data System (ADS)
Liu, Nanfeng
It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic overestimation of 0.08, which was attributed to PAR absorption by soil that could not be excluded from the fAPAR calculation. This research clearly demonstrates that high spectral and spatial resolution remote sensing VIs can be used to successfully model Arctic biophysical variables. The methods and results presented in this research provided a guide for future studies aiming to model other Arctic biophysical variables through remote sensing data.
Temporal Stability of the NDVI-LAI Relationship in a Napa Valley Vineyard
NASA Technical Reports Server (NTRS)
Johnson, L. F.
2003-01-01
Remotely sensed normalized difference vegetation index (NDVI) values, derived from high-resolution satellite images, were compared with ground measurements of vineyard leaf area index (LAI) periodically during the 2001 growing season. The two variables were strongly related at six ground calibration sites on each of four occasions (r squared = 0.91 to 0.98). Linear regression equations relating the two variables did not significantly differ by observation date, and a single equation accounted for 92 percent of the variance in the combined dataset. Temporal stability of the relationship opens the possibility of transforming NDVI maps to LAI in the absence of repeated ground calibration fieldwork. In order to take advantage of this circumstance, however, steps should be taken to assure temporal consistency in spectral data values comprising the NDVI.
Multi-sensor data processing method for improved satellite retrievals
NASA Astrophysics Data System (ADS)
Fan, Xingwang
2017-04-01
Satellite remote sensing has provided massive data that improve the overall accuracy and extend the time series of environmental studies. In reflective solar bands, satellite data are related to land surface properties via radiative transfer (RT) equations. These equations generally include sensor-related (calibration coefficients), atmosphere-related (aerosol optical thickness) and surface-related (surface reflectance) parameters. It is an ill-posed problem to solve three parameters with only one RT equation. Even if there are two RT equations (dual-sensor data), the problem is still unsolvable. However, a robust solution can be obtained when any two parameters are known. If surface and atmosphere are known, sensor intercalibration can be performed. For example, the Advanced Very High Resolution Radiometer (AVHRR) was calibrated to the MODerate-resolution Imaging Spectroradiometer (MODIS) in Fan and Liu (2014) [Fan, X., and Liu, Y. (2014). Quantifying the relationship between intersensor images in solar reflective bands: Implications for intercalibration. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7727-7737.]. If sensor and surface are known, atmospheric data can be retrieved. For example, aerosol data were retrieved using tandem TERRA and AQUA MODIS images in Fan and Liu (2016a) [Fan, X., and Liu, Y. (2016a). Exploiting TERRA-AQUA MODIS relationship in the reflective solar bands for aerosol retrieval. Remote Sensing, 8(12), 996.]. If sensor and atmosphere are known, data consistency can be obtained. For example, Normalized Difference Vegetation Index (NDVI) data were intercalibrated among coarse-resolution sensors in Fan and Liu (2016b) [Fan, X., and Liu, Y. (2016b). A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 177-191.], and among fine-resolution sensors in Fan and Liu (2017) [Fan, X., and Liu, Y. (2017). A generalized model for intersensor NDVI calibration and its comparison with regression approaches. IEEE Transactions on Geoscience and Remote Sensing, 55(3), doi: 10.1109/TGRS.2016.2635802.]. These studies demonstrate the success of multi-sensor data and novel methods in the research domain of geoscience. These data will benefit remote sensing of terrestrial parameters in decadal timescales, such as soil salinity content in Fan et al. (2016) [Fan, X., Weng, Y., and Tao, J. (2016). Towards decadal soil salinity mapping using Landsat time series data. International Journal of Applied Earth Observation and Geoinformation, 52, 32-41.].
Tian, Y.Q.; Yu, Q.; Zimmerman, M.J.; Flint, S.; Waldron, M.C.
2010-01-01
This study evaluates the efficacy of remote sensing technology to monitor species composition, areal extent and density of aquatic plants (macrophytes and filamentous algae) in impoundments where their presence may violate water-quality standards. Multispectral satellite (IKONOS) images and more than 500 in situ hyperspectral samples were acquired to map aquatic plant distributions. By analyzing field measurements, we created a library of hyperspectral signatures for a variety of aquatic plant species, associations and densities. We also used three vegetation indices. Normalized Difference Vegetation Index (NDVI), near-infrared (NIR)-Green Angle Index (NGAI) and normalized water absorption depth (DH), at wavelengths 554, 680, 820 and 977 nm to differentiate among aquatic plant species composition, areal density and thickness in cases where hyperspectral analysis yielded potentially ambiguous interpretations. We compared the NDVI derived from IKONOS imagery with the in situ, hyperspectral-derived NDVI. The IKONOS-based images were also compared to data obtained through routine visual observations. Our results confirmed that aquatic species composition alters spectral signatures and affects the accuracy of remote sensing of aquatic plant density. The results also demonstrated that the NGAI has apparent advantages in estimating density over the NDVI and the DH. In the feature space of the three indices, 3D scatter plot analysis revealed that hyperspectral data can differentiate several aquatic plant associations. High-resolution multispectral imagery provided useful information to distinguish among biophysical aquatic plant characteristics. Classification analysis indicated that using satellite imagery to assess Lemna coverage yielded an overall agreement of 79% with visual observations and >90% agreement for the densest aquatic plant coverages. Interpretation of biophysical parameters derived from high-resolution satellite or airborne imagery should prove to be a valuable approach for assessing the effectiveness of management practices for controlling aquatic plant growth in inland waters, as well as for routine monitoring of aquatic plants in lakes and suitable lentic environments. ?? 2010 Blackwell Publishing Ltd.
Naldemirci, Öncel; Wolf, Axel; Elam, Mark; Lydahl, Doris; Moore, Lucy; Britten, Nicky
2017-08-04
The introduction of innovative models of healthcare does not necessarily mean that they become embedded in everyday clinical practice. This study has two aims: first, to analyse deliberate and emergent strategies adopted by healthcare professionals to overcome barriers to normalization of a specific framework of person-centred care (PCC); and secondly, to explore how the recipients of PCC understand these strategies. This paper is based on a qualitative study of the implementation of PCC in a Swedish context. It draws on semi-structured interviews with 18 researchers and 17 practitioners who adopted a model of PCC on four different wards and 20 patients who were cared for in one of these wards. Data from these interviews were first coded inductively and emerging themes are analysed in relation to normalization process theory (NPT). In addition to deliberate strategies, we identify emergent strategies to normalize PCC by (i) creating and sustaining coherence in small but continuously communicating groups (ii) interpreting PCC flexibly when it meets specific local situations and (iii) enforcing teamwork between professional groups. These strategies resulted in patients perceiving PCC as bringing about (i) a sense of ease (ii) appreciation of inter-professional congruity (ii) non-hierarchical communication. NPT is useful to identify and analyse deliberate and emergent strategies relating to mechanisms of normalization. Emergent strategies should be interpreted not as trivial solutions to problems in implementation, but as a possible repertoire of tools, practices and skills developed in situ. As professionals and patients may have different understandings of implementation, it is also crucial to include patients' perceptions to evaluate outcomes.
2010-01-01
Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered), missing value imputation (2), standardization of data (2), gene selection (19) or clustering method (11). The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that background correction is preferable, in particular if the gene selection is successful. However, this is an area that needs to be studied further in order to draw any general conclusions. Conclusions The choice of cluster analysis, and in particular gene selection, has a large impact on the ability to cluster individuals correctly based on expression profiles. Normalization has a positive effect, but the relative performance of different normalizations is an area that needs more research. In summary, although clustering, gene selection and normalization are considered standard methods in bioinformatics, our comprehensive analysis shows that selecting the right methods, and the right combinations of methods, is far from trivial and that much is still unexplored in what is considered to be the most basic analysis of genomic data. PMID:20937082
BRCA1 and BRCA2: Cancer Risk and Genetic Testing
... high risk of breast cancer is considered an experimental procedure, and insurance companies will not normally cover ... a negative result. The potential benefits of a true negative result include a sense of relief regarding ...
Early Development of Gravity-Sensing Organs in Microgravity
NASA Technical Reports Server (NTRS)
Wiederhold, Michael L.; Gao, Wenyuan; Harrison, Jeffrey L.; Parker, Kevin A.
2003-01-01
Most animals have organs that sense gravity. These organs use dense stones (called otoliths or statoconia), which rest on the sensitive hairs of specialized gravity- and motion-sensing cells. The weight of the stones bends the hairs in the direction of gravitational pull. The cells in turn send a coded representation of the gravity or motion stimulus to the central nervous system. Previous experiments, in which the eggs or larvae of a marine mollusk (Aplysia californica, the sea hare) were raised on a centrifuge, demonstrated that the size of the stones (or test mass) was reduced in a graded manner as the gravity field was increased. This suggests that some control mechanism was acting to normalize the weight of the stones. The experiments described here were designed to test the hypothesis that, during their initial development, the mass of the stones is regulated to achieve a desired weight. If this is the case, we would expect a larger-than-normal otolith would develop in animals reared in the weightlessness of space. To test this, freshwater snails and swordtail fish were studied after spaceflight. The snails mated in space, and the stones (statoconia) in their statocysts developed in microgravity. Pre-mated adult female swordtail fish were flown on the Space Shuttle, and the developing larvae were collected after landing. Juvenile fish, where the larval development had taken place on the ground, were also flown. In snails that developed in space, the total volume of statoconia forming the test mass was 50% greater than in size-matched snails reared in functionally identical equipment on the ground. In the swordtail fish, the size of otoliths was compared between ground- and flight-reared larvae of the same size. For later-stage larvae, the growth of the otolith was significantly greater in the flight-reared fish. However, juvenile fish showed no significant difference in otolith size between flight- and ground-reared fish. Thus, it appears that fish and snails reared in space do produce larger-than-normal otoliths (or their analogs), apparently in an attempt to compensate for the reduced weight of the stones in space. The fish data suggest that there is a critical period during which altered gravity can affect the size of the test mass, since the larval, but not the juvenile, fish showed the changes.
NASA Astrophysics Data System (ADS)
Zhongqin, G.; Chen, Y.
2017-12-01
Abstract Quickly identify the spatial distribution of landslides automatically is essential for the prevention, mitigation and assessment of the landslide hazard. It's still a challenging job owing to the complicated characteristics and vague boundary of the landslide areas on the image. The high resolution remote sensing image has multi-scales, complex spatial distribution and abundant features, the object-oriented image classification methods can make full use of the above information and thus effectively detect the landslides after the hazard happened. In this research we present a new semi-supervised workflow, taking advantages of recent object-oriented image analysis and machine learning algorithms to quick locate the different origins of landslides of some areas on the southwest part of China. Besides a sequence of image segmentation, feature selection, object classification and error test, this workflow ensemble the feature selection and classifier selection. The feature this study utilized were normalized difference vegetation index (NDVI) change, textural feature derived from the gray level co-occurrence matrices (GLCM), spectral feature and etc. The improvement of this study shows this algorithm significantly removes some redundant feature and the classifiers get fully used. All these improvements lead to a higher accuracy on the determination of the shape of landslides on the high resolution remote sensing image, in particular the flexibility aimed at different kinds of landslides.
Regional Drought Monitoring Based on Multi-Sensor Remote Sensing
NASA Astrophysics Data System (ADS)
Rhee, Jinyoung; Im, Jungho; Park, Seonyoung
2014-05-01
Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety of land cover types. Remote sensing data from the Tropical Rainfall Measuring Mission satellite (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) sensors were obtained for the period from 2000 to 2012, and observation data from 99 weather stations, 441 streamflow gauges, as well as the gridded observation data from Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE) were obtained for validation. The objective blends of multiple indicators helped better assessment of various types of drought, and can be useful for drought early warning system. Since the improved SDCI is based on remotely sensed data, it can be easily applied to regions with limited or no observation data for drought assessment and monitoring.
Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer
NASA Technical Reports Server (NTRS)
Blaes, Brent R.; Schaefer, Rembrandt T.
2012-01-01
A multi-channel electrometer voltmeter that employs self-nulling lock-in detection electronics in conjunction with a mechanical resonator with noncontact voltage sensing electrodes has been developed for space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM). The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Use of an AC-coupled lock-in amplifier with closed-loop sense-signal nulling via generation of an active guard-driving feedback voltage provides the resolution, accuracy, linearity and stability needed for long-term space-based measurement of the IESDM. This implementation relies on adjusting the feedback voltage to drive the sense current received from the resonator s variable-capacitance-probe voltage transducer to approximately zero, as limited by the signal-to-noise performance of the loop electronics. The magnitude of the sense current is proportional to the difference between the input voltage being measured and the feedback voltage, which matches the input voltage when the sense current is zero. High signal-to-noise-ratio (SNR) is achieved by synchronous detection of the sense signal using the correlated reference signal derived from the oscillator circuit that drives the mechanical resonator. The magnitude of the feedback voltage, while the loop is in a settled state with essentially zero sense current, is an accurate estimate of the input voltage being measured. This technique has many beneficial attributes including immunity to drift, high linearity, high SNR from synchronous detection of a single-frequency carrier selected to avoid potentially noisy 1/f low-frequency spectrum of the signal-chain electronics, and high accuracy provided through the benefits of a driven shield encasing the capacitance- probe transducer and guarded input triaxial lead-in. Measurements obtained from a 2- channel prototype electrometer have demonstrated good accuracy (|error| < 0.2 V) and high stability. Twenty-four-hour tests have been performed with virtually no drift. Additionally, 5,500 repeated one-second measurements of 100 V input were shown to be approximately normally distributed with a standard deviation of 140 mV.
NASA Astrophysics Data System (ADS)
Bartholomeus, H.; Kooistra, L.
2012-04-01
For quantitative estimation of soil properties by means of remote sensing, often hyperspectral data are used. But these data are scarce and expensive, which prohibits wider implementation of the developed techniques in agricultural management. For precision agriculture, observations at a high spatial resolution are required. Colour aerial photographs at this scale are widely available, and can be acquired at no of very low costs. Therefore, we investigated whether publically available aerial photographs can be used to a) automatically delineate management zones and b) estimate levels of organic carbon spatially. We selected three study areas within the Netherlands that cover a large variance in soil type (peat, sand, and clay). For the fields of interest, RGB aerial photographs with a spatial resolution of 50 cm were extracted from a publically available data provider. Further pre-processing exists of geo-referencing only. Since the images originate from different sources and are potentially acquired under unknown illumination conditions, the exact radiometric properties of the data are unknown. Therefore, we used spectral indices to emphasize the differences in reflectance and normalize for differences in radiometry. To delineate management zones we used image segmentation techniques, using the derived indices as input. Comparison with management zone maps as used by the farmers shows that there is good correspondence. Regression analysis between a number of soil properties and the derived indices shows that organic carbon is the major explanatory variable for differences in index values within the fields. However, relations do not hold for large regions, indicating that local models will have to be used, which is a problem that is also still relevant for hyperspectral remote sensing data. With this research, we show that low-cost aerial photographs can be a valuable tool for quantitative analysis of organic carbon and automatic delineation of management zones. Since a lot of data are publically available this offers great possibilities for implementing remote sensing techniques in agricultural management.
NASA Astrophysics Data System (ADS)
Mohamed, L.; Farag, A. Z. A.
2017-12-01
North African countries struggle with insufficient, polluted, oversubscribed, and increasingly expensive water. This natural water shortage, in addition to the lack of a comprehensive scheme for the identification of new water resources challenge the political settings in north Africa. Groundwater is one of the main water resources and its occurrence is controlled by the structural elements which are still poorly understood. Integration of remote sensing images and geophysical tools enable us to delineate the surface and subsurface structures (i.e. faults, joints and shear zones), identify the role of these structures on groundwater flow and then to define the proper locations for groundwater wells. This approach were applied to three different areas in Egypt; southern Sinai, north eastern Sinai and the Eastern Desert using remote sensing, geophysical and hydrogeological datasets as follows: (1) identification of the spatial and temporal rainfall events using meteorological station data and Tropical Rainfall Measuring Mission data; (2) delineation of major faults and shear zones using ALOS Palsar, Landsat 8 and ASTER images, geological maps and field investigation; (3) generation of a normalized difference ratio image using Envisat radar images before and after the rain events to identify preferential water-channeling discontinuities in the crystalline terrain; (4) analysis of well data and derivations of hydrological parameters; (5) validation of the water-channeling discontinuities using Very Low Frequency, testing the structural elements (pre-delineated by remote sensing data) and their depth using gravity, magnetic and Vertical Electrical Sounding methods; (6) generation of regional groundwater flow and isotopic (18O and 2H) distribution maps for the sedimentary aquifer and an approximation flow map for the crystalline aquifer. The outputs include: (1) a conceptual/physical model for the groundwater flow in fractured crystalline and sedimentary aquifers; (2) locations of suggested new wells in light of the findings.
Remotely-sensed detection of effects of extreme droughts on gross primary production.
Vicca, Sara; Balzarolo, Manuela; Filella, Iolanda; Granier, André; Herbst, Mathias; Knohl, Alexander; Longdoz, Bernard; Mund, Martina; Nagy, Zoltan; Pintér, Krisztina; Rambal, Serge; Verbesselt, Jan; Verger, Aleixandre; Zeileis, Achim; Zhang, Chao; Peñuelas, Josep
2016-06-15
Severe droughts strongly impact photosynthesis (GPP), and satellite imagery has yet to demonstrate its ability to detect drought effects. Especially changes in vegetation functioning when vegetation state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. We evaluated the performance of different satellite indicators to detect strong drought effects on GPP in a beech forest in France (Hesse), where vegetation state remained largely unaffected while GPP decreased substantially. We compared the results with three additional sites: a Mediterranean holm oak forest (Puéchabon), a temperate beech forest (Hainich), and a semi-arid grassland (Bugacpuszta). In Hesse, a three-year reduction in GPP following drought was detected only by the Enhanced Vegetation Index (EVI). The Photochemical Reflectance Index (PRI) also detected this drought effect, but only after normalization for absorbed light. In Puéchabon normalized PRI outperformed the other indicators, while the short-term drought effect in Hainich was not detected by any tested indicator. In contrast, most indicators, but not PRI, captured the drought effects in Bugacpuszta. Hence, PRI improved detection of drought effects on GPP in forests and we propose that PRI normalized for absorbed light is considered in future algorithms to estimate GPP from space.
The Quest for Evidence for Proton Therapy: Model-Based Approach and Precision Medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widder, Joachim, E-mail: j.widder@umcg.nl; Schaaf, Arjen van der; Lambin, Philippe
Purpose: Reducing dose to normal tissues is the advantage of protons versus photons. We aimed to describe a method for translating this reduction into a clinically relevant benefit. Methods and Materials: Dutch scientific and health care governance bodies have recently issued landmark reports regarding generation of relevant evidence for new technologies in health care including proton therapy. An approach based on normal tissue complication probability (NTCP) models has been adopted to select patients who are most likely to experience fewer (serious) adverse events achievable by state-of-the-art proton treatment. Results: By analogy with biologically targeted therapies, the technology needs to be testedmore » in enriched cohorts of patients exhibiting the decisive predictive marker: difference in normal tissue dosimetric signatures between proton and photon treatment plans. Expected clinical benefit is then estimated by virtue of multifactorial NTCP models. In this sense, high-tech radiation therapy falls under precision medicine. As a consequence, randomizing nonenriched populations between photons and protons is predictably inefficient and likely to produce confusing results. Conclusions: Validating NTCP models in appropriately composed cohorts treated with protons should be the primary research agenda leading to urgently needed evidence for proton therapy.« less
Effects of skylight polarization, cloudiness, and view angle on the detection of oil on water.
