Blind compressed sensing image reconstruction based on alternating direction method
NASA Astrophysics Data System (ADS)
Liu, Qinan; Guo, Shuxu
2018-04-01
In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.
NASA Astrophysics Data System (ADS)
Hong, Liang
2013-10-01
The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.
Pyrolyzed-parylene based sensors and method of manufacture
NASA Technical Reports Server (NTRS)
Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Miserendino, Scott (Inventor); Konishi, Satoshi (Inventor)
2007-01-01
A method (and resulting structure) for fabricating a sensing device. The method includes providing a substrate comprising a surface region and forming an insulating material overlying the surface region. The method also includes forming a film of carbon based material overlying the insulating material and treating to the film of carbon based material to pyrolyzed the carbon based material to cause formation of a film of substantially carbon based material having a resistivity ranging within a predetermined range. The method also provides at least a portion of the pyrolyzed carbon based material in a sensor application and uses the portion of the pyrolyzed carbon based material in the sensing application. In a specific embodiment, the sensing application is selected from chemical, humidity, piezoelectric, radiation, mechanical strain or temperature.
Target detection method by airborne and spaceborne images fusion based on past images
NASA Astrophysics Data System (ADS)
Chen, Shanjing; Kang, Qing; Wang, Zhenggang; Shen, ZhiQiang; Pu, Huan; Han, Hao; Gu, Zhongzheng
2017-11-01
To solve the problem that remote sensing target detection method has low utilization rate of past remote sensing data on target area, and can not recognize camouflage target accurately, a target detection method by airborne and spaceborne images fusion based on past images is proposed in this paper. The target area's past of space remote sensing image is taken as background. The airborne and spaceborne remote sensing data is fused and target feature is extracted by the means of airborne and spaceborne images registration, target change feature extraction, background noise suppression and artificial target feature extraction based on real-time aerial optical remote sensing image. Finally, the support vector machine is used to detect and recognize the target on feature fusion data. The experimental results have established that the proposed method combines the target area change feature of airborne and spaceborne remote sensing images with target detection algorithm, and obtains fine detection and recognition effect on camouflage and non-camouflage targets.
A Survey on Gas Sensing Technology
Liu, Xiao; Cheng, Sitian; Liu, Hong; Hu, Sha; Zhang, Daqiang; Ning, Huansheng
2012-01-01
Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches. PMID:23012563
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-07-09
In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.
Proposal and Implementation of a Robust Sensing Method for DVB-T Signal
NASA Astrophysics Data System (ADS)
Song, Chunyi; Rahman, Mohammad Azizur; Harada, Hiroshi
This paper proposes a sensing method for TV signals of DVB-T standard to realize effective TV White Space (TVWS) Communication. In the TVWS technology trial organized by the Infocomm Development Authority (iDA) of Singapore, with regard to the sensing level and sensing time, detecting DVB-T signal at the level of -120dBm over an 8MHz channel with a sensing time below 1 second is required. To fulfill such a strict sensing requirement, we propose a smart sensing method which combines feature detection and energy detection (CFED), and is also characterized by using dynamic threshold selection (DTS) based on a threshold table to improve sensing robustness to noise uncertainty. The DTS based CFED (DTS-CFED) is evaluated by computer simulations and is also implemented into a hardware sensing prototype. The results show that the DTS-CFED achieves a detection probability above 0.9 for a target false alarm probability of 0.1 for DVB-T signals at the level of -120dBm over an 8MHz channel with the sensing time equals to 0.1 second.
The application analysis of the multi-angle polarization technique for ocean color remote sensing
NASA Astrophysics Data System (ADS)
Zhang, Yongchao; Zhu, Jun; Yin, Huan; Zhang, Keli
2017-02-01
The multi-angle polarization technique, which uses the intensity of polarized radiation as the observed quantity, is a new remote sensing means for earth observation. With this method, not only can the multi-angle light intensity data be provided, but also the multi-angle information of polarized radiation can be obtained. So, the technique may solve the problems, those could not be solved with the traditional remote sensing methods. Nowadays, the multi-angle polarization technique has become one of the hot topics in the field of the international quantitative research on remote sensing. In this paper, we firstly introduce the principles of the multi-angle polarization technique, then the situations of basic research and engineering applications are particularly summarized and analysed in 1) the peeled-off method of sun glitter based on polarization, 2) the ocean color remote sensing based on polarization, 3) oil spill detection using polarization technique, 4) the ocean aerosol monitoring based on polarization. Finally, based on the previous work, we briefly present the problems and prospects of the multi-angle polarization technique used in China's ocean color remote sensing.
NASA Astrophysics Data System (ADS)
Feng, Guixiang; Ming, Dongping; Wang, Min; Yang, Jianyu
2017-06-01
Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal dimension and information entropy present the same trend with the decrease of spatial resolution, and some inflection points appear at the same feature scales. Further analysis shows that these feature scales (corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer mixed pixels in the image, and these inflection points are significantly indicative of the observed features. Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-based scale effect existing in remote sensing data and it is helpful to analyze the observation scale from different aspects. This research will ultimately benefit for remote sensing data selection and application.
Remote sensing image ship target detection method based on visual attention model
NASA Astrophysics Data System (ADS)
Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong
2017-11-01
The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.
A facile fluorescent "turn-off" method for sensing paraquat based on pyranine-paraquat interaction
NASA Astrophysics Data System (ADS)
Zhao, Zuzhi; Zhang, Fengwei; Zhang, Zipin
2018-06-01
Development of a technically simple yet effective method for paraquat (PQ) detection is of great importance due to its high clinical and environmental relevance. In this study, we developed a pyranine-based fluorescent "turn-off" method for PQ sensing based on pyranine-PQ interaction. We investigated the dependence of analytical performance of this method on the experimental conditions, such as the ion strength, medium pH, and so on. Under the optimized conditions, the method is sensitive and selective, and could be used for PQ detection in real-world sample. This study essentially provides a readily accessible fluorescent system for PQ sensing which is cheap, robust, and technically simple, and it is envisaged to find more interesting clinical and environmental applications.
Compressive sensing method for recognizing cat-eye effect targets.
Li, Li; Li, Hui; Dang, Ersheng; Liu, Bo
2013-10-01
This paper proposes a cat-eye effect target recognition method with compressive sensing (CS) and presents a recognition method (sample processing before reconstruction based on compressed sensing, or SPCS) for image processing. In this method, the linear projections of original image sequences are applied to remove dynamic background distractions and extract cat-eye effect targets. Furthermore, the corresponding imaging mechanism for acquiring active and passive image sequences is put forward. This method uses fewer images to recognize cat-eye effect targets, reduces data storage, and translates the traditional target identification, based on original image processing, into measurement vectors processing. The experimental results show that the SPCS method is feasible and superior to the shape-frequency dual criteria method.
Development of sensing techniques for weaponry health monitoring
NASA Astrophysics Data System (ADS)
Edwards, Eugene; Ruffin, Paul B.; Walker, Ebonee A.; Brantley, Christina L.
2013-04-01
Due to the costliness of destructive evaluation methods for assessing the aging and shelf-life of missile and rocket components, the identification of nondestructive evaluation methods has become increasingly important to the Army. Verifying that there is a sufficient concentration of stabilizer is a dependable indicator that the missile's double-based solid propellant is viable. The research outlined in this paper summarizes the Army Aviation and Missile Research, Development, and Engineering Center's (AMRDEC's) comparative use of nanoporous membranes, carbon nanotubes, and optical spectroscopic configured sensing techniques for detecting degradation in rocket motor propellant. The first sensing technique utilizes a gas collecting chamber consisting of nanoporous structures that trap the smaller solid propellant particles for measurement by a gas analysis device. In collaboration with NASA-Ames, sensing methods are developed that utilize functionalized single-walled carbon nanotubes as the key sensing element. The optical spectroscopic sensing method is based on a unique light collecting optical fiber system designed to detect the concentration of the propellant stabilizer. Experimental setups, laboratory results, and overall effectiveness of each technique are presented in this paper. Expectations are for the three sensing mechanisms to provide nondestructive evaluation methods that will offer cost-savings and improved weaponry health monitoring.
Ground-Based Remote Sensing of Water-Stressed Crops: Thermal and Multispectral Imaging
USDA-ARS?s Scientific Manuscript database
Ground-based methods of remote sensing can be used as ground-truthing for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted ...
Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers
Xu, Lin; Zhang, Zhaowei; Zhang, Qi; Li, Peiwu
2016-01-01
Mycotoxin contamination threatens health and life of humans and animals throughout the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin contamination. Advanced sensors based on antibodies or aptamers boast the advantages of high sensitivity and rapidity, and have been used in the mycotoxin sensing. These sensors are miniaturized, thereby lowering costs, and are applicable to high-throughput modes. In this work, the latest developments in sensing strategies for mycotoxin determination were critically discussed. Optical and electrochemical sensing modes were compared. The sensing methods for single mycotoxin or multiple mycotoxins in food samples were reviewed, along with the challenges and the future of antibody or aptamer-based sensors. This work might promote academic studies and industrial applications for mycotoxin sensing. PMID:27529281
Research on distributed optical fiber sensing data processing method based on LabVIEW
NASA Astrophysics Data System (ADS)
Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing
2018-01-01
The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.
Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Haizi; Tu, Wanli; Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com
2015-04-07
We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in amore » higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.« less
[Estimation of desert vegetation coverage based on multi-source remote sensing data].
Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui
2012-12-01
Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.
NASA Astrophysics Data System (ADS)
Moonon, Altan-Ulzii; Hu, Jianwen; Li, Shutao
2015-12-01
The remote sensing image fusion is an important preprocessing technique in remote sensing image processing. In this paper, a remote sensing image fusion method based on the nonsubsampled shearlet transform (NSST) with sparse representation (SR) is proposed. Firstly, the low resolution multispectral (MS) image is upsampled and color space is transformed from Red-Green-Blue (RGB) to Intensity-Hue-Saturation (IHS). Then, the high resolution panchromatic (PAN) image and intensity component of MS image are decomposed by NSST to high and low frequency coefficients. The low frequency coefficients of PAN and the intensity component are fused by the SR with the learned dictionary. The high frequency coefficients of intensity component and PAN image are fused by local energy based fusion rule. Finally, the fused result is obtained by performing inverse NSST and inverse IHS transform. The experimental results on IKONOS and QuickBird satellites demonstrate that the proposed method provides better spectral quality and superior spatial information in the fused image than other remote sensing image fusion methods both in visual effect and object evaluation.
Remote sensing image segmentation based on Hadoop cloud platform
NASA Astrophysics Data System (ADS)
Li, Jie; Zhu, Lingling; Cao, Fubin
2018-01-01
To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.
Automated railroad reconstruction from remote sensing image based on texture filter
NASA Astrophysics Data System (ADS)
Xiao, Jie; Lu, Kaixia
2018-03-01
Techniques of remote sensing have been improved incredibly in recent years and very accurate results and high resolution images can be acquired. There exist possible ways to use such data to reconstruct railroads. In this paper, an automated railroad reconstruction method from remote sensing images based on Gabor filter was proposed. The method is divided in three steps. Firstly, the edge-oriented railroad characteristics (such as line features) in a remote sensing image are detected using Gabor filter. Secondly, two response images with the filtering orientations perpendicular to each other are fused to suppress the noise and acquire a long stripe smooth region of railroads. Thirdly, a set of smooth regions can be extracted by firstly computing global threshold for the previous result image using Otsu's method and then converting it to a binary image based on the previous threshold. This workflow is tested on a set of remote sensing images and was found to deliver very accurate results in a quickly and highly automated manner.
Adaptive compressed sensing of remote-sensing imaging based on the sparsity prediction
NASA Astrophysics Data System (ADS)
Yang, Senlin; Li, Xilong; Chong, Xin
2017-10-01
The conventional compressive sensing works based on the non-adaptive linear projections, and the parameter of its measurement times is usually set empirically. As a result, the quality of image reconstruction is always affected. Firstly, the block-based compressed sensing (BCS) with conventional selection for compressive measurements was given. Then an estimation method for the sparsity of image was proposed based on the two dimensional discrete cosine transform (2D DCT). With an energy threshold given beforehand, the DCT coefficients were processed with both energy normalization and sorting in descending order, and the sparsity of the image can be achieved by the proportion of dominant coefficients. And finally, the simulation result shows that, the method can estimate the sparsity of image effectively, and provides an active basis for the selection of compressive observation times. The result also shows that, since the selection of observation times is based on the sparse degree estimated with the energy threshold provided, the proposed method can ensure the quality of image reconstruction.
NASA Astrophysics Data System (ADS)
Li, Lu-Ming; Zhu, Qian; Zhang, Zhi-Guo; Cai, Zhi-Min; Liao, Zhi-Jun; Hu, Zhen-Yan
2017-04-01
In this paper, a light intensity monitoring method based on FBG is proposed. The method establishes a light intensity monitoring model with cantilever beam structure and BP neural network algorithm, which is based on fiber grating sensing technology. The accuracy of the model can meet the requirements of engineering project and it can monitor light intensity in real time. The experimental results show that the method has good stability and high sensitivity.
Wang, Guizhou; Liu, Jianbo; He, Guojin
2013-01-01
This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808
Palladium and platinum-based nanoparticle functional sensor layers for selective H2 sensing
Ohodnicki, Jr., Paul R.; Baltrus, John P.; Brown, Thomas D.
2017-07-04
The disclosure relates to a plasmon resonance-based method for H.sub.2 sensing in a gas stream utilizing a hydrogen sensing material. The hydrogen sensing material is comprises Pd-based or Pt-based nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. The hydrogen sensing material utilized in the method of this disclosure may be prepared using means known in the art for the production of nanoparticles dispersed within a supporting matrix including sol-gel based wet chemistry techniques, impregnation techniques, implantation techniques, sputtering techniques, and others.
Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors
NASA Astrophysics Data System (ADS)
Zhao, Yalei; Zhang, Wenlong; Yang, Bin; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng
2017-11-01
Gas sensing for hydrothermal synthesized SnO2-based gas sensors can be enhanced in three ways: structural improvement, composition optimization, and processing improvement. There have been zero-dimensional, one-dimensional, and three-dimensional structures reported in the literature. Controllable synthesis of different structures has been deployed to increase specific surface area. Change of composition would intensively tailor the SnO2 structure, which affected the gas-sensing performance. Furthermore, doping and compounding methods have been adopted to promote gas-sensing performance by adjusting surface conditions of SnO2 crystals and constructing heterojunctions. As for processing area, it is very important to find the optimal reaction time and temperature. In this paper, a gas-solid reaction rate constant was proposed to evaluate gas-sensing properties and find an excellent hydrothermal synthesized SnO2-based gas sensor.
Chasin, Rachel; Rumshisky, Anna; Uzuner, Ozlem; Szolovits, Peter
2014-01-01
Objective To evaluate state-of-the-art unsupervised methods on the word sense disambiguation (WSD) task in the clinical domain. In particular, to compare graph-based approaches relying on a clinical knowledge base with bottom-up topic-modeling-based approaches. We investigate several enhancements to the topic-modeling techniques that use domain-specific knowledge sources. Materials and methods The graph-based methods use variations of PageRank and distance-based similarity metrics, operating over the Unified Medical Language System (UMLS). Topic-modeling methods use unlabeled data from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC II) database to derive models for each ambiguous word. We investigate the impact of using different linguistic features for topic models, including UMLS-based and syntactic features. We use a sense-tagged clinical dataset from the Mayo Clinic for evaluation. Results The topic-modeling methods achieve 66.9% accuracy on a subset of the Mayo Clinic's data, while the graph-based methods only reach the 40–50% range, with a most-frequent-sense baseline of 56.5%. Features derived from the UMLS semantic type and concept hierarchies do not produce a gain over bag-of-words features in the topic models, but identifying phrases from UMLS and using syntax does help. Discussion Although topic models outperform graph-based methods, semantic features derived from the UMLS prove too noisy to improve performance beyond bag-of-words. Conclusions Topic modeling for WSD provides superior results in the clinical domain; however, integration of knowledge remains to be effectively exploited. PMID:24441986
Takeshima, Hidenori; Saitoh, Kanako; Nitta, Shuhei; Shiodera, Taichiro; Takeguchi, Tomoyuki; Bannae, Shuhei; Kuhara, Shigehide
2018-03-13
Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. The goal of the present study was to develop a method that achieves short acquisition times, while maintaining a cost-effective reconstruction, for dynamic MRI. k - t sensitivity encoding (SENSE) was identified as the base method to be enhanced meeting these two requirements. The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal (x - f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k - t SENSE technique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the x - f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for sensitivity estimation because the strongly aliased signals have been removed. For the same reduction factor 4, the net reduction factor 4 for the proposed method was significantly higher than the factor 2.29 achieved by k - t SENSE. The processing time is reduced from 4.1 s for k - t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the k - t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views. In the present study, k - t SENSE was identified as a suitable base method to be improved achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics of base method, a novel implementation is proposed, estimating the x - f sensitivity without the need for an explicit scan of the reference signals. Experimental results showed that the acquisition, computational times and image quality for the proposed method were improved compared to the standard k - t SENSE method.
NASA Astrophysics Data System (ADS)
Tan, Xiangli; Yang, Jungang; Deng, Xinpu
2018-04-01
In the process of geometric correction of remote sensing image, occasionally, a large number of redundant control points may result in low correction accuracy. In order to solve this problem, a control points filtering algorithm based on RANdom SAmple Consensus (RANSAC) was proposed. The basic idea of the RANSAC algorithm is that using the smallest data set possible to estimate the model parameters and then enlarge this set with consistent data points. In this paper, unlike traditional methods of geometric correction using Ground Control Points (GCPs), the simulation experiments are carried out to correct remote sensing images, which using visible stars as control points. In addition, the accuracy of geometric correction without Star Control Points (SCPs) optimization is also shown. The experimental results show that the SCPs's filtering method based on RANSAC algorithm has a great improvement on the accuracy of remote sensing image correction.
NASA Astrophysics Data System (ADS)
Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi
2017-01-01
Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.
NASA Astrophysics Data System (ADS)
Sun, Yi; Cai, Haoyuan; Wang, Xiaoping
2017-12-01
A metamaterial-gold multilayer sensing structure designed using the particle swarm optimization (PSO) algorithm with an auxiliary grating is proposed for using in a surface plasmon resonance (SPR) sensor system based on the polarization control method. After numerical calculations and simulation analysis, it was found that the metamaterial sensing structure significantly improves the sensitivity of the SPR signal with intensity singularity. The metamaterial sensing structure also increases the penetration depth of evanescent wave, making it possible to detect low-molecular-weight biomolecules and larger cells such as bacteria. The auxiliary grating structure was designed to identify the refractive index of the sensing region on both sides of intensity singularity. The stability of recognition and the electric field intensity of the visible light band were also studied.
Portable Cytometry Using Microscale Electronic Sensing
Emaminejad, Sam; Paik, Kee-Hyun; Tabard-Cossa, Vincent; Javanmard, Mehdi
2015-01-01
In this manuscript, we present three different micro-impedance sensing architectures for electronic counting of cells and beads. The first method of sensing is based on using an open circuit sensing electrode integrated in a micro-pore, which measures the shift in potential as a micron-sized particle passes through. Our micro-pore, based on a funnel shaped microchannel, was fabricated in PDMS and was bound covalently to a glass substrate patterned with a gold open circuit electrode. The amplification circuitry was integrated onto a battery-powered custom printed circuit board. The second method is based on a three electrode differential measurement, which opens up the potential of using signal processing techniques to increase signal to noise ratio post measurement. The third architecture uses a contactless sensing approach, which significantly minimizes the cost of the consumable component of the impedance cytometer. We demonstrated proof of concept for the three sensing architectures by measuring the detected signal due to the passage of micron sized beads through the pore. PMID:27647950
NASA Astrophysics Data System (ADS)
Cao, Huiliang; Li, Hongsheng; Shao, Xingling; Liu, Zhiyu; Kou, Zhiwei; Shan, Yanhu; Shi, Yunbo; Shen, Chong; Liu, Jun
2018-01-01
This paper presents the bandwidth expanding method with wide-temperature range for sense mode coupling dual-mass MEMS gyro. The real sensing mode of the gyroscope is analyzed to be the superposition of in-phase and anti-phase sensing modes. The mechanical sensitivity and bandwidth of the gyroscope structure are conflicted with each other and both governed by the frequency difference between sensing and drive modes (min {Δω1, Δω2}). The sensing mode force rebalancing combs stimulation method (FRCSM) is presented to simulate the Coriolis force, and based on this method, the gyro's dynamic characteristics are tested. The sensing closed- loop controller is achieved by operational amplifier based on phase lead method, which enable the magnitude margin and phase margin of the system to reach 7.21 dB and 34.6° respectively, and the closed-loop system also expands gyro bandwidth from 13 Hz (sensing open-loop) to 102 Hz (sensing closed-loop). What's more, the turntable test results show that the sensing closed-loop works stably in wide-temperature range (from -40 °C to 60 °C) and the bandwidth values are 107 Hz @-40 °C and 97 Hz @60 °C. The results indicate that the higher temperature causes lower bandwidth, and verify the simulation results are 103 Hz @-40 °C and 98.2 Hz @60 °C. The new bottleneck of the closed loop bandwidth is the valley generated by conjugate zeros, which is formed by superposition of sensing modes.
Survey of in-situ and remote sensing methods for soil moisture determination
NASA Technical Reports Server (NTRS)
Schmugge, T. J.; Jackson, T. J.; Mckim, H. L.
1981-01-01
General methods for determining the moisture content in the surface layers of the soil based on in situ or point measurements, soil water models and remote sensing observations are surveyed. In situ methods described include gravimetric techniques, nuclear techniques based on neutron scattering or gamma-ray attenuation, electromagnetic techniques, tensiometric techniques and hygrometric techniques. Soil water models based on column mass balance treat soil moisture contents as a result of meteorological inputs (precipitation, runoff, subsurface flow) and demands (evaporation, transpiration, percolation). The remote sensing approaches are based on measurements of the diurnal range of surface temperature and the crop canopy temperature in the thermal infrared, measurements of the radar backscattering coefficient in the microwave region, and measurements of microwave emission or brightness temperature. Advantages and disadvantages of the various methods are pointed out, and it is concluded that a successful monitoring system must incorporate all of the approaches considered.
