Pressure sensing element based on the BN-graphene-BN heterostructure
NASA Astrophysics Data System (ADS)
Li, Mengwei; Wu, Chenggen; Zhao, Shiliang; Deng, Tao; Wang, Junqiang; Liu, Zewen; Wang, Li; Wang, Gao
2018-04-01
In this letter, we report a pressure sensing element based on the graphene-boron nitride (BN) heterostructure. The heterostructure consists of monolayer graphene sandwiched between two layers of vertically stacked dielectric BN nanofilms. The BN layers were used to protect the graphene layer from oxidation and pollution. Pressure tests were performed to investigate the characteristics of the BN-graphene-BN pressure sensing element. A sensitivity of 24.85 μV/V/mmHg is achieved in the pressure range of 130-180 kPa. After exposing the BN-graphene-BN pressure sensing element to the ambient environment for 7 days, the relative resistance change in the pressure sensing element is only 3.1%, while that of the reference open-faced graphene device without the BN protection layers is 15.7%. Thus, this strategy is promising for fabricating practical graphene pressure sensors with improved performance and stability.
Method for in-situ restoration of plantinum resistance thermometer calibration
Carroll, Radford M.
1989-01-01
A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or strain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's.
Method for in-situ restoration of platinum resistance thermometer calibration
Carroll, R.M.
1987-10-23
A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or stain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's. 1 fig.
Haematic pH sensor for extracorporeal circulation
NASA Astrophysics Data System (ADS)
Ferrari, Luca; Fabbri, Paola; Rovati, Luigi; Pilati, Francesco
2012-03-01
The design and realization of an optical sensor for measuring haematic pH during extracorporeal circulation is presented. It consists of a chemical sensing element in contact with the blood, an interrogation optical head to externally probe the sensing element and the front-end electronics to acquire and process the information of interest. The fluorescein O-methacrylate 97% is used as the indicator. The developed system has been tested in-vitro and on an in-vivo animal model. It showed a linear behavior in the haematic range of interest with a mean error lower than 0.01 units of pH.
A Conceptual Model of Mathematical Reasoning for School Mathematics
ERIC Educational Resources Information Center
Jeannotte, Doris; Kieran, Carolyn
2017-01-01
The development of students' mathematical reasoning (MR) is a goal of several curricula and an essential element of the culture of the mathematics education research community. But what mathematical reasoning consists of is not always clear; it is generally assumed that everyone has a sense of what it is. Wanting to clarify the elements of MR,…
Optical Indoor Positioning System Based on TFT Technology.
Gőzse, István
2015-12-24
A novel indoor positioning system is presented in the paper. Similarly to the camera-based solutions, it is based on visual detection, but it conceptually differs from the classical approaches. First, the objects are marked by LEDs, and second, a special sensing unit is applied, instead of a camera, to track the motion of the markers. This sensing unit realizes a modified pinhole camera model, where the light-sensing area is fixed and consists of a small number of sensing elements (photodiodes), and it is the hole that can be moved. The markers are tracked by controlling the motion of the hole, such that the light of the LEDs always hits the photodiodes. The proposed concept has several advantages: Apart from its low computational demands, it is insensitive to the disturbing ambient light. Moreover, as every component of the system can be realized by simple and inexpensive elements, the overall cost of the system can be kept low.
Optical Indoor Positioning System Based on TFT Technology
Gőzse, István
2015-01-01
A novel indoor positioning system is presented in the paper. Similarly to the camera-based solutions, it is based on visual detection, but it conceptually differs from the classical approaches. First, the objects are marked by LEDs, and second, a special sensing unit is applied, instead of a camera, to track the motion of the markers. This sensing unit realizes a modified pinhole camera model, where the light-sensing area is fixed and consists of a small number of sensing elements (photodiodes), and it is the hole that can be moved. The markers are tracked by controlling the motion of the hole, such that the light of the LEDs always hits the photodiodes. The proposed concept has several advantages: Apart from its low computational demands, it is insensitive to the disturbing ambient light. Moreover, as every component of the system can be realized by simple and inexpensive elements, the overall cost of the system can be kept low. PMID:26712753
Recent developments in OLED-based chemical and biological sensors
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Zhou, Zhaoqun; Cai, Yuankun; Shinar, Ruth
2007-09-01
Recent developments in the structurally integrated OLED-based platform of luminescent chemical and biological sensors are reviewed. In this platform, an array of OLED pixels, which is structurally integrated with the sensing elements, is used as the photoluminescence (PL) excitation source. The structural integration is achieved by fabricating the OLED array and the sensing element on opposite sides of a common glass substrate or on two glass substrates that are attached back-to-back. As it does not require optical fibers, lens, or mirrors, it results in a uniquely simple, low-cost, and potentially rugged geometry. The recent developments on this platform include the following: (1) Enhancing the performance of gas-phase and dissolved oxygen sensors. This is achieved by (a) incorporating high-dielectric TiO II nanoparticles in the oxygen-sensitive Pt and Pd octaethylporphyrin (PtOEP and PdOEP, respectively)- doped polystyrene (PS) sensor films, and (b) embedding the oxygen-sensitive dyes in a matrix of polymer blends such as PS:polydimethylsiloxane (PDMS). (2) Developing sensor arrays for simultaneous detection of multiple serum analytes, including oxygen, glucose, lactate, and alcohol. The sensing element for each analyte consists of a PtOEP-doped PS oxygen sensor, and a solution containing the oxidase enzyme specific to the analyte. Each sensing element is coupled to two individually addressable OLED pixels and a Si photodiode photodetector (PD). (3) Enhancing the integration of the platform, whereby a PD array is also structurally integrated with the OLED array and sensing elements. This enhanced integration is achieved by fabricating an array of amorphous or nanocrystalline Si-based PDs, followed by fabrication of the OLED pixels in the gaps between these Si PDs.
Mechery, Shelly John [Mississippi State, MS; Singh, Jagdish P [Starkville, MS
2007-07-03
A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.
Architecture for reactive planning of robot actions
NASA Astrophysics Data System (ADS)
Riekki, Jukka P.; Roening, Juha
1995-01-01
In this article, a reactive system for planning robot actions is described. The described hierarchical control system architecture consists of planning-executing-monitoring-modelling elements (PEMM elements). A PEMM element is a goal-oriented, combined processing and data element. It includes a planner, an executor, a monitor, a modeler, and a local model. The elements form a tree-like structure. An element receives tasks from its ancestor and sends subtasks to its descendants. The model knowledge is distributed into the local models, which are connected to each other. The elements can be synchronized. The PEMM architecture is strictly hierarchical. It integrated planning, sensing, and modelling into a single framework. A PEMM-based control system is reactive, as it can cope with asynchronous events and operate under time constraints. The control system is intended to be used primarily to control mobile robots and robot manipulators in dynamic and partially unknown environments. It is suitable especially for applications consisting of physically separated devices and computing resources.
Shear Stress Sensing with Elastic Microfence Structures
NASA Technical Reports Server (NTRS)
Cisotto, Alexxandra; Palmieri, Frank L.; Saini, Aditya; Lin, Yi; Thurman, Christopher S; Kim, Jinwook; Kim, Taeyang; Connell, John W.; Zhu, Yong; Gopalarathnam, Ashok;
2015-01-01
In this work, elastic microfences were generated for the purpose of measuring shear forces acting on a wind tunnel model. The microfences were fabricated in a two part process involving laser ablation patterning to generate a template in a polymer film followed by soft lithography with a two-part silicone. Incorporation of a fluorescent dye was demonstrated as a method to enhance contrast between the sensing elements and the substrate. Sensing elements consisted of multiple microfences prepared at different orientations to enable determination of both shear force and directionality. Microfence arrays were integrated into an optical microscope with sub-micrometer resolution. Initial experiments were conducted on a flat plate wind tunnel model. Both image stabilization algorithms and digital image correlation were utilized to determine the amount of fence deflection as a result of airflow. Initial free jet experiments indicated that the microfences could be readily displaced and this displacement was recorded through the microscope.
Dielectric Metasurface Optics: A New Platform for Compact Optical Sensing
NASA Astrophysics Data System (ADS)
Colburn, Shane
Metasurfaces, the 2D analogue of bulk metamaterials, show incredible promise for achieving nanoscale optical components that could support the growing infrastructure for the Internet of Things (IoT) and future sensing technologies. Consisting of quasiperiodic arrays of subwavelength scattering elements, metasurfaces apply spatial transfer functions to incident wavefronts, abruptly altering properties of light over a wavelength-scale thickness. By appropriately patterning scatterers on the structure, arbitrary functions can be implemented up to the limitations on the scattering properties of the particular elements. This thesis details theoretical work and simulations on the design of scattering elements with advanced capabilities for dielectric metasurfaces, showing polarization-multiplexed operation in the visible regime, multiwavelength capability in the visible regime along with a general methodology for eliminating chromatic aberrations at discrete wavelengths, and compact and tunable elements for 1550 nm operation inspired by an asymmetric Fabry-Perot cavity. These advancements enhance the capabilities of metasurfaces in the visible regime and help move toward the goal of achieving reconfigurable metasurfaces for compact and efficient optical sensors.
NASA Astrophysics Data System (ADS)
Jaffrès, Henri; LeMaitre, Yves; Collin, Sophie; Nguyen Vandau, Frédéric; Sergeeva-Chollet, Natalia; Decitre, Jean-Marc
2015-09-01
We will present our last development of GMR-based magnetic sensors devoted to sensing application for non-destructive control application. In these first realizations, we have chosen a so-called shape anisotropy - exchange biased strategy to fulfill the field-sensing criteria in the μT range in devices made of micronic single elements. Our devices realized by optical lithography, and whose typical sizes range from 150 μm x 150 μm to 500 μm x 500 μm elements, are made of trilayers GMR-based technology and consist of several circuitries of GMR elements of different lengths, widths and gaps. To obtain a full sensing linearity and reversibility requiring a perpendicular magnetic arrangement between both sensitive and hard layer, the magnetization of the latter have been hardened by pinning it with an antiferromagnetic material. The specific geometry of the design have been engineered in order to optimize the magnetic response of the soft layer via the different magnetic torques exerted on it essentially played by the dipolar fields or shape anisotropy, and the external magnetic field to detect. The smaller dimensions in width and in gap are then respectively of 2 μm and 3 μm to benefit of the full shape anisotropy formatting the magnetic response.
Hybrid electro-optical nanosystem for neurons investigation
NASA Astrophysics Data System (ADS)
Miu, Mihaela; Kleps, Irina; Craciunoiu, Florea; Simion, Monica; Bragaru, Adina; Ignat, Teodora
2010-11-01
The scope of this paper is development of a new laboratory-on-a-chip (LOC) device for biomedical studies consisting of a microfluidic system coupled to microelectronic/optical transducers with nanometric features, commonly called biosensors. The proposed device is a hybrid system with sensing element on silicon (Si) chip and microfluidic system on polydimethylsiloxane (PDMS) substrates, taking into accounts their particular advantages. Different types of nanoelectrode arrays, positioned in the reactor, have been investigated as sensitive elements for electrical detection and the recording of neuron extracellular electric activity has been monitorized in parallel with whole-cell patch-clamp membrane current. Moreover, using an additional porosification process the sensing element became efficient for optical detection also. The preliminary test results demonstrate the functionality of the proposed design and also the fabrication technology, the devices bringing advantages in terms enhancement of sensitivity in both optoelectronic detection schemes.
Modification of sensing properties of metallophthalocyanine by an ECR plasma
NASA Astrophysics Data System (ADS)
Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S. V.; Mandale, A. B.
2002-07-01
Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2. Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping.
Evaluation of the Environmental Instruments, Incorporated Series 200 Dual Component Wind Set.
1980-09-01
elements is sensed to derive the sign (+ or -), which indicates the wind direction across the element pair. The reference arm of the Wheatstone bridge...Csine a for the crosswind axis, r and PF=a Vw Sine a for the headwind axis, r where Pa is the ambient air density, Pr is reference density at standard...pressure transducer is a hybrid linear silicon device which consists of a diaphragm and pressure reference , piezoresistive sensor, signal discriminator
NASA Astrophysics Data System (ADS)
Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro
2014-05-01
Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Clemmons, James I., Jr.; Shelton, Kevin J.; Duncan, Walter C.
1994-01-01
An optical measurement system (OMS) has been designed and tested for a large gap magnetic suspension system (LGMSS). The LGMSS will be used to study control laws for magnetic suspension systems for vibration isolation and pointing applications. The LGMSS features six degrees of freedom and consists of a planar array of electromagnets that levitate and position a cylindrical element containing a permanent magnet core. The OMS provides information on the location and orientation of the element to the LGMSS control system to stabilize suspension. The hardware design of this optical sensing system and the tracking algorithms are presented. The results of analyses and experiments are presented that define the accuracy limits of the optical sensing system and that quantify the errors in position estimation.
Shape calibration of a conformal ultrasound therapy array.
McGough, R J; Cindric, D; Samulski, T V
2001-03-01
A conformal ultrasound phased array prototype with 96 elements was recently calibrated for electronic steering and focusing in a water tank. The procedure for calibrating the shape of this 2D therapy array consists of two steps. First, a least squares triangulation algorithm determines the element coordinates from a 21 x 21 grid of time delays. The triangulation algorithm also requires temperature measurements to compensate for variations in the speed of sound. Second, a Rayleigh-Sommerfeld formulation of the acoustic radiation integral is aligned to a second grid of measured pressure amplitudes in a least squares sense. This shape calibration procedure, which is applicable to a wide variety of ultrasound phased arrays, was tested on a square array panel consisting of 7- x 7-mm elements operating at 617 kHz. The simulated fields generated by an array of 96 equivalent elements are consistent with the measured data, even in the fine structure away from the primary focus and sidelobes. These two calibration steps are sufficient for the simulation model to predict successfully the pressure field generated by this conformal ultrasound phased array prototype.
Method for fabricating a microscale anemometer
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor)
2008-01-01
Method for fabricating a microscale anemometer on a substrate. A sacrificial layer is formed on the substrate, and a metal thin film is patterned to form a sensing element. At least one support for the sensing element is patterned. The sacrificial layer is removed, and the sensing element is lifted away from the substrate by raising the supports, thus creating a clearance between the sensing element and the substrate to allow fluid flow between the sensing element and the substrate. The supports are raised preferably by use of a magnetic field applied to magnetic material patterned on the supports.
Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity
NASA Technical Reports Server (NTRS)
Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon
2009-01-01
This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.
Tan, Junjie; Kan, Naipeng; Wang, Wei; Ling, Jingyi; Qu, Guolong; Jin, Jing; Shao, Yu; Liu, Gang; Chen, Huipeng
2015-06-01
Detection of 2,4,6-trinitrotoluene (TNT) has been extensively studied since it is a common explosive filling for landmines, posing significant threats to the environment and human safety. The rapid advances in synthetic biology give new hope to detect such toxic and hazardous compounds in a more sensitive and safe way. Biosensor construction anticipates finding sensing elements able to detect TNT. As TNT can induce some physiological responses in E. coli, it may be useful to define the sensing elements from E. coli to detect TNT. An E. coli MG1655 genomic promoter library containing nearly 5,400 elements was constructed. Five elements, yadG, yqgC, aspC, recE, and topA, displayed high sensing specificity to TNT and its indicator compounds 1,3-DNB and 2,4-DNT. Based on this, a whole cell biosensor was constructed using E. coli, in which green fluorescent protein was positioned downstream of the five sensing elements via genetic fusion. The threshold value, detection time, EC200 value, and other aspects of five sensing elements were determined and the minimum responding concentration to TNT was 4.75 mg/L. According to the synthetic biology, the five sensing elements enriched the reservoir of TNT-sensing elements, and provided a more applicable toolkit to be applied in genetic routes and live systems of biosensors in future.
A novel microbial fuel cell sensor with biocathode sensing element.
Jiang, Yong; Liang, Peng; Liu, Panpan; Wang, Donglin; Miao, Bo; Huang, Xia
2017-08-15
The traditional microbial fuel cell (MFC) sensor with bioanode as sensing element delivers limited sensitivity to toxicity monitoring, restricted application to only anaerobic and organic rich water body, and increased potential fault warning to the combined shock of organic matter/toxicity. In this study, the biocathode for oxygen reduction reaction was employed for the first time as the sensing element in MFC sensor for toxicity monitoring. The results shown that the sensitivity of MFC sensor with biocathode sensing element (7.4±2.0 to 67.5±4.0mA% -1 cm -2 ) was much greater than that showed by bioanode sensing element (3.4±1.5 to 5.5±0.7mA% -1 cm -2 ). The biocathode sensing element achieved the lowest detection limit reported to date using MFC sensor for formaldehyde detection (0.0005%), while the bioanode was more applicable for higher concentration (>0.0025%). There was a quicker response of biocathode sensing element with the increase of conductivity and dissolved oxygen (DO). The biocathode sensing element made the MFC sensor directly applied to clean water body monitoring, e.g., drinking water and reclaimed water, without the amending of background organic matter, and it also decreased the warning failure when challenged by a combined shock of organic matter/toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Wyszynski, Bartosz; Yatabe, Rui; Nakao, Atsuo; Nakatani, Masaya; Oki, Akio; Oka, Hiroaki; Toko, Kiyoshi
2017-01-01
Mimicking the biological olfaction, large odor-sensor arrays can be used to acquire a broad range of chemical information, with a potentially high degree of redundancy, to allow for enhanced control over the sensitivity and selectivity of artificial olfaction systems. The arrays should consist of the largest possible number of individual sensing elements while being miniaturized. Chemosensitive resistors are one of the sensing platforms that have a potential to satisfy these two conditions. In this work we test viability of fabricating a 16-element chemosensitive resistor array for detection and recognition of volatile organic compounds (VOCs). The sensors were fabricated using blends of carbon black and gas chromatography (GC) stationary-phase materials preselected based on their sorption properties. Blends of the selected GC materials with carbon black particles were subsequently coated over chemosensitive resistor devices and the resulting sensors/arrays evaluated in exposure experiments against vapors of pyrrole, benzenal, nonanal, and 2-phenethylamine at 150, 300, 450, and 900 ppb. Responses of the fabricated 16-element array were stable and differed for each individual odorant sample, proving the blends of GC materials with carbon black particles can be effectively used for fabrication of large odor-sensing arrays based on chemosensitive resistors. The obtained results suggest that the proposed sensing devices could be effective in discriminating odor/vapor samples at the sub-ppm level. PMID:28696353
Graphene–Metamaterial Photodetectors for Integrated Infrared Sensing
Luxmoore, Isaac. J.; Liu, Peter Q.; Li, Penglei; ...
2016-06-01
We study metamaterial-enhanced graphene photodetectors operating in the mid-IR to THz. The detector element consists of a graphene ribbon embedded within a dual-metal split ring resonator, which acts like a cavity to enhance the absorption of electromagnetic radiation by the graphene ribbon, while the asymmetric metal contacts enable photothermoelectric detection. The detectors we designed for the mid-IR demonstrate peak responsivity (referenced to total power) of ~120 mV/W at 1500 cm -1 and are employed in the spectroscopic evaluation of vibrational resonances, thus demonstrating a key step toward a platform for integrated surface-enhanced sensing.
Optical fiber sensors embedded in flexible polymer foils
NASA Astrophysics Data System (ADS)
van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter
2010-04-01
In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.
Instrument for Aircraft-Icing and Cloud-Physics Measurements
NASA Technical Reports Server (NTRS)
Lilie, Lyle; Bouley, Dan; Sivo, Chris
2006-01-01
The figure shows a compact, rugged, simple sensor head that is part of an instrumentation system for making measurements to characterize the severity of aircraft-icing conditions and/or to perform research on cloud physics. The quantities that are calculated from measurement data acquired by this system and that are used to quantify the severity of icing conditions include sizes of cloud water drops, cloud liquid water content (LWC), cloud ice water content (IWC), and cloud total water content (TWC). The sensor head is mounted on the outside of an aircraft, positioned and oriented to intercept the ambient airflow. The sensor head consists of an open housing that is heated in a controlled manner to keep it free of ice and that contains four hot-wire elements. The hot-wire sensing elements have different shapes and sizes and, therefore, exhibit different measurement efficiencies with respect to droplet size and water phase (liquid, frozen, or mixed). Three of the hot-wire sensing elements are oriented across the airflow so as to intercept incoming cloud water. For each of these elements, the LWC or TWC affects the power required to maintain a constant temperature in the presence of cloud water.
NASA Astrophysics Data System (ADS)
Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.
2017-09-01
Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.
Enhanced radiation detectors using luminescent materials
Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.
2001-01-01
A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.
Health management and controls for Earth-to-orbit propulsion systems
NASA Astrophysics Data System (ADS)
Bickford, R. L.
1995-03-01
Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.
Non-contact tamper sensing by electronic means
Gritton, Dale G.
1993-01-01
A tamper-sensing system for an electronic tag 10 which is to be fixed to a surface 11 of an article 12, the tamper-sensing system comprising a capacitor having two non-contacting, capacitively-coupled elements 16, 19. Fixing of the body to the article will establish a precise location of the capacitor elements 16 and 19 relative to each other. When interrogated, the tag will generate a tamper-sensing signal having a value which is a function of the amount of capacity of the capacitor elements. The precise relative location of the capacitor elements cannot be duplicated if the tag is removed and affixed to a surrogate article having a fiducial capacitor element 19 fixed thereto. A very small displacement, in the order of 2-10 microns, of the capacitor elements relative to each other if the tag body is removed and fixed to a surrogate article will result in the tamper-sensing signal having a different, and detectable, value when the tag is interrogated.
Sensing Device with Whisker Elements
NASA Technical Reports Server (NTRS)
Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)
2013-01-01
A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.
Sensing device with whisker elements
NASA Technical Reports Server (NTRS)
Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)
2010-01-01
A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.
Miniaturized force/torque sensor for in vivo measurements of tissue characteristics.
Hessinger, M; Pilic, T; Werthschutzky, R; Pott, P P
2016-08-01
This paper presents the development of a surgical instrument to measure interaction forces/torques with organic tissue during operation. The focus is on the design progress of the sensor element, consisting of a spoke wheel deformation element with a diameter of 12 mm and eight inhomogeneous doped piezoresistive silicon strain gauges on an integrated full-bridge assembly with an edge length of 500 μm. The silicon chips are contacted to flex-circuits via flip chip and bonded on the substrate with a single component adhesive. A signal processing board with an 18 bit serial A/D converter is integrated into the sensor. The design concept of the handheld surgical sensor device consists of an instrument coupling, the six-axis sensor, a wireless communication interface and battery. The nominal force of the sensing element is 10 N and the nominal torque is 1 N-m in all spatial directions. A first characterization of the force sensor results in a maximal systematic error of 4.92 % and random error of 1.13 %.
IMP 8. Volume 1: EM field experiment
NASA Technical Reports Server (NTRS)
1980-01-01
The electromagnetic fields experiment on IMP-J used two electric dipole antennas and a triaxial search coil magnetic antenna to sense the electric and magnetic field of plasma waves in space. The electric dipole antennas consisted of a fine wire, 0.021 inches in diameter, with a nominal extended tip-to-tip length of 400 ft. The outermost 50 ft. of each element was conducting and the rest of the antenna was covered with an insulating coating. The search coil antennas each consisted of a high mu core with two separate windings of 40,000 turns each to sense ac magnetic fields. The search coils had a length of 18 inches tip-to-tip and are mounted on the end of a boom. The axes of the x prime and y prime search coil antennas were parallel to the x prime and y prime electric antenna axes.
Development of sensing techniques for weaponry health monitoring
NASA Astrophysics Data System (ADS)
Edwards, Eugene; Ruffin, Paul B.; Walker, Ebonee A.; Brantley, Christina L.
2013-04-01
Due to the costliness of destructive evaluation methods for assessing the aging and shelf-life of missile and rocket components, the identification of nondestructive evaluation methods has become increasingly important to the Army. Verifying that there is a sufficient concentration of stabilizer is a dependable indicator that the missile's double-based solid propellant is viable. The research outlined in this paper summarizes the Army Aviation and Missile Research, Development, and Engineering Center's (AMRDEC's) comparative use of nanoporous membranes, carbon nanotubes, and optical spectroscopic configured sensing techniques for detecting degradation in rocket motor propellant. The first sensing technique utilizes a gas collecting chamber consisting of nanoporous structures that trap the smaller solid propellant particles for measurement by a gas analysis device. In collaboration with NASA-Ames, sensing methods are developed that utilize functionalized single-walled carbon nanotubes as the key sensing element. The optical spectroscopic sensing method is based on a unique light collecting optical fiber system designed to detect the concentration of the propellant stabilizer. Experimental setups, laboratory results, and overall effectiveness of each technique are presented in this paper. Expectations are for the three sensing mechanisms to provide nondestructive evaluation methods that will offer cost-savings and improved weaponry health monitoring.
NASA Technical Reports Server (NTRS)
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
1999-01-01
A method and apparatus for sensing a desired component of a magnetic field using an isotropic magnetoresistive material. This is preferably accomplished by providing a bias field that is parallel to the desired component of the applied magnetic field. The bias field is applied in a first direction relative to a first set of magnetoresistive sensor elements, and in an opposite direction relative to a second set of magnetoresistive sensor elements. In this configuration, the desired component of the incident magnetic field adds to the bias field incident on the first set of magnetoresistive sensor elements, and subtracts from the bias field incident on the second set of magnetoresistive sensor elements. The magnetic field sensor may then sense the desired component of the incident magnetic field by simply sensing the difference in resistance of the first set of magnetoresistive sensor elements and the second set of magnetoresistive sensor elements.
Novel remote sensor systems: design, prototyping, and characterization
NASA Astrophysics Data System (ADS)
Kayastha, V.; Gibbons, S.; Lamb, J. E.; Giedd, R. E.
2014-06-01
We have designed and tested a prototype TRL4 radio-frequency (RF) sensing platform containing a transceiver that interrogates a passive carbon nanotube (CNT)-based sensor platform. The transceiver can be interfaced to a server technology such as a Bluetooth® or Wi-Fi device for further connectivity. The novelty of a very-low-frequency (VLF) implementation in the transceiver design will ultimately enable deep penetration into the ground or metal structures to communicate with buried sensing platforms. The sensor platform generally consists of printed electronic devices made of CNTs on flexible poly(ethylene terephthalate) (PET) and Kapton® substrates. This novel remote sensing system can be integrated with both passive and active sensing platforms. It offers unique characteristics suitable for a variety of sensing applications. The proposed sensing platforms can take on different form factors and the RF output of the sensing platforms could be modulated by humidity, temperature, pressure, strain, or vibration signals. Resonant structures were designed and constructed to operate in the very-high-frequency (VHF) and VLF ranges. In this presentation, we will report results of our continued effort to develop a commercially viable transceiver capable of interrogating the conformally mounted sensing platforms made from CNTs or silver-based nanomaterials on polyimide substrates over a broad range of frequencies. The overall performance of the sensing system with different sensing elements and at different frequency ranges will be discussed.
TRL-6 for JWST wavefront sensing and control
NASA Astrophysics Data System (ADS)
Feinberg, Lee D.; Dean, Bruce H.; Aronstein, David L.; Bowers, Charles W.; Hayden, William; Lyon, Richard G.; Shiri, Ron; Smith, J. Scott; Acton, D. Scott; Carey, Larkin; Contos, Adam; Sabatke, Erin; Schwenker, John; Shields, Duncan; Towell, Tim; Shi, Fang; Meza, Luis
2007-09-01
NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed.
TRL-6 for JWST Wavefront Sensing and Control
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan;
2007-01-01
NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed
Piezoelectric film load cell robot collision detector
Lembke, J.R.
1988-03-15
A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are dowelled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector. 3 figs.
Piezoelectric film load cell robot collision detector
Lembke, John R.
1989-04-18
A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are dowelled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector.
Piezoelectric film load cell robot collision detector
Lembke, J.R.
1989-04-18
A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are doweled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector. 3 figs.
Gauthier-Duchesne, Amélie; Hébert, Martine; Daspe, Marie-Ève
2017-01-01
Prior studies have suggested self-blame and sense of guilt as important elements associated with the effects of childhood sexual abuse on adult survivors (Cantón-Cortés, Cantón, Justicia & Cortés, 2011). However, few studies have explored the potential impact of the sense of guilt on outcomes in child victims. This study examines the mediating role of avoidance coping on the relationship between sense of guilt and outcomes (anxiety and self-esteem) in sexually abused children. The sample consisted of 447 sexually abused children (319 girls and 128 boys) aged 6 to 12. Path analysis indicated that children with higher feelings of guilt about the abuse showed more anxiety and lower levels of self-esteem. Indirect effects also indicated that sense of guilt predicted avoidance coping, which in turn contributed to higher anxiety and lower self-esteem. This model, which fits the data well for both girls and boys, explains 24.4 % of the variance in anxiety and 11.2 % of the variance in self-esteem. Results suggest that sense of guilt is an important target for clinical intervention with sexually abused children.
NEUTRONIC REACTOR CORE INSTRUMENT
Mims, L.S.
1961-08-22
A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)
A Global Framework for Monitoring Phenological Responses to Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Michael A; Hoffman, Forrest M; Hargrove, William Walter
2005-01-01
Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, whichmore » we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring.« less
Graphene-bimetal plasmonic platform for ultra-sensitive biosensing
NASA Astrophysics Data System (ADS)
Tong, Jinguang; Jiang, Li; Chen, Huifang; Wang, Yiqin; Yong, Ken-Tye; Forsberg, Erik; He, Sailing
2018-03-01
A graphene-bimetal plasmonic platform for surface plasmon resonance biosensing with ultra-high sensitivity was proposed and optimized. In this hybrid configuration, graphene nanosheets was employed to effectively absorb the excitation light and serve as biomolecular recognition elements for increased adsorption of analytes. Coating of an additional Au film prevents oxidation of the Ag substrate during manufacturing process and enhances the sensitivity at the same time. Thus, a bimetal Au-Ag substrate enables improved sensing performance and promotes stability of this plasmonic sensor. In this work we optimized the number of graphene layers as well as the thickness of the Au film and the Ag substrate based on the phase-interrogation sensitivity. We found an optimized configuration consisting of 6 layers of graphene coated on a bimetal surface consisting of a 5 nm Au film and a 30 nm Ag film. The calculation results showed the configuration could achieve a phase sensitivity as high as 1 . 71 × 106 deg/RIU, which was more than 2 orders of magnitude higher than that of bimetal structure and graphene-silver structure. Due to this enhanced sensing performance, the graphene-bimetal plasmonic platform proposed in this paper is potential for ultra-sensitive plasmonic sensing.
Development of a Portable Taste Sensor with a Lipid/Polymer Membrane
Tahara, Yusuke; Nakashi, Kenichi; Ji, Ke; Ikeda, Akihiro; Toko, Kiyoshi
2013-01-01
We have developed a new portable taste sensor with a lipid/polymer membrane and conducted experiments to evaluate the sensor's performance. The fabricated sensor consists of a taste sensor chip (40 mm × 26 mm × 2.2 mm) with working and reference electrodes and a portable sensor device (80 mm × 25 mm × 20 mm). The working electrode consists of a taste-sensing site comprising a poly(hydroxyethyl)methacrylate (pHEMA) hydrogel layer with KCl as the electrolyte layer and a lipid/polymer membrane as the taste sensing element. The reference electrode comprises a polyvinyl chloride (PVC) membrane layer with a small hole and a pHEMA layer with KCl. The whole device is the size of a USB memory stick, making it suitable for portable use. The sensor's response to tannic acid as the standard astringency substance showed good accuracy and reproducibility, and was comparable with the performance of a commercially available taste sensing system. Thus, it is possible for this sensor to be used for in-field evaluations and it can make a significant contribution to the food industry, as well as in various fields of research. PMID:23325168
Contribution of non-negative matrix factorization to the classification of remote sensing images
NASA Astrophysics Data System (ADS)
Karoui, M. S.; Deville, Y.; Hosseini, S.; Ouamri, A.; Ducrot, D.
2008-10-01
Remote sensing has become an unavoidable tool for better managing our environment, generally by realizing maps of land cover using classification techniques. The classification process requires some pre-processing, especially for data size reduction. The most usual technique is Principal Component Analysis. Another approach consists in regarding each pixel of the multispectral image as a mixture of pure elements contained in the observed area. Using Blind Source Separation (BSS) methods, one can hope to unmix each pixel and to perform the recognition of the classes constituting the observed scene. Our contribution consists in using Non-negative Matrix Factorization (NMF) combined with sparse coding as a solution to BSS, in order to generate new images (which are at least partly separated images) using HRV SPOT images from Oran area, Algeria). These images are then used as inputs of a supervised classifier integrating textural information. The results of classifications of these "separated" images show a clear improvement (correct pixel classification rate improved by more than 20%) compared to classification of initial (i.e. non separated) images. These results show the contribution of NMF as an attractive pre-processing for classification of multispectral remote sensing imagery.
Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda
2015-01-01
Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated by optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, oxygen, and ammonia have been developed, and their preliminary characterization in the laboratory using Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a space suit prototype is presented.
Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda
2015-01-01
Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants, are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated via optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, and temperature have been developed, and their preliminary laboratory characterization in Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a spacesuit prototype is presented.
Periodical Microstructures Based on Novel Piezoelectric Material for Biomedical Applications.
Janusas, Giedrius; Ponelyte, Sigita; Brunius, Alfredas; Guobiene, Asta; Prosycevas, Igoris; Vilkauskas, Andrius; Palevicius, Arvydas
2015-12-15
A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated. Results showed that a designed novel cantilever-type element is able to generate a voltage of up to 80 µV at 50 Hz frequency. To use this element for sensing purposes, a four micron periodical microstructure was imprinted. Silver nanoparticles were precipitated on the grating to increase the sensitivity of the designed element, i.e., Surface Plasmon Resonance (SPR) effect appears in the element. To tackle some issues (a lack of sensitivity, signal delays) the element must have certain electronic and optical properties. One possible solution, proposed in this paper, is a combination of piezoelectricity and SPR in a single element.
Ten year change in forest succession and composition measured by remote sensing
NASA Technical Reports Server (NTRS)
Hall, Forrest G.; Botkin, Daniel B.; Strebel, Donald E.; Woods, Kerry K.; Goetz, Scott J.
1987-01-01
Vegetation dynamics and changes in ecological patterns were measured by remote sensing over a 10 year period (1973 to 1983) for 148,406 landscape elements, covering more than 500 sq km in a protected forested wilderness. Quantitative measurements were made possible by methods to detect ecologically meaningful landscape units; these allowed measurement of ecological transition frequencies and calculation of expected recurrence times. Measured ecological transition frequencies reveal boreal forest wilderness as spatially heterogeneous and highly dynamic, with one-sixth of the area in clearings and early successional stages, consistent with recent postulates about the spatial and temporal patterns of natural ecosystems. Differences between managed forest areas and a protected wilderness allow assessment of different management regimes.
Flexible Framework for Capacitive Sensing
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2006-01-01
A flexible framework supports electrically-conductive elements in a capacitive sensing arrangement. Identical frames are arranged end-to-end with adjacent frames being capable of rotational movement there between. Each frame has first and second passages extending therethrough and parallel to one another. Each of the first and second passages is adapted to receive an electrically-conductive element therethrough. Each frame further has a hollowed-out portion for the passage of a fluent material therethrough. The hollowed-out portion is sized and shaped to provide for capacitive sensing along a defined region between the electrically-conductive element in the first passage and the electrically-conductive element in the second passage.
Intrinsic embedded sensors for polymeric mechatronics: flexure and force sensing.
Jentoft, Leif P; Dollar, Aaron M; Wagner, Christopher R; Howe, Robert D
2014-02-25
While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.
Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing
Jentoft, Leif P.; Dollar, Aaron M.; Wagner, Christopher R.; Howe, Robert D.
2014-01-01
While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor. PMID:24573310
NASA Technical Reports Server (NTRS)
Bahr, Joseph K. (Inventor); Johnson, Mont A. (Inventor)
2003-01-01
A displacement sensor for providing an indication of the position of a first body relative to a second body, the first body being displaceable relative to the second body in a displacement direction. The sensor is composed of: two magnets that are spaced from one another in the displacement direction to define therebetween a region containing a magnetic field; a magnetic field sensing element mounted in the region; and components for coupling at least one of the magnets to one of the bodies and the magnetic field sensing element to the other of the bodies to produce a relative displacement between the at least one magnet and the magnetic field sensing element in the displacement direction in response to displacement of the first body relative to the second body.
Cell type-specific termination of transcription by transposable element sequences.
Conley, Andrew B; Jordan, I King
2012-09-30
Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS) genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3' UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are evolutionarily young. The extent of transcription termination by TEs seen here, along with the preference for sense-oriented TE insertions to provide TTS, is consistent with the observed antisense orientation bias of human TEs.
NASA Astrophysics Data System (ADS)
Mutter, Kussay N.; Jafri, Zubir M.; Tan, Kok Chooi
2016-04-01
In this paper, the simulation and design of a waveguide for water turbidity sensing are presented. The structure of the proposed sensor uses a 2x2 array of multimode interference (MMI) coupler based on micro graphene waveguide for high sensitivity. The beam propagation method (BPM) are used to efficiently design the sensor structure. The structure is consist of an array of two by two elements of sensors. Each element has three sections of single mode for field input tapered to MMI as the main core sensor without cladding which is graphene based material, and then a single mode fiber as an output. In this configuration MMI responses to any change in the environment. We validate and present the results by implementing the design on a set of sucrose solution and showing how these samples lead to a sensitivity change in the sensor based on the MMI structures. Overall results, the 3D design has a feasible and effective sensing by drawing topographical distribution of suspended particles in the water.
Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements
NASA Technical Reports Server (NTRS)
Howell, Charles T.; Stock, Todd M.; Verstynen, Harry A.; Wehner, Paul J.
2012-01-01
NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013.
Wavefront sensing and control aspects in a high energy laser optical train
NASA Astrophysics Data System (ADS)
Bartosewcz, M.; Bareket, N.
1981-01-01
In this paper we review the major elements of a HEL (high energy laser) wavefront sensing and control system with particular emphasis on experimental demonstrations and hardware components developed at Lockheed Missiles & Space Company, Inc. The review concentrates on three important elements of wavefront control: wavefront sampling, wavefront sensing and active mirrors. Methods of wavefront sampling by diffraction gratings are described. Some new developments in wavefront sensing are explored. Hardware development efforts of fast steering mirrors and edge controlled deformable mirrors are described.