NASA Technical Reports Server (NTRS)
Millard, J. P.; Arvesen, J. C.
1971-01-01
Three passive radiometric techniques, which use the contrast of sunlight reflected and backscattered from oil and water in specific wavelength regions, have potential application for remote sensing of oil spills. These techniques consist of measuring (1) total radiance, (2) the polarization components (normal and parallel) of radiance, and (3) the difference between the normal and parallel components. In this paper, the best view directions for these techniques are evaluated, conclusions are drawn as to the most promising technique, and explanations are developed to describe why previous total-radiance measurements yielded highest contrast between oil and water under overcast skies. The technique based on measurement of only the normal polorization component appears to be the most promising. The differential technique should be further investigated because of its potential to reduce the component of backscattered light from below the surface of the water. Measurements should be made about 45 deg nadir view angle in the direction opposite the sun. Overcast sky conditions provide a higher intensity of skylight relative to clear sky conditions and a lower intensity of backscatter within the water relative to surface reflectance. These factors result in higher contrast between oil and water under overcast skies.
Comparative analysis of data quality and applications in vegetation of HJ-1A CCD images
NASA Astrophysics Data System (ADS)
Wei, Hongwei; Tian, Qingjiu; Huang, Yan; Wang, Yan
2014-05-01
To study the data quality and to find the differences in vegetation monitoring applications, the same region at Chuzhou Lai 'an, the data of HJ-1A CCD1 on the April 1st, 2012 and the data of HJ-1A CCD2 on the March 31, 2012 have being comparative analysis by the method of objective quality (image)assessment which selecting over five spectral image evaluation parameters: radiation precision (mean, variance, inclination, steepness), information entropy, signal-to-noise ratio, sharpness, contrast, and normalized differential vegetation index. The results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality except radiation precision conform to their design theory, so the conclusion is that the difference of them without considering on the usual unless continuation;and Combination of field observation data Lai'an spectral data and GPS data (each point),selecting the normalized difference vegetation index as CCD1, CCD2 in vegetation monitoring application on the evaluation of the differences, and the specific process is based on GPS data is divided into nine small plots of spectral data ,and image data of nine one-to-one correspondence plots, and their normalized difference vegetation index values were calculated ,and measured spectra data resampling HJ-1A CCD1, CCD2 spectral response function calculated NDVI, and the results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality, and, the differences of wheat `s reflection and normalized vegetation index is mainly due to calibration coefficients of CCD1 and CCD2, the differences of the solar elevation angle when obtaining the image and atmospheric conditions, so it has to consider the performance indicators as well as access conditions of CCD1 and CCD2, and to be take the normalization techniques for processing for the comparison analysis in the use of HJ-1A CCD Data to surface dynamic changes; Finally, in order to study the response of the spectral response function proposed spectral response function of impact factor, and in view of the spectral response function measured spectral data resampling only HJ-1A CCD spectral response function, calculated according to the formula of the equivalent reflectivity quantitative spectral response function, and spectral normalization of proposed theoretical Technical Support. The Objective evaluation of its application of HJ-1A CCD1, and CCD2 data quality differences research has important implications for broader application to further promote China-made remote sensing satellite data, future research also needs calibration coefficient, the solar elevation angle atmospheric conditions and its image scanning angle be taken into account, and to make the corresponding normalized its impact quantitative research has important significance for the timing changes in the application of the ecological environment in China.
Wang, Min Zheng; Zhou, Guang Sheng
2016-06-01
Soil moisture is an important component of the soil-vegetation-atmosphere continuum (SPAC). It is a key factor to determine the water status of terrestrial ecosystems, and is also the main source of water supply for crops. In order to estimate soil moisture at different soil depths at a station scale, based on the energy balance equation and the water deficit index (WDI), a soil moisture estimation model was established in terms of the remote sensing data (the normalized difference vegetation index and surface temperature) and air temperature. The soil moisture estimation model was validated based on the data from the drought process experiment of summer maize (Zea mays) responding to different irrigation treatments carried out during 2014 at Gucheng eco-agrometeorological experimental station of China Meteorological Administration. The results indicated that the soil moisture estimation model developed in this paper was able to evaluate soil relative humidity at different soil depths in the summer maize field, and the hypothesis was reasonable that evapotranspiration deficit ratio (i.e., WDI) linearly depended on soil relative humidity. It showed that the estimation accuracy of 0-10 cm surface soil moisture was the highest (R 2 =0.90). The RMAEs of the estimated and measured soil relative humidity in deeper soil layers (up to 50 cm) were less than 15% and the RMSEs were less than 20%. The research could provide reference for drought monitoring and irrigation management.
NASA Technical Reports Server (NTRS)
Taramelli, A.; Pasqui, M.; Barbour, J.; Kirschbaum, D.; Bottai, L.; Busillo, C.; Calastrini, F.; Guarnieri, F.; Small, C.
2013-01-01
The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas.
Fusion of spatio-temporal UAV and proximal sensing data for an agricultural decision support system
NASA Astrophysics Data System (ADS)
Katsigiannis, P.; Galanis, G.; Dimitrakos, A.; Tsakiridis, N.; Kalopesas, C.; Alexandridis, T.; Chouzouri, A.; Patakas, A.; Zalidis, G.
2016-08-01
Over the last few years, multispectral and thermal remote sensing imagery from unmanned aerial vehicles (UAVs) has found application in agriculture and has been regarded as a means of field data collection and crop condition monitoring source. The integration of information derived from the analysis of these remotely sensed data into agricultural management applications facilitates and aids the stakeholder's decision making. Whereas agricultural decision support systems (DSS) have long been utilised in farming applications, there are still critical gaps to be addressed; as the current approach often neglects the plant's level information and lacks the robustness to account for the spatial and temporal variability of environmental parameters within agricultural systems. In this paper, we demonstrate the use of a custom built autonomous UAV platform in providing critical information for an agricultural DSS. This hexacopter UAV bears two cameras which can be triggered simultaneously and can capture both the visible, near-infrared (VNIR) and the thermal infrared (TIR) wavelengths. The platform was employed for the rapid extraction of the normalized difference vegetation index (NDVI) and the crop water stress index (CWSI) of three different plantations, namely a kiwi, a pomegranate, and a vine field. The simultaneous recording of these two complementary indices and the creation of maps was advantageous for the accurate assessment of the plantation's status. Fusion of UAV and soil scanner system products pinpointed the necessity for adjustment of the irrigation management applied. It is concluded that timely CWSI and NDVI measures retrieved for different crop growing stages can provide additional information and can serve as a tool to support the existing irrigation DSS that had so far been exclusively based on telemetry data from soil and agrometeorological sensors. Additionally, the use of the multi-sensor UAV was found to be beneficial in collecting timely, spatio-temporal information for the fusion with ground-based proximal sensing data. This research work was designed and deployed in the frame of the project "AGRO_LESS: Joint reference strategies for rural activities of reduced inputs".
Gracia-Romero, Adrian; Kefauver, Shawn C.; Vergara-Díaz, Omar; Zaman-Allah, Mainassara A.; Prasanna, Boddupalli M.; Cairns, Jill E.; Araus, José L.
2017-01-01
Low soil fertility is one of the factors most limiting agricultural production, with phosphorus deficiency being among the main factors, particularly in developing countries. To deal with such environmental constraints, remote sensing measurements can be used to rapidly assess crop performance and to phenotype a large number of plots in a rapid and cost-effective way. We evaluated the performance of a set of remote sensing indices derived from Red-Green-Blue (RGB) images and multispectral (visible and infrared) data as phenotypic traits and crop monitoring tools for early assessment of maize performance under phosphorus fertilization. Thus, a set of 26 maize hybrids grown under field conditions in Zimbabwe was assayed under contrasting phosphorus fertilization conditions. Remote sensing measurements were conducted in seedlings at two different levels: at the ground and from an aerial platform. Within a particular phosphorus level, some of the RGB indices strongly correlated with grain yield. In general, RGB indices assessed at both ground and aerial levels correlated in a comparable way with grain yield except for indices a* and u*, which correlated better when assessed at the aerial level than at ground level and Greener Area (GGA) which had the opposite correlation. The Normalized Difference Vegetation Index (NDVI) evaluated at ground level with an active sensor also correlated better with grain yield than the NDVI derived from the multispectral camera mounted in the aerial platform. Other multispectral indices like the Soil Adjusted Vegetation Index (SAVI) performed very similarly to NDVI assessed at the aerial level but overall, they correlated in a weaker manner with grain yield than the best RGB indices. This study clearly illustrates the advantage of RGB-derived indices over the more costly and time-consuming multispectral indices. Moreover, the indices best correlated with GY were in general those best correlated with leaf phosphorous content. However, these correlations were clearly weaker than against grain yield and only under low phosphorous conditions. This work reinforces the effectiveness of canopy remote sensing for plant phenotyping and crop management of maize under different phosphorus nutrient conditions and suggests that the RGB indices are the best option. PMID:29230230
Wallace, Cynthia S.A.; Advised by Marsh, Stuart E.
2002-01-01
The research accomplished in this dissertation used both mathematical and statistical techniques to extract and evaluate measures of landscape temporal dynamics and spatial structure from remotely sensed data for the purpose of mapping wildlife habitat. By coupling the landscape measures gleaned from the remotely sensed data with various sets of animal sightings and population data, effective models of habitat preference were created.Measures of temporal dynamics of vegetation greenness as measured by National Oceanographic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (AVHRR) satellite were used to effectively characterize and map season specific habitat of the Sonoran pronghorn antelope, as well as produce preliminary models of potential yellow-billed cuckoo habitat in Arizona. Various measures that capture different aspects of the temporal dynamics of the landscape were derived from AVHRR Normalized Difference Vegetation Index composite data using three main classes of calculations: basic statistics, standardized principal components analysis, and Fourier analysis. Pronghorn habitat models based on the AVHRR measures correspond visually and statistically to GIS-based models produced using data that represent detailed knowledge of ground-condition.Measures of temporal dynamics also revealed statistically significant correlations with annual estimates of elk population in selected Arizona Game Management Units, suggesting elk respond to regional environmental changes that can be measured using satellite data. Such relationships, once verified and established, can be used to help indirectly monitor the population.Measures of landscape spatial structure derived from IKONOS high spatial resolution (1-m) satellite data using geostatistics effectively map details of Sonoran pronghorn antelope habitat. Local estimates of the nugget, sill, and range variogram parameters calculated within 25 x 25-meter image windows describe the spatial autocorrelation of the image, permitting classification of all pixels into coherent units whose signature graphs exhibit a classic variogram shape. The variogram parameters captured in these signatures have been shown in previous studies to discriminate between different species-specific vegetation associations.The synoptic view of the landscape provided by satellite data can inform resource management efforts. The ability to characterize the spatial structure and temporal dynamics of habitat using repeatable remote sensing data allows closer monitoring of the relationship between a species and its landscape.
Statistical Considerations of Data Processing in Giovanni Online Tool
NASA Technical Reports Server (NTRS)
Suhung, Shen; Leptoukh, G.; Acker, J.; Berrick, S.
2005-01-01
The GES DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni) is a web-based interface for the rapid visualization and analysis of gridded data from a number of remote sensing instruments. The GES DISC currently employs several Giovanni instances to analyze various products, such as Ocean-Giovanni for ocean products from SeaWiFS and MODIS-Aqua; TOMS & OM1 Giovanni for atmospheric chemical trace gases from TOMS and OMI, and MOVAS for aerosols from MODIS, etc. (http://giovanni.gsfc.nasa.gov) Foremost among the Giovanni statistical functions is data averaging. Two aspects of this function are addressed here. The first deals with the accuracy of averaging gridded mapped products vs. averaging from the ungridded Level 2 data. Some mapped products contain mean values only; others contain additional statistics, such as number of pixels (NP) for each grid, standard deviation, etc. Since NP varies spatially and temporally, averaging with or without weighting by NP will be different. In this paper, we address differences of various weighting algorithms for some datasets utilized in Giovanni. The second aspect is related to different averaging methods affecting data quality and interpretation for data with non-normal distribution. The present study demonstrates results of different spatial averaging methods using gridded SeaWiFS Level 3 mapped monthly chlorophyll a data. Spatial averages were calculated using three different methods: arithmetic mean (AVG), geometric mean (GEO), and maximum likelihood estimator (MLE). Biogeochemical data, such as chlorophyll a, are usually considered to have a log-normal distribution. The study determined that differences between methods tend to increase with increasing size of a selected coastal area, with no significant differences in most open oceans. The GEO method consistently produces values lower than AVG and MLE. The AVG method produces values larger than MLE in some cases, but smaller in other cases. Further studies indicated that significant differences between AVG and MLE methods occurred in coastal areas where data have large spatial variations and a log-bimodal distribution instead of log-normal distribution.
innoFSPEC: fiber optical spectroscopy and sensing
NASA Astrophysics Data System (ADS)
Roth, Martin M.; Löhmannsröben, Hans-Gerd; Kelz, Andreas; Kumke, Michael
2008-07-01
innoFSPEC Potsdam is presently being established as in interdisciplinary innovation center for fiber-optical spectroscopy and sensing, hosted by Astrophysikalisches Institut Potsdam and the Physical Chemistry group of Potsdam University, Germany. The center focuses on fundamental research in the two fields of fiber-coupled multi-channel spectroscopy and optical fiber-based sensing. Thanks to its interdisciplinary approach, the complementary methodologies of astrophysics on the one hand, and physical chemistry on the other hand, are expected to spawn synergies that otherwise would not normally become available in more standard research programmes. innoFSPEC targets future innovations for next generation astrophysical instrumentation, environmental analysis, manufacturing control and process monitoring, medical diagnostics, non-invasive imaging spectroscopy, biopsy, genomics/proteomics, high-throughput screening, and related applications.
Levett, K M; Smith, C A; Bensoussan, A; Dahlen, H G
2016-09-01
to gain insight into the experiences of women, partners and midwives who participated in the Complementary Therapies for Labour and Birth Study, an evidence based complementary medicine (CM) antenatal education course. qualitative in-depth interviews and a focus group as part of the Complementary Therapies for Labour and Birth Study. thirteen low risk primiparous women and seven partners who had participated in the study group of a randomised controlled trial of the complementary therapies for labour and birth study, and 12 midwives caring for these women. The trial was conducted at two public hospitals, and through the Western Sydney University in Sydney, Australia. the Complementary Therapies for Labour and Birth (CTLB) protocol, based on the She Births® course and the Acupressure for labour and birth protocol, incorporated six evidence-based complementary medicine (CM) techniques; acupressure, relaxation, visualisation, breathing, massage, yoga techniques and incorporated facilitated partner support. Randomisation to the trial occurred at 24-36 weeks' gestation, and participants attended a two-day antenatal education programme, plus standard care, or standard care alone. the overarching theme identified in the qualitative data was making sense of labour and birth. Women used information about normal birth physiology from the course to make sense of labour, and to utilise the CM techniques to support normal birth and reduce interventions in labour. Women's, partners' and midwives' experience of the course and its use during birth gave rise to supporting themes such as: working for normal; having a toolkit; and finding what works. the Complementary Therapies for Labour and Birth Study provided women and their partners with knowledge to understand the physiology of normal labour and birth and enabled them to use evidence-based CM tools to support birth and reduce interventions. the Complementary Therapies for Labour and Birth Study introduces concepts of what constitutes normal birth and provides skills to support women, partners and midwives. It appears to be an effective form of antenatal education that supports normal birth, and maternity services need to consider how they can reform current antenatal education in line with this evidence. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Silence and Denial in Everyday Life—The Case of Animal Suffering
Wicks, Deidre
2011-01-01
Simple Summary This paper analyses issues implicit in the question: How is it that decent and compassionate people co-exist in silence about widespread animal suffering? The paper explores the complex process of denial which operates at both a personal and societal level to allow people to ‘not see’ and ‘not know’ about the realities of the lives of animals in our world. The paper argues that silence allows animal suffering to exist and flourish at a historically unprecedented level at this time. It goes on to examine the conditions under which silence can be punctured and acknowledgement and action for animals becomes possible. Abstract How can we make sense of the fact that we live in a world where good people co-exist in silence about widespread animal suffering. How is it that sites of suffering such as laboratories, factory farms, abattoirs and animal transportation are all around us and yet we ‘do not, in a certain sense, know about them’ [1]. This ‘not knowing’ is one of the most difficult barriers for animal activists who must constantly develop new strategies in an attempt to catch public attention and translate it into action. Recent contributions from the ‘sociology of denial’ have elucidated many of the mechanisms involved in ‘not knowing’ in relation to human atrocities and genocide. In this context, ‘denial’ refers to the maintenance of social worlds in which an undesirable situation is unrecognized, ignored or made to seem normal [2]. These include different types of denial: personal, official and cultural, as well as the process of normalization whereby suffering becomes invisible through routinization, tolerance, accommodation, collusion and cover up. Denial and normalization reflect both personal and collective states where suffering is not acknowledged [3]. In this paper, I will examine insights from the sociology of denial and apply them to human denial and normalization of animal suffering. This will include an examination of denial which is both individual and social and the implications of these insights for theory and practice in the human/animal relationship. PMID:26486223
Coastline detection with time series of SAR images
NASA Astrophysics Data System (ADS)
Ao, Dongyang; Dumitru, Octavian; Schwarz, Gottfried; Datcu, Mihai
2017-10-01
For maritime remote sensing, coastline detection is a vital task. With continuous coastline detection results from satellite image time series, the actual shoreline, the sea level, and environmental parameters can be observed to support coastal management and disaster warning. Established coastline detection methods are often based on SAR images and wellknown image processing approaches. These methods involve a lot of complicated data processing, which is a big challenge for remote sensing time series. Additionally, a number of SAR satellites operating with polarimetric capabilities have been launched in recent years, and many investigations of target characteristics in radar polarization have been performed. In this paper, a fast and efficient coastline detection method is proposed which comprises three steps. First, we calculate a modified correlation coefficient of two SAR images of different polarization. This coefficient differs from the traditional computation where normalization is needed. Through this modified approach, the separation between sea and land becomes more prominent. Second, we set a histogram-based threshold to distinguish between sea and land within the given image. The histogram is derived from the statistical distribution of the polarized SAR image pixel amplitudes. Third, we extract continuous coastlines using a Canny image edge detector that is rather immune to speckle noise. Finally, the individual coastlines derived from time series of .SAR images can be checked for changes.
A spectral water index based on visual bands
NASA Astrophysics Data System (ADS)
Basaeed, Essa; Bhaskar, Harish; Al-Mualla, Mohammed
2013-10-01
Land-water segmentation is an important preprocessing step in a number of remote sensing applications such as target detection, environmental monitoring, and map updating. A Normalized Optical Water Index (NOWI) is proposed to accurately discriminate between land and water regions in multi-spectral satellite imagery data from DubaiSat-1. NOWI exploits the spectral characteristics of water content (using visible bands) and uses a non-linear normalization procedure that renders strong emphasize on small changes in lower brightness values whilst guaranteeing that the segmentation process remains image-independent. The NOWI representation is validated through systematic experiments, evaluated using robust metrics, and compared against various supervised classification algorithms. Analysis has indicated that NOWI has the advantages that it: a) is a pixel-based method that requires no global knowledge of the scene under investigation, b) can be easily implemented in parallel processing, c) is image-independent and requires no training, d) works in different environmental conditions, e) provides high accuracy and efficiency, and f) works directly on the input image without any form of pre-processing.