Reitz, Meredith; Senay, Gabriel; Sanford, Ward E.
2017-01-01
Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70% of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately across different spatio-temporal scales. The increasing availability of remotely sensed data has led to significant advances in the frequency and spatial resolution of ET estimates, derived from energy balance principles with variables such as temperature used to estimate surface latent heat flux. Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET independently of other water budget components can lead to inconsistency with other budget terms. Methods that rely on ground-based data better constrain long-term ET, but are unable to provide the same temporal resolution. Here we combine long-term ET estimates from a water-balance approach with the SSEBop (operational Simplified Surface Energy Balance) remote sensing-based ET product for 2000–2015. We test the new combined method, the original SSEBop product, and another remote sensing ET product (MOD16) against monthly measurements from 119 flux towers. The new product showed advantages especially in non-irrigated areas where the new method showed a coefficient of determination R2 of 0.44, compared to 0.41 for SSEBop or 0.35 for MOD16. The resulting monthly data set will be a useful, unique contribution to ET estimation, due to its combination of remote sensing-based variability and ground-based long-term water balance constraints.
Objected-oriented remote sensing image classification method based on geographic ontology model
NASA Astrophysics Data System (ADS)
Chu, Z.; Liu, Z. J.; Gu, H. Y.
2016-11-01
Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.
Hou, Bin; Wang, Yunhong; Liu, Qingjie
2016-01-01
Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation. PMID:27618903
Hou, Bin; Wang, Yunhong; Liu, Qingjie
2016-08-27
Characterizations of up to date information of the Earth's surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.
C. Alina Cansler; Donald McKenzie
2012-01-01
Remotely sensed indices of burn severity are now commonly used by researchers and land managers to assess fire effects, but their relationship to field-based assessments of burn severity has been evaluated only in a few ecosystems. This analysis illustrates two cases in which methodological refinements to field-based and remotely sensed indices of burn severity...
Nanomaterial-based electrochemical sensors for arsenic - A review.
Kempahanumakkagari, Sureshkumar; Deep, Akash; Kim, Ki-Hyun; Kumar Kailasa, Suresh; Yoon, Hye-On
2017-09-15
The existence of arsenic in the environment poses severe global health threats. Considering its toxicity, the sensing of arsenic is extremely important. Due to the complexity of environmental and biological samples, many of the available detection methods for arsenic have serious limitations on selectivity and sensitivity. To improve sensitivity and selectivity and to circumvent interferences, different electrode systems have been developed based on surface modification with nanomaterials including carbonaceous nanomaterials, metallic nanoparticles (MNPs), metal nanotubes (MNTs), and even enzymes. Despite the progress made in electrochemical sensing of arsenic, some issues still need to be addressed to realize cost effective, portable, and flow-injection type sensor systems. The present review provides an in-depth evaluation of the nanoparticle-modified electrode (NME) based methods for the electrochemical sensing of arsenic. NME based sensing systems are projected to become an important option for monitoring hazardous pollutants in both environmental and biological media. Copyright © 2017 Elsevier B.V. All rights reserved.
A method of vehicle license plate recognition based on PCANet and compressive sensing
NASA Astrophysics Data System (ADS)
Ye, Xianyi; Min, Feng
2018-03-01
The manual feature extraction of the traditional method for vehicle license plates has no good robustness to change in diversity. And the high feature dimension that is extracted with Principal Component Analysis Network (PCANet) leads to low classification efficiency. For solving these problems, a method of vehicle license plate recognition based on PCANet and compressive sensing is proposed. First, PCANet is used to extract the feature from the images of characters. And then, the sparse measurement matrix which is a very sparse matrix and consistent with Restricted Isometry Property (RIP) condition of the compressed sensing is used to reduce the dimensions of extracted features. Finally, the Support Vector Machine (SVM) is used to train and recognize the features whose dimension has been reduced. Experimental results demonstrate that the proposed method has better performance than Convolutional Neural Network (CNN) in the recognition and time. Compared with no compression sensing, the proposed method has lower feature dimension for the increase of efficiency.
Visual Sensing for Urban Flood Monitoring
Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han
2015-01-01
With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201
NASA Astrophysics Data System (ADS)
Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman
2018-02-01
The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.
A temperature compensation methodology for piezoelectric based sensor devices
NASA Astrophysics Data System (ADS)
Wang, Dong F.; Lou, Xueqiao; Bao, Aijian; Yang, Xu; Zhao, Ji
2017-08-01
A temperature compensation methodology comprising a negative temperature coefficient thermistor with the temperature characteristics of a piezoelectric material is proposed to improve the measurement accuracy of piezoelectric sensing based devices. The piezoelectric disk is characterized by using a disk-shaped structure and is also used to verify the effectiveness of the proposed compensation method. The measured output voltage shows a nearly linear relationship with respect to the applied pressure by introducing the proposed temperature compensation method in a temperature range of 25-65 °C. As a result, the maximum measurement accuracy is observed to be improved by 40%, and the higher the temperature, the more effective the method. The effective temperature range of the proposed method is theoretically analyzed by introducing the constant coefficient of the thermistor (B), the resistance of initial temperature (R0), and the paralleled resistance (Rx). The proposed methodology can not only eliminate the influence of piezoelectric temperature dependent characteristics on the sensing accuracy but also decrease the power consumption of piezoelectric sensing based devices by the simplified sensing structure.
Broadband Phase Retrieval for Image-Based Wavefront Sensing
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2007-01-01
A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature wavefront sensing, and Shack-Hartmann sensing, all of which entail disadvantages in comparison with image-based methods. The main disadvantages of these non-image based methods are complexity of test equipment and the need for a wavefront reference.
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
3D sensitivity encoded ellipsoidal MR spectroscopic imaging of gliomas at 3T☆
Ozturk-Isik, Esin; Chen, Albert P.; Crane, Jason C.; Bian, Wei; Xu, Duan; Han, Eric T.; Chang, Susan M.; Vigneron, Daniel B.; Nelson, Sarah J.
2010-01-01
Purpose The goal of this study was to implement time efficient data acquisition and reconstruction methods for 3D magnetic resonance spectroscopic imaging (MRSI) of gliomas at a field strength of 3T using parallel imaging techniques. Methods The point spread functions, signal to noise ratio (SNR), spatial resolution, metabolite intensity distributions and Cho:NAA ratio of 3D ellipsoidal, 3D sensitivity encoding (SENSE) and 3D combined ellipsoidal and SENSE (e-SENSE) k-space sampling schemes were compared with conventional k-space data acquisition methods. Results The 3D SENSE and e-SENSE methods resulted in similar spectral patterns as the conventional MRSI methods. The Cho:NAA ratios were highly correlated (P<.05 for SENSE and P<.001 for e-SENSE) with the ellipsoidal method and all methods exhibited significantly different spectral patterns in tumor regions compared to normal appearing white matter. The geometry factors ranged between 1.2 and 1.3 for both the SENSE and e-SENSE spectra. When corrected for these factors and for differences in data acquisition times, the empirical SNRs were similar to values expected based upon theoretical grounds. The effective spatial resolution of the SENSE spectra was estimated to be same as the corresponding fully sampled k-space data, while the spectra acquired with ellipsoidal and e-SENSE k-space samplings were estimated to have a 2.36–2.47-fold loss in spatial resolution due to the differences in their point spread functions. Conclusion The 3D SENSE method retained the same spatial resolution as full k-space sampling but with a 4-fold reduction in scan time and an acquisition time of 9.28 min. The 3D e-SENSE method had a similar spatial resolution as the corresponding ellipsoidal sampling with a scan time of 4:36 min. Both parallel imaging methods provided clinically interpretable spectra with volumetric coverage and adequate SNR for evaluating Cho, Cr and NAA. PMID:19766422
Sensing Methods for Detecting Analog Television Signals
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi
This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.
Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation.
Cao, Yuan; Guo, Tuan; Wang, Xudong; Sun, Dandan; Ran, Yang; Feng, Xinhuan; Guan, Bai-ou
2015-10-19
In situ bio-sensing system based on microwave photonics filter (MPF) interrogation method with improved resolution is proposed and experimentally demonstrated. A microfiber Bragg grating (mFBG) is used as sensing probe for DNA hybridization detection. Different from the traditional wavelength monitoring technique, we use the frequency interrogation scheme for resolution-improved bio-sensing detection. Experimental results show that the frequency shift of MPF notch presents a linear response to the surrounding refractive index (SRI) change over the range of 1.33 to 1.38, with a SRI resolution up to 2.6 × 10(-5) RIU, which has been increased for almost two orders of magnitude compared with the traditional fundamental mode monitoring technique (~3.6 × 10(-3) RIU). Due to the high Q value (about 27), the whole process of DNA hybridization can be in situ monitored. The proposed MPF-based bio-sensing system provides a new interrogation method over the frequency domain with improved sensing resolution and rapid interrogation rate for biochemical and environmental measurement.
Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation
Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi
1999-09-14
Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.
EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY
EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...
Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T.; Griswold, Mark A.; Collins, Christopher M.
2014-01-01
Purpose Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) heating evaluation. Methods A compressed sensing approach that exploits sparsity of the complex difference between post-heating and baseline images is proposed to accelerate PRF temperature mapping. The method exploits the intra- and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed techniques. Results The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local PRF temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo . Conclusion Complex difference based compressed sensing with utilization of a fully-sampled baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. PMID:24753099
The review of dynamic monitoring technology for crop growth
NASA Astrophysics Data System (ADS)
Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong
2010-10-01
In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.
Sensing textile seam-line for wearable multimodal physiological monitoring.
McKnight, M; Agcayazi, T; Kausche, H; Ghosh, T; Bozkurt, A
2016-08-01
This paper investigates a novel multimodal sensing method by forming seam-lines of conductive textile fibers into commercially available fabrics. The proposed ultra-low cost micro-electro-mechanical sensor would provide, wearable, flexible, textile based biopotential signal recording, wetness detection and tactile sensing simultaneously. Three types of fibers are evaluated for their array-based sensing capability, including a 3D printed conductive fiber, a multiwall carbon nanotube based fiber, and a commercially available stainless steel conductive thread. The sensors were shown to have a correlation between capacitance and pressure; impedance and wetness; and recorded potential and ECG waveforms.
NASA Technical Reports Server (NTRS)
Badler, N. I.
1985-01-01
Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.
Development and Testing of Physically-Based Methods for Filling Gaps in Remotely Sensed River Data
2011-09-30
Filling Gaps in Remotely Sensed River Data Jonathan M. Nelson US Geological Survey National Research Program Geomorphology and Sediment Transport...the research work carried out under this grant are to develop and test two methods for filling in gaps in remotely sensed river data. The first...information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215
Fast coarse-fine locating method for φ-OTDR.
Mei, Xuanwei; Pang, Fufei; Liu, Huanhuan; Yu, Guoqin; Shao, Yuying; Qian, Tianyu; Mou, Chengbo; Lv, Longbao; Wang, Tingyun
2018-02-05
We proposed and demonstrated a coarse-fine method to achieve fast locating of external vibration for the phase-sensitive optical time-domain reflectometer (φ-OTDR) sensing system. Firstly, the acquired backscattered traces from heterodyne coherent φ-OTDR systems are spatially divided into a few segments along a sensing fiber for coarse locating, and most of the acquired data can be excluded by comparing the phase difference between the endpoints in adjacent segments. Secondly, the amplitude-based locating is implemented within the target segments for fine locating. By using the proposed coarse-fine locating method, we have numerically and experimentally investigated a distributed vibration sensor based on the heterodyne coherent φ-OTDR system with a 50-km-long sensing fiber. We find that the computation cost of signal processing for locating is significantly reduced in the long-haul sensing fiber, showing a potential application in real-time locating of external vibration.
A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.
Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi
2009-01-01
Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.
A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing
Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi
2009-01-01
Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs. PMID:22399990
Remote sensing of suspended sediment water research: principles, methods, and progress
NASA Astrophysics Data System (ADS)
Shen, Ping; Zhang, Jing
2011-12-01
In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.
Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol
2017-10-01
A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.
Identifying city PV roof resource based on Gabor filter
NASA Astrophysics Data System (ADS)
Ruhang, Xu; Zhilin, Liu; Yong, Huang; Xiaoyu, Zhang
2017-06-01
To identify a city’s PV roof resources, the area and ownership distribution of residential buildings in an urban district should be assessed. To achieve this assessment, remote sensing data analysing is a promising approach. Urban building roof area estimation is a major topic for remote sensing image information extraction. There are normally three ways to solve this problem. The first way is pixel-based analysis, which is based on mathematical morphology or statistical methods; the second way is object-based analysis, which is able to combine semantic information and expert knowledge; the third way is signal-processing view method. This paper presented a Gabor filter based method. This result shows that the method is fast and with proper accuracy.
Scaling field data to calibrate and validate moderate spatial resolution remote sensing models
Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Zhu, Z.
2007-01-01
Validation and calibration are essential components of nearly all remote sensing-based studies. In both cases, ground measurements are collected and then related to the remote sensing observations or model results. In many situations, and particularly in studies that use moderate resolution remote sensing, a mismatch exists between the sensor's field of view and the scale at which in situ measurements are collected. The use of in situ measurements for model calibration and validation, therefore, requires a robust and defensible method to spatially aggregate ground measurements to the scale at which the remotely sensed data are acquired. This paper examines this challenge and specifically considers two different approaches for aggregating field measurements to match the spatial resolution of moderate spatial resolution remote sensing data: (a) landscape stratification; and (b) averaging of fine spatial resolution maps. The results show that an empirically estimated stratification based on a regression tree method provides a statistically defensible and operational basis for performing this type of procedure.
Kim, Tae Hyung; Setsompop, Kawin; Haldar, Justin P.
2016-01-01
Purpose Parallel imaging and partial Fourier acquisition are two classical approaches for accelerated MRI. Methods that combine these approaches often rely on prior knowledge of the image phase, but the need to obtain this prior information can place practical restrictions on the data acquisition strategy. In this work, we propose and evaluate SENSE-LORAKS, which enables combined parallel imaging and partial Fourier reconstruction without requiring prior phase information. Theory and Methods The proposed formulation is based on combining the classical SENSE model for parallel imaging data with the more recent LORAKS framework for MR image reconstruction using low-rank matrix modeling. Previous LORAKS-based methods have successfully enabled calibrationless partial Fourier parallel MRI reconstruction, but have been most successful with nonuniform sampling strategies that may be hard to implement for certain applications. By combining LORAKS with SENSE, we enable highly-accelerated partial Fourier MRI reconstruction for a broader range of sampling trajectories, including widely-used calibrationless uniformly-undersampled trajectories. Results Our empirical results with retrospectively undersampled datasets indicate that when SENSE-LORAKS reconstruction is combined with an appropriate k-space sampling trajectory, it can provide substantially better image quality at high-acceleration rates relative to existing state-of-the-art reconstruction approaches. Conclusion The SENSE-LORAKS framework provides promising new opportunities for highly-accelerated MRI. PMID:27037836
Intelligent Detection of Structure from Remote Sensing Images Based on Deep Learning Method
NASA Astrophysics Data System (ADS)
Xin, L.
2018-04-01
Utilizing high-resolution remote sensing images for earth observation has become the common method of land use monitoring. It requires great human participation when dealing with traditional image interpretation, which is inefficient and difficult to guarantee the accuracy. At present, the artificial intelligent method such as deep learning has a large number of advantages in the aspect of image recognition. By means of a large amount of remote sensing image samples and deep neural network models, we can rapidly decipher the objects of interest such as buildings, etc. Whether in terms of efficiency or accuracy, deep learning method is more preponderant. This paper explains the research of deep learning method by a great mount of remote sensing image samples and verifies the feasibility of building extraction via experiments.
A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2014-01-01
In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592
NASA Astrophysics Data System (ADS)
Liu, Likun
2018-01-01
In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.
Study on algorithm of process neural network for soft sensing in sewage disposal system
NASA Astrophysics Data System (ADS)
Liu, Zaiwen; Xue, Hong; Wang, Xiaoyi; Yang, Bin; Lu, Siying
2006-11-01
A new method of soft sensing based on process neural network (PNN) for sewage disposal system is represented in the paper. PNN is an extension of traditional neural network, in which the inputs and outputs are time-variation. An aggregation operator is introduced to process neuron, and it makes the neuron network has the ability to deal with the information of space-time two dimensions at the same time, so the data processing enginery of biological neuron is imitated better than traditional neuron. Process neural network with the structure of three layers in which hidden layer is process neuron and input and output are common neurons for soft sensing is discussed. The intelligent soft sensing based on PNN may be used to fulfill measurement of the effluent BOD (Biochemical Oxygen Demand) from sewage disposal system, and a good training result of soft sensing was obtained by the method.
Ground-based thermal and multispectral imaging of limited irrigation crops
USDA-ARS?s Scientific Manuscript database
Ground-based methods of remote sensing can be used as ground-truth for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted in ...
Statistical inference for remote sensing-based estimates of net deforestation
Ronald E. McRoberts; Brian F. Walters
2012-01-01
Statistical inference requires expression of an estimate in probabilistic terms, usually in the form of a confidence interval. An approach to constructing confidence intervals for remote sensing-based estimates of net deforestation is illustrated. The approach is based on post-classification methods using two independent forest/non-forest classifications because...
Adaptive compressed sensing of multi-view videos based on the sparsity estimation
NASA Astrophysics Data System (ADS)
Yang, Senlin; Li, Xilong; Chong, Xin
2017-11-01
The conventional compressive sensing for videos based on the non-adaptive linear projections, and the measurement times is usually set empirically. As a result, the quality of videos reconstruction is always affected. Firstly, the block-based compressed sensing (BCS) with conventional selection for compressive measurements was described. Then an estimation method for the sparsity of multi-view videos was proposed based on the two dimensional discrete wavelet transform (2D DWT). With an energy threshold given beforehand, the DWT coefficients were processed with both energy normalization and sorting by descending order, and the sparsity of the multi-view video can be achieved by the proportion of dominant coefficients. And finally, the simulation result shows that, the method can estimate the sparsity of video frame effectively, and provides an active basis for the selection of compressive observation times. The result also shows that, since the selection of observation times is based on the sparsity estimated with the energy threshold provided, the proposed method can ensure the reconstruction quality of multi-view videos.
A Calibration Method for Nanowire Biosensors to Suppress Device-to-device Variation
Ishikawa, Fumiaki N.; Curreli, Marco; Chang, Hsiao-Kang; Chen, Po-Chiang; Zhang, Rui; Cote, Richard J.; Thompson, Mark E.; Zhou, Chongwu
2009-01-01
Nanowire/nanotube biosensors have stimulated significant interest; however the inevitable device-to-device variation in the biosensor performance remains a great challenge. We have developed an analytical method to calibrate nanowire biosensor responses that can suppress the device-to-device variation in sensing response significantly. The method is based on our discovery of a strong correlation between the biosensor gate dependence (dIds/dVg) and the absolute response (absolute change in current, ΔI). In2O3 nanowire based biosensors for streptavidin detection were used as the model system. Studying the liquid gate effect and ionic concentration dependence of strepavidin sensing indicates that electrostatic interaction is the dominant mechanism for sensing response. Based on this sensing mechanism and transistor physics, a linear correlation between the absolute sensor response (ΔI) and the gate dependence (dIds/dVg) is predicted and confirmed experimentally. Using this correlation, a calibration method was developed where the absolute response is divided by dIds/dVg for each device, and the calibrated responses from different devices behaved almost identically. Compared to the common normalization method (normalization of the conductance/resistance/current by the initial value), this calibration method was proved advantageous using a conventional transistor model. The method presented here substantially suppresses device-to-device variation, allowing the use of nanosensors in large arrays. PMID:19921812
Scaling up functional traits for ecosystem services with remote sensing: concepts and methods.
Abelleira Martínez, Oscar J; Fremier, Alexander K; Günter, Sven; Ramos Bendaña, Zayra; Vierling, Lee; Galbraith, Sara M; Bosque-Pérez, Nilsa A; Ordoñez, Jenny C
2016-07-01
Ecosystem service-based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot-level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community-weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between functional trait and remote sensing methods for ecosystem service management.
Kim, Byoungjip; Kang, Seungwoo; Ha, Jin-Young; Song, Junehwa
2015-07-16
In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user's place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense.
Accommodating Student Diversity in Remote Sensing Instruction.
ERIC Educational Resources Information Center
Hammen, John L., III.
1992-01-01
Discusses the difficulty of teaching computer-based remote sensing to students of varying levels of computer literacy. Suggests an instructional method that accommodates all levels of technical expertise through the use of microcomputers. Presents a curriculum that includes an introduction to remote sensing, digital image processing, and…
NASA Astrophysics Data System (ADS)
Lee, Hyunki; Kim, Min Young; Moon, Jeon Il
2017-12-01
Phase measuring profilometry and moiré methodology have been widely applied to the three-dimensional shape measurement of target objects, because of their high measuring speed and accuracy. However, these methods suffer from inherent limitations called a correspondence problem, or 2π-ambiguity problem. Although a kind of sensing method to combine well-known stereo vision and phase measuring profilometry (PMP) technique simultaneously has been developed to overcome this problem, it still requires definite improvement for sensing speed and measurement accuracy. We propose a dynamic programming-based stereo PMP method to acquire more reliable depth information and in a relatively small time period. The proposed method efficiently fuses information from two stereo sensors in terms of phase and intensity simultaneously based on a newly defined cost function of dynamic programming. In addition, the important parameters are analyzed at the view point of the 2π-ambiguity problem and measurement accuracy. To analyze the influence of important hardware and software parameters related to the measurement performance and to verify its efficiency, accuracy, and sensing speed, a series of experimental tests were performed with various objects and sensor configurations.