Koch, L.J.; Hutter, E.
1960-02-01
A remotely operable handling device specifically adapted for the handling of vertically disposed fuel rods in a nuclear reactor was developed. The device consists essentially of an elongated tubular member having a gripping device at the lower end of the pivoted jaw type adapted to grip an enlarged head on the upper end of the workpiece. The device includes a sensing element which engages the enlarged head and is displaced to remotely indicate when the workpiece is in the proper position to be engaged by the jaws.
L-C Measurement Acquisition Method for Aerospace Systems
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.
2003-01-01
This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.
3D capacitive tactile sensor using DRIE micromachining
NASA Astrophysics Data System (ADS)
Chuang, Chiehtang; Chen, Rongshun
2005-07-01
This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.
Movement sense determination in sheared rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, C.
1985-01-01
Deformation within fault zones produces sheared rocks that range from cataclasites at high structural level, to mylonites and mylonitic gneiss at deeper levels. These rocks are easily recognized and mapped in the field and the strike and dip of the fault zone established. However, present-day geometry of the fault zone does not necessarily indicate relative motion - a zone dipping at 15/sup 0/ could represent a listric normal, thrust, oblique-slip or tilted strike-slip fault. Where offset stratigraphic or lithological markers are absent, the movement sense may be determined from meso- and micro-structural features within the sheared rocks. Of prime importancemore » is the orientation of mineral elongation or stretching lineations which record the finite X direction of strain in the rock; this direction approaches the bulk movement direction with increase in strain. At mesoscopic scale the most reliable shear sense indicators are shear bands and associated features. Use of fold vergence requires caution. On a micro-structural scale, shear bands, mica fish, microfolds, rotated grains, asymmetrical augen structure and fiber growth patterns all give reliable results. Thin sections should be cut parallel to lineation and perpendicular to foliation in order to view maximum rotational component. Asymmetry of crystallographic fabric patterns gives consistent results in zones of relatively simple movement history. For high confidence shear sense determination, all structural elements should be internally consistent. If inconsistency occurs this may indicate a complex, multidirectional movement history for the fault zone.« less
Small numbers are sensed directly, high numbers constructed from size and density.
Zimmermann, Eckart
2018-04-01
Two theories compete to explain how we estimate the numerosity of visual object sets. The first suggests that the apparent numerosity is derived from an analysis of more low-level features like size and density of the set. The second theory suggests that numbers are sensed directly. Consistent with the latter claim is the existence of neurons in parietal cortex which are specialized for processing the numerosity of elements in the visual scene. However, recent evidence suggests that only low numbers can be sensed directly whereas the perception of high numbers is supported by the analysis of low-level features. Processing of low and high numbers, being located at different levels of the neural hierarchy should involve different receptive field sizes. Here, I tested this idea with visual adaptation. I measured the spatial spread of number adaptation for low and high numerosities. A focused adaptation spread of high numerosities suggested the involvement of early neural levels where receptive fields are comparably small and the broad spread for low numerosities was consistent with processing of number neurons which have larger receptive fields. These results provide evidence for the claim that different mechanism exist generating the perception of visual numerosity. Whereas low numbers are sensed directly as a primary visual attribute, the estimation of high numbers however likely depends on the area size over which the objects are spread. Copyright © 2017 Elsevier B.V. All rights reserved.
[Creativity and visual expression].
Hárdi, Isvtán
2006-01-01
The definition of the concept of creativity poses several difficulties and is further impeded by its vulgarizing use. It would be more suitable to apply "productivity" appropriately instead of using creativity in excessively wide sense. Creativity ought to be considered by a holistic approach, in which both conscious and unconscious factors play vital importance. Visual creativity is thought to consist of the following elements: originality, sensitivity, a special talent, as well as deeper dynamism of human personality, such as sublimation, reparative-compensating mechanisms and mentalization. All these capacities are utilised in self-healing and therapy (see art therapy). The above elements and mechanisms have important roles both in creativity and in artistic pleasure. The paper is illustrated by cases of dynamic examination of drawings.
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.
1984-01-01
A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described.
Thermocouple, multiple junction reference oven
NASA Technical Reports Server (NTRS)
Leblanc, L. P. (Inventor)
1981-01-01
An improved oven for maintaining the junctions of a plurality of reference thermocouples at a common and constant temperature is described. The oven is characterized by a cylindrical body defining a heat sink with axially extended-cylindrical cavity a singularized heating element which comprises a unitary cylindrical heating element consisting of a resistance heating coil wound about the surface of metallic spool with an axial bore defined and seated in the cavity. Other features of the oven include an annular array of radially extended bores defined in the cylindrical body and a plurality of reference thermocouple junctions seated in the bores in uniformly spaced relation with the heating element, and a temperature sensing device seated in the axial bore for detecting temperature changes as they occur in the spool and circuit to apply a voltage across the coil in response to detected drops in temperatures of the spool.
Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor
Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian
2017-01-01
The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346
Tibber, Marc S; Greenwood, John A; Dakin, Steven C
2012-06-04
While observers are adept at judging the density of elements (e.g., in a random-dot image), it has recently been proposed that they also have an independent visual sense of number. To test the independence of number and density discrimination, we examined the effects of manipulating stimulus structure (patch size, element size, contrast, and contrast-polarity) and available attentional resources on both judgments. Five observers made a series of two-alternative, forced-choice discriminations based on the relative numerosity/density of two simultaneously presented patches containing 16-1,024 Gaussian blobs. Mismatches of patch size and element size (across reference and test) led to bias and reduced sensitivity in both tasks, whereas manipulations of contrast and contrast-polarity had varied effects on observers, implying differing strategies. Nonetheless, the effects reported were consistent across density and number judgments, the only exception being when luminance cues were made available. Finally, density and number judgment were similarly impaired by attentional load in a dual-task experiment. These results are consistent with a common underlying metric to density and number judgments, with the caveat that additional cues may be exploited when they are available.
Coherently coupled high-power fiber arrays
NASA Astrophysics Data System (ADS)
Anderegg, Jesse; Brosnan, Stephen; Cheung, Eric; Epp, Paul; Hammons, Dennis; Komine, Hiroshi; Weber, Mark; Wickham, Michael
2006-02-01
A four-element fiber array has demonstrated 470 watts of coherently phased, linearly polarized light energy in a single far-field spot. Each element consists of a single-mode fiber-amplifier chain. Phase control of each element is achieved with a Lithium-Niobate phase modulator. A master laser provides a linearly polarized, narrow linewidth signal that is split into five channels. Four channels are individually amplified using polarization maintaining fiber power amplifiers. The fifth channel is used as a reference arm. It is frequency shifted and then combined interferometrically with a portion of each channel's signal. Detectors sense the heterodyne modulation signal, and an electronics circuit measures the relative phase for each channel. Compensating adjustments are then made to each channel's phase modulator. This effort represents the results of a multi-year effort to achieve high power from a single element fiber amplifier and to understand the important issues involved in coherently combining many individual elements to obtain sufficient optical power for directed energy weapons. Northrop Grumman Corporation and the High Energy Laser Joint Technology Office jointly sponsored this work.
Durable fiber optic sensor for gas temperature measurement in the hot section of turbine engines
NASA Astrophysics Data System (ADS)
Tregay, George W.; Calabrese, Paul R.; Finney, Mark J.; Stukey, K. B.
1994-10-01
An optical sensor system extends gas temperature measurement capability in turbine engines beyond the present generation of thermocouple technology. The sensing element which consists of a thermally emissive insert embedded inside a sapphire lightguide is capable of operating above the melting point of nickel-based super alloys. The emissive insert generates an optical signal as a function of temperature. Continued development has led to an optically averaged system by combining the optical signals from four individual sensing elements at a single detector assembly. The size of the signal processor module has been reduced to overall dimensions of 2 X 4 X 0.7 inches. The durability of the optical probe design has been evaluated in an electric-utility operated gas turbine under the sponsorship of the Electric Power Research Institute. The temperature probe was installed between the first stage rotor and second stage nozzle on a General Electric MS7001B turbine. The combined length of the ceramic support tube and sensing element reached 1.5 inches into the hot gas stream. A total of over 2000 hours has been accumulated at probe operation temperatures near 1600 degree(s)F. An optically averaged sensor system was designed to replace the existing four thermocouple probes on the upper half of a GE F404 aircraft turbine engine. The system was ground tested for 250 hours as part of GE Aircraft Engines IR&D Optical Engine Program. Subsequently, two flight sensor systems were shipped for use on the FOCSI (Fiber Optic Control System Integration) Program. The optical harnesses, each with four optical probes, measure the exhaust gas temperature in a GE F404 engine.
2011-01-01
Background One member of the W family of human endogenous retroviruses (HERV) appears to have been functionally adopted by the human host. Nevertheless, a highly diversified and regulated transcription from a range of HERV-W elements has been observed in human tissues and cells. Aberrant expression of members of this family has also been associated with human disease such as multiple sclerosis (MS) and schizophrenia. It is not known whether this broad expression of HERV-W elements represents transcriptional leakage or specific transcription initiated from the retroviral promoter in the long terminal repeat (LTR) region. Therefore, potential influences of genomic context, structure and orientation on the expression levels of individual HERV-W elements in normal human tissues were systematically investigated. Results Whereas intronic HERV-W elements with a pseudogene structure exhibited a strong anti-sense orientation bias, intronic elements with a proviral structure and solo LTRs did not. Although a highly variable expression across tissues and elements was observed, systematic effects of context, structure and orientation were also observed. Elements located in intronic regions appeared to be expressed at higher levels than elements located in intergenic regions. Intronic elements with proviral structures were expressed at higher levels than those elements bearing hallmarks of processed pseudogenes or solo LTRs. Relative to their corresponding genes, intronic elements integrated on the sense strand appeared to be transcribed at higher levels than those integrated on the anti-sense strand. Moreover, the expression of proviral elements appeared to be independent from that of their corresponding genes. Conclusions Intronic HERV-W provirus integrations on the sense strand appear to have elicited a weaker negative selection than pseudogene integrations of transcripts from such elements. Our current findings suggest that the previously observed diversified and tissue-specific expression of elements in the HERV-W family is the result of both directed transcription (involving both the LTR and internal sequence) and leaky transcription of HERV-W elements in normal human tissues. PMID:21226900
Que, Ruiyi; Zhu, Rong
2014-01-01
This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s–30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°. PMID:24385032
Que, Ruiyi; Zhu, Rong
2013-12-31
This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s-30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.
NASA Technical Reports Server (NTRS)
Moore, Jason P. (Inventor)
2009-01-01
A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.
Alien liquid detector and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, B.M.
An alien liquid detector employs a monitoring element and an energizing circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. For this purpose an electronic circit controls a flow of heating current to the monitoring element. The presence of an alien liquid is detected by sensing a predetermined change in heating current flow to the monitoring element, e.g., to distinguish between water and oil. In preferred embodiments the monitoring element is a thermistor whose resistance is compared with a reference resistance and heating current through the thermistor is controlled in accordance with the difference. In onemore » embodiment a bridge circuit senses the resistance difference; the difference may be sensed by an operational amplifier arrangement. Features of the invention include positioning the monitoring element at the surface of water, slightly immersed, so that the power required to maintain the thermistor temperature substantially above ambient temperature serves to detect presence of oil pollution at the surface.« less
Piezo-thermal Probe Array for High Throughput Applications
Gaitas, Angelo; French, Paddy
2012-01-01
Microcantilevers are used in a number of applications including atomic-force microscopy (AFM). In this work, deflection-sensing elements along with heating elements are integrated onto micromachined cantilever arrays to increase sensitivity, and reduce complexity and cost. An array of probes with 5–10 nm gold ultrathin film sensors on silicon substrates for high throughput scanning probe microscopy is developed. The deflection sensitivity is 0.2 ppm/nm. Plots of the change in resistance of the sensing element with displacement are used to calibrate the probes and determine probe contact with the substrate. Topographical scans demonstrate high throughput and nanometer resolution. The heating elements are calibrated and the thermal coefficient of resistance (TCR) is 655 ppm/K. The melting temperature of a material is measured by locally heating the material with the heating element of the cantilever while monitoring the bending with the deflection sensing element. The melting point value measured with this method is in close agreement with the reported value in literature. PMID:23641125
Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System
NASA Technical Reports Server (NTRS)
Penanen, Konstantin; Hahn, Inseob; Ho Eom, Byeong
2009-01-01
A new gradiometer scheme uses middle loops as sensing elements in lowfield superconducting quantum interference device (SQUID) magnetic resonance imaging (MRI). This design of a second order gradiometer increases its sensitivity and makes it more uniform, compared to the conventional side loop sensing scheme with a comparable matching SQUID. The space between the two middle loops becomes the imaging volume with the enclosing cryostat built accordingly.
Gas sensor protection device and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, David; Magera, Craig
A gas sensor includes a sensor housing and a sensing element located within the sensor housing. The sensing element has a distal end and defines an axis. The gas sensor also includes a sensor protection device coupled to the sensor housing and at least partially surrounding the distal end of the sensing element. The sensor protection device includes a first member coupled to the housing, the first member having a generally rectangular cross-sectional shape in a plane perpendicular to the axis. The first member includes a gas inlet and a gas outlet. The sensor protection device also includes a secondmore » member coupled to the housing.« less
Specific coil design for SENSE: a six-element cardiac array.
Weiger, M; Pruessmann, K P; Leussler, C; Röschmann, P; Boesiger, P
2001-03-01
In sensitivity encoding (SENSE), the effects of inhomogeneous spatial sensitivity of surface coils are utilized for signal localization in addition to common Fourier encoding using magnetic field gradients. Unlike standard Fourier MRI, SENSE images exhibit an inhomogeneous noise distribution, which crucially depends on the geometrical sensitivity relations of the coils used. Thus, for optimum signal-to-noise-ratio (SNR) and noise homogeneity, specialized coil configurations are called for. In this article we study the implications of SENSE imaging for coil layout by means of simulations and imaging experiments in a phantom and in vivo. New, specific design principles are identified. For SENSE imaging, the elements of a coil array should be smaller than for common phased-array imaging. Furthermore, adjacent coil elements should not overlap. Based on the findings of initial investigations, a configuration of six coils was designed and built specifically for cardiac applications. The in vivo evaluation of this array showed a considerable SNR increase in SENSE images, as compared with a conventional array. Magn Reson Med 45:495-504, 2001. Copyright 2001 Wiley-Liss, Inc.
Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN
2011-04-05
A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.
A Flexible Arrayed Eddy Current Sensor for Inspection of Hollow Axle Inner Surfaces.
Sun, Zhenguo; Cai, Dong; Zou, Cheng; Zhang, Wenzeng; Chen, Qiang
2016-06-23
A reliable and accurate inspection of the hollow axle inner surface is important for the safe operation of high-speed trains. In order to improve the reliability of the inspection, a flexible arrayed eddy current sensor for non-destructive testing of the hollow axle inner surface was designed, fabricated and characterized. The sensor, consisting of two excitation traces and 28 sensing traces, was developed by using the flexible printed circuit board (FPCB) technique to conform the geometric features of the inner surfaces of the hollow axles. The main innovative aspect of the sensor was the new arrangement of excitation/sensing traces to achieve a differential configuration. Finite element model was established to analyze sensor responses and to determine the optimal excitation frequency. Experimental validations were conducted on a specimen with several artificial defects. Results from experiments and simulations were consistent with each other, with the maximum relative error less than 4%. Both results proved that the sensor was capable of detecting longitudinal and transverse defects with the depth of 0.5 mm under the optimal excitation frequency of 0.9 MHz.
NASA Astrophysics Data System (ADS)
Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan; Yang, Guoguang
2016-08-01
The ultrahigh static displacement-acceleration sensitivity of a mechanical sensing chip is essential primarily for an ultrasensitive accelerometer. In this paper, an optimal design to implement to a single-axis MOEMS accelerometer consisting of a grating interferometry cavity and a micromachined sensing chip is presented. The micromachined sensing chip is composed of a proof mass along with its mechanical cantilever suspension and substrate. The dimensional parameters of the sensing chip, including the length, width, thickness and position of the cantilevers are evaluated and optimized both analytically and by finite-element-method (FEM) simulation to yield an unprecedented acceleration-displacement sensitivity. Compared with one of the most sensitive single-axis MOEMS accelerometers reported in the literature, the optimal mechanical design can yield a profound sensitivity improvement with an equal footprint area, specifically, 200% improvement in displacement-acceleration sensitivity with moderate resonant frequency and dynamic range. The modified design was microfabricated, packaged with the grating interferometry cavity and tested. The experimental results demonstrate that the MOEMS accelerometer with modified design can achieve the acceleration-displacement sensitivity of about 150μm/g and acceleration sensitivity of greater than 1500V/g, which validates the effectiveness of the optimal design.
Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.
1993-01-01
Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.
A multiband radiometer and data acquisition system for remote sensing field research
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Robinson, B. F.; Dewitt, D. P.; Silva, L. F.; Vanderbilt, V. C.
1981-01-01
Specifications are described for a recently developed prototype multispectral data acquisition system which consists of multiband radiometer with 8 bands between 0.4 and 12.5 micrometers and a data recording module to record data from the radometer and ancillary sources. The systems is adaptable to helicopter, truck, or tripod platforms, as well as hand-held operation. The general characteristics are: (1) comparatively inexpensive to acquire, maintain and operate; (2) simple to operate and calibrate; (3) complete with data hardware and software; and (4) well documented for use by researchers. The instrument system is to be commercially available and can be utilized by many researchers to obtain large numbers of accurate, calibrated spectral measurements. It can be a key element in improving and advancing the capability for field research in remote sensing.
Feasibility of an anticipatory noncontact precrash restraint actuation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kercel, S.W.; Dress, W.B.
1995-12-31
The problem of providing an electronic warning of an impending crash to a precrash restraint system a fraction of a second before physical contact differs from more widely explored problems, such as providing several seconds of crash warning to a driver. One approach to precrash restraint sensing is to apply anticipatory system theory. This consists of nested simplified models of the system to be controlled and of the system`s environment. It requires sensory information to describe the ``current state`` of the system and the environment. The models use the sensory data to make a faster-than-real-time prediction about the near future.more » Anticipation theory is well founded but rarely used. A major problem is to extract real-time current-state information from inexpensive sensors. Providing current-state information to the nested models is the weakest element of the system. Therefore, sensors and real-time processing of sensor signals command the most attention in an assessment of system feasibility. This paper describes problem definition, potential ``showstoppers,`` and ways to overcome them. It includes experiments showing that inexpensive radar is a practical sensing element. It considers fast and inexpensive algorithms to extract information from sensor data.« less
Stretchable and reversibly deformable radio frequency antennas based on silver nanowires.
Song, Lingnan; Myers, Amanda C; Adams, Jacob J; Zhu, Yong
2014-03-26
We demonstrate a class of microstrip patch antennas that are stretchable, mechanically tunable, and reversibly deformable. The radiating element of the antenna consists of highly conductive and stretchable material with screen-printed silver nanowires embedded in the surface layer of an elastomeric substrate. A 3-GHz microstrip patch antenna and a 6-GHz 2-element patch array are fabricated. Radiating properties of the antennas are characterized under tensile strain and agree well with the simulation results. The antenna is reconfigurable because the resonant frequency is a function of the applied tensile strain. The antenna is thus well suited for applications like wireless strain sensing. The material and fabrication technique reported here could be extended to achieve other types of stretchable antennas with more complex patterns and multilayer structures.
A Study in HRT Resolution: Seeking Maximum Sensitivity Among Variations in Sensing Element Material
NASA Technical Reports Server (NTRS)
Morales, Jeremy M.
2005-01-01
The EXACT (Experiments Along Coexistence near Tricriticality) project endeavors to perform the most rigorous test to date of Renormalization Group theory. In most cases, the theory gives only approximate solutions, but it offers exact predictions in the case of the He-3-He-4 tricritical point. Currently, the project is focused on maximizing the performance of the low-temperature system's HRT (high resolution thermometer) near the tricritical point. The HRT uses a PdMn sensing element, the qualities of which change based on its Mn concentration and whether or not it is annealed. All sensing element combinations will be catalogued, and through the data, the optimum configuration will be reported.
DIFFERENTIAL FAULT SENSING CIRCUIT
Roberts, J.H.
1961-09-01
A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.
Remote sensing and image interpretation
NASA Technical Reports Server (NTRS)
Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)
1979-01-01
A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.
Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing
NASA Technical Reports Server (NTRS)
Lantz, J. B.; Wynveen, R. A.
1983-01-01
Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed.
NASA Astrophysics Data System (ADS)
Engel, Leeya; Van Volkinburg, Kyle R.; Ben-David, Moti; Washington, Gregory N.; Krylov, Slava; Shacham-Diamand, Yosi
2016-04-01
In this paper, we report on the fabrication of a self-sensing electroactive polymer cantilevered bimorph beam actuator and its frequency response. Tip deflections of the beam, induced by applying an AC signal across ferroelectric relaxor polyvinylidene fluoride-trifluoroethylene chlorotrifluoroethylene (P(VDF-TrFE-CTFE)), reached a magnitude of 350μm under a field of ~55MV/m and were recorded externally using a laser Doppler vibrometer (LDV). Deflections were determined simultaneously by applying a sensing model to the voltage measured across the bimorph's integrated layer of piezoelectric polymer polyvinylidene fluoride (PVDF). The sensing model treats the structure as a simple Euler- Bernoulli cantilevered beam with two distributed active elements represented through the use of generalized functions and offers a method through which real time tip deflection can be measured without the need for external visualization. When not being used as a sensing element, the PVDF layer can provide an additional means for actuation of the beam via the converse piezoelectric effect, resulting in bidirectional control of the beam's deflections. Integration of flexible sensing elements together with modeling of the electroactive polymer beam can benefit the developing field of polymer microactuators which have applications in soft robotics as "smart" prosthetics/implants, haptic displays, tools for less invasive surgery, and sensing.
Accuracy improvement in the TDR-based localization of water leaks
NASA Astrophysics Data System (ADS)
Cataldo, Andrea; De Benedetto, Egidio; Cannazza, Giuseppe; Monti, Giuseppina; Demitri, Christian
A time domain reflectometry (TDR)-based system for the localization of water leaks has been recently developed by the authors. This system, which employs wire-like sensing elements to be installed along the underground pipes, has proven immune to the limitations that affect the traditional, acoustic leak-detection systems. Starting from the positive results obtained thus far, in this work, an improvement of this TDR-based system is proposed. More specifically, the possibility of employing a low-cost, water-absorbing sponge to be placed around the sensing element for enhancing the accuracy in the localization of the leak is addressed. To this purpose, laboratory experiments were carried out mimicking a water leakage condition, and two sensing elements (one embedded in a sponge and one without sponge) were comparatively used to identify the position of the leak through TDR measurements. Results showed that, thanks to the water retention capability of the sponge (which maintains the leaked water more localized), the sensing element embedded in the sponge leads to a higher accuracy in the evaluation of the position of the leak.
Tokarz, Richard D.
1983-01-01
A liquid level sensing device comprising a load cell supporting a column or stack of segments freely resting on one another. The density of each element is substantially identical to that of the surrounding liquid. The elements are freely guided within a surrounding tube. As each element is exposed above the liquid level, its weight will be impressed through the column to the load cell, thereby providing a signal at the load cell directly proportional to the liquid level elevation.
NASA Astrophysics Data System (ADS)
Tower, J. R.; Cope, A. D.; Pellon, L. E.; McCarthy, B. M.; Strong, R. T.
1986-06-01
Two solid-state sensors for use in remote sensing instruments operating in the pushbroom mode are examined. The design and characteristics of the visible/near-infrared (VIS/NIR) device and the short-wavelength infrared (SWIR) device are described. The VIS/NIR is a CCD imager with four parallel sensor lines, each 1024 pixel long; the chip design and filter system of the VIS/NIR are studied. The performance of the VIS/NIR sensor with mask and its system performance are measured. The SWIR is a dual-band line imager consisting of palladium silicide Schottky-barrier detectors coupled to CCD multiplexers; the performance of the device is analyzed. The substrate materials and layout designs used to assemble the 4 x 5120-element VIS/NIR array and the 2 x 2560-element SWIR array are discussed, and the planarity of the butted arrays are verified using a profilometer. The optical and electrical characteristics, and the placement and butting accuracy of the arrays are evaluated. It is noted that the arrays met or exceed their expected performance.
NASA Technical Reports Server (NTRS)
Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.
Integrated optical gyroscopes offering low cost, small size and vibration immunity
NASA Astrophysics Data System (ADS)
Monovoukas, Christos; Swiecki, Andrew; Maseeh, Fariborz
2000-03-01
IntelliSense has developed an integrated optic gyro technology that provides the sensitivity of fiber optic gyros while utilizing batch microfabrication techniques to achieve the low cost of mechanical MEMS gyros. The base technology consists of an optical resonating waveguide chip, sensor electronics and an optical bench. The sensing element is based on an integrated optic waveguide chip in which counter-propagating optical fields are used to sense rotation in the plane of the waveguide through the Sagnac effect. It is powered by a semiconductor laser light source, which is coupled into a waveguide and split into two waveguide arms. Both signals are probed through the out coupled light at each waveguide arm, and rate information is derived from the difference in phase between these two signals. Measuring angular rotation is important for proper operation of a variety of systems such as: missile guidance systems, satellites, energy exploration, camera stabilization, robotics positioning, platform stabilization and space craft guidance to mention a few. This technology overcomes the limitations that previous commercially available gyros for this purpose have had including limitations in size, sensitivity, durability, and premium price.
Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentile, Carmelo; Luzi, Guido
2014-05-27
Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions,more » with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.« less
Severe Storms Branch research report (April 1984 April 1985)
NASA Technical Reports Server (NTRS)
Dubach, L. (Editor)
1985-01-01
The Mesoscale Atmospheric Processes Research Program is a program of integrated studies which are to achieve an improved understanding of the basic behavior of the atmosphere through the use of remotely sensed data and space technology. The program consist of four elements: (1) special observations and analysis of mesoscale systems; (20 the development of quanitative algorithms to use remotely sensed observations; (3) the development of new observing systems; and (4) numerical modeling. The Severe Storms Branch objectives are the improvement of the understanding, diagnosis, and prediction of a wide range of atmospheric storms, which includes severe thunderstorms, tornadoes, flash floods, tropical cyclones, and winter snowstorms. The research often shed light upon various aspects of local weather, such as fog, sea breezes, air pollution, showers, and other products of nonsevere cumulus cloud clusters. The part of the program devoted to boundary layer processes, gust front interactions, and soil moisture detection from satellites gives insights into storm growth and behavior.
Burgmeier, Jörg; Schippers, Wolfgang; Emde, Nico; Funken, Peter; Schade, Wolfgang
2011-05-01
A fiber Bragg grating sensor system used for monitoring the effects of strain on the power cable of an offshore wind turbine is presented. The Bragg grating structure was inscribed into coated nonphotosensitive standard telecommunication fibers using an IR femtosecond laser and the point-by-point writing technique. Because of the presence of the protective coating of the fiber, the mechanical stability of the resultant sensor device is better than that of a sensor consisting of a bare fiber. A system containing this sensing element was to our knowledge for the first time successfully installed and tested in an offshore wind turbine prototype (REpower 6M, REpower Systems, AG, Germany) in February 2010, near Ellhöft (Germany). The fabrication process of the fiber Bragg gratings, measurement results of the online monitoring, and a comparison between the sensor signal and commonly used sensing techniques are presented.
Fiber ring laser sensor based on Fabry-Perot cavity interferometer for temperature sensing
NASA Astrophysics Data System (ADS)
Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yunshan; Li, Yong Tao
2018-01-01
A ring laser temperature sensor based on a novel reflective fiber Fabry-Perot (F-P) interferometer air cavity is proposed and experimentally demonstrated. The reflective F-P air cavity, which consists of a segment of glass capillary inserted between two single-mode fibers, is utilized as a sensing element as well as as a filter in the fiber ring cavity. As temperature increases, the reflection spectra of the F-P sensor move towards the longer wavelength, and then cause lasing wavelength shifts. By monitoring the variation of lasing wavelength, we obtain a temperature sensor system with a high temperature sensitivity of 0.249 nm °C-1, a narrow 3 dB bandwidth of 0.1514 nm, and a high signal-to-noise ratio of 52 dB. Moreover, it is convenient to fabricate the sensor head, and the stability is very good, giving it a wide range of applications.
Broadband Vibration Detection in Tissue Phantoms Using a Fiber Fabry-Perot Cavity.
Barnes, Jack; Li, Sijia; Goyal, Apoorv; Abolmaesumi, Purang; Mousavi, Parvin; Loock, Hans-Peter
2018-04-01
A fiber optic vibration sensor is developed and characterized with an ultrawide dynamic sensing range, from less than 1 Hz to clinical ultrasound frequencies near 6 MHz. The vibration sensor consists of a matched pair of fiber Bragg gratings coupled to a custom-built signal processing circuit. The wavelength of a laser diode is locked to one of the many cavity resonances using the Pound-Drever-Hall scheme. A calibrated piezoelectric vibration element was used to characterize the sensor's strain, temperature, and noise responses. To demonstrate its sensing capability, an ultrasound phantom with built-in low frequency vibration actuation was constructed. The fiber optic senor was shown to simultaneously capture the low frequency vibration and the clinical ultrasound transmission waveforms with nanostrain sensitivity. This miniaturized and sensitive vibration sensor can provide comprehensive information regarding strain response and the resultant ultrasound waveforms.
A proactive system for maritime environment monitoring.
Moroni, Davide; Pieri, Gabriele; Tampucci, Marco; Salvetti, Ovidio
2016-01-30
The ability to remotely detect and monitor oil spills is becoming increasingly important due to the high demand of oil-based products. Indeed, shipping routes are becoming very crowded and the likelihood of oil slick occurrence is increasing. In this frame, a fully integrated remote sensing system can be a valuable monitoring tool. We propose an integrated and interoperable system able to monitor ship traffic and marine operators, using sensing capabilities from a variety of electronic sensors, along with geo-positioning tools, and through a communication infrastructure. Our system is capable of transferring heterogeneous data, freely and seamlessly, between different elements of the information system (and their users) in a consistent and usable form. The system also integrates a collection of decision support services providing proactive functionalities. Such services demonstrate the potentiality of the system in facilitating dynamic links among different data, models and actors, as indicated by the performed field tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Beck, Louisa R.; Rodriquez, Mario H.; Dister, Sheri W.; Rodriquez, Americo D.; Rejmankova, Eliska; Ulloa, Armando; Meza, Rosa A.; Roberts, Donald R.; Paris, Jack F.; Spanner, Michael A.;
1994-01-01
A landscape approach using remote sensing and Geographic Information System (GIS) technologies was developed to discriminate between villages at high and low risk for malaria transmission, as defined by adult Anopheles albimanus abundance. Satellite data for an area in southern Chiapas, Mexico were digitally processed to generate a map of landscape elements. The GIS processes were used to determine the proportion of mapped landscape elements surrounding 40 villages where An. albimanus data had been collected. The relationships between vector abundance and landscape element proportions were investigated using stepwise discriminant analysis and stepwise linear regression. Both analyses indicated that the most important landscape elements in terms of explaining vector abundance were transitional swamp and unmanaged pasture. Discriminant functions generated for these two elements were able to correctly distinguish between villages with high ind low vector abundance, with an overall accuracy of 90%. Regression results found both transitional swamp and unmanaged pasture proportions to be predictive of vector abundance during the mid-to-late wet season. This approach, which integrates remotely sensed data and GIS capabilities to identify villages with high vector-human contact risk, provides a promising tool for malaria surveillance programs that depend on labor-intensive field techniques. This is particularly relevant in areas where the lack of accurate surveillance capabilities may result in no malaria control action when, in fact, directed action is necessary. In general, this landscape approach could be applied to other vector-borne diseases in areas where: 1. the landscape elements critical to vector survival are known and 2. these elements can be detected at remote sensing scales.
Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications
Fernández, Román; García, Pablo; García, María; Jiménez, Yolanda; Arnau, Antonio
2017-01-01
Acoustic wave resonators have become suitable devices for a broad range of sensing applications due to their sensitivity, low cost, and integration capability, which are all factors that meet the requirements for the resonators to be used as sensing elements for portable point of care (PoC) platforms. In this work, the design, characterization, and validation of a 150 MHz high fundamental frequency quartz crystal microbalance (HFF-QCM) sensor for bio-sensing applications are introduced. Finite element method (FEM) simulations of the proposed design are in good agreement with the electrical characterization of the manufactured resonators. The sensor is also validated for bio-sensing applications. For this purpose, a specific sensor cell was designed and manufactured that addresses the critical requirements associated with this type of sensor and application. Due to the small sensing area and the sensor’s fragility, these requirements include a low-volume flow chamber in the nanoliter range, and a system approach that provides the appropriate pressure control for assuring liquid confinement while maintaining the integrity of the sensor with a good base line stability and easy sensor replacement. The sensor characteristics make it suitable for consideration as the elemental part of a sensor matrix in a multichannel platform for point of care applications. PMID:28885551
Phase retrieval on broadband and under-sampled images for the JWST testbed telescope
NASA Astrophysics Data System (ADS)
Smith, J. Scott; Aronstein, David L.; Dean, Bruce H.; Acton, D. Scott
2009-08-01
The James Webb Space Telescope (JWST) consists of an optical telescope element (OTE) that sends light to five science instruments. The initial steps for commissioning the telescope are performed with the Near-Infrared Camera (NIRCam) instrument, but low-order optical aberrations in the remaining science instruments must be determined (using phase retrieval) in order to ensure good performance across the entire field of view. These remaining instruments were designed to collect science data, and not to serve as wavefront sensors. Thus, the science cameras are not ideal phase-retrieval imagers for several reasons: they record under-sampled data and have a limited range of diversity defocus, and only one instrument has an internal, narrowband filter. To address these issues, we developed the capability of sensing these aberrations using an extension of image-based iterative-transform phase retrieval called Variable Sampling Mapping (VSM). The results show that VSM-based phase retrieval is capable of sensing low-order aberrations to a few nm RMS from images that are consistent with the non-ideal conditions expected during JWST multi-field commissioning. The algorithm is validated using data collected from the JWST Testbed Telescope (TBT).
NASA Astrophysics Data System (ADS)
Shiobara, M.; Takano, T.; Okamoto, H.; Yabuki, M.
2015-12-01
Clouds and aerosols are key elements having a potential to change climate by their radiative effects on the energy balance in the global climate system. In the Arctic, we have been continuing ground-based remote-sensing measurements for clouds and aerosols using a sky-radiometer, a micro-pulse lidar (MPL) and an all-sky camera in Ny-Ålesund (78.9N, 11.9E), Svalbard since early 2000's. In addition to such regular operations, several new measurements have been performed with a polarization MPL since August 2013, a 95GHz Doppler cloud radar since September 2013, and a dual frequency microwave radiometer since June 2014. An intensive field experiment for cloud-aerosol-radiation interaction study named A-CARE (PI: J. Ukita) was conducted for water clouds in the period of 23 June - 13 July 2014 and for mixed phase clouds in the period of 30 March - 23 April 2015 in Ny-Alesund. The experiment consisted of ground-based remote-sensing and in-situ cloud microphysics measurements. In this paper, preliminary results from these remote-sensing measurements will be presented, particularly in regard to physical characteristics of Arctic clouds based on radar-lidar collocated observation in Ny-Ålesund.
Ultra-miniature wireless temperature sensor for thermal medicine applications.
Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed
2011-01-01
This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.
Electronic gap sensor and method
Williams, R.S.; King, E.L.; Campbell, S.L.
1991-08-06
Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the needmore » for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.« less
Sensor and methods of detecting target materials and situations in closed systems
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.
2018-03-13
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, D.A.; James, R.N.
1987-10-20
Torque controlled powered pipe tongs, are described the apparatus comprises: (a) a power tong powered by a fluid motor; (b) a fluid power source connected to the motor; (c) a force conducting element attached to the power tong, situated to oppose reaction torque from the tongs when torque is applied to pipe; (d) force sensing means operatively associated with the force conducting element situated to sense at least part of the force experienced by the force conducting element, arranged to produce a pressure signal proportional to force sensed; and (e) a fluid by-pass valve, adjustably biased toward a closed position,more » responsive to the signal to tend to move toward an open position, the by-pass valve connected between the fluid power source and the motor.« less
Electronic gap sensor and method
Williams, Robert S.; King, Edward L.; Campbell, Steven L.
1991-01-01
An apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces.
Novel choline esterase based sensor for monitoring of organophosphorus pollutants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, E.S.; Ghindilis, A.L.; Atanasov, P.
1996-12-31
Organophosphorus compounds are significant major environmental pollutants due to their intensive use as pesticides. The modern techniques based on inhibition of choline esterase enzyme activity are discussed. Potentiometric electrodes based on detection of choline esterase inhibition by analytes has been developed. The detection of choline esterase activity is based on the novel principle of molecular transduction. Immobilized peroxidase acting as the molecular transducer, catalyzes the electroreduction of hydrogen peroxide by direct (mediatorless) electron transfer. The sensing element consists of a carbon based electrode containing an assembly of co-immobilized enzymes: choline esterase, choline oxidase and peroxidase.
Infrared-Proximity-Sensor Modules For Robot
NASA Technical Reports Server (NTRS)
Parton, William; Wegerif, Daniel; Rosinski, Douglas
1995-01-01
Collision-avoidance system for articulated robot manipulators uses infrared proximity sensors grouped together in array of sensor modules. Sensor modules, called "sensorCells," distributed processing board-level products for acquiring data from proximity-sensors strategically mounted on robot manipulators. Each sensorCell self-contained and consists of multiple sensing elements, discrete electronics, microcontroller and communications components. Modules connected to central control computer by redundant serial digital communication subsystem including both serial and a multi-drop bus. Detects objects made of various materials at distance of up to 50 cm. For some materials, such as thermal protection system tiles, detection range reduced to approximately 20 cm.
NASA Technical Reports Server (NTRS)
Fergusson, Neil J.
1992-01-01
In addition to an extensive review of the literature on exact and corrective displacement based methods of vibration analysis, a few theorems are proven concerning the various structural matrices involved in such analyses. In particular, the consistent mass matrix and the quasi-static mass matrix are shown to be equivalent, in the sense that the terms in their respective Taylor expansions are proportional to one another, and that they both lead to the same dynamic stiffness matrix when used with the appropriate stiffness matrix.
Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy
Waechter, Helen; Litman, Jessica; Cheung, Adrienne H.; Barnes, Jack A.; Loock, Hans-Peter
2010-01-01
Waveguide-based cavity ring-down spectroscopy (CRD) can be used for quantitative measurements of chemical concentrations in small amounts of liquid, in gases or in films. The change in ring-down time can be correlated to analyte concentration when using fiber optic sensing elements that change their attenuation in dependence of either sample absorption or refractive index. Two types of fiber cavities, i.e., fiber loops and fiber strands containing reflective elements, are distinguished. Both types of cavities were coupled to a variety of chemical sensor elements, which are discussed and compared. PMID:22294895
Proof Of Concept of Integrated Load Measurement in 3D Printed Structures
Hinderdael, Michael; Strantza, Maria; De Baere, Dieter; ...
2017-02-09
Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externallymore » mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).« less
Proof Of Concept of Integrated Load Measurement in 3D Printed Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinderdael, Michael; Strantza, Maria; De Baere, Dieter
Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externallymore » mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).« less
Evaluation of computational endomicroscopy architectures for minimally-invasive optical biopsy
NASA Astrophysics Data System (ADS)
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2017-02-01
We are investigating compressive sensing architectures for applications in endomicroscopy, where the narrow diameter probes required for tissue access can limit the achievable spatial resolution. We hypothesize that the compressive sensing framework can be used to overcome the fundamental pixel number limitation in fiber-bundle based endomicroscopy by reconstructing images with more resolvable points than fibers in the bundle. An experimental test platform was assembled to evaluate and compare two candidate architectures, based on introducing a coded amplitude mask at either a conjugate image or Fourier plane within the optical system. The benchtop platform consists of a common illumination and object path followed by separate imaging arms for each compressive architecture. The imaging arms contain a digital micromirror device (DMD) as a reprogrammable mask, with a CCD camera for image acquisition. One arm has the DMD positioned at a conjugate image plane ("IP arm"), while the other arm has the DMD positioned at a Fourier plane ("FP arm"). Lenses were selected and positioned within each arm to achieve an element-to-pixel ratio of 16 (230,400 mask elements mapped onto 14,400 camera pixels). We discuss our mathematical model for each system arm and outline the importance of accounting for system non-idealities. Reconstruction of a 1951 USAF resolution target using optimization-based compressive sensing algorithms produced images with higher spatial resolution than bicubic interpolation for both system arms when system non-idealities are included in the model. Furthermore, images generated with image plane coding appear to exhibit higher spatial resolution, but more noise, than images acquired through Fourier plane coding.
Proof of Concept of Integrated Load Measurement in 3D Printed Structures
Hinderdael, Michaël; Jardon, Zoé; Lison, Margot; De Baere, Dieter; Devesse, Wim; Strantza, Maria; Guillaume, Patrick
2017-01-01
Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain). PMID:28208779
Ultrathin gas permeable oxide membranes for chemical sensing: Nanoporous Ta 2O 5 test study
Imbault, Alexander; Wang, Yue; Kruse, Peter; ...
2015-09-25
Conductometric gas sensors made of gas permeable metal oxide ultrathin membranes can combine the functions of a selective filter, preconcentrator, and sensing element and thus can be particularly promising for the active sampling of diluted analytes. Here we report a case study of the electron transport and gas sensing properties of such a membrane made of nanoporous Ta 2O 5. These membranes demonstrated a noticeable chemical sensitivity toward ammonia, ethanol, and acetone at high temperatures above 400 °C. Furthermore, different from traditional thin films, such gas permeable, ultrathin gas sensing elements can be made suspended enabling advanced architectures of ultrasensitivemore » analytical systems operating at high temperatures and in harsh environments.« less
Nalwa, Kanwar S; Cai, Yuankun; Thoeming, Aaron L; Shinar, Joseph; Shinar, Ruth; Chaudhary, Sumit
2010-10-01
A photoluminescence (PL)-based oxygen and glucose sensor utilizing inorganic or organic light emitting diode as the light source, and polythiophene: fullerene type bulk-heterojunction devices as photodetectors, for both intensity and decay-time based monitoring of the sensing element's PL. The sensing element is based on the oxygen-sensitive dye Pt-octaethylporphyrin embedded in a polystyrene matrix.
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
NASA Technical Reports Server (NTRS)
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
Ice Particle Impact on Cloud Water Content Instrumentation
NASA Technical Reports Server (NTRS)
Emery, Edward F.; Miller, Dean R.; Plaskon, Stephen R.; Strapp, Walter; Lillie, Lyle
2004-01-01
Determining the total amount of water contained in an icing cloud necessitates the measurement of both the liquid droplets and ice particles. One commonly accepted method for measuring cloud water content utilizes a hot wire sensing element, which is maintained at a constant temperature. In this approach, the cloud water content is equated with the power required to keep the sense element at a constant temperature. This method inherently assumes that impinging cloud particles remain on the sensing element surface long enough to be evaporated. In the case of ice particles, this assumption requires that the particles do not bounce off the surface after impact. Recent tests aimed at characterizing ice particle impact on a thermally heated wing section, have raised questions about the validity of this assumption. Ice particles were observed to bounce off the heated wing section a very high percentage of the time. This result could have implications for Total Water Content sensors which are designed to capture ice particles, and thus do not account for bouncing or breakup of ice particles. Based on these results, a test was conducted to investigate ice particle impact on the sensing elements of the following hot-wire cloud water content probes: (1) Nevzorov Total Water Content (TWC)/Liquid Water Content (LWC) probe, (2) Science Engineering Associates TWC probe, and (3) Particle Measuring Systems King probe. Close-up video imaging was used to study ice particle impact on the sensing element of each probe. The measured water content from each probe was also determined for each cloud condition. This paper will present results from this investigation and attempt to evaluate the significance of ice particle impact on hot-wire cloud water content measurements.
Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials
NASA Technical Reports Server (NTRS)
Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.
2004-01-01
An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection
Three tenets for secure cyber-physical system design and assessment
NASA Astrophysics Data System (ADS)
Hughes, Jeff; Cybenko, George
2014-06-01
This paper presents a threat-driven quantitative mathematical framework for secure cyber-physical system design and assessment. Called The Three Tenets, this originally empirical approach has been used by the US Air Force Research Laboratory (AFRL) for secure system research and development. The Tenets were first documented in 2005 as a teachable methodology. The Tenets are motivated by a system threat model that itself consists of three elements which must exist for successful attacks to occur: - system susceptibility; - threat accessibility and; - threat capability. The Three Tenets arise naturally by countering each threat element individually. Specifically, the tenets are: Tenet 1: Focus on What's Critical - systems should include only essential functions (to reduce susceptibility); Tenet 2: Move Key Assets Out-of-Band - make mission essential elements and security controls difficult for attackers to reach logically and physically (to reduce accessibility); Tenet 3: Detect, React, Adapt - confound the attacker by implementing sensing system elements with dynamic response technologies (to counteract the attackers' capabilities). As a design methodology, the Tenets mitigate reverse engineering and subsequent attacks on complex systems. Quantified by a Bayesian analysis and further justified by analytic properties of attack graph models, the Tenets suggest concrete cyber security metrics for system assessment.
Lipid nanotube or nanowire sensor
Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA
2009-06-09
A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.
Lipid nanotube or nanowire sensor
Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA
2010-06-29
A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.
NASA Astrophysics Data System (ADS)
Cory, J. F., Jr.; Gordon, J. L.; Miyoshi, T.; Suzuki, K.
1989-06-01
Papers are presented on the use of microcomputers, supercomputers, and workstations in solid and structural mechanics. Artificial intelligence technology, the development and use of expert systems, and research in the area of robotics are discussed. Attention is also given to probabilistic finite element and boundary element methods and acoustic sensing.
Multimodal physiological sensor for motion artefact rejection.
Goverdovsky, Valentin; Looney, David; Kidmose, Preben; Mandic, Danilo P
2014-01-01
This work introduces a novel physiological sensor, which combines electrical and mechanical modalities in a co-located arrangement, to reject motion-induced artefacts. The mechanically sensitive element consists of an electret condenser microphone containing a light diaphragm, allowing it to detect local mechanical displacements and disregard large-scale whole body movements. The electrically sensitive element comprises a highly flexible membrane, conductive on one side and insulating on the other. It covers the sound hole of the microphone, thereby forming an isolated pocket of air between the membrane and the diaphragm. The co-located arrangement of the modalities allows the microphone to sense mechanical disturbances directly through the electrode, thus providing an accurate proxy to artefacts caused by relative motion between the skin and the electrode. This proxy is used to reject such artefacts in the electrical physiological signals, enabling enhanced recording quality in wearable health applications.
Optical signal processing of spatially distributed sensor data in smart structures
NASA Technical Reports Server (NTRS)
Bennett, K. D.; Claus, R. O.; Murphy, K. A.; Goette, A. M.
1989-01-01
Smart structures which contain dense two- or three-dimensional arrays of attached or embedded sensor elements inherently require signal multiplexing and processing capabilities to permit good spatial data resolution as well as the adequately short calculation times demanded by real time active feedback actuator drive circuitry. This paper reports the implementation of an in-line optical signal processor and its application in a structural sensing system which incorporates multiple discrete optical fiber sensor elements. The signal processor consists of an array of optical fiber couplers having tailored s-parameters and arranged to allow gray code amplitude scaling of sensor inputs. The use of this signal processor in systems designed to indicate the location of distributed strain and damage in composite materials, as well as to quantitatively characterize that damage, is described. Extension of similar signal processing methods to more complicated smart materials and structures applications are discussed.
Feedback regulated induction heater for a flowing fluid
Migliori, Albert; Swift, Gregory W.
1985-01-01
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Feedback regulated induction heater for a flowing fluid
Migliori, A.; Swift, G.W.
1984-06-13
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Fiber optic temperature sensor gives rise to thermal analysis in complex product design
NASA Astrophysics Data System (ADS)
Cheng, Andrew Y. S.; Pau, Michael C. Y.
1996-09-01
A computer-adapted fiber-optic temperature sensing system has been developed which aims to study both the theoretical aspect of fiber temperature sensing and the experimental aspect of such system. The system consists of a laser source, a fiber sensing element, an electronic fringes counting device, and an on-line personal computer. The temperature measurement is achieved by the conventional double beam fringe counting method with optical path length changes in the sensing beam due to the fiber expansion. The system can automatically measure the temperature changes in a sensing fiber arm which provides an insight of the heat generation and dissipation of the measured system. Unlike the conventional measuring devices such as thermocouples or solid state temperature sensors, the fiber sensor can easily be wrapped and shaped to fit the surface of the measuring object or even inside a molded plastic parts such as a computer case, which gives much more flexibility and applicability to the analysis of heat generation and dissipation in the operation of these machine parts. The reference beam is being set up on a temperature controlled optical bench to facilitate high sensitivity and high temperature resolution. The measuring beam has a motorized beam selection device for multiple fiber beam measurement. The project has been demonstrated in the laboratory and the system sensitivity and resolution are found to be as high as 0.01 degree Celsius. It is expected the system will find its application in many design studies which require thermal budgeting.
NASA Technical Reports Server (NTRS)
Malachowski, M. J.; Tobias, C. A.; Leith, J. T.
1977-01-01
A model system using Necturus maculosus, the common mudpuppy, was established for evaluating effects of radiation upon the light-sensing elements of the retina. Accelerated heavy ions of helium and neon from the Berkeley Bevalac were used. A number of criteria were chosen to characterize radiation damage by observing morphological changes with the scanning electron microscope. The studies indicated retina sensitivity to high-LET (neon) particles at radiation levels below 10 rads (7 particles per visual element) whereas no significant effects were seen from fast helium ions below 50 rads.
Nanomechanical membrane-type surface stress sensor.
Yoshikawa, Genki; Akiyama, Terunobu; Gautsch, Sebastian; Vettiger, Peter; Rohrer, Heinrich
2011-03-09
Nanomechanical cantilever sensors have been emerging as a key device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. In this letter, we present a membrane-type surface stress sensor (MSS), which is based on the piezoresistive read-out integrated in the sensor chip. The MSS is not a simple "cantilever," rather it consists of an "adsorbate membrane" suspended by four piezoresistive "sensing beams," composing a full Wheatstone bridge. The whole analyte-induced isotropic surface stress on the membrane is efficiently transduced to the piezoresistive beams as an amplified uniaxial stress. Evaluation of a prototype MSS used in the present experiments demonstrates a high sensitivity which is comparable with that of optical methods and a factor of more than 20 higher than that obtained with a standard piezoresistive cantilever. The finite element analyses indicate that changing dimensions of the membrane and beams can substantially increase the sensitivity further. Given the various conveniences and advantages of the integrated piezoresistive read-out, this platform is expected to open a new era of surface stress-based sensing.
Hybrid Active/Passive Jet Engine Noise Suppression System
NASA Technical Reports Server (NTRS)
Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.
1999-01-01
A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.
A Passive and Wireless Sensor for Bone Plate Strain Monitoring.
Tan, Yisong; Hu, Jiale; Ren, Limin; Zhu, Jianhua; Yang, Jiaqi; Liu, Di
2017-11-16
This paper reports on a sensor for monitoring bone plate strain in real time. The detected bone plate strain could be used for judging the healing state of fractures in patients. The sensor consists of a magnetoelastic material, which can be wirelessly connected and passively embedded. In order to verify the effectiveness of the sensor, a tibia-bone plate-screw (TBS) model was established using the finite element analysis method. A variation of the bone plate strain was obtained via this model. A goat hindquarter tibia was selected as the bone fracture model in the experiment. The tibia was fixed on a high precision load platform and an external force was applied. Bone plate strain variation during the bone fracture healing process was acquired with sensing coils. Simulation results indicated that bone plate strain decreases as the bone gradually heals, which is consistent with the finite element analysis results. This validated the soundness of the sensor reported here. This sensor has wireless connections, no in vivo battery requirement, and long-term embedding. These results can be used not only for clinical practices of bone fracture healing, but also for bone fracture treatment and rehabilitation equipment design.
Basic Research at the University of Washington to Counter Improvised Explosive Devices
2011-01-31
elements and fluorescent sensor elements can be co-located on the fiber. Having sensors with different sensing mechanisms would help reduce false...detection positives. The results of this research have been published in several peer-reviewed journal papers and a book chapter, and presented at a...project is to understand the fundamental mechanisms of the sensing properties of the semiconducting metal oxide nanowires in order to further improve
Smart Phones: Platform Enabling Modular, Chemical, Biological, and Explosives Sensing
2013-07-01
Smart phones: Platform Enabling Modular, Chemical, Biological, and Explosives Sensing by Amethist S. Finch , Matthew Coppock, Justin R...Chemical, Biological, and Explosives Sensing Amethist S. Finch , Matthew Coppock, Justin R. Bickford, Marvin A. Conn, Thomas J. Proctor, and...Explosives Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Amethist S. Finch , Matthew Coppock, Justin R
Stochastic sensing through covalent interactions
Bayley, Hagan; Shin, Seong-Ho; Luchian, Tudor; Cheley, Stephen
2013-03-26
A system and method for stochastic sensing in which the analyte covalently bonds to the sensor element or an adaptor element. If such bonding is irreversible, the bond may be broken by a chemical reagent. The sensor element may be a protein, such as the engineered P.sub.SH type or .alpha.HL protein pore. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable signal. Possible signals include change in electrical current, change in force, and change in fluorescence. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may be detected.
Parallel array of independent thermostats for column separations
Foret, Frantisek; Karger, Barry L.
2005-08-16
A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.
NASA Astrophysics Data System (ADS)
Ilehag, R.; Schenk, A.; Hinz, S.
2017-08-01
This paper presents a concept for classification of facade elements, based on the material and the geometry of the elements in addition to the thermal radiation of the facade with the usage of a multimodal Unmanned Aerial Vehicle (UAV) system. Once the concept is finalized and functional, the workflow can be used for energy demand estimations for buildings by exploiting existing methods for estimation of heat transfer coefficient and the transmitted heat loss. The multimodal system consists of a thermal, a hyperspectral and an optical sensor, which can be operational with a UAV. While dealing with sensors that operate in different spectra and have different technical specifications, such as the radiometric and the geometric resolution, the challenges that are faced are presented. Addressed are the different approaches of data fusion, such as image registration, generation of 3D models by performing image matching and the means for classification based on either the geometry of the object or the pixel values. As a first step towards realizing the concept, the result from a geometric calibration with a designed multimodal calibration pattern is presented.
NASA Astrophysics Data System (ADS)
Deproost, Marie-Hélène; Rivoldini, Attilio; Van Hoolst, Tim
2016-10-01
Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, silicon is likely the main light element in the core together with a possible small fraction of sulfur. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions and strongly decreases the melting temperature, silicon partitions almost equally well between solid and liquid iron and is not very effective at reducing the melting temperature of iron. Silicon as the major light element constituent instead of sulfur therefore implies a significantly higher core liquidus temperature and a decrease in the vigor of compositional convection generated by the release of light elements upon inner core formation.Due to the immiscibility in liquid Fe-Si-S at low pressure (below 15 GPa), the core might also not be homogeneous and consist of an inner S-poor Fe-Si core below a thinner Si-poor Fe-S layer. Here, we study the consequences of a silicon-rich core and the effect of the blanketing Fe-S layer on the thermal evolution of Mercury's core and on the generation of a magnetic field.
Optical diffraction properties of multimicrogratings
Rothenbach, Christian A.; Kravchenko, Ivan I.; Gupta, Mool C.
2015-02-27
This paper shows the results of optical diffraction properties of multimicrograting structures fabricated by e-beam lithography. Multimicrograting consist of arrays of hexagonally shaped cells containing periodic one-dimensional (1D) grating lines in different orientations and arrayed to form large area patterns. We analyzed the optical diffraction properties of multimicrogratings by studying the individual effects of the several periodic elements of multimicrogratings. The observed optical diffraction pattern is shown to be the combined effect of the periodic and non-periodic elements that define the multimicrogratings and the interaction between different elements. We measured the total transverse electric (TE) diffraction efficiency of multimicrogratings andmore » found it to be 32.1%, which is closely related to the diffraction efficiency of 1D periodic grating lines of the same characteristics, measured to be 33.7%. Beam profiles of the optical diffraction patterns from multimicrogratings are captured with a CCD sensor technique. Interference fringes were observed under certain conditions formed by multimicrograting beams interfering with each other. Finally, these diffraction structures may find applications in sensing, nanometrology, and optical interconnects.« less
Yagur-Kroll, Sharon; Belkin, Shimshon
2014-01-01
Microbial whole-cell bioreporters are genetically modified microorganisms that produce a quantifiable output in response to the presence of toxic chemicals or other stress factors. These bioreporters harbor a genetic fusion between a sensing element (usually a gene regulatory element responsive to the target) and a reporter element, the product of which may be quantitatively monitored either by its presence or by its activity. In this chapter we review genetic manipulations undertaken in order to improve bioluminescent bioreporter performance by increasing luminescent output, lowering the limit of detection, and shortening the response time. We describe molecular manipulations applied to all aspects of whole-cell bioreporters: the host strain, the expression system, the sensing element, and the reporter element. The molecular construction of whole-cell luminescent bioreporters, harboring fusions of gene promoter elements to reporter genes, has been around for over three decades; in most cases, these two genetic elements are combined "as is." This chapter outlines diverse molecular manipulations for enhancing the performance of such sensors.
NASA Technical Reports Server (NTRS)
Barranger, J. P.
1978-01-01
The rotor blade tip clearance measurement system consists of a capacitance sensing probe with self contained tuning elements, a connecting coaxial cable, and remotely located electronics. Tests show that the accuracy of the system suffers from a strong dependence on probe tip temperature and humidity. A novel inplace recalibration technique was presented which partly overcomes this problem through a simple modification of the electronics that permits a scale factor correction. This technique, when applied to a commercial system significantly reduced errors under varying conditions of humidity and temperature. Equations were also found that characterize the important cable and probe design quantities.
Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics
NASA Astrophysics Data System (ADS)
Fassler, A.; Majidi, C.
2013-05-01
We introduce a family of soft-matter capacitors and inductors composed of microchannels of liquid-phase gallium-indium-tin alloy (galinstan) embedded in a soft silicone elastomer (Ecoflex® 00-30). In contrast to conventional (rigid) electronics, these circuit elements remain electronically functional even when stretched to several times their natural length. As the surrounding elastomer stretches, the capacitance and inductance of the embedded liquid channels change monotonically. Using a custom-built loading apparatus, we experimentally measure relative changes in capacitance and inductance as a function of stretch in three directions. These experimental relationships are consistent with theoretical predictions that we derive with finite elasticity kinematics.
Surprise and Sense Making: Undergraduate Placement Experiences in SMEs
ERIC Educational Resources Information Center
Walmsley, Andreas; Thomas, Rhodri; Jameson, Stephanie
2006-01-01
Purpose: This paper seeks to explore undergraduate placement experiences in tourism and hospitality SMEs, focusing on the notions of surprise and sense making. It aims to argue that surprises and sense making are important elements not only of the adjustment process when entering new work environments, but also of the learning experience that…
Unified Planetary Coordinates System: A Searchable Database of Geodetic Information
NASA Technical Reports Server (NTRS)
Becker, K. J.a; Gaddis, L. R.; Soderblom, L. A.; Kirk, R. L.; Archinal, B. A.; Johnson, J. R.; Anderson, J. A.; Bowman-Cisneros, E.; LaVoie, S.; McAuley, M.
2005-01-01
Over the past 40 years, an enormous quantity of orbital remote sensing data has been collected for Mars from many missions and instruments. Unfortunately these datasets currently exist in a wide range of disparate coordinate systems, making it extremely difficult for the scientific community to easily correlate, combine, and compare data from different Mars missions and instruments. As part of our work for the PDS Imaging Node and on behalf of the USGS Astrogeology Team, we are working to solve this problem and to provide the NASA scientific research community with easy access to Mars orbital data in a unified, consistent coordinate system along with a wide variety of other key geometric variables. The Unified Planetary Coordinates (UPC) system is comprised of two main elements: (1) a database containing Mars orbital remote sensing data computed using a uniform coordinate system, and (2) a process by which continual maintainance and updates to the contents of the database are performed.
Nonimaging applications for microbolometer arrays
NASA Astrophysics Data System (ADS)
Picard, Francis; Jerominek, Hubert; Pope, Timothy D.; Zhang, Rose; Ngo, Linh P.; Tremblay, Bruno; Tasker, Nick; Grenier, Carol; Bilodeau, Ghislain; Cayer, Felix; Lehoux, Mario; Alain, Christine; Larouche, Carl; Savard, Simon
2001-10-01
In an effort to leverage uncooled microbolometer technology, testing of bolometer performance in various nonimaging applications has been performed. One of these applications makes use of an uncooled microbolometer array as the sensing element for a laser beam analyzer. Results of the characterization of cw CO2 laser beams with this analyzer are given. A comparison with the results obtained with a commercial laser beam analyzer is made. Various advantages specific to microbolometer arrays for this application are identified. A second application makes use of microbolometers for absolute temperature measurements. The experimental method and results are described. The technique's limitations and possible implementations are discussed. Finally, the third application evaluated is related to the rapidly expanding field of biometry. It consists of using a modified microbolometer array for fingerprint sensing. The basic approach allowing the use of microbolometers for such an application is discussed. The results of a proof-of-principle experiment are described. Globally, the described work illustrates the fact that microbolometer array fabrication technology can be exploited for many important applications other than IR imaging.
Portable Imagery Quality Assessment Test Field for Uav Sensors
NASA Astrophysics Data System (ADS)
Dąbrowski, R.; Jenerowicz, A.
2015-08-01
Nowadays the imagery data acquired from UAV sensors are the main source of all data used in various remote sensing applications, photogrammetry projects and in imagery intelligence (IMINT) as well as in other tasks as decision support. Therefore quality assessment of such imagery is an important task. The research team from Military University of Technology, Faculty of Civil Engineering and Geodesy, Geodesy Institute, Department of Remote Sensing and Photogrammetry has designed and prepared special test field- The Portable Imagery Quality Assessment Test Field (PIQuAT) that provides quality assessment in field conditions of images obtained with sensors mounted on UAVs. The PIQuAT consists of 6 individual segments, when combined allow for determine radiometric, spectral and spatial resolution of images acquired from UAVs. All segments of the PIQuAT can be used together in various configurations or independently. All elements of The Portable Imagery Quality Assessment Test Field were tested in laboratory conditions in terms of their radiometry and spectral reflectance characteristics.
Rock Statistics at the Mars Pathfinder Landing Site, Roughness and Roving on Mars
NASA Technical Reports Server (NTRS)
Haldemann, A. F. C.; Bridges, N. T.; Anderson, R. C.; Golombek, M. P.
1999-01-01
Several rock counts have been carried out at the Mars Pathfinder landing site producing consistent statistics of rock coverage and size-frequency distributions. These rock statistics provide a primary element of "ground truth" for anchoring remote sensing information used to pick the Pathfinder, and future, landing sites. The observed rock population statistics should also be consistent with the emplacement and alteration processes postulated to govern the landing site landscape. The rock population databases can however be used in ways that go beyond the calculation of cumulative number and cumulative area distributions versus rock diameter and height. Since the spatial parameters measured to characterize each rock are determined with stereo image pairs, the rock database serves as a subset of the full landing site digital terrain model (DTM). Insofar as a rock count can be carried out in a speedier, albeit coarser, manner than the full DTM analysis, rock counting offers several operational and scientific products in the near term. Quantitative rock mapping adds further information to the geomorphic study of the landing site, and can also be used for rover traverse planning. Statistical analysis of the surface roughness using the rock count proxy DTM is sufficiently accurate when compared to the full DTM to compare with radar remote sensing roughness measures, and with rover traverse profiles.
Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array
NASA Astrophysics Data System (ADS)
Papageorgiou, Anthony W.; Parkinson, Luke A.; Karas, Andrew R.; Hansen, Kristy L.; Arkwright, John W.
2018-02-01
Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.
Isolated resonator gyroscope with isolation trimming using a secondary element
NASA Technical Reports Server (NTRS)
Challoner, A. Dorian (Inventor); Shcheglov, Kirill V. (Inventor)
2006-01-01
The present invention discloses a resonator gyroscope including an isolated resonator. One or more flexures support the isolated resonator and a baseplate is affixed to the resonator by the flexures. Drive and sense elements are affixed to the baseplate and used to excite the resonator and sense movement of the gyroscope. In addition, at least one secondary element (e.g., another electrode) is affixed to the baseplate and used for trimming isolation of the resonator. The resonator operates such that it transfers substantially no net momentum to the baseplate when the resonator is excited. Typically, the isolated resonator comprises a proof mass and a counterbalancing plate.
Solid State Carbon Monoxide Sensor
NASA Technical Reports Server (NTRS)
Upchurch, Billy T. (Inventor); Wood, George M. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); DAmbrosia, Christine M. (Inventor)
1999-01-01
A means for detecting carbon monoxide which utilizes an un-heated catalytic material to oxidize carbon monoxide at ambient temperatures. Because this reaction is exothermic, a thermistor in contact with the catalytic material is used as a sensing element to detect the heat evolved as carbon monoxide is oxidized to carbon dioxide at the catalyst surface, without any heaters or external heating elements for the ambient air or catalytic element material. Upon comparison to a reference thermistor, relative increases in the temperature of the sensing thermistor correspond positively with an increased concentration of carbon monoxide in the ambient medium and are thus used as an indicator of the presence of carbon monoxide.
Echeverría, Jesús C; Calleja, Ignacio; Moriones, Paula; Garrido, Julián J
2017-01-01
We investigated the response of three fiber optic sensing elements prepared at pH 10 from phenyltriethoxysilane (PhTEOS) and tetraethylsilane (TEOS) mixtures with 30, 40, and 50% PhTEOS in the silicon precursor mixture. The sensing elements are referred to as Ph30, Ph40 and Ph50, respectively. The films were synthesized by the sol-gel method and affixed to the end of optical fibers by the dip-coating technique. Fourier transform infrared spectroscopy, N 2 adsorption-desorption at 77 K and X-ray diffraction analysis were used to characterize the xerogels. At a given pressure of n -hexane, the response of each sensing element decreased with temperature, indicating an exothermic process that confirmed the role of adsorption in the overall performance of the sensing elements. The isosteric adsorption enthalpies were obtained from the calibration curves at different temperatures. The magnitude of the isosteric enthalpy of n -hexane increased with the relative response and reached a plateau that stabilized at approximately -31 kJ mol -1 for Ph40 and Ph50 and at approximately -37 kJ mol -1 for Ph30. This indicates that the adsorbate-adsorbent interaction was dominant at lower relative pressure and condensation of the adsorbate on the mesopores was dominant at higher relative pressure.
Calleja, Ignacio; Moriones, Paula; Garrido, Julián J
2017-01-01
We investigated the response of three fiber optic sensing elements prepared at pH 10 from phenyltriethoxysilane (PhTEOS) and tetraethylsilane (TEOS) mixtures with 30, 40, and 50% PhTEOS in the silicon precursor mixture. The sensing elements are referred to as Ph30, Ph40 and Ph50, respectively. The films were synthesized by the sol–gel method and affixed to the end of optical fibers by the dip-coating technique. Fourier transform infrared spectroscopy, N2 adsorption–desorption at 77 K and X-ray diffraction analysis were used to characterize the xerogels. At a given pressure of n-hexane, the response of each sensing element decreased with temperature, indicating an exothermic process that confirmed the role of adsorption in the overall performance of the sensing elements. The isosteric adsorption enthalpies were obtained from the calibration curves at different temperatures. The magnitude of the isosteric enthalpy of n-hexane increased with the relative response and reached a plateau that stabilized at approximately −31 kJ mol−1 for Ph40 and Ph50 and at approximately −37 kJ mol−1 for Ph30. This indicates that the adsorbate–adsorbent interaction was dominant at lower relative pressure and condensation of the adsorbate on the mesopores was dominant at higher relative pressure. PMID:28326238
Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben
2015-09-21
Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa(-1). More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.
NASA Astrophysics Data System (ADS)
Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben
2015-09-01
Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa-1. More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.
West, David Lawrence; Montgomery, Frederick Charles; Armstrong, Timothy R; Warmack, Robert J
2013-12-31
An array-type sensor that senses NH.sub.3 includes non-Nernstian sensing elements constructed from metal and/or metal-oxide electrodes on an O.sub.2 ion conducting substrate. In one example sensor, one electrode may be made of platinum, another electrode may be made of manganese (III) oxide (Mn.sub.2O.sub.3), and another electrode may be made of tungsten trioxide (WO.sub.3). Some sensing elements may further include an electrode made of La.sub.0.6Sr.sub.0.4Co.sub.0.2Fe.sub0.8O.sub.3 and another electrode made of LaCr.sub.0.95.Mg.sub.0.05O.sub.3.
AMTV headway sensor and safety design
NASA Technical Reports Server (NTRS)
Johnston, A. R.; Nelson, M.; Cassell, P.; Herridge, J. T.
1980-01-01
A headway sensing system for an automated mixed traffic vehicle (AMTV) employing an array of optical proximity sensor elements is described, and its performance is presented in terms of object detection profiles. The problem of sensing in turns is explored experimentally and requirements for future turn sensors are discussed. A recommended headway sensor configuration, employing multiple source elements in the focal plane of one lens operating together with a similar detector unit, is described. Alternative concepts including laser radar, ultrasonic sensing, imaging techniques, and radar are compared to the present proximity sensor approach. Design concepts for an AMTV body which will minimize the probability of injury to pedestrians or passengers in the event of a collision are presented.
Ice Detection and Mitigation Device
NASA Technical Reports Server (NTRS)
Gambino, Richard J. (Inventor); Gouldstone, Christopher (Inventor); Gutleber, Jonathan (Inventor); Hubble, David (Inventor); Trelewicz, Jason (Inventor)
2016-01-01
A method for deicing an aerostructure includes driving a sensing current through a heater element coated to an aerostructure, the heater element having a resistance that is temperature dependent. A resistance of the heater element is monitored. It is determined whether there is icing at the heater element using the monitored resistance of the heater element. A melting current is driven through the heater element when it is determined that there is icing at the heater element.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-11-09
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2016-01-01
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865
Multichannel optical sensing device
Selkowitz, S.E.
1985-08-16
A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.
Multichannel optical sensing device
Selkowitz, Stephen E.
1990-01-01
A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.
van Soest, A J Knoek; Rozendaal, Leonard A
2008-07-01
Control of bipedal standing is typically analyzed in the context of a single-segment inverted pendulum model. The stiffness K (SE) of the series elastic element that transmits the force generated by the contractile elements of the ankle plantarflexors to the skeletal system has been reported to be smaller in magnitude than the destabilizing gravitational stiffness K ( g ). In this study, we assess, in case K (SE) + K ( g ) < 0, if bipedal standing can be locally stable under direct feedback of contractile element length, contractile element velocity (both sensed by muscle spindles) and muscle force (sensed by Golgi tendon organs) to alpha-motoneuron activity. A theoretical analysis reveals that even though positive feedback of force may increase the stiffness of the muscle-tendon complex to values well over the destabilizing gravitational stiffness, dynamic instability makes it impossible to obtain locally stable standing under the conditions assumed.
NASA Technical Reports Server (NTRS)
Grimes, Craig A. (Inventor); Ong, Keat Ghee (Inventor)
2003-01-01
A temperature sensing apparatus including a sensor element made of a magnetically soft material operatively arranged within a first and second time-varying interrogation magnetic field, the first time-varying magnetic field being generated at a frequency higher than that for the second magnetic field. A receiver, remote from the sensor element, is engaged to measure intensity of electromagnetic emissions from the sensor element to identify a relative maximum amplitude value for each of a plurality of higher-order harmonic frequency amplitudes so measured. A unit then determines a value for temperature (or other parameter of interst) using the relative maximum harmonic amplitude values identified. In other aspects of the invention, the focus is on an apparatus and technique for determining a value for of stress condition of a solid analyte and for determining a value for corrosion, using the relative maximum harmonic amplitude values identified. A magnetically hard element supporting a biasing field adjacent the magnetically soft sensor element can be included.
Simple method for self-referenced and lable-free biosensing by using a capillary sensing element.
Liu, Yun; Chen, Shimeng; Liu, Qiang; Liu, Zigeng; Wei, Peng
2017-05-15
We demonstrated a simple method for self-reference and label free biosensing based on a capillary sensing element and common optoelectronic devices. The capillary sensing element is illuminated by a light-emitting diode (LED) light source and detected by a webcam. Part of gold film that deposited on the tubing wall is functionalized to carry on the biological information in the excited SPR modes. The end face of the capillary was monitored and separate regions of interest (ROIs) were selected as the measurement channel and the reference channel. In the ROIs, the biological information can be accurately extracted from the image by simple image processing. Moreover, temperature fluctuation, bulk RI fluctuation, light source fluctuation and other factors can be effectively compensated during detection. Our biosensing device has a sensitivity of 1145%/RIU and a resolution better than 5.287 × 10 -4 RIU, considering a 0.79% noise level. We apply it for concanavalin A (Con A) biological measurement, which has an approximately linear response to the specific analyte concentration. This simple method provides a new approach for multichannel SPR sensing and reference-compensated calibration of SPR signal for label-free detection.
NASA Astrophysics Data System (ADS)
Bai, Xian-Xu; Zhong, Wei-Min; Zou, Qi; Zhu, An-Ding; Sun, Jun
2018-07-01
Based on the structural design concept of ‘functional integration’, this paper proposes the principle of a power-generated magnetorheological energy absorber with velocity self-sensing capability (PGMREA), which realizes the integration of controllable damping mechanism and mechanical energy-electrical energy conversion mechanism in structure profile and multiple functions in function profile, including controllable damping, power generation and velocity self-sensing. The controllable damping mechanism consists of an annular gap and a ball screw. The annular gap fulfilled with MR fluid that operates in pure shear mode under controllable electromagnetic field. The rotational damping torque generated from the controllable damping mechanism is translated to a linear damping force via the ball screw. The mechanical energy-electrical energy conversion mechanism is realized by the ball screw and a generator composed of a permanent magnet rotor and a generator stator. The ball screw based mechanical energy-electrical energy conversion mechanism converts the mechanical energy of excitations to electrical energy for storage or directly to power the controllable damping mechanism of the PGMREA. The velocity self-sensing capability of the PGMREA is achieved via signal processing using the mechanical energy-electrical energy conversion information. Based on the principle of the proposed PGMREA, the mathematical model of the PGMREA is established, including the damping force, generated power and self-sensing velocity. The electromagnetic circuit of the PGMREA is simulated and verified via a finite element analysis software ANSYS. The developed PGMREA prototype is experimentally tested on a servo-hydraulic testing system. The model-based predicted results and the experimental results are compared and analyzed.
Remote sensing: Physical principles, sensors and products, and the LANDSAT
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Steffen, C. A.; Lorenzzetti, J. A.; Stech, J. L.; Desouza, R. C. M.
1981-01-01
Techniques of data acquisition by remote sensing are introduced in this teaching aid. The properties of the elements involved (radiant energy, topograph, atmospheric attenuation, surfaces, and sensors) are covered. Radiometers, photography, scanners, and radar are described as well as their products. Aspects of the LANDSAT system examined include the characteristics of the satellite and its orbit, the multispectral band scanner, and the return beam vidicon. Pixels (picture elements), pattern registration, and the characteristics, reception, and processing of LANDSAT imagery are also considered.
A temperature control design for a tapered element oscillating microbalance sensing surface
NASA Technical Reports Server (NTRS)
1982-01-01
A design study is presented which shows that a tapered element oscillating microbalance can be adapted for temperature control under space application by mating with multistage thermoelectric coolers in such a way that an integral structure evolves. The control of the temperature of the sensing surface can be achieved in a number of ways. An indirect method which uses a measurement of the absorbed power is recommended. The design goals can be met if a relaxation of the power requirement can be considered.
Constrained maximum consistency multi-path mitigation
NASA Astrophysics Data System (ADS)
Smith, George B.