Kajita, Mihoko; Fujita, Yasuyuki
2015-07-01
During embryonic development or under certain pathological conditions, viable but suboptimal cells are often eliminated from the cellular society through a process termed cell competition. Cell competition was originally identified in Drosophila where cells with different properties compete for survival; 'loser' cells are eliminated from tissues and consequently 'winner' cells become dominant. Recent studies have shown that cell competition also occurs in mammals. While apoptotic cell death is the major fate for losers in Drosophila, outcompeted cells show more variable phenotypes in mammals, such as cell death-independent apical extrusion and cellular senescence. Molecular mechanisms underlying these processes have been recently revealed. Especially, in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells via cytoskeletal proteins by the process named epithelial defence against cancer (EDAC). Here, we introduce this newly emerging research field: cell competition in mammals. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Nouri, Hamideh; Beecham, Simon; Anderson, Sharolyn; Nagler, Pamela
2014-01-01
Evapotranspiration estimation has benefitted from recent advances in remote sensing and GIS techniques particularly in agricultural applications rather than urban environments. This paper explores the relationship between urban vegetation evapotranspiration (ET) and vegetation indices derived from newly-developed high spatial resolution WorldView-2 imagery. The study site was Veale Gardens in Adelaide, Australia. Image processing was applied on five images captured from February 2012 to February 2013 using ERDAS Imagine. From 64 possible two band combinations of WorldView-2, the most reliable one (with the maximum median differences) was selected. Normalized Difference Vegetation Index (NDVI) values were derived for each category of landscape cover, namely trees, shrubs, turf grasses, impervious pavements, and water bodies. Urban landscape evapotranspiration rates for Veale Gardens were estimated through field monitoring using observational-based landscape coefficients. The relationships between remotely sensed NDVIs for the entire Veale Gardens and for individual NDVIs of different vegetation covers were compared with field measured urban landscape evapotranspiration rates. The water stress conditions experienced in January 2013 decreased the correlation between ET and NDVI with the highest relationship of ET-Landscape NDVI (Landscape Normalized Difference Vegetation Index) for shrubs (r2 = 0.66) and trees (r2 = 0.63). However, when the January data was excluded, there was a significant correlation between ET and NDVI. The highest correlation for ET-Landscape NDVI was found for the entire Veale Gardens regardless of vegetation type (r2 = 0.95, p > 0.05) and the lowest one was for turf (r2 = 0.88, p > 0.05). In support of the feasibility of ET estimation by WV2 over a longer period, an algorithm recently developed that estimates evapotranspiration rates based on the Enhanced Vegetation Index (EVI) from MODIS was employed. The results revealed a significant positive relationship between ETMODIS and ETWV2 (r2 = 0.9857, p > 0.05). This indicates that the relationship between NDVI using high resolution WorldView-2 imagery and ground-based validation approaches could provide an effective predictive tool for determining ET rates from unstressed mixed urban landscape plantings.
Clinical iron deficiency disturbs normal human responses to hypoxia
Frise, Matthew C.; Cheng, Hung-Yuan; Nickol, Annabel H.; Curtis, M. Kate; Pollard, Karen A.; Roberts, David J.; Ratcliffe, Peter J.; Dorrington, Keith L.; Robbins, Peter A.
2016-01-01
BACKGROUND. Iron bioavailability has been identified as a factor that influences cellular hypoxia sensing, putatively via an action on the hypoxia-inducible factor (HIF) pathway. We therefore hypothesized that clinical iron deficiency would disturb integrated human responses to hypoxia. METHODS. We performed a prospective, controlled, observational study of the effects of iron status on hypoxic pulmonary hypertension. Individuals with absolute iron deficiency (ID) and an iron-replete (IR) control group were exposed to two 6-hour periods of isocapnic hypoxia. The second hypoxic exposure was preceded by i.v. infusion of iron. Pulmonary artery systolic pressure (PASP) was serially assessed with Doppler echocardiography. RESULTS. Thirteen ID individuals completed the study and were age- and sex-matched with controls. PASP did not differ by group or study day before each hypoxic exposure. During the first 6-hour hypoxic exposure, the rise in PASP was 6.2 mmHg greater in the ID group (absolute rises 16.1 and 10.7 mmHg, respectively; 95% CI for difference, 2.7–9.7 mmHg, P = 0.001). Intravenous iron attenuated the PASP rise in both groups; however, the effect was greater in ID participants than in controls (absolute reductions 11.1 and 6.8 mmHg, respectively; 95% CI for difference in change, –8.3 to –0.3 mmHg, P = 0.035). Serum erythropoietin responses to hypoxia also differed between groups. CONCLUSION. Clinical iron deficiency disturbs normal responses to hypoxia, as evidenced by exaggerated hypoxic pulmonary hypertension that is reversed by subsequent iron administration. Disturbed hypoxia sensing and signaling provides a mechanism through which iron deficiency may be detrimental to human health. TRIAL REGISTRATION. ClinicalTrials.gov (NCT01847352). FUNDING. M.C. Frise is the recipient of a British Heart Foundation Clinical Research Training Fellowship (FS/14/48/30828). K.L. Dorrington is supported by the Dunhill Medical Trust (R178/1110). D.J. Roberts was supported by R&D funding from National Health Service (NHS) Blood and Transplant and a National Institute for Health Research (NIHR) Programme grant (RP-PG-0310-1004). This research was funded by the NIHR Oxford Biomedical Research Centre Programme. PMID:27140401
Assessment of DPOAE test-retest difference curves via hierarchical Gaussian processes.
Bao, Junshu; Hanson, Timothy; McMillan, Garnett P; Knight, Kristin
2017-03-01
Distortion product otoacoustic emissions (DPOAE) testing is a promising alternative to behavioral hearing tests and auditory brainstem response testing of pediatric cancer patients. The central goal of this study is to assess whether significant changes in the DPOAE frequency/emissions curve (DP-gram) occur in pediatric patients in a test-retest scenario. This is accomplished through the construction of normal reference charts, or credible regions, that DP-gram differences lie in, as well as contour probabilities that measure how abnormal (or in a certain sense rare) a test-retest difference is. A challenge is that the data were collected over varying frequencies, at different time points from baseline, and on possibly one or both ears. A hierarchical structural equation Gaussian process model is proposed to handle the different sources of correlation in the emissions measurements, wherein both subject-specific random effects and variance components governing the smoothness and variability of each child's Gaussian process are coupled together. © 2016, The International Biometric Society.
Investigation of ultraviolet fluxes of normal and peculiar stars
NASA Technical Reports Server (NTRS)
Deutschman, W. A.; Schild, R. E.
1974-01-01
Data from Project Celescope, a program that photographed the ultraviolet sky, in order to study several problems in current astrophysics are analyzed. Two star clusters, the Pleiades and the Hyades, reveal differences between the two that we are unable to explain simply from their differences in chemical abundance, rotation, or reddening. Data for Orion show large scatter, which appears to be in the sense that the Orion stars are too faint for their ground-based photometry. Similarly, many supergiants in the association Sco OB1 are too faint in the ultraviolet, but the ultraviolet brightness appears to be only poorly correlated with spectral type. Ultraviolet Celescope data for several groups of peculiar stars have also been analyzed. The strong He I stars are too faint in the ultraviolet, possibly owing to enhancement of O II continuous opacity due to oxygen overabundance. The Be stars appear to have ultraviolet colors normal for their MK spectral types. The P Cygni stars are considerably fainter than main-sequence stars of comparable spectral type, probably owing, at least in part, to line blocking by resonance lines of multiply ionized light metals. The Wolf-Rayet stars have ultraviolet color temperatures of O stars.
NASA Astrophysics Data System (ADS)
Samsudin, Sarah Hanim; Shafri, Helmi Z. M.; Hamedianfar, Alireza
2016-04-01
Status observations of roofing material degradation are constantly evolving due to urban feature heterogeneities. Although advanced classification techniques have been introduced to improve within-class impervious surface classifications, these techniques involve complex processing and high computation times. This study integrates field spectroscopy and satellite multispectral remote sensing data to generate degradation status maps of concrete and metal roofing materials. Field spectroscopy data were used as bases for selecting suitable bands for spectral index development because of the limited number of multispectral bands. Mapping methods for roof degradation status were established for metal and concrete roofing materials by developing the normalized difference concrete condition index (NDCCI) and the normalized difference metal condition index (NDMCI). Results indicate that the accuracies achieved using the spectral indices are higher than those obtained using supervised pixel-based classification. The NDCCI generated an accuracy of 84.44%, whereas the support vector machine (SVM) approach yielded an accuracy of 73.06%. The NDMCI obtained an accuracy of 94.17% compared with 62.5% for the SVM approach. These findings support the suitability of the developed spectral index methods for determining roof degradation statuses from satellite observations in heterogeneous urban environments.
NASA Technical Reports Server (NTRS)
Dardner, B. R.; Blad, B. L.; Thompson, D. R.; Henderson, K. E.
1985-01-01
Reflectance and agronomic Thematic Mapper (TM) data were analyzed to determine possible data transformations for evaluating several plant parameters of corn. Three transformation forms were used: the ratio of two TM bands, logarithms of two-band ratios, and normalized differences of two bands. Normalized differences and logarithms of two-band ratios responsed similarly in the equations for estimating the plant growth parameters evaluated in this study. Two-term equations were required to obtain the maximum predictability of percent ground cover, canopy moisture content, and total wet phytomass. Standard error of estimate values were 15-26 percent lower for two-term estimates of these parameters than for one-term estimates. The terms log(TM4/TM2) and (TM4/TM5) produced the maximum predictability for leaf area and dry green leaf weight, respectively. The middle infrared bands TM5 and TM7 are essential for maximizing predictability for all measured plant parameters except leaf area index. The estimating models were evaluated over bare soil to discriminate between equations which are statistically similar. Qualitative interpretations of the resulting prediction equations are consistent with general agronomic and remote sensing theory.
Thigmo Responses: The Fungal Sense of Touch.
Almeida, Mariana Cruz; Brand, Alexandra C
2017-04-01
The growth and development of most fungi take place on a two-dimensional surface or within a three-dimensional matrix. The fungal sense of touch is therefore critical for fungi in the interpretation of their environment and often signals the switch to a new developmental state. Contact sensing, or thigmo-based responses, include thigmo differentiation, such as the induction of invasion structures by plant pathogens in response to topography; thigmonasty, where contact with a motile prey rapidly triggers its capture; and thigmotropism, where the direction of hyphal growth is guided by physical features in the environment. Like plants and some bacteria, fungi grow as walled cells. Despite the well-demonstrated importance of thigmo responses in numerous stages of fungal growth and development, it is not known how fungal cells sense contact through the relatively rigid structure of the cell wall. However, while sensing mechanisms at the molecular level are not entirely understood, the downstream signaling pathways that are activated by contact sensing are being elucidated. In the majority of cases, the response to contact is complemented by chemical cues and both are required, either sequentially or simultaneously, to elicit normal developmental responses. The importance of a sense of touch in the lifestyles and development of diverse fungi is highlighted in this review, and the candidate molecular mechanisms that may be involved in fungal contact sensing are discussed.
On the Feedback Phenomenon of an Impinging Jet
1979-09-01
the double-structured nature of turbulent flows: time dependent quasi- ordered large scale structures, and fine-scale random structures. Numerous ...downstream and upstream waves d Nozzle diameter f Frequency (Hz) Gf Normalized power si.c ,ur’ of i G ,(f) Normalized cr,- tr bee -en i(t) and J(t) I ,j xiv...1975) suggested that these quasi- ordered structures are deterministic, in the sense that they have a characteristic shape, size and convection motion
Multifrequency Retrieval of Cloud Ice Particle Size Distributions
2005-01-01
distribution ( Testud et al., 2001) to represent the PSD. The normalized gamma distribution has several advantages over a typical gamma PSD. A typical gamma...variation correlated with variation in ýL ( Testud et al., 2001). This variation on N, with P, requires a priori restrictions on the variance in R in...Geoscience & Rem. Sensing, 40, 541-549. Testud , J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The Concept of "Normalized" Distibution to Describe
Load estimation from photoelastic fringe patterns under combined normal and shear forces
NASA Astrophysics Data System (ADS)
Dubey, V. N.; Grewal, G. S.
2009-08-01
Recently there has been some spurt of interests to use photoelastic materials for sensing applications. This has been successfully applied for designing a number of signal-based sensors, however, there have been limited efforts to design image-based sensors on photoelasticity which can have wider applications in term of actual loading and visualisation. The main difficulty in achieving this is the infinite loading conditions that may generate same image on the material surface. This, however, can be useful for known loading situations as this can provide dynamic and actual conditions of loading in real time. This is particularly useful for separating components of forces in and out of the loading plane. One such application is the separation of normal and shear forces acting on the plantar surface of foot of diabetic patients for predicting ulceration. In our earlier work we have used neural networks to extract normal force information from the fringe patterns using image intensity. This paper considers geometric and various other statistical parameters in addition to the image intensity to extract normal as well as shear force information from the fringe pattern in a controlled experimental environment. The results of neural network output with the above parameters and their combinations are compared and discussed. The aim is to generalise the technique for a range of loading conditions that can be exploited for whole-field load visualisation and sensing applications in biomedical field.
Beus, Michael J.; McCoy, William G.
1998-01-01
Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.
Accelerating cine-MR Imaging in Mouse Hearts Using Compressed Sensing
Wech, Tobias; Lemke, Angela; Medway, Debra; Stork, Lee-Anne; Lygate, Craig A; Neubauer, Stefan; Köstler, Herbert; Schneider, Jürgen E
2011-01-01
Purpose To combine global cardiac function imaging with compressed sensing (CS) in order to reduce scan time and to validate this technique in normal mouse hearts and in a murine model of chronic myocardial infarction. Materials and Methods To determine the maximally achievable acceleration factor, fully acquired cine data, obtained in sham and chronically infarcted (MI) mouse hearts were 2–4-fold undersampled retrospectively, followed by CS reconstruction and blinded image segmentation. Subsequently, dedicated CS sampling schemes were implemented at a preclinical 9.4 T magnetic resonance imaging (MRI) system, and 2- and 3-fold undersampled cine data were acquired in normal mouse hearts with high temporal and spatial resolution. Results The retrospective analysis demonstrated that an undersampling factor of three is feasible without impairing accuracy of cardiac functional parameters. Dedicated CS sampling schemes applied prospectively to normal mouse hearts yielded comparable left-ventricular functional parameters, and intra- and interobserver variability between fully and 3-fold undersampled data. Conclusion This study introduces and validates an alternative means to speed up experimental cine-MRI without the need for expensive hardware. J. Magn. Reson. Imaging 2011. © 2011 Wiley Periodicals, Inc. PMID:21932360
Age, education, and the gender gap in the sense of control.
Slagsvold, Britt; Sørensen, Annemette
2008-01-01
High sense of control is related to benefits in many aspects of life, and education is known to be strongly related to sense of control. In this article we explore why women tend to feel a lower sense of control than men, and why the sense of control tends to be lower among the elderly than among younger people. In particular we explore the role played by education in explaining age- and gender differences in sense of control. The analysis is based on data from the first wave of the Norwegian NorLAG study, with a representative sample of adults aged 40-79 in 30 municipalities. We find that education accounts for some of the age and gender differences in sense of control, but the mediating effects of education are rather modest. We find an increasing gender gap in sense of control with age, and this increasing gap is completely explained by differences in education. Gender differences in sense of control is explained completely by four factors, which are related to resources and power; physical health, education, living with a partner, and leadership experience. Age differences in sense of control are only partially explained. Education, physical health and employment status cuts the age effect on sense of control to half. The effect of education on sense of control is partly mediated through what we suggest are tangible benefits of education, namely health, employment, and leadership experience. Education also influences individuals through socialization mechanisms. We view agentive orientation as a psychological benefit of education, and measure this characteristic with Bem's (1981) sex-role scale on masculinity. Agentive orientation completely explains the remaining effect of education on sense of control.
NASA Astrophysics Data System (ADS)
Morgan, Andy J.
The San Bernardino National Forest (SBNF) has experienced periods of high, concentrated bark beetle epidemics in the late 1990's and into the 2000's. This increased activity has caused huge amounts of forest loss, resulting from disease introduced by bark beetles. Using remote sensing techniques and Landsat Thematic Mapper 5 (TM5) imagery, the spread of bark beetle diseased trees is mapped over a period from 1998 to 2008. Acreage of two attack stages (red and gray) were calculated from a level sliced classification method developed on data training sites. In each image using Normalized Difference Vegetation Index (NDVI) is the driver of forest health classifications. The results of the analysis are classification maps for each year, red acreage estimated for each study year, and gray attack acreage estimated for each study year. Additionally, for the period of 2001-2004, acreage was compared to those reported by the USDA with a thirteen percent lower mortality total in comparison to USDA federal land and a thirty-two percent lower total mortality (federal and non-federal) land in the SBNF.
NASA Astrophysics Data System (ADS)
Yousefi Lalimi, F.; Silvestri, S.; Moore, L. J.; Marani, M.
2017-01-01
Vegetation plays a key role in stabilizing coastal dunes and barrier islands by mediating sand transport, deposition, and erosion. Dune topography, in turn, affects vegetation growth, by determining local environmental conditions. However, our understanding of vegetation and dune topography as coupled and spatially extensive dynamical systems is limited. Here we develop and use remote sensing analyses to quantitatively characterize coastal dune ecotopographic patterns by simultaneously identifying the spatial distribution of topographic elevation and vegetation biomass. Lidar-derived leaf area index and hyperspectral-derived normalized difference vegetation index patterns yield vegetation distributions at the whole-system scale which are in agreement with each other and with field observations. Lidar-derived concurrent quantifications of biomass and topography show that plants more favorably develop on the landward side of the foredune crest and that the foredune crestline marks the position of an ecotone, which is interpreted as the result of a sheltering effect sharply changing local environmental conditions. We conclude that the position of the foredune crestline is a chief ecomorphodynamic feature resulting from the two-way interaction between vegetation and topography.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronald; Russell, Jeffrey A.; Prados, Don; Stanley, Thomas
2005-01-01
Remotely sensed ground reflectance is the basis for many inter-sensor interoperability or change detection techniques. Satellite inter-comparisons and accurate vegetation indices such as the Normalized Difference Vegetation Index, which is used to describe or to imply a wide variety of biophysical parameters and is defined in terms of near-infrared and redband reflectance, require the generation of accurate reflectance maps. This generation relies upon the removal of solar illumination, satellite geometry, and atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance, however, has been widely applied to only a few systems. In this study, we atmospherically corrected commercially available, high spatial resolution IKONOS and QuickBird imagery using several methods to determine the accuracy of the resulting reflectance maps. We used extensive ground measurement datasets for nine IKONOS and QuickBird scenes acquired over a two-year period to establish reflectance map accuracies. A correction approach using atmospheric products derived from Moderate Resolution Imaging Spectrometer data created excellent reflectance maps and demonstrated a reliable, effective method for reflectance map generation.