NASA Astrophysics Data System (ADS)
Hu, Hang; Yu, Hong; Zhang, Yongzhi
2013-03-01
Cooperative spectrum sensing, which can greatly improve the ability of discovering the spectrum opportunities, is regarded as an enabling mechanism for cognitive radio (CR) networks. In this paper, we employ a double threshold detection method in energy detector to perform spectrum sensing, only the CR users with reliable sensing information are allowed to transmit one bit local decision to the fusion center. Simulation results will show that our proposed double threshold detection method could not only improve the sensing performance but also save the bandwidth of the reporting channel compared with the conventional detection method with one threshold. By weighting the sensing performance and the consumption of system resources in a utility function that is maximized with respect to the number of CR users, it has been shown that the optimal number of CR users is related to the price of these Quality-of-Service (QoS) requirements.
RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing
NASA Astrophysics Data System (ADS)
Gui, Guan; Xu, Li; Adachi, Fumiyuki
2014-12-01
Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.
Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo
2000-08-29
Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.
Oxazine-based sensor for contaminant detection, fabrication method therefor, and uses thereof
Nnanna, Agbai Agwu; Jalal, Ahmed Hasnian
2014-05-27
A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.
NASA Astrophysics Data System (ADS)
Wang, X.
2018-04-01
Tourism geological resources are of high value in admiration, scientific research and universal education, which need to be protected and rationally utilized. In the past, most of the remote sensing investigations of tourism geological resources used two-dimensional remote sensing interpretation method, which made it difficult for some geological heritages to be interpreted and led to the omission of some information. This aim of this paper is to assess the value of a method using the three-dimensional visual remote sensing image to extract information of geological heritages. skyline software system is applied to fuse the 0.36 m aerial images and 5m interval DEM to establish the digital earth model. Based on the three-dimensional shape, color tone, shadow, texture and other image features, the distribution of tourism geological resources in Shandong Province and the location of geological heritage sites were obtained, such as geological structure, DaiGu landform, granite landform, Volcanic landform, sandy landform, Waterscapes, etc. The results show that using this method for remote sensing interpretation is highly recognizable, making the interpretation more accurate and comprehensive.
SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.
Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua
2017-11-15
A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.
A Remote Sensing Image Fusion Method based on adaptive dictionary learning
NASA Astrophysics Data System (ADS)
He, Tongdi; Che, Zongxi
2018-01-01
This paper discusses using a remote sensing fusion method, based on' adaptive sparse representation (ASP)', to provide improved spectral information, reduce data redundancy and decrease system complexity. First, the training sample set is formed by taking random blocks from the images to be fused, the dictionary is then constructed using the training samples, and the remaining terms are clustered to obtain the complete dictionary by iterated processing at each step. Second, the self-adaptive weighted coefficient rule of regional energy is used to select the feature fusion coefficients and complete the reconstruction of the image blocks. Finally, the reconstructed image blocks are rearranged and an average is taken to obtain the final fused images. Experimental results show that the proposed method is superior to other traditional remote sensing image fusion methods in both spectral information preservation and spatial resolution.
Maes, W H; Steppe, K
2012-08-01
As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.
Methods of training the graduate level and professional geologist in remote sensing technology
NASA Technical Reports Server (NTRS)
Kolm, K. E.
1981-01-01
Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.
A review of spatial downscaling of satellite remotely sensed soil moisture
NASA Astrophysics Data System (ADS)
Peng, Jian; Loew, Alexander; Merlin, Olivier; Verhoest, Niko E. C.
2017-06-01
Satellite remote sensing technology has been widely used to estimate surface soil moisture. Numerous efforts have been devoted to develop global soil moisture products. However, these global soil moisture products, normally retrieved from microwave remote sensing data, are typically not suitable for regional hydrological and agricultural applications such as irrigation management and flood predictions, due to their coarse spatial resolution. Therefore, various downscaling methods have been proposed to improve the coarse resolution soil moisture products. The purpose of this paper is to review existing methods for downscaling satellite remotely sensed soil moisture. These methods are assessed and compared in terms of their advantages and limitations. This review also provides the accuracy level of these methods based on published validation studies. In the final part, problems and future trends associated with these methods are analyzed.
NASA Astrophysics Data System (ADS)
Zheng, Maoteng; Zhang, Yongjun; Zhou, Shunping; Zhu, Junfeng; Xiong, Xiaodong
2016-07-01
In recent years, new platforms and sensors in photogrammetry, remote sensing and computer vision areas have become available, such as Unmanned Aircraft Vehicles (UAV), oblique camera systems, common digital cameras and even mobile phone cameras. Images collected by all these kinds of sensors could be used as remote sensing data sources. These sensors can obtain large-scale remote sensing data which consist of a great number of images. Bundle block adjustment of large-scale data with conventional algorithm is very time and space (memory) consuming due to the super large normal matrix arising from large-scale data. In this paper, an efficient Block-based Sparse Matrix Compression (BSMC) method combined with the Preconditioned Conjugate Gradient (PCG) algorithm is chosen to develop a stable and efficient bundle block adjustment system in order to deal with the large-scale remote sensing data. The main contribution of this work is the BSMC-based PCG algorithm which is more efficient in time and memory than the traditional algorithm without compromising the accuracy. Totally 8 datasets of real data are used to test our proposed method. Preliminary results have shown that the BSMC method can efficiently decrease the time and memory requirement of large-scale data.
System and method for object localization
NASA Technical Reports Server (NTRS)
Kelly, Alonzo J. (Inventor); Zhong, Yu (Inventor)
2005-01-01
A computer-assisted method for localizing a rack, including sensing an image of the rack, detecting line segments in the sensed image, recognizing a candidate arrangement of line segments in the sensed image indicative of a predetermined feature of the rack, generating a matrix of correspondence between the candidate arrangement of line segments and an expected position and orientation of the predetermined feature of the rack, and estimating a position and orientation of the rack based on the matrix of correspondence.
Robust feature matching via support-line voting and affine-invariant ratios
NASA Astrophysics Data System (ADS)
Li, Jiayuan; Hu, Qingwu; Ai, Mingyao; Zhong, Ruofei
2017-10-01
Robust image matching is crucial for many applications of remote sensing and photogrammetry, such as image fusion, image registration, and change detection. In this paper, we propose a robust feature matching method based on support-line voting and affine-invariant ratios. We first use popular feature matching algorithms, such as SIFT, to obtain a set of initial matches. A support-line descriptor based on multiple adaptive binning gradient histograms is subsequently applied in the support-line voting stage to filter outliers. In addition, we use affine-invariant ratios computed by a two-line structure to refine the matching results and estimate the local affine transformation. The local affine model is more robust to distortions caused by elevation differences than the global affine transformation, especially for high-resolution remote sensing images and UAV images. Thus, the proposed method is suitable for both rigid and non-rigid image matching problems. Finally, we extract as many high-precision correspondences as possible based on the local affine extension and build a grid-wise affine model for remote sensing image registration. We compare the proposed method with six state-of-the-art algorithms on several data sets and show that our method significantly outperforms the other methods. The proposed method achieves 94.46% average precision on 15 challenging remote sensing image pairs, while the second-best method, RANSAC, only achieves 70.3%. In addition, the number of detected correct matches of the proposed method is approximately four times the number of initial SIFT matches.
NASA Astrophysics Data System (ADS)
Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.
2018-04-01
The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.
Luo, Yiyang; Xia, Li; Xu, Zhilin; Yu, Can; Sun, Qizhen; Li, Wei; Huang, Di; Liu, Deming
2015-02-09
An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.
Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.
Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol
2017-10-01
A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Seamline Determination Based on PKGC Segmentation for Remote Sensing Image Mosaicking
Dong, Qiang; Liu, Jinghong
2017-01-01
This paper presents a novel method of seamline determination for remote sensing image mosaicking. A two-level optimization strategy is applied to determine the seamline. Object-level optimization is executed firstly. Background regions (BRs) and obvious regions (ORs) are extracted based on the results of parametric kernel graph cuts (PKGC) segmentation. The global cost map which consists of color difference, a multi-scale morphological gradient (MSMG) constraint, and texture difference is weighted by BRs. Finally, the seamline is determined in the weighted cost from the start point to the end point. Dijkstra’s shortest path algorithm is adopted for pixel-level optimization to determine the positions of seamline. Meanwhile, a new seamline optimization strategy is proposed for image mosaicking with multi-image overlapping regions. The experimental results show the better performance than the conventional method based on mean-shift segmentation. Seamlines based on the proposed method bypass the obvious objects and take less time in execution. This new method is efficient and superior for seamline determination in remote sensing image mosaicking. PMID:28749446
Accurate estimation of motion blur parameters in noisy remote sensing image
NASA Astrophysics Data System (ADS)
Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong
2015-05-01
The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.
Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control
Cho, Youngtak; Shin, Narae; Kim, Daesan; Park, Jae Yeol
2017-01-01
This paper provides a concise review on the recent development of nanoscale hybrid systems based on carbon nanotubes (CNTs) for biological sensing and control. CNT-based hybrid systems have been intensively studied for versatile applications of biological interfaces such as sensing, cell therapy and tissue regeneration. Recent advances in nanobiotechnology not only enable the fabrication of highly sensitive biosensors at nanoscale but also allow the applications in the controls of cell growth and differentiation. This review describes the fabrication methods of such CNT-based hybrid systems and their applications in biosensing and cell controls. PMID:28188158
Paper as a platform for sensing applications and other devices: a review.
Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris
2015-04-29
Paper is a ubiquitous material that has various applications in day to day life. A sheet of paper is produced by pressing moist wood cellulose fibers together. Paper offers unique properties: paper allows passive liquid transport, it is compatible with many chemical and biochemical moieties, it exhibits piezoelectricity, and it is biodegradable. Hence, paper is an attractive low-cost functional material for sensing devices. In recent years, researchers in the field of science and engineering have witnessed an exponential growth in the number of research contributions that focus on the development of cost-effective and scalable fabrication methods and new applications of paper-based devices. In this review article, we highlight recent advances in the development of paper-based sensing devices in the areas of electronics, energy storage, strain sensing, microfluidic devices, and biosensing, including piezoelectric paper. Additionally, this review includes current limitations of paper-based sensing devices and points out issues that have limited the commercialization of some of the paper-based sensing devices.
NASA Astrophysics Data System (ADS)
Ma, Y.; Liu, S.
2017-12-01
Accurate estimation of surface evapotranspiration (ET) with high quality is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. However, many aspects urgently need to deeply research, such as the applicability of the ET models, the parameterization schemes optimization at the regional scale, the temporal upscaling, the selecting and developing of the spatiotemporal data fusion method and ground-based validation over heterogeneous land surfaces. This project is based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism need further investigation, including the applicability and the influencing factors, such as local environment, and heterogeneity of the landscape, for improving estimation accuracy. Due to technical and budget limitations, so far, optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions in Southwest China. Here, a multi-source remote sensing data fusion method (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) method will be proposed through blending multi-source remote sensing data acquired by optical, and passive microwave remote sensors on board polar satellite platforms. The accurate "all-weather" ET estimation will be carried out for daily ET of the River Source Region in Southwest China, and then the remotely sensed ET results are overlapped with the footprint-weighted images of EC (eddy correlation) for ground-based validation.
Fusion and quality analysis for remote sensing images using contourlet transform
NASA Astrophysics Data System (ADS)
Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram
2013-05-01
Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.
a New Approach for Accuracy Improvement of Pulsed LIDAR Remote Sensing Data
NASA Astrophysics Data System (ADS)
Zhou, G.; Huang, W.; Zhou, X.; He, C.; Li, X.; Huang, Y.; Zhang, L.
2018-05-01
In remote sensing applications, the accuracy of time interval measurement is one of the most important parameters that affect the quality of pulsed lidar data. The traditional time interval measurement technique has the disadvantages of low measurement accuracy, complicated circuit structure and large error. A high-precision time interval data cannot be obtained in these traditional methods. In order to obtain higher quality of remote sensing cloud images based on the time interval measurement, a higher accuracy time interval measurement method is proposed. The method is based on charging the capacitance and sampling the change of capacitor voltage at the same time. Firstly, the approximate model of the capacitance voltage curve in the time of flight of pulse is fitted based on the sampled data. Then, the whole charging time is obtained with the fitting function. In this method, only a high-speed A/D sampler and capacitor are required in a single receiving channel, and the collected data is processed directly in the main control unit. The experimental results show that the proposed method can get error less than 3 ps. Compared with other methods, the proposed method improves the time interval accuracy by at least 20 %.
Secure distribution for high resolution remote sensing images
NASA Astrophysics Data System (ADS)
Liu, Jin; Sun, Jing; Xu, Zheng Q.
2010-09-01
The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.
Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua
2009-08-01
Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.
Exploring Latent Class Based on Growth Rates in Number Sense Ability
ERIC Educational Resources Information Center
Kim, Dongil; Shin, Jaehyun; Lee, Kijyung
2013-01-01
The purpose of this study was to explore latent class based on growth rates in number sense ability by using latent growth class modeling (LGCM). LGCM is one of the noteworthy methods for identifying growth patterns of the progress monitoring within the response to intervention framework in that it enables us to analyze latent sub-groups based not…
NASA Astrophysics Data System (ADS)
Weng, Jiawen; Clark, David C.; Kim, Myung K.
2016-05-01
A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.
Method and system for controlling start of a permanent magnet machine
Walters, James E.; Krefta, Ronald John
2003-10-28
Method and system for controlling a permanent magnet machine are provided. The method provides a sensor assembly for sensing rotor sector position relative to a plurality of angular sectors. The method further provides a sensor for sensing angular increments in rotor position. The method allows starting the machine in a brushless direct current mode of operation using a calculated initial rotor position based on an initial angular sector position information from the sensor assembly. Upon determining a transition from the initial angular sector to the next angular sector, the method allows switching to a sinusoidal mode of operation using rotor position based on rotor position information from the incremental sensor.
Kim, Byoungjip; Kang, Seungwoo; Ha, Jin-Young; Song, Junehwa
2015-01-01
In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user’s place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense. PMID:26193275
2012-12-01
IR remote sensing o ers a measurement method to detect gaseous species in the outdoor environment. Two major obstacles limit the application of this... method in quantitative analysis : (1) the e ect of both temperature and concentration on the measured spectral intensities and (2) the di culty and...crucial. In this research, particle swarm optimization, a population- based optimization method was applied. Digital ltering and wavelet processing methods
Reusable glucose sensing using carbon nanotube-based self-assembly
NASA Astrophysics Data System (ADS)
Bhattacharyya, Tamoghna; Samaddar, Sarbani; Dasgupta, Anjan Kr.
2013-09-01
Lipid functionalized single walled carbon nanotube-based self assembly forms a super-micellar structure. This assemblage has been exploited to trap glucose oxidase in a molecular cargo for glucose sensing. The advantage of such a molecular trap is that all components of this unique structure (both the trapping shell and the entrapped enzyme) are reusable and rechargeable. The unique feature of this sensing method lies in the solid state functionalization of single walled carbon nanotubes that facilitates liquid state immobilization of the enzyme. The method can be used for soft-immobilization (a new paradigm in enzyme immobilization) of enzymes with better thermostability that is imparted by the strong hydrophobic environment provided through encapsulation by the nanotubes.Lipid functionalized single walled carbon nanotube-based self assembly forms a super-micellar structure. This assemblage has been exploited to trap glucose oxidase in a molecular cargo for glucose sensing. The advantage of such a molecular trap is that all components of this unique structure (both the trapping shell and the entrapped enzyme) are reusable and rechargeable. The unique feature of this sensing method lies in the solid state functionalization of single walled carbon nanotubes that facilitates liquid state immobilization of the enzyme. The method can be used for soft-immobilization (a new paradigm in enzyme immobilization) of enzymes with better thermostability that is imparted by the strong hydrophobic environment provided through encapsulation by the nanotubes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02609d
NASA Technical Reports Server (NTRS)
Spiering, Bruce; Underwood, Lauren; Ellis, Chris; Lehrter, John; Hagy, Jim; Schaeffer, Blake
2010-01-01
The goals of the project are to provide information from satellite remote sensing to support numeric nutrient criteria development and to determine data processing methods and data quality requirements to support nutrient criteria development and implementation. The approach is to identify water quality indicators that are used by decision makers to assess water quality and that are related to optical properties of the water; to develop remotely sensed data products based on algorithms relating remote sensing imagery to field-based observations of indicator values; to develop methods to assess estuarine water quality, including trends, spatial and temporal variability, and seasonality; and to develop tools to assist in the development and implementation of estuarine and coastal nutrient criteria. Additional slides present process, criteria development, typical data sources and analyses for criteria process, the power of remote sensing data for the process, examples from Pensacola Bay, spatial and temporal variability, pixel matchups, remote sensing validation, remote sensing in coastal waters, requirements for remotely sensed data products, and needs assessment. An additional presentation examines group engagement and information collection. Topics include needs assessment purpose and objectives, understanding water quality decision making, determining information requirements, and next steps.
NASA Astrophysics Data System (ADS)
Ye, Wei; Song, Wei
2018-02-01
In The Paper, the remote sensing monitoring of sea ice problem was turned into a classification problem in data mining. Based on the statistic of the related band data of HJ1B remote sensing images, the main bands of HJ1B images related with the reflectance of seawater and sea ice were found. On the basis, the decision tree rules for sea ice monitoring were constructed by the related bands found above, and then the rules were applied to Liaodong Bay area seriously covered by sea ice for sea ice monitoring. The result proved that the method is effective.
UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression.
Madore, Bruno
2004-08-01
This work aims at improving the performance of parallel imaging by using it with our "unaliasing by Fourier-encoding the overlaps in the temporal dimension" (UNFOLD) temporal strategy. A self-calibration method called "self, hybrid referencing with UNFOLD and GRAPPA" (SHRUG) is presented. SHRUG combines the UNFOLD-based sensitivity mapping strategy introduced in the TSENSE method by Kellman et al. (5), with the strategy introduced in the GRAPPA method by Griswold et al. (10). SHRUG merges the two approaches to alleviate their respective limitations, and provides fast self-calibration at any given acceleration factor. UNFOLD-SENSE further includes an UNFOLD artifact suppression scheme to significantly suppress artifacts and amplified noise produced by parallel imaging. This suppression scheme, which was published previously (4), is related to another method that was presented independently as part of TSENSE. While the two are equivalent at accelerations < or = 2.0, the present approach is shown here to be significantly superior at accelerations > 2.0, with up to double the artifact suppression at high accelerations. Furthermore, a slight modification of Cartesian SENSE is introduced, which allows departures from purely Cartesian sampling grids. This technique, termed variable-density SENSE (vdSENSE), allows the variable-density data required by SHRUG to be reconstructed with the simplicity and fast processing of Cartesian SENSE. UNFOLD-SENSE is given by the combination of SHRUG for sensitivity mapping, vdSENSE for reconstruction, and UNFOLD for artifact/amplified noise suppression. The method was implemented, with online reconstruction, on both an SSFP and a myocardium-perfusion sequence. The results from six patients scanned with UNFOLD-SENSE are presented.
Evidential analysis of difference images for change detection of multitemporal remote sensing images
NASA Astrophysics Data System (ADS)
Chen, Yin; Peng, Lijuan; Cremers, Armin B.
2018-03-01
In this article, we develop two methods for unsupervised change detection in multitemporal remote sensing images based on Dempster-Shafer's theory of evidence (DST). In most unsupervised change detection methods, the probability of difference image is assumed to be characterized by mixture models, whose parameters are estimated by the expectation maximization (EM) method. However, the main drawback of the EM method is that it does not consider spatial contextual information, which may entail rather noisy detection results with numerous spurious alarms. To remedy this, we firstly develop an evidence theory based EM method (EEM) which incorporates spatial contextual information in EM by iteratively fusing the belief assignments of neighboring pixels to the central pixel. Secondly, an evidential labeling method in the sense of maximizing a posteriori probability (MAP) is proposed in order to further enhance the detection result. It first uses the parameters estimated by EEM to initialize the class labels of a difference image. Then it iteratively fuses class conditional information and spatial contextual information, and updates labels and class parameters. Finally it converges to a fixed state which gives the detection result. A simulated image set and two real remote sensing data sets are used to evaluate the two evidential change detection methods. Experimental results show that the new evidential methods are comparable to other prevalent methods in terms of total error rate.
A NDVI assisted remote sensing image adaptive scale segmentation method
NASA Astrophysics Data System (ADS)
Zhang, Hong; Shen, Jinxiang; Ma, Yanmei
2018-03-01
Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.
A two-stage spectrum sensing scheme based on energy detection and a novel multitaper method
NASA Astrophysics Data System (ADS)
Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Xiong, Tian-Yi
2015-04-01
Wideband spectrum sensing has drawn much attention in recent years since it provides more opportunities to the secondary users. However, wideband spectrum sensing requires a long time and a complex mechanism at the sensing terminal. A two-stage wideband spectrum sensing scheme is considered to proceed spectrum sensing with low time consumption and high performance to tackle this predicament. In this scheme, a novel multitaper spectrum sensing (MSS) method is proposed to mitigate the poor performance of energy detection (ED) in the low signal-to-noise ratio (SNR) region. The closed-form expression of the decision threshold is derived based on the Neyman-Pearson criterion and the probability of detection in the Rayleigh fading channel is analyzed. An optimization problem is formulated to maximize the probability of detection of the proposed two-stage scheme and the average sensing time of the two-stage scheme is analyzed. Numerical results validate the efficiency of MSS and show that the two-stage spectrum sensing scheme enjoys higher performance in the low SNR region and lower time cost in the high SNR region than the single-stage scheme. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the China Postdoctoral Science Foundation (Grant No. 2014M550479), and the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011).
Su, Jin-He; Piao, Ying-Chao; Luo, Ze; Yan, Bao-Ping
2018-04-26
With the application of various data acquisition devices, a large number of animal movement data can be used to label presence data in remote sensing images and predict species distribution. In this paper, a two-stage classification approach for combining movement data and moderate-resolution remote sensing images was proposed. First, we introduced a new density-based clustering method to identify stopovers from migratory birds’ movement data and generated classification samples based on the clustering result. We split the remote sensing images into 16 × 16 patches and labeled them as positive samples if they have overlap with stopovers. Second, a multi-convolution neural network model is proposed for extracting the features from temperature data and remote sensing images, respectively. Then a Support Vector Machines (SVM) model was used to combine the features together and predict classification results eventually. The experimental analysis was carried out on public Landsat 5 TM images and a GPS dataset was collected on 29 birds over three years. The results indicated that our proposed method outperforms the existing baseline methods and was able to achieve good performance in habitat suitability prediction.
Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method
NASA Astrophysics Data System (ADS)
Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan
2018-04-01
Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.
Localised strain sensing of dielectric elastomers in a stretchable soft-touch musical keyboard
NASA Astrophysics Data System (ADS)
Xu, Daniel; Tairych, Andreas; Anderson, Iain A.
2015-04-01
We present a new sensing method that can measure the strain at different locations in a dielectric elastomer. The method uses multiple sensing frequencies to target different regions of the same dielectric elastomer to simultaneously detect position and pressure using only a single pair of connections. The dielectric elastomer is modelled as an RC transmission line and its internal voltage and current distribution used to determine localised capacitance changes resulting from contact and pressure. This sensing method greatly simplifies high degree of freedom systems and does not require any modifications to the dielectric elastomer or sensing hardware. It is demonstrated on a multi-touch musical keyboard made from a single low cost carbon-based dielectric elastomer with 4 distinct musical tones mapped along a length of 0.1m. Loudness was controlled by the amount of pressure applied to each of these 4 positions.
Interfacing geographic information systems and remote sensing for rural land-use analysis
NASA Technical Reports Server (NTRS)
Nellis, M. Duane; Lulla, Kamlesh; Jensen, John
1990-01-01
Recent advances in computer-based geographic information systems (GISs) are briefly reviewed, with an emphasis on the incorporation of remote-sensing data in GISs for rural applications. Topics addressed include sampling procedures for rural land-use analyses; GIS-based mapping of agricultural land use and productivity; remote sensing of land use and agricultural, forest, rangeland, and water resources; monitoring the dynamics of irrigation agriculture; GIS methods for detecting changes in land use over time; and the development of land-use modeling strategies.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
Remote sensing fusion based on guided image filtering
NASA Astrophysics Data System (ADS)
Zhao, Wenfei; Dai, Qinling; Wang, Leiguang
2015-12-01
In this paper, we propose a novel remote sensing fusion approach based on guided image filtering. The fused images can well preserve the spectral features of the original multispectral (MS) images, meanwhile, enhance the spatial details information. Four quality assessment indexes are also introduced to evaluate the fusion effect when compared with other fusion methods. Experiments carried out on Gaofen-2, QuickBird, WorldView-2 and Landsat-8 images. And the results show an excellent performance of the proposed method.
NASA Astrophysics Data System (ADS)
Dmitriev, Yegor V.; Kozoderov, Vladimir V.; Sokolov, Anton A.
2016-04-01
Collecting and updating forest inventory data play an important part in the forest management. The data can be obtained directly by using exact enough but low efficient ground based methods as well as from the remote sensing measurements. We present applications of airborne hyperspectral remote sensing for the retrieval of such important inventory parameters as the forest species and age composition. The hyperspectral images of the test region were obtained from the airplane equipped by the produced in Russia light-weight airborne video-spectrometer of visible and near infrared spectral range and high resolution photo-camera on the same gyro-stabilized platform. The quality of the thematic processing depends on many factors such as the atmospheric conditions, characteristics of measuring instruments, corrections and preprocessing methods, etc. An important role plays the construction of the classifier together with methods of the reduction of the feature space. The performance of different spectral classification methods is analyzed for the problem of hyperspectral remote sensing of soil and vegetation. For the reduction of the feature space we used the earlier proposed stable feature selection method. The results of the classification of hyperspectral airborne images by using the Multiclass Support Vector Machine method with Gaussian kernel and the parametric Bayesian classifier based on the Gaussian mixture model and their comparative analysis are demonstrated.
Mao, Xue Gang; Du, Zi Han; Liu, Jia Qian; Chen, Shu Xin; Hou, Ji Yu
2018-01-01
Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA or ) and intersection area of segmented object (RA os ) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA or was equal to RA os . The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.
NASA Astrophysics Data System (ADS)
Cong, Chao; Liu, Dingsheng; Zhao, Lingjun
2008-12-01
This paper discusses a new method for the automatic matching of ground control points (GCPs) between satellite remote sensing Image and digital raster graphic (DRG) in urban areas. The key of this method is to automatically extract tie point pairs according to geographic characters from such heterogeneous images. Since there are big differences between such heterogeneous images respect to texture and corner features, more detail analyzations are performed to find similarities and differences between high resolution remote sensing Image and (DRG). Furthermore a new algorithms based on the fuzzy-c means (FCM) method is proposed to extract linear feature in remote sensing Image. Based on linear feature, crossings and corners extracted from these features are chosen as GCPs. On the other hand, similar method was used to find same features from DRGs. Finally, Hausdorff Distance was adopted to pick matching GCPs from above two GCP groups. Experiences shown the method can extract GCPs from such images with a reasonable RMS error.
Human‐Like Sensing and Reflexes of Graphene‐Based Films
Zhang, Qin; Tan, Lifang; Chen, Yunxu; Zhang, Tao; Wang, Wenjie; Liu, Zhongfan
2016-01-01
Humans have numerous senses, wherein vision, hearing, smell, taste, and touch are considered as the five conventionally acknowledged senses. Triggered by light, sound, or other physical stimulations, the sensory organs of human body are excited, leading to the transformation of the afferent energy into neural activity. Also converting other signals into electronical signals, graphene‐based film shows its inherent advantages in responding to the tiny stimulations. In this review, the human‐like senses and reflexes of graphene‐based films are presented. The review starts with the brief discussions about the preparation and optimization of graphene‐based film, as where as its new progress in synthesis method, transfer operation, film‐formation technologies and optimization techniques. Various human‐like senses of graphene‐based film and their recent advancements are then summarized, including light‐sensitive devices, acoustic devices, gas sensors, biomolecules and wearable devices. Similar to the reflex action of humans, graphene‐based film also exhibits reflex when under thermal radiation and light actuation. Finally, the current challenges associated with human‐like applications are discussed to help guide the future research on graphene films. At last, the future opportunities lie in the new applicable human‐like senses and the integration of multiple senses that can raise a revolution in bionic devices. PMID:27981005
Hybrid region merging method for segmentation of high-resolution remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Xiao, Pengfeng; Feng, Xuezhi; Wang, Jiangeng; Wang, Zuo
2014-12-01
Image segmentation remains a challenging problem for object-based image analysis. In this paper, a hybrid region merging (HRM) method is proposed to segment high-resolution remote sensing images. HRM integrates the advantages of global-oriented and local-oriented region merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region, which provides an elegant way to avoid the problem of starting point assignment and to enhance the optimization ability for local-oriented region merging. During the region growing procedure, the merging iterations are constrained within the local vicinity, so that the segmentation is accelerated and can reflect the local context, as compared with the global-oriented method. A set of high-resolution remote sensing images is used to test the effectiveness of the HRM method, and three region-based remote sensing image segmentation methods are adopted for comparison, including the hierarchical stepwise optimization (HSWO) method, the local-mutual best region merging (LMM) method, and the multiresolution segmentation (MRS) method embedded in eCognition Developer software. Both the supervised evaluation and visual assessment show that HRM performs better than HSWO and LMM by combining both their advantages. The segmentation results of HRM and MRS are visually comparable, but HRM can describe objects as single regions better than MRS, and the supervised and unsupervised evaluation results further prove the superiority of HRM.
Cognitive radio based optimal channel sensing and resources allocation
NASA Astrophysics Data System (ADS)
Vijayasarveswari, V.; Khatun, S.; Fakir, M. M.; Nayeem, M. N.; Kamarudin, L. M.; Jakaria, A.
2017-03-01
Cognitive radio (CR) is the latest type of wireless technoloy that is proposed to mitigate spectrum saturation problem. İn cognitve radio, secondary user will use primary user's spectrum during primary user's absence without interupting primary user's transmission. This paper focuses on practical cognitive radio network development process using Android based smart phone for the data transmission. Energy detector based sensing method was proposed and used here because it doesnot require primary user's information. Bluetooth and Wi-fi are the two available types of spectrum that was sensed for CR detection. Simulation showed cognitive radio network can be developed using Android based smart phones. So, a complete application was developed using Java based Android Eclipse program. Finally, the application was uploaded and run on Android based smart phone to form and verify CR network for channel sensing and resource allocation. The observed efficiency of the application was around 81%.
Method and apparatus for deflection measurements using eddy current effects
NASA Astrophysics Data System (ADS)
Chern, Engmin J.
1993-05-01
A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.
Method and apparatus for deflection measurements using eddy current effects
NASA Technical Reports Server (NTRS)
Chern, Engmin J. (Inventor)
1993-01-01
A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.
NASA Astrophysics Data System (ADS)
Li, Shuo; Wang, Hui; Wang, Liyong; Yu, Xiangzhou; Yang, Le
2018-01-01
The uneven illumination phenomenon reduces the quality of remote sensing image and causes interference in the subsequent processing and applications. A variational method based on Retinex with double-norm hybrid constraints for uneven illumination correction is proposed. The L1 norm and the L2 norm are adopted to constrain the textures and details of reflectance image and the smoothness of the illumination image, respectively. The problem of separating the illumination image from the reflectance image is transformed into the optimal solution of the variational model. In order to accelerate the solution, the split Bregman method is used to decompose the variational model into three subproblems, which are calculated by alternate iteration. Two groups of experiments are implemented on two synthetic images and three real remote sensing images. Compared with the variational Retinex method with single-norm constraint and the Mask method, the proposed method performs better in both visual evaluation and quantitative measurements. The proposed method can effectively eliminate the uneven illumination while maintaining the textures and details of the remote sensing image. Moreover, the proposed method using split Bregman method is more than 10 times faster than the method with the steepest descent method.
NASA Astrophysics Data System (ADS)
Liu, Hai; Zhu, Chenghao; Wang, Yan; Tan, Ce; Li, Hongwei
2018-03-01
A transverse-stress sensor with enhanced sensitivity based on nematic liquid crystal (NLC) filled photonic crystal fiber (PCF) is proposed and analyzed by using the finite element method (FEM). The central hole of the PCF is infiltrated with NLC material with an adjustable rotation angle to achieve the polarization-dependent wavelength-selective sensing. And the combined use of side-hole structure and Surface Plasmon Resonance (SPR) technology enhanced the transverse-stress sensitivity enormously. Results reveal that the sensor can achieve a high sensitivity based on the polarization filter characteristic at special wavelengths. Besides that, the temperature and the transverse-stress in either direction can be effectively discriminated through dual-parameter demodulation method by adjusting the rotation angle of the NLC to introduce a new degree of freedom for sensing.
Machine intelligence and autonomy for aerospace systems
NASA Technical Reports Server (NTRS)
Heer, Ewald (Editor); Lum, Henry (Editor)
1988-01-01
The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.
In-service communication channel sensing based on reflectometry for TWDM-PON systems
NASA Astrophysics Data System (ADS)
Iida, Daisuke; Kuwano, Shigeru; Terada, Jun
2014-05-01
Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.
a Hyperspectral Based Method to Detect Cannabis Plantation in Inaccessible Areas
NASA Astrophysics Data System (ADS)
Houmi, M.; Mohamadi, B.; Balz, T.
2018-04-01
The increase in drug use worldwide has led to sophisticated illegal planting methods. Most countries depend on helicopters, and local knowledge to identify such illegal plantations. However, remote sensing techniques can provide special advantages for monitoring the extent of illegal drug production. This paper sought to assess the ability of the Satellite remote sensing to detect Cannabis plantations. This was achieved in two stages: 1- Preprocessing of Hyperspectral data EO-1, and testing the capability to collect the spectral signature of Cannabis in different sites of the study area (Morocco) from well-known Cannabis plantation fields. 2- Applying the method of Spectral Angle Mapper (SAM) based on a specific angle threshold on Hyperion data EO-1 in well-known Cannabis plantation sites, and other sites with negative Cannabis plantation in another study area (Algeria), to avoid any false Cannabis detection using these spectra. This study emphasizes the benefits of using hyperspectral remote sensing data as an effective detection tool for illegal Cannabis plantation in inaccessible areas based on SAM classification method with a maximum angle (radians) less than 0.03.
Li, Jun; Lin, Qiu-Hua; Kang, Chun-Yu; Wang, Kai; Yang, Xiu-Ting
2018-03-18
Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets.
ERIC Educational Resources Information Center
Stefanski, Angela J.; Leitze, Amy; Fife-Demski, Veronica M.
2018-01-01
This collective case study used methods of discourse analysis to consider what computer-mediated collaboration might reveal about preservice teachers' sense-making in a field-based practicum as they learn to teach reading to children identified as struggling readers. Researchers agree that field-based experiences coupled with time for reflection…
NASA Astrophysics Data System (ADS)
He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi
2018-06-01
The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.
Enhancing sparsity of Hermite polynomial expansions by iterative rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiu; Lei, Huan; Baker, Nathan A.
2016-02-01
Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.
Suppressing the crosstalk between racetrack resonators by grating assisted couplers for WDM sensing
NASA Astrophysics Data System (ADS)
Zhang, Xuezhi; Jiang, Junfeng; Liu, Kun; Yu, Zhe; Feng, Ming; Chen, Wenjie; Liu, Tiegen
2017-12-01
We proposed a uniform racetrack resonators based sensor for bio-chemical WDM sensing. The sensing channels are assigned by grating assisted contra-directional couplers. Each resonator only occupies one sensing channel. The crosstalk between sensing channels can be suppressed by aligning the center coupling wavelength of one resonator with the weak coupling wavelength of the others. Based on the simulation results obtained from transfer matrix method, the sensing channel gap can be reduced down to 2 FSRs (˜1.5 nm) of the resonator. The total crosstalk can be as low as 2.5 × 10-2 dB in a sensor with 23 channels covering the whole C band. This sensor with high throughput will be very important for analyzing a wide range of analytes, such as organic compounds or biological materials.
Wang, Xinhao; Chang, Te-Wei; Lin, Guohong; Gartia, Manas Ranjan; Liu, Gang Logan
2017-01-03
Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore's absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system.
Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy
NASA Astrophysics Data System (ADS)
Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan
2018-02-01
Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.
Using Remote Sensing to Estimate Crop Water Use to Improve Irrigation Water Management
NASA Astrophysics Data System (ADS)
Reyes-Gonzalez, Arturo
Irrigation water is scarce. Hence, accurate estimation of crop water use is necessary for proper irrigation managements and water conservation. Satellite-based remote sensing is a tool that can estimate crop water use efficiently. Several models have been developed to estimate crop water requirement or actual evapotranspiration (ETa) using remote sensing. One of them is the Mapping EvapoTranspiration at High Resolution using Internalized Calibration (METRIC) model. This model has been compared with other methods for ET estimations including weighing lysimeters, pan evaporation, Bowen Ratio Energy Balance System (BREBS), Eddy Covariance (EC), and sap flow. However, comparison of METRIC model outputs to an atmometer for ETa estimation has not yet been attempted in eastern South Dakota. The results showed a good relationship between ETa estimated by the METRIC model and estimated with atmometer (r2 = 0.87 and RMSE = 0.65 mm day-1). However, ETa values from atmometer were consistently lower than ET a values from METRIC. The verification of remotely sensed estimates of surface variables is essential for any remote-sensing study. The relationships between LAI, Ts, and ETa estimated using the remote sensing-based METRIC model and in-situ measurements were established. The results showed good agreement between the variables measured in situ and estimated by the METRIC model. LAI showed r2 = 0.76, and RMSE = 0.59 m2 m -2, Ts had r2 = 0.87 and RMSE 1.24 °C and ETa presented r2= 0.89 and RMSE = 0.71 mm day -1. Estimation of ETa using energy balance method can be challenging and time consuming. Thus, there is a need to develop a simple and fast method to estimate ETa using minimum input parameters. Two methods were used, namely 1) an energy balance method (EB method) that used input parameters of the Landsat image, weather data, a digital elevation map, and a land cover map and 2) a Kc-NDVI method that use two input parameters: the Landsat image and weather data. A strong relationship was found between the two methods with r2 of 0.97 and RMSE of 0.37 mm day -1. Hence, the Kc-NDVI method performed well for ET a estimations, indicating that Kc-NDVI method can be a robust and reliable method to estimate ETa in a short period of time. Estimation of crop evapotranspiration (ETc) using satellite remote sensing-based vegetation index such as the Normalized Difference Vegetation Index (NDVI). The NDVI was calculated using near-infrared and red wavebands. The relationship between NDVI and tabulated Kc's was used to generate Kc maps. ETc maps were developed as an output of Kc maps multiplied by reference evapotranspiration (ETr). Daily ETc maps helped to explain the variability of crop water use during the growing season. Based on the results we can conclude that ETc maps developed from remotely sensed multispectral vegetation indices are a useful tool for quantifying crop water use at regional and field scales.
Underwater Turbulence Detection Using Gated Wavefront Sensing Technique
Bi, Ying; Xu, Xiping; Chow, Eddy Mun Tik
2018-01-01
Laser sensing has been applied in various underwater applications, ranging from underwater detection to laser underwater communications. However, there are several great challenges when profiling underwater turbulence effects. Underwater detection is greatly affected by the turbulence effect, where the acquired image suffers excessive noise, blurring, and deformation. In this paper, we propose a novel underwater turbulence detection method based on a gated wavefront sensing technique. First, we elaborate on the operating principle of gated wavefront sensing and wavefront reconstruction. We then setup an experimental system in order to validate the feasibility of our proposed method. The effect of underwater turbulence on detection is examined at different distances, and under different turbulence levels. The experimental results obtained from our gated wavefront sensing system indicate that underwater turbulence can be detected and analyzed. The proposed gated wavefront sensing system has the advantage of a simple structure and high detection efficiency for underwater environments. PMID:29518889
Jimeno Yepes, Antonio
2017-09-01
Word sense disambiguation helps identifying the proper sense of ambiguous words in text. With large terminologies such as the UMLS Metathesaurus ambiguities appear and highly effective disambiguation methods are required. Supervised learning algorithm methods are used as one of the approaches to perform disambiguation. Features extracted from the context of an ambiguous word are used to identify the proper sense of such a word. The type of features have an impact on machine learning methods, thus affect disambiguation performance. In this work, we have evaluated several types of features derived from the context of the ambiguous word and we have explored as well more global features derived from MEDLINE using word embeddings. Results show that word embeddings improve the performance of more traditional features and allow as well using recurrent neural network classifiers based on Long-Short Term Memory (LSTM) nodes. The combination of unigrams and word embeddings with an SVM sets a new state of the art performance with a macro accuracy of 95.97 in the MSH WSD data set. Copyright © 2017 Elsevier Inc. All rights reserved.
Advanced image based methods for structural integrity monitoring: Review and prospects
NASA Astrophysics Data System (ADS)
Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.
2018-02-01
There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.
NASA Astrophysics Data System (ADS)
Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall
2017-06-01
Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real-time utilization of self-sensing materials in structural health monitoring.
Novel Door-opening Method for Six-legged Robots Based on Only Force Sensing
NASA Astrophysics Data System (ADS)
Chen, Zhi-Jun; Gao, Feng; Pan, Yang
2017-09-01
Current door-opening methods are mainly developed on tracked, wheeled and biped robots by applying multi-DOF manipulators and vision systems. However, door-opening methods for six-legged robots are seldom studied, especially using 0-DOF tools to operate and only force sensing to detect. A novel door-opening method for six-legged robots is developed and implemented to the six-parallel-legged robot. The kinematic model of the six-parallel-legged robot is established and the model of measuring the positional relationship between the robot and the door is proposed. The measurement model is completely based on only force sensing. The real-time trajectory planning method and the control strategy are designed. The trajectory planning method allows the maximum angle between the sagittal axis of the robot body and the normal line of the door plane to be 45º. A 0-DOF tool mounted to the robot body is applied to operate. By integrating with the body, the tool has 6 DOFs and enough workspace to operate. The loose grasp achieved by the tool helps release the inner force in the tool. Experiments are carried out to validate the method. The results show that the method is effective and robust in opening doors wider than 1 m. This paper proposes a novel door-opening method for six-legged robots, which notably uses a 0-DOF tool and only force sensing to detect and open the door.
Rate and power efficient image compressed sensing and transmission
NASA Astrophysics Data System (ADS)
Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan
2016-01-01
This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.
Accelerated 1 H MRSI using randomly undersampled spiral-based k-space trajectories.
Chatnuntawech, Itthi; Gagoski, Borjan; Bilgic, Berkin; Cauley, Stephen F; Setsompop, Kawin; Adalsteinsson, Elfar
2014-07-30
To develop and evaluate the performance of an acquisition and reconstruction method for accelerated MR spectroscopic imaging (MRSI) through undersampling of spiral trajectories. A randomly undersampled spiral acquisition and sensitivity encoding (SENSE) with total variation (TV) regularization, random SENSE+TV, is developed and evaluated on single-slice numerical phantom, in vivo single-slice MRSI, and in vivo three-dimensional (3D)-MRSI at 3 Tesla. Random SENSE+TV was compared with five alternative methods for accelerated MRSI. For the in vivo single-slice MRSI, random SENSE+TV yields up to 2.7 and 2 times reduction in root-mean-square error (RMSE) of reconstructed N-acetyl aspartate (NAA), creatine, and choline maps, compared with the denoised fully sampled and uniformly undersampled SENSE+TV methods with the same acquisition time, respectively. For the in vivo 3D-MRSI, random SENSE+TV yields up to 1.6 times reduction in RMSE, compared with uniform SENSE+TV. Furthermore, by using random SENSE+TV, we have demonstrated on the in vivo single-slice and 3D-MRSI that acceleration factors of 4.5 and 4 are achievable with the same quality as the fully sampled data, as measured by RMSE of reconstructed NAA map, respectively. With the same scan time, random SENSE+TV yields lower RMSEs of metabolite maps than other methods evaluated. Random SENSE+TV achieves up to 4.5-fold acceleration with comparable data quality as the fully sampled acquisition. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Six-degrees-of-freedom sensing based on pictures taken by single camera.