2003-10-01
Blind deconvolution algorithms can be useful as pre-processors for signal classification algorithms in shallow water. These algorithms remove the distortion of the signal caused by multipath propagation when no knowledge of the environment is available. A framework in which filters that produce signal estimates from each data channel that are as consistent with each other as possible in a least-squares sense has been presented [Smith, J. Acoust. Soc. Am. 107 (2000)]. This framework provides a solution to the blind deconvolution problem. One implementation of this framework yields the cross-relation on which EVAM [Gurelli and Nikias, IEEE Trans. Signal Process. 43 (1995)] and Rietsch [Rietsch, Geophysics 62(6) (1997)] processing are based. In this presentation, partially blind implementations that have good noise stability properties are compared using Classification Operating Characteristics (CLOC) analysis. [Work supported by ONR under Program Element 62747N and NRL, Stennis Space Center, MS.
NASA Technical Reports Server (NTRS)
Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.
1991-01-01
Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.
Ultra-miniature wireless temperature sensor for thermal medicine applications
Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed
2017-01-01
This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems. PMID:28989222
Predictions of the electro-mechanical response of conductive CNT-polymer composites
NASA Astrophysics Data System (ADS)
Matos, Miguel A. S.; Tagarielli, Vito L.; Baiz-Villafranca, Pedro M.; Pinho, Silvestre T.
2018-05-01
We present finite element simulations to predict the conductivity, elastic response and strain-sensing capability of conductive composites comprising a polymeric matrix and carbon nanotubes. Realistic representative volume elements (RVE) of the microstructure are generated and both constituents are modelled as linear elastic solids, with resistivity independent of strain; the electrical contact between nanotubes is represented by a new element which accounts for quantum tunnelling effects and captures the sensitivity of conductivity to separation. Monte Carlo simulations are conducted and the sensitivity of the predictions to RVE size is explored. Predictions of modulus and conductivity are found in good agreement with published results. The strain-sensing capability of the material is explored for multiaxial strain states.
NASA Astrophysics Data System (ADS)
Rendina, Ivo; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G.; Iodice, Mario
2000-03-01
A new type of non-perturbing electromagnetic power sensor for microwaves and millimeter-waves, based on the thermo- optical effect in a silicon interferometric etalon cavity is presented. The incident field power is partially dissipated into the all-silicon metal-less etalon, constituting the sensing element of the detector, so causing its temperature increase. This, in turn, induces the intensity modulation of a probe laser beam reflected by the cavity after a multiple beam interference process. The sensing element is directly connected to an optical fiber for remote interrogation, so avoiding the use of perturbing coaxial cables. The performances of such a new class of non-perturbing and wideband probes, in terms of sensitivity and resolution are discussed in detail. The experimental results concerning the characterization of a preliminary prototype sensor are presented and compared with theoretical data. The dependence of the sensor response on the electromagnetic frequency and on the sensing element characteristics is finally discussed.
Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przhiyalkovsky, Ya V; Morshnev, S K; Starostin, N I
2014-10-31
We have proposed and investigated a modified sensing element of a spun fibre current sensor for the case when the beat length of the built-in linear birefringence of the fibre is equal to or less than the spin pitch of its helical structure. The proposed configuration makes it possible to restore the interferometer contrast reduced because of the decrease in the ellipticity of the wavelength-averaged polarisation state of radiation propagating in such spun fibre. The modified sensing element contains two polarisation state converters: one, located at the spun fibre input, produces polarisation with ellipticity equal to the eigenellipticity of themore » fibre, and the other ensures conversion of the elliptical polarisation to an orthogonal one through mirror reflection at the fibre output. We have also demonstrated that the magneto-optical sensitivity decreases slightly for the analysed spectrum-averaged parameters of the polarisation state of radiation in the spun fibre. Experimental data lend support to the theoretical predictions. (fibre-optic sensors)« less
Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials.
Yang, Minghong; Dai, Jixiang; Zhou, Ciming; Jiang, Desheng
2009-11-09
Different from usually-used bulk magnetostrictive materials, magnetostrictive TbDyFe thin films were firstly proposed as sensing materials for fiber-optic magnetic field sensing characterization. By magnetron sputtering process, TbDyFe thin films were deposited on etched side circle of a fiber Bragg Grating (FBG) as sensing element. There exists more than 45pm change of FBG wavelength when magnet field increase up to 50 mT. The response to magnetic field is reversible, and could be applicable for magnetic and current sensing.
Applications of Microbial Cell Sensors
NASA Astrophysics Data System (ADS)
Shimomura-Shimizu, Mifumi; Karube, Isao
Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of microbial cell sensors have been developed as analytical tools. The microbial cell sensor utilizes microbes as a sensing element and a transducer. The characteristics of microbial cell sensors as sensing devices are a complete contrast to those of enzyme sensors or immunosensors, which are highly specific for the substrates of interest, although the specificity of the microbial cell sensor has been improved by genetic modification of the microbe used as the sensing element. Microbial cell sensors have the advantages of tolerance to measuring conditions, a long lifetime, and good cost performance, and have the disadvantage of a long response time. In this review, applications of microbial cell sensors are summarized.
LWIR Microgrid Polarimeter for Remote Sensing Studies
2010-02-28
Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo
Position control system for use with micromechanical actuators
Guckel, Henry; Stiers, Eric W.
2000-01-01
A positioning system adapted for use with micromechanical actuators provides feedback control of the position of the movable element of the actuator utilizing a low Q sensing coil. The effective inductance of the sensing coil changes with position of the movable element to change the frequency of oscillation of a variable oscillator. The output of the variable oscillator is compared in a phase detector to a reference oscillator signal. The phase detector provides a pulsed output having a pulse duty cycle related to the phase or frequency difference between the oscillator signals. The output of the phase detector is provided to a drive coil which applies a magnetic force to the movable element which balances the force of a spring. The movable element can be displaced to a new position by changing the frequency of the reference oscillator.
Bower, Kenneth E.; Weeks, Donald R.
1997-01-01
Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.
Bower, K.E.; Weeks, D.R.
1997-08-12
Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.
40 CFR 1045.801 - What definitions apply to this part?
Code of Federal Regulations, 2013 CFR
2013-07-01
... means any device, system, or element of design that someone can adjust (including those which are... emission control device means any element of design that senses temperature, motive speed, engine RPM... on a continuous mixture of those fuels. Emission control system means any device, system, or element...
Microelectromechanical systems contact stress sensor
Kotovsky, Jack
2007-12-25
A microelectromechanical systems stress sensor comprising a microelectromechanical systems silicon body. A recess is formed in the silicon body. A silicon element extends into the recess. The silicon element has limited freedom of movement within the recess. An electrical circuit in the silicon element includes a piezoresistor material that allows for sensing changes in resistance that is proportional to bending of the silicon element.
MacArthur, D.W.; Allander, K.S.; Bounds, J.A.
1994-01-25
A detector for atmospheric radon using a long range alpha detector as its sensing element is described. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding. 3 figures.
MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.
1994-01-01
A detector for atmospheric radon using a long range alpha detector as its sensing element. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding.
ChemCam Science Objectives for the Mars Science Laboratory (MSL) Rover
NASA Technical Reports Server (NTRS)
Wiens, R.; Maurice, S.; Bridges, N.; Clark, B.; Cremers, D.; Herkenhoff, K.; Kirkland, L.; Mangold, N.; Manhes, G.; Mauchien, P.
2005-01-01
ChemCam consists of two remote sensing instruments. One, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument provides rapid elemental composition data on rocks and soils within 13 m of the rover. By using laser pulses, it can remove dust or profile through weathering layers remotely. The other instrument, the Remote Micro-Imager (RMI), provides the highest resolution images between 2 m and infinity. At approximately 80 Rad field of view, its resolution exceeds that of MER Pancam by at least a factor of four. The ChemCam instruments are described in a companion paper by Maurice et al. [1]. Here we present the science objectives for the ChemCam instrument package.
Bonding techniques for hybrid active pixel sensors (HAPS)
NASA Astrophysics Data System (ADS)
Bigas, M.; Cabruja, E.; Lozano, M.
2007-05-01
A hybrid active pixel sensor (HAPS) consists of an array of sensing elements which is connected to an electronic read-out unit. The most used way to connect these two different devices is bump bonding. This interconnection technique is very suitable for these systems because it allows a very fine pitch and a high number of I/Os. However, there are other interconnection techniques available such as direct bonding. This paper, as a continuation of a review [M. Lozano, E. Cabruja, A. Collado, J. Santander, M. Ullan, Nucl. Instr. and Meth. A 473 (1-2) (2001) 95-101] published in 2001, presents an update of the different advanced bonding techniques available for manufacturing a hybrid active pixel detector.
ChemCam Science Objectives for the Mars Science Laboratory (MSL) Rover
NASA Technical Reports Server (NTRS)
Wiens, R.; Maurice, S.; Bridges, N.; Clark, B.; Cremers, D.; Herkenhoff, K.; Kirkland, L.; Mangold, N.; Manhes, G.; Mauchien, P.
2005-01-01
ChemCam consists of two remote sensing instruments. One, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument provides rapid elemental composition data on rocks and soils within 13 m of the rover. By using laser pulses, it can remove dust or profile through weathering layers remotely. The other instrument, the Remote Micro-Imager (RMI), provides the highest resolution images between 2 m and infinity. At approximately 80 Rad field of view, its resolution exceeds that of MER Pancam by at least a factor of four. The ChemCam instruments are described in a companion paper by Maurice et al. Here we present the science objectives for the ChemCam instrument package.
Optical fiber endface biosensor based on resonances in dielectric waveguide gratings
NASA Astrophysics Data System (ADS)
Wawro, Debra D.; Tibuleac, Sorin; Magnusson, Robert; Liu, Hanli
2000-05-01
A new fiber optic sensor integrating dielectric diffraction gratings and thin films on optical fiber endfaces is prosed for biomedical sensing applications. This device utilizes a resonant dielectric waveguide grating structure fabricated on an optical fiber endface to probe reactions occurring in a sensing layer deposited on its surface. The operation of this sensor is based upon a fundamental resonance effect that occurs in waveguide gratings. An incident broad- spectrum signal is guided within an optical fiber and is filtered to reflect or transmit a desired spectral band by the diffractive thin film structure on its endface. Slight changes in one or more parameters of the waveguide grating, such as refractive index or thickness, can result in a responsive shift of the reflected or transmitted spectral peak that can be detected with spectroscopic instruments. This new sensor concept combines improved sensitivity and accuracy with attractive features found separately in currently available fiber optic sensors, such as large dynamic range, small sensing proximity, real time operation, and remote sensing. Diffractive elements of this type consisting of a photoresist grating on a Si3N4 waveguide have been fabricated on multimode optical fiber endfaces with 100 micrometers cores. Preliminary experimental tests using a tunable Ti:sapphire laser indicate notches of 18 percent in the transmission spectrum of the fiber endface guided-mode resonance devices. A theoretical analysis of the device performance capabilities is presented and applied to evaluate the feasibility and potential advantages of this bioprobe.
NASA Technical Reports Server (NTRS)
Dix, M. G.; Harrison, D. R.; Edwards, T. M.
1982-01-01
Bubble vial with external aluminum-foil electrodes is sensing element for simple indicating tiltmeter. To measure bubble displacement, bridge circuit detects difference in capacitance between two sensing electrodes and reference electrode. Tiltmeter was developed for experiment on forecasting seismic events by changes in Earth's magnetic field.
NASA Astrophysics Data System (ADS)
Xia, Xiaoyuan; Zhang, Zhixiang; Li, Xinxin
2008-03-01
Second torsion-mode resonance is proposed for microcantilever biosensors for ultra-high mass-weighing sensitivity and resolution. By increasing both the resonant frequency and Q-factor, the higher mode torsional resonance is favorable for improving the mass-sensing performance. For the first time, a Latin-cross-shaped second-mode resonant cantilever is constructed and optimally designed for both signal-readout and resonance-exciting elements. The cantilever sensor is fabricated by using silicon micromachining techniques. The transverse piezoresistive sensing element and the specific-shaped resonance-exciting loop are successfully integrated in the cantilever. Alpha-fetoprotein (AFP) antibody-antigen specific binding is implemented for the sensing experiment. The proposed cantilever sensor is designed with significantly superior sensitivity to the previously reported first torsion-mode one. After analysis with an Allan variance algorithm, which can be easily embedded in the sensing system, the Latin-cross-shaped second torsion-mode resonant cantilever is evaluated with ultra-high mass resolution. Therefore, the high-performance integrated micro-sensor is promising for on-the-spot bio-molecule detection.
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. Lance; Fleischer, Van Tran
2009-01-01
The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.
Shinar, Ruth; Zhou, Zhaoqun; Choudhury, Bhaskar; Shinar, Joseph
2006-05-24
A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylviny1)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S(g) identical with tau(0% O2)/tau(100% O2), at 23 degrees C, were approximately 35 to approximately 50 for the [Alq3 OLED[/[PtOEP dye] pair; S(g) exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, S(DO) (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was approximately 9.5 and approximately 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with PtOEP dissolved directly in the solution. That sensor exhibited a high sensitivity, but a limited dynamic range. Effects of aggregation of dye molecules, sensing film porosity, and the use of the OLED-based sensor arrays for O2 and multianalyte detection are also discussed.
2016-09-30
Taiwan: Integration of In Situ Observations and Remote Sensing Data Sb. GRANT NUMBER N00014-15-1-2593 Sc. PROGRAM ELEMENT NUMBER 1000000976 6... Remote Sensing Data Magdalena Andres Woods Hole Oceanographic Institution 1266 Woods Hole Road I Woods Hole, MA 02543 1. Long Term Goals The...MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM($) Dr. Theresa Paluszkiewicz ONR ONR Ocean Battlespace Sensing S& T Dept
The Meteosat Second Generation (MSG) power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, J.E.; Levins, D.; Robben, A.
1997-12-31
Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement,more » the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.« less
On prediction and discovery of lunar ores
NASA Technical Reports Server (NTRS)
Haskin, Larry A.; Colson, Russell O.; Vaniman, David
1991-01-01
Sampling of lunar material and remote geochemical, mineralogical, and photogeologic sensing of the lunar surface, while meager, provide first-cut information about lunar composition and geochemical separation processes. Knowledge of elemental abundances in known lunar materials indicates which common lunar materials might serve as ores if there is economic demand and if economical extraction processes can be developed, remote sensing can be used to extend the understanding of the Moon's major geochemical separations and to locate potential ore bodies. Observed geochemical processes might lead to ores of less abundant elements under extreme local conditions.
Novel design of electrical sensing interface for prosthetic limbs using optical micro cavities
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Kamel, Mohamed A.
2018-04-01
This paper uses optical whispering galley modes (WGM) cavities to construct a new electrical sensing interface between prosthetic limb and the brain. The sensing element will detect the action potential signal in the neural membrane and the prosthetic limb will be actuated accordingly. The element is a WGM dielectric polymeric cavity. WGM based optical cavities can achieve very high values of sensitivity and quality factor; thus, any minute perturbations in the morphology of the cavity can be captured and measured. The action potential signal will produce an applied external electric field on the dielectric cavity causing it to deform due to the electrostriction effect. The resulting deformation will cause WGM shifts in the transmission spectrum of the cavity. Thus, the action potential or the applied electric field can be measured using these shifts. In this paper the action potential signal will be simulated through the use of a function generator and two metal electrodes. The sensing element will be situated between these electrodes to detect the electrical signal passing through. The achieved sensitivity is 27.5 pm/V in measuring the simulated action potential signal; and 0.32 pm/V.m-1 in measuring the applied electric field due to the passage of the simulated signal.
Workshop on The Rio Grande Rift: Crustal Modeling and Applications of Remote Sensing
NASA Technical Reports Server (NTRS)
Blanchard, D. P. (Editor)
1980-01-01
The elements of a program that could address significant earth science problems by combining remote sensing and traditional geological, geophysical, and geochemical approaches were addressed. Specific areas and tasks related to the Rio Grande Rift are discussed.
The Relationship between Teachers' Views about Cultural Values and Critical Pedagogy
ERIC Educational Resources Information Center
Yilmaz, Kursad; Altinkurt, Yahya; Ozciftci, Elif
2016-01-01
Problem Statement: Known as basic elements directing individuals' lives, cultural values are hidden cultural elements that influence all evaluations and perceptions. Values, in that sense, are elements individuals are aware of and provide the answer to the "what should I do?" feeling (Schein, 1992). Critical pedagogy is a project based…
Newell, Robert; Canessa, Rosaline
2018-02-01
Effective resource planning incorporates people-place relationships, allowing these efforts to be inclusive of the different local beliefs, interests, activities and needs. 'Geovisualizations' can serve as potentially powerful tools for facilitating 'place-conscious' resource planning, as they can be developed with high degrees of realism and accuracy, allowing people to recognize and relate to them as 'real places'. However, little research has been done on this potential, and the place-based applications of these visual tools are poorly understood. This study takes steps toward addressing this gap by exploring the relationship between sense of place and 'visualization of place'. Residents of the Capital Regional District of BC, Canada, were surveyed about their relationship with local coastal places, concerns for the coast, and how they mentally visualize these places. Factor analysis identified four sense of place dimensions - nature protection values, community and economic well-being values, place identity and place dependence, and four coastal concerns dimensions - ecological, private opportunities, public space and boating impacts. Visualization data were coded and treated as dependent variables in a series of logistic regressions that used sense of place and coastal concerns dimensions as predictors. Results indicated that different aspects of sense of place and (to a lesser degree) concerns for places influence the types of elements people include in their mental visualization of place. In addition, sense of place influenced the position and perspective people assume in these visualizations. These findings suggest that key visual elements and perspectives speak to different place relationships, which has implications for developing and using geovisualizations in terms of what elements should be included in tools and (if appropriate) depicted as affected by potential management or development scenarios.
Ribo-attenuators: novel elements for reliable and modular riboswitch engineering.
Folliard, Thomas; Mertins, Barbara; Steel, Harrison; Prescott, Thomas P; Newport, Thomas; Jones, Christopher W; Wadhams, George; Bayer, Travis; Armitage, Judith P; Papachristodoulou, Antonis; Rothschild, Lynn J
2017-07-04
Riboswitches are structural genetic regulatory elements that directly couple the sensing of small molecules to gene expression. They have considerable potential for applications throughout synthetic biology and bio-manufacturing as they are able to sense a wide range of small molecules and regulate gene expression in response. Despite over a decade of research they have yet to reach this considerable potential as they cannot yet be treated as modular components. This is due to several limitations including sensitivity to changes in genetic context, low tunability, and variability in performance. To overcome the associated difficulties with riboswitches, we have designed and introduced a novel genetic element called a ribo-attenuator in Bacteria. This genetic element allows for predictable tuning, insulation from contextual changes, and a reduction in expression variation. Ribo-attenuators allow riboswitches to be treated as truly modular and tunable components, thus increasing their reliability for a wide range of applications.
Tri-axial tactile sensing element
NASA Astrophysics Data System (ADS)
Castellanos-Ramos, Julián.; Navas-González, Rafael; Vidal-Verdú, F.
2013-05-01
A 13 x 13 square millimetre tri-axial taxel is presented which is suitable for some medical applications, for instance in assistive robotics that involves contact with humans or in prosthetics. Finite Element Analysis is carried out to determine what structure is the best to obtain a uniform distribution of pressure on the sensing areas underneath the structure. This structure has been fabricated in plastic with a 3D printer and a commercial tactile sensor has been used to implement the sensing areas. A three axis linear motorized translation stage with a tri-axial precision force sensor is used to find the parameters of the linear regression model and characterize the proposed taxel. The results are analysed to see to what extent the goal has been reached in this specific implementation.
CoFe-microwires with stress-dependent magnetostriction as embedded sensing elements
NASA Astrophysics Data System (ADS)
Salem, M. M.; Nematov, M. G.; Uddin, A.; Panina, L. V.; Churyukanova, M. N.; Marchenko, A. T.
2017-10-01
Testing internal stress/strain condition of polymer composite materials is of high importance in structural health monitoring. We are presenting here a new method of monitoring internal stresses. The method can be referred to as embedded sensing technique, where the sensing element is a glass-coated ferromagnetic microwire with a specific magnetic anisotropy and stress-dependent magnetostriction. When the microwire is remagnetized the sharp voltage is induced which is characterized by high frequency harmonics. The amplitude of these harmonics sensitively depends on various stresses. The microwire of composition Co71Fe5B11Si10Cr3 with the metallic core diameter of 22.8 μm show abrupt transformation of the magnetization process under applied tensile stress owing to the stress-dependent magnetostriction.
Distributed optical microsensors for hydrogen leak detection and related applications
NASA Astrophysics Data System (ADS)
Hunter, Scott R.; Patton, James F.; Sepaniak, Michael J.; Datskos, Panos G.; Smith, D. Barton
2010-04-01
Significant advances have recently been made to develop optically interrogated microsensor based chemical sensors with specific application to hydrogen vapor sensing and leak detection in the hydrogen economy. We have developed functionalized polymer-film and palladium/silver alloy coated microcantilever arrays with nanomechanical sensing for this application. The uniqueness of this approach is in the use of independent component analysis (ICA) and the classification techniques of neural networks to analyze the signals produced by an array of microcantilever sensors. This analysis identifies and quantifies the amount of hydrogen and other trace gases physisorbed on the arrays. Selectivity is achieved by using arrays of functionalized sensors with a moderate distribution of specificity among the sensing elements. The device consists of an array of beam-shaped transducers with molecular recognition phases (MRPs) applied to one surface of the transducers. Bending moments on the individual transducers can be detected by illuminating them with a laser or an LED and then reading the reflected light with an optical position sensitive detector (PSD) such as a CCD. Judicious selection of MRPs for the array provides multiple isolated interaction surfaces for sensing the environment. When a particular chemical agent binds to a transducer, the effective surface stresses of its modified and uncoated sides change unequally and the transducer begins to bend. The extent of bending depends upon the specific interactions between the microcantilever's MRP and the analyte. Thus, the readout of a multi-MRP array is a complex multidimensional signal that can be analyzed to deconvolve a multicomponent gas mixture. The use of this sensing and analysis technique in unattended networked arrays of sensors for various monitoring and surveillance applications is discussed.
Design of nanostructured-based glucose biosensors
NASA Astrophysics Data System (ADS)
Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani
2012-04-01
This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.
A common visual metric for approximate number and density
Dakin, Steven C.; Tibber, Marc S.; Greenwood, John A.; Kingdom, Frederick A. A.; Morgan, Michael J.
2011-01-01
There is considerable interest in how humans estimate the number of objects in a scene in the context of an extensive literature on how we estimate the density (i.e., spacing) of objects. Here, we show that our sense of number and our sense of density are intertwined. Presented with two patches, observers found it more difficult to spot differences in either density or numerosity when those patches were mismatched in overall size, and their errors were consistent with larger patches appearing both denser and more numerous. We propose that density is estimated using the relative response of mechanisms tuned to low and high spatial frequencies (SFs), because energy at high SFs is largely determined by the number of objects, whereas low SF energy depends more on the area occupied by elements. This measure is biased by overall stimulus size in the same way as human observers, and by estimating number using the same measure scaled by relative stimulus size, we can explain all of our results. This model is a simple, biologically plausible common metric for perceptual number and density. PMID:22106276
Atoche, Alejandro Castillo; Castillo, Javier Vázquez
2012-01-01
A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964
Optimal vibration control of a rotating plate with self-sensing active constrained layer damping
NASA Astrophysics Data System (ADS)
Xie, Zhengchao; Wong, Pak Kin; Lo, Kin Heng
2012-04-01
This paper proposes a finite element model for optimally controlled constrained layer damped (CLD) rotating plate with self-sensing technique and frequency-dependent material property in both the time and frequency domain. Constrained layer damping with viscoelastic material can effectively reduce the vibration in rotating structures. However, most existing research models use complex modulus approach to model viscoelastic material, and an additional iterative approach which is only available in frequency domain has to be used to include the material's frequency dependency. It is meaningful to model the viscoelastic damping layer in rotating part by using the anelastic displacement fields (ADF) in order to include the frequency dependency in both the time and frequency domain. Also, unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Thus, in this work, a single layer finite element is adopted to model a three-layer active constrained layer damped rotating plate in which the constraining layer is made of piezoelectric material to work as both the self-sensing sensor and actuator under an linear quadratic regulation (LQR) controller. After being compared with verified data, this newly proposed finite element model is validated and could be used for future research.
Sensing Strategies for Disambiguating among Multiple Objects in Known Poses.
1985-08-01
ELEMENT. PROIECT. TASK Artificial Inteligence Laboratory AE OKUI UBR 545 Technology Square Cambridge, MA 021.39 11. CONTROLLING OFFICE NAME AND ADDRESS 12...AD-Ali65 912 SENSING STRATEGIES FOR DISAMBIGURTING MONG MULTIPLE 1/1 OBJECTS IN KNOWN POSES(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL ...or Dist Special 1 ’ MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 855 August, 1985 Sensing Strategies for
40 CFR 1042.901 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1042.901 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1042.901 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1042.901 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1037.801 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Auxiliary emission control device means any element of design that senses temperature, motive speed, engine... any device, system, or element of design that controls or reduces the emissions of regulated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1037.801 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Auxiliary emission control device means any element of design that senses temperature, motive speed, engine... any device, system, or element of design that controls or reduces the emissions of regulated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1042.901 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
Monitoring of Concrete Structures Using Ofdr Technique
NASA Astrophysics Data System (ADS)
Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.
2011-06-01
Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.
Psychophysical evidence for the number sense.
Burr, David C; Anobile, Giovanni; Arrighi, Roberto
2017-02-19
It is now clear that most animals, including humans, possess an ability to rapidly estimate number. Some have questioned whether this ability arises from dedicated numerosity mechanisms, or is derived indirectly from judgements of density or other attributes. We describe a series of psychophysical experiments, largely using adaptation techniques, which demonstrate clearly the existence of a number sense in humans. The number sense is truly general, extending over space, time and sensory modality, and is closely linked with action. We further show that when multiple cues are present, numerosity emerges as the natural dimension for discrimination. However, when element density increases past a certain level, the elements become too crowded to parse, and the scene is perceived as a texture rather than array of elements. The two different regimes are psychophysically discriminable in that they follow distinct psychophysical laws, and show different dependencies on eccentricity, luminance levels and effects of perceptual grouping. The distinction is important, as the ability to discriminate numerosity, but not texture, correlates with formal maths skills.This article is part of the discussion meeting issue 'The origins of numerical abilities'. © 2017 The Authors.
Psychophysical evidence for the number sense
2018-01-01
It is now clear that most animals, including humans, possess an ability to rapidly estimate number. Some have questioned whether this ability arises from dedicated numerosity mechanisms, or is derived indirectly from judgements of density or other attributes. We describe a series of psychophysical experiments, largely using adaptation techniques, which demonstrate clearly the existence of a number sense in humans. The number sense is truly general, extending over space, time and sensory modality, and is closely linked with action. We further show that when multiple cues are present, numerosity emerges as the natural dimension for discrimination. However, when element density increases past a certain level, the elements become too crowded to parse, and the scene is perceived as a texture rather than array of elements. The two different regimes are psychophysically discriminable in that they follow distinct psychophysical laws, and show different dependencies on eccentricity, luminance levels and effects of perceptual grouping. The distinction is important, as the ability to discriminate numerosity, but not texture, correlates with formal maths skills. This article is part of the discussion meeting issue ‘The origins of numerical abilities’. PMID:29292350
Field Data Collection: an Essential Element in Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Pettinger, L. R.
1971-01-01
Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.
Still Building Rafts, Juggling Balls and Driving Tanks?
ERIC Educational Resources Information Center
Beard, Colin; Wilson, John
2002-01-01
A model presents experiential learning as a combination lock. Outdoor environmental elements, activities, senses, emotions, forms of intelligence, and ways of learning are grouped into six "tumblers" that can be arranged into combinations that best help learners interact with the external environment through their senses, thus generating…
Conductometric Sensors for Detection of Elemental Mercury Vapor
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Homer, M. L.; Shevade, A. V.; Lara, L. M.; Yen, S.-P. S.; Kisor, A. K.; Manatt, K. S.
2008-01-01
Several organic and inorganic materials have been tested for possible incorporation into a sensing array in order to add elemental mercury vapor to the suite of chemical species detected. Materials have included gold films, treated gold films, polymer-carbon composite films, gold-polymer-carbon composite films and palladium chloride sintered films. The toxicity of mercury and its adverse effect on human and animal health has made environmental monitoring of mercury in gas and liquid phases important (1,2). As consumer products which contain elemental mercury, such as fluorescent lighting, become more widespread, the need to monitor environments for the presence of vapor phase elemental mercury will increase. Sensors in use today to detect mercury in gaseous streams are generally based on amalgam formation with gold or other metals, including noble metals and aluminum. Recently, NASA has recognized a need to detect elemental mercury vapor in the breathing atmosphere of the crew cabin in spacecraft and has requested that such a capability be incorporated into the JPL Electronic Nose (3). The detection concentration target for this application is 10 parts-per-billion (ppb), or 0.08 mg/m3. In order to respond to the request to incorporate mercury sensing into the JPL Electronic Nose (ENose) platform, it was necessary to consider only conductometric methods of sensing, as any other transduction method would have required redesign of the platform. Any mercury detection technique which could not be incorporated into the existing platform, such as an electrochemical technique, could not be considered.
Complementary high performance sensing of gases and liquids using silver nanotube
NASA Astrophysics Data System (ADS)
Isro, Suhandoko D.; Iskandar, Alexander A.; Tjia, May-On
2017-11-01
A study on refractive index sensing using a silver nanotube is carried out to investigate the relative advantages of sensing gaseous and liquid samples outside the tube (outer sensing) and inside the core (inner sensing). The geometrical and material parameters of the nanotube are varied to explore the favorable sensing performances covering the range of refractive indices between 1.1 and 1.5. It is shown that the performances at the three sensing points considered are consistently improved with decreased shell thickness and core radius in both sensing modes. While the performance is also monotonously and drastically enhanced with decreased counter permittivity in inner sensing, the similarly large variations in the outer sensing mode are less than strictly consistent. The study further shows that the most favorable FOM values are attained by both sensing modes with 2.5 nm Ag shell thickness and 27.5 nm core radius of the nanotube, whereas the most favorable counter permittivities are different for the two modes. Remarkably, the trend of increasing FOM for samples of lower refractive indices in outer sensing is entirely reversed in inner sensing with roughly the same level of performances. Thus, the core/shell structure of the silver nanotube offers the complementary high performance sensing of gases and liquids using the two sensing modes with appropriately chosen system parameters.
40 CFR 1036.801 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... control device means any element of design that senses temperature, motive speed, engine RPM, transmission.... Emission control system means any device, system, or element of design that controls or reduces the... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1036.801 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control device means any element of design that senses temperature, motive speed, engine RPM, transmission.... Emission control system means any device, system, or element of design that controls or reduces the... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2014-01-01
In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-01-01
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch. PMID:26690443
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-12-10
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch.
Light-Responsive Cryptochromes from a Simple Multicellular Animal, the Coral Acropora millepora
NASA Astrophysics Data System (ADS)
Levy, O.; Appelbaum, L.; Leggat, W.; Gothlif, Y.; Hayward, D. C.; Miller, D. J.; Hoegh-Guldberg, O.
2007-10-01
Hundreds of species of reef-building corals spawn synchronously over a few nights each year, and moonlight regulates this spawning event. However, the molecular elements underpinning the detection of moonlight remain unknown. Here we report the presence of an ancient family of blue-light-sensing photoreceptors, cryptochromes, in the reef-building coral Acropora millepora. In addition to being cryptochrome genes from one of the earliest-diverging eumetazoan phyla, cry1 and cry2 were expressed preferentially in light. Consistent with potential roles in the synchronization of fundamentally important behaviors such as mass spawning, cry2 expression increased on full moon nights versus new moon nights. Our results demonstrate phylogenetically broad roles of these ancient circadian clock-related molecules in the animal kingdom.
Method of interpretation of remotely sensed data and applications to land use
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Dossantos, A. P.; Foresti, C.; Demoraesnovo, E. M. L.; Niero, M.; Lombardo, M. A.
1981-01-01
Instructional material describing a methodology of remote sensing data interpretation and examples of applicatons to land use survey are presented. The image interpretation elements are discussed for different types of sensor systems: aerial photographs, radar, and MSS/LANDSAT. Visual and automatic LANDSAT image interpretation is emphasized.
Analyte sensing mediated by adapter/carrier molecules
Bayley, Hagan; Braha, Orit; Gu, LiQun
2002-07-30
This invention relates to an improved method and system for sensing of one or more analytes. A host molecule, which serves as an adapter/carrier, is used to facilitate interaction between the analyte and the sensor element. A detectable signal is produced reflecting the identity and concentration of analyte present.
Fraction Sense: Foundational Understandings
ERIC Educational Resources Information Center
Fennell, Francis; Karp, Karen
2017-01-01
The intent of this commentary is to identify elements of fraction sense and note how the research studies provided in this special issue, in related but somewhat different ways, validate the importance of such understandings. Proficiency with fractions serves as a prerequisite for student success in higher level mathematics, as well as serving as…
The Teaching of Graphics and Design.
ERIC Educational Resources Information Center
Sullivan, Paul W.
This paper describes four journalism courses designed to develop students' visual sense and then channel that sense into the field of advertising. "Visual Communication" is a basic course in the elements of design which attempts to demonstrate to students that there are rules and order which comprise good design. "Publication…
Polysemy in Sentence Comprehension: Effects of Meaning Dominance
Foraker, Stephani; Murphy, Gregory L.
2012-01-01
Words like church are polysemous, having two related senses (a building and an organization). Three experiments investigated how polysemous senses are represented and processed during sentence comprehension. On one view, readers retrieve an underspecified, core meaning, which is later specified more fully with contextual information. On another view, readers retrieve one or more specific senses. In a reading task, context that was neutral or biased towards a particular sense preceded a polysemous word. Disambiguating material consistent with only one sense followed, in a second sentence (Experiment 1) or the same sentence (Experiments 2 & 3). Reading the disambiguating material was faster when it was consistent with that context, and dominant senses were committed to more strongly than subordinate senses. Critically, following neutral context, the continuation was read more quickly when it selected the dominant sense, and the degree of sense dominance partially explained the reading time advantage. Similarity of the senses also affected reading times. Across experiments, we found that sense selection may not be completed immediately following a polysemous word but is completed at a sentence boundary. Overall, the results suggest that readers select an individual sense when reading a polysemous word, rather than a core meaning. PMID:23185103
Probing the Hydrogen Enhanced Near-Field Emission of ITO without a Vacuum-Gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, Jacob L.; Yu, Yang; Ohodnicki, Paul R.
In-situ monitoring of the multi-component gas streams in high temperature energy conversion devices offer the promises to higher efficiency via improved understanding of the chemical environments during device operation. While conventional resistive based metal oxide semiconductor gas sensors suffer from strong cross-sensitivity, optical sensing approaches offer intrinsic advantages to achieve gas selectivity based on wavelength specific interactions. This manuscript describes a novel method to achieve multicomponent gas sensing during gas exposure of H2, CO2, CH4and CO in humid high temperature environments. A single sensor element comprised of a perovskite La0.3Sr0.7TiO3(LSTO) oxide thin film layer coated on silica optical fiber wasmore » used. The sensing responses consisted of two wavelength-specific near infrared (NIR) mechanisms, namely broadband absorption associated with the metal oxide layer, and wavelength localized thermal emission responses associated with the hydroxyl defects within the silica fiber. Principal component analysis (PCA) was applied to couple the two mechanisms to achieve selective gas identification. Successful discrimination of H2and CO2on a single fiber sensor was achieved, where the results are both stable and reversible. This design demonstrates that by coupling multiple optical mechanisms on a single oxide coated fiber sensor, simple platforms can also achieve multi-component sensing functionality without the added complexity of a sensor array. Thus, it suggests a new approach to construct simple, robust and functional sensor designs capable of gas discrimination and quantification in multi-component gas streams.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
NASA Astrophysics Data System (ADS)
Oikonomidis, D.; Dimogianni, S.; Kazakis, N.; Voudouris, K.
2015-06-01
The aim of this paper is to assess the groundwater potentiality combining Geographic Information Systems and Remote Sensing with data obtained from the field, as an additional tool to the hydrogeological research. The present study was elaborated in the broader area of Tirnavos, covering 419.4 km2. The study area is located in Thessaly (central Greece) and is crossed by two rivers, Pinios and Titarisios. Agriculture is one of the main elements of Thessaly's economy resulting in intense agricultural activity and consequently increased exploitation of groundwater resources. Geographic Information Systems (GIS) and Remote Sensing (RS) were used in order to create a map that depicts the likelihood of existence of groundwater, consisting of five classes, showing the groundwater potentiality and ranging from very high to very low. The extraction of this map is based on the study of input data such as: rainfall, potential recharge, lithology, lineament density, slope, drainage density and depth to groundwater. Weights were assigned to all these factors according to their relevance to groundwater potential and eventually a map based on weighted spatial modeling system was created. Furthermore, a groundwater quality suitability map was illustrated by overlaying the groundwater potentiality map with the map showing the potential zones for drinking groundwater in the study area. The results provide significant information and the maps could be used from local authorities for groundwater exploitation and management.
Whiting, Mark
2013-03-01
Parenting a child with complex needs or disabilities is a challenging proposition. This study, which drew upon of the experiences of the parents of 34 children (in 33 families), set out to explore the themes of impact, need for help and support and meaning/sense-making as they were related by parents. Data were collected using semi-structured interviews, and an emerging theoretical framework was validated through the use of a series of mind-maps(®) which were presented to individual parents as the basis for a second round (verificational) interview. Parents were nominated into the study by health care professions who were asked to identify the subject children to one of three separate sub-groups: children with a disability; children with a life-limiting/life-threatening illness or children with a technology dependence. Comparisons were made between the three study sub-groups in order to identify areas of consistency and of inconsistency. A fourth study theme - 'battleground' emerged from entirely within the data set. Sense-making occupied a central position within the overall theoretical framework for the study and parental perception of 'battleground' presented as significant element of parental sense-making, particularly in the context of their relationships with professional staff. © The Author(s) 2012.
High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow
NASA Astrophysics Data System (ADS)
Xu, Muchen; Kim, Chang-Jin ``Cj''
2015-11-01
The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).
A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements.