Development of an Optical Device to Investigatechlorophyll Content of Tomato Leaves
NASA Astrophysics Data System (ADS)
Cui, Di; Li, Minzan; Li, Xiuhua
Chlorophyll content is an important indication for evaluating crop growth status and predicting crop yield. The NDVI (Normalized Difference Vegetation Index) is commonly used as an indicator in practical crop healthy monitoring. Hence, a spectroscopy-based device for indirectly measuring crop growth conditions in terms of NDVI is developed. This device consists of four channels: two are designed to measure the intensity of the sunlight and the other two are used to measure the reflected light from the crop canopy at the same time. An electronic control unit was designed to control the sensing and data recording processes, as well as to calculate the NDVI based on the sensed data. The measurable two wavelengths are 610 nm and 1220 nm. A series validation tests, comparing the measurement result against spectroradiometer readings, are conducted to evaluate the performance of the device. Leaf samples are collected to measure chlorophyll contents in laboratory. The correlation coefficient between the NDVI readings from the developed device and the chlorophyll content data measured by the UV-VIS Spectrophotometer reaches 0.81, which shows that the device can be used in practical crop management.
Flexible and disposable plasmonic refractive index sensor using nanoimprint lithography
NASA Astrophysics Data System (ADS)
Mohapatra, Saswat; Moirangthem, Rakesh S.
2018-03-01
Nanostructure based plasmonic sensors are highly demanding in various areas due to their label-free and real-time detection capability. In this work, we developed an inexpensive flexible plasmonic sensor using optical disc nanograting via soft UV-nanoimprint lithography (UV-NIL). The polydimethylsiloxane (PDMS) stamp was used to transfer the nanograting structure from digital versatile discs (DVDs) to flexible and transparent polyethylene terephthalate (PET) substrate. Further, the plasmonic sensing substrate was obtained after coating a gold thin film on the top of the imprinted sample. The surface plasmon resonance (SPR) modes excited on gold coated nanograting structure appeared as a dip in the reflectance spectra measured at normal incident of white light in ambient air medium. Electromagnetic simulation based on finite element method (FEM) was used to understand and analyze the excited SPR modes and it is a very close agreement with the experimental results. The bulk refractive index (RI) sensing was performed by the sensor chip using water-glycerol mixture with different concentrations. Experimentally, the bulk RI sensitivity was found to be 797+/-17 nm/RIU.
Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.; Brown, Jesslyn F.
2015-01-01
Cheatgrass exhibits spatial and temporal phenological variability across the Great Basin as described by ecological models formed using remote sensing and other spatial data-sets. We developed a rule-based, piecewise regression-tree model trained on 99 points that used three data-sets – latitude, elevation, and start of season time based on remote sensing input data – to estimate cheatgrass beginning of spring growth (BOSG) in the northern Great Basin. The model was then applied to map the location and timing of cheatgrass spring growth for the entire area. The model was strong (R2 = 0.85) and predicted an average cheatgrass BOSG across the study area of 29 March–4 April. Of early cheatgrass BOSG areas, 65% occurred at elevations below 1452 m. The highest proportion of cheatgrass BOSG occurred between mid-April and late May. Predicted cheatgrass BOSG in this study matched well with previous Great Basin cheatgrass green-up studies.
Radar investigation of asteroids
NASA Astrophysics Data System (ADS)
Ostro, S. J.
1984-07-01
The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.
Radar investigation of asteroids
NASA Technical Reports Server (NTRS)
Ostro, S. J.
1984-01-01
The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.
Thermoregulatory, Behavioral, and Metabolic Responses to Heatstroke in a Conscious Mouse Model
2010-04-28
important for survival. Delayed hyperthermia has been observed in HS patients during the hours, days, and weeks of recovery (21). The occurrence of ...radiotelemetry transmitter device (Model TA10TA-F20; Data Sciences International, St. Paul, MN) for remote sensing of Tc ( 0.1°C). The transmitter weighed 3.6...intervals by high-speed gas sensing O2 and CO2 analyzers (0.002%). V̇O2 and V̇CO2 values were normalized to body weight0.75, although mice of similar
Tripathy, Ashis; Pramanik, Sumit; Cho, Jongman; Santhosh, Jayasree; Osman, Noor Azuan Abu
2014-01-01
The humidity sensing characteristics of different sensing materials are important properties in order to monitor different products or events in a wide range of industrial sectors, research and development laboratories as well as daily life. The primary aim of this study is to compare the sensing characteristics, including impedance or resistance, capacitance, hysteresis, recovery and response times, and stability with respect to relative humidity, frequency, and temperature, of different materials. Various materials, including ceramics, semiconductors, and polymers, used for sensing relative humidity have been reviewed. Correlations of the different electrical characteristics of different doped sensor materials as the most unique feature of a material have been noted. The electrical properties of different sensor materials are found to change significantly with the morphological changes, doping concentration of different materials and film thickness of the substrate. Various applications and scopes are pointed out in the review article. We extensively reviewed almost all main kinds of relative humidity sensors and how their electrical characteristics vary with different doping concentrations, film thickness and basic sensing materials. Based on statistical tests, the zinc oxide-based sensing material is best for humidity sensor design since it shows extremely low hysteresis loss, minimum response and recovery times and excellent stability. PMID:25256110
NASA Astrophysics Data System (ADS)
Ma, M.
2015-12-01
The Qinghai-Tibet Plateau (QTP) is the world's highest and largest plateau and is occasionally referred to as "the roof of the world". As the important "water tower", there are 1,091 lakes of more than 1.0 km2 in the QTP areas, which account for 49.4% of the total area of lakes in China. Some studies focus on the lake area changes of the QTP areas, which mainly use the middle-resolution remote sensing data (e.g. Landsat TM). In this study, the coarse-resolution time series remote sensing data, MODIS data at a spatial resolution of 250m, was used to monitor the lake area changes of the QTP areas during the last 15 years. The dataset is the MOD13Q1 and the Normal Difference Vegetation Index (NDVI) is used to identify the lake area when the NDVI is less than 0. The results show the obvious inner-annual changes of most of the lakes. Therefore the annually average and maximum lake areas are calculated based on the time series remote data, which can better quantify the change characteristics than the single scene of image data from the middle-resolution data. The results indicate that there are big spatial variances of the lake area changes in the QTB. The natural driving factors are analyzed for revealing the causes of changes.
Wang, Kai; Mao, Jiafu; Dickinson, Robert; ...
2013-06-05
This paper examines a land surface solar radiation partitioning scheme, i.e., that of the Community Land Model version 4 (CLM4) with coupled carbon and nitrogen cycles. Taking advantage of a unique 30-year fraction of absorbed photosynthetically active radiation (FPAR) dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data set, multiple other remote sensing datasets, and site level observations, we evaluated the CLM4 FPAR ’s seasonal cycle, diurnal cycle, long-term trends and spatial patterns. These findings show that the model generally agrees with observations in the seasonal cycle, long-term trends, and spatial patterns,more » but does not reproduce the diurnal cycle. Discrepancies also exist in seasonality magnitudes, peak value months, and spatial heterogeneity. Here, we identify the discrepancy in the diurnal cycle as, due to, the absence of dependence on sun angle in the model. Implementation of sun angle dependence in a one-dimensional (1-D) model is proposed. The need for better relating of vegetation to climate in the model, indicated by long-term trends, is also noted. Evaluation of the CLM4 land surface solar radiation partitioning scheme using remote sensing and site level FPAR datasets provides targets for future development in its representation of this naturally complicated process.« less
Evaluation of SPOT imagery for the estimation of grassland biomass
NASA Astrophysics Data System (ADS)
Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F.
2015-06-01
In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.
Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin
NASA Technical Reports Server (NTRS)
Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei
2017-01-01
Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.
Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin
de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei
2017-01-01
Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics. PMID:29375895
Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin.
de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei
2017-01-01
Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r 2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.
Disparities in Sense of Community: True Race Differences or Differential Item Functioning?
ERIC Educational Resources Information Center
Coffman, Donna L.; BeLue, Rhonda
2009-01-01
The sense of community index (SCI) has been widely used to measure psychological sense of community (SOC). Furthermore, SOC has been found to differ among racial groups. Because different ethnic groups have different cultural and historical experiences that may lead to different interpretations of measurement items, it is important to know whether…
NASA Astrophysics Data System (ADS)
Van, U. A.; Lamb, B. T.
2016-12-01
Wetlands are biologically diverse ecosystems that provide a number of ecosystems services, including flood protection, erosion prevention, and carbon sequestration. Wetlands often act as carbon sinks because the abundant plant life in wetlands does not decompose easily in the saturated conditions, leading to carbon accumulating in wetland soils. Due to the motion of tides, however, this stored carbon can be transported to the adjacent estuary. Our study site is in the northwestern shore of the Chesapeake Bay, focusing on the Kirkpatrick Marsh and the adjacent Rhode River estuary. The goal of this project is to use remotely sensed data and in situ measurements to understand carbon fluxes between the Kirkpatrick marsh and the Rhode river estuary. Satellite earth images are obtained from the Optical Land Imager (OLI) sensor aboard the Landsat 8 satellite through the USGS Earth Explorer online interface. Landsat imagery is then processed using various spatial analysis tools to calculate for vegetation indices such as Normalized Density Vegetation Index (NDVI), Transformed Vegetation Index (TVI) and Green Normalized Density Vegetation Index (GNDVI). One goal of this project is to compare the vegetation data obtained from the different indices and find out which index can optimize the wide categorization of vegetation over the wetland. We evaluated lesser known vegetation indices (TVI and GNDVI) to compare to NDVI. Preliminary results have shown TVI to be most effective when compared against NDVI and has a correlating factor of 0.987. In addition to using marsh vegetation indices, we are using water quality indices such as the Red/Green index to compare to in-situ water samples in the Rhode River. A YSI EXO2 sensor sits at the marsh-estuary interface and continuously measures water parameters such as turbidity, depth, fDOM and chlorophyll-A. We are attempting to understand if the marsh vegetation indices, water quality indices (remote sensing), and in-situ measurements of water quality are related to one another. Initial comparison between remotely sensed NDVI data and in-situ fDOM data have a correlating factor of 0.93. Understanding the processes affecting carbon cycling within wetlands is pivotal to knowing how to manage them in the future.
Laboratory evaluation of two passive alcohol sensor devices
DOT National Transportation Integrated Search
1988-12-01
Passive alcohol sensing devices are designed to detect the presence of alcohol in a person's normally-expelled breath; they are "passive" in that one is not required to blow into a mouthpiece as with conventional breath test devices. The National Hig...
12 CFR 1072.103 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... means information technology and any equipment or interconnected system or subsystem of equipment that... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... of major bodily functions of the immune system, special sense organs and skin, normal cell growth...
12 CFR 1072.103 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... means information technology and any equipment or interconnected system or subsystem of equipment that... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... of major bodily functions of the immune system, special sense organs and skin, normal cell growth...
Moon, Sungrim; Pakhomov, Serguei; Liu, Nathan; Ryan, James O; Melton, Genevieve B
2014-01-01
To create a sense inventory of abbreviations and acronyms from clinical texts. The most frequently occurring abbreviations and acronyms from 352,267 dictated clinical notes were used to create a clinical sense inventory. Senses of each abbreviation and acronym were manually annotated from 500 random instances and lexically matched with long forms within the Unified Medical Language System (UMLS V.2011AB), Another Database of Abbreviations in Medline (ADAM), and Stedman's Dictionary, Medical Abbreviations, Acronyms & Symbols, 4th edition (Stedman's). Redundant long forms were merged after they were lexically normalized using Lexical Variant Generation (LVG). The clinical sense inventory was found to have skewed sense distributions, practice-specific senses, and incorrect uses. Of 440 abbreviations and acronyms analyzed in this study, 949 long forms were identified in clinical notes. This set was mapped to 17,359, 5233, and 4879 long forms in UMLS, ADAM, and Stedman's, respectively. After merging long forms, only 2.3% matched across all medical resources. The UMLS, ADAM, and Stedman's covered 5.7%, 8.4%, and 11% of the merged clinical long forms, respectively. The sense inventory of clinical abbreviations and acronyms and anonymized datasets generated from this study are available for public use at http://www.bmhi.umn.edu/ihi/research/nlpie/resources/index.htm ('Sense Inventories', website). Clinical sense inventories of abbreviations and acronyms created using clinical notes and medical dictionary resources demonstrate challenges with term coverage and resource integration. Further work is needed to help with standardizing abbreviations and acronyms in clinical care and biomedicine to facilitate automated processes such as text-mining and information extraction.
Ramírez, Sara; Gómez-Valadés, Alicia G; Schneeberger, Marc; Varela, Luis; Haddad-Tóvolli, Roberta; Altirriba, Jordi; Noguera, Eduard; Drougard, Anne; Flores-Martínez, Álvaro; Imbernón, Mónica; Chivite, Iñigo; Pozo, Macarena; Vidal-Itriago, Andrés; Garcia, Ainhoa; Cervantes, Sara; Gasa, Rosa; Nogueiras, Ruben; Gama-Pérez, Pau; Garcia-Roves, Pablo M; Cano, David A; Knauf, Claude; Servitja, Joan-Marc; Horvath, Tamas L; Gomis, Ramon; Zorzano, Antonio; Claret, Marc
2017-06-06
Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic β cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release. Copyright © 2017 Elsevier Inc. All rights reserved.
Remote-Sensing-Based Evaluation of Relative Consumptive Use Between Flood- and Drip-Irrigated Fields
NASA Astrophysics Data System (ADS)
Martinez Baquero, G. F.; Jordan, D. L.; Whittaker, A. T.; Allen, R. G.
2013-12-01
Governments and water authorities are compelled to evaluate the impacts of agricultural irrigation on economic development and sustainability as water supply shortages continue to increase in many communities. One of the strategies commonly used to reduce such impacts is the conversion of traditional irrigation methods towards more water-efficient practices. As part of a larger effort by the New Mexico Interstate Stream Commission to understand the environmental and economic impact of converting from flood irrigation to drip irrigation, this study evaluates the water-saving effectiveness of drip irrigation in Deming, New Mexico, using a remote-sensing-based technique combined with ground data collection. The remote-sensing-based technique used relative temperature differences as a proxy for water use to show relative differences in crop consumptive use between flood- and drip-irrigated fields. Temperature analysis showed that, on average, drip-irrigated fields were cooler than flood-irrigated fields, indicating higher water use. The higher consumption of water by drip-irrigated fields was supported by a determination of evapotranspiration (ET) from all fields using the METRIC Landsat-based surface energy balance model. METRIC analysis yielded higher instantaneous ET for drip-irrigated fields when compared to flood-irrigated fields and confirmed that drip-irrigated fields consumed more water than flood-irrigated fields planted with the same crop. More water use generally results in more biomass and hence higher crop yield, and this too was confirmed by greater relative Normalized Difference Vegetation Index for the drip irrigated fields. Results from this study confirm previous estimates regarding the impacts of increased efficiency of drip irrigation on higher water consumption in the area (Ward and Pulido-Velazquez, 2008). The higher water consumption occurs with drip because, with the limited water supplies and regulated maximum limits on pumping amounts, the higher efficiency of drip enables producers to convert larger percentages of pumped ground-water into evapotranspiration and reduces the ';return' of percolation ';losses' back to the ground-water system that previously re-recharged the aquifer. This study illustrates the usefulness of remote sensing techniques to evaluate spatial patterns of ET by different irrigation methods. These results illustrate a first-step quantitative tool that can be used by water resources managers in formulation of policy to limit net water consumption and maintain reliable water supply sources.
Magnetic elliptical polarization of Schumann resonances
NASA Technical Reports Server (NTRS)
Sentman, D. D.
1987-01-01
Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.
Polarization-independent electromagnetically induced transparency-like metasurface
NASA Astrophysics Data System (ADS)
Jia, Xiuli; Wang, Xiaoou
2018-01-01
A classical electromagnetically induced transparency-like (EIT-like) metasurface is numerically simulated. This metasurface is composed of two identical and orthogonal double-end semitoroidals (DESTs) metal resonators. Under the excitation of the normal incidence waves, each of the two DESTs structure exhibits electromagnetic dipole responses at different frequencies, which leads to the polarization-independent EIT-like effect. The features of the EIT-like effect are qualitatively analyzed based on the surface current and magnetic field distribution. In addition, the large index is extracted to verify the slow-light property within the transmission window. The EIT-like metasurface structure with the above-mentioned characteristics may have potential applications in some areas, such as sensing, slow light, and filtering devices.
Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Creasy, R.M.; Sherlock, J.W.
2009-01-01
Multispectral satellite data have become a common tool used in the mapping of wildland fire effects. Fire severity, defined as the degree to which a site has been altered, is often the variable mapped. The Normalized Burn Ratio (NBR) used in an absolute difference change detection protocol (dNBR), has become the remote sensing method of choice for US Federal land management agencies to map fire severity due to wildland fire. However, absolute differenced vegetation indices are correlated to the pre-fire chlorophyll content of the vegetation occurring within the fire perimeter. Normalizing dNBR to produce a relativized dNBR (RdNBR) removes the biasing effect of the pre-fire condition. Employing RdNBR hypothetically allows creating categorical classifications using the same thresholds for fires occurring in similar vegetation types without acquiring additional calibration field data on each fire. In this paper we tested this hypothesis by developing thresholds on random training datasets, and then comparing accuracies for (1) fires that occurred within the same geographic region as the training dataset and in similar vegetation, and (2) fires from a different geographic region that is climatically and floristically similar to the training dataset region but supports more complex vegetation structure. We additionally compared map accuracies for three measures of fire severity: the composite burn index (CBI), percent change in tree canopy cover, and percent change in tree basal area. User's and producer's accuracies were highest for the most severe categories, ranging from 70.7% to 89.1%. Accuracies of the moderate fire severity category for measures describing effects only to trees (percent change in canopy cover and basal area) indicated that the classifications were generally not much better than random. Accuracies of the moderate category for the CBI classifications were somewhat better, averaging in the 50%-60% range. These results underscore the difficulty in isolating fire effects to individual vegetation strata when fire effects are mixed. We conclude that the models presented here and in Miller and Thode ([Miller, J.D. & Thode, A.E., (2007). Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment, 109, 66-80.]) can produce fire severity classifications (using either CBI, or percent change in canopy cover or basal area) that are of similar accuracy in fires not used in the original calibration process, at least in conifer dominated vegetation types in Mediterranean-climate California.
A cost effective FBG-based security fence with fire alarm function
NASA Astrophysics Data System (ADS)
Wu, H. J.; Li, S. S.; Lu, X. L.; Wu, Y.; Rao, Y. J.
2012-02-01
Fiber Bragg Grating (FBG) is sensitive to the temperature as well when it is measuring the strain change, which is always avoided in most measurement applications. However, in this paper strain/temperature dual sensitivity is utilized to construct a special security fence with a second function of fire threat prediction. In an FBG-based fiber fence configuration, only by characteristics analysis and identification method, it can intelligently distinguish the different effects of personal threats and fires from their different trends of the wavelength drifts. Thus without any additional temperature sensing fittings or other fire alarm systems integrated, a normal perimeter security system can possess a second function of fire prediction, which can not only monitor the intrusion induced by personal actions but also predict fire threats in advance. The experimental results show the effectiveness of the method.