Zhongke, Li; Yong, Wang; Yongyuan, Qin; Peijun, Lu
2005-02-01
Two six-degrees-of-freedom sensing methods are presented. In the first method, three laser beams are employed to set up Descartes' frame on a rigid body and a screen is adopted to form diffuse spots. In the second method, two superimposed grid screens and two laser beams are used. A CCD camera is used to take photographs in both methods. Both approaches provide a simple and error-free method to record the positions and the attitudes of a rigid body in motion continuously.
Khalek, Md Abdul; Chakma, Sujan; Paul, Bikash Kumar; Ahmed, Kawsar
2018-08-01
In this research work a perfectly circular lattice Photonic Crystal Fiber (PCF) based surface Plasmon resonance (SPR) based sensor has been proposed. The investigation process has been successfully carried out using finite element method (FEM) based commercial available software package COMSOL Multiphysics version 4.2. The whole investigation module covers the wider optical spectrum ranging from 0.48 µm to 1.10 µm. Using the wavelength interrogation method the proposed model exposed maximum sensitivity of 9000 nm/RIU(Refractive Index Unit) and using the amplitude interrogation method it obtained maximum sensitivity of 318 RIU -1 . Moreover the maximum sensor resolution of 1.11×10 -5 in the sensing ranges between 1.34 and 1.37. Based on the suggested sensor model may provide great impact in biological area such as bio-imaging.
ERIC Educational Resources Information Center
Tekerci, Hacer; Kandir, Adalet
2017-01-01
Purpose: This study aimed to examine the effects of the Sense-Based Science Education Program on 60-66 months old children's scientific process skills. Research Methods: In this study, which carries experimental attribute features, the pre-test/final-test/observing-test control grouped experimental pattern, and qualitative research were used.…
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors
Zheng, Guang; Moskal, L. Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels. PMID:22574042
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.
Zheng, Guang; Moskal, L Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.
Verification technology of remote sensing camera satellite imaging simulation based on ray tracing
NASA Astrophysics Data System (ADS)
Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun
2017-08-01
Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.
NASA Astrophysics Data System (ADS)
Hu, Z.; Xu, L.; Yu, B.
2018-04-01
A empirical model is established to analyse the daily retrieval of soil moisture from passive microwave remote sensing using convolutional neural networks (CNN). Soil moisture plays an important role in the water cycle. However, with the rapidly increasing of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of the European centre for medium-range weather forecasts (ECMWF) model. Compared with the classical inversion methods, the deep learning-based method is more suitable for global soil moisture retrieval. It is very well supported by graphics processing unit (GPU) acceleration, which can meet the demand of massive data inversion. Once the model trained, a global soil moisture map can be predicted in less than 10 seconds. What's more, the method of soil moisture retrieval based on deep learning can learn the complex texture features from the big remote sensing data. In this experiment, the results demonstrates that the CNN deployed to retrieve global soil moisture can achieve a better performance than the support vector regression (SVR) for soil moisture retrieval.
A change detection method for remote sensing image based on LBP and SURF feature
NASA Astrophysics Data System (ADS)
Hu, Lei; Yang, Hao; Li, Jin; Zhang, Yun
2018-04-01
Finding the change in multi-temporal remote sensing image is important in many the image application. Because of the infection of climate and illumination, the texture of the ground object is more stable relative to the gray in high-resolution remote sensing image. And the texture features of Local Binary Patterns (LBP) and Speeded Up Robust Features (SURF) are outstanding in extracting speed and illumination invariance. A method of change detection for matched remote sensing image pair is present, which compares the similarity by LBP and SURF to detect the change and unchanged of the block after blocking the image. And region growing is adopted to process the block edge zone. The experiment results show that the method can endure some illumination change and slight texture change of the ground object.
Chib, Rahul; Mummert, Mark; Bora, Ilkay; Laursen, Bo W; Shah, Sunil; Pendry, Robert; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal
2016-05-01
In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma. Graphical Abstract Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase.
Infrared super-resolution imaging based on compressed sensing
NASA Astrophysics Data System (ADS)
Sui, Xiubao; Chen, Qian; Gu, Guohua; Shen, Xuewei
2014-03-01
The theoretical basis of traditional infrared super-resolution imaging method is Nyquist sampling theorem. The reconstruction premise is that the relative positions of the infrared objects in the low-resolution image sequences should keep fixed and the image restoration means is the inverse operation of ill-posed issues without fixed rules. The super-resolution reconstruction ability of the infrared image, algorithm's application area and stability of reconstruction algorithm are limited. To this end, we proposed super-resolution reconstruction method based on compressed sensing in this paper. In the method, we selected Toeplitz matrix as the measurement matrix and realized it by phase mask method. We researched complementary matching pursuit algorithm and selected it as the recovery algorithm. In order to adapt to the moving target and decrease imaging time, we take use of area infrared focal plane array to acquire multiple measurements at one time. Theoretically, the method breaks though Nyquist sampling theorem and can greatly improve the spatial resolution of the infrared image. The last image contrast and experiment data indicate that our method is effective in improving resolution of infrared images and is superior than some traditional super-resolution imaging method. The compressed sensing super-resolution method is expected to have a wide application prospect.
On event-based optical flow detection
Brosch, Tobias; Tschechne, Stephan; Neumann, Heiko
2015-01-01
Event-based sensing, i.e., the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition by standard cameras. Here, we systematically investigate the implications of event-based sensing in the context of visual motion, or flow, estimation. Starting from a common theoretical foundation, we discuss different principal approaches for optical flow detection ranging from gradient-based methods over plane-fitting to filter based methods and identify strengths and weaknesses of each class. Gradient-based methods for local motion integration are shown to suffer from the sparse encoding in address-event representations (AER). Approaches exploiting the local plane like structure of the event cloud, on the other hand, are shown to be well suited. Within this class, filter based approaches are shown to define a proper detection scheme which can also deal with the problem of representing multiple motions at a single location (motion transparency). A novel biologically inspired efficient motion detector is proposed, analyzed and experimentally validated. Furthermore, a stage of surround normalization is incorporated. Together with the filtering this defines a canonical circuit for motion feature detection. The theoretical analysis shows that such an integrated circuit reduces motion ambiguity in addition to decorrelating the representation of motion related activations. PMID:25941470
Liao, Congyu; Chen, Ying; Cao, Xiaozhi; Chen, Song; He, Hongjian; Mani, Merry; Jacob, Mathews; Magnotta, Vincent; Zhong, Jianhui
2017-03-01
To propose a novel reconstruction method using parallel imaging with low rank constraint to accelerate high resolution multishot spiral diffusion imaging. The undersampled high resolution diffusion data were reconstructed based on a low rank (LR) constraint using similarities between the data of different interleaves from a multishot spiral acquisition. The self-navigated phase compensation using the low resolution phase data in the center of k-space was applied to correct shot-to-shot phase variations induced by motion artifacts. The low rank reconstruction was combined with sensitivity encoding (SENSE) for further acceleration. The efficiency of the proposed joint reconstruction framework, dubbed LR-SENSE, was evaluated through error quantifications and compared with ℓ1 regularized compressed sensing method and conventional iterative SENSE method using the same datasets. It was shown that with a same acceleration factor, the proposed LR-SENSE method had the smallest normalized sum-of-squares errors among all the compared methods in all diffusion weighted images and DTI-derived index maps, when evaluated with different acceleration factors (R = 2, 3, 4) and for all the acquired diffusion directions. Robust high resolution diffusion weighted image can be efficiently reconstructed from highly undersampled multishot spiral data with the proposed LR-SENSE method. Magn Reson Med 77:1359-1366, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Advances on Aryldiazonium Salt Chemistry Based Interfacial Fabrication for Sensing Applications.
Cao, Chaomin; Zhang, Yin; Jiang, Cheng; Qi, Meng; Liu, Guozhen
2017-02-15
Aryldiazonium salts as coupling agents for surface chemistry have evidenced their wide applications for the development of sensors. Combined with advances in nanomaterials, current trends in sensor science and a variety of particular advantages of aryldiazonium salt chemistry in sensing have driven the aryldiazonium salt-based sensing strategies to grow at an astonishing pace. This review focuses on the advances in the use of aryldiazonium salts for modifying interfaces in sensors and biosensors during the past decade. It will first summarize the current methods for modification of interfaces with aryldiazonium salts, and then discuss the sensing applications of aryldiazonium salts modified on different transducers (bulky solid electrodes, nanomaterials modified bulky solid electrodes, and nanoparticles). Finally, the challenges and perspectives that aryldiazonium salt chemistry is facing in sensing applications are critically discussed.
An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks
Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang
2016-01-01
To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It’s theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods. PMID:27669250
Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang
2016-09-22
To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It's theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods.
Sensing Urban Land-Use Patterns by Integrating Google Tensorflow and Scene-Classification Models
NASA Astrophysics Data System (ADS)
Yao, Y.; Liang, H.; Li, X.; Zhang, J.; He, J.
2017-09-01
With the rapid progress of China's urbanization, research on the automatic detection of land-use patterns in Chinese cities is of substantial importance. Deep learning is an effective method to extract image features. To take advantage of the deep-learning method in detecting urban land-use patterns, we applied a transfer-learning-based remote-sensing image approach to extract and classify features. Using the Google Tensorflow framework, a powerful convolution neural network (CNN) library was created. First, the transferred model was previously trained on ImageNet, one of the largest object-image data sets, to fully develop the model's ability to generate feature vectors of standard remote-sensing land-cover data sets (UC Merced and WHU-SIRI). Then, a random-forest-based classifier was constructed and trained on these generated vectors to classify the actual urban land-use pattern on the scale of traffic analysis zones (TAZs). To avoid the multi-scale effect of remote-sensing imagery, a large random patch (LRP) method was used. The proposed method could efficiently obtain acceptable accuracy (OA = 0.794, Kappa = 0.737) for the study area. In addition, the results show that the proposed method can effectively overcome the multi-scale effect that occurs in urban land-use classification at the irregular land-parcel level. The proposed method can help planners monitor dynamic urban land use and evaluate the impact of urban-planning schemes.
Gao, Fengli; Li, Xide
2018-01-01
Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing. PMID:29364847
A Constrained-Clustering Approach to the Analysis of Remote Sensing Data.
1983-01-01
One old and two new clustering methods were applied to the constrained-clustering problem of separating different agricultural fields based on multispectral remote sensing satellite data. (Constrained-clustering involves double clustering in multispectral measurement similarity and geographical location.) The results of applying the three methods are provided along with a discussion of their relative strengths and weaknesses and a detailed description of their algorithms.
Research on Method of Interactive Segmentation Based on Remote Sensing Images
NASA Astrophysics Data System (ADS)
Yang, Y.; Li, H.; Han, Y.; Yu, F.
2017-09-01
In this paper, we aim to solve the object extraction problem in remote sensing images using interactive segmentation tools. Firstly, an overview of the interactive segmentation algorithm is proposed. Then, our detailed implementation of intelligent scissors and GrabCut for remote sensing images is described. Finally, several experiments on different typical features (water area, vegetation) in remote sensing images are performed respectively. Compared with the manual result, it indicates that our tools maintain good feature boundaries and show good performance.
A Study on Markerless AR-Based Infant Education System Using CBIR
NASA Astrophysics Data System (ADS)
Lim, Ji-Hoon; Kim, Seoksoo
Block play is widely known to be effective to help a child develop emotionally and physically based on learning by a sense of sight and touch. But block play can not expect to have learning effects through a sense of hearing. Therefore, in this study, such limitations are overcome by a method that recognizes an object made up of blocks, not a marker-based method generally used for an AR environment, a matching technology enabling an object to be perceived in every direction, and a technology combining images of the real world with 2D/3D images/pictures/sounds of a similar object. Also, an education system for children aged 3~5 is designed to implement markerless AR with the CBIR method.
Remote sensing of high-latitude ionization profiles by ground-based and spaceborne instrumentation
NASA Technical Reports Server (NTRS)
Vondrak, R. R.
1981-01-01
Ionospheric specification and modeling are now largely based on data provided by active remote sensing with radiowave techniques (ionosondes, incoherent-scatter radars, and satellite beacons). More recently, passive remote sensing techniques have been developed that can be used to monitor quantitatively the spatial distribution of high-latitude E-region ionization. These passive methods depend on the measurement, or inference, of the energy distribution of precipitating kilovolt electrons, the principal source of the nighttime E-region at high latitudes. To validate these techniques, coordinated measurements of the auroral ionosphere have been made with the Chatanika incoherent-scatter radar and a variety of ground-based and spaceborne sensors
Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber
NASA Astrophysics Data System (ADS)
Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel
2018-02-01
We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.
Methods for Broadband Spectral Analysis: Intrinsic Fluorescence Temperature Sensing as an Example.
Zhang, Weiwei; Wang, Guoyao; Baxter, Greg W; Collins, Stephen F
2017-06-01
A systematic study was performed on the temperature-dependent fluorescence of (Ba,Sr) 2 SiO 4 :Eu 2+ . The barycenter and extended intensity ratio techniques were proposed to characterize the broadband fluorescence spectra. These techniques and other known methods (listed below) were employed and compared in the fluorescent temperature sensing experiment. Multiple sensing functions were obtained using the behaviors of: (1) the barycenter location of the emission band; (2) the emission bandwidth; and (3) the ratio of intensities at different wavelengths in the emission band, respectively. The barycenter technique was not limited by the spectrometer resolution and worked well while the peak location method failed. All the sensing functions were based on the intrinsic characteristics of the fluorescence of the phosphor and demonstrated nearly linear relationships with temperature in the measuring range. The multifunctional temperature-sensing abilities of the phosphor can be applied in a point thermometer or thermal mapping. The new techniques were validated successfully for characterizing various spectra.
GaN-based sensor nodes for in situ detection of gases
NASA Technical Reports Server (NTRS)
Son, Kyung-Ah (Inventor); Prokopuk, Nicholas (Inventor); Moon, Jeong-Sun (Inventor)
2008-01-01
A system for detecting chemical/biological substances and a detection method. The system comprises a plurality of sensing units or nodes and a radiofrequency link. Each unit has several sensors with different sensing curves. Each sensor is able to transmit information related to the sensed substance on a specific frequency. The sensors preferably comprise AlGaN/GaN high electron mobility transistors.
NASA Astrophysics Data System (ADS)
Mao, Heng; Wang, Xiao; Zhao, Dazun
2009-05-01
As a wavefront sensing (WFS) tool, Baseline algorithm, which is classified as the iterative-transform algorithm of phase retrieval, estimates the phase distribution at pupil from some known PSFs at defocus planes. By using multiple phase diversities and appropriate phase unwrapping methods, this algorithm can accomplish reliable unique solution and high dynamic phase measurement. In the paper, a Baseline algorithm based wavefront sensing experiment with modification of phase unwrapping has been implemented, and corresponding Graphical User Interfaces (GUI) software has also been given. The adaptability and repeatability of Baseline algorithm have been validated in experiments. Moreover, referring to the ZYGO interferometric results, the WFS accuracy of this algorithm has been exactly calibrated.
Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique
NASA Astrophysics Data System (ADS)
Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi
2013-09-01
According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.
Reconstruction of Complex Network based on the Noise via QR Decomposition and Compressed Sensing.
Li, Lixiang; Xu, Dafei; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian
2017-11-08
It is generally known that the states of network nodes are stable and have strong correlations in a linear network system. We find that without the control input, the method of compressed sensing can not succeed in reconstructing complex networks in which the states of nodes are generated through the linear network system. However, noise can drive the dynamics between nodes to break the stability of the system state. Therefore, a new method integrating QR decomposition and compressed sensing is proposed to solve the reconstruction problem of complex networks under the assistance of the input noise. The state matrix of the system is decomposed by QR decomposition. We construct the measurement matrix with the aid of Gaussian noise so that the sparse input matrix can be reconstructed by compressed sensing. We also discover that noise can build a bridge between the dynamics and the topological structure. Experiments are presented to show that the proposed method is more accurate and more efficient to reconstruct four model networks and six real networks by the comparisons between the proposed method and only compressed sensing. In addition, the proposed method can reconstruct not only the sparse complex networks, but also the dense complex networks.
Efficient two-dimensional compressive sensing in MIMO radar
NASA Astrophysics Data System (ADS)
Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad
2017-12-01
Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.
A patch-based convolutional neural network for remote sensing image classification.
Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di
2017-11-01
Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong
2016-06-06
We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.
NASA Astrophysics Data System (ADS)
Ma, Lihong; Jin, Weimin
2018-01-01
A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.
Capacitance-based damage detection sensing for aerospace structural composites
NASA Astrophysics Data System (ADS)
Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.
2014-04-01
Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.
Perez-Cruz, Angel; Stiharu, Ion; Dominguez-Gonzalez, Aurelio
2017-07-20
In recent years paper-based microfluidic systems have emerged as versatile tools for developing sensors in different areas. In this work; we report a novel physical sensing principle for the characterization of liquids using a paper-based hygro-mechanical system (PB-HMS). The PB-HMS is formed by the interaction of liquid droplets and paper-based mini-structures such as cantilever beams. The proposed principle takes advantage of the hygroscopic properties of paper to produce hygro-mechanical motion. The dynamic response of the PB-HMS reveals information about the tested liquid that can be applied to characterize certain properties of liquids. A suggested method to characterize liquids by means of the proposed principle is introduced. The experimental results show the feasibility of such a method. It is expected that the proposed principle may be applied to sense properties of liquids in different applications where both disposability and portability are of extreme importance.
Photopolymerization-based fabrication of chemical sensing films
Yang, Xiaoguang; Swanson, Basil I.; Du, Xian-Xian
2003-12-30
A photopolymerization method is disclosed for attaching a chemical microsensor film to an oxide surface including the steps of pretreating the oxide surface to form a functionalized surface, coating the functionalized surface with a prepolymer solution, and polymerizing the prepolymer solution with ultraviolet light to form the chemical microsensor film. The method also allows the formation of molecular imprinted films by photopolymerization. Formation of multilayer sensing films and patterned films is allowed by the use of photomasking techniques to allow patterning of multiple regions of a selected sensing film, or creating a sensor surface containing several films designed to detect different compounds.
Remote sensing imagery classification using multi-objective gravitational search algorithm
NASA Astrophysics Data System (ADS)
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2016-10-01
Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.
Reliable clarity automatic-evaluation method for optical remote sensing images
NASA Astrophysics Data System (ADS)
Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen
2015-10-01
Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.
Bridge Displacement Monitoring Method Based on Laser Projection-Sensing Technology
Zhao, Xuefeng; Liu, Hao; Yu, Yan; Xu, Xiaodong; Hu, Weitong; Li, Mingchu; Ou, Jingping
2015-01-01
Bridge displacement is the most basic evaluation index of the health status of a bridge structure. The existing measurement methods for bridge displacement basically fail to realize long-term and real-time dynamic monitoring of bridge structures, because of the low degree of automation and the insufficient precision, causing bottlenecks and restriction. To solve this problem, we proposed a bridge displacement monitoring system based on laser projection-sensing technology. First, the laser spot recognition method was studied. Second, the software for the displacement monitoring system was developed. Finally, a series of experiments using this system were conducted, and the results show that such a system has high measurement accuracy and speed. We aim to develop a low-cost, high-accuracy and long-term monitoring method for bridge displacement based on these preliminary efforts. PMID:25871716
Luo, Daibing; Wu, Liangzhuan; Zhi, Jinfang
2010-09-21
By means of delicate and conventional methods based on photolithography and hot filament chemical vapor deposition (HFCVD) technology, a novel boron-doped diamond micro-network (BDDMN) film was fabricated, and this micro-structure showed excellent electrochemical sensing properties.
Majumdar, Angshul; Gogna, Anupriya; Ward, Rabab
2014-08-25
We address the problem of acquiring and transmitting EEG signals in Wireless Body Area Networks (WBAN) in an energy efficient fashion. In WBANs, the energy is consumed by three operations: sensing (sampling), processing and transmission. Previous studies only addressed the problem of reducing the transmission energy. For the first time, in this work, we propose a technique to reduce sensing and processing energy as well: this is achieved by randomly under-sampling the EEG signal. We depart from previous Compressed Sensing based approaches and formulate signal recovery (from under-sampled measurements) as a matrix completion problem. A new algorithm to solve the matrix completion problem is derived here. We test our proposed method and find that the reconstruction accuracy of our method is significantly better than state-of-the-art techniques; and we achieve this while saving sensing, processing and transmission energy. Simple power analysis shows that our proposed methodology consumes considerably less power compared to previous CS based techniques.
Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.
Wang, Shuai; Yang, Ping; Xu, Bing; Dong, Lizhi; Ao, Mingwu
2015-02-23
Spot centroid detection is required by Shack-Hartmann wavefront sensing since the technique was first proposed. For a Shack-Hartmann wavefront sensor, the standard structure is to place a camera behind a lenslet array to record the image of spots. We proposed a new Shack-Hartmann wavefront sensing technique without using spot centroid detection. Based on the principle of binary-aberration-mode filtering, for each subaperture, only one light-detecting unit is used to measure the local wavefront slopes. It is possible to adopt single detectors in Shack-Hartmann wavefront sensor. Thereby, the method is able to gain noise benefits from using singe detectors behind each subaperture when used for sensing rapid varying wavefront in weak light. Moreover, due to non-discrete pixel imaging, this method is a potential solution for high measurement precision with fewer detecting units. Our simulations demonstrate the validity of the theoretical model. In addition, the results also indicate the advantage in measurement accuracy.
Photonic crystal fiber-based plasmonic biosensor with external sensing approach
NASA Astrophysics Data System (ADS)
Rifat, Ahmmed A.; Hasan, Md. Rabiul; Ahmed, Rajib; Butt, Haider
2018-01-01
We propose a simple photonic crystal fiber (PCF) biosensor based on the surface plasmon resonance effect. The sensing properties are characterized using the finite element method. Chemically stable gold material is deposited on the outer surface of the PCF to realize the practical sensing approach. The performance of the modeled biosensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of structural parameters. In the sensing range of 1.33 to 1.37, maximum sensitivities of 4000 nm/RIU and 478 are achieved with the high sensor resolutions of 2.5×10-5 and 2.1×10-5 RIU using wavelength and amplitude interrogation methods, respectively. The designed biosensor will reduce fabrication complexity due to its simple and realistic hexagonal lattice structure. It is anticipated that the proposed biosensor may find possible applications for unknown biological and biochemical analyte detections with a high degree of accuracy.