Najeeb, Mansoor Ani; Ahmad, Zubair; Shakoor, R A; Mohamed, A M A; Kahraman, Ramazan
2017-06-01
During the last few decades, there has been a tremendous rise in the number of research studies dedicated towards the development of diagnostic tools based on bio-sensing technology for the early detection of various diseases like cardiovascular diseases (CVD), many types of cancer, diabetes mellitus (DM) and many infectious diseases. Many breakthroughs have been developed in the areas of improving specificity, selectivity and repeatability of the biosensor devices. Innovations in the interdisciplinary areas like biotechnology, genetics, organic electronics and nanotechnology also had a great positive impact on the growth of bio-sensing technology. As a product of these improvements, fast and consistent sensing policies have been productively created for precise and ultrasensitive biomarker-based disease diagnostics. Prostate-specific antigen (PSA) is widely considered as an important biomarker used for diagnosing prostate cancer. There have been many publications based on various biosensors used for PSA detection, but a limited review was available for the classification of these biosensors used for the detection of PSA. This review highlights the various biosensors used for PSA detection and proposes a novel classification for PSA biosensors based on the transducer type used. We also highlight the advantages, disadvantages and limitations of each technique used for PSA biosensing which will make this article a complete reference tool for the future researches in PSA biosensing. Copyright © 2017 Elsevier B.V. All rights reserved.
alpha-helical structural elements within the voltage-sensing domains of a K(+) channel.
Li-Smerin, Y; Hackos, D H; Swartz, K J
2000-01-01
Voltage-gated K(+) channels are tetramers with each subunit containing six (S1-S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5-S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1-S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K(+) channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of alpha-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting alpha-helical secondary structure. In addition, both the S1-S2 and S3-S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain.
Exploring Persona-Scenarios - Using Storytelling to Create Design Ideas
NASA Astrophysics Data System (ADS)
Madsen, Sabine; Nielsen, Lene
This paper explores the persona-scenario method by investigating how the method can support project participants in generating shared understandings and design ideas. As persona-scenarios are stories we draw on narrative theory to define what a persona-scenario is and which narrative elements it should consist of. Based on an empirical study a key finding is that despite our inherent human ability to construct, tell, and interpret stories it is not easy to write and present a good, coherent, and design-oriented story without methodical support. The paper therefore contributes with guidelines that delineate a) what a design-oriented persona-scenario should consist of (product) and b) how to write it (procedure) in order to generate and validate as many, new, and shared understandings and design ideas as possible (purpose). The purpose of the guidelines is to facilitate the construction of persona-scenarios as good, coherent stories, which make sense to the storytellers and to the audience - and which therefore generate many, new, and shared understandings and design ideas.
A modified belief entropy in Dempster-Shafer framework.
Zhou, Deyun; Tang, Yongchuan; Jiang, Wen
2017-01-01
How to quantify the uncertain information in the framework of Dempster-Shafer evidence theory is still an open issue. Quite a few uncertainty measures have been proposed in Dempster-Shafer framework, however, the existing studies mainly focus on the mass function itself, the available information represented by the scale of the frame of discernment (FOD) in the body of evidence is ignored. Without taking full advantage of the information in the body of evidence, the existing methods are somehow not that efficient. In this paper, a modified belief entropy is proposed by considering the scale of FOD and the relative scale of a focal element with respect to FOD. Inspired by Deng entropy, the new belief entropy is consistent with Shannon entropy in the sense of probability consistency. What's more, with less information loss, the new measure can overcome the shortage of some other uncertainty measures. A few numerical examples and a case study are presented to show the efficiency and superiority of the proposed method.
A modified belief entropy in Dempster-Shafer framework
Zhou, Deyun; Jiang, Wen
2017-01-01
How to quantify the uncertain information in the framework of Dempster-Shafer evidence theory is still an open issue. Quite a few uncertainty measures have been proposed in Dempster-Shafer framework, however, the existing studies mainly focus on the mass function itself, the available information represented by the scale of the frame of discernment (FOD) in the body of evidence is ignored. Without taking full advantage of the information in the body of evidence, the existing methods are somehow not that efficient. In this paper, a modified belief entropy is proposed by considering the scale of FOD and the relative scale of a focal element with respect to FOD. Inspired by Deng entropy, the new belief entropy is consistent with Shannon entropy in the sense of probability consistency. What’s more, with less information loss, the new measure can overcome the shortage of some other uncertainty measures. A few numerical examples and a case study are presented to show the efficiency and superiority of the proposed method. PMID:28481914
Kefal, Adnan; Yildiz, Mehmet
2017-11-30
This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.
A HLA class I cis-regulatory element whose activity can be modulated by hormones.
Sim, B C; Hui, K M
1994-12-01
To elucidate the basis of the down-regulation in major histocompatibility complex (MHC) class I gene expression and to identify possible DNA-binding regulatory elements that have the potential to interact with class I MHC genes, we have studied the transcriptional regulation of class I HLA genes in human breast carcinoma cells. A 9 base pair (bp) negative cis-regulatory element (NRE) has been identified using band-shift assays employing DNA sequences derived from the 5'-flanking region of HLA class I genes. This 9-bp element, GTCATGGCG, located within exon I of the HLA class I gene, can potently inhibit the expression of a heterologous thymidine kinase (TK) gene promoter and the HLA enhancer element. Furthermore, this regulatory element can exert its suppressive function in either the sense or anti-sense orientation. More interestingly, NRE can suppress dexamethasone-mediated gene activation in the context of the reported glucocorticoid-responsive element (GRE) in MCF-7 cells but has no influence on the estrogen-mediated transcriptional activation of MCF-7 cells in the context of the reported estrogen-responsive element (ERE). Furthermore, the presence of such a regulatory element within the HLA class I gene whose activity can be modulated by hormones correlates well with our observation that the level of HLA class I gene expression can be down-regulated by hormones in human breast carcinoma cells. Such interactions between negative regulatory elements and specific hormone trans-activators are novel and suggest a versatile form of transcriptional control.
Modelisation de l'architecture des forets pour ameliorer la teledetection des attributs forestiers
NASA Astrophysics Data System (ADS)
Cote, Jean-Francois
The quality of indirect measurements of canopy structure, from in situ and satellite remote sensing, is based on knowledge of vegetation canopy architecture. Technological advances in ground-based, airborne or satellite remote sensing can now significantly improve the effectiveness of measurement programs on forest resources. The structure of vegetation canopy describes the position, orientation, size and shape of elements of the canopy. The complexity of the canopy in forest environments greatly limits our ability to characterize forest structural attributes. Architectural models have been developed to help the interpretation of canopy structural measurements by remote sensing. Recently, the terrestrial LiDAR systems, or TLiDAR (Terrestrial Light Detection and Ranging), are used to gather information on the structure of individual trees or forest stands. The TLiDAR allows the extraction of 3D structural information under the canopy at the centimetre scale. The methodology proposed in my Ph.D. thesis is a strategy to overcome the weakness in the structural sampling of vegetation cover. The main objective of the Ph.D. is to develop an architectural model of vegetation canopy, called L-Architect (LiDAR data to vegetation Architecture), and to focus on the ability to document forest sites and to get information on canopy structure from remote sensing tools. Specifically, L-Architect reconstructs the architecture of individual conifer trees from TLiDAR data. Quantitative evaluation of L-Architect consisted to investigate (i) the structural consistency of the reconstructed trees and (ii) the radiative coherence by the inclusion of reconstructed trees in a 3D radiative transfer model. Then, a methodology was developed to quasi-automatically reconstruct the structure of individual trees from an optimization algorithm using TLiDAR data and allometric relationships. L-Architect thus provides an explicit link between the range measurements of TLiDAR and structural attributes of individual trees. L-Architect has finally been applied to model the architecture of forest canopy for better characterization of vertical and horizontal structure with airborne LiDAR data. This project provides a mean to answer requests of detailed canopy architectural data, difficult to obtain, to reproduce a variety of forest covers. Because of the importance of architectural models, L-Architect provides a significant contribution for improving the capacity of parameters' inversion in vegetation cover for optical and lidar remote sensing. Mots-cles: modelisation architecturale, lidar terrestre, couvert forestier, parametres structuraux, teledetection.
Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures
NASA Astrophysics Data System (ADS)
Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.
2014-04-01
The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of understanding the properties of the thin film sensor and how it may be advanced toward structural sensing applications.
40 CFR 86.1803-01 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... procurement. Auxiliary Emission Control Device (AECD) means any element of design which senses temperature... components are those components which are designed primarily for emission control, or whose failure may... system as a means of providing electrical energy. Element of design means any control system (i.e...
[Use of Remote Sensing for Crop and Soil Analysis
NASA Technical Reports Server (NTRS)
Johannsen, Chris J.
1997-01-01
The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.
Dual-loop model of the human controller
NASA Technical Reports Server (NTRS)
Hess, R. A.
1978-01-01
A dual-loop model of the human controller in single-axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure that involves feeding back that portion of controlled element output rate that is due to control activity. A novel feature of the model is the explicit appearance of the human's internal representation of the manipulator-controlled element dynamics in the inner loop. The sensor inputs to the human controller are assumed to be system error and control force. The former can be sensed via visual, aural, or tactile displays, whereas the latter is assumed to be sensed in kinesthetic fashion. A set of general adaptive characteristics for the model is hypothesized, including a method for selecting simplified internal models of the manipulator-controlled element dynamics. It is demonstrated that the model can produce controller describing functions that closely approximate those measured in four laboratory tracking tasks in which the controlled element dynamics vary considerably in terms of ease of control. An empirically derived expression for the normalized injected error remnant spectrum is introduced.
Cis-acting RNA elements in the Hepatitis C virus RNA genome
Sagan, Selena M.; Chahal, Jasmin; Sarnow, Peter
2017-01-01
Hepatitis C virus (HCV) infection is a rapidly increasing global health problem with an estimated 170 million people infected worldwide. HCV is a hepatotropic, positive-sense RNA virus of the family Flaviviridae. As a positive-sense RNA virus, the HCV genome itself must serve as a template for translation, replication and packaging. The viral RNA must therefore be a dynamic structure that is able to readily accommodate structural changes to expose different regions of the genome to viral and cellular proteins to carry out the HCV life cycle. The ∼9600 nucleotide viral genome contains a single long open reading frame flanked by 5′ and 3′ non-coding regions that contain cis-acting RNA elements important for viral translation, replication and stability. Additional cis-acting RNA elements have also been identified in the coding sequences as well as in the 3′ end of the negative-strand replicative intermediate. Herein, we provide an overview of the importance of these cis-acting RNA elements in the HCV life cycle. PMID:25576644
NASA Astrophysics Data System (ADS)
Goncalves, Vasco David Fonseca
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Analytical Applications of Fluorescent Carbon Dots
NASA Astrophysics Data System (ADS)
Goncalves, Helena Maria Rodrigues
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Nanostructured Photoanodes for Solar Cells
NASA Astrophysics Data System (ADS)
Apolinario, Arlete Ondina Alves da Silva
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Chemoselectivity of Immobilized Transition Metal Catalysts
NASA Astrophysics Data System (ADS)
Teixeira, Filipe
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Sources and diagnostics for attosecond science
NASA Astrophysics Data System (ADS)
Miranda, Miguel Nicolau da Costa Ribeiro de
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Focus in High School Mathematics: Reasoning and Sense Making in Geometry
ERIC Educational Resources Information Center
National Council of Teachers of Mathematics, 2010
2010-01-01
Classically, geometry has been the subject in which students encounter mathematical proof based on formal deduction. Attention to proof in the geometry curriculum is strengthened by a focus on reasoning and sense making. This book examines the four key elements (conjecturing about geometric objects, construction and evaluation of geometric…
Integrated micro-electro-mechanical sensor development for inertial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, J.J.; Kinney, R.D.; Sarsfield, J.
Electronic sensing circuitry and micro electro mechanical sense elements can be integrated to produce inertial instruments for applications unheard of a few years ago. This paper will describe the Sandia M3EMS fabrication process, inertial instruments that have been fabricated, and the results of initial characterization tests of micro-machined accelerometers.
New Interpretations of Native American Literature: A Survival Technique.
ERIC Educational Resources Information Center
Buller, Galen
1980-01-01
Uses examples from the work of several Native American authors, including N. Scott Momaday and Leslie Silko, to discuss five unique elements in American Indian literature: reverence for words, dependence on a sense of place, sense of ritual, affirmation of the need for community, and a significantly different world view. (SB)
Focus in High School Mathematics: Reasoning and Sense Making in Algebra
ERIC Educational Resources Information Center
Graham, Karen; Cuoco, Albert; Zimmermann, Gwendolyn
2010-01-01
This book examines the five key elements (meaningful use of symbols, mindful manipulation, reasoned solving, connection algebra with geometry, and linking expressions and functions) identified in "Focus in High School Mathematics: Reasoning and Sense Making" in more detail and elaborates on the associated reasoning habits. This volume is one of a…
Latinx College Student Sense of Belonging: The Role of Campus Subcultures
ERIC Educational Resources Information Center
Garcia, Crystal E.
2017-01-01
This qualitative, multiple case study incorporated elements of a grounded theory approach to explore the role of involvement in a particular university subculture, Latinx Greek letter organizations, in how Latinx college students develop and make meaning of their sense of belonging within predominantly White institutions. The study was guided by…
Volatile organic compound sensor system
Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.; Bomstad, Theresa M [Laramie, WY; Sorini-Wong, Susan S [Laramie, WY
2009-02-10
Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.
Volatile organic compound sensor system
Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.
2011-03-01
Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.
Hyperspectral remote sensing for terrestrial applications
Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Murali Krishna Gumma,; Venkateswarlu Dheeravath,
2015-01-01
Remote sensing data are considered hyperspectral when the data are gathered from numerous wavebands, contiguously over an entire range of the spectrum (e.g., 400–2500 nm). Goetz (1992) defines hyperspectral remote sensing as “The acquisition of images in hundreds of registered, contiguous spectral bands such that for each picture element of an image it is possible to derive a complete reflectance spectrum.” However, Jensen (2004) defines hyperspectral remote sensing as “The simultaneous acquisition of images in many relatively narrow, contiguous and/or non contiguous spectral bands throughout the ultraviolet, visible, and infrared portions of the electromagnetic spectrum.
Ferroelectric Zinc Oxide Nanowire Embedded Flexible Sensor for Motion and Temperature Sensing.
Shin, Sung-Ho; Park, Dae Hoon; Jung, Joo-Yun; Lee, Min Hyung; Nah, Junghyo
2017-03-22
We report a simple method to realize multifunctional flexible motion sensor using ferroelectric lithium-doped ZnO-PDMS. The ferroelectric layer enables piezoelectric dynamic sensing and provides additional motion information to more precisely discriminate different motions. The PEDOT:PSS-functionalized AgNWs, working as electrode layers for the piezoelectric sensing layer, resistively detect a change of both movement or temperature. Thus, through the optimal integration of both elements, the sensing limit, accuracy, and functionality can be further expanded. The method introduced here is a simple and effective route to realize a high-performance flexible motion sensor with integrated multifunctionalities.
High speed magneto-resistive random access memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)
1992-01-01
A high speed read MRAM memory element is configured from a sandwich of magnetizable, ferromagnetic film surrounding a magneto-resistive film which may be ferromagnetic or not. One outer ferromagnetic film has a higher coercive force than the other and therefore remains magnetized in one sense while the other may be switched in sense by a switching magnetic field. The magneto-resistive film is therefore sensitive to the amplitude of the resultant field between the outer ferromagnetic films and may be constructed of a high resistivity, high magneto-resistive material capable of higher sensing currents. This permits higher read voltages and therefore faster read operations. Alternate embodiments with perpendicular anisotropy, and in-plane anisotropy are shown, including an embodiment which uses high permeability guides to direct the closing flux path through the magneto-resistive material. High density, high speed, radiation hard, memory matrices may be constructed from these memory elements.
Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays
NASA Astrophysics Data System (ADS)
Lee, J.-I.; Pyo, Soonjae; Kim, Min-Ook; Kim, Jongbaeg
2018-02-01
We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.
Free acquisition and dissemination of data through remote sensing. [Landsat program legal aspects
NASA Technical Reports Server (NTRS)
Hosenball, S. N.
1976-01-01
Free acquisition and dissemination of data through remote sensing is discussed with reference to the Landsat program. The role of the Scientific and Technical Subcommittee of the U.N. General Assembly's Committee on the Peaceful Uses of Outer Space has made recommendations on the expansion of existing ground stations and on the establishment of an experimental center for training in remote sensing. The working group for the legal subcommittee of the same U.N. committee indicates that there are common elements in the three drafts on remote sensing submitted to it: a call for international cooperation and the belief that remote sensing should be conducted for the benefit of all mankind.
Esmaelzadeh Saeieh, Sara; Rahimzadeh, Mitra; Yazdkhasti, Mansooreh; Torkashvand, Shoukofeh
2017-10-01
Developing maternal competence in first time mothers has a significant impact on neonate's growth psychosocial development and neonates growth and psychological development. Social support can be an important element for becoming a new mother. We aimed to investigate how social support and maternal competence change during pregnancy and 4 months after it and examine the relationships among social support and maternal competence. This longitudinal study was conducted on 100 first time mothers attending health centers in Alborz city, Alborz Province, between February 2015 and January 2016. Data were collected through perceived social support questionnaire that consisted of 12 questions and Parenting Sense of Competence Scale consisting of 17 items scored based on Likert's scale. The collected data were analyzed by SPSS software, version 16. Repeated-measure test and Pearson's correlation coefficient were used. P<0.05 was considered significant. Maternal competence significantly reduced during the study (P=0.008), while perceived social support did not show any significant reduction (P=0.286). A direct relationship was found between social support and maternal competent six weeks after childbirth (r=0.19, P=0.049), and also social support and maternal competence sixteen weeks after childbirth (r=0.23, P=0.01). Considering the reduction of maternal competency during the study, social support by healthcare providers may be helpful for the mothers' transition to motherhood, and midwives must design specific interventions to promote the sense of maternal competence and perceived social support in first time mothers.
Optical sensing: recognition elements and devices
NASA Astrophysics Data System (ADS)
Gauglitz, Guenter G.
2012-09-01
The requirements in chemical and biochemical sensing with respect to recognition elements, avoiding non-specific interactions, and high loading of the surface for detection of low concentrations as well as optimized detection systems are discussed. Among the many detection principles the optical techniques are classified. Methods using labeled compounds like Total Internal Reflection Fluorescence (TIRF) and direct optical methods like micro reflectometry or refractometry are discussed in comparison. Reflectometric Interference Spectroscopy (RIfS) is presented as a robust simple method for biosensing. As applications, trace analysis of endocrine disruptors in water, hormones in food, detection of viruses and bacteria in food and clinical diagnostics are discussed.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms
NASA Astrophysics Data System (ADS)
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-01
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-10
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
Smart structure with elastomeric contact surface for prosthetic fingertip sensitivity development
NASA Astrophysics Data System (ADS)
Gu, Chunxin; Liu, Weiting; Yu, Ping; Cheng, Xiaoying; Fu, Xin
2017-09-01
Current flexible/compliant tactile sensors suffer from low sensitivity and high hysteresis introduced by the essential viscosity characteristic of soft material, either used as compliant sensing element or as flexible coverage. To overcome these disadvantages, this paper focuses on developing a tactile sensor with a smart hybrid structure to obtain comprehensive properties in terms of size, compliance, robustness and pressure sensing ability so as to meet the requirements of limited space applications such as prosthetic fingertips. Employing micro-fabricated tiny silicon-based pressure die as the sensing element, it is easy to have both small size and good mechanical performance. To protect it from potential damage and maintain the compliant surface, a rigid base and a soft layer form a sealed chamber and encapsulate the fixed die together with fluid. The fluid serves as highly efficient pressure propagation media of mechanical stimulus from the compliant skin to the pressure die without any hazard impacting the vulnerable connecting wires. To understand the pressure transmission mechanism, a simplified and concise analytic model of a spring system is proposed. Using easy fabrication technologies, a prototype of a 3 × 3 sensor array with total dimensions of 14 mm × 14 mm × 6.5 mm was developed. Based on the quasi-linear relationship between fluid volume and pressure, finite element modeling was developed to analyze the chamber deformation and pressure output of the sensor cell. Experimental tests of the sensor prototype were implemented. The results showed that the sensor cell had good sensing performance with sensitivity of 19.9 mV N-1, linearity of 0.998, repeatability error of 3.41%, and hysteresis error of 3.34%. The force sensing range was from 5 mN to 1.6 N.
NASA Astrophysics Data System (ADS)
Airoldi, A.; Marelli, L.; Bettini, P.; Sala, G.; Apicella, A.
2017-04-01
Technologies based on optical fibers provide the possibility of installing relatively dense networks of sensors that can perform effective strain sensing functions during the operational life of structures. A contemporary trend is the increasing adoption of composite materials in aerospace constructions, which leads to structural architectures made of large monolithic elements. The paper is aimed at showing the feasibility of a detailed reconstruction of the strain field in a composite spar, which is based on the development of reference finite element models and the identification of load modes, consisting of a parameterized set of forces. The procedure is described and assessed in ideal conditions. Thereafter, a surrogate model is used to obtain realistic representation of the data acquired by the strain sensing system, so that the developed procedure is evaluated considering local effects due to the introduction of loads, significant modelling discrepancy in the development of the reference model and the presence of measurement noise. Results show that the method can obtain a robust and quite detailed reconstruction of strain fields, even at the level of local distributions, of the internal forces in the spars and of the displacements, by identifying an equivalent set of load parameters. Finally, the trade-off between the number of sensor and the accuracy, and the optimal position of the sensors for a given maximum number of sensors is evaluated by performing a multi-objective optimization, thus showing that even a relative dense network of externally applied sensors can be used to achieve good quality results.
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
40 CFR 1039.801 - What definitions apply to this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation in water. Auxiliary emission-control device means any element of design that senses temperature... suppression operations. Emission-control system means any device, system, or element of design that controls... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2012 CFR
2012-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2013 CFR
2013-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
Mode-routed fiber-optic add-drop filter
NASA Technical Reports Server (NTRS)
Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)
2000-01-01
New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.
NASA Astrophysics Data System (ADS)
Wang, Delin
In this thesis, we develop the basics of the Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) technique for the instantaneous continental-shelf scale detection, localization and species classification of marine mammal vocalizations. POAWRS uses a large-aperture, densely sampled coherent hydrophone array system with orders of magnitude higher array gain to enhance signal-to-noise ratios (SNR) by coherent beamforming, enabling detection of underwater acoustic signals either two orders of magnitude more distant in range or lower in SNR than a single hydrophone. The ability to employ coherent spatial processing of signals with the POAWRS technology significantly improves areal coverage, enabling detection of oceanic sound sources over instantaneous wide areas spanning 100 km or more in diameter. The POAWRS approach was applied to analyze marine mammal vocalizations from diverse species received on a 160-element Office Naval Research Five Octave Research Array (ONR-FORA) deployed during their feeding season in Fall 2006 in the Gulf of Maine. The species-dependent temporal-spatial distribution of marine mammal vocalizations and correlation to the prey fish distributions have been determined. Furthermore, the probability of detection regions, source level distributions and pulse compression gains of the vocalization signals from diverse marine mammal species have been estimated. We also develop an approach for enhancing the angular resolution and improving bearing estimates of acoustic signals received on a coherent hydrophone array with multiple-nested uniformly-spaced subapertures, such as the ONR-FORA, by nonuniform array beamforming. Finally we develop a low-cost non-oil-filled towable prototype hydrophone array that consists of eight hydrophone elements with real-time data acquisition and 100 m tow cable. The approach demonstrated here will be applied in the development of a full 160 element POAWRS-type low-cost coherent hydrophone array system in the future.
Magnetic Actuator Modelling for Rotating Machinery Analysis
NASA Astrophysics Data System (ADS)
Mendes, Ricardo Ugliara; de Castro, Hélio Fiori; Cavalca, Kátia Lucchesi; Ferreira, Luiz Otávio Saraiva
Rotating machines have a wide range of application such as airplanes, factories, laboratories and power plants. Lately, with computer aid design, shafts finite element models including bearings, discs, seals and couplings have been developed, allowing the prediction of the machine behavior. In order to keep confidence during operation, it is necessary to monitor these systems, trying to predict future failures. One of the most applied technique for this purpose is the modal analysis. It consists of applying a perturbation force into the system and then to measure its response. However, there is a difficulty that brings limitations to the excitation of systems with rotating shafts when using impact hammers or shakers, once due to friction, undesired tangential forces and noise can be present in the measurements. Therefore, the study of a non-contact technique of external excitation becomes of high interest. In this sense, the present work deals with the study and development of a finite element model for rotating machines using a magnetic actuator as an external excitation source. This work also brings numerical simulations where the magnetic actuator was used to obtain the frequency response function of the rotating system.
A fully implicit finite element method for bidomain models of cardiac electromechanics
Dal, Hüsnü; Göktepe, Serdar; Kaliske, Michael; Kuhl, Ellen
2012-01-01
We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellular potential, and the displacement field as independent variables, and extend the common two-field bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The intrinsic coupling arises from both excitation-induced contraction of cardiac cells and the deformation-induced generation of intra-cellular currents. The coupled reaction-diffusion equations of the electrical problem and the momentum balance of the mechanical problem are recast into their weak forms through a conventional isoparametric Galerkin approach. As a novel aspect, we propose a monolithic approach to solve the governing equations of excitation-contraction coupling in a fully coupled, implicit sense. We demonstrate the consistent linearization of the resulting set of non-linear residual equations. To assess the algorithmic performance, we illustrate characteristic features by means of representative three-dimensional initial-boundary value problems. The proposed algorithm may open new avenues to patient specific therapy design by circumventing stability and convergence issues inherent to conventional staggered solution schemes. PMID:23175588
A high performance neutron spectrometer for planetary hydrogen measurement
NASA Astrophysics Data System (ADS)
Naito, Masayuki; Hasebe, Nobuyuki; Nagaoka, Hiroshi; Ishii, Junya; Aoki, Daisuke; Shibamura, Eido; Kim, Kyeong J.; Matias-Lopes, José A.; Martínez-Frías, Jesús
2017-08-01
The elemental composition and its distribution on planetary surface provide important constraints on the origin and evolution of the planetary body. The nuclear spectrometer consisting of a neutron spectrometer and a gamma-ray spectrometer obtains elemental compositions by remote sensing. Especially, the neutron spectrometer is able to determine the hydrogen concentration, a piece of information that plays an important role in thermal history of the planets. In this work, numerical and experimental studies on the neutron spectrometer for micro-satellite application were conducted. It is found that background count rate of neutron produced from micro-satellite is very small, which enables to obtain successful results in short time observation. The neutron spectrometer combining a lithium-6 glass scintillator with a boron loaded plastic scintillator was used to be able to detect neutrons in different energy ranges. It was experimentally confirmed that the neutron signals from these scintillators were successfully discriminated by the difference of scintillation decay time between two detectors. The measurement of neutron count rates of two scintillators is found to determine hydrogen concentration on the planetary surfaces in the future missions.
Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element.
Dikovska, Anna Og; Atanasov, Petar A; Stoyanchov, Toshko R; Andreev, Andrey T; Karakoleva, Elka I; Zafirova, Blagovesta S
2007-05-01
A simple sensor element consisting of a side-polished single-mode fiber and a planar metal oxide waveguide is described. The thin ZnO planar waveguide was produced on the polished fiber surface by pulsed laser deposition at optimized processing parameters. A measurement scheme for in situ control of the film thickness during the deposition process was developed and used. X-ray diffraction measurements and scanning electron microscopy were used to characterize the structure and the surface morphology of the planar waveguide, respectively. The numerical evaluation of the sensor sensitivity predicts the possibility to detect refractive index changes of less than 10(-4). Furthermore, preliminary gas sensor tests were performed by using a mixture of 1.5% butane diluted in N(2) and pure butane. A shift of the spectral position of the resonance points was observed from 3 to 5 s after gas exposure, which corresponds to refractive index changes of 3 x 10(-5) and 1.2 x 10(-3) for 1.5% butane and for pure butane, respectively.
Exploring microdischarges for portable sensing applications.
Gianchandani, Y B; Wright, S A; Eun, C K; Wilson, C G; Mitra, B
2009-10-01
This paper describes the use of microdischarges as transducing elements in sensors and detectors. Chemical and physical sensing of gases, chemical sensing of liquids, and radiation detection are described. These applications are explored from the perspective of their use in portable microsystems, with emphasis on compactness, power consumption, the ability to operate at or near atmospheric pressure (to reduce pumping challenges), and the ability to operate in an air ambient (to reduce the need for reservoirs of carrier gases). Manufacturing methods and performance results are described for selected examples.
Current sensing using bismuth rare-earth iron garnet films
NASA Astrophysics Data System (ADS)
Ko, Michael; Garmire, Elsa
1995-04-01
Ferrimagnetic iron garnet films are investigated as current-sensing elements. The Faraday effect within the films permits measurement of the magnetic field or current by a simple polarimetric technique. Polarized diffraction patterns from the films have been observed that arise from the presence of magnetic domains in the films. A physical model for the diffraction is discussed, and results from a mathematical analysis are in good agreement with the experimental observations. A method of current sensing that uses this polarized diffraction is demonstrated.
Tool actuation and force feedback on robot-assisted microsurgery system
NASA Technical Reports Server (NTRS)
Das, Hari (Inventor); Ohm, Tim R. (Inventor); Boswell, Curtis D. (Inventor); Steele, Robert D. (Inventor)
2002-01-01
An input control device with force sensors is configured to sense hand movements of a surgeon performing a robot-assisted microsurgery. The sensed hand movements actuate a mechanically decoupled robot manipulator. A microsurgical manipulator, attached to the robot manipulator, is activated to move small objects and perform microsurgical tasks. A force-feedback element coupled to the robot manipulator and the input control device provides the input control device with an amplified sense of touch in the microsurgical manipulator.
The NSLS 100 element solid state array detector
Furenlid, L.R.; Kraner, H.W.; Rogers, L.C.; Cramer, S.P.; Stephani, D.; Beuttenmuller, R.H.; Beren, J.
2015-01-01
X-ray absorption studies of dilute samples require fluorescence detection techniques. Since signal-to-noise ratios are governed by the ratio of fluorescent to scattered photons counted by a detector, solid state detectors which can discriminate between fluorescence and scattered photons have become the instruments of choice for trace element measurements. Commercially available 13 element Ge array detectors permitting total count rates < 500000 counts per second are now in routine use. Since X-ray absorption beamlines at high brightness synchrotron sources can already illuminate most dilute samples with enough flux to saturate the current generation of solid state detectors, the development of next-generation instruments with significantly higher total count rates is essential. We present the design and current status of the 100 element Si array detector being developed in a collaboration between the NSLS and the Instrumentation Division at Brookhaven National Laboratory. The detecting array consists of a 10×10 matrix of 4 mm×4 mm elements laid out on a single piece of ultrahigh purity silicon mounted at the front end of a liquid nitrogen dewar assembly. A matrix of charge sensitive integrating preamplifiers feed signals to an array of shaping amplifiers, single channel analyzers, and scalers. An electronic switch, delay amplifier, linear gate, digital scope, peak sensing A/D converter, and histogramining memory module provide for complete diagnostics and channel calibration. The entire instrument is controlled by a LabView 2 application on a MacII ci; the software also provides full control over beamline hardware and performs the data collection. PMID:26722135
Lambreva, Maya D.; Giardi, Maria Teresa; Rambaldi, Irene; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Husu, Ivan; Johanningmeier, Udo; Rea, Giuseppina
2013-01-01
This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I50 values ranging from 6×10−8 M to 2×10−6 M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified. PMID:23613953
A multifunctional PVDF-based tactile sensor for minimally invasive surgery
NASA Astrophysics Data System (ADS)
Sokhanvar, S.; Packirisamy, M.; Dargahi, J.
2007-08-01
In this paper a multifunctional tactile sensor system using PVDF (polyvinylidene fluoride), is proposed, designed, analyzed, tested and validated. The working principle of the sensor is in such a way that it can be used in combination with almost any end-effectors. However, the sensor is particularly designed to be integrated with minimally invasive surgery (MIS) tools. In addition, the structural and transduction materials are selected to be compatible with micro-electro-mechanical systems (MEMS) technology, so that miniaturization would be possible. The corrugated shape of the sensor ensures the safe tissue grasping and compatibility with the traditional tooth-like end effectors of MIS tools. A unit of this sensor comprised of a base, a flexible beam and three PVDF sensing elements. Two PVDF sensing elements sandwiched at the end supports work in thickness mode to measure the magnitude and position of applied load. The third PVDF sensing element is attached to the beam and it works in the extensional mode to measure the softness of the contact object. The proposed sensor is modeled both analytically and numerically and a series of simulations are performed in order to estimate the characteristics of the sensor in measuring the magnitude and position of a point load, distributed load, and also the softness of the contact object. Furthermore, in order to validate the theoretical results, the prototyped sensor was tested and the results are compared. The results are very promising and proving the capability of the sensor for haptic sensing.
Landsat 3 return beam vidicon response artifacts
,; Clark, B.
1981-01-01
The return beam vidicon (RBV) sensing systems employed aboard Landsats 1, 2, and 3 have all been similar in that they have utilized vidicon tube cameras. These are not mirror-sweep scanning devices such as the multispectral scanner (MSS) sensors that have also been carried aboard the Landsat satellites. The vidicons operate more like common television cameras, using an electron gun to read images from a photoconductive faceplate.In the case of Landsats 1 and 2, the RBV system consisted of three such vidicons which collected remote sensing data in three distinct spectral bands. Landsat 3, however, utilizes just two vidicon cameras, both of which sense data in a single broad band. The Landsat 3 RBV system additionally has a unique configuration. As arranged, the two cameras can be shuttered alternately, twice each, in the same time it takes for one MSS scene to be acquired. This shuttering sequence results in four RBV "subscenes" for every MSS scene acquired, similar to the four quadrants of a square. See Figure 1. Each subscene represents a ground area of approximately 98 by 98 km. The subscenes are designated A, B, C, and D, for the northwest, northeast, southwest, and southeast quarters of the full scene, respectively. RBV data products are normally ordered, reproduced, and sold on a subscene basis and are in general referred to in this way. Each exposure from the RBV camera system presents an image which is 98 km on a side. When these analog video data are subsequently converted to digital form, the picture element, or pixel, that results is 19 m on a side with an effective resolution element of 30 m. This pixel size is substantially smaller than that obtainable in MSS images (the MSS has an effective resolution element of 73.4 m), and, when RBV images are compared to equivalent MSS images, better resolution in the RBV data is clearly evident. It is for this reason that the RBV system can be a valuable tool for remote sensing of earth resources.Until recently, RBV imagery was processed directly from wideband video tape data onto 70-mm film. This changed in September 1980 when digital production of RBV data at the NASA Goddard Space Flight Center (GSFC) began. The wideband video tape data are now subjected to analog-to-digital preprocessing and corrected both radiometrically and geometrically to produce high-density digital tapes (HDT's). The HDT data are subsequently transmitted via satellite (Domsat) to the EROS Data Center (EDC) where they are used to generate 241-mm photographic images at a scale of 1:500,000. Computer-compatible tapes of the data are also generated as digital products. Of the RBV data acquired since September 1, 1980, approximately 2,800 subscenes per month have been processed at EDC.
Plants' essential chemical elements
Kevin T. Smith
2007-01-01
Every garden center and hardware store sells fertilizer guaranteed to "feed" plants. In a strict sense, we can't feed plants. Food contains an energy source. Green plants capture solar energy and make their own food through photosynthesis! Photosynthesis and other metabolic processes require chemical elements in appropriate doses for plants to survive...
40 CFR 1039.801 - What definitions apply to this part?
Code of Federal Regulations, 2012 CFR
2012-07-01
... operation in water. Auxiliary emission-control device means any element of design that senses temperature... element of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...
40 CFR 1039.801 - What definitions apply to this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... operation in water. Auxiliary emission-control device means any element of design that senses temperature... element of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...
40 CFR 1039.801 - What definitions apply to this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
... operation in water. Auxiliary emission-control device means any element of design that senses temperature... element of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...
Nonsense, Sense and Science: Misconceptions and Illustrated Trade Books.
ERIC Educational Resources Information Center
Owens, Caroline V.
2003-01-01
Examines the author's discovery of elementary students' science misconceptions derived from the books she chose to share as read-alouds. Identifies three intertwining elements that might have led intelligent, curious young learners to create impossible science from these read-aloud sessions. Uses these three elements to organize personal…
Stop Making Sense: The Outdoors as Art. Part 1.
ERIC Educational Resources Information Center
Reed, Chris
2003-01-01
Applied outdoor experiences may be seen as theater and, as such, can allow a more flexible, integrative approach to outdoor learning. Both the arts (particularly theater) and outdoor experiential learning contain nine common elements, including elements of working with groups, and personal and transpersonal components of experience. Three…
ERIC Educational Resources Information Center
Rowan-Kenyon, Heather; Soldner, Matt E.; Kurotsuchi Inkelas, Karen
2008-01-01
This study examines the influence of elements of the college experience, specifically participation in a living-learning (L/L) program, on students' self-reported sense of civic engagement. The researchers examined a nationally representative sample of students (n = 1,474) including those who participated in civic engagement themed L/L programs,…
Number Sense Mediated by Mathematics Self-Concept in Impacting Middle School Mathematics Achievement
ERIC Educational Resources Information Center
Geronime, Lara K.
2012-01-01
The purpose of the current study was to extend the research on number sense to the middle school level and to simultaneously consider socioemotional elements related to the construct at this developmental stage. Its genesis was initially rooted in an ongoing and dramatic emphasis by U.S. policymakers, researchers, and educators on improving…
Sense-Making in a Temporary Organization: Implementing a New Curriculum in a Swedish Municipality
ERIC Educational Resources Information Center
Nordholm, Daniel Erik
2015-01-01
This article explores sense-making in a municipality-led temporary organization established in response to the introduction of a new curriculum and marking system in Sweden. Qualitative data were extracted from audio-recorded interviews (n = 18) and observations of central subject group meetings (n = 6). By applying core elements of sociological…
Making sense of 'place': Reflections on pluralism and positionality in place research
Daniel R. Williams
2014-01-01
Drawing on critical pluralism and positionality, this essay offers a four-part framework for making sense of the manifold ways place has been studied and applied to landscape planning and management. The first element highlights how diverse intellectual origins behind place research have inhibited a transdisciplinary understanding of place as an object of study in...
Fabrication of nano piezoelectric based vibration accelerometer for mechanical sensing
NASA Astrophysics Data System (ADS)
Murugan, S.; Prasad, M. V. N.; Jayakumar, K.