Spectral reflectance and photometric properties of selected rocks
Watson, Robert D.
1971-01-01
Studies of the spectral reflectance and photometric properties of selected rocks at the USGS Mill Creek, Oklahoma, remote sensing test site demonstrate that discrimination of rock types is possible through reflection measurements, but that the discrimination is complicated by surface conditions, such as weathering and lichen growth. Comparisons between fresh-broken, weathered, and lichen-covered granite show that whereas both degree of weathering and amount of lichen cover change the reflectance quality of the granite, lichen cover also considerably changes the photometric properties of the granite. Measurements of the spectral reflectance normal to the surface of both limestone and dolomite show limestone to be more reflective than dolomite in the wavelength range from 380 to 1550 nanometers. The reflectance difference decreases at view angles greater than 40° owing to the difference in the photometric properties of dolomite and limestone.
Mulavara, A P; Ruttley, T; Cohen, H S; Peters, B T; Miller, C; Brady, R; Merkle, L; Bloomberg, J J
2012-01-01
Space flight causes astronauts to be exposed to adaptation in both the vestibular and body load-sensing somatosensory systems. The goal of these studies was to examine the contributions of vestibular and body load-sensing somatosensory influences on vestibular mediated head movement control during locomotion after long-duration space flight. Subjects walked on a motor driven treadmill while performing a gaze stabilization task. Data were collected from three independent subject groups that included bilateral labyrinthine deficient (LD) patients, normal subjects before and after 30 minutes of 40% bodyweight unloaded treadmill walking, and astronauts before and after long-duration space flight. Motion data from the head and trunk segments were used to calculate the amplitude of angular head pitch and trunk vertical translation movement while subjects performed a gaze stabilization task, to estimate the contributions of vestibular reflexive mechanisms in head pitch movements. Exposure to unloaded locomotion caused a significant increase in head pitch movements in normal subjects, whereas the head pitch movements of LD patients were significantly decreased. This is the first evidence of adaptation of vestibular mediated head movement responses to unloaded treadmill walking. Astronaut subjects showed a heterogeneous response of both increases and decreases in the amplitude of head pitch movement. We infer that body load-sensing somatosensory input centrally modulates vestibular input and can adaptively modify vestibularly mediated head-movement control during locomotion. Thus, space flight may cause central adaptation of the converging vestibular and body load-sensing somatosensory systems leading to alterations in head movement control.
Welch, Graham F; Himonides, Evangelos; Saunders, Jo; Papageorgi, Ioulia; Sarazin, Marc
2014-01-01
There is a growing body of neurological, cognitive, and social psychological research to suggest the possibility of positive transfer effects from structured musical engagement. In particular, there is evidence to suggest that engagement in musical activities may impact on social inclusion (sense of self and of being socially integrated). Tackling social exclusion and promoting social inclusion are common concerns internationally, such as in the UK and the EC, and there are many diverse Government ministries and agencies globally that see the arts in general and music in particular as a key means by which social needs can be addressed. As part of a wider evaluation of a national, Government-sponsored music education initiative for Primary-aged children in England ("Sing Up"), opportunity was taken by the authors, at the request of the funders, to assess any possible relationship between (a) children's developing singing behavior and development and (b) their social inclusion (sense of self and of being socially integrated). Subsequently, it was possible to match data from n = 6087 participants, drawn from the final 3 years of data collection (2008-2011), in terms of each child's individually assessed singing ability (based on their singing behavior of two well-known songs to create a "normalized singing score") and their written responses to a specially-designed questionnaire that included a set of statements related to children's sense of being socially included to which the children indicated their level of agreement on a seven-point Likert scale. Data analyses suggested that the higher the normalized singing development rating, the more positive the child's self-concept and sense of being socially included, irrespective of singer age, sex and ethnicity.
Tao, Shi-Cong; Gao, You-Shui; Zhu, Hong-Yi; Yin, Jun-Hui; Chen, Yi-Xuan; Zhang, Yue-Lei; Guo, Shang-Chun; Zhang, Chang-Qing
2016-06-03
The pH of extracellular fluids is a basic property of the tissue microenvironment and is normally maintained at 7.40 ± 0.05 in humans. Many pathological circumstances, such as ischemia, inflammation, and tumorigenesis, result in the reduction of extracellular pH in the affected tissues. In this study, we reported that the osteogenic differentiation of BMSCs was significantly inhibited by decreases in the extracellular pH. Moreover, we demonstrated that proton-sensing GPR4 signaling mediated the proton-induced inhibitory effects on the osteogenesis of BMSCs. Additionally, we found that YAP was the downstream effector of GPR4 signaling. Our findings revealed that the extracellular pH modulates the osteogenic responses of BMSCs by regulating the proton-sensing GPR4-YAP pathway.
Fibre optical spectroscopy and sensing innovation at innoFSPEC Potsdam
NASA Astrophysics Data System (ADS)
Haynes, Roger; Reich, Oliver; Rambold, William; Hass, Roland; Janssen, Katja
2010-07-01
In October 2009, an interdisciplinary centre for fibre spectroscopy and sensing, innoFSPEC Potsdam, has been established as joint initiative of the Astrophysikalisches Institut Potsdam (AIP) and the Physical Chemistry group of Potsdam University (UPPC), Germany. The centre focuses on fundamental research in the two fields of fibre-coupled multi-channel spectroscopy and optical fibre-based sensing. Thanks to its interdisciplinary approach, the complementary methodologies of astrophysics on the one hand, and physical chemistry on the other hand, are expected to spawn synergies that otherwise would not normally become available in more standard research programmes. innoFSPEC Potsdam targets future innovations for next generation astrophysical instrumentation, environmental analysis, manufacturing control and process analysis, medical diagnostics, non-invasive imaging spectroscopy, biopsy, genomics/proteomics, high throughput screening, and related applications.
Research on Remote Sensing recognition features of Yuan Yang Terraces in Yunnan Province (China)
NASA Astrophysics Data System (ADS)
Xiang, Jie; Chen, Jianping; Lai, ZiLi; Yang, Wei
2016-04-01
Yuan Yang terraces is one of the most famous terraces in China, and it was successfully listed in the world heritage list at the 37th world heritage convention. On the one hand, Yuan Yang terraces retain more soil and water, to reduce both hydrological connectivity and erosion, and to support irrigation. On the other hand, It has the important tourism value, bring the huge revenue to local residents. In order to protect and make use of Yuan Yang terraces better, This study analyzed the spatial distribution and spectral characteristics of terraces:(1) Through visual interpretation, the study recognized the terraces based on the spatial adjusted remote sensing image (2010 Geoeye-1 with resolution of 1m/pix), and extracted topographic feature (elevation, slope, aspect, etc.) based on the digital elevation model with resolution of 20m/pix. The terraces cover a total area of about 11.58Km2, accounted for 24.4% of the whole study area. The terraces appear at range from 1400m to 1800m in elevation, 10°to 20°in slope, northwest to northeast in aspect; (2) Using the method of weight of evidence, this study assessed the importance of different topographic feature. The results show that the sort of importance: elevation>slope>aspect; (3) The study counted the Normalized Difference Vegetation Index (NDVI) changes of terraces throughout the year, based on the landsat-5 image with resolution of 30m/pix. The results show that the changes of terraces' NDVI are bigger than other stuff (e.g. forest, road, house, etc.). Those work made a good preparations for establishing the dynamic remote sensing monitoring system of Yuan Yang terraces.
Effect of water content and organic carbon on remote sensing of crop residue cover
NASA Astrophysics Data System (ADS)
Serbin, G.; Hunt, E. R., Jr.; Daughtry, C. S. T.; McCarty, G. W.; Brown, D. J.; Doraiswamy, P. C.
2009-04-01
Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for residue cover estimation. Of these, the most effective are those in the shortwave infrared portion of the spectrum, situated between 1950 and 2500 nm. These indices include the hyperspectral Cellulose Absorption Index (CAI), and advanced multispectral indices, i.e., the Lignin-Cellulose Absorption (LCA) index and the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which were devised for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. Spectra of numerous soils from U.S. Corn Belt (Indiana and Iowa) were acquired under wetness conditions varying from saturation to oven-dry conditions. The behavior of soil reflectance with water content was also dependent on the soil organic carbon content (SOC) of the soils, and the location of the spectral bands relative to significant water absorptions. High-SOC soils showed the least change in spectral index values with increase in soil water content. Low-SOC soils, on the other hand, showed measurable difference. For CAI, low-SOC soils show an initial decrease in index value followed by an increase, due to the way that water content affects CAI spectral bands. Crop residue CAI values decrease with water content. For LCA, water content increases decrease crop residue index values and increase them for soils, resulting in decreased contrast. SINDRI is also affected by SOC and water content. As such, spatial information on the distribution of surface soil water content and SOC, when used in a geographic information system (GIS), will improve the accuracy of remotely-sensed crop residue cover estimates.
Zeb, Mehmood; Curzen, Nick; Allavatam, Venugopal; Wilson, David; Yue, Arthur; Roberts, Paul; Morgan, John
2015-09-15
The sensitivity and specificity of the subcutaneous implantable cardioverter defibrillator (S-ICD) pre-implant screening tool required clinical evaluation. Bipolar vectors were derived from electrodes positioned at locations similar to those employed for S-ICD sensing and pre-implant screening electrodes, and recordings collected through 80-electrode PRIME®-ECGs, in six different postures, from 40 subjects (10 healthy controls, and 30 patients with complex congenital heart disease (CCHD); 10 with Tetralogy of Fallot (TOF), 10 with single ventricle physiology (SVP), and 10 with transposition of great arteries (TGA)). The resulting vectors were analysed using the S-ICD pre-implant screening tool (Boston Scientific) and processed through the sensing algorithm of S-ICD (Boston Scientific). The data were then evaluated using 2 × 2 contingency tables. Fisher exact and McNemar tests were used for a comparison of the different categories of CCHD, and p < 0.05 vs. controls considered to be statistically significant. 57% of patients were male, mean age of 36.3 years. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the S-ICD screening tool were 95%, 79%, 59% and 98%, respectively, for controls, and 84%, 79%, 76% and 86%, respectively, in patients with CCHD (p = 0.0001). The S-ICD screening tool was comparatively more sensitive in normal controls but less specific in both CCHD patients and controls; a possible explanation for the reported high incidence of inappropriate S-ICD shocks. Thus, we propose a pre-implant screening device using the S-ICD sensing algorithm to minimise false exclusion and selection, and hence minimise potentially inappropriate shocks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Carter, Bernie; Bray, Lucy; Keating, Paula; Wilkinson, Catherine
2017-09-15
Caring for a child with complex health care needs places additional stress and time demands on parents. Parents often turn to their peers to share their experiences, gain support, and lobby for change; increasingly this is done through social media. The WellChild #notanurse_but is a parent-driven campaign that states its aim is to "shine a light" on the care parents, who are not nurses, have to undertake for their child with complex health care needs and to raise decision-makers' awareness of the gaps in service provision and support. This article reports on a study that analyzed the #notanurse_but parent-driven campaign videos. The purpose of the study was to consider the videos in terms of the range, content, context, perspectivity (motivation), and affect (sense of being there) in order to inform the future direction of the campaign. Analysis involved repeated viewing of a subset of 30 purposively selected videos and documenting our analysis on a specifically designed data extraction sheet. Each video was analyzed by a minimum of 2 researchers. All but 2 of the 30 videos were filmed inside the home. A variety of filming techniques were used. Mothers were the main narrators in all but 1 set of videos. The sense of perspectivity was clearly linked to the campaign with the narration pressing home the reality, complexity, and need for vigilance in caring for a child with complex health care needs. Different clinical tasks and routines undertaken as part of the child's care were depicted. Videos also reported on a sense of feeling different than "normal families"; the affect varied among the researchers, ranging from strong to weaker emotional responses.
Grassland Npp Monitoring Based on Multi-Source Remote Sensing Data Fusion
NASA Astrophysics Data System (ADS)
Cai, Y. R.; Zheng, J. H.; Du, M. J.; Mu, C.; Peng, J.
2018-04-01
Vegetation is an important part of the terrestrial ecosystem. It plays an important role in the energy and material exchange of the ground-atmosphere system and is a key part of the global carbon cycle process.Climate change has an important influence on the carbon cycle of terrestrial ecosystems. Net Primary Productivity (Net Primary Productivity)is an important parameter for evaluating global terrestrial ecosystems. For the Xinjiang region, the study of grassland NPP has gradually become a hot issue in the ecological environment.Increasing the estimation accuracy of NPP is of great significance to the development of the ecosystem in Xinjiang. Based on the third-generation GIMMS AVHRR NDVI global vegetation dataset and the MODIS NDVI (MOD13A3) collected each month by the United States Atmospheric and Oceanic Administration (NOAA),combining the advantages of different remotely sensed datasets, this paper obtained the maximum synthesis fusion for New normalized vegetation index (NDVI) time series in 2006-2015.Analysis of Net Primary Productivity of Grassland Vegetation in Xinjiang Using Improved CASA Model The method described in this article proves the feasibility of applying data processing, and the accuracy of the NPP calculation using the fusion processed NDVI has been greatly improved. The results show that: (1) The NPP calculated from the new normalized vegetation index (NDVI) obtained from the fusion of GIMMS AVHRR NDVI and MODIS NDVI is significantly higher than the NPP calculated from these two raw data; (2) The grassland NPP in Xinjiang Interannual changes show an overall increase trend; interannual changes in NPP have a certain relationship with precipitation.
Gurudatt, N G; Naveen, M Halappa; Ban, Changill; Shim, Yoon-Bo
2016-12-15
Electrochemical biosensors using five anticancer drug and lipid molecules attached on the conducting polymer layer to obtain the orientation of drug molecules toward cancer cells, were evaluated as sensing materials and their performances were compared. Conjugation of the drug molecules with a lipid, phosphatidylcholine (PC) has enhanced the sensitivity towards leukemia cells and differentiates cancer cells from normal cells. The composition of each layer of sensor probe was confirmed by electrochemical and surface characterization experiments. Both impedance spectroscopy and voltammetry show the enhanced interaction of leukemia cells using the drug/lipid modified sensor probe. As the number of leukemia cells increased, the charge transfer resistance (Rct) in impedance spectra increased and the amine oxidation peak current of drug molecules in voltammograms decreased at around 0.7-1.0V. Of test drug molecules, raltitrexed (Rtx) showed the best performance for the cancer cells detection. Cancer and normal cell lines from different origins were examined to evaluate the degree of expression of folate receptors (FR) on cells surface, where cervical HeLa cell line was found to be shown the highest expression of the receptor. Impedance and chronoamperometric experiments for leukemia cell line (Jurkat E6-1) showed linear dynamic ranges of 1.0×10(3)-2.5×10(5) cells/mL and 1.0×10(3)-8.0×10(3) cells/mL with detection limits of 68±5 cells/mL and 21±3 cells/mL, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Potentials and limitations of remote fire monitoring in protected areas.
Dos Santos, João Flávio Costa; Romeiro, Joyce Machado Nunes; de Assis, José Batuíra; Torres, Fillipe Tamiozzo Pereira; Gleriani, José Marinaldo
2018-03-01
Protected areas (PAs) play an important role in maintaining the biodiversity and ecological processes of the site. One of the greatest challenges for the PA management in several biomes in the world is wildfires. The objective of this work was to evaluate the potentialities and limitations of the use of data obtained by orbital remote sensing in the monitoring fire occurrence in PAs. Fire Occurrence Records (FORs) were analyzed in Serra do Brigadeiro State Park, Minas Gerais, Brazil, from 2007 to 2015, using photo interpreted data from TM, ETM + and OLI sensors of the Landsat series and the Hot Spot Database (HSD) from the Brazilian Institute of Space Research - INPE. It was also observed the time of permanence of the scar left by fire on the landscape, through the multitemporal analysis of the behavior of NDVI (Normalized Difference Vegetation Index) and NBR (Normalized Burn Ratio) indexes, before and after the occurrence. The greatest limitation found for the orbital remote monitoring was the presence of clouds in the passage of the sensor in dates close to the occurrence of the fires. The burned area identified by photo interpretation was 54.9% less than the area contained in the FOR. Although the HSD reported fire occurrences in the buffer zone (up to 10km from the Park), no FORs were found at a distance greater than 1100m from the boundaries of the PA. As the main potential of remote sensing, the possibility of identifying burned areas throughout the park and surroundings is highlighted, with low costs and greater accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.
Whole genome prediction and heritability of childhood asthma phenotypes.
McGeachie, Michael J; Clemmer, George L; Croteau-Chonka, Damien C; Castaldi, Peter J; Cho, Michael H; Sordillo, Joanne E; Lasky-Su, Jessica A; Raby, Benjamin A; Tantisira, Kelan G; Weiss, Scott T
2016-12-01
While whole genome prediction (WGP) methods have recently demonstrated successes in the prediction of complex genetic diseases, they have not yet been applied to asthma and related phenotypes. Longitudinal patterns of lung function differ between asthmatics, but these phenotypes have not been assessed for heritability or predictive ability. Herein, we assess the heritability and genetic predictability of asthma-related phenotypes. We applied several WGP methods to a well-phenotyped cohort of 832 children with mild-to-moderate asthma from CAMP. We assessed narrow-sense heritability and predictability for airway hyperresponsiveness, serum immunoglobulin E, blood eosinophil count, pre- and post-bronchodilator forced expiratory volume in 1 sec (FEV 1 ), bronchodilator response, steroid responsiveness, and longitudinal patterns of lung function (normal growth, reduced growth, early decline, and their combinations). Prediction accuracy was evaluated using a training/testing set split of the cohort. We found that longitudinal lung function phenotypes demonstrated significant narrow-sense heritability (reduced growth, 95%; normal growth with early decline, 55%). These same phenotypes also showed significant polygenic prediction (areas under the curve [AUCs] 56% to 62%). Including additional demographic covariates in the models increased prediction 4-8%, with reduced growth increasing from 62% to 66% AUC. We found that prediction with a genomic relatedness matrix was improved by filtering available SNPs based on chromatin evidence, and this result extended across cohorts. Longitudinal reduced lung function growth displayed extremely high heritability. All phenotypes with significant heritability showed significant polygenic prediction. Using SNP-prioritization increased prediction across cohorts. WGP methods show promise in predicting asthma-related heritable traits.
Shi, Yue; Huang, Wenjiang; Ye, Huichun; Ruan, Chao; Xing, Naichen; Geng, Yun; Dong, Yingying; Peng, Dailiang
2018-06-11
In recent decades, rice disease co-epidemics have caused tremendous damage to crop production in both China and Southeast Asia. A variety of remote sensing based approaches have been developed and applied to map diseases distribution using coarse- to moderate-resolution imagery. However, the detection and discrimination of various disease species infecting rice were seldom assessed using high spatial resolution data. The aims of this study were (1) to develop a set of normalized two-stage vegetation indices (VIs) for characterizing the progressive development of different diseases with rice; (2) to explore the performance of combined normalized two-stage VIs in partial least square discriminant analysis (PLS-DA); and (3) to map and evaluate the damage caused by rice diseases at fine spatial scales, for the first time using bi-temporal, high spatial resolution imagery from PlanetScope datasets at a 3 m spatial resolution. Our findings suggest that the primary biophysical parameters caused by different disease (e.g., changes in leaf area, pigment contents, or canopy morphology) can be captured using combined normalized two-stage VIs. PLS-DA was able to classify rice diseases at a sub-field scale, with an overall accuracy of 75.62% and a Kappa value of 0.47. The approach was successfully applied during a typical co-epidemic outbreak of rice dwarf (Rice dwarf virus, RDV), rice blast ( Magnaporthe oryzae ), and glume blight ( Phyllosticta glumarum ) in Guangxi Province, China. Furthermore, our approach highlighted the feasibility of the method in capturing heterogeneous disease patterns at fine spatial scales over the large spatial extents.