NASA Astrophysics Data System (ADS)
El-Zoghby, Helmy M.; Bendary, Ahmed F.
2016-10-01
Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.
Kim, Tae Hyung; Setsompop, Kawin; Haldar, Justin P
2017-03-01
Parallel imaging and partial Fourier acquisition are two classical approaches for accelerated MRI. Methods that combine these approaches often rely on prior knowledge of the image phase, but the need to obtain this prior information can place practical restrictions on the data acquisition strategy. In this work, we propose and evaluate SENSE-LORAKS, which enables combined parallel imaging and partial Fourier reconstruction without requiring prior phase information. The proposed formulation is based on combining the classical SENSE model for parallel imaging data with the more recent LORAKS framework for MR image reconstruction using low-rank matrix modeling. Previous LORAKS-based methods have successfully enabled calibrationless partial Fourier parallel MRI reconstruction, but have been most successful with nonuniform sampling strategies that may be hard to implement for certain applications. By combining LORAKS with SENSE, we enable highly accelerated partial Fourier MRI reconstruction for a broader range of sampling trajectories, including widely used calibrationless uniformly undersampled trajectories. Our empirical results with retrospectively undersampled datasets indicate that when SENSE-LORAKS reconstruction is combined with an appropriate k-space sampling trajectory, it can provide substantially better image quality at high-acceleration rates relative to existing state-of-the-art reconstruction approaches. The SENSE-LORAKS framework provides promising new opportunities for highly accelerated MRI. Magn Reson Med 77:1021-1035, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
2018-01-01
Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets. PMID:29562642
An efficient cloud detection method for high resolution remote sensing panchromatic imagery
NASA Astrophysics Data System (ADS)
Li, Chaowei; Lin, Zaiping; Deng, Xinpu
2018-04-01
In order to increase the accuracy of cloud detection for remote sensing satellite imagery, we propose an efficient cloud detection method for remote sensing satellite panchromatic images. This method includes three main steps. First, an adaptive intensity threshold value combined with a median filter is adopted to extract the coarse cloud regions. Second, a guided filtering process is conducted to strengthen the textural features difference and then we conduct the detection process of texture via gray-level co-occurrence matrix based on the acquired texture detail image. Finally, the candidate cloud regions are extracted by the intersection of two coarse cloud regions above and we further adopt an adaptive morphological dilation to refine them for thin clouds in boundaries. The experimental results demonstrate the effectiveness of the proposed method.
Harmony Search Algorithm for Word Sense Disambiguation.
Abed, Saad Adnan; Tiun, Sabrina; Omar, Nazlia
2015-01-01
Word Sense Disambiguation (WSD) is the task of determining which sense of an ambiguous word (word with multiple meanings) is chosen in a particular use of that word, by considering its context. A sentence is considered ambiguous if it contains ambiguous word(s). Practically, any sentence that has been classified as ambiguous usually has multiple interpretations, but just one of them presents the correct interpretation. We propose an unsupervised method that exploits knowledge based approaches for word sense disambiguation using Harmony Search Algorithm (HSA) based on a Stanford dependencies generator (HSDG). The role of the dependency generator is to parse sentences to obtain their dependency relations. Whereas, the goal of using the HSA is to maximize the overall semantic similarity of the set of parsed words. HSA invokes a combination of semantic similarity and relatedness measurements, i.e., Jiang and Conrath (jcn) and an adapted Lesk algorithm, to perform the HSA fitness function. Our proposed method was experimented on benchmark datasets, which yielded results comparable to the state-of-the-art WSD methods. In order to evaluate the effectiveness of the dependency generator, we perform the same methodology without the parser, but with a window of words. The empirical results demonstrate that the proposed method is able to produce effective solutions for most instances of the datasets used.
Harmony Search Algorithm for Word Sense Disambiguation
Abed, Saad Adnan; Tiun, Sabrina; Omar, Nazlia
2015-01-01
Word Sense Disambiguation (WSD) is the task of determining which sense of an ambiguous word (word with multiple meanings) is chosen in a particular use of that word, by considering its context. A sentence is considered ambiguous if it contains ambiguous word(s). Practically, any sentence that has been classified as ambiguous usually has multiple interpretations, but just one of them presents the correct interpretation. We propose an unsupervised method that exploits knowledge based approaches for word sense disambiguation using Harmony Search Algorithm (HSA) based on a Stanford dependencies generator (HSDG). The role of the dependency generator is to parse sentences to obtain their dependency relations. Whereas, the goal of using the HSA is to maximize the overall semantic similarity of the set of parsed words. HSA invokes a combination of semantic similarity and relatedness measurements, i.e., Jiang and Conrath (jcn) and an adapted Lesk algorithm, to perform the HSA fitness function. Our proposed method was experimented on benchmark datasets, which yielded results comparable to the state-of-the-art WSD methods. In order to evaluate the effectiveness of the dependency generator, we perform the same methodology without the parser, but with a window of words. The empirical results demonstrate that the proposed method is able to produce effective solutions for most instances of the datasets used. PMID:26422368
Fluctuation-Enhanced Sensing for Biological Agent Detection and Identification
2009-01-01
method for bacterium detection published earlier; sensing and evaluating the odors of microbes ; and spectral and amplitude distribution analysis of noise...REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Fluctuation-Enhanced Sensing for Biological Agent Detection and...evaluating the odors of microbes ; and spectral and amplitude distribution analysis of noise in light scattering to identify spores based on their
Proximal sensing for soil carbon accounting
NASA Astrophysics Data System (ADS)
England, Jacqueline R.; Viscarra Rossel, Raphael A.
2018-05-01
Maintaining or increasing soil organic carbon (C) is vital for securing food production and for mitigating greenhouse gas (GHG) emissions, climate change, and land degradation. Some land management practices in cropping, grazing, horticultural, and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one requires measurements of soil organic C concentration, bulk density, and gravel content, but using conventional laboratory-based analytical methods is expensive. Our aim here is to review the current state of proximal sensing for the development of new soil C accounting methods for emissions reporting and in emissions reduction schemes. We evaluated sensing techniques in terms of their rapidity, cost, accuracy, safety, readiness, and their state of development. The most suitable method for measuring soil organic C concentrations appears to be visible-near-infrared (vis-NIR) spectroscopy and, for bulk density, active gamma-ray attenuation. Sensors for measuring gravel have not been developed, but an interim solution with rapid wet sieving and automated measurement appears useful. Field-deployable, multi-sensor systems are needed for cost-efficient soil C accounting. Proximal sensing can be used for soil organic C accounting, but the methods need to be standardized and procedural guidelines need to be developed to ensure proficient measurement and accurate reporting and verification. These are particularly important if the schemes use financial incentives for landholders to adopt management practices to sequester soil organic C. We list and discuss requirements for developing new soil C accounting methods based on proximal sensing, including requirements for recording, verification, and auditing.
NASA Technical Reports Server (NTRS)
Ross, A.; Richards, A.; Keith, K.; Frew, C.; Boseck, J.; Sutton, S.; Watts, C.; Rickman, D.
2007-01-01
This project focused on a comprehensive utilization of air quality model products as decision support tools (DST) needed for public health applications. A review of past and future air quality measurement methods and their uncertainty, along with the relationship of air quality to national and global public health, is vital. This project described current and future NASA satellite remote sensing and ground sensing capabilities and the potential for using these sensors to enhance the prediction, prevention, and control of public health effects that result from poor air quality. The qualitative uncertainty of current satellite remotely sensed air quality, the ground-based remotely sensed air quality, the air quality/public health model, and the decision making process is evaluated in this study. Current peer-reviewed literature suggests that remotely sensed air quality parameters correlate well with ground-based sensor data. A satellite remote-sensed and ground-sensed data complement is needed to enhance the models/tools used by policy makers for the protection of national and global public health communities
Illumination invariant feature point matching for high-resolution planetary remote sensing images
NASA Astrophysics Data System (ADS)
Wu, Bo; Zeng, Hai; Hu, Han
2018-03-01
Despite its success with regular close-range and remote-sensing images, the scale-invariant feature transform (SIFT) algorithm is essentially not invariant to illumination differences due to the use of gradients for feature description. In planetary remote sensing imagery, which normally lacks sufficient textural information, salient regions are generally triggered by the shadow effects of keypoints, reducing the matching performance of classical SIFT. Based on the observation of dual peaks in a histogram of the dominant orientations of SIFT keypoints, this paper proposes an illumination-invariant SIFT matching method for high-resolution planetary remote sensing images. First, as the peaks in the orientation histogram are generally aligned closely with the sub-solar azimuth angle at the time of image collection, an adaptive suppression Gaussian function is tuned to level the histogram and thereby alleviate the differences in illumination caused by a changing solar angle. Next, the suppression function is incorporated into the original SIFT procedure for obtaining feature descriptors, which are used for initial image matching. Finally, as the distribution of feature descriptors changes after anisotropic suppression, and the ratio check used for matching and outlier removal in classical SIFT may produce inferior results, this paper proposes an improved matching procedure based on cross-checking and template image matching. The experimental results for several high-resolution remote sensing images from both the Moon and Mars, with illumination differences of 20°-180°, reveal that the proposed method retrieves about 40%-60% more matches than the classical SIFT method. The proposed method is of significance for matching or co-registration of planetary remote sensing images for their synergistic use in various applications. It also has the potential to be useful for flyby and rover images by integrating with the affine invariant feature detectors.
NASA Astrophysics Data System (ADS)
Zhou, Xiran; Liu, Jun; Liu, Shuguang; Cao, Lei; Zhou, Qiming; Huang, Huawen
2014-02-01
High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity-hue-saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.
Nanofluidic Device with Embedded Nanopore
NASA Astrophysics Data System (ADS)
Zhang, Yuning; Reisner, Walter
2014-03-01
Nanofluidic based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. We also show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore until a certain voltage bias is added.
Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A
2015-02-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.
Noll, Douglas C.; Fessler, Jeffrey A.
2014-01-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484
A stereo remote sensing feature selection method based on artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi
2014-05-01
To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.
Investigation of a Photoelectrochemical Passivated ZnO-Based Glucose Biosensor
Lee, Ching-Ting; Chiu, Ying-Shuo; Ho, Shu-Ching; Lee, Yao-Jung
2011-01-01
A vapor cooling condensation system was used to deposit high quality intrinsic ZnO thin films and intrinsic ZnO nanorods as the sensing membrane of extended-gate field-effect-transistor (EGFET) glucose biosensors. The sensing sensitivity of the resulting glucose biosensors operated in the linear range was 13.4 μA mM−1 cm−2. To improve the sensing sensitivity of the ZnO-based glucose biosensors, the photoelectrochemical method was utilized to passivate the sidewall surfaces of the ZnO nanorods. The sensing sensitivity of the ZnO-based glucose biosensors with passivated ZnO nanorods was significantly improved to 20.33 μA mM−1 cm−2 under the same measurement conditions. The experimental results verified that the sensing sensitivity improvement was the result of the mitigation of the Fermi level pinning effect caused by the dangling bonds and the surface states induced on the sidewall surface of the ZnO nanorods. PMID:22163867
NASA Astrophysics Data System (ADS)
Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin
2018-03-01
The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.
NASA Astrophysics Data System (ADS)
Shen, Xin; Zhang, Jing; Yao, Huang
2015-12-01
Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.
Contrast-based sensorless adaptive optics for retinal imaging.
Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew
2015-09-01
Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.
Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang
2016-05-03
Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.
Design of Restoration Method Based on Compressed Sensing and TwIST Algorithm
NASA Astrophysics Data System (ADS)
Zhang, Fei; Piao, Yan
2018-04-01
In order to improve the subjective and objective quality of degraded images at low sampling rates effectively,save storage space and reduce computational complexity at the same time, this paper proposes a joint restoration algorithm of compressed sensing and two step iterative threshold shrinkage (TwIST). The algorithm applies the TwIST algorithm which used in image restoration to the compressed sensing theory. Then, a small amount of sparse high-frequency information is obtained in frequency domain. The TwIST algorithm based on compressed sensing theory is used to accurately reconstruct the high frequency image. The experimental results show that the proposed algorithm achieves better subjective visual effects and objective quality of degraded images while accurately restoring degraded images.
Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng
2016-01-01
A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm2. By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R0) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs. PMID:27809222
Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng
2016-10-31
A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm². By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R₀) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs.
Methods and potentials for using satellite image classification in school lessons
NASA Astrophysics Data System (ADS)
Voss, Kerstin; Goetzke, Roland; Hodam, Henryk
2011-11-01
The FIS project - FIS stands for Fernerkundung in Schulen (Remote Sensing in Schools) - aims at a better integration of the topic "satellite remote sensing" in school lessons. According to this, the overarching objective is to teach pupils basic knowledge and fields of application of remote sensing. Despite the growing significance of digital geomedia, the topic "remote sensing" is not broadly supported in schools. Often, the topic is reduced to a short reflection on satellite images and used only for additional illustration of issues relevant for the curriculum. Without addressing the issue of image data, this can hardly contribute to the improvement of the pupils' methodical competences. Because remote sensing covers more than simple, visual interpretation of satellite images, it is necessary to integrate remote sensing methods like preprocessing, classification and change detection. Dealing with these topics often fails because of confusing background information and the lack of easy-to-use software. Based on these insights, the FIS project created different simple analysis tools for remote sensing in school lessons, which enable teachers as well as pupils to be introduced to the topic in a structured way. This functionality as well as the fields of application of these analysis tools will be presented in detail with the help of three different classification tools for satellite image classification.
Wang, Shinn-Fwu; Chiu, Ming-Hung; Chen, Wei-Wu; Kao, Fu-Hsi; Chang, Rong-Seng
2009-05-01
A small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry is proposed. In this paper, a small displacement can be obtained only by measuring the variation in phase difference between s- and p-polarization states for the total internal reflection effect. In order to improve the sensitivity, we increase the number of total internal reflections by using a parallelogram prism. The theoretical resolution of the method is better than 0.417 nm. The method has some merits, e.g., high resolution, high sensitivity, and real-time measurement. Also, its feasibility is demonstrated.
Vanegas, Fernando; Bratanov, Dmitry; Powell, Kevin; Weiss, John; Gonzalez, Felipe
2018-01-17
Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insect traps) for detecting pest infestations (e.g., grape phylloxera in vineyards). The methodology uses a UAV integrated with advanced digital hyperspectral, multispectral, and RGB sensors. We implemented the methodology for the development of a predictive model for phylloxera detection. In this method, we explore the combination of airborne RGB, multispectral, and hyperspectral imagery with ground-based data at two separate time periods and under different levels of phylloxera infestation. We describe the technology used-the sensors, the UAV, and the flight operations-the processing workflow of the datasets from each imagery type, and the methods for combining multiple airborne with ground-based datasets. Finally, we present relevant results of correlation between the different processed datasets. The objective of this research is to develop a novel methodology for collecting, processing, analising and integrating multispectral, hyperspectral, ground and spatial data to remote sense different variables in different applications, such as, in this case, plant pest surveillance. The development of such methodology would provide researchers, agronomists, and UAV practitioners reliable data collection protocols and methods to achieve faster processing techniques and integrate multiple sources of data in diverse remote sensing applications.
NASA Technical Reports Server (NTRS)
Benediktsson, J. A.; Swain, P. H.; Ersoy, O. K.
1993-01-01
Application of neural networks to classification of remote sensing data is discussed. Conventional two-layer backpropagation is found to give good results in classification of remote sensing data but is not efficient in training. A more efficient variant, based on conjugate-gradient optimization, is used for classification of multisource remote sensing and geographic data and very-high-dimensional data. The conjugate-gradient neural networks give excellent performance in classification of multisource data, but do not compare as well with statistical methods in classification of very-high-dimentional data.
Devices and methods to detect and quantify trace gases
Allendorf, Mark D.; Robinson, Alex
2016-05-03
Sensing devices based on a surface acoustic wave ("SAW") device coated with an absorbent crystalline or amorphous layer for detecting at least one chemical analyte in a gaseous carrier. Methods for detecting the presence of a chemical analyte in a gaseous carrier using such devices are also disclosed. The sensing devices and methods for their use may be configured for sensing chemical analytes selected from the group consisting of water vapor, carbon dioxide, methanol, ethanol, carbon monoxide, nitric oxide, nitrous oxide, organic amines, organic compounds containing NO.sub.2 groups, halogenated hydrocarbons, acetone, hexane, toluene, isopropanol, alcohols, alkanes, alkenes, benzene, functionalized aromatics, ammonia (NH.sub.3), phosgene (COCl.sub.2), sulfur mustard, nerve agents, sulfur dioxide, tetrahydrofuran (THF) and methyltertbutyl ether (MTBE) and combinations thereof.
Construction of an unmanned aerial vehicle remote sensing system for crop monitoring
NASA Astrophysics Data System (ADS)
Jeong, Seungtaek; Ko, Jonghan; Kim, Mijeong; Kim, Jongkwon
2016-04-01
We constructed a lightweight unmanned aerial vehicle (UAV) remote sensing system and determined the ideal method for equipment setup, image acquisition, and image processing. Fields of rice paddy (Oryza sativa cv. Unkwang) grown under three different nitrogen (N) treatments of 0, 50, or 115 kg/ha were monitored at Chonnam National University, Gwangju, Republic of Korea, in 2013. A multispectral camera was used to acquire UAV images from the study site. Atmospheric correction of these images was completed using the empirical line method, and three-point (black, gray, and white) calibration boards were used as pseudo references. Evaluation of our corrected UAV-based remote sensing data revealed that correction efficiency and root mean square errors ranged from 0.77 to 0.95 and 0.01 to 0.05, respectively. The time series maps of simulated normalized difference vegetation index (NDVI) produced using the UAV images reproduced field variations of NDVI reasonably well, both within and between the different N treatments. We concluded that the UAV-based remote sensing technology utilized in this study is potentially an easy and simple way to quantitatively obtain reliable two-dimensional remote sensing information on crop growth.
A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems
NASA Astrophysics Data System (ADS)
Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui
2014-12-01
Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.
Flexible and wearable electronic silk fabrics for human physiological monitoring
NASA Astrophysics Data System (ADS)
Mao, Cuiping; Zhang, Huihui; Lu, Zhisong
2017-09-01
The development of textile-based devices for human physiological monitoring has attracted tremendous interest in recent years. However, flexible physiological sensing elements based on silk fabrics have not been realized. In this paper, ZnO nanorod arrays are grown in situ on reduced graphene oxide-coated silk fabrics via a facile electro-deposition method for the fabrication of silk-fabric-based mechanical sensing devices. The data show that well-aligned ZnO nanorods with hexagonal wurtzite crystalline structures are synthesized on the conductive silk fabric surface. After magnetron sputtering of gold electrodes, silk-fabric-based devices are produced and applied to detect periodic bending and twisting. Based on the electric signals, the deformation and release processes can be easily differentiated. Human arterial pulse and respiration can also be real-time monitored to calculate the pulse rate and respiration frequency, respectively. Throat vibrations during coughing and singing are detected to demonstrate the voice recognition capability. This work may not only help develop silk-fabric-based mechanical sensing elements for potential applications in clinical diagnosis, daily healthcare monitoring and voice recognition, but also provide a versatile method for fabricating textile-based flexible electronic devices.
Load power device, system and method of load control and management employing load identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.
A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.
NASA Astrophysics Data System (ADS)
Song, Yi; Ma, Mingguo; Li, Xin; Wang, Xufeng
2011-11-01
This research dealt with a daytime integration method with the help of Simple Biosphere Model, Version 2 (SiB2). The field observations employed in this study were obtained at the Yingke (YK) oasis super-station, which includes an Automatic Meteorological Station (AMS), an eddy covariance (EC) system and a Soil Moisture and Temperature Measuring System (SMTMS). This station is located in the Heihe River Basin, the second largest inland river basin in China. The remotely sensed data and field observations employed in this study were derived from Watershed Allied Telemetry Experimental Research (WATER). Daily variations of EF in temporal and spatial scale would be detected by using SiB2. An instantaneous midday EF was calculated based on a remote-sensing-based estimation of surface energy budget. The invariance of daytime EF was examined using the instantaneous midday EF calculated from a remote-sensing-based estimation. The integration was carried out using the constant EF method in the intervals with a steady EF. Intervals with an inconsistent EF were picked up and ET in these intervals was integrated separately. The truth validation of land Surface ET at satellite pixel scale was carried out using the measurement of eddy covariance (EC) system.
NASA Astrophysics Data System (ADS)
Ma, Dan; Liu, Jun; Chen, Kai; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing
2016-04-01
In remote sensing fusion, the spatial details of a panchromatic (PAN) image and the spectrum information of multispectral (MS) images will be transferred into fused images according to the characteristics of the human visual system. Thus, a remote sensing image fusion quality assessment called feature-based fourth-order correlation coefficient (FFOCC) is proposed. FFOCC is based on the feature-based coefficient concept. Spatial features related to spatial details of the PAN image and spectral features related to the spectrum information of MS images are first extracted from the fused image. Then, the fourth-order correlation coefficient between the spatial and spectral features is calculated and treated as the assessment result. FFOCC was then compared with existing widely used indices, such as Erreur Relative Globale Adimensionnelle de Synthese, and quality assessed with no reference. Results of the fusion and distortion experiments indicate that the FFOCC is consistent with subjective evaluation. FFOCC significantly outperforms the other indices in evaluating fusion images that are produced by different fusion methods and that are distorted in spatial and spectral features by blurring, adding noise, and changing intensity. All the findings indicate that the proposed method is an objective and effective quality assessment for remote sensing image fusion.