2016-05-01
An electromechanical sensor unit has been fabricated using nano PZT embedded in PVDF polymer. Such a polymer nano composite has been used as vibration sensor element and sensitivity, detection of mechanical vibration, and linearity measurements have been investigated. It is found from its performance, that this nano composite sensor is suitable for mechanical sensing applications.
Ferroelectric infrared detector and method
Lashley, Jason Charles; Opeil, Cyril P.; Smith, James Lawrence
2010-03-30
An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.
Pattern manipulation via on-chip phase modulation between orbital angular momentum beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huanlu; School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP; Strain, Michael J.
2015-08-03
An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications.more » It can be intentionally implemented with other modulation elements to achieve more complicated applications.« less
Shang, Fengjun; Muimhneacháin, Eoin Ó; Jerry Reen, F; Buzid, Alyah; O'Gara, Fergal; Luong, John H T; Glennon, Jeremy D; McGlacken, Gerard P
2014-10-01
Pseudomonas aeruginosa uses a hierarchical cell-cell communication system consisting of a number of regulatory elements to coordinate the expression of bacterial virulence genes. Sensitive detection of quorum sensing (QS) molecules has the potential for early identification of P. aeruginosa facilitating early medical intervention. A recently isolated cell-cell communication molecule, a thiazole termed IQS, can bypass the las QS system of P. aeruginosa under times of stress, activating a subset of QS-controlled genes. This compound offers a new target for pathogen detection and has been prepared in a one step protocol. A simple electrochemical strategy was employed for its sensitive detection using boron-doped diamond and glassy carbon electrodes by cyclic voltammetry and amperometry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Micromachined Millimeter- and Submillimeter-Wave SIS Heterodyne Receivers for Remote Sensing
NASA Technical Reports Server (NTRS)
Hu, Qing
1998-01-01
A heterodyne mixer with a micromachined horn antenna and a superconductor -insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30+/-3 K without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.
Analysis of Plasmonics Based Fiber Optic Sensing Structures
NASA Astrophysics Data System (ADS)
Moayyed, Hamed
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Fiber sensing based on new structures and post-processing enhancement
NASA Astrophysics Data System (ADS)
Ferreira, Marta Sofia dos Anjos
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
NASA Astrophysics Data System (ADS)
Rodrigues, Sandra Sofia Mota
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Optical Sensing: Fiber Structures and Interrogation Techniques
NASA Astrophysics Data System (ADS)
Carvalho, Joel Pedro
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Fiber optic structures for refractive index and gas sensing
NASA Astrophysics Data System (ADS)
Silva, Susana Ferreira de Oliveira
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Multi-Channel Capacitive Sensor Arrays
Wang, Bingnan; Long, Jiang; Teo, Koon Hoo
2016-01-01
In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023
Principle research on a single mass piezoelectric six-degrees-of-freedom accelerometer.
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-08-16
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.
Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-01-01
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work. PMID:23959243
Large Ka-Band Slot Array for Digital Beam-Forming Applications
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam; Zawadzki, Mark S.; Hodges, Richard E.
2011-01-01
This work describes the development of a large Ka Band Slot Array for the Glacier and Land Ice Surface Topography Interferometer (GLISTIN), a proposed spaceborne interferometric synthetic aperture radar for topographic mapping of ice sheets and glaciers. GLISTIN will collect ice topography measurement data over a wide swath with sub-seasonal repeat intervals using a Ka-band digitally beamformed antenna. For technology demonstration purpose a receive array of size 1x1 m, consisting of 160x160 radiating elements, was developed. The array is divided into 16 sticks, each stick consisting of 160x10 radiating elements, whose outputs are combined to produce 16 digital beams. A transmit array stick was also developed. The antenna arrays were designed using Elliott's design equations with the use of an infinite-array mutual-coupling model. A Floquet wave model was used to account for external coupling between radiating slots. Because of the use of uniform amplitude and phase distribution, the infinite array model yielded identical values for all radiating elements but for alternating offsets, and identical coupling elements but for alternating positive and negative tilts. Waveguide-fed slot arrays are finding many applications in radar, remote sensing, and communications applications because of their desirable properties such as low mass, low volume, and ease of design, manufacture, and deployability. Although waveguide-fed slot arrays have been designed, built, and tested in the past, this work represents several advances to the state of the art. The use of the infinite array model for the radiating slots yielded a simple design process for radiating and coupling slots. Method of moments solution to the integral equations for alternating offset radiating slots in an infinite array environment was developed and validated using the commercial finite element code HFSS. For the analysis purpose, a method of moments code was developed for an infinite array of subarrays. Overall the 1x1 m array was found to be successful in meeting the objectives of the GLISTIN demonstration antenna, especially with respect to the 0.042deg, 1/10th of the beamwidth of each stick, relative beam alignment between sticks.
Vaishampayan, Ankita; de Jong, Anne; Wight, Darren J.; Kok, Jan; Grohmann, Elisabeth
2018-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) has become an important cause of hospital-acquired infections worldwide. It is one of the most threatening pathogens due to its multi-drug resistance and strong biofilm-forming capacity. Thus, there is an urgent need for novel alternative strategies to combat bacterial infections. Recently, we demonstrated that a novel antimicrobial surface coating, AGXX®, consisting of micro-galvanic elements of the two noble metals, silver and ruthenium, surface-conditioned with ascorbic acid, efficiently inhibits MRSA growth. In this study, we demonstrated that the antimicrobial coating caused a significant reduction in biofilm formation (46%) of the clinical MRSA isolate, S. aureus 04-02981. To understand the molecular mechanism of the antimicrobial coating, we exposed S. aureus 04-02981 for different time-periods to the coating and investigated its molecular response via next-generation RNA-sequencing. A conventional antimicrobial silver coating served as a control. RNA-sequencing demonstrated down-regulation of many biofilm-associated genes and of genes related to virulence of S. aureus. The antimicrobial substance also down-regulated the two-component quorum-sensing system agr suggesting that it might interfere with quorum-sensing while diminishing biofilm formation in S. aureus 04-02981. PMID:29497410
Multi-parameter monitoring of electrical machines using integrated fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Fabian, Matthias; Hind, David; Gerada, Chris; Sun, Tong; Grattan, Kenneth T. V.
2017-04-01
In this paper a sensor system for multi-parameter electrical machine condition monitoring is reported. The proposed FBG-based system allows for the simultaneous monitoring of machine vibration, rotor speed and position, torque, spinning direction, temperature distribution along the stator windings and on the rotor surface as well as the stator wave frequency. This all-optical sensing solution reduces the component count of conventional sensor systems, i.e., all 48 sensing elements are contained within the machine operated by a single sensing interrogation unit. In this work, the sensing system has been successfully integrated into and tested on a permanent magnet motor prototype.
Liquid petroleum gas sensing application of ZnO/CdO:ZnO nanocomposites at low temperature
NASA Astrophysics Data System (ADS)
Rajput, Jeevitesh K.; Pathak, T. K.; Kumar, V.; Swart, H. C.; Purohit, L. P.
2018-04-01
ZnO and CdO:ZnO nanoparticles are synthesized by sol-gel precipitation method. The structural analysis shows composite structure for CdO:ZnO nanoparticles with (002) and (111) phase. The SEM images show wedge like morphology and 3-D hexagonal morphology with ˜110 nm in size. The uniform growth of CdO:ZnO nanoparticles were observed in EDS element mapping image. LPG sensing was observed for CdO:ZnO nanoparticle with rapid sensing response 8.69% at operating temperature 50°C. This sensing response can be accounted due by absorption ions reactions at low operating temperature.
A flexible, highly sensitive catheter for high resolution manometry based on in-fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Bueley, Christopher; Wild, Peter M.
2013-09-01
This work presents a fibre optic-based flexible catheter for high resolution manometry (HRM), with sensing pods located at a pitch of 10 mm and an overall diameter of 2.8 mm. In-fibre Bragg gratings act as the sensing elements within these sensing pods. Hydrodynamic pressure resolution of 0.2 mmHg is demonstrated in conjunction with insensitivity to occlusion pressure. This result is significant in the context of HRM where independent measurement of hydrodynamic pressure is clinically relevant. The sensing system is compact, robust and flexible. Crosstalk between individual sensors is characterized and a compensation scheme is developed and validated.
Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor.
Rifat, Ahmmed A; Haider, Firoz; Ahmed, Rajib; Mahdiraji, Ghafour Amouzad; Mahamd Adikan, F R; Miroshnichenko, Andrey E
2018-02-15
Highly sensitive and miniaturized sensors are highly desirable for real-time analyte/sample detection. In this Letter, we propose a highly sensitive plasmonic sensing scheme with the miniaturized photonic crystal fiber (PCF) attributes. A large cavity is introduced in the first ring of the PCFs for the efficient field excitation of the surface plasmon polariton mode and proficient infiltration of the sensing elements. Due to the irregular air-hole diameter in the first ring, the cavity exhibits the birefringence behavior which enhances the sensing performance. The novel plasmonic material gold has been used considering the chemical stability in an aqueous environment. The guiding properties and the effects of the sensing performance with different parameters have been investigated by the finite element method, and the proposed PCFs have been fabricated using the stack-and-draw fiber drawing method. The proposed sensor performance was investigated based on the wavelength and amplitude sensing techniques and shows the maximum sensitivities of 11,000 nm/RIU and 1,420 RIU -1 , respectively. It also shows the maximum sensor resolutions of 9.1×10 -6 and 7×10 -6 RIU for the wavelength and amplitude sensing schemes, respectively, and the maximum figure of merits of 407. Furthermore, the proposed sensor is able to detect the analyte refractive indices in the range of 1.33-1.42; as a result, it will find the possible applications in the medical diagnostics, biomolecules, organic chemical, and chemical analyte detection.
Chemical sensing and imaging based on photon upconverting nano- and microcrystals: a review
NASA Astrophysics Data System (ADS)
Christ, Simon; Schäferling, Michael
2015-09-01
The demand for photostable luminescent reporters that absorb and emit light in the red to near-infrared (NIR) spectral region continues in biomedical research and bioanalysis. In recent years, classical organic fluorophores have increasingly been displaced by luminescent nanoparticles. These consist of either polymer or silica based beads that are loaded with luminescent dyes, conjugated polymers, or inorganic nanomaterials such as semiconductor nanocrystals (quantum dots), colloidal clusters of silver and gold, or carbon dots. Among the inorganic materials, photon upconversion nanocrystals exhibit a high potential for application to bioimaging or biomolecular assays. They offer an exceptionally high photostability, can be excited in the NIR, and their anti-Stokes emission enables luminescence detection free of background and perturbing scatter effects even in complex biological samples. These lanthanide doped inorganic crystals have multiple emission lines that can be tuned by the selection of the dopants. This review article is focused on the applications of functionalized photon upconversion nanoparticles (UCNPs) to chemical sensing. This is a comparatively new field of research activity and mainly directed at the sensing and imaging of ubiquitous chemical analytes in biological samples, particularly in living cells. For this purpose, the particles have to be functionalized with suitable indicator dyes or recognition elements, as they do not show an intrinsic or specific luminescence response to most of these analytes (e.g. pH, oxygen, metal ions). We describe the strategies for the design of such responsive nanocomposites utilizing either luminescence resonance energy transfer or emission-reabsorption (inner filter effect) mechanisms and also highlight examples for their use either immobilized in sensor layers or directly as nanoprobes for intracellular sensing and imaging.
NASA Astrophysics Data System (ADS)
Liu, Chang; Wu, Xing; Mao, Jianlin; Liu, Xiaoqin
2017-07-01
In the signal processing domain, there has been growing interest in using acoustic emission (AE) signals for the fault diagnosis and condition assessment instead of vibration signals, which has been advocated as an effective technique for identifying fracture, crack or damage. The AE signal has high frequencies up to several MHz which can avoid some signals interference, such as the parts of bearing (i.e. rolling elements, ring and so on) and other rotating parts of machine. However, acoustic emission signal necessitates advanced signal sampling capabilities and requests ability to deal with large amounts of sampling data. In this paper, compressive sensing (CS) is introduced as a processing framework, and then a compressive features extraction method is proposed. We use it for extracting the compressive features from compressively-sensed data directly, and also prove the energy preservation properties. First, we study the AE signals under the CS framework. The sparsity of AE signal of the rolling bearing is checked. The observation and reconstruction of signal is also studied. Second, we present a method of extraction AE compressive feature (AECF) from compressively-sensed data directly. We demonstrate the energy preservation properties and the processing of the extracted AECF feature. We assess the running state of the bearing using the AECF trend. The AECF trend of the running state of rolling bearings is consistent with the trend of traditional features. Thus, the method is an effective way to evaluate the running trend of rolling bearings. The results of the experiments have verified that the signal processing and the condition assessment based on AECF is simpler, the amount of data required is smaller, and the amount of computation is greatly reduced.
Role of the array geometry in multi-bilayer hair cell sensors
NASA Astrophysics Data System (ADS)
Tamaddoni, Nima J.; Sarles, Stephen A.
2014-03-01
Recently, a bio-inspired, synthetic membrane-based hair cell sensor was fabricated and characterized. This sensor generates current in response to mechanical stimuli, such as airflow or free vibration, which perturb the sensor's hair. Vibration transferred from the hair to a lipid membrane (lipid bilayer) causes a voltage-dependent time rate of change in electrical capacitance of the membrane, which produces measurable current. Studies to date have been performed on systems containing only two droplets and a single bilayer, even though an array of multiple bilayers can be formed with more than 2 droplets. Thus, it is yet to be determined how multiple lipid bilayers affect the sensing response of a membrane-based hair cell sensor. In this work, we assemble serial droplet arrays with more than 1 bilayer to experimentally study the current generated by each membrane in response to perturbation of a single hair element. Two serial array configurations are studied: The first consists of a serial array of 3 bilayers formed using 4 droplets with the hair positioned in an end droplet. The second configuration consists of 3 droplets and 2 bilayers in series with the hair positioned in the central droplet. In serial arrays of up to four droplets, we observe that mechanotransduction of the hair's motion into a capacitive current occurs at every membrane, with bilayers positioned adjacent to the droplet containing the hair generating the largest sensing current. The measured currents suggest the total current generated by all bilayers in a 4-droplet, 3-bilaye array is greater than the current produced by a single-membrane sensor and similar in magnitude to the sum of currents output by 3, single-bilayer sensors operated independently. Moreover, we learned that bilayers positioned on the same side of the hair produce sensing currents that are in-phase, whereas bilayers positioned on opposite sides of the droplet containing the hair generate out-of-phase responses.
A miniature inexpensive, oxygen sensing element
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arenz, R.W.
1991-10-07
An exhaustive study was conducted to determine the feasibility of Nernst-type oxygen sensors based on ceramics containing Bi{sub 2}O{sub 3}. The basic sensor design consisted of a ceramic sensing module sealed into a metal tube. The module accommodated an internal heater and thermocouple. Thermal-expansion-matched metals, adhesives, and seals were researched and developed, consistent with sequential firings during sensor assembly. Significant effort was devoted to heater design/testing and to materials' compatibility with Pt electrodes. A systematic approach was taken to develop all sensor components which led to several design modifications. Prototype sensors were constructed and exhaustively tested. It is concluded thatmore » development of Nerst-type oxygen sensors based on Bi{sub 2}O{sub 3} will require much further effort and application of specialized technologies. However, during the course of this 3-year program much progress was reported in the literature on amperometric-type oxygen sensors, and a minor effort was devoted here to this type of sensor based on Bi{sub 2}O{sub 3}. These studies were made on Bi{sub 2}O{sub 3}-based ceramic samples in a multilayer-capacitor-type geometry and amperometric-type oxygen sensing was demonstrated at very low temperatures ({approximately} 160{degree}C). A central advantage here is that these types of sensors can be mass-produced very inexpensively ({approximately} 20--50 cents per unit). Research is needed, however, to develop an optimum diffusion-limiting barrier coating. In summary, the original goals of this program were not achieved due to unforeseen problems with Bi{sub 2}O{sub 3}-based Nernst sensors. However, a miniature amperometric sensor base on Bi{sub 2}O{sub 3} was demonstrated in this program, and it is now seen that this latter sensor is far superior to the originally proposed Nernst sensor. 6 refs., 24 figs.« less
Trotta, Edoardo
2016-05-17
The three stop codons UAA, UAG, and UGA signal the termination of mRNA translation. As a result of a mechanism that is not adequately understood, they are normally used with unequal frequencies. In this work, we showed that selective forces and mutational biases drive stop codon usage in the human genome. We found that, in respect to sense codons, stop codon usage was affected by stronger selective forces but was less influenced by neutral mutational biases. UGA is the most frequent termination codon in human genome. However, UAA was the preferred stop codon in genes with high breadth of expression, high level of expression, AT-rich coding sequences, housekeeping functions, and in gene ontology categories with the largest deviation from expected stop codon usage. Selective forces associated with the breadth and the level of expression favoured AT-rich sequences in the mRNA region including the stop site and its proximal 3'-UTR, but acted with scarce effects on sense codons, generating two regions, upstream and downstream of the stop codon, with strongly different base composition. By favouring low levels of GC-content, selection promoted labile local secondary structures at the stop site and its proximal 3'-UTR. The compositional and structural context favoured by selection was surprisingly emphasized in the class of ribosomal proteins and was consistent with sequence elements that increase the efficiency of translational termination. Stop codons were also heterogeneously distributed among chromosomes by a mechanism that was strongly correlated with the GC-content of coding sequences. In human genome, the nucleotide composition and the thermodynamic stability of stop codon site and its proximal 3'-UTR are correlated with the GC-content of coding sequences and with the breadth and the level of gene expression. In highly expressed genes stop codon usage is compositionally and structurally consistent with highly efficient translation termination signals.
Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation
Bilic, Benny; Belkin, Shimshon
2010-01-01
Genetically engineered microbial reporter strains are based upon the fusion of an inducible sensing element upstream of a reporting element, so that the construct emits a dose-dependent signal when exposed to the inducing compound(s) or stress factor(s). In this communication1 we described several general approaches undertaken in order to enhance the sensing performance of such promoter::reporter fusions. Significant improvements in detection sensitivity, response kinetics and signal intensity were achieved by modi fication of the length of the promoter-containing DNA fragment, by random or site-directed mutagenesis and by promoter duplication. The general nature of these genetics manipulations makes them applicable to other types of promoter::reporter fusions. PMID:21326942
NASA Technical Reports Server (NTRS)
Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid
2006-01-01
The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.
Angel, S.M.
1987-02-27
Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.
NASA Technical Reports Server (NTRS)
Lai, Steven H.-Y.
1992-01-01
A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.
Thundat, Thomas G.; Brown, Gilbert M.
2010-05-18
An electrochemical suspended element-based sensor system includes a solution cell for holding an electrolyte comprising solution including at least one electrochemically reducible or oxidizable species. A working electrode (WE), reference electrode (RE) and a counter electrode (CE) are disposed in the solution. The CE includes an asymmetric suspended element, wherein one side of the suspended element includes a metal or a highly doped semiconductor surface. The suspended element bends when current associated with reduction or oxidation of the electrochemically reducible or oxidizable species at the WE passes through the suspended element. At least one measurement system measures the bending of the suspended element or a parameter which is a function of the bending.
Zhang, Zhe; Tsukikawa, Mai; Peng, Min; Polyak, Erzsebet; Nakamaru-Ogiso, Eiko; Ostrovsky, Julian; McCormack, Shana; Place, Emily; Clarke, Colleen; Reiner, Gail; McCormick, Elizabeth; Rappaport, Eric; Haas, Richard; Baur, Joseph A.; Falk, Marni J.
2013-01-01
Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease. PMID:23894440
van Eldik, Willemijn M; Prinzie, Peter; Deković, Maja; de Haan, Amaranta D
2017-06-01
Ecological theories emphasize associations between children and elements within their family system, such as the marital relationship. Within a developmental perspective, we longitudinally examined (a) dynamic associations between marital stress and children's externalizing behavior, (b) mediation of these associations by parental sense of competence, and (c) the extent to which associations are similar for mothers and fathers. The sample consisted of 369 two-parent families (46.1% boys; Mage at Time 1 = 7.70 years; 368 mothers, 355 fathers). Marital stress related to having a child, children's externalizing behavior, and perceived parental competence were assessed three times across 8 years. Multigroup analyses were used to examine models for both parents simultaneously and test for similarity in associations across spouses. A bivariate latent growth model indicated positive associated change between marital stress and externalizing behavior, supporting the idea of codevelopment. The cross-lagged panel model revealed a reciprocal relation between marital stress and perceived parental competence across a time interval of 6 years. Additionally, two elicitation effects appeared during adolescence, showing that parents who reported higher externalizing problems in early adolescence reported more marital stress and a lower sense of competence two years later. Similar associations were found for mothers and fathers. Overall, this study indicates that marital stress and externalizing behavior codevelop over time and supports literature on developmental differences regarding interrelations between subsystems and individuals within the family system. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Distance education: strategies for maintaining relationships.
Hill, P
2000-09-01
Experience with Australian Aboriginal and Torres Strait Islander students in the Bachelor of Applied Health Science (BAppHSc) course suggests that one of the key elements for students is the sense of relationship built up through Problem Based Learning (PBL). Failure to retain students is more likely to be related to personal than academic concerns. The low attrition rate is largely attributed to the sense of community and support the course generates. In 1997, the Centre for Indigenous Health, Education and Research offered the BAppHSc to rural Queensland. Campuses were opened in the Torres Strait and Cairns, with 9 and 5 students respectively. The course consisted of PBL sessions, fixed resource sessions provided by local staff or guest lecturers, video-conferencing and the use of videos, or text. Face-to-face contact hours were concentrated into two blocks of one and two weeks respectively, plus one day per week. Course materials such as journal articles and texts were provided. The nine Torres students and three Cairns students completed the first semester. This paper discusses the differences between the centres and examines strategies for maintaining the sense of relationship in distance education settings. In 1999 applications from other remote areas are challenging the model further. Multiple technologies are envisaged and discussed. In addition, similar methods are being applied to post graduate courses and collaboration with other institutions in the Pacific suggested. This would allow cross crediting of such course-work into a range of courses and institutions, reducing duplication and increasing options.
α-Helical Structural Elements within the Voltage-Sensing Domains of a K+ Channel
Li-Smerin, Yingying; Hackos, David H.; Swartz, Kenton J.
2000-01-01
Voltage-gated K+ channels are tetramers with each subunit containing six (S1–S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5–S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1–S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K+ channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of α-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting α-helical secondary structure. In addition, both the S1–S2 and S3–S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain. PMID:10613917
1996-05-01
detection, catalysts for enhancing and controlling energetic reactions, synthesis of new compounds (e.g., narrow band-gap materials and non-linear...design for synthesis of advanced materials Fabricate porous lightweight and resilient structural materials with novel properties and uses Demonstrate...elements for 10 nm computer memory elements Demonstrate enhanced propellants and explosives with nanoparticle surface chemistry Demonstrate sensing of
ERIC Educational Resources Information Center
Schmidt, Hans-Jurgen; Baumgartner, Tim; Eybe, Holger
2003-01-01
Investigates secondary school students' concepts of isotopes and allotropes and how the concepts are linked to the Periodic Table of Elements (PTE). Questions senior high school students with multiple choice items and interviews. Shows that students actively tried to make sense of what they had experienced. (KHR)
Hawke, B.C.
1963-02-26
This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)
Bioinspired active whisker sensor for robotic vibrissal tactile sensing
NASA Astrophysics Data System (ADS)
Ju, Feng; Ling, Shih-Fu
2014-12-01
A whisker transducer (WT) inspired by rat’s vibrissal tactile perception is proposed based on a transduction matrix model characterizing the electro-mechanical transduction process in both forward and backward directions. It is capable of acting as an actuator to sweep the whisker and simultaneously as a sensor to sense the force, motion, and mechanical impedance at whisker tip. Its validity is confirmed by numerical simulation using a finite element model. A prototype is then fabricated and its transduction matrix is determined by parameter identification. The calibrated WT can accurately sense mechanical impedance which is directly related to stiffness, mass and damping. Subsequent vibrissal tactile sensing of sandpaper texture reveals that the real part of mechanical impedance sensed by WT is correlated with sandpaper roughness. Texture discrimination is successfully achieved by inputting the real part to a k-means clustering algorithm. The mechanical impedance sensing ability as well as other features of the WT such as simultaneous-actuation-and-sensing makes it a good solution to robotic tactile sensing.
Community Social and Place Predictors of Sense of Community: A Multilevel and Longitudinal Analysis
ERIC Educational Resources Information Center
Long, D. Adam; Perkins, Douglas D.
2007-01-01
Sense of community (SOC) is empirically "unpacked" as a multilevel construct with place and social elements. SOC has been studied primarily at the individual level despite researchers acknowledging its effects at the community level. Little attention has been given to the roles of place and place attitudes in SOC. We argue that place and…
An Appreciative Inquiry Exploring Game Sense Teaching in Physical Education
ERIC Educational Resources Information Center
Pill, Shane
2016-01-01
This paper reports on research framed as a strengths-based appreciative inquiry (AI) into the use of a game sense (GS) approach for sport and games teaching in physical education (PE). The aim of this research was to find the elements which sustain teachers in the use of a GS approach. This is particularly pertinent given strong advocacy for GS as…
ERIC Educational Resources Information Center
Lowrie, Tom; Diezmann, Carmel M.; Logan, Tracy
2012-01-01
Graphical tasks have become a prominent aspect of mathematics assessment. From a conceptual stance, the purpose of this study was to better understand the composition of graphical tasks commonly used to assess students' mathematics understandings. Through an iterative design, the investigation described the sense making of 11-12-year-olds as they…
Local involvement in measuring and governing carbon stocks in China, Vietnam, Indonesia and Laos
Michael Køie Poulsen
2013-01-01
An important element of MRV is to ensure accurate measurements of carbon stocks. Measuring trees on the ground may be needed for ground truthing of remote sensing results. It can also provide more accurate carbon stock monitoring than remote sensing alone. Local involvement in measuring trees for monitoring of carbon stocks may be advantageous in several ways....
NASA Astrophysics Data System (ADS)
DePew, K. A.; Ma, C.; Schiffbauer, J. D.; Wang, J.; Dong, B.; Lally, E.; Wang, A.
2012-12-01
The Center for Photonics Technology (CPT) at Virginia Tech is engaged in cutting edge research of fiber optic sensing technologies. One current research area is the design of fiber optic temperature sensors for harsh environments. Fiber optic temperature sensing offers significant advantages over electronic sensing in terms of size and insensitivity to harsh environmental conditions and electromagnetic interference. In the field, fiber optic thermometers have been used in recent snow cover studies as well as fluvial temperature profiling projects. The extended capabilities of CPT optical sensors open further possibilities for application in additional geologic realms requiring high temperature sensing in corrosive environments. Significant strides have been made in developing single-crystal sapphire based fiber optic sensing elements for high temperature environments which are otherwise difficult to instrument. Utilization of strain insensitive designs and optical sapphire materials allow for thermometers capable of operation above 1500°C with reduced sensitivity to chemical corrosion and mechanical interference. Current efforts in fabrication techniques are reducing the footprint of temperature sensors below the millimeter scale while maintaining high resolution and operating range. The FEI Helios 600 NanoLab workstation at the Virginia Tech Institute for Critical Technologies and Applied Science has been employed, providing the capabilities necessary to reduce the footprint of sensing elements to the dimensions of standard optical communication fiber using a Ga+ focused ion beam (FIB). The capability of semi-distributed multi-point sensing can also be accomplished at this scale using similar FIB milling techniques. The fiber optic thermometer designs resulting from these methods are compact, lightweight, and able to provide remote sensing without need for electrical power at the measurement point. These traits make them an ideal sensing platform for laboratory applications with minimal instrumentation egress as well as field deployment in areas where traditional electronic technologies cannot survive.
RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios.
Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan
2016-06-09
Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system's starting oscillation is determined, and the simulation results of the system's response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.
The Fate of Visible Features of Invisible Elements
Herzog, Michael H.; Otto, Thomas U.; Ögmen, Haluk
2012-01-01
To investigate the integration of features, we have developed a paradigm in which an element is rendered invisible by visual masking. Still, the features of the element are visible as part of other display elements presented at different locations and times (sequential metacontrast). In this sense, we can “transport” features non-retinotopically across space and time. The features of the invisible element integrate with features of other elements if and only if the elements belong to the same spatio-temporal group. The mechanisms of this kind of feature integration seem to be quite different from classical mechanisms proposed for feature binding. We propose that feature processing, binding, and integration occur concurrently during processes that group elements into wholes. PMID:22557985
Pervasive Sensing: Addressing the Heterogeneity Problem
NASA Astrophysics Data System (ADS)
O'Grady, Michael J.; Murdoch, Olga; Kroon, Barnard; Lillis, David; Carr, Dominic; Collier, Rem W.; O'Hare, Gregory M. P.
2013-06-01
Pervasive sensing is characterized by heterogeneity across a number of dimensions. This raises significant problems for those designing, implementing and deploying sensor networks, irrespective of application domain. Such problems include for example, issues of data provenance and integrity, security, and privacy amongst others. Thus engineering a network that is fit-for-purpose represents a significant challenge. In this paper, the issue of heterogeneity is explored from the perspective of those who seek to harness a pervasive sensing element in their applications. A initial solution is proposed based on the middleware construct.
Lee, Wang Wei; Kukreja, Sunil L.; Thakor, Nitish V.
2017-01-01
This paper presents a neuromorphic tactile encoding methodology that utilizes a temporally precise event-based representation of sensory signals. We introduce a novel concept where touch signals are characterized as patterns of millisecond precise binary events to denote pressure changes. This approach is amenable to a sparse signal representation and enables the extraction of relevant features from thousands of sensing elements with sub-millisecond temporal precision. We also proposed measures adopted from computational neuroscience to study the information content within the spiking representations of artificial tactile signals. Implemented on a state-of-the-art 4096 element tactile sensor array with 5.2 kHz sampling frequency, we demonstrate the classification of transient impact events while utilizing 20 times less communication bandwidth compared to frame based representations. Spiking sensor responses to a large library of contact conditions were also synthesized using finite element simulations, illustrating an 8-fold improvement in information content and a 4-fold reduction in classification latency when millisecond-precise temporal structures are available. Our research represents a significant advance, demonstrating that a neuromorphic spatiotemporal representation of touch is well suited to rapid identification of critical contact events, making it suitable for dynamic tactile sensing in robotic and prosthetic applications. PMID:28197065
An Experimental Optical Three-axis Tactile Sensor Featured with Hemispherical Surface
NASA Astrophysics Data System (ADS)
Ohka, Masahiro; Kobayashi, Hiroaki; Takata, Jumpei; Mitsuya, Yasunaga
We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force to mount on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the silicone rubber comprises one columnar feeler and eight conical feelers. The contact areas of the conical feelers, which maintain contact with the acrylic dome, detect the three-axis force applied to the tip of the sensing element. Normal and shearing forces are then calculated from integration and centroid displacement of the grayscale value derived from the conical feeler's contacts. To evaluate the present tactile sensor, we conducted a series of experiments using an x-z stage, a rotational stage, and a force gauge. Although we discovered that the relationship between the integrated grayscale value and normal force depends on the sensor's latitude on the hemispherical surface, it is easy to modify the sensitivity based on the latitude to make the centroid displacement of the grayscale value proportional to the shearing force. When we examined the repeatability of the present tactile sensor with 1,000 load/unload cycles, the error was 2%.
Wavefront Sensing Analysis of Grazing Incidence Optical Systems
NASA Technical Reports Server (NTRS)
Rohrbach, Scott; Saha, Timo
2012-01-01
Wavefront sensing is a process by which optical system errors are deduced from the aberrations in the image of an ideal source. The method has been used successfully in near-normal incidence, but not for grazing incidence systems. This innovation highlights the ability to examine out-of-focus images from grazing incidence telescopes (typically operating in the x-ray wavelengths, but integrated using optical wavelengths) and determine the lower-order deformations. This is important because as a metrology tool, this method would allow the integration of high angular resolution optics without the use of normal incidence interferometry, which requires direct access to the front surface of each mirror. Measuring the surface figure of mirror segments in a highly nested x-ray telescope mirror assembly is difficult due to the tight packing of elements and blockage of all but the innermost elements to normal incidence light. While this can be done on an individual basis in a metrology mount, once the element is installed and permanently bonded into the assembly, it is impossible to verify the figure of each element and ensure that the necessary imaging quality will be maintained. By examining on-axis images of an ideal point source, one can gauge the low-order figure errors of individual elements, even when integrated into an assembly. This technique is known as wavefront sensing (WFS). By shining collimated light down the optical axis of the telescope and looking at out-of-focus images, the blur due to low-order figure errors of individual elements can be seen, and the figure error necessary to produce that blur can be calculated. The method avoids the problem of requiring normal incidence access to the surface of each mirror segment. Mirror figure errors span a wide range of spatial frequencies, from the lowest-order bending to the highest order micro-roughness. While all of these can be measured in normal incidence, only the lowest-order contributors can be determined through this WFS technique.
High throughput microcantilever detector
Thundat, Thomas G.; Ferrell, Thomas L.; Hansen, Karolyn M.; Tian, Fang
2004-07-20
In an improved uncoated microcantilever detector, the sample sites are placed on a separate semi-conducting substrate and the microcantilever element detects and measures the changes before and after a chemical interaction or hybridization of the sites by sensing differences of phase angle between an alternating voltage applied to the microcantilever element and vibration of the microcantilever element. In another embodiment of the invention, multiple sample sites are on a sample array wherein an array of microcantilever elements detect and measure the change before and after chemical interactions or hybridizations of the sample sites.
Biomimetric sentinel reef structures for optical sensing and communications
NASA Astrophysics Data System (ADS)
Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor
2017-05-01
Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.
Whispering gallery mode resonators for rapid label-free biosensing in small volume droplets.
Wildgen, Sarah M; Dunn, Robert C
2015-03-23
Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection.
Detection of VX Simulants Using Piezoresistive Microcantilever Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Timothy L.; Venedam, Richard J.; Kyle, Kyle
2011-05-28
Piezoresistive microcantilever sensors may be used in a variety of sensing applications, including chemical analytes and some types of biological species. These sensors employ a tiny piezoresistive microcantilever functionalized with a “sensing material” that acts as a probe for the desired analyte. In this study, the microcantilever was partially embedded into the sensing material, producing a sensor element that is highly rigid and resistant to shock, making it suitable for portable or handheld operation. The sensing material matrix used was Hypol, a hydrogel capable of preserving the bio-functionality of molecules embedded into it. This matrix was combined with acetylcholinesterase tomore » form the finished sensing material. Results of exposing these sensors to a VX simulant, malathion, are presented for both vapor and liquid environments.« less
Secreting and sensing the same molecule allows cells to achieve versatile social behaviors
Youk, Hyun; Lim, Wendell A.
2014-01-01
Cells that secrete and sense the same signaling molecule are ubiquitous. To uncover the functional capabilities of the core ‘secrete-and-sense’ circuit motif shared by these cells, we engineered yeast to secrete and sense the mating pheromone. Perturbing each circuit element revealed parameters that control the degree to which the cell communicated with itself versus with its neighbors. This tunable interplay of self- and neighbor-communication enables cells to span a diverse repertoire of cellular behaviors. These include a cell being asocial by responding only to itself, social through quorum sensing and an isogenic population of cells splitting into social and asocial subpopulations. A mathematical model explained these behaviors. The versatility of the secrete-and-sense circuit motif may explain its recurrence across species. PMID:24503857
Chen, Zhichao; Solbach, Klaus; Erni, Daniel; Rennings, Andreas
2017-06-01
In this contribution, we investigate the [Formula: see text] distribution and coupling characteristics of a multichannel radio frequency (RF) coil consisting of different dipole coil elements for 7 T MRI, and explore the feasibility to achieve a compromise between field distribution and decoupling by combining different coil elements. Two types of dipole elements are considered here: the meander dipole element with a chip-capacitor-based connection to the RF shield which achieves a sufficient decoupling between the neighboring elements; and the open-ended meander dipole element which exhibits a broader magnetic field distribution. By nesting the open-ended dipole elements in between the ones with end-capacitors, the [Formula: see text] distribution, in terms of field penetration depth and homogeneity, is improved in comparison to the dipole coil consisting only of the elements with end-capacitors, and at the same time, the adjacent elements are less coupled to each other in comparison to the dipole coil consisting only of the open-ended elements. The proposed approach is validated by both full-wave simulation and experimental results.
Fiber-reinforced dielectric elastomer laminates with integrated function of actuating and sensing
NASA Astrophysics Data System (ADS)
Li, Tiefeng; Xie, Yuhan; Li, Chi; Yang, Xuxu; Jin, Yongbin; Liu, Junjie; Huang, Xiaoqiang
2015-04-01
The natural limbs of animals and insects integrate muscles, skins and neurons, providing both the actuating and sensing functions simultaneously. Inspired by the natural structure, we present a novel structure with integrated function of actuating and sensing with dielectric elastomer (DE) laminates. The structure can deform when subjected to high voltage loading and generate corresponding output signal in return. We investigate the basic physical phenomenon of dielectric elastomer experimentally. It is noted that when applying high voltage, the actuating dielectric elastomer membrane deforms and the sensing dielectric elastomer membrane changes the capacitance in return. Based on the concept, finite element method (FEM) simulation has been conducted to further investigate the electromechanical behavior of the structure.