Jeong, Hieyong; Matsuura, Yutaka; Ohno, Yuko
2017-01-01
The purpose of the present study was to propose a method to measure a respiration rate (RR) and depth at once through difference in temperature between the skin surface and nostril by using a thermal image. Although there have been a lot of devices for contact RR monitoring, it was considered that the subjects could be inconvenienced by having the sensing device in contact with their body. Our algorithm enabled us to make a breathing periodic function (BPF) under the non-contact and non-invasive condition through temperature differences near the nostril during the breath. As a result, it was proved that our proposed method was able to classify differences in breathing pattern between normal, deep, and shallow breath (P < 0.001). These results lead us to conclude that the RR and depth is simultaneously measured by the proposed algorithm of BPF without any contact or invasive procedure.
NASA Astrophysics Data System (ADS)
Kirst, Frederik; Leiss, Bernd
2017-01-01
Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.
NASA Astrophysics Data System (ADS)
Agoes Nugroho, Indra; Kurniawahidayati, Beta; Syahputra Mulyana, Reza; Saepuloh, Asep
2017-12-01
Remote sensing is one of the methods for geothermal exploration. This method can be used to map the geological structures, manifestations, and predict the geothermal potential area. The results from remote sensing were used as guidance for the next step exploration. Analysis of target in remote sensing is an efficient method to delineate geothermal surface manifestation without direct contact to the object. The study took a place in District Merangin, Jambi Province, Indonesia. The area was selected due to existing of Merangin volcanic complex composed by Mounts Sumbing and Hulunilo with surface geothermal manifestations presented by hot springs and hot pools. The location of surface manifestations could be related with local and regional structures of Great Sumatra Fault. The methods used in this study were included identification of volcanic products, lineament extraction, and lineament density quantification. The objective of this study is to delineate the potential zones for sitting the geothermal working site based on Thermal Infrared and Synthetic Aperture Radar (SAR) sensors. The lineament-related to geological structures, was aimed for high lineament density, is using ALOS - PALSAR (Advanced Land Observing Satellite - The Phased Array type L-band Synthetic Aperture Radar) level 1.1. The Normalized Difference Vegetation Index (NDVI) analysis was used to predict the vegetation condition using Landsat 8 OLI-TIRS (The Operational Land Imager - Thermal Infrared Sensor). The brightness temperature was extracted from TIR band to estimate the surface temperature. Geothermal working area identified based on index overlay method from extracted parameter of remote sensing data was located at the western part of study area (Graho Nyabu area). This location was identified because of the existence of high surface temperature about 30°C, high lineament density about 4 - 4.5 km/km2 and low NDVI values less than 0.3.
Zhang, Zhe; Tsukikawa, Mai; Peng, Min; Polyak, Erzsebet; Nakamaru-Ogiso, Eiko; Ostrovsky, Julian; McCormack, Shana; Place, Emily; Clarke, Colleen; Reiner, Gail; McCormick, Elizabeth; Rappaport, Eric; Haas, Richard; Baur, Joseph A.; Falk, Marni J.
2013-01-01
Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease. PMID:23894440
Information mining in remote sensing imagery
NASA Astrophysics Data System (ADS)
Li, Jiang
The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and fuzzy normalized difference vegetation index (NDVI) pattern mining. The study results show the effectiveness of the proposed system prototype and the potentials for other applications in remote sensing.
Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR.
Huang, Jingfeng; Wang, Xiuzhen; Li, Xinxing; Tian, Hanqin; Pan, Zhuokun
2013-01-01
Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which eliminates the influence of the technology development, fertilizer application, and management improvement and can be used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of remotely sensed data over an adequate time frame and a corresponding record of the region's crop yields. Longer normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of 50 to 128 kg ha(-1). Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of NDVI data and the corresponding historical yield information are available, as long as the historical yield increases significantly.
Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR
Huang, Jingfeng; Wang, Xiuzhen; Li, Xinxing; Tian, Hanqin; Pan, Zhuokun
2013-01-01
Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which eliminates the influence of the technology development, fertilizer application, and management improvement and can be used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of remotely sensed data over an adequate time frame and a corresponding record of the region's crop yields. Longer normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of 50 to 128 kg ha−1. Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of NDVI data and the corresponding historical yield information are available, as long as the historical yield increases significantly. PMID:23967112
Remote Sensing to study soil-management systems in Itaí-SP
NASA Astrophysics Data System (ADS)
Soares da Silva, Natália; Máximo Sánchez-Román, Rodrigo; Marchamalo Sacristán, Miguel; Rodríguez-Sinobas, Leonor
2017-04-01
Nowadays, there is a worldwide concern to develop sustainable technologies for agriculture and a correct soil management is one of the principles toward the ecological production of crops. Soil covering is one of the most important tecniques to reduce erosion because the barrier on the surface prevents the direct impact of the rain drops. This technique improves soil fertility, keeps the soil moisture, reduces the evaporation losses and reduces the need of irrigation by 20%. The species used to cover the soil depends on the aim of the work, but is always important to know previously the availability of the material in the area and the possibility to use material of previous crops. In São Paulo State some studies are trying undertand how different soil-covering-systems affect plant production, especially for common bean, very important nutritionally and economically in Brazil. Nowadays, remote sensing could is used to study spatial dynamics, and to understand data in any place on the globe easily. For that, images of Earth freely obtained on the Internet are analyzed and interpreted to understand the dinamic of a specific local by the interaction between an electromagnetic radiation and different covering-vegetation. The aim of this study was monitoring by remote sensing an area of bean production with straw-covered-soil and straw-incorporated in the soil. The experimental site is in Itaí, São Paulo, Brazil, irrigated by central pivot. Images of different satellites (Landsat 7 and Landsat 8) were downloaded and analyzed by determining the soil moisture index (IUS) as a function of the normalized difference vegetation index (NDVI) for both straw-systems. There was correlation between IUS and NDVI data, and the highest value obtained was 0.98 for both systems and the lower one was 0.59 in the straw-covering system and 0.61 in the straw-incoporated system. Thus, the sensors were not sensitive to detect differences between the systems, and further studies are needed to identify which management system is better for soil physics, water holding and plant development.
Ledien, Julia; Sorn, Sopheak; Hem, Sopheak; Huy, Rekol; Buchy, Philippe
2017-01-01
Remote sensing can contribute to early warning for diseases with environmental drivers, such as flooding for leptospirosis. In this study we assessed whether and which remotely-sensed flooding indicator could be used in Cambodia to study any disease for which flooding has already been identified as an important driver, using leptospirosis as a case study. The performance of six potential flooding indicators was assessed by ground truthing. The Modified Normalized Difference Water Index (MNDWI) was used to estimate the Risk Ratio (RR) of being infected by leptospirosis when exposed to floods it detected, in particular during the rainy season. Chi-square tests were also calculated. Another variable—the time elapsed since the first flooding of the year—was created using MNDWI values and was also included as explanatory variable in a generalized linear model (GLM) and in a boosted regression tree model (BRT) of leptospirosis infections, along with other explanatory variables. Interestingly, MNDWI thresholds for both detecting water and predicting the risk of leptospirosis seroconversion were independently evaluated at -0.3. Value of MNDWI greater than -0.3 was significantly related to leptospirosis infection (RR = 1.61 [1.10–1.52]; χ2 = 5.64, p-value = 0.02, especially during the rainy season (RR = 2.03 [1.25–3.28]; χ2 = 8.15, p-value = 0.004). Time since the first flooding of the year was a significant risk factor in our GLM model (p-value = 0.042). These results suggest that MNDWI may be useful as a risk indicator in an early warning remote sensing tool for flood-driven diseases like leptospirosis in South East Asia. PMID:28704461
Ledien, Julia; Sorn, Sopheak; Hem, Sopheak; Huy, Rekol; Buchy, Philippe; Tarantola, Arnaud; Cappelle, Julien
2017-01-01
Remote sensing can contribute to early warning for diseases with environmental drivers, such as flooding for leptospirosis. In this study we assessed whether and which remotely-sensed flooding indicator could be used in Cambodia to study any disease for which flooding has already been identified as an important driver, using leptospirosis as a case study. The performance of six potential flooding indicators was assessed by ground truthing. The Modified Normalized Difference Water Index (MNDWI) was used to estimate the Risk Ratio (RR) of being infected by leptospirosis when exposed to floods it detected, in particular during the rainy season. Chi-square tests were also calculated. Another variable-the time elapsed since the first flooding of the year-was created using MNDWI values and was also included as explanatory variable in a generalized linear model (GLM) and in a boosted regression tree model (BRT) of leptospirosis infections, along with other explanatory variables. Interestingly, MNDWI thresholds for both detecting water and predicting the risk of leptospirosis seroconversion were independently evaluated at -0.3. Value of MNDWI greater than -0.3 was significantly related to leptospirosis infection (RR = 1.61 [1.10-1.52]; χ2 = 5.64, p-value = 0.02, especially during the rainy season (RR = 2.03 [1.25-3.28]; χ2 = 8.15, p-value = 0.004). Time since the first flooding of the year was a significant risk factor in our GLM model (p-value = 0.042). These results suggest that MNDWI may be useful as a risk indicator in an early warning remote sensing tool for flood-driven diseases like leptospirosis in South East Asia.
Crawford, Matthew A.; Tapscott, Timothy; Fitzsimmons, Liam F.; Liu, Lin; Reyes, Aníbal M.; Libby, Stephen J.; Trujillo, Madia; Fang, Ferric C.; Radi, Rafael
2016-01-01
ABSTRACT The four-cysteine zinc finger motif of the bacterial RNA polymerase regulator DksA is essential for protein structure, canonical control of the stringent response to nutritional limitation, and thiol-based sensing of oxidative and nitrosative stress. This interdependent relationship has limited our understanding of DksA-mediated functions in bacterial pathogenesis. Here, we have addressed this challenge by complementing ΔdksA Salmonella with Pseudomonas aeruginosa dksA paralogues that encode proteins differing in cysteine and zinc content. We find that four-cysteine, zinc-bound (C4) and two-cysteine, zinc-free (C2) DksA proteins are able to mediate appropriate stringent control in Salmonella and that thiol-based sensing of reactive species is conserved among C2 and C4 orthologues. However, variations in cysteine and zinc content determine the threshold at which individual DksA proteins sense and respond to reactive species. In particular, zinc acts as an antioxidant, dampening cysteine reactivity and raising the threshold of posttranslational thiol modification with reactive species. Consequently, C2 DksA triggers transcriptional responses in Salmonella at levels of oxidative or nitrosative stress normally tolerated by Salmonella expressing C4 orthologues. Inappropriate transcriptional regulation by C2 DksA increases the susceptibility of Salmonella to the antimicrobial effects of hydrogen peroxide and nitric oxide, and attenuates virulence in macrophages and mice. Our findings suggest that the redox-active sensory function of DksA proteins is finely tuned to optimize bacterial fitness according to the levels of oxidative and nitrosative stress encountered by bacterial species in their natural and host environments. PMID:27094335
Corcoran, Jennifer M.; Knight, Joseph F.; Gallant, Alisa L.
2013-01-01
Wetland mapping at the landscape scale using remotely sensed data requires both affordable data and an efficient accurate classification method. Random forest classification offers several advantages over traditional land cover classification techniques, including a bootstrapping technique to generate robust estimations of outliers in the training data, as well as the capability of measuring classification confidence. Though the random forest classifier can generate complex decision trees with a multitude of input data and still not run a high risk of over fitting, there is a great need to reduce computational and operational costs by including only key input data sets without sacrificing a significant level of accuracy. Our main questions for this study site in Northern Minnesota were: (1) how does classification accuracy and confidence of mapping wetlands compare using different remote sensing platforms and sets of input data; (2) what are the key input variables for accurate differentiation of upland, water, and wetlands, including wetland type; and (3) which datasets and seasonal imagery yield the best accuracy for wetland classification. Our results show the key input variables include terrain (elevation and curvature) and soils descriptors (hydric), along with an assortment of remotely sensed data collected in the spring (satellite visible, near infrared, and thermal bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite radar). We undertook this exploratory analysis to inform decisions by natural resource managers charged with monitoring wetland ecosystems and to aid in designing a system for consistent operational mapping of wetlands across landscapes similar to those found in Northern Minnesota.
Estimating Crop Growth Stage by Combining Meteorological and Remote Sensing Based Techniques
NASA Astrophysics Data System (ADS)
Champagne, C.; Alavi-Shoushtari, N.; Davidson, A. M.; Chipanshi, A.; Zhang, Y.; Shang, J.
2016-12-01
Estimations of seeding, harvest and phenological growth stage of crops are important sources of information for monitoring crop progress and crop yield forecasting. Growth stage has been traditionally estimated at the regional level through surveys, which rely on field staff to collect the information. Automated techniques to estimate growth stage have included agrometeorological approaches that use temperature and day length information to estimate accumulated heat and photoperiod, with thresholds used to determine when these stages are most likely. These approaches however, are crop and hybrid dependent, and can give widely varying results depending on the method used, particularly if the seeding date is unknown. Methods to estimate growth stage from remote sensing have progressed greatly in the past decade, with time series information from the Normalized Difference Vegetation Index (NDVI) the most common approach. Time series NDVI provide information on growth stage through a variety of techniques, including fitting functions to a series of measured NDVI values or smoothing these values and using thresholds to detect changes in slope that are indicative of rapidly increasing or decreasing `greeness' in the vegetation cover. The key limitations of these techniques for agriculture are frequent cloud cover in optical data that lead to errors in estimating local features in the time series function, and the incongruity between changes in greenness and traditional agricultural growth stages. There is great potential to combine both meteorological approaches and remote sensing to overcome the limitations of each technique. This research will examine the accuracy of both meteorological and remote sensing approaches over several agricultural sites in Canada, and look at the potential to integrate these techniques to provide improved estimates of crop growth stage for common field crops.
Liang, Y Q; Cui, Z D; Zhu, S L; Li, Z Y; Yang, X J; Chen, Y J; Ma, J M
2013-11-21
In this paper, we describe the design, fabrication and gas-sensing tests of nano-coaxial p-Co3O4/n-TiO2 heterojunction. Specifically, uniform TiO2 nanotubular arrays have been assembled by anodization and used as templates for generation of the Co3O4 one-dimensional nanorods. The structure morphology and composition of as-prepared products have been characterized by SEM, XRD, TEM, and XPS. A possible growth mechanism governing the formation of such nano-coaxial heterojunctions is proposed. The TiO2 nanotube sensor shows a normal n-type response to reducing ethanol gas, whereas TiO2-Co3O4 exhibits p-type response with excellent sensing performances. This conversion of sensing behavior can be explained by the formation of p-n heterojunction structures. A possible sensing mechanism is also illustrated, which can provide theoretical guidance for the further development of advanced gas-sensitive materials with p-n heterojunction.
Adaptive compressed sensing of remote-sensing imaging based on the sparsity prediction
NASA Astrophysics Data System (ADS)
Yang, Senlin; Li, Xilong; Chong, Xin
2017-10-01
The conventional compressive sensing works based on the non-adaptive linear projections, and the parameter of its measurement times is usually set empirically. As a result, the quality of image reconstruction is always affected. Firstly, the block-based compressed sensing (BCS) with conventional selection for compressive measurements was given. Then an estimation method for the sparsity of image was proposed based on the two dimensional discrete cosine transform (2D DCT). With an energy threshold given beforehand, the DCT coefficients were processed with both energy normalization and sorting in descending order, and the sparsity of the image can be achieved by the proportion of dominant coefficients. And finally, the simulation result shows that, the method can estimate the sparsity of image effectively, and provides an active basis for the selection of compressive observation times. The result also shows that, since the selection of observation times is based on the sparse degree estimated with the energy threshold provided, the proposed method can ensure the quality of image reconstruction.
Ising, Erik; Dahlin, Lars B; Elding Larsson, Helena
2018-01-01
To investigate whether multi-frequency vibrometry can identify individuals with elevated vibration perception thresholds (VPTs), reflecting impaired vibrotactile sense, among children and adolescents with type 1 diabetes. In 72 pediatric patients with type 1 diabetes, VPTs were evaluated for seven frequencies on two sites of the hand, and five frequencies on two sites of the foot. Z-scores, based on previously collected reference data, were calculated. Perception to light touch was investigated using monofilaments. Subjects' characteristics were analyzed in comparison to normal and impaired vibrotactile sense. Subjects' median age, disease duration and age at disease onset were 12.8, 5.3 and 6.9 years, respectively. A total of 13 out of 72 (18%) subjects had impaired vibrotactile sense on at least one foot site. Impaired vibrotactile sense was more common among subjects treated with multiple daily insulin injections (MDI) compared to subjects treated with continuous subcutaneous insulin infusion (CSII) (p = 0.013). Age at disease onset was higher among subjects with impaired vibrotactile sense (p = 0.046). No significant correlations were found with gender, HbA1c or duration of diabetes. Impaired vibrotactile sense, mirroring diabetic peripheral neuropathy, was found in 1/5 of the children and adolescents in the study, and was more common in patients treated with MDI than in subjects treated with CSII.
Chen, Ying; Xu, Pengcheng; Li, Xinxin
2010-07-02
This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO(2) surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO(2) cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.
Colorimetric and Fluorescent Bimodal Ratiometric Probes for pH Sensing of Living Cells.
Liu, Yuan-Yuan; Wu, Ming; Zhu, Li-Na; Feng, Xi-Zeng; Kong, De-Ming
2015-06-01
pH measurement is widely used in many fields. Ratiometric pH sensing is an important way to improve the detection accuracy. Herein, five water-soluble cationic porphyrin derivatives were synthesized and their optical property changes with pH value were investigated. Their pH-dependent assembly/disassembly behaviors caused significant changes in both absorption and fluorescence spectra, thus making them promising bimodal ratiometric probes for both colorimetric and fluorescent pH sensing. Different substituent identity and position confer these probes with different sensitive pH-sensing ranges, and the substituent position gives a larger effect. By selecting different porphyrins, different signal intensity ratios and different fluorescence excitation wavelengths, sensitive pH sensing can be achieved in the range of 2.1-8.0. Having demonstrated the excellent reversibility, good accuracy and low cytotoxicity of the probes, they were successfully applied in pH sensing inside living cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Barkler, E H; Magnusson, S P; Becher, K; Bieler, T; Aagaard, P; Kjaer, M; Saugbjerg, P A
2001-06-04
The effect of an early rehabilitation programme, including postural training, on ankle joint function after an ankle ligament sprain was investigated prospectively. Ninety-two subjects, matched for age, sex, and level of sports activity, were randomised to a control or training group. All subjects received the same standard information about early ankle mobilisation. In addition, the training group participated in supervised physical therapy rehabilitation (one hour, twice weekly) with emphasis on balance training. Postural sway, position sense, and isometric ankle strength were measured six weeks and four months after the injury, and at 12 months data on re-injury were collected. In both the training group and the control group, there were a significant difference between the injured and the uninjured side for all variables except for position sense at six weeks. The side-to-side differences in per cent were similar for both groups for all variables (p > 0.05) at six weeks, and there were no such differences at four months. Re-injury occurred in 11/38 (29%) is the control group, but in only 2/29 (7%) in the training group (p < 0.05). These data showed that an ankle injury led to reduced ankle strength and postural control at six weeks, but that these variables had become normal at four months, irrespective of supervised rehabilitation. However, the findings also showed that supervised rehabilitation may reduce the number of re-injuries, and may therefore play a role in injury prevention.