Study of Burn Scar Extraction Automatically Based on Level Set Method using Remote Sensing Data
Liu, Yang; Dai, Qin; Liu, JianBo; Liu, ShiBin; Yang, Jin
2014-01-01
Burn scar extraction using remote sensing data is an efficient way to precisely evaluate burn area and measure vegetation recovery. Traditional burn scar extraction methodologies have no well effect on burn scar image with blurred and irregular edges. To address these issues, this paper proposes an automatic method to extract burn scar based on Level Set Method (LSM). This method utilizes the advantages of the different features in remote sensing images, as well as considers the practical needs of extracting the burn scar rapidly and automatically. This approach integrates Change Vector Analysis (CVA), Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR) to obtain difference image and modifies conventional Level Set Method Chan-Vese (C-V) model with a new initial curve which results from a binary image applying K-means method on fitting errors of two near-infrared band images. Landsat 5 TM and Landsat 8 OLI data sets are used to validate the proposed method. Comparison with conventional C-V model, OSTU algorithm, Fuzzy C-mean (FCM) algorithm are made to show that the proposed approach can extract the outline curve of fire burn scar effectively and exactly. The method has higher extraction accuracy and less algorithm complexity than that of the conventional C-V model. PMID:24503563
Object-Based Change Detection Using High-Resolution Remotely Sensed Data and GIS
NASA Astrophysics Data System (ADS)
Sofina, N.; Ehlers, M.
2012-08-01
High resolution remotely sensed images provide current, detailed, and accurate information for large areas of the earth surface which can be used for change detection analyses. Conventional methods of image processing permit detection of changes by comparing remotely sensed multitemporal images. However, for performing a successful analysis it is desirable to take images from the same sensor which should be acquired at the same time of season, at the same time of a day, and - for electro-optical sensors - in cloudless conditions. Thus, a change detection analysis could be problematic especially for sudden catastrophic events. A promising alternative is the use of vector-based maps containing information about the original urban layout which can be related to a single image obtained after the catastrophe. The paper describes a methodology for an object-based search of destroyed buildings as a consequence of a natural or man-made catastrophe (e.g., earthquakes, flooding, civil war). The analysis is based on remotely sensed and vector GIS data. It includes three main steps: (i) generation of features describing the state of buildings; (ii) classification of building conditions; and (iii) data import into a GIS. One of the proposed features is a newly developed 'Detected Part of Contour' (DPC). Additionally, several features based on the analysis of textural information corresponding to the investigated vector objects are calculated. The method is applied to remotely sensed images of areas that have been subjected to an earthquake. The results show the high reliability of the DPC feature as an indicator for change.
NASA Astrophysics Data System (ADS)
Zhu, Weining; Yu, Qian; Tian, Yong Q.; Chen, Robert F.; Gardner, G. Bernard
2011-02-01
A method for the inversion of hyperspectral remote sensing was developed to determine the absorption coefficient for chromophoric dissolved organic matter (CDOM) in the Mississippi and Atchafalaya river plume regions and the northern Gulf of Mexico, where water types vary from Case 1 to turbid Case 2. Above-surface hyperspectral remote sensing data were measured by a ship-mounted spectroradiometer and then used to estimate CDOM. Simultaneously, water absorption and attenuation coefficients, CDOM and chlorophyll fluorescence, turbidities, and other related water properties were also measured at very high resolution (0.5-2 m) using in situ, underwater, and flow-through (shipboard, pumped) optical sensors. We separate ag, the absorption coefficient a of CDOM, from adg (a of CDOM and nonalgal particles) based on two absorption-backscattering relationships. The first is between ad (a of nonalgal particles) and bbp (total particulate backscattering coefficient), and the second is between ap (a of total particles) and bbp. These two relationships are referred as ad-based and ap-based methods, respectively. Consequently, based on Lee's quasi-analytical algorithm (QAA), we developed the so-called Extended Quasi-Analytical Algorithm (QAA-E) to decompose adg, using both ad-based and ap-based methods. The absorption-backscattering relationships and the QAA-E were tested using synthetic and in situ data from the International Ocean-Colour Coordinating Group (IOCCG) as well as our own field data. The results indicate the ad-based method is relatively better than the ap-based method. The accuracy of CDOM estimation is significantly improved by separating ag from adg (R2 = 0.81 and 0.65 for synthetic and in situ data, respectively). The sensitivities of the newly introduced coefficients were also analyzed to ensure QAA-E is robust.
NASA Astrophysics Data System (ADS)
Agoes Nugroho, Indra; Kurniawahidayati, Beta; Syahputra Mulyana, Reza; Saepuloh, Asep
2017-12-01
Remote sensing is one of the methods for geothermal exploration. This method can be used to map the geological structures, manifestations, and predict the geothermal potential area. The results from remote sensing were used as guidance for the next step exploration. Analysis of target in remote sensing is an efficient method to delineate geothermal surface manifestation without direct contact to the object. The study took a place in District Merangin, Jambi Province, Indonesia. The area was selected due to existing of Merangin volcanic complex composed by Mounts Sumbing and Hulunilo with surface geothermal manifestations presented by hot springs and hot pools. The location of surface manifestations could be related with local and regional structures of Great Sumatra Fault. The methods used in this study were included identification of volcanic products, lineament extraction, and lineament density quantification. The objective of this study is to delineate the potential zones for sitting the geothermal working site based on Thermal Infrared and Synthetic Aperture Radar (SAR) sensors. The lineament-related to geological structures, was aimed for high lineament density, is using ALOS - PALSAR (Advanced Land Observing Satellite - The Phased Array type L-band Synthetic Aperture Radar) level 1.1. The Normalized Difference Vegetation Index (NDVI) analysis was used to predict the vegetation condition using Landsat 8 OLI-TIRS (The Operational Land Imager - Thermal Infrared Sensor). The brightness temperature was extracted from TIR band to estimate the surface temperature. Geothermal working area identified based on index overlay method from extracted parameter of remote sensing data was located at the western part of study area (Graho Nyabu area). This location was identified because of the existence of high surface temperature about 30°C, high lineament density about 4 - 4.5 km/km2 and low NDVI values less than 0.3.
[Extracting black soil border in Heilongjiang province based on spectral angle match method].
Zhang, Xin-Le; Zhang, Shu-Wen; Li, Ying; Liu, Huan-Jun
2009-04-01
As soils are generally covered by vegetation most time of a year, the spectral reflectance collected by remote sensing technique is from the mixture of soil and vegetation, so the classification precision based on remote sensing (RS) technique is unsatisfied. Under RS and geographic information systems (GIS) environment and with the help of buffer and overlay analysis methods, land use and soil maps were used to derive regions of interest (ROI) for RS supervised classification, which plus MODIS reflectance products were chosen to extract black soil border, with methods including spectral single match. The results showed that the black soil border in Heilongjiang province can be extracted with soil remote sensing method based on MODIS reflectance products, especially in the north part of black soil zone; the classification precision of spectral angel mapping method is the highest, but the classifying accuracy of other soils can not meet the need, because of vegetation covering and similar spectral characteristics; even for the same soil, black soil, the classifying accuracy has obvious spatial heterogeneity, in the north part of black soil zone in Heilongjiang province it is higher than in the south, which is because of spectral differences; as soil uncovering period in Northeastern China is relatively longer, high temporal resolution make MODIS images get the advantage over soil remote sensing classification; with the help of GIS, extracting ROIs by making the best of auxiliary data can improve the precision of soil classification; with the help of auxiliary information, such as topography and climate, the classification accuracy was enhanced significantly. As there are five main factors determining soil classes, much data of different types, such as DEM, terrain factors, climate (temperature, precipitation, etc.), parent material, vegetation map, and remote sensing images, were introduced to classify soils, so how to choose some of the data and quantify the weights of different data layers needs further study.
A Sense of Place in the Science Classroom
ERIC Educational Resources Information Center
Membiela, Pedro; DePalma, Renee; Pazos, Mercedes Suarez
2011-01-01
Place-based science education engages with the laboratories of complex reality where natural processes combine with social practice, going beyond the physical world, to encompass the meanings and sense of attachment local residents feel for places. This brief report describes how a university science methods class in a primary teacher training…
Generating Broad-Scale Forest Ownership Maps: A Closest-Neighbor Approach
Brett J. Butler
2005-01-01
A closest-neighbor method for producing a forest ownership map using remotely sensed imagery and point-based ownership information is presented for the Northeastern United States. Based on a validation data set, this method had an accuracy rate of 58 percent.
Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis
Hu, Mao-Gui; Wang, Jin-Feng; Ge, Yong
2009-01-01
Satellite remote sensing (RS) is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intra-urban). In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolution-enhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well in detail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics. PMID:22291530
Experiments in automatic word class and word sense identification for information retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauch, S.; Futrelle, R.P.
Automatic identification of related words and automatic detection of word senses are two long-standing goals of researchers in natural language processing. Word class information and word sense identification may enhance the performance of information retrieval system4ms. Large online corpora and increased computational capabilities make new techniques based on corpus linguisitics feasible. Corpus-based analysis is especially needed for corpora from specialized fields for which no electronic dictionaries or thesauri exist. The methods described here use a combination of mutual information and word context to establish word similarities. Then, unsupervised classification is done using clustering in the word space, identifying word classesmore » without pretagging. We also describe an extension of the method to handle the difficult problems of disambiguation and of determining part-of-speech and semantic information for low-frequency words. The method is powerful enough to produce high-quality results on a small corpus of 200,000 words from abstracts in a field of molecular biology.« less
Qiu, Guo Yu; Zhao, Ming
2010-03-01
Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.
NASA Astrophysics Data System (ADS)
Nurjanah; Dahlan, J. A.; Wibisono, Y.
2017-02-01
This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.
Research on fiber Bragg grating heart sound sensing and wavelength demodulation method
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Chang-Yun; Gao, Hua; Gan, Jing-Meng; Li, Hong-Qiang
2010-11-01
Heart sound includes a lot of physiological and pathological information of heart and blood vessel. Heart sound detecting is an important method to gain the heart status, and has important significance to early diagnoses of cardiopathy. In order to improve sensitivity and reduce noise, a heart sound measurement method based on fiber Bragg grating was researched. By the vibration principle of plane round diaphragm, a heart sound sensor structure of fiber Bragg grating was designed and a heart sound sensing mathematical model was established. A formula of heart sound sensitivity was deduced and the theoretical sensitivity of the designed sensor is 957.11pm/KPa. Based on matched grating method, the experiment system was built, by which the excursion of reflected wavelength of the sensing grating was detected and the information of heart sound was obtained. Experiments show that the designed sensor can detect the heart sound and the reflected wavelength variety range is about 70pm. When the sampling frequency is 1 KHz, the extracted heart sound waveform by using the db4 wavelet has the same characteristics with a standard heart sound sensor.
The mass remote sensing image data management based on Oracle InterMedia
NASA Astrophysics Data System (ADS)
Zhao, Xi'an; Shi, Shaowei
2013-07-01
With the development of remote sensing technology, getting the image data more and more, how to apply and manage the mass image data safely and efficiently has become an urgent problem to be solved. According to the methods and characteristics of the mass remote sensing image data management and application, this paper puts forward to a new method that takes Oracle Call Interface and Oracle InterMedia to store the image data, and then takes this component to realize the system function modules. Finally, it successfully takes the VC and Oracle InterMedia component to realize the image data storage and management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, Maxence, E-mail: M.E.P.Borot@um
Purpose: The development of MR-guided high dose rate (HDR) brachytherapy is under investigation due to the excellent tumor and organs at risk visualization of MRI. However, MR-based localization of needles (including catheters or tubes) has inherently a low update rate and the required image interpretation can be hampered by signal voids arising from blood vessels or calcifications limiting the precision of the needle guidance and reconstruction. In this paper, a new needle tracking prototype is investigated using fiber Bragg gratings (FBG)-based sensing: this prototype involves a MR-compatible stylet composed of three optic fibers with nine sets of embedded FBG sensorsmore » each. This stylet can be inserted into brachytherapy needles and allows a fast measurement of the needle deflection. This study aims to assess the potential of FBG-based sensing for real-time needle (including catheter or tube) tracking during MR-guided intervention. Methods: First, the MR compatibility of FBG-based sensing and its accuracy was evaluated. Different known needle deflections were measured using FBG-based sensing during simultaneous MR-imaging. Then, a needle tracking procedure using FBG-based sensing was proposed. This procedure involved a MR-based calibration of the FBG-based system performed prior to the interventional procedure. The needle tracking system was assessed in an experiment with a moving phantom during MR imaging. The FBG-based system was quantified by comparing the gold-standard shapes, the shape manually segmented on MRI and the FBG-based measurements. Results: The evaluation of the MR compatibility of FBG-based sensing and its accuracy shows that the needle deflection could be measured with an accuracy of 0.27 mm on average. Besides, the FBG-based measurements were comparable to the uncertainty of MR-based measurements estimated at half the voxel size in the MR image. Finally, the mean(standard deviation) Euclidean distance between MR- and FBG-based needle position measurements was equal to 0.79 mm(0.37 mm). The update rate and latency of the FBG-based needle position measurement were 100 and 300 ms, respectively. Conclusions: The FBG-based needle tracking procedure proposed in this paper is able to determine the position of the complete needle, under MR-imaging, with better accuracy and precision, higher update rate, and lower latency compared to current MR-based needle localization methods. This system would be eligible for MR-guided brachytherapy, in particular, for an improved needle guidance and reconstruction.« less
NASA Astrophysics Data System (ADS)
Zhang, Yuning; Reisner, Walter
2013-03-01
Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with embedded pore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a pore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can optically detect successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule. Furthermore, electrical measurements through the nanopore are performed, indicating that DNA sensing is feasible using the nanochannel-nanopore device.
Kang, Xu; Liu, Liang; Ma, Huadong
2017-01-01
Monitoring the status of urban environments, which provides fundamental information for a city, yields crucial insights into various fields of urban research. Recently, with the popularity of smartphones and vehicles equipped with onboard sensors, a people-centric scheme, namely “crowdsensing”, for city-scale environment monitoring is emerging. This paper proposes a data correlation based crowdsensing approach for fine-grained urban environment monitoring. To demonstrate urban status, we generate sensing images via crowdsensing network, and then enhance the quality of sensing images via data correlation. Specifically, to achieve a higher quality of sensing images, we not only utilize temporal correlation of mobile sensing nodes but also fuse the sensory data with correlated environment data by introducing a collective tensor decomposition approach. Finally, we conduct a series of numerical simulations and a real dataset based case study. The results validate that our approach outperforms the traditional spatial interpolation-based method. PMID:28054968
M-OTDR sensing system based on 3D encoded microstructures
Sun, Qizhen; Ai, Fan; Liu, Deming; Cheng, Jianwei; Luo, Hongbo; Peng, Kuan; Luo, Yiyang; Yan, Zhijun; Shum, Perry Ping
2017-01-01
In this work, a quasi-distributed sensing scheme named as microstructured OTDR (M-OTDR) by introducing ultra-weak microstructures along the fiber is proposed. Owing to its relative higher reflectivity compared with the backscattered coefficient in fiber and three dimensional (3D) i.e. wavelength/frequency/time encoded property, the M-OTDR system exhibits the superiorities of high signal to noise ratio (SNR), high spatial resolution of millimeter level and high multiplexing capacity up to several ten thousands theoretically. A proof-of-concept system consisting of 64 sensing units is constructed to demonstrate the feasibility and sensing performance. With the help of the demodulation method based on 3D analysis and spectrum reconstruction of the signal light, quasi-distributed temperature sensing with a spatial resolution of 20 cm as well as a measurement resolution of 0.1 °C is realized. PMID:28106132
Li, Hongyi; Shi, Zhou; Sha, Jinming; Cheng, Jieliang
2006-08-01
In the present study, vegetation, soil brightness, and moisture indices were extracted from Landsat ETM remote sensing image, heat indices were extracted from MODIS land surface temperature product, and climate index and other auxiliary geographical information were selected as the input of neural network. The remote sensing eco-environmental background value of standard interest region evaluated in situ was selected as the output of neural network, and the back propagation (BP) neural network prediction model containing three layers was designed. The network was trained, and the remote sensing eco-environmental background value of Fuzhou in China was predicted by using software MATLAB. The class mapping of remote sensing eco-environmental background values based on evaluation standard showed that the total classification accuracy was 87. 8%. The method with a scheme of prediction first and classification then could provide acceptable results in accord with the regional eco-environment types.
Wang, Xuewei; Yue, Dengfeng; Lv, Enguang; Wu, Lei; Qin, Wei
2014-02-18
The tremendous applications of boronic acids (BAs) in chemical sensing, medical chemistry, molecular assembly, and organic synthesis lead to an urgent demand for developing effective sensing methods for BAs. This paper reports a facile and sensitive potentiometric sensor scheme for heterogeneous detection of BAs based on their unexpected potential responses on quaternary ammonium salt-doped polymeric liquid membranes. (11)B NMR data reveal that a quaternary ammonium chloride can trigger the hydrolysis of an electrically neutral BA in an aprotic solvent. Using the quaternary ammonium salt as the receptor, the BA molecules can be extracted from the sample solution into the polymeric membrane phase and undergo the concomitant hydrolysis. Such salt-triggered hydrolysis generates H(+) ions, which can be coejected into the aqueous phase with the counterions (e.g., Cl(-)) owing to their high hydrophilicities. The perturbation on the ionic partition at the sample-membrane interface changes the phase boundary potential and thus enables the potentiometric sensing of BAs. In contrast to other transduction methods for BAs, for which labeled or separate reporters are exclusively required, the present heterogeneous sensing scheme allows the direct detection of BAs without using any reporter molecules. This technique shows superior detection limits for BAs (e.g., 1.0 × 10(-6) M for phenylboronic acid) as compared to previously reported methods based on colorimetry, fluorimetry, and mass spectrometry. The proposed sensing strategy has also been successfully applied to potentiometric indication of the BA reactions with hydrogen peroxide and saccharides, which allows indirect and sensitive detection of these important species.
Video conference quality assessment based on cooperative sensing of video and audio
NASA Astrophysics Data System (ADS)
Wang, Junxi; Chen, Jialin; Tian, Xin; Zhou, Cheng; Zhou, Zheng; Ye, Lu
2015-12-01
This paper presents a method to video conference quality assessment, which is based on cooperative sensing of video and audio. In this method, a proposed video quality evaluation method is used to assess the video frame quality. The video frame is divided into noise image and filtered image by the bilateral filters. It is similar to the characteristic of human visual, which could also be seen as a low-pass filtering. The audio frames are evaluated by the PEAQ algorithm. The two results are integrated to evaluate the video conference quality. A video conference database is built to test the performance of the proposed method. It could be found that the objective results correlate well with MOS. Then we can conclude that the proposed method is efficiency in assessing video conference quality.
Su, Jin-He; Piao, Ying-Chao; Luo, Ze; Yan, Bao-Ping
2018-01-01
Simple Summary The understanding of the spatio-temporal distribution of the species habitats would facilitate wildlife resource management and conservation efforts. Existing methods have poor performance due to the limited availability of training samples. More recently, location-aware sensors have been widely used to track animal movements. The aim of the study was to generate suitability maps of bar-head geese using movement data coupled with environmental parameters, such as remote sensing images and temperature data. Therefore, we modified a deep convolutional neural network for the multi-scale inputs. The results indicate that the proposed method can identify the areas with the dense goose species around Qinghai Lake. In addition, this approach might also be interesting for implementation in other species with different niche factors or in areas where biological survey data are scarce. Abstract With the application of various data acquisition devices, a large number of animal movement data can be used to label presence data in remote sensing images and predict species distribution. In this paper, a two-stage classification approach for combining movement data and moderate-resolution remote sensing images was proposed. First, we introduced a new density-based clustering method to identify stopovers from migratory birds’ movement data and generated classification samples based on the clustering result. We split the remote sensing images into 16 × 16 patches and labeled them as positive samples if they have overlap with stopovers. Second, a multi-convolution neural network model is proposed for extracting the features from temperature data and remote sensing images, respectively. Then a Support Vector Machines (SVM) model was used to combine the features together and predict classification results eventually. The experimental analysis was carried out on public Landsat 5 TM images and a GPS dataset was collected on 29 birds over three years. The results indicated that our proposed method outperforms the existing baseline methods and was able to achieve good performance in habitat suitability prediction. PMID:29701686
NASA Astrophysics Data System (ADS)
Yu, Xin; Wen, Zongyong; Zhu, Zhaorong; Xia, Qiang; Shun, Lan
2016-06-01
Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A.I.; Pettersson, C.B.
1988-01-01
Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less
Liu, Xin
2015-10-30
In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.
NASA Astrophysics Data System (ADS)
Vishnukumar, S.; Wilscy, M.
2017-12-01
In this paper, we propose a single image Super-Resolution (SR) method based on Compressive Sensing (CS) and Improved Total Variation (TV) Minimization Sparse Recovery. In the CS framework, low-resolution (LR) image is treated as the compressed version of high-resolution (HR) image. Dictionary Training and Sparse Recovery are the two phases of the method. K-Singular Value Decomposition (K-SVD) method is used for dictionary training and the dictionary represents HR image patches in a sparse manner. Here, only the interpolated version of the LR image is used for training purpose and thereby the structural self similarity inherent in the LR image is exploited. In the sparse recovery phase the sparse representation coefficients with respect to the trained dictionary for LR image patches are derived using Improved TV Minimization method. HR image can be reconstructed by the linear combination of the dictionary and the sparse coefficients. The experimental results show that the proposed method gives better results quantitatively as well as qualitatively on both natural and remote sensing images. The reconstructed images have better visual quality since edges and other sharp details are preserved.
Investigation related to multispectral imaging systems
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Erickson, J. D.
1974-01-01
A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.
NASA Technical Reports Server (NTRS)
Dasarathy, B. V.
1976-01-01
An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.
Estimating Water Levels with Google Earth Engine
NASA Astrophysics Data System (ADS)
Lucero, E.; Russo, T. A.; Zentner, M.; May, J.; Nguy-Robertson, A. L.