NASA Astrophysics Data System (ADS)
Belwanshi, Vinod; Topkar, Anita
2016-05-01
Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Zhang, Z; Jain, V
2010-01-01
The continuing discovery of cancer biomarkers necessitates improved methods for their detection. Molecular imprinting using artificial materials provides an alternative to the detection of a wide range of substances. We applied surface molecular imprinting using self-assembled monolayers to design sensing elements for the detection of cancer biomarkers and other proteins. These elements consist of a gold-coated silicon chip onto which hydroxyl-terminated alkanethiol molecules and template biomolecule are co-adsorbed, where the thiol molecules are chemically bound to the metal substrate and self-assembled into highly ordered monolayers, the biomolecules can be removed, creating the foot-print cavities in the monolayer matrix for thismore » kind of template molecules. Re-adsorption of the biomolecules to the sensing chip changes its potential, which can be measured potentiometrically. We applied this method to the detection of carcinoembryonic antigen (CEA) in both solutions of purified CEA and in the culture medium of a CEA-producing human colon cancer cell line. The CEA assay, validated also against a standard immunoassay, was both sensitive (detection range 2.5-250 ng/mL) and specific (no cross-reactivity with hemoglobin; no response by a non-imprinted sensor). Similar results were obtained for human amylase. In addition, we detected virions of poliovirus in a specific manner (no cross-reactivity to adenovirus, no response by a non-imprinted sensor). Our findings demonstrate the application of the principles of molecular imprinting to the development of a new method for the detection of protein cancer biomarkers and to protein-based macromolecular structures such as the capsid of a virion. This approach has the potential of generating a general assay methodology that could be highly sensitive, specific, simple and likely inexpensive.« less
Subbotina, Julia; Yarov-Yarovoy, Vladimir; Lees-Miller, James; Durdagi, Serdar; Guo, Jiqing; Duff, Henry J; Noskov, Sergei Yu
2010-11-01
The hERG1 gene (Kv11.1) encodes a voltage-gated potassium channel. Mutations in this gene lead to one form of the Long QT Syndrome (LQTS) in humans. Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel have been a key target in molecular cardiology and pharmacology for the last decade. Although many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all transmembrane segments. We tested a template-driven de-novo design with ROSETTA-membrane modeling using side-chain placements optimized by subsequent molecular dynamics (MD) simulations. Although backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2-Kv2.1 chimera channels, the missing parts are modeled de-novo. The impact of several alignments on the structure of the S4 helix in the voltage-sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include salt bridges and close contacts in the voltage-sensor domain; and the topology of the extracellular S5-pore linker compared with that established by toxin foot-printing and nuclear magnetic resonance studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed. © 2010 Wiley-Liss, Inc.
An independently addressable microbiosensor array: what are the limits of sensing element density?
Yu, P; Wilson, G S
2000-01-01
A microdisc sensor array, prepared by thin film technology, has been used as a model for miniaturized multi-functional biosensors. It consists of a series of wells, 20 microns in diameter, possessing a 1000 A Pt layer at the bottom that serves as the indicating electrode. The depth of the wells ranged from 2.3-24 microns, depending on the photoresist employed and the spinning speed used to coat the electrode interconnect grid. Ten such wells were arranged in a circular array within an area of radius 130 microns. The center to center distance between any two of the discs ranged from 30 to 155 microns. Each disc is connected by a conductive film line to corresponding pads on the side of the sensor chip. A cylinder placed on top of the chip array formed the electrochemical cell into which a common reference and counter electrode were placed. The reference electrode was operated at ground potential. Prior to the evaluation of enzyme sensors, an assessment of "chemical cross-talk", the perturbation of sensor response resulting from the overlap of proximal diffusion layers, was made using Fe(CN)6(4-). The preliminary conclusion is that the sensing elements probably must be separated by about 100 microns in order to avoid interference from adjacent sensors. A technique was developed for the precision delivery of enzyme and cross-linking agent to the 2.3 microns cavity, having a capacity of 4 pL. This procedure makes possible the preparation of sensor arrays capable of detecting different analytes by employing different enzymes. The sensors gave reasonably rapid (2-4 s) response with linearity (up to about 10 mM. However, the sensors in the center of the array clearly showed the effects of depletion of substrates by the surrounding sensors.
Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro
2013-02-01
In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.
Strengthening sense of coherence: opportunities for theory building in health promotion.
Super, S; Wagemakers, M A E; Picavet, H S J; Verkooijen, K T; Koelen, M A
2016-12-01
Sense of coherence (SOC) reflects a coping capacity of people to deal with everyday life stressors and consists of three elements: comprehensibility, manageability and meaningfulness. SOC is often considered to be a stable entity that is developed in young adulthood and stabilizes around the age of 30. Recent studies have questioned this stability of SOC and some studies report on interventions that have been successful in strengthening SOC in adult populations. Currently, however, there is no clear understanding of the mechanisms underlying SOC. As a consequence, it is a challenge to determine what is needed in health promotion activities to strengthen SOC. This article aims to explore the mechanisms underlying SOC as these insights may underpin future health promotion efforts. An exploration of the salutogenic model suggests two important mechanisms: the behavioural and the perceptual. The behavioural mechanism highlights the possibility to empower people to use their resources in stressful situations. The perceptual mechanism suggests that, in order for people to deal with life stressors, it is essential that they are able to reflect on their understanding of the stressful situation and the resources that are available. Based on these mechanisms, we suggest that both empowerment and reflection processes, which are interdependent, may be relevant for health promotion activities that aim to strengthen SOC. The successful application of resources to deal with stressors is not only likely to have a positive influence on health, but also creates consistent and meaningful life experiences that can positively reinforce SOC levels. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A cavity radiometer for Earth albedo measurement, phase 1
NASA Technical Reports Server (NTRS)
1987-01-01
Radiometric measurements of the directional albedo of the Earth requires a detector with a flat response from 0.2 to 50 microns, a response time of about 2 seconds, a sensitivity of the order of 0.02 mw/sq cm, and a measurement uncertainty of less than 5 percent. Absolute cavity radiometers easily meet the spectral response and accuracy requirements for Earth albedo measurements, but the radiometers available today lack the necessary sensitivity and response time. The specific innovations addressed were the development of a very low thermal mass cavity and printed/deposited thermocouple sensing elements which were incorporated into the radiometer design to produce a sensitive, fast response, absolute radiometer. The cavity is applicable to the measurement of the reflected and radiated fluxes from the Earth surface and lower atmosphere from low Earth orbit satellites. The effort consisted of requirements and thermal analysis; design, construction, and test of prototype elements of the black cavity and sensor elements to show proof-of-concept. The results obtained indicate that a black body cavity sensor that has inherently a flat response from 0.2 to 50 microns can be produced which has a sensitivity of at least 0.02 mw/sq cm per micro volt ouput and with a time constant of less than two seconds. Additional work is required to develop the required thermopile.
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.
1993-01-01
A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.
Automatic archaeological feature extraction from satellite VHR images
NASA Astrophysics Data System (ADS)
Jahjah, Munzer; Ulivieri, Carlo
2010-05-01
Archaeological applications need a methodological approach on a variable scale able to satisfy the intra-site (excavation) and the inter-site (survey, environmental research). The increased availability of high resolution and micro-scale data has substantially favoured archaeological applications and the consequent use of GIS platforms for reconstruction of archaeological landscapes based on remotely sensed data. Feature extraction of multispectral remotely sensing image is an important task before any further processing. High resolution remote sensing data, especially panchromatic, is an important input for the analysis of various types of image characteristics; it plays an important role in the visual systems for recognition and interpretation of given data. The methods proposed rely on an object-oriented approach based on a theory for the analysis of spatial structures called mathematical morphology. The term "morphology" stems from the fact that it aims at analysing object shapes and forms. It is mathematical in the sense that the analysis is based on the set theory, integral geometry, and lattice algebra. Mathematical morphology has proven to be a powerful image analysis technique; two-dimensional grey tone images are seen as three-dimensional sets by associating each image pixel with an elevation proportional to its intensity level. An object of known shape and size, called the structuring element, is then used to investigate the morphology of the input set. This is achieved by positioning the origin of the structuring element to every possible position of the space and testing, for each position, whether the structuring element either is included or has a nonempty intersection with the studied set. The shape and size of the structuring element must be selected according to the morphology of the searched image structures. Other two feature extraction techniques were used, eCognition and ENVI module SW, in order to compare the results. These techniques were applied to different archaeological sites in Turkmenistan (Nisa) and in Iraq (Babylon); a further change detection analysis was applied to the Babylon site using two HR images as a pre-post second gulf war. We had different results or outputs, taking into consideration the fact that the operative scale of sensed data determines the final result of the elaboration and the output of the information quality, because each of them was sensitive to specific shapes in each input image, we had mapped linear and nonlinear objects, updating archaeological cartography, automatic change detection analysis for the Babylon site. The discussion of these techniques has the objective to provide the archaeological team with new instruments for the orientation and the planning of a remote sensing application.
ERIC Educational Resources Information Center
Culum, Bojana; Forcic, Gordana
2008-01-01
Volunteering is one of the strongest elements of shaping democratic change within the society. It is also an essential element in citizenship development and in re-establishing a sense of community. Volunteering empowers individuals, builds solidarity, encourages participation and protects vulnerable groups against social and economic…
ERIC Educational Resources Information Center
Baldwin, Thomas F.
Man seems unable to retain different information from different senses or channels simultaneously; one channel gains full attention. However, it is hypothesized that if the message elements arriving simultaneously from audio and visual channels are redundant, man will retain the information. An attempt was made to measure redundancy in the audio…
2012-06-12
Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine . Anal. Chem. 2007, 79, 2583–2587...biosensor with aptamers as bio-recognition element. Sensors 2010, 10, 5859–5871. Sensors 2012, 12 8144 14. Hernandez, F.J.; Ozalp, V.C. Graphene
NASA Astrophysics Data System (ADS)
Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.
2011-04-01
Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μ strain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades, either embedded in the concrete or attached to the surface of the structure. They must ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Based on the European guide FD CEN/TR 14748 "Non-destructive testing - Methodology for qualification of non-destructive tests", a qualification method was developed. Tests were carried out using various sensing cables embedded in the volume or fixed to the surface of plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument, while mechanical solicitations were imposed to the concrete element. Preliminary experiments seem very promising since measurements performed with distributed sensing systems are found comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.
Method and apparatus for sensing the natural frequency of a cantilevered body
Duncan, Michael G.
2000-01-01
A method and apparatus for measuring the natural resonant frequency of a spring element by monitoring a phase difference between an output signal from the spring element and an input signal to the spring element and by adjusting frequency of the input signal until a detected phase difference signals that the natural resonant frequency has been reached. The method and apparatus are applied to a micro-cantilevered elements used to measure gas compositions and concentrations. Such elements are provided with coatings that absorb gas to cause deflections and changes in the mass or spring constant of the cantilevered element. These changes correspond to changes in the natural resonant frequency of the cantilevered element which are measured using the method and apparatus described herein.
Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program
NASA Technical Reports Server (NTRS)
Peri, Frank; Volz, Stephen
2013-01-01
NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.
A Multi-Disciplinary Approach to Remote Sensing through Low-Cost UAVs.
Calvario, Gabriela; Sierra, Basilio; Alarcón, Teresa E; Hernandez, Carmen; Dalmau, Oscar
2017-06-16
The use of Unmanned Aerial Vehicles (UAVs) based on remote sensing has generated low cost monitoring, since the data can be acquired quickly and easily. This paper reports the experience related to agave crop analysis with a low cost UAV. The data were processed by traditional photogrammetric flow and data extraction techniques were applied to extract new layers and separate the agave plants from weeds and other elements of the environment. Our proposal combines elements of photogrammetry, computer vision, data mining, geomatics and computer science. This fusion leads to very interesting results in agave control. This paper aims to demonstrate the potential of UAV monitoring in agave crops and the importance of information processing with reliable data flow.
A Multi-Disciplinary Approach to Remote Sensing through Low-Cost UAVs
Calvario, Gabriela; Sierra, Basilio; Alarcón, Teresa E.; Hernandez, Carmen; Dalmau, Oscar
2017-01-01
The use of Unmanned Aerial Vehicles (UAVs) based on remote sensing has generated low cost monitoring, since the data can be acquired quickly and easily. This paper reports the experience related to agave crop analysis with a low cost UAV. The data were processed by traditional photogrammetric flow and data extraction techniques were applied to extract new layers and separate the agave plants from weeds and other elements of the environment. Our proposal combines elements of photogrammetry, computer vision, data mining, geomatics and computer science. This fusion leads to very interesting results in agave control. This paper aims to demonstrate the potential of UAV monitoring in agave crops and the importance of information processing with reliable data flow. PMID:28621740
Main sequence models for massive zero-metal stars
NASA Technical Reports Server (NTRS)
Cary, N.
1974-01-01
Zero-age main-sequence models for stars of 20, 10, 5, and 2 solar masses with no heavy elements are constructed for three different possible primordial helium abundances: Y=0.00, Y=0.23, and Y=0.30. The latter two values of Y bracket the range of primordial helium abundances cited by Wagoner. With the exceptions of the two 20 solar mass models that contain helium, these models are found to be self-consistent in the sense that the formation of carbon through the triple-alpha process during premain sequence contraction is not sufficient to bring the CN cycle into competition with the proton-proton chain on the ZAMS. The zero-metal models of the present study have higher surface and central temperatures, higher central densities, smaller radii, and smaller convective cores than do the population I models with the same masses.
Chronically implanted pressure sensors: challenges and state of the field.
Yu, Lawrence; Kim, Brian J; Meng, Ellis
2014-10-31
Several conditions and diseases are linked to the elevation or depression of internal pressures from a healthy, normal range, motivating the need for chronic implantable pressure sensors. A simple implantable pressure transduction system consists of a pressure-sensing element with a method to transmit the data to an external unit. The biological environment presents a host of engineering issues that must be considered for long term monitoring. Therefore, the design of such systems must carefully consider interactions between the implanted system and the body, including biocompatibility, surgical placement, and patient comfort. Here we review research developments on implantable sensors for chronic pressure monitoring within the body, focusing on general design requirements for implantable pressure sensors as well as specifications for different medical applications. We also discuss recent efforts to address biocompatibility, efficient telemetry, and drift management, and explore emerging trends.
Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Haizi; Tu, Wanli; Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com
2015-04-07
We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in amore » higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.« less
CFD Modeling of Chamber Filling in a Micro-Biosensor for Protein Detection
Islamov, Meiirbek; Sypabekova, Marzhan; Kanayeva, Damira; Rojas-Solórzano, Luis
2017-01-01
Tuberculosis (TB) remains one of the main causes of human death around the globe. The mortality rate for patients infected with active TB goes beyond 50% when not diagnosed. Rapid and accurate diagnostics coupled with further prompt treatment of the disease is the cornerstone for controlling TB outbreaks. To reduce this burden, the existing gap between detection and treatment must be addressed, and dedicated diagnostic tools such as biosensors should be developed. A biosensor is a sensing micro-device that consists of a biological sensing element and a transducer part to produce signals in proportion to quantitative information about the binding event. The micro-biosensor cell considered in this investigation is designed to operate based on aptamers as recognition elements against Mycobacterium tuberculosis secreted protein MPT64, combined in a microfluidic-chamber with inlet and outlet connections. The microfluidic cell is a miniaturized platform with valuable advantages such as low cost of analysis with low reagent consumption, reduced sample volume, and shortened processing time with enhanced analytical capability. The main purpose of this study is to assess the flooding characteristics of the encapsulated microfluidic cell of an existing micro-biosensor using Computational Fluid Dynamics (CFD) techniques. The main challenge in the design of the microfluidic cell lies in the extraction of entrained air bubbles, which may remain after the filling process is completed, dramatically affecting the performance of the sensing element. In this work, a CFD model was developed on the platform ANSYS-CFX using the finite volume method to discretize the domain and solving the Navier–Stokes equations for both air and water in a Eulerian framework. Second-order space discretization scheme and second-order Euler Backward time discretization were used in the numerical treatment of the equations. For a given inlet–outlet diameter and dimensions of an in-house built cell chamber, different inlet liquid flow rates were explored to determine an appropriate flow condition to guarantee an effective venting of the air while filling the chamber. The numerical model depicted free surface waves as promoters of air entrainment that ultimately may explain the significant amount of air content in the chamber observed in preliminary tests after the filling process is completed. Results demonstrated that for the present design, against the intuition, the chamber must be filled with liquid at a modest flow rate to minimize free surface waviness during the flooding stage of the chamber. PMID:28972568
CFD Modeling of Chamber Filling in a Micro-Biosensor for Protein Detection.
Islamov, Meiirbek; Sypabekova, Marzhan; Kanayeva, Damira; Rojas-Solórzano, Luis
2017-10-03
Tuberculosis (TB) remains one of the main causes of human death around the globe. The mortality rate for patients infected with active TB goes beyond 50% when not diagnosed. Rapid and accurate diagnostics coupled with further prompt treatment of the disease is the cornerstone for controlling TB outbreaks. To reduce this burden, the existing gap between detection and treatment must be addressed, and dedicated diagnostic tools such as biosensors should be developed. A biosensor is a sensing micro-device that consists of a biological sensing element and a transducer part to produce signals in proportion to quantitative information about the binding event. The micro-biosensor cell considered in this investigation is designed to operate based on aptamers as recognition elements against Mycobacterium tuberculosis secreted protein MPT64, combined in a microfluidic-chamber with inlet and outlet connections. The microfluidic cell is a miniaturized platform with valuable advantages such as low cost of analysis with low reagent consumption, reduced sample volume, and shortened processing time with enhanced analytical capability. The main purpose of this study is to assess the flooding characteristics of the encapsulated microfluidic cell of an existing micro-biosensor using Computational Fluid Dynamics (CFD) techniques. The main challenge in the design of the microfluidic cell lies in the extraction of entrained air bubbles, which may remain after the filling process is completed, dramatically affecting the performance of the sensing element. In this work, a CFD model was developed on the platform ANSYS-CFX using the finite volume method to discretize the domain and solving the Navier-Stokes equations for both air and water in a Eulerian framework. Second-order space discretization scheme and second-order Euler Backward time discretization were used in the numerical treatment of the equations. For a given inlet-outlet diameter and dimensions of an in-house built cell chamber, different inlet liquid flow rates were explored to determine an appropriate flow condition to guarantee an effective venting of the air while filling the chamber. The numerical model depicted free surface waves as promoters of air entrainment that ultimately may explain the significant amount of air content in the chamber observed in preliminary tests after the filling process is completed. Results demonstrated that for the present design, against the intuition, the chamber must be filled with liquid at a modest flow rate to minimize free surface waviness during the flooding stage of the chamber.
Finite elements based on consistently assumed stresses and displacements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1985-01-01
Finite element stiffness matrices are derived using an extended Hellinger-Reissner principle in which internal displacements are added to serve as Lagrange multipliers to introduce the equilibrium constraint in each element. In a consistent formulation the assumed stresses are initially unconstrained and complete polynomials and the total displacements are also complete such that the corresponding strains are complete in the same order as the stresses. Several examples indicate that resulting properties for elements constructed by this consistent formulation are ideal and are less sensitive to distortions of element geometries. The method has been used to find the optimal stress terms for plane elements, 3-D solids, axisymmetric solids, and plate bending elements.
NASA Astrophysics Data System (ADS)
Press, J.; Broughton, J.; Kudela, R. M.
2014-12-01
Suspended and dissolved trace elements are key determinants of water quality in estuarine and coastal waters. High concentrations of trace element pollutants in the San Francisco Bay estuary necessitate consistent and thorough monitoring to mitigate adverse effects on biological systems and the contamination of water and food resources. Although existing monitoring programs collect annual in situ samples from fixed locations, models proposed by Benoit, Kudela, & Flegal (2010) enable calculation of the water column total concentration (WCT) and the water column dissolved concentration (WCD) of 14 trace elements in the San Francisco Bay from a more frequently sampled metric—suspended solids concentration (SSC). This study tests the application of these models with SSC calculated from remote sensing data, with the aim of validating a tool for continuous synoptic monitoring of trace elements in the San Francisco Bay. Using HICO imagery, semi-analytical and empirical SSC algorithms were tested against a USGS dataset. A single-band method with statistically significant linear fit (p < 0.001) was chosen as the proxy for SSC values. The numerical models for WCT and the distribution ratio D were applied in MATLAB with terms to account for regional and seasonal effects, and results were used to calculate WCD. The modeled results were assessed against in situ data from the San Francisco Estuary Regional Monitoring Program. Quantile regression was used to evaluate model sensitivity to the distribution of regions, and outliers displaying regional aberrations were removed before robust regression was applied. Statistically significant and highly correlated results for WCT were found for 10 elements, with goodness of fit greater than or equal to that of the original models of seven elements. WCD was successfully modeled for six elements, with goodness of fit for each exceeding that of the original models. Concentrations of Arsenic, Iron, and Lead in the southern region of the Bay were found to exceed EPA water quality criteria for human health and aquatic life. The results of this study demonstrate the potential of monitoring programs using remote observation of trace element concentrations, and provide the foundation for investigation of pollutant sources and pathways over time.
Architecture for distributed actuation and sensing using smart piezoelectric elements
NASA Astrophysics Data System (ADS)
Etienne-Cummings, Ralph; Pourboghrat, Farzad; Maruboyina, Hari K.; Abrate, Serge; Dhali, Shirshak K.
1998-07-01
We discuss vibration control of a cantilevered plate with multiple sensors and actuators. An architecture is chosen to minimize the number of control and sensing wires required. A custom VLSI chip, integrated with the sensor/actuator elements, controls the local behavior of the plate. All the actuators are addressed in parallel; local decode logic selects which actuator is stimulated. Downloaded binary data controls the applied voltage and modulation frequency for each actuator, and High Voltage MOSFETs are used to activate them. The sensors, which are independent adjacent piezoelectric ceramic elements, can be accessed in a random or sequential manner. An A/D card and GPIB interconnected test equipment allow a PC to read the sensors' outputs and dictate the actuation procedure. A visual programming environment is used to integrate the sensors, controller and actuators. Based on the constitutive relations for the piezoelectric material, simple models for the sensors and actuators are derived. A two level hierarchical robust controller is derived for motion control and for damping of vibrations.
Fais, Silvana; Casula, Giuseppe; Cuccuru, Francesco; Ligas, Paola; Bianchi, Maria Giovanna
2018-03-12
In the following we present a new non-invasive methodology aimed at the diagnosis of stone building materials used in historical buildings and architectural elements. This methodology consists of the integrated sequential application of in situ proximal sensing methodologies such as the 3D Terrestrial Laser Scanner for the 3D modelling of investigated objects together with laboratory and in situ non-invasive multi-techniques acoustic data, preceded by an accurate petrographical study of the investigated stone materials by optical and scanning electron microscopy. The increasing necessity to integrate different types of techniques in the safeguard of the Cultural Heritage is the result of the following two interdependent factors: 1) The diagnostic process on the building stone materials of monuments is increasingly focused on difficult targets in critical situations. In these cases, the diagnosis using only one type of non-invasive technique may not be sufficient to investigate the conservation status of the stone materials of the superficial and inner parts of the studied structures 2) Recent technological and scientific developments in the field of non-invasive diagnostic techniques for different types of materials favors and supports the acquisition, processing and interpretation of huge multidisciplinary datasets.
Parametric investigation of scalable tactile sensors
NASA Astrophysics Data System (ADS)
Saadatzi, Mohammad Nasser; Yang, Zhong; Baptist, Joshua R.; Sahasrabuddhe, Ritvij R.; Wijayasinghe, Indika B.; Popa, Dan O.
2017-05-01
In the near future, robots and humans will share the same environment and perform tasks cooperatively. For intuitive, safe, and reliable physical human-robot interaction (pHRI), sensorized robot skins for tactile measurements of contact are necessary. In a previous study, we presented skins consisting of strain gauge arrays encased in silicone encapsulants. Although these structures could measure normal forces applied directly onto the sensing elements, they also exhibited blind spots and response asymmetry to certain loading patterns. This study presents a parametric investigation of piezoresistive polymeric strain gauge that exhibits a symmetric omniaxial response thanks to its novel star-shaped structure. This strain gauge relies on the use of gold micro-patterned star-shaped structures with a thin layer of PEDOT:PSS which is a flexible polymer with piezoresistive properties. In this paper, the sensor is first modeled and comprehensively analyzed in the finite-element simulation environment COMSOL. Simulations include stress-strain loading for a variety of structure parameters such as gauge lengths, widths, and spacing, as well as multiple load locations relative to the gauge. Subsequently, sensors with optimized configurations obtained through simulations were fabricated using cleanroom photolithographic and spin-coating processes, and then experimentally tested. Results show a trend-wise agreement between experiments and simulations.
VICTORIA-92 pretest analyses of PHEBUS-FPT0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bixler, N.E.; Erickson, C.M.
FPT0 is the first of six tests that are scheduled to be conducted in an experimental reactor in Cadarache, France. The test apparatus consists of an in-pile fuel bundle, an upper plenum, a hot leg, a steam generator, a cold leg, and a small containment. Thus, the test is integral in the sense that it attempts to simulate all of the processes that would be operative in a severe nuclear accident. In FPT0, the fuel will be trace irradiated; in subsequent tests high burn-up fuel will be used. This report discusses separate pretest analyses of the FPT0 fuel bundle andmore » primary circuit have been conducted using the USNRC`s source term code, VICTORIA-92. Predictions for release of fission product, control rod, and structural elements from the test section are compared with those given by CORSOR-M. In general, the releases predicted by VICTORIA-92 occur earlier than those predicted by CORSOR-M. The other notable difference is that U release is predicted to be on a par with that of the control rod elements; CORSOR-M predicts U release to be about 2 orders of magnitude greater.« less
A rare polyglycine type II-like helix motif in naturally occurring proteins.
Warkentin, Eberhard; Weidenweber, Sina; Schühle, Karola; Demmer, Ulrike; Heider, Johann; Ermler, Ulrich
2017-11-01
Common structural elements in proteins such as α-helices or β-sheets are characterized by uniformly repeating, energetically favorable main chain conformations which additionally exhibit a completely saturated hydrogen-bonding network of the main chain NH and CO groups. Although polyproline or polyglycine type II helices (PP II or PG II ) are frequently found in proteins, they are not considered as equivalent secondary structure elements because they do not form a similar self-contained hydrogen-bonding network of the main chain atoms. In this context our finding of an unusual motif of glycine-rich PG II -like helices in the structure of the acetophenone carboxylase core complex is of relevance. These PG II -like helices form hexagonal bundles which appear to fulfill the criterion of a (largely) saturated hydrogen-bonding network of the main-chain groups and therefore may be regarded in this sense as a new secondary structure element. It consists of a central PG II -like helix surrounded by six nearly parallel PG II -like helices in a hexagonal array, plus an additional PG II -like helix extending the array outwards. Very related structural elements have previously been found in synthetic polyglycine fibers. In both cases, all main chain NH and CO groups of the central PG II -helix are saturated by either intra- or intermolecular hydrogen-bonds, resulting in a self-contained hydrogen-bonding network. Similar, but incomplete PG II -helix patterns were also previously identified in a GTP-binding protein and an antifreeze protein. © 2017 Wiley Periodicals, Inc.
Land remote sensing in the 1980's
NASA Technical Reports Server (NTRS)
Thome, P. G.
1982-01-01
A discussion is presented concerning U.S. governmental funding policy for the Land Remote Sensing programs, in which the Landsat spacecraft and the research and development activities associated with them are essential elements. Even if present program management practices were to be changed in the next 1-2 years, the investment of significant amounts of private capital in land remote sensing may be 3-5 years away, due to the immaturity of the prospective markets for the services rendered and the present state of technological development. It is judged that even if NASA is successful in bringing significant private investment into remote sensing activities by the mid-1980s, government must continue to support basic research and expensive technology development in long term and high risk, but potentially high payoff, areas which the still-developing remote sensing industry cannot afford.
Lithium tri borate (LiB3O5) embedded polymer electret for mechanical sensing application
NASA Astrophysics Data System (ADS)
Murugan, S.; Praveen, E.; Prasad, M. V. N.; Jayakumar, K.
2017-05-01
Lithium tri borate (LiB3O5) particles were synthesized by precipitation assisted high temperature solid state reaction. The particles were embedded in chitosan polymer and used as an electret. This electret was characterized for the suitability as a sensing element in vibration accelerometer. It is observed that LiB3O5 embedded electret exhibiting piezoelectric property. The electret is also giving an isolation of > 999 MΩ at 100 Vdc, 250 Vdc, 500 Vdc and 1kVdc confirms compatible for intrinsically safe sensing alternative in vibration accelerometer.
NASA Technical Reports Server (NTRS)
Anderson, C. M.; Noor, A. K.
1975-01-01
Computerized symbolic integration was used in conjunction with group-theoretic techniques to obtain analytic expressions for the stiffness, geometric stiffness, consistent mass, and consistent load matrices of composite shallow shell structural elements. The elements are shear flexible and have variable curvature. A stiffness (displacement) formulation was used with the fundamental unknowns consisting of both the displacement and rotation components of the reference surface of the shell. The triangular elements have six and ten nodes; the quadrilateral elements have four and eight nodes and can have internal degrees of freedom associated with displacement modes which vanish along the edges of the element (bubble modes). The stiffness, geometric stiffness, consistent mass, and consistent load coefficients are expressed as linear combinations of integrals (over the element domain) whose integrands are products of shape functions and their derivatives. The evaluation of the elemental matrices is divided into two separate problems - determination of the coefficients in the linear combination and evaluation of the integrals. The integrals are performed symbolically by using the symbolic-and-algebraic-manipulation language MACSYMA. The efficiency of using symbolic integration in the element development is demonstrated by comparing the number of floating-point arithmetic operations required in this approach with those required by a commonly used numerical quadrature technique.
Interpretation of remotely sensed data and its applications in oceanography
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Tanaka, K.; Inostroza, H. M.; Verdesio, J. J.
1982-01-01
The methodology of interpretation of remote sensing data and its oceanographic applications are described. The elements of image interpretation for different types of sensors are discussed. The sensors utilized are the multispectral scanner of LANDSAT, and the thermal infrared of NOAA and geostationary satellites. Visual and automatic data interpretation in studies of pollution, the Brazil current system, and upwelling along the southeastern Brazilian coast are compared.
Stochastic detection of enantiomers.
Kang, Xiao-Feng; Cheley, Stephen; Guan, Xiyun; Bayley, Hagan
2006-08-23
The rapid quantification of the enantiomers of small chiral molecules is very important, notably in pharmacology. Here, we show that the enantiomers of drug molecules can be distinguished by stochastic sensing, a single-molecule detection technique. The sensing element is an engineered alpha-hemolysin protein pore, fitted with a beta-cyclodextrin adapter. By using the approach, the enantiomeric composition of samples of ibuprofen and thalidomide can be determined in less than 1 s.
Historical Analysis of Population Reactions to Stimuli - Case Studies of Papua and Papua New Guinea
2005-07-01
reduced by the modernisation and urbanisation of some elements of the population. However, there are still very traditional tribal and “untouched...colonialisation and introduction of Europeans to the island. Urbanisation (sense of nationalism) The movement of people from traditional village locations and...forces on the island during WWII and incorporates the colonisation and introduction of Europeans to the island. Urbanisation (sense of nationalism
Eddy-Current Non-Inertial Displacement Sensing for Underwater Infrasound Measurements
2011-05-01
Eddy-current non-inertial displacement sensing for underwater infrasound measurements Dimitri M. Donskoy Stevens Institute of Technology, 711 Hudson...geophysicists have an ongoing interest in exploring underwater acous- tic processes at infrasound frequencies, for example, for monitoring natural events...underwater infrasound measurements 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f
RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios
Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan
2016-01-01
Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured. PMID:27294928
Kolb, Florian; Schmoltner, Kerstin; Huth, Michael; Hohenau, Andreas; Krenn, Joachim; Klug, Andreas; List, Emil J W; Plank, Harald
2013-08-02
The development of simple gas sensing concepts is still of great interest for science and technology. The demands on an ideal device would be a single-step fabrication method providing a device which is sensitive, analyte-selective, quantitative, and reversible without special operating/reformation conditions such as high temperatures or special environments. In this study we demonstrate a new gas sensing concept based on a nanosized PtC metal-matrix system fabricated in a single step via focused electron beam induced deposition (FEBID). The sensors react selectively on polar H2O molecules quantitatively and reversibly without any special reformation conditions after detection events, whereas non-polar species (O2, CO2, N2) produce no response. The key elements are isolated Pt nanograins (2-3 nm) which are embedded in a dielectric carbon matrix. The electrical transport in such materials is based on tunneling effects in the correlated variable range hopping regime, where the dielectric carbon matrix screens the electric field between the particles, which governs the final conductivity. The specific change of these dielectric properties by the physisorption of polar gas molecules (H2O) can change the tunneling probability and thus the overall conductivity, allowing their application as a simple and straightforward sensing concept.
California Community Colleges. Instructions for Reporting Courses on Data Collection Form CCC-456.
ERIC Educational Resources Information Center
California Community Colleges, Sacramento.
This set of descriptive instructions explains and defines each of the 19 elements of the Chancellor's Office Course Reporting and Data Collection Form (CCC-456), with the intent of providing the completer with a sense of the philosophical basis of the element. CCC-456 requires such basic information as the course title, semester units, college…
Using Works of Art to Give a Voice to Culturally Diverse Students: Q-Methodology Study
ERIC Educational Resources Information Center
Beck, Paula D.
2017-01-01
The current study by Beck (2014) investigated whether any relationship exists between a cross-section of 48 fourth-grade elementary-school students and their artistic judgments regarding the seven elements of art: color, form, line, shape, space, texture, and value. Each of these elements of art affects our senses and might offer a better…
Patients' recovery experiences of indoor plants and viewsof nature in a rehabilitation center.
Raanaas, Ruth Kjærsti; Patil, Grete; Alve, Grete
2015-01-01
There is an increasing interest in the possible healing factors connected to the presence of nature elements in health institutions. The aim of the present study is to get a deeper understanding of how residents in a residential rehabilitation center experience the views through windows and the indoor plants, and whether and how the view and the plants can impact their recovery process. In-depth individual and group interviews were conducted among 16 residents at a rehabilitation center in Norway. The participants said that the indoor plants and the view of nature were pleasant to look at and elicited feelings of relaxation and positive emotions which contributed to opportunities for reflection and contemplation. They expressed a feeling of connectedness to nature: a feeling of wholeness and spirituality elicited by the nature elements. They also expressed that the presence of nature elements contributed to a sense of being taken care of. The nature elements, such as a view of nature or indoor plants, seem to enhance opportunities for reflection, feelings of meaningfulness and sense of being taken care of which may strengthen their feeling of well-being and make them more resilient to the stressors in life.
USDA-ARS?s Scientific Manuscript database
Remote sensing systems based on consumer-grade cameras have been increasingly used in scientific research and remote sensing applications because of their low cost and ease of use. However, the performance of consumer-grade cameras for practical applications have not been well documented in related ...
Development of Taiwan College Students' Sense of Life Meaning Scale
ERIC Educational Resources Information Center
Wu, Ho-Tang; Chou, Mei-Ju; Lei, Meng-Shan; Hou, Jing-Fang; Wu, Ming-Hsyang
2015-01-01
The research aims to develop "Sense of Life Meaning Scale" of Taiwan college students. In accordance with the related literature, most Western scholars adopted Frankl's Logotherapy for developing "Sense of Life Meaning Scale", which consists of freedom of will, will to meaning and meaning of life. The research also adopts these…
Influence of Self-Regulation on the Development of Children's Number Sense
ERIC Educational Resources Information Center
Ivrendi, Asiye
2011-01-01
The present study examined predictive power of behavioral self-regulation, family and child characteristics on children's number sense. The participants consisted of 101 kindergarten children. A subsample of 30 children was randomly chosen for the reliability procedures of Assessing Number Sense and Head, Toes, Knees and Shoulders instruments.…
Calibration of remotely sensed proportion or area estimates for misclassification error
Raymond L. Czaplewski; Glenn P. Catts
1992-01-01
Classifications of remotely sensed data contain misclassification errors that bias areal estimates. Monte Carlo techniques were used to compare two statistical methods that correct or calibrate remotely sensed areal estimates for misclassification bias using reference data from an error matrix. The inverse calibration estimator was consistently superior to the...
Instrumentation for sensing moisture content of material using a transient thermal pulse
NASA Technical Reports Server (NTRS)
Yang, L. C. (Inventor)
1981-01-01
Instrumentation is developed for sensing moisture content of material using a transient thermal pulse and is comprised of a sensing probe having a sensing element in the form of a ribbon excited by a constant current pulse to increase the temperature, and therefore the resistance, of the ribbon linearly. Moisture in web material limits the increase of temperature during the pulse in proportion to the moisture content. This increase in temperature produces a proportional increase in resistivity which is measured with a Wheatsone bridge as a change in voltage displayed by a measurement display unit. The probe is glued in a shallow groove of a lucite bar and connected to copper pins embedded in the bar.
RF Jitter Modulation Alignment Sensing
NASA Astrophysics Data System (ADS)
Ortega, L. F.; Fulda, P.; Diaz-Ortiz, M.; Perez Sanchez, G.; Ciani, G.; Voss, D.; Mueller, G.; Tanner, D. B.
2017-01-01
We will present the numerical and experimental results of a new alignment sensing scheme which can reduce the complexity of alignment sensing systems currently used, while maintaining the same shot noise limited sensitivity. This scheme relies on the ability of electro-optic beam deflectors to create angular modulation sidebands in radio frequency, and needs only a single-element photodiode and IQ demodulation to generate error signals for tilt and translation degrees of freedom in one dimension. It distances itself from current techniques by eliminating the need for beam centering servo systems, quadrant photodetectors and Gouy phase telescopes. RF Jitter alignment sensing can be used to reduce the complexity in the alignment systems of many laser optical experiments, including LIGO and the ALPS experiment.
A computer program for anisotropic shallow-shell finite elements using symbolic integration
NASA Technical Reports Server (NTRS)
Andersen, C. M.; Bowen, J. T.
1976-01-01
A FORTRAN computer program for anisotropic shallow-shell finite elements with variable curvature is described. A listing of the program is presented together with printed output for a sample case. Computation times and central memory requirements are given for several different elements. The program is based on a stiffness (displacement) finite-element model in which the fundamental unknowns consist of both the displacement and the rotation components of the reference surface of the shell. Two triangular and four quadrilateral elements are implemented in the program. The triangular elements have 6 or 10 nodes, and the quadrilateral elements have 4 or 8 nodes. Two of the quadrilateral elements have internal degrees of freedom associated with displacement modes which vanish along the edges of the elements (bubble modes). The triangular elements and the remaining two quadrilateral elements do not have bubble modes. The output from the program consists of arrays corresponding to the stiffness, the geometric stiffness, the consistent mass, and the consistent load matrices for individual elements. The integrals required for the generation of these arrays are evaluated by using symbolic (or analytic) integration in conjunction with certain group-theoretic techniques. The analytic expressions for the integrals are exact and were developed using the symbolic and algebraic manipulation language.
NASA Astrophysics Data System (ADS)
Yashchenko, Vitaliy A.
2000-03-01
On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.