Zhu, Likai; Meng, Jijun
2015-02-01
Understanding climate controls on spring phenology in grassland ecosystems is critically important in predicting the impacts of future climate change on grassland productivity and carbon storage. The third-generation Global Inventory Monitoring and Modeling System (GIMMS3g) normalized difference vegetation index (NDVI) data were applied to derive the start of the growing season (SOS) from 1982-2010 in grassland ecosystems of Ordos, a typical semi-arid area in China. Then, the conditional Granger causality method was utilized to quantify the directed functional connectivity between key climatic drivers and the SOS. The results show that the asymmetric Gaussian (AG) function is better in reducing noise of NDVI time series than the double logistic (DL) function within our study area. The southeastern Ordos has earlier occurrence and lower variability of the SOS, whereas the northwestern Ordos has later occurrence and higher variability of the SOS. The research also reveals that spring precipitation has stronger causal connectivity with the SOS than other climatic factors over different grassland ecosystem types. There is no statistically significant trend across the study area, while the similar pattern is observed for spring precipitation. Our study highlights the link of spring phenology with different grassland types, and the use of coupling remote sensing and econometric tools. With the dramatic increase in global change research, Granger causality method augurs well for further development and application of time-series modeling of complex social-ecological systems at the intersection of remote sensing and landscape changes.
Ebhuoma, Osadolor; Gebreslasie, Michael
2016-06-14
Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of Knowledge(SM) databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical/climatic setting, the stage of malaria elimination continuum, the characteristics of the RS variables and the analytical approach, which in turn, would support the channeling of intervention resources sustainably.
NASA Astrophysics Data System (ADS)
Atherton, Daniel
Early detection of disease and insect infestation within crops and precise application of pesticides can help reduce potential production losses, reduce environmental risk, and reduce the cost of farming. The goal of this study was the advanced detection of early blight (Alternaria solani) in potato (Solanum tuberosum) plants using hyperspectral remote sensing data captured with a handheld spectroradiometer. Hyperspectral reflectance spectra were captured 10 times over five weeks from plants grown to the vegetative and tuber bulking growth stages. The spectra were analyzed using principal component analysis (PCA), spectral change (ratio) analysis, partial least squares (PLS), cluster analysis, and vegetative indices. PCA successfully distinguished more heavily diseased plants from healthy and minimally diseased plants using two principal components. Spectral change (ratio) analysis provided wavelengths (490-510, 640, 665-670, 690, 740-750, and 935 nm) most sensitive to early blight infection followed by ANOVA results indicating a highly significant difference (p < 0.0001) between disease rating group means. In the majority of the experiments, comparisons of diseased plants with healthy plants using Fisher's LSD revealed more heavily diseased plants were significantly different from healthy plants. PLS analysis demonstrated the feasibility of detecting early blight infected plants, finding four optimal factors for raw spectra with the predictor variation explained ranging from 93.4% to 94.6% and the response variation explained ranging from 42.7% to 64.7%. Cluster analysis successfully distinguished healthy plants from all diseased plants except for the most mildly diseased plants, showing clustering analysis was an effective method for detection of early blight. Analysis of the reflectance spectra using the simple ratio (SR) and the normalized difference vegetative index (NDVI) was effective at differentiating all diseased plants from healthy plants, except for the most mildly diseased plants. Of the analysis methods attempted, cluster analysis and vegetative indices were the most promising. The results show the potential of hyperspectral remote sensing for the detection of early blight in potato plants.
Ebhuoma, Osadolor; Gebreslasie, Michael
2016-01-01
Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of KnowledgeSM databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical/climatic setting, the stage of malaria elimination continuum, the characteristics of the RS variables and the analytical approach, which in turn, would support the channeling of intervention resources sustainably. PMID:27314369
NASA Astrophysics Data System (ADS)
Rinaldi, M.; Castrignanò, A.; Mastrorilli, M.; Rana, G.; Ventrella, D.; Acutis, M.; D'Urso, G.; Mattia, F.
2006-08-01
An efficient management of water resources is crucial point for Italy and in particular for southern areas characterized by Mediterranean climate in order to improve the economical and environmental sustainability of the agricultural activity. A three-year Project (2005-2008) has been funded by the Italian Ministry of Agriculture and Forestry Policies; it involves four Italian research institutions: the Agricultural Research Council (ISA, Bari), the National Research Council (ISSIA, Bari) and two Universities (Federico II-Naples and Milan). It is focused on the remote sensing, the plant and the climate and, for interdisciplinary relationships, the project working group consists of agronomists, engineers and physicists. The aims of the Project are: a) to produce a Decision Support System (DSS) combining remote sensing information, spatial data and simulation models to manage water resources in irrigation districts; b) to simulate irrigation scenarios to evaluate the effects of water stress on crop yield using agro-ecological indicators; c) to identify the most sensitive areas to drought risk in Southern Italy. The tools used in this Project will be: 1. Remote sensing images, topographic maps, soil and land use maps; 2. Geographic Information Systems; 3. Geostatistic methodologies; 4. Ground truth measurements (land use, canopy and soil temperatures, soil and plant water status, Normalized Difference Vegetation Index, Crop Water Stress Index, Leaf Area Index, actual evapotranspiration, crop coefficients, crop yield, agro-ecological indicators); 5. Crop simulation models. The Project is structured in four work packages with specific objectives, high degree of interaction and information exchange: 1) Remote Sensing and Image Analysis; 2) Cropping Systems; 3) Modelling and Softwares Development; 4) Stakeholders. The final product will be a DSS with the purpose of integrating remote sensing images, to estimate crop and soil variables related to drought, to assimilate these variables into a simulation model at district scale and, finally, to estimate evapotranspiration, plant water status and drought indicators. A project Web home page, a technical course about DSS for the employers of irrigation authorities and dissemination of results (meetings, publications, reports), are also planned.
Picard, Laurence; Mayor-Dubois, Claire; Maeder, Philippe; Kalenzaga, Sandrine; Abram, Maria; Duval, Céline; Eustache, Francis; Roulet-Perez, Eliane; Piolino, Pascale
2013-06-01
Neuropsychological and neuroimaging data suggest that the self-memory system can be fractionated into three functionally independent systems processing personal information at several levels of abstraction, including episodic memories of one's life (episodic autobiographical memory, EAM), semantic knowledge of facts about one's life (semantic autobiographical memory, SAM), and semantic knowledge of one's personality [conceptual self, (CS)]. Through the study of two developmental amnesic patients suffering of neonatal brain injuries, we explored how the different facets of the self-memory system develop when growing up with bilateral hippocampal atrophy. Neuropsychological evaluations showed that both of them suffered from dramatic episodic learning disability with no sense of recollection (Remember/Know procedure), whereas their semantic abilities differed, being completely preserved (Valentine) or not (Jocelyn). Magnetic resonance imaging, including quantitative volumetric measurements of the hippocampus and adjacent (entorhinal, perirhinal, and temporopolar) cortex, showed severe bilateral atrophy of the hippocampus in both patients, with additional atrophy of adjacent cortex in Jocelyn. Exploration of EAM and SAM according to lifetime periods covering the entire lifespan (TEMPAu task, Piolino et al., 2009) showed that both patients had marked impairments in EAM, as they lacked specificity, details and sense of recollection, whereas SAM was completely normal in Valentine, but impaired in Jocelyn. Finally, measures of patients' CS (Tennessee Self-Concept Scale, Fitts and Warren, 1996), checked by their mothers, were generally within normal range, but both patients showed a more positive self-concept than healthy controls. These two new cases support a modular account of the medial-temporal lobe with episodic memory and recollection depending on the hippocampus, and semantic memory and familiarity on adjacent cortices. Furthermore, they highlight developmental episodic and semantic functional independence within the self-memory system suggesting that SAM and CS may be acquired without episodic memories. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hamada, Yuki; Ssegane, Herbert; Negri, Maria Cristina
2015-07-31
Biofuels are important alternatives for meeting our future energy needs. Successful bioenergy crop production requires maintaining environmental sustainability and minimum impacts on current net annual food, feed, and fiber production. The objectives of this study were to: (1) determine under-productive areas within an agricultural field in a watershed using a single date; high resolution remote sensing and (2) examine impacts of growing bioenergy crops in the under-productive areas using hydrologic modeling in order to facilitate sustainable landscape design. Normalized difference indices (NDIs) were computed based on the ratio of all possible two-band combinations using the RapidEye and the National Agriculturalmore » Imagery Program images collected in summer 2011. A multiple regression analysis was performed using 10 NDIs and five RapidEye spectral bands. The regression analysis suggested that the red and near infrared bands and NDI using red-edge and near infrared that is known as the red-edge normalized difference vegetation index (RENDVI) had the highest correlation (R 2 = 0.524) with the reference yield. Although predictive yield map showed striking similarity to the reference yield map, the model had modest correlation; thus, further research is needed to improve predictive capability for absolute yields. Forecasted impact using the Soil and Water Assessment Tool model of growing switchgrass ( Panicum virgatum) on under-productive areas based on corn yield thresholds of 3.1, 4.7, and 6.3 Mg·ha -1 showed reduction of tile NO 3-N and sediment exports by 15.9%–25.9% and 25%–39%, respectively. Corresponding reductions in water yields ranged from 0.9% to 2.5%. While further research is warranted, the study demonstrated the integration of remote sensing and hydrologic modeling to quantify the multifunctional value of projected future landscape patterns in a context of sustainable bioenergy crop production.« less
Terroir effects on the reflectance spectra of the canopy of four grape varieties
NASA Astrophysics Data System (ADS)
Ducati, Jorge; Bombassaro, Magno; Arruda, Diniz; Bortolotto, Virindiana
2015-04-01
Knowledge of the reflectance spectrum of grape leaves is important to the identification of grape varieties in images of vineyards where several cultivars co-exist. As a non-destructive technique, spectroradiometry delivers reflectance spectra with high signal-to-noise ratios. This work reports results from field measurements of reflectance of four grape varieties in the spectral range 450nm to 2500nm, performed in south Brazil. Three viticultural regions were visited and in vivo measurements of Merlot, Pinot Noir, Chardonnay and Italian Riesling were performed. All spectra were normalized to have unit area and were compared. Due to the small noise level, spectral features from each variety were revealed, with intensities of the order of 10-4 to 10-5 with respect to the normalized reflectance range from 0 to 1.These features were present in several, repeated measurements, and so were considered as real. In a preliminary analysis they were attributed to be due to the presence or absence of pigments as anthocyanins in the measured grape leaves, since the experiments used red and white grapes. It is known that such pigments are present not only in berry skins, but also in vacuoles within cells in leaves. This has an impact in leaf texture and so in infrared reflectance [1]. Spectral differences were present in many wavelengths, including around 552, 577, 662, 884, 1059, 1263, 1981, and 2051 nanometers. A statistical discriminant analysis was made to search for terroir effects which introduce differences between regions. Detailed knowledge of the spectral signatures of grape varieties can be relevant to the development of identification algorithms used to classify remote sensing images of viticultural regions where several cultivars are present, and to in-field inspections using radiometers. [1] Da Silva, P.R.; Ducati, J.R. International Journal of Remote Sensing, 30 (2009), pp. 6085-6098.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Ssegane, Herbert; Negri, Maria Cristina
Biofuels are important alternatives for meeting our future energy needs. Successful bioenergy crop production requires maintaining environmental sustainability and minimum impacts on current net annual food, feed, and fiber production. The objectives of this study were to: (1) determine under-productive areas within an agricultural field in a watershed using a single date; high resolution remote sensing and (2) examine impacts of growing bioenergy crops in the under-productive areas using hydrologic modeling in order to facilitate sustainable landscape design. Normalized difference indices (NDIs) were computed based on the ratio of all possible two-band combinations using the RapidEye and the National Agriculturalmore » Imagery Program images collected in summer 2011. A multiple regression analysis was performed using 10 NDIs and five RapidEye spectral bands. The regression analysis suggested that the red and near infrared bands and NDI using red-edge and near infrared that is known as the red-edge normalized difference vegetation index (RENDVI) had the highest correlation (R 2 = 0.524) with the reference yield. Although predictive yield map showed striking similarity to the reference yield map, the model had modest correlation; thus, further research is needed to improve predictive capability for absolute yields. Forecasted impact using the Soil and Water Assessment Tool model of growing switchgrass ( Panicum virgatum) on under-productive areas based on corn yield thresholds of 3.1, 4.7, and 6.3 Mg·ha -1 showed reduction of tile NO 3-N and sediment exports by 15.9%–25.9% and 25%–39%, respectively. Corresponding reductions in water yields ranged from 0.9% to 2.5%. While further research is warranted, the study demonstrated the integration of remote sensing and hydrologic modeling to quantify the multifunctional value of projected future landscape patterns in a context of sustainable bioenergy crop production.« less
Enterocyte protein tyrosine nitration in response to Eimeria infection in broilers
USDA-ARS?s Scientific Manuscript database
Activation of pathogen-sensing mechanisms in intestinal cells initiate the generation of pathway effectors that perturb normal nutritional enterocyte (ETC) functions. Among the conserved pathway mediator molecules generated are nitric oxide (NO) and superoxide anion (SOA) which are known to interac...
Scripps Ocean Modeling and Remote Sensing (SOMARS)
1990-04-10
1990: Satellite derived estimates of the normal and tangential components of near-surface flow. Internat. J. Rem. Sens., submitted. Mr. Timothy ... Gallaudet - M.S,. in Oceanography/Applied Ocean Sciences (Naval student; not a terminal M.S. degree) Thesis Advisor: Topic will relate to AVIIRR analyses of
ERIC Educational Resources Information Center
Congdon, Kristin G.
1990-01-01
Contends that art therapy promotes mental health beyond diagnosing and treating illness. Outlines four overlapping ways that art contributes to mental health: (1) giving people a sense of identity and place; (2) conferring status; (3) expanding and directing thought processes; and (4) utilizing the security of the rhythmic "takeover"…
SENSORY REACTIONS OF NASAL PUNGENCY AND ODOR TO VOLATILE ORGANIC COMPOUNDS: THE ALKYLBENZENES
Research assessed the independent contribution of the trigeminal and olfactory nerves to the detection of airborne chemicals by measuring nasal detection thresholds in subjects clinically diagnosed as lacking a functional sense of smell (anosmics) and in matched normal controls (...
Wong, Jeremy D; O'Connor, Shawn M; Selinger, Jessica C; Donelan, J Maxwell
2017-08-01
People can adapt their gait to minimize energetic cost, indicating that walking's neural control has access to ongoing measurements of the body's energy use. In this study we tested the hypothesis that an important source of energetic cost measurements arises from blood gas receptors that are sensitive to O 2 and CO 2 concentrations. These receptors are known to play a role in regulating other physiological processes related to energy consumption, such as ventilation rate. Given the role of O 2 and CO 2 in oxidative metabolism, sensing their levels can provide an accurate estimate of the body's total energy use. To test our hypothesis, we simulated an added energetic cost for blood gas receptors that depended on a subject's step frequency and determined if subjects changed their behavior in response to this simulated cost. These energetic costs were simulated by controlling inspired gas concentrations to decrease the circulating levels of O 2 and increase CO 2 We found this blood gas control to be effective at shifting the step frequency that minimized the ventilation rate and perceived exertion away from the normally preferred frequency, indicating that these receptors provide the nervous system with strong physiological and psychological signals. However, rather than adapt their preferred step frequency toward these lower simulated costs, subjects persevered at their normally preferred frequency even after extensive experience with the new simulated costs. These results suggest that blood gas receptors play a negligible role in sensing energetic cost for the purpose of optimizing gait. NEW & NOTEWORTHY Human gait adaptation implies that the nervous system senses energetic cost, yet this signal is unknown. We tested the hypothesis that the blood gas receptors sense cost for gait optimization by controlling blood O 2 and CO 2 with step frequency as people walked. At the simulated energetic minimum, ventilation and perceived exertion were lowest, yet subjects preferred walking at their original frequency. This suggests that blood gas receptors are not critical for sensing cost during gait. Copyright © 2017 the American Physiological Society.
Moon, Sungrim; Pakhomov, Serguei; Liu, Nathan; Ryan, James O; Melton, Genevieve B
2014-01-01
Objective To create a sense inventory of abbreviations and acronyms from clinical texts. Methods The most frequently occurring abbreviations and acronyms from 352 267 dictated clinical notes were used to create a clinical sense inventory. Senses of each abbreviation and acronym were manually annotated from 500 random instances and lexically matched with long forms within the Unified Medical Language System (UMLS V.2011AB), Another Database of Abbreviations in Medline (ADAM), and Stedman's Dictionary, Medical Abbreviations, Acronyms & Symbols, 4th edition (Stedman's). Redundant long forms were merged after they were lexically normalized using Lexical Variant Generation (LVG). Results The clinical sense inventory was found to have skewed sense distributions, practice-specific senses, and incorrect uses. Of 440 abbreviations and acronyms analyzed in this study, 949 long forms were identified in clinical notes. This set was mapped to 17 359, 5233, and 4879 long forms in UMLS, ADAM, and Stedman's, respectively. After merging long forms, only 2.3% matched across all medical resources. The UMLS, ADAM, and Stedman's covered 5.7%, 8.4%, and 11% of the merged clinical long forms, respectively. The sense inventory of clinical abbreviations and acronyms and anonymized datasets generated from this study are available for public use at http://www.bmhi.umn.edu/ihi/research/nlpie/resources/index.htm (‘Sense Inventories’, website). Conclusions Clinical sense inventories of abbreviations and acronyms created using clinical notes and medical dictionary resources demonstrate challenges with term coverage and resource integration. Further work is needed to help with standardizing abbreviations and acronyms in clinical care and biomedicine to facilitate automated processes such as text-mining and information extraction. PMID:23813539
NASA Astrophysics Data System (ADS)
Zhang, Leiming; Cao, Peiyu; Li, Shenggong; Yu, Guirui; Zhang, Junhui; Li, Yingnian
2016-04-01
To accurately assess the change of phenology and its relationship with ecosystem gross primary productivity (GPP) is one of the key issues in context of global change study. In this study, an alpine shrubland meadow in Haibei (HBS) of Qinghai-Tibetan plateau and a broad-leaved Korean pine forest in Changbai Mountain (CBM) of Northeastern China were selected. Based on the long-term GPP from eddy flux measurements and the Normalized Difference Vegetation Index (NDVI) from remote sensed vegetation index, phenological indicators including the start of growing season (SOS), the end of growing season (EOS), and the growing season length (GSL) since 2003 were derived via multiple methods, and then the influences of phenology variation on GPP were explored. Compared with ground phenology observations of dominant plant species, both GPP- and NDVI-derived SOS and EOS exhibited a similar interannual trend. GPP-derived SOS was quite close to NDVI-derived SOS, but GPP-derived EOS differed significantly from NDVI-derived EOS, and thus leading to a significant difference between GPP- and NDVI-derived GSL. Relative to SOS, EOS presented larger differences between the extraction methods, indicating large uncertainties to accurately define EOS. In general, among the methods used, the threshold methods produced more satisfactory assessment on phenology change. This study highlights that how to harmonize with the flux measurements, remote sensing and ground monitoring are a big challenge that needs further consideration in phenology study, especially the accurate extraction of EOS. Key words: phenological variation, carbon flux, vegetation index, vegetation grwoth, interannual varibility
Autophagy and its effects: making sense of double-edged swords.