Human visual system consistent quality assessment for remote sensing image fusion
NASA Astrophysics Data System (ADS)
Liu, Jun; Huang, Junyi; Liu, Shuguang; Li, Huali; Zhou, Qiming; Liu, Junchen
2015-07-01
Quality assessment for image fusion is essential for remote sensing application. Generally used indices require a high spatial resolution multispectral (MS) image for reference, which is not always readily available. Meanwhile, the fusion quality assessments using these indices may not be consistent with the Human Visual System (HVS). As an attempt to overcome this requirement and inconsistency, this paper proposes an HVS-consistent image fusion quality assessment index at the highest resolution without a reference MS image using Gaussian Scale Space (GSS) technology that could simulate the HVS. The spatial details and spectral information of original and fused images are first separated in GSS, and the qualities are evaluated using the proposed spatial and spectral quality index respectively. The overall quality is determined without a reference MS image by a combination of the proposed two indices. Experimental results on various remote sensing images indicate that the proposed index is more consistent with HVS evaluation compared with other widely used indices that may or may not require reference images.
Internet of things: Sensing without power
NASA Astrophysics Data System (ADS)
Aksyuk, Vladimir A.
2017-10-01
A thermally activated micromechanical switch delivers an electrical readout signal only when irradiated by a narrowband mid-infrared light, thanks to a metamaterial element that converts light into heat.
Rational approach for assumed stress finite elements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.; Sumihara, K.
1984-01-01
A new method for the formulation of hybrid elements by the Hellinger-Reissner principle is established by expanding the essential terms of the assumed stresses as complete polynomials in the natural coordinates of the element. The equilibrium conditions are imposed in a variational sense through the internal displacements which are also expanded in the natural co-ordinates. The resulting element possesses all the ideal qualities, i.e. it is invariant, it is less sensitive to geometric distortion, it contains a minimum number of stress parameters and it provides accurate stress calculations. For the formulation of a 4-node plane stress element, a small perturbation method is used to determine the equilibrium constraint equations. The element has been proved to be always rank sufficient.
Brolly, Matthew; Woodhouse, Iain H.; Niklas, Karl J.; Hammond, Sean T.
2012-01-01
Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 102–106 plants/hectare and heights 6–49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100. PMID:22457800
Brolly, Matthew; Woodhouse, Iain H; Niklas, Karl J; Hammond, Sean T
2012-01-01
Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H₁₀₀, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H₁₀₀ and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 10²-10⁶ plants/hectare and heights 6-49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H₁₀₀.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-07-09
In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.
Simulating optoelectronic systems for remote sensing with SENSOR
NASA Astrophysics Data System (ADS)
Boerner, Anko
2003-04-01
The consistent end-to-end simulation of airborne and spaceborne remote sensing systems is an important task and sometimes the only way for the adaptation and optimization of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software ENvironment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. It allows the simulation of a wide range of optoelectronic systems for remote sensing. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. Part three consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimization requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and examples of its use are given. The verification of SENSOR is demonstrated.
STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers
NASA Astrophysics Data System (ADS)
Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia
2015-03-01
Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.
MEMS deformable mirror embedded wavefront sensing and control system
NASA Astrophysics Data System (ADS)
Owens, Donald; Schoen, Michael; Bush, Keith
2006-01-01
Electrostatic Membrane Deformable Mirror (MDM) technology developed using silicon bulk micro-machining techniques offers the potential of providing low-cost, compact wavefront control systems for diverse optical system applications. Electrostatic mirror construction using bulk micro-machining allows for custom designs to satisfy wavefront control requirements for most optical systems. An electrostatic MDM consists of a thin membrane, generally with a thin metal or multi-layer high-reflectivity coating, suspended over an actuator pad array that is connected to a high-voltage driver. Voltages applied to the array elements deflect the membrane to provide an optical surface capable of correcting for measured optical aberrations in a given system. Electrostatic membrane DM designs are derived from well-known principles of membrane mechanics and electrostatics, the desired optical wavefront control requirements, and the current limitations of mirror fabrication and actuator drive electronics. MDM performance is strongly dependent on mirror diameter and air damping in meeting desired spatial and temporal frequency requirements. In this paper, we present wavefront control results from an embedded wavefront control system developed around a commercially available high-speed camera and an AgilOptics Unifi MDM driver using USB 2.0 communications and the Linux development environment. This new product, ClariFast TM, combines our previous Clarifi TM product offering into a faster more streamlined version dedicated strictly to Hartmann Wavefront sensing.
Modelling compression sensing in ionic polymer metal composites
NASA Astrophysics Data System (ADS)
Volpini, Valentina; Bardella, Lorenzo; Rodella, Andrea; Cha, Youngsu; Porfiri, Maurizio
2017-03-01
Ionic polymer metal composites (IPMCs) consist of an ionomeric membrane, including mobile counterions, sandwiched between two thin noble metal electrodes. IPMCs find application as sensors and actuators, where an imposed mechanical loading generates a voltage across the electrodes, and, vice versa, an imposed electric field causes deformation. Here, we present a predictive modelling approach to elucidate the dynamic sensing response of IPMCs subject to a time-varying through-the-thickness compression (‘compression sensing’). The model relies on the continuum theory recently developed by Porfiri and co-workers, which couples finite deformations to the modified Poisson-Nernst-Planck (PNP) system governing the IPMC electrochemistry. For the ‘compression sensing’ problem we establish a perturbative closed-form solution along with a finite element (FE) solution. The systematic comparison between these two solutions is a central contribution of this study, offering insight on accuracy and mathematical complexity. The method of matched asymptotic expansions is employed to find the analytical solution. To this end, we uncouple the force balance from the modified PNP system and separately linearise the PNP equations in the ionomer bulk and in the boundary layers at the ionomer-electrode interfaces. Comparison with FE results for the fully coupled nonlinear system demonstrates the accuracy of the analytical solution to describe IPMC sensing for moderate deformation levels. We finally demonstrate the potential of the modelling scheme to accurately reproduce experimental results from the literature. The proposed model is expected to aid in the design of IPMC sensors, contribute to an improved understanding of IPMC electrochemomechanical response, and offer insight into the role of nonlinear phenomena across mechanics and electrochemistry.
Recent advances in radar remote sensing of forest
NASA Technical Reports Server (NTRS)
Letoan, Thuy
1993-01-01
On a global scale, forests represent most of the terrestrial standing biomass (80 to 90 percent). Thus, natural and anthropogenic change in forest covers can have major impacts not only on local ecosystems but also on global hydrologic, climatic, and biogeochemical cycles that involve exchange of energy, water, carbon, and other elements between the earth and atmosphere. Quantitative information on the state and dynamics of forest ecosystems and their interactions with the global cycles appear necessary to understand how the earth works as a natural system. The information required includes the lateral and vertical distribution of forest cover, the estimates of standing biomass (woody and foliar volume), the phenological and environmental variations and disturbances (clearcutting, fires, flood), and the longer term variations following deforestation (regeneration, successional stages). To this end, seasonal, annual, and decadal information is necessary in order to separate the long term effects in the global ecosystem from short term seasonal and interannual variations. Optical remote sensing has been used until now to study the forest cover at local, regional, and global scales. Radar remote sensing, which provides recent SAR data from space on a regular basis, represents an unique means of consistently monitoring different time scales, at all latitudes and in any atmospheric conditions. Also, SAR data have shown the potential to detect several forest parameters that cannot be inferred from optical data. The differences--and complementarity--lie in the penetration capabilities of SAR data and their sensitivity to dielectric and geometric properties of the canopy volume, whereas optical data are sensitive to the chemical composition of the external foliar layer of the vegetation canopy.
Technology-Critical Elements: Economic and Policy Perspectives
NASA Astrophysics Data System (ADS)
Eggert, R. G.
2017-12-01
Critical elements are those that provide essential functionality to modern engineered materials, have few ready substitutes and are subject to supply-chain risks or concerns about long-run availability. This paper provides economic and public-policy perspectives on critical elements. It suggests: that which elements are critical is situational and changes over time; that we are not running out of mineral-derived raw materials in a geologic sense but rather, for some elements, face scarcities that are technological, environmental, political or economic in nature; and that public policy's most important role over the longer term is fostering scientific and technological innovation, especially early stage research, that has the potential to overcome these scarcities.
McAuley, Sybil A; Dang, Tri T; Horsburgh, Jodie C; Bansal, Anubhuti; Ward, Glenn M; Aroyan, Sarkis; Jenkins, Alicia J; MacIsaac, Richard J; Shah, Rajiv V; O'Neal, David N
2016-05-01
Orthogonal redundancy for glucose sensing (multiple sensing elements utilizing distinct methodologies) may enhance performance compared to nonredundant sensors, and to sensors with multiple elements utilizing the same technology (simple redundancy). We compared the performance of a prototype orthogonal redundant sensor (ORS) combining optical fluorescence and redundant electrochemical sensing via a single insertion platform to an electrochemical simple redundant sensor (SRS). Twenty-one adults with type 1 diabetes wore an ORS and an SRS concurrently for 7 days. Following sensor insertion, and on Day 4 with a standardized meal, frequent venous samples were collected for reference glucose measurement (laboratory [YSI] and meter) over 3 and 4 hours, respectively. Between study visits reference capillary blood glucose testing was undertaken. Sensor data were processed prospectively. ORS mean absolute relative difference (MARD) was (mean ± SD) 10.5 ± 13.2% versus SRS 11.0 ± 10.4% (P = .34). ORS values in Clarke error grid zones A and A+B were 88.1% and 97.6%, respectively, versus SRS 86.4% and 97.8%, respectively (P = .23 and P = .84). ORS Day 1 MARD (10.7 ± 10.7%) was superior to SRS (16.5 ± 13.4%; P < .0001), and comparable to ORS MARD for the week. ORS sensor survival (time-averaged mean) was 92.1% versus SRS 74.4% (P = .10). ORS display time (96.0 ± 5.8%) was equivalent to SRS (95.6 ± 8.9%; P = .87). Combining simple and orthogonal sensor redundancy via a single insertion is feasible, with accuracy comparing favorably to current generation nonredundant sensors. Addition of an optical component potentially improves sensor reliability compared to electrochemical sensing alone. Further improvement in optical sensing performance is required prior to clinical application. © 2016 Diabetes Technology Society.
Stowe, Ashley; Burger, Arnold
2016-05-10
A method for synthesizing I-III-VI.sub.2 compounds, including: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound under heat, with mixing, and/or via vapor transport. The Group III element is melted at a temperature of between about 200 degrees C. and about 700 degrees C. Preferably, the Group I element consists of a neutron absorber and the group III element consists of In or Ga. The Group VI element and the single phase I-III compound are heated to a temperature of between about 700 degrees C. and about 1000 degrees C. Preferably, the Group VI element consists of S, Se, or Te. Optionally, the method also includes doping with a Group IV element activator.
Angel, S. Michael
1989-01-01
Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.
Kumar, Saurav; Bagchi, Sudeshna; Prasad, Senthil; Sharma, Anupma; Kumar, Ritesh; Kaur, Rishemjit; Singh, Jagvir
2016-01-01
Summary Zinc oxide (ZnO) and bacteriorhodopsin (bR) hybrid nanostructures were fabricated by immobilizing bR on ZnO thin films and ZnO nanorods. The morphological and spectroscopic analysis of the hybrid structures confirmed the ZnO thin film/nanorod growth and functional properties of bR. The photoactivity results of the bR protein further corroborated the sustainability of its charge transport property and biological activity. When exposed to ethanol vapour (reducing gas) at low temperature (70 °C), the fabricated sensing elements showed a significant increase in resistivity, as opposed to the conventional n-type behaviour of bare ZnO nanostructures. This work opens up avenues towards the fabrication of low temperature, photoactivated, nanomaterial–biomolecule hybrid gas sensors. PMID:27335741
Low-cost interferometric TDM technology for dynamic sensing applications
NASA Astrophysics Data System (ADS)
Bush, Jeff; Cekorich, Allen
2004-12-01
A low-cost design approach for Time Division Multiplexed (TDM) fiber-optic interferometric interrogation of multi-channel sensor arrays is presented. This paper describes the evolutionary design process of the subject design. First, the requisite elements of interferometric interrogation are defined for a single channel sensor. The concept is then extended to multi-channel sensor interrogation implementing a TDM multiplex scheme where "traditional" design elements are utilized. The cost of the traditional TDM interrogator is investigated and concluded to be too high for entry into many markets. A new design approach is presented which significantly reduces the cost for TDM interrogation. This new approach, in accordance with the cost objectives, shows promise to bring this technology to within the threshold of commercial acceptance for a wide range of distributed fiber sensing applications.
Whispering Gallery Mode Resonators for Rapid Label-Free Biosensing in Small Volume Droplets
Wildgen, Sarah M.; Dunn, Robert C.
2015-01-01
Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection. PMID:25806835
Optical fiber sensors technology for supervision, control and protection of high power systems
NASA Astrophysics Data System (ADS)
Nascimento, Ivo Maciel
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Structural Mechanics of Thin-Ply Laminated Composites
NASA Astrophysics Data System (ADS)
Arteiro, Albertino
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Detection and Characterization of Defects in Composite Materials Using Thermography
NASA Astrophysics Data System (ADS)
Silva, Antonio Jose Ramos
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
PCM energy storage modelling: Case study for a solar-ejector cooling cycle
NASA Astrophysics Data System (ADS)
Allouche, Yosr
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
NASA Astrophysics Data System (ADS)
Magalhaes, Sara Moreira Coelho de
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
NASA Astrophysics Data System (ADS)
Lee, Nathan Coenen
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
High Resolution Satellite Image Analysis and Rapid 3D Model Extraction for Urban Change Detection
NASA Astrophysics Data System (ADS)
Abduelmola, Abdunaser E.
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Novel dual-colour architecture for ultrafast spin dynamics measurements in sub-8 fs regime
NASA Astrophysics Data System (ADS)
Goncalves, Cledson Santana Lopes
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
NASA Astrophysics Data System (ADS)
Tinnaworn, Piyathip
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Continuum Modelling and Numerical Simulation of Hexagonal Close-Packed Materials
NASA Astrophysics Data System (ADS)
Wu, Shenghua
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
General Relativity in the framework of exact gravito-electromagnetic analogies
NASA Astrophysics Data System (ADS)
Costa, Luis Filipe
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Tirania-silica composite materials for self-cleaning applications on monumental stones
NASA Astrophysics Data System (ADS)
Pinho, Luis
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Provision of advanced ancillary services through demand side integration
NASA Astrophysics Data System (ADS)
Heleno, Miguel Luis Delgado
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Exoplanets: Gaia and the importance of spectroscopic follow-up
NASA Astrophysics Data System (ADS)
Benamati, Lisa
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Delivery of biomolecules by functionalized inorganic/organic nanoparticles
NASA Astrophysics Data System (ADS)
Coelho, Silvia Maria de Castro
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
NASA Astrophysics Data System (ADS)
Neves, Cristina Sofia dos Santos
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Kinematic GNSS Precise Point Positioning: Application to Marine Platforms
NASA Astrophysics Data System (ADS)
Marreiros, Joao Paulo Ramalho
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
NASA Astrophysics Data System (ADS)
Queiros, Raquel Barbosa
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Galaxy Assembly through Mergers: Uncovering Dry and Non-dry Mergers in the SDSS
NASA Astrophysics Data System (ADS)
Brochado, Paula
2012-03-01
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Computational Generation and Homogenization of Random Close Packed Materials
NASA Astrophysics Data System (ADS)
Miranda, H. David
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Acetone sensor based on zinc oxide hexagonal tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hastir, Anita, E-mail: anitahastir@gmail.com; Singh, Onkar, E-mail: anitahastir@gmail.com; Anand, Kanika, E-mail: anitahastir@gmail.com
2014-04-24
In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.
Low-profile wireless passive resonators for sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Xun; An, Linan
A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmittingmore » a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.« less
Wang, Zhaoshou; Wu, Xin; Peng, Jianghai; Hu, Yidan; Fang, Baishan; Huang, Shiyang
2014-01-01
Vibrio fischeri is a typical quorum-sensing bacterium for which lux box, luxR, and luxI have been identified as the key elements involved in quorum sensing. To decode the quorum-sensing mechanism, an artificially constructed cell–cell communication system has been built. In brief, the system expresses several programmed cell-death BioBricks and quorum-sensing genes driven by the promoters lux pR and PlacO-1 in Escherichia coli cells. Their transformation and expression was confirmed by gel electrophoresis and sequencing. To evaluate its performance, viable cell numbers at various time periods were investigated. Our results showed that bacteria expressing killer proteins corresponding to ribosome binding site efficiency of 0.07, 0.3, 0.6, or 1.0 successfully sensed each other in a population-dependent manner and communicated with each other to subtly control their population density. This was also validated using a proposed simple mathematical model. PMID:25119347
Position sensor for a fuel injection element in an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulkerson, D.E.; Geske, M.L.
1987-08-18
This patent describes an electronic circuit for dynamically sensing and processing signals representative of changes in a magnet field, the circuit comprising: means for sensing a change in a magnetic field external to the circuit and providing an output representative of the change; circuit means electronically coupled with the output of the sensing means for providing an output indicating the presence of the magnetic field change; and a nulling circuit coupled with the output of the sensing means and across the indicating circuit means for nulling the electronic circuit responsive to the sensing means output, to thereby avoid ambient magneticmore » fields temperature and process variations, and wherein the nulling circuit comprises a capacitor coupled to the output of the nulling circuit, means for charging and discharging the capacitor responsive to any imbalance in the input to the nulling circuit, and circuit means coupling the capacitor with the output of the sensing means for nulling any imbalance during the charging or discharging of the capacitor.« less
Trip optimization system and method for a train
Kumar, Ajith Kuttannair; Shaffer, Glenn Robert; Houpt, Paul Kenneth; Movsichoff, Bernardo Adrian; Chan, David So Keung
2017-08-15
A system for operating a train having one or more locomotive consists with each locomotive consist comprising one or more locomotives, the system including a locator element to determine a location of the train, a track characterization element to provide information about a track, a sensor for measuring an operating condition of the locomotive consist, a processor operable to receive information from the locator element, the track characterizing element, and the sensor, and an algorithm embodied within the processor having access to the information to create a trip plan that optimizes performance of the locomotive consist in accordance with one or more operational criteria for the train.
Nanoparticle-based gas sensors and methods of using the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickelson, William; Zettl, Alex
Gas sensors are provided. The gas sensors include a gas sensing element having metal oxide nanoparticles and a thin-film heating element. Systems that include the gas sensors, as well as methods of using the gas sensors, are also provided. Embodiments of the present disclosure find use in a variety of different applications, including detecting whether an analyte is present in a gaseous sample.
Eliminating Deadbands In Resistive Angle Sensors
NASA Technical Reports Server (NTRS)
Salomon, Phil M.; Allen, Russell O.; Marchetto, Carl A.
1992-01-01
Proposed shaft-angle-measuring circuit provides continuous indication of angle of rotation from 0 degree to 360 degrees. Sensing elements are two continuous-rotation potentiometers, and associated circuitry eliminates deadband that occurs when wiper contact of potentiometer crosses end contacts near 0 degree position of circular resistive element. Used in valve-position indicator or similar device in which long operating life and high angular precision not required.
Meng, Zhijun; Yang, Jun; Guo, Xiye; Zhou, Yongbin
2017-01-01
Global Navigation Satellite System performance can be significantly enhanced by introducing inter-satellite links (ISLs) in navigation constellation. The improvement in position, velocity, and time accuracy as well as the realization of autonomous functions requires ISL distance measurement data as the original input. To build a high-performance ISL, the ranging consistency among navigation satellites is an urgent problem to be solved. In this study, we focus on the variation in the ranging delay caused by the sensitivity of the ISL payload equipment to the ambient temperature in space and propose a simple and low-power temperature-sensing ranging compensation sensor suitable for onboard equipment. The experimental results show that, after the temperature-sensing ranging compensation of the ISL payload equipment, the ranging consistency becomes less than 0.2 ns when the temperature change is 90 °C. PMID:28608809
Saunders, K; Lucy, A; Stanley, J
1991-01-01
We have analysed DNA from African cassava mosaic virus (ACMV)-infected Nicotiana benthamiana by two-dimensional agarose gel electrophoresis and detected ACMV-specific DNAs by blot-hybridisation. ACMV DNA forms including the previously characterised single-stranded, open-circular, linear and supercoiled DNAs along with five previously uncharacterised heterogeneous DNAs (H1-H5) were resolved. The heterogeneous DNAs were characterised by their chromatographic properties on BND-cellulose and their ability to hybridise to strand-specific and double-stranded probes. The data suggest a rolling circle mechanism of DNA replication, based on the sizes and strand specificity of the heterogeneous single-stranded DNA forms and their electrophoretic properties in relation to genome length single-stranded DNAs. Second-strand synthesis on a single-stranded virus-sense template is evident from the position of heterogeneous subgenomic complementary-sense DNA (H3) associated with genome-length virus-sense template (VT) DNA. The position of heterogeneous virus-sense DNA (H5), ranging in size from one to two genome lengths, is consistent with its association with genome-length complementary-sense template (CT) DNA, reflecting virus-sense strand displacement during replication from a double-stranded intermediate. The absence of subgenomic complementary-sense DNA associated with the displaced virus-sense strand suggests that replication proceeds via an obligate single-stranded intermediate. The other species of heterogeneous DNAs comprised concatemeric single-stranded virus-sense DNA (H4), and double-stranded or partially single-stranded DNA (H1 and H2). Images PMID:2041773
14 CFR 25.1331 - Instruments using a power supply.
Code of Federal Regulations, 2010 CFR
2010-01-01
... or more physically separate units or components connected together (such as a remote indicating gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier and...
14 CFR 25.1331 - Instruments using a power supply.
Code of Federal Regulations, 2014 CFR
2014-01-01
... or more physically separate units or components connected together (such as a remote indicating gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier and...
NASA Technical Reports Server (NTRS)
Bandhil, Pavan; Chitikeshi, Sanjeevi; Mahajan, Ajay; Figueroa, Fernando
2005-01-01
This paper proposes the development of intelligent sensors as part of an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA s Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Integrated Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS). The PIS discussed here consists of a thermocouple used to read temperature in an analog form which is then converted into digital values. A microprocessor collects the sensor readings and runs numerous embedded event detection routines on the collected data and if any event is detected, it is reported, stored and sent to a remote system through an Ethernet connection. Hence the output of the PIS is data coupled with confidence factor in the reliability of the data which leads to information on the health of the sensor at all times. All protocols are consistent with IEEE 1451.X standards. This work lays the foundation for the next generation of smart devices that have embedded intelligence for distributed decision making capabilities.
Friestad, Christine
2012-05-01
Most structured sex-offender programs are based on a cognitive-behavioural model of behaviour change. Within this overarching theoretical paradigm, extensive use of cognitive distortions is seen as a central core symptom among sex offenders. However, the literature on cognitive distortions lacks a clear and consistent definition of the term. It is unclear whether cognitive distortions are consciously employed excuses or unconscious processes serving to protect the offender from feelings of guilt or shame. In this article, the dominant cognitive-behavioural interpretation of cognitive distortions is contrasted with two alternative interpretations. One is based on an attributional perspective and the notion of attributional biases. The other explanation is based on a narrative approach focusing on the action elements of cognitive distortions, that is, as something people do rather than something they have. Clinical implications of these alternative conceptualizations are discussed and illustrated throughout by a case example.
Chronically Implanted Pressure Sensors: Challenges and State of the Field
Yu, Lawrence; Kim, Brian J.; Meng, Ellis
2014-01-01
Several conditions and diseases are linked to the elevation or depression of internal pressures from a healthy, normal range, motivating the need for chronic implantable pressure sensors. A simple implantable pressure transduction system consists of a pressure-sensing element with a method to transmit the data to an external unit. The biological environment presents a host of engineering issues that must be considered for long term monitoring. Therefore, the design of such systems must carefully consider interactions between the implanted system and the body, including biocompatibility, surgical placement, and patient comfort. Here we review research developments on implantable sensors for chronic pressure monitoring within the body, focusing on general design requirements for implantable pressure sensors as well as specifications for different medical applications. We also discuss recent efforts to address biocompatibility, efficient telemetry, and drift management, and explore emerging trends. PMID:25365461
Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)
NASA Technical Reports Server (NTRS)
Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher; Lambert, Kevin M.; Miranda, Felix A.
2015-01-01
Measurement of land surface snow remains a significant challenge in the remote sensing arena. Developing the tools needed to remotely measure Snow Water Equivalent (SWE) is an important priority. The Wideband Instrument for Snow Measurements (WISM) is being developed to address this need. WISM is an airborne instrument comprised of a dual-frequency (X- and Ku-bands) Synthetic Aperture Radar (SAR) and dual-frequency (K- and Ka-bands) radiometer. A unique feature of this instrument is that all measurement bands share a common antenna aperture consisting of an array feed reflector that covers the entire bandwidth. This paper covers the design and fabrication of the wideband array feed which is based on tightly coupled dipole arrays. Implementation using a relatively new multi-layer microfabrication process results in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 gigahertz.
Biosensors based on DNA-Functionalized Graphene
NASA Astrophysics Data System (ADS)
Vishnubhotla, Ramya; Ping, Jinglei; Vrudhula, Amey; Johnson, A. T. Charlie
Since its discovery, graphene has been used for sensing applications due to its outstanding electrical properties and biocompatibility. Here, we demonstrate the capabilities of field effect transistors (FETs) based on CVD-grown graphene functionalized with commercially obtained DNA oligomers and aptamers for detection of various biomolecular targets (e.g., complementary DNA and small molecule drug targets). Graphene FETs were created with a scalable photolithography process that produces arrays consisting of 50-100 FETs with a layout suitable for multiplexed detection of four molecular targets. FETs were characterized via AFM to confirm the presence of the aptamer. From the measured electrical characteristics, it was determined that binding of molecular targets by the DNA chemical recognition element led to a reproducible, concentration-dependent shift in the Dirac voltage. This biosensor class is potentially suitable for applications in drug detection. This work is funded by NIH through the Center for AIDS Research at the University of Pennsylvania.
Problems for clinical judgement: 5. Principles of influence in medical practice
Redelmeier, Donald A.; Cialdini, Robert B.
2002-01-01
THE BASIC SCIENCE OF PSYCHOLOGY HAS IDENTIFIED specific ingrained responses that are fundamental elements of human nature, underpin common influence strategies and may apply in medical settings. People feel a sense of obligation to repay a perceived debt. A request becomes more attractive when preceded by a marginally worse request. The drive to act consistently will persist even if demands escalate. Peer pressure is intense when people face uncertainty. The image of the requester influences the attractiveness of a request. Authorities have power beyond their expertise. Opportunities appear more valuable when they appear less available. These 7 responses were discovered decades ago in psychology research and seem intuitively understood in the business world, but they are rarely discussed in medical texts. An awareness of these principles can provide a framework for physicians to help patients change their behaviour and to understand how others in society sometime alter patients' choices. PMID:12126325
Plasma deposited polymers as gas sensitive films
NASA Astrophysics Data System (ADS)
Radeva, E.; Georgieva, V.; Lazarov, J.; Vergov, L.; Donkov, N.
2012-03-01
The possibility is presented of producing thin plasma polymers with desired properties by using nanofillers. Composite films are synthesized from a mixture of hexamethyldisiloxane (HMDSO) and detonation nanodiamond particles (DNDs). The chemical structure of the composite consists of DNDs distributed in the polymer matrix. The effect of DNDs on the humidity and ammonia sorptive properties of the polymers obtained is studied by measuring the mass changes as a result of gas sorption by using a quartz crystal microbalance (QCM). The results show that, in view of building a sensing element for measuring humidity, ammonia or other gases, it is possible to maximize the sensor sensitivity to a certain gas by using an appropriate concentration of DNDs in HMDSO. Thus, a high degree of sensor sensitivity, together with short response time and minimum hysteresis, can be achieved. Composites of plasma-polymerized HMDSO with DNDs can be used as gas sensitive layers for the development of quartz resonator sensors.
Dynamometer Testing of Planar Mixed-Potential Sensors
Kreller, C. R.; Sekhar, P. K.; Prikhodko, V.; ...
2014-09-22
Mixed-potential sensors for vehicle on-board emissions monitoring applications have been fabricated in an automotive planar sensor configuration using high temperature ceramic co-fire methods. The sensing element consists of dense Pt and LaSrCrO electrodes and a porous 3 mol% YSZ electrolyte. This sensor construct exhibits preferential selectivity to NO x (NO+NO 2) when operated at a positive current bias. The performance of the planar sensors under engine-out conditions was recently evaluated at the Oak Ridge National Laboratory National Transportation Research Center on a GM 1.9L CIDI diesel engine. The sensor response qualitatively tracked transients in NO x measured via FTIR undermore » transient engine operation. Additionally, quantitative correlation between sensor voltage response and total NO x concentration was obtained under steady-state engine speed and load while varying exhaust gas recirculation (EGR) levels.« less
Local multiplicative Schwarz algorithms for convection-diffusion equations
NASA Technical Reports Server (NTRS)
Cai, Xiao-Chuan; Sarkis, Marcus
1995-01-01
We develop a new class of overlapping Schwarz type algorithms for solving scalar convection-diffusion equations discretized by finite element or finite difference methods. The preconditioners consist of two components, namely, the usual two-level additive Schwarz preconditioner and the sum of some quadratic terms constructed by using products of ordered neighboring subdomain preconditioners. The ordering of the subdomain preconditioners is determined by considering the direction of the flow. We prove that the algorithms are optimal in the sense that the convergence rates are independent of the mesh size, as well as the number of subdomains. We show by numerical examples that the new algorithms are less sensitive to the direction of the flow than either the classical multiplicative Schwarz algorithms, and converge faster than the additive Schwarz algorithms. Thus, the new algorithms are more suitable for fluid flow applications than the classical additive or multiplicative Schwarz algorithms.
Design and calibration of a six-axis MEMS sensor array for use in scoliosis correction surgery
NASA Astrophysics Data System (ADS)
Benfield, David; Yue, Shichao; Lou, Edmond; Moussa, Walied A.
2014-08-01
A six-axis sensor array has been developed to quantify the 3D force and moment loads applied in scoliosis correction surgery. Initially this device was developed to be applied during scoliosis correction surgery and augmented onto existing surgical instrumentation, however, use as a general load sensor is also feasible. The development has included the design, microfabrication, deployment and calibration of a sensor array. The sensor array consists of four membrane devices, each containing piezoresistive sensing elements, generating a total of 16 differential voltage outputs. The calibration procedure has made use of a custom built load application frame, which allows quantified forces and moments to be applied and compared to the outputs from the sensor array. Linear or non-linear calibration equations are generated to convert the voltage outputs from the sensor array back into 3D force and moment information for display or analysis.
Hybrid integrated single-wavelength laser with silicon micro-ring reflector
NASA Astrophysics Data System (ADS)
Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian
2018-02-01
A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.
Research Issues in Image Registration for Remote Sensing
NASA Technical Reports Server (NTRS)
Eastman, Roger D.; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2007-01-01
Image registration is an important element in data processing for remote sensing with many applications and a wide range of solutions. Despite considerable investigation the field has not settled on a definitive solution for most applications and a number of questions remain open. This article looks at selected research issues by surveying the experience of operational satellite teams, application-specific requirements for Earth science, and our experiments in the evaluation of image registration algorithms with emphasis on the comparison of algorithms for subpixel accuracy. We conclude that remote sensing applications put particular demands on image registration algorithms to take into account domain-specific knowledge of geometric transformations and image content.
Uprated fine guidance sensor study
NASA Technical Reports Server (NTRS)
1984-01-01
Future orbital observatories will require star trackers of extremely high precision. These sensors must maintain high pointing accuracy and pointing stability simultaneously with a low light level signal from a guide star. To establish the fine guidance sensing requirements and to evaluate candidate fine guidance sensing concepts, the Space Telescope Optical Telescope Assembly was used as the reference optical system. The requirements review was separated into three areas: Optical Telescope Assembly (OTA), Fine Guidance Sensing and astrometry. The results show that the detectors should be installed directly onto the focal surface presented by the optics. This would maximize throughput and minimize point stability error by not incoporating any additional optical elements.
Zinc sulfide quantum dots for photocatalytic and sensing applications
NASA Astrophysics Data System (ADS)
Sergeev, Alexander A.; Leonov, Andrei A.; Zhuikova, Elena I.; Postnova, Irina V.; Voznesenskiy, Sergey S.
2017-09-01
Herein, we report the photocatalytic and sensing applications of pure and Mn-doped ZnS quantum dots. The quantum dots were prepared by a chemical precipitation in an aqueous solution in the presence of glutathione as a stabilizing agent. The synthesized quantum dots were used as effective photocatalyst for the degradation of methylene blue dye. Interestingly, fully degradation of methylene blue dye was achieved in 5 min using pure ZnS quantum dots. Further, the synthesized quantum dots were used as efficient sensing element for methane fluorescent sensor. Interfering studies confirmed that the developed sensor possesses very good sensitivity and selectivity towards methane.
Design and Test of a Soft Plantar Force Measurement System for Gait Detection
Zhang, Xuefeng; Zhao, Yulong; Duan, Zhengyong; Liu, Yan
2012-01-01
This work describes a plantar force measurement system. The MEMS pressure sensor, as the key sensing element, is designed, fabricated and embedded into a flexible silicon oil-filled bladder made of silicon rubber to constitute a single sensing unit. A conditioning circuit is designed for signal processing and data acquisition. The characteristics of the plantar force sensing unit are investigated by both static and dynamic tests. A comparison of characteristics between the proposed plantar force sensing unit and a commercial flexible force sensor is presented. A practical experiment of plantar force measurement has been carried out to validate the system. The results demonstrate that the proposed measurement system has a potential for success in the application of plantar force measurement during normal gait. PMID:23208558
NASA Technical Reports Server (NTRS)
Mahan, J. R.; Kowsary, F.; Tira, N.; Gardiner, B. D.
1987-01-01
A NASA-developed finite element-based model of a generic active cavity radiometer (ACR) has been developed in order to study the dependence on operating temperature of the closed-loop and open-loop transient response of the instrument. Transient conduction within the sensing element is explored, and the transient temperature distribution resulting from the application of a time-varying radiative boundary condition is calculated. The results verify the prediction that operation of an ACR at cryogenic temperatures results in large gains in frequency response.
Computing Reliabilities Of Ceramic Components Subject To Fracture
NASA Technical Reports Server (NTRS)
Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.
1992-01-01
CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Glazier, James A. (Inventor); Amarie, Dragos (Inventor)
2012-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single microchip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Amarie, Dragos (Inventor); Glazier, James A. (Inventor)
2011-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multichannel sensor for detecting the presence of several targets with a single microchip sensor is described. A multichannel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Glazier, James A. (Inventor); Dragnea, Bogdan (Inventor); Amarie, Dragos (Inventor)
2010-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single microchip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Amarie, Dragos (Inventor); Glazier, James A. (Inventor); Dragnea, Bogdan (Inventor)
2010-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single micro-chip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Glazier, James A. (Inventor); Amarie, Dragos (Inventor)
2011-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single micro-chip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Bishop, J L; Froschl, H; Mancinelli, R L
1998-12-25
Determining the mineralogy of the Martian surface material provides information about the past and present environments on Mars which are an integral aspect of whether or not Mars was suitable for the origin of life. Mineral identification on Mars will most likely be achieved through visible-infrared remote sensing in combination with other analyses on landed missions. Therefore, understanding the visible and infrared spectral properties of terrestrial samples formed via processes similar to those thought to have occurred on Mars is essential to this effort and will facilitate site selection for future exobiology missions to Mars. Visible to infrared reflectance spectra are presented here for the fine-grained fractions of altered tephra/lava from the Haleakala summit basin on Maui, the Tarawera volcanic complex on the northern island of New Zealand, and the Greek Santorini island group. These samples exhibit a range of chemical and mineralogical compositions, where the primary minerals typically include plagioclase, pyroxene, hematite, and magnetite. The kind and abundance of weathering products varied substantially for these three sites due, in part, to the climate and weathering environment. The moist environments at Santorini and Tarawera are more consistent with postulated past environments on Mars, while the dry climate at the top of Haleakala is more consistent with the current Martian environment. Weathering of these tephra is evaluated by assessing changes in the leachable and immobile elements, and through detection of phyllosilicates and iron oxide/oxyhydroxide minerals. Identifying regions on Mars where phyllosilicates and many kinds of iron oxides/oxyhydroxides are present would imply the presence of water during alteration of the surface material. Tephra samples altered in the vicinity of cinder cones and steam vents contain higher abundances of phyllosilicates, iron oxides, and sulfates and may be interesting sites for exobiology.
Quick release latch for reactor scram
Johnson, Melvin L.; Shawver, Bruce M.
1976-01-01
A simple, reliable, and fast-acting means for releasing a control element and allowing it to be inserted rapidly into the core region of a nuclear reactor for scram purposes. A latch mechanism grips a coupling head on a nuclear control element to connect the control element to the control drive assembly. The latch mechanism is closed by tensioning a cable or rod with an actuator. The control element is released by de-energizing the actuator, providing fail-safe, rapid release of the control element to effect reactor shutdown. A sensing rod provides indication that the control element is properly positioned in the latch. Two embodiments are illustrated, one involving a collet-type latch mechanism, the other a pliers-type latch mechanism with the actuator located inside the reactor vessel.
Quick release latch for reactor scram
Johnson, M.L.; Shawver, B.M.
1975-09-16
A simple, reliable, and fast-acting means for releasing a control element and allowing it to be inserted rapidly into the core region of a nuclear reactor for scram purposes is described. A latch mechanism grips a coupling head on a nuclear control element to connect the control element to the control drive assembly. The latch mechanism is closed by tensioning a cable or rod with an actuator. The control element is released by de-energizing the actuator, providing fail-safe, rapid release of the control element to effect reactor shutdown. A sensing rod provides indication that the control element is properly positioned in the latch. Two embodiments are illustrated, one involving a collet- type latch mechanism, the other a pliers-type latch mechanism with the actuator located inside the reactor vessel. (auth)
14 CFR 25.1331 - Instruments using a power supply.
Code of Federal Regulations, 2012 CFR
2012-01-01
... may be accomplished automatically or by manual means. (3) If an instrument presenting navigation data... gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier and...
Late-stage magmatic outgassing from a volatile-depleted Moon
Moynier, Frédéric; Shearer, Charles K.
2017-01-01
The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior. PMID:28827322