Thorburn, Andrew
2014-10-01
Autophagy is the mechanism by which cellular material is delivered to lysosomes and degraded. This process has become a major focus of biological and biomedical research with thousands of papers published each year and rapidly growing appreciation that autophagy affects many normal and pathological processes. However, as we learn more about this evolutionarily ancient process, we are discovering that autophagy's effects may work for both the good and the bad of an organism. Here, I discuss some of these context-dependent findings and how, as we make sense of them, we can try to apply our knowledge for practical purposes.
Method For Detecting The Presence Of A Ferromagnetic Object
Roybal, Lyle G.
2000-11-21
A method for detecting a presence or an absence of a ferromagnetic object within a sensing area may comprise the steps of sensing, during a sample time, a magnetic field adjacent the sensing area; producing surveillance data representative of the sensed magnetic field; determining an absolute value difference between a maximum datum and a minimum datum comprising the surveillance data; and determining whether the absolute value difference has a positive or negative sign. The absolute value difference and the corresponding positive or negative sign thereof forms a representative surveillance datum that is indicative of the presence or absence in the sensing area of the ferromagnetic material.
Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea
Ylöstalo, Pasi; Kallio, Kari Y.; Spilling, Kristian; Kutser, Tiit
2017-01-01
Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0–3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data. PMID:28384157
NASA Astrophysics Data System (ADS)
Luther, A. L.; Axen, G. J.; Selverstone, J.; Khalsa, N.
2009-12-01
Classical fault mechanic theory does not adequately explain slip on “weak” faults oriented at high angles to the regional maximum stress direction, such as the San Andreas Fault and low-angle normal faults. One hypothesis is that stress rotation due to fault-weakening mechanisms allows slip, which may be testable using detailed paleostress analyses of minor faults and tensile fractures. Preliminary data from the footwalls of the Whipple detachment (WD) and the West Salton detachment (WSD) suggest lateral and/or vertical stress rotations. Three inversion programs that use different fault-slip datasets are compared. 1) FaultKin (Marrett and Allmendinger ‘90; Cladouhos and Allmendinger ‘93) determines the principal strain directions using only faults with striae and known slip senses; principal stress orientations are determined assuming coaxiality. To date, FaultKin results appear to be the most reproducible, but it is difficult to find enough faults with striae and slip sense in the small outcrop areas of our study. 2) Slick.bas (Ramsey and Lisle ‘00) uses a grid search to find the best-fit stress tensor from fault and striae orientations, but does not accept slip sense. This program can yield erroneous stress fields that predict slip senses opposite those known for some faults (particularly faults at a high angle to sigma 1). 3) T-TECTO 2.0 (Zalohar and Vrabec ‘07) applies a Gaussian approach, using orientations of faults and striae, the slip senses of any faults for which it is known, plus tensile fractures. We expect that this flexibility of input data types will be best, but testing is preliminary. Paleostress analyses assume that minor faults slipped in response to constant, homogeneous stress fields. We use shear and tensile fractures and cross-cutting relationships from the upper ~25 m of both footwalls to test for spatial and temporal changes to the paleostress field. Paleostress analysis of fractures ~0.3 - 2 m below the WSD on the N limb of an antiform suggests that sigma 3 plunges moderately (~45 degrees) W, sigma 1 plunges gently S, and sigma 2 is steep, consistent with wrench-related folding about E-W trends during WSD slip. However, tensile fractures in the immediately overlying ultracataclasite yield sigma 3 with a shallow W plunge (~4 degrees). In a synformal trough, Reidel shears in the upper 1-2 m of the WSD footwall suggest a moderately (~50 degrees) E plunging sigma 1. Deeper (2-10 m) in the footwall, shear fractures have different but consistent orientations, suggesting a change in the stress field. Preliminary results from several sets of shear fractures in the WD footwall suggest that sigma 1 is steep (~75-90 degrees) in the chlorite breccia zone (implying low shear traction) but is shallower (~45 degrees) in the deeper damage zone. Prior work (Axen & Selverstone ‘94) found that sigma 1 becomes steep again at greater depths. Continued testing of paleostress analysis methods and several other datasets are in progress to confirm our results.
Extensional crustal tectonics and crust-mantle coupling, a view from the geological record
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Menant, Armel; Clerc, Camille; Sternai, Pietro; Ringenbach, Jean-Claude; Bellahsen, Nicolas; Leroy, Sylvie; Faccenna, Claudio; Gorini, Christian
2017-04-01
In passive margins or back-arc regions, extensional deformation is often asymmetric, i.e. normal faults or extensional ductile shear zones dip in the same direction over large distances. We examine a number of geological examples in convergent or divergent contexts suggesting that this asymmetry results from a coupling between asthenospheric flow and crustal deformation. This is the case of the Mediterranean back-arc basins, such as the Aegean Sea, the northern Tyrrhenian Sea, the Alboran domain or the Gulf of Lion passive margin. Similar types of observation can be made on some of the Atlantic volcanic passive margins and the Afar region, which were all formed above a mantle plume. We discuss these contexts and search for the main controlling parameters for this asymmetric distributed deformation that imply a simple shear component at the scale of the lithosphere. The different geodynamic settings and tectonic histories of these different examples provide natural case-studies of the different controlling parameters, including a pre-existing heterogeneity of the crust and lithosphere (tectonic heritage) and the possible contribution of the underlying asthenospheric flow through basal drag or basal push. We show that mantle flow can induce deformation in the overlying crust in case of high heat flow and thin lithosphere. In back-arc regions, the cause of asymmetry resides in the relative motion between the asthenosphere below the overriding plate and the crust. When convergence and slab retreat work concurrently the asthenosphere flows faster than the crust toward the trench and the sense of shear is toward the upper plate. When slab retreat is the only cause of subduction, the sense of shear is opposite. In both cases, mantle flow is mostly the consequence of slab retreat and convergence. Mantle flow can however result also from larger-scale convection, controlling rifting dynamics prior to the formation of oceanic crust. In volcanic passive margins, in most cases normal faults dip toward the continent. This asymmetry may either result from the mantle flowing underneath regions evolving above a migrating plume, such as the Afar, when an asymmetry is observed at the scale of the rift, or from necking of the lithosphere when the conjugate margins show an opposite asymmetry. We summarize the various observed situations with normal faults dipping toward the continent ("hot" margins) or toward the ocean ("cold" margins) and discuss whether mantle flow is responsible for the observed asymmetry of deformation or not. Slipping along pre-existing heterogeneities seems a second-order phenomenon at lithospheric or crustal scale, except at the initiation of rifting.
Hwang, Ji-Sun; Kwon, Mi-Youn; Kim, Kyung-Hong; Lee, Yunkyoung; Lyoo, In Kyoon; Kim, Jieun E.; Oh, Eok-Soo; Han, Inn-Oc
2017-01-01
We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess. PMID:27927986
Hauser, Mary J.; Dlugolenski, Daniel; Culhane, Marie R.; Wentworth, David E.; Tompkins, S. Mark; Tripp, Ralph A.
2013-01-01
Swine generate reassortant influenza viruses because they can be simultaneously infected with avian and human influenza; however, the features that restrict influenza reassortment in swine and human hosts are not fully understood. Type I and III interferons (IFNs) act as the first line of defense against influenza virus infection of respiratory epithelium. To determine if human and swine have different capacities to mount an antiviral response the expression of IFN and IFN-stimulated genes (ISG) in normal human bronchial epithelial (NHBE) cells and normal swine bronchial epithelial (NSBE) cells was evaluated following infection with human (H3N2), swine (H1N1), and avian (H5N3, H5N2, H5N1) influenza A viruses. Expression of IFNλ and ISGs were substantially higher in NHBE cells compared to NSBE cells following H5 avian influenza virus infection compared to human or swine influenza virus infection. This effect was associated with reduced H5 avian influenza virus replication in human cells at late times post infection. Further, RIG-I expression was lower in NSBE cells compared to NHBE cells suggesting reduced virus sensing. Together, these studies identify key differences in the antiviral response between human and swine respiratory epithelium alluding to differences that may govern influenza reassortment. PMID:23875024
Coastline change mapping using a spectral band method and Sobel edge operator
NASA Astrophysics Data System (ADS)
Al-Mansoori, Saeed; Al-Marzouqi, Fatima
2016-10-01
Coastline extraction has become an essential activity in wake of the natural disasters taking place in some regions such as tsunami, flooding etc. Salient feature of such catastrophes is lack of reaction time available for combating emergency, thus it is the endeavor of any country to develop constant monitoring mechanism of shorelines. This is a challenging task because of the magnitude of changes taking place to the coastline regularly. Previous research findings highlight a need of formulating automation driven methodology for timely and accurate detection of alterations in the coastline impacting sustainability of mankind operating in the coastal zone. In this study, we propose a new approach for automatic extraction of the coastline using remote sensing data. This approach is composed of three main stages. Firstly, classifying pixels of the image into two categories i.e. land and water body by applying two normalized difference indices i.e. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). Then, the process of binary conversion of classified image takes place using a local threshold method. Finally, the coastline is extracted by applying Sobel edge operator with a pair of (3×3) kernels. The approach is tested using 2.5m DubaiSat-1 (DS1) and DubaiSat-2 (DS2) images captured to detect and monitor the changes occurring along Dubai coastal zone within a period of six years from 2009 till 2015. Experimental results prove that the approach is capable of extracting the coastlines from DS1 and DS2 images with moderate human interaction. The results of the study show an increase of 6% in Dubai shoreline resulting on account of numerous man-made infrastructure development projects in tourism and allied sectors.
NASA Astrophysics Data System (ADS)
Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.
2016-12-01
The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.
Cheng, H; Zhang, X C; Duan, L; Ma, Y; Wang, J X
1995-01-01
The vibrotactile sense thresholds (VSTs) of the middle fingers of 60 healthy persons and 97 patients with Hand-Arm Vibration Syndrome (HAVS) or subclinical HAVS were measured quantitatively. Intermittent vibratory irritations were adopted, with vibration stimulus frequencies at 8, 16, 31.5, 63, 125, 250, and 500 Hz. The equal VST contours of the fingers were mapped. Results showed that the VSTs of the normal group were not correlated with sex or handedness. From 8 Hz to 250 Hz the equal VST contours of the normal group were relatively flat; at more than 250 Hz the contours began an abrupt ascent. The VST values had a logarithmic rising tendency with the increasing age of subjects. In the equal VST contours the frequency of the most sensitive threshold value was 125 Hz in the normal group and 8 Hz in the HAVS group. The patients' VST values were higher than that of the healthy persons. The vibrotactilegram showed that the VST values of the patient groups first shifted at high frequencies and VST loss displayed a "V"-type hollow at 125 Hz and 250 Hz. The quantitative test method of VST was a valuable auxiliary detection method for HAVS. The "V"-type hollow of VST was an early clinical manifestation of HAVS.
Parton, Chloe; Katz, Terri; Ussher, Jane M
2017-10-01
Multiple sclerosis causes physical and cognitive impairment that can impact women's experiences of motherhood. This study examined how women construct their maternal subjectivities, or sense of self as a mother, drawing on a framework of biographical disruption. A total of 20 mothers with a multiple sclerosis diagnosis took part in semi-structured interviews. Transcripts were analysed using thematic decomposition to identify subject positions that women adopted in relation to cultural discourses of gender, motherhood and illness. Three main subject positions were identified: 'The Failing Mother', 'Fear of Judgement and Burdening Others' and 'The Normal Mother'. Women's sense of self as the 'Failing Mother' was attributed to the impact of multiple sclerosis, contributing to biographical disruption and reinforced through 'Fear of Judgement and Burdening Others' within social interactions. In accounts of the 'Normal Mother', maternal subjectivity was renegotiated by adopting strategies to manage the limitations of multiple sclerosis on mothering practice. This allowed women to self-position as 'good' mothers. Health professionals can assist women by acknowledging the embodied impact of multiple sclerosis on maternal subjectivities, coping strategies that women employ to address potential biographical disruption, and the cultural context of mothering, which contributes to women's experience of subjectivity and well-being when living with multiple sclerosis.
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung
2018-03-01
Several remote sensing techniques, namely traditional aerial photographs, an unmanned aircraft system (UAS), and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence and potential hazard. A morphological reconstruction method was proposed to assess landslide morphology based on the dome-shaped topography of the volcanic edifice and the nature of its morphological evolution. Two large-scale landslides in the Tatun volcano group in northern Taiwan were targeted to more accurately characterize the landslide morphology through airborne lidar and UAS-derived digital terrain models and images. With the proposed reconstruction method, the depleted volume of the two landslides was estimated to be at least 820 ± 20 × 106 m3. Normal faulting in the region likely played a role in triggering the two landslides, because there are extensive geological and historical records of an active normal fault in this region. The subsequent geomorphological evolution of the two landslides is thus inferred to account for the observed morphological and tectonic features that are indicative of resulting in large and life-threatening landslides, as characterized using the recent remote sensing techniques.
Remotely-sensed detection of effects of extreme droughts on gross primary production
Vicca, Sara; Balzarolo, Manuela; Filella, Iolanda; Granier, André; Herbst, Mathias; Knohl, Alexander; Longdoz, Bernard; Mund, Martina; Nagy, Zoltan; Pintér, Krisztina; Rambal, Serge; Verbesselt, Jan; Verger, Aleixandre; Zeileis, Achim; Zhang, Chao; Peñuelas, Josep
2016-01-01
Severe droughts strongly impact photosynthesis (GPP), and satellite imagery has yet to demonstrate its ability to detect drought effects. Especially changes in vegetation functioning when vegetation state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. We evaluated the performance of different satellite indicators to detect strong drought effects on GPP in a beech forest in France (Hesse), where vegetation state remained largely unaffected while GPP decreased substantially. We compared the results with three additional sites: a Mediterranean holm oak forest (Puéchabon), a temperate beech forest (Hainich), and a semi-arid grassland (Bugacpuszta). In Hesse, a three-year reduction in GPP following drought was detected only by the Enhanced Vegetation Index (EVI). The Photochemical Reflectance Index (PRI) also detected this drought effect, but only after normalization for absorbed light. In Puéchabon normalized PRI outperformed the other indicators, while the short-term drought effect in Hainich was not detected by any tested indicator. In contrast, most indicators, but not PRI, captured the drought effects in Bugacpuszta. Hence, PRI improved detection of drought effects on GPP in forests and we propose that PRI normalized for absorbed light is considered in future algorithms to estimate GPP from space. PMID:27301671
Taubman, Matthew S; Phillips, Mark C
2015-04-07
A method is disclosed for power normalization of spectroscopic signatures obtained from laser based chemical sensors that employs the compliance voltage across a quantum cascade laser device within an external cavity laser. The method obviates the need for a dedicated optical detector used specifically for power normalization purposes. A method is also disclosed that employs the compliance voltage developed across the laser device within an external cavity semiconductor laser to power-stabilize the laser mode of the semiconductor laser by adjusting drive current to the laser such that the output optical power from the external cavity semiconductor laser remains constant.
NASA Astrophysics Data System (ADS)
Laguna, M. F.; Holgado, M.; Santamaría, B.; López, A.; Maigler, M.; Lavín, A.; de Vicente, J.; Soria, J.; Suarez, T.; Bardina, C.; Jara, M.; Sanza, F. J.; Casquel, R.; Otón, A.; Riesgo, T.
2015-03-01
Biophotonic Sensing Cells (BICELLs) are demonstrated to be an efficient technology for label-free biosensing and in concrete for evaluating dry eye diseases. The main advantage of BICELLs is its capability to be used by dropping directly a tear into the sensing surface without the need of complex microfluidics systems. Among this advantage, compact Point of Care read-out device is employed with the capability of evaluating different types of BICELLs packaged on Biochip-Kits that can be fabricated by using different sensing surfaces material. In this paper, we evaluate the performance of the combination of three sensing surface materials: (3-Glycidyloxypropyl) trimethoxysilane (GPTMS), SU-8 resist and Nitrocellulose (NC) for two different biomarkers relevant for dry eye diseases: PRDX-5 and ANXA-11.
Is the urothelium intelligent?
Birder, L A; Kanai, A J; Cruz, F; Moore, K; Fry, C H
2010-04-01
The urothelium separates the urinary tract lumen from underlying tissues of the tract wall. Previously considered as merely an effective barrier between these two compartments it is now recognized as a more active tissue that senses and transduces information about physical and chemical conditions within the urinary tract, such as luminal pressure, urine composition, etc. To understand this sensory function it is useful to consider the urothelium and suburothelium as a functional unit; containing uroepithelial cells, afferent and efferent nerve fibers and suburothelial interstitial cells. This structure responds to alterations in its external environment through the release of diffusible agents, such as ATP and acetylcholine, and eventually modulates the activity of afferent nerves and underlying smooth muscles. This review considers different stresses the urothelium/suburothelium responds to; the particular chemicals released; the cellular receptors that are consequently affected; and how nerve and muscle function is modulated. Brief consideration is also to regional differences in the urothelium/suburothelium along the urinary tract. The importance of different pathways in relaying sensory information in the normal urinary tract, or whether they are significant only in pathological conditions is also discussed. An operational definition of intelligence is used, whereby a system (urothelium/suburothelium) responds to external changes, to maximize the possibility of the urinary tract achieving its normal function. If so, the urothelium can be regarded as intelligent. The advantage of this approach is that input-output functions can be mathematically formulated, and the importance of different components contributing to abnormal urinary tract function can be calculated. (c) 2010 Wiley-Liss, Inc.
Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study
Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860
Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.
Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.
Sass, Louis; Ratcliffe, Matthew
2017-01-01
"Atmospheric" alterations are key aspects of altered subjectivity in mental disorder. Karl Jaspers famously described the "delusional mood": a sense of uncanny salience and ominousness that often precedes the onset of schizophrenic psychosis or of delusions. Such experiences, he writes, involve "a transformation in our total awareness of reality" that often verges on ineffability. In psychiatry, these experiential alterations are often referred to in terms of "derealization." Though derealization most obviously refers to a decline in the sense of objective presence or felt actuality, it can also refer to other unusual experiences in which things seem unlike normal or standard reality, including altered familiarity, vitality, meaning, or relevance. This paper first describes two complementary ways of approaching these phenomena: the notion of an "ontological" dimension (Sass) and that of "existential feeling" (Ratcliffe). It then offers a wider-ranging synopsis of work in phenomenological psychopathology that has sought to address atmospheric alterations believed to be especially characteristic of schizophrenia spectrum conditions, focusing on the themes of a diminished sense of reality, altered sense of meaning, disrupted feeling of familiarity, and diminished vitality and relevance. © 2017 S. Karger AG, Basel.