2016-12-01
Reservoirs serve multiple functions and are vital for storage, electricity generation, and flood control. For many areas, traditional ground-based reservoir measurements may not be available or data dissemination may be problematic. Consistent monitoring of reservoir levels in data-poor areas can be achieved through remote sensing, providing information to researchers and the international community. Estimates of trends and relative reservoir volume can be used to identify water supply vulnerability, anticipate low power generation, and predict flood risk. Image processing with automated cloud computing provides opportunities to study multiple geographic areas in near real-time. We demonstrate the prediction capability of a cloud environment for identifying water trends at reservoirs in the US, and then apply the method to data-poor areas in North Korea, Iran, Azerbaijan, Zambia, and India. The Google Earth Engine cloud platform hosts remote sensing data and can be used to automate reservoir level estimation with multispectral imagery. We combine automated cloud-based analysis from Landsat image classification to identify reservoir surface area trends and radar altimetry to identify reservoir level trends. The study estimates water level trends using three years of data from four domestic reservoirs to validate the remote sensing method, and five foreign reservoirs to demonstrate the method application. We report correlations between ground-based reservoir level measurements in the US and our remote sensing methods, and correlations between the cloud analysis and altimetry data for reservoirs in data-poor areas. The availability of regular satellite imagery and an automated, near real-time application method provides the necessary datasets for further temporal analysis, reservoir modeling, and flood forecasting. All statements of fact, analysis, or opinion are those of the author and do not reflect the official policy or position of the Department of Defense or any of its components or the U.S. Government
Change detection from remotely sensed images: From pixel-based to object-based approaches
NASA Astrophysics Data System (ADS)
Hussain, Masroor; Chen, Dongmei; Cheng, Angela; Wei, Hui; Stanley, David
2013-06-01
The appetite for up-to-date information about earth's surface is ever increasing, as such information provides a base for a large number of applications, including local, regional and global resources monitoring, land-cover and land-use change monitoring, and environmental studies. The data from remote sensing satellites provide opportunities to acquire information about land at varying resolutions and has been widely used for change detection studies. A large number of change detection methodologies and techniques, utilizing remotely sensed data, have been developed, and newer techniques are still emerging. This paper begins with a discussion of the traditionally pixel-based and (mostly) statistics-oriented change detection techniques which focus mainly on the spectral values and mostly ignore the spatial context. This is succeeded by a review of object-based change detection techniques. Finally there is a brief discussion of spatial data mining techniques in image processing and change detection from remote sensing data. The merits and issues of different techniques are compared. The importance of the exponential increase in the image data volume and multiple sensors and associated challenges on the development of change detection techniques are highlighted. With the wide use of very-high-resolution (VHR) remotely sensed images, object-based methods and data mining techniques may have more potential in change detection.
Polarization-resolved sensing with tilted fiber Bragg gratings: theory and limits of detection
NASA Astrophysics Data System (ADS)
Bialiayeu, Aliaksandr; Ianoul, Anatoli; Albert, Jacques
2015-08-01
Polarization based sensing with tilted fiber Bragg grating (TFBG) sensors is analysed theoretically by two alternative approaches. The first method is based on tracking the grating transmission for two orthogonal states of linear polarized light that are extracted from the measured Jones matrix or Stokes vectors of the TFBG transmission spectra. The second method is based on the measurements along the system principle axes and polarization dependent loss (PDL) parameter, also calculated from measured data. It is shown that the frequent crossing of the Jones matrix eigenvalues as a function of wavelength leads to a non-physical interchange of the calculated principal axes; a method to remove this unwanted mathematical artefact and to restore the order of the system eigenvalues and the corresponding principal axes is provided. A comparison of the two approaches reveals that the PDL method provides a smaller standard deviation and therefore lower limit of detection in refractometric sensing. Furthermore, the polarization analysis of the measured spectra allows for the identification of the principal states of polarization of the sensor system and consequentially for the calculation of the transmission spectrum for any incident polarization state. The stability of the orientation of the system principal axes is also investigated as a function of wavelength.
NASA Astrophysics Data System (ADS)
Ye, Y.
2017-09-01
This paper presents a fast and robust method for the registration of multimodal remote sensing data (e.g., optical, LiDAR, SAR and map). The proposed method is based on the hypothesis that structural similarity between images is preserved across different modalities. In the definition of the proposed method, we first develop a pixel-wise feature descriptor named Dense Orientated Gradient Histogram (DOGH), which can be computed effectively at every pixel and is robust to non-linear intensity differences between images. Then a fast similarity metric based on DOGH is built in frequency domain using the Fast Fourier Transform (FFT) technique. Finally, a template matching scheme is applied to detect tie points between images. Experimental results on different types of multimodal remote sensing images show that the proposed similarity metric has the superior matching performance and computational efficiency than the state-of-the-art methods. Moreover, based on the proposed similarity metric, we also design a fast and robust automatic registration system for multimodal images. This system has been evaluated using a pair of very large SAR and optical images (more than 20000 × 20000 pixels). Experimental results show that our system outperforms the two popular commercial software systems (i.e. ENVI and ERDAS) in both registration accuracy and computational efficiency.
Liu, Shu-Hung; Huang, Tse-Shih; Yen, Jia-Yush
2010-01-01
Shape memory alloys (SMAs) offer a high power-to-weight ratio, large recovery strain, and low driving voltages, and have thus attracted considerable research attention. The difficulty of controlling SMA actuators arises from their highly nonlinear hysteresis and temperature dependence. This paper describes a combination of self-sensing and model-based control, where the model includes both the major and minor hysteresis loops as well as the thermodynamics effects. The self-sensing algorithm uses only the power width modulation (PWM) signal and requires no heavy equipment. The method can achieve high-accuracy servo control and is especially suitable for miniaturized applications. PMID:22315530
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E; Svoboda, John M; West, Phillip B; Heath, Gail L; Scott, Clark L
2015-01-27
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E [Idaho Falls, ID; Svoboda, John M [Idaho Falls, ID; West, Phillip B [Idaho Falls, ID; Heath, Gail L [Iona, ID; Scott, Clark L [Idaho Falls, ID
2010-08-31
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E; Svoboda, John M.; West, Phillip B.; Heath, Gail L.; Scott, Clark L.
2016-07-19
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Land use/cover classification in the Brazilian Amazon using satellite images.
Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira
2012-09-01
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.
Land use/cover classification in the Brazilian Amazon using satellite images
Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira
2013-01-01
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353
Two-channel highly sensitive sensors based on 4 × 4 multimode interference couplers
NASA Astrophysics Data System (ADS)
Le, Trung-Thanh
2017-12-01
We propose a new kind of microring resonators (MRR) based on 4 × 4 multimode interference (MMI) couplers for multichannel and highly sensitive chemical and biological sensors. The proposed sensor structure has advantages of compactness and high sensitivity compared with the reported sensing structures. By using the transfer matrix method (TMM) and numerical simulations, the designs of the sensor based on silicon waveguides are optimized and demonstrated in detail. We apply our structure to detect glucose and ethanol concentrations simultaneously. A high sensitivity of 9000 nm/RIU, detection limit of 2 × 10‒4 for glucose sensing and sensitivity of 6000 nm/RIU, detection limit of 1.3 × 10‒5 for ethanol sensing are achieved.
Contrast-based sensorless adaptive optics for retinal imaging
Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T.O.; He, Zheng; Metha, Andrew
2015-01-01
Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525
[An object-based information extraction technology for dominant tree species group types].
Tian, Tian; Fan, Wen-yi; Lu, Wei; Xiao, Xiang
2015-06-01
Information extraction for dominant tree group types is difficult in remote sensing image classification, howevers, the object-oriented classification method using high spatial resolution remote sensing data is a new method to realize the accurate type information extraction. In this paper, taking the Jiangle Forest Farm in Fujian Province as the research area, based on the Quickbird image data in 2013, the object-oriented method was adopted to identify the farmland, shrub-herbaceous plant, young afforested land, Pinus massoniana, Cunninghamia lanceolata and broad-leave tree types. Three types of classification factors including spectral, texture, and different vegetation indices were used to establish a class hierarchy. According to the different levels, membership functions and the decision tree classification rules were adopted. The results showed that the method based on the object-oriented method by using texture, spectrum and the vegetation indices achieved the classification accuracy of 91.3%, which was increased by 5.7% compared with that by only using the texture and spectrum.
NASA Astrophysics Data System (ADS)
Chen, Fulong; Wang, Chao; Yang, Chengyun; Zhang, Hong; Wu, Fan; Lin, Wenjuan; Zhang, Bo
2008-11-01
This paper proposed a method that uses a case-based classification of remote sensing images and applied this method to abstract the information of suspected illegal land use in urban areas. Because of the discrete cases for imagery classification, the proposed method dealt with the oscillation of spectrum or backscatter within the same land use category, and it not only overcame the deficiency of maximum likelihood classification (the prior probability of land use could not be obtained) but also inherited the advantages of the knowledge-based classification system, such as artificial intelligence and automatic characteristics. Consequently, the proposed method could do the classifying better. Then the researchers used the object-oriented technique for shadow removal in highly dense city zones. With multi-temporal SPOT 5 images whose resolution was 2.5×2.5 meters, the researchers found that the method can abstract suspected illegal land use information in urban areas using post-classification comparison technique.
Subdimensions of Adolescent Belonging in High School
ERIC Educational Resources Information Center
Wallace, Tanner LeBaron; Ye, Feifei; Chhuon, Vichet
2012-01-01
Adolescents' sense of belonging in high school may serve a protective function, linking school-based relationships to positive youth outcomes. To advance the study of sense of belonging, we conducted a mixed method, factor analytic study (Phase 1 focus groups, N = 72; Phase 2 cross-sectional survey, N = 890) to explore the multidimensionality of…
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPA′s Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
[Modeling continuous scaling of NDVI based on fractal theory].
Luan, Hai-Jun; Tian, Qing-Jiu; Yu, Tao; Hu, Xin-Li; Huang, Yan; Du, Ling-Tong; Zhao, Li-Min; Wei, Xi; Han, Jie; Zhang, Zhou-Wei; Li, Shao-Peng
2013-07-01
Scale effect was one of the very important scientific problems of remote sensing. The scale effect of quantitative remote sensing can be used to study retrievals' relationship between different-resolution images, and its research became an effective way to confront the challenges, such as validation of quantitative remote sensing products et al. Traditional up-scaling methods cannot describe scale changing features of retrievals on entire series of scales; meanwhile, they are faced with serious parameters correction issues because of imaging parameters' variation of different sensors, such as geometrical correction, spectral correction, etc. Utilizing single sensor image, fractal methodology was utilized to solve these problems. Taking NDVI (computed by land surface radiance) as example and based on Enhanced Thematic Mapper Plus (ETM+) image, a scheme was proposed to model continuous scaling of retrievals. Then the experimental results indicated that: (a) For NDVI, scale effect existed, and it could be described by fractal model of continuous scaling; (2) The fractal method was suitable for validation of NDVI. All of these proved that fractal was an effective methodology of studying scaling of quantitative remote sensing.
NASA Astrophysics Data System (ADS)
Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei
2018-06-01
Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.
Generating quality word sense disambiguation test sets based on MeSH indexing.
Fan, Jung-Wei; Friedman, Carol
2009-11-14
Word sense disambiguation (WSD) determines the correct meaning of a word that has more than one meaning, and is a critical step in biomedical natural language processing, as interpretation of information in text can be correct only if the meanings of their component terms are correctly identified first. Quality evaluation sets are important to WSD because they can be used as representative samples for developing automatic programs and as referees for comparing different WSD programs. To help create quality test sets for WSD, we developed a MeSH-based automatic sense-tagging method that preferentially annotates terms being topical of the text. Preliminary results were promising and revealed important issues to be addressed in biomedical WSD research. We also suggest that, by cross-validating with 2 or 3 annotators, the method should be able to efficiently generate quality WSD test sets. Online supplement is available at: http://www.dbmi.columbia.edu/~juf7002/AMIA09.
Near real time water quality monitoring of Chivero and Manyame lakes of Zimbabwe
NASA Astrophysics Data System (ADS)
Muchini, Ronald; Gumindoga, Webster; Togarepi, Sydney; Pinias Masarira, Tarirai; Dube, Timothy
2018-05-01
Zimbabwe's water resources are under pressure from both point and non-point sources of pollution hence the need for regular and synoptic assessment. In-situ and laboratory based methods of water quality monitoring are point based and do not provide a synoptic coverage of the lakes. This paper presents novel methods for retrieving water quality parameters in Chivero and Manyame lakes, Zimbabwe, from remotely sensed imagery. Remotely sensed derived water quality parameters are further validated using in-situ data. It also presents an application for automated retrieval of those parameters developed in VB6, as well as a web portal for disseminating the water quality information to relevant stakeholders. The web portal is developed, using Geoserver, open layers and HTML. Results show the spatial variation of water quality and an automated remote sensing and GIS system with a web front end to disseminate water quality information.
Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin
2015-07-10
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.
Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture
Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin
2015-01-01
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology. PMID:26184205
Xu, Tingzhong; Lu, Dejiang; Zhao, Libo; Jiang, Zhuangde; Wang, Hongyan; Guo, Xin; Li, Zhikang; Zhou, Xiangyang; Zhao, Yulong
2017-01-01
The influence of diaphragm bending stiffness distribution on the stress concentration characteristics of a pressure sensing chip had been analyzed and discussed systematically. According to the analysis, a novel peninsula-island-based diaphragm structure was presented and applied to two differenet diaphragm shapes as sensing chips for pressure sensors. By well-designed bending stiffness distribution of the diaphragm, the elastic potential energy induced by diaphragm deformation was concentrated above the gap position, which remarkably increased the sensitivity of the sensing chip. An optimization method and the distribution pattern of the peninsula-island based diaphragm structure were also discussed. Two kinds of sensing chips combined with the peninsula-island structures distributing along the side edge and diagonal directions of rectangular diaphragm were fabricated and analyzed. By bonding the sensing chips with anti-overload glass bases, these two sensing chips were demonstrated by testing to achieve not only high sensitivity, but also good anti-overload ability. The experimental results showed that the proposed structures had the potential to measure ultra-low absolute pressures with high sensitivity and good anti-overload ability in an atmospheric environment. PMID:28846599
Cluster Method Analysis of K. S. C. Image
NASA Technical Reports Server (NTRS)
Rodriguez, Joe, Jr.; Desai, M.
1997-01-01
Information obtained from satellite-based systems has moved to the forefront as a method in the identification of many land cover types. Identification of different land features through remote sensing is an effective tool for regional and global assessment of geometric characteristics. Classification data acquired from remote sensing images have a wide variety of applications. In particular, analysis of remote sensing images have special applications in the classification of various types of vegetation. Results obtained from classification studies of a particular area or region serve towards a greater understanding of what parameters (ecological, temporal, etc.) affect the region being analyzed. In this paper, we make a distinction between both types of classification approaches although, focus is given to the unsupervised classification method using 1987 Thematic Mapped (TM) images of Kennedy Space Center.
Shi, Ting-Ting; Zhang, Xiao-Bo; Guo, Lan-Ping; Huang, Lu-Qi
2017-11-01
The herbs used as the material for traditional Chinese medicine are always planted in the mountainous area where the natural environment is suitable. As the mountain terrain is complex and the distribution of planting plots is scattered, the traditional survey method is difficult to obtain accurate planting area. It is of great significance to provide decision support for the conservation and utilization of traditional Chinese medicine resources by studying the method of extraction of Chinese herbal medicine planting area based on remote sensing and realizing the dynamic monitoring and reserve estimation of Chinese herbal medicines. In this paper, taking the Panax notoginseng plots in Wenshan prefecture of Yunnan province as an example, the China-made GF-1multispectral remote sensing images with a 16 m×16 m resolution were obtained. Then, the time series that can reflect the difference of spectrum of P. notoginseng shed and the background objects were selected to the maximum extent, and the decision tree model of extraction the of P. notoginseng plots was constructed according to the spectral characteristics of the surface features. The results showed that the remote sensing classification method based on the decision tree model could extract P. notoginseng plots in the study area effectively. The method can provide technical support for extraction of P. notoginseng plots at county level. Copyright© by the Chinese Pharmaceutical Association.
Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection
NASA Astrophysics Data System (ADS)
Wang, Jinjin; Ma, Yi; Zhang, Jingyu
2018-03-01
Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.
A numerical method for measuring capacitive soft sensors through one channel
NASA Astrophysics Data System (ADS)
Tairych, Andreas; Anderson, Iain A.
2018-03-01
Soft capacitive stretch sensors are well suited for unobtrusive wearable body motion capture. Conventional sensing methods measure sensor capacitances through separate channels. In sensing garments with many sensors, this results in high wiring complexity, and a large footprint of rigid sensing circuit boards. We have developed a more efficient sensing method that detects multiple sensors through only one channel, and one set of wires. It is based on a R-C transmission line assembled from capacitive conductive fabric stretch sensors, and external resistors. The unknown capacitances are identified by solving a system of nonlinear equations. These equations are established by modelling and continuously measuring transmission line reactances at different frequencies. Solving these equations numerically with a Newton-Raphson solver for the unknown capacitances enables real time reading of all sensors. The method was verified with a prototype comprising three sensors that is capable of detecting both individually and simultaneously stretched sensors. Instead of using three channels and six wires to detect the sensors, the task was achieved with only one channel and two wires.
Vanegas, Fernando; Weiss, John; Gonzalez, Felipe
2018-01-01
Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insect traps) for detecting pest infestations (e.g., grape phylloxera in vineyards). The methodology uses a UAV integrated with advanced digital hyperspectral, multispectral, and RGB sensors. We implemented the methodology for the development of a predictive model for phylloxera detection. In this method, we explore the combination of airborne RGB, multispectral, and hyperspectral imagery with ground-based data at two separate time periods and under different levels of phylloxera infestation. We describe the technology used—the sensors, the UAV, and the flight operations—the processing workflow of the datasets from each imagery type, and the methods for combining multiple airborne with ground-based datasets. Finally, we present relevant results of correlation between the different processed datasets. The objective of this research is to develop a novel methodology for collecting, processing, analysing and integrating multispectral, hyperspectral, ground and spatial data to remote sense different variables in different applications, such as, in this case, plant pest surveillance. The development of such methodology would provide researchers, agronomists, and UAV practitioners reliable data collection protocols and methods to achieve faster processing techniques and integrate multiple sources of data in diverse remote sensing applications. PMID:29342101
A stochastic atmospheric model for remote sensing applications
NASA Technical Reports Server (NTRS)
Turner, R. E.
1983-01-01
There are many factors which reduce the accuracy of classification of objects in the satellite remote sensing of Earth's surface. One important factor is the variability in the scattering and absorptive properties of the atmospheric components such as particulates and the variable gases. For multispectral remote sensing of the Earth's surface in the visible and infrared parts of the spectrum the atmospheric particulates are a major source of variability in the received signal. It is difficult to design a sensor which will determine the unknown atmospheric components by remote sensing methods, at least to the accuracy needed for multispectral classification. The problem of spatial and temporal variations in the atmospheric quantities which can affect the measured radiances are examined. A method based upon the stochastic nature of the atmospheric components was developed, and, using actual data the statistical parameters needed for inclusion into a radiometric model was generated. Methods are then described for an improved correction of radiances. These algorithms will then result in a more accurate and consistent classification procedure.
Heat-activated Plasmonic Chemical Sensors for Harsh Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Michael; Oh, Sang-Hyun
2015-12-01
A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold filmmore » using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis and wavelength down selection offers a novel path towards simplification and integration of plasmonic-based sensing methods using selected wavelengths rather than a full spectral analysis. Integration efforts were designed and modeled for thermal and mass transport considerations by UTAS which led to the 3D printing of scaled models that would serve as the housing for the alternative energy harvesting plasmonic chemical sensor design developed by CNSE.« less
Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review
Mosleh, Mostafa K.; Hassan, Quazi K.; Chowdhury, Ehsan H.
2015-01-01
Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ∼19% of the global dietary energy in recent times and its annual average consumption per capita was ∼65 kg during 2010–2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were empirical in nature, so thus it would require further calibration and validation prior to implement over other geographical locations. PMID:25569753
Application of remote sensors in mapping rice area and forecasting its production: a review.
Mosleh, Mostafa K; Hassan, Quazi K; Chowdhury, Ehsan H
2015-01-05
Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ~19% of the global dietary energy in recent times and its annual average consumption per capita was ~65 kg during 2010-2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were empirical in nature, so thus it would require further calibration and validation prior to implement over other geographical locations.
Meta Data Mining in Earth Remote Sensing Data Archives
NASA Astrophysics Data System (ADS)
Davis, B.; Steinwand, D.
2014-12-01
Modern search and discovery tools for satellite based remote sensing data are often catalog based and rely on query systems which use scene- (or granule-) based meta data for those queries. While these traditional catalog systems are often robust, very little has been done in the way of meta data mining to aid in the search and discovery process. The recently coined term "Big Data" can be applied in the remote sensing world's efforts to derive information from the vast data holdings of satellite based land remote sensing data. Large catalog-based search and discovery systems such as the United States Geological Survey's Earth Explorer system and the NASA Earth Observing System Data and Information System's Reverb-ECHO system provide comprehensive access to these data holdings, but do little to expose the underlying scene-based meta data. These catalog-based systems are extremely flexible, but are manually intensive and often require a high level of user expertise. Exposing scene-based meta data to external, web-based services can enable machine-driven queries to aid in the search and discovery process. Furthermore, services which expose additional scene-based content data (such as product quality information) are now available and can provide a "deeper look" into remote sensing data archives too large for efficient manual search methods. This presentation shows examples of the mining of Landsat and Aster scene-based meta data, and an experimental service using OPeNDAP to extract information from quality band from multiple granules in the MODIS archive.
NASA Astrophysics Data System (ADS)
Diao, Chunyuan
In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.
Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye
2014-02-01
Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.
Uniform competency-based local feature extraction for remote sensing images
NASA Astrophysics Data System (ADS)
Sedaghat, Amin; Mohammadi, Nazila
2018-01-01
Local feature detectors are widely used in many photogrammetry and remote sensing applications. The quantity and distribution of the local features play a critical role in the quality of the image matching process, particularly for multi-sensor high resolution remote sensing image registration. However, conventional local feature detectors cannot extract desirable matched features either in terms of the number of correct matches or the spatial and scale distribution in multi-sensor remote sensing images. To address this problem, this paper proposes a novel method for uniform and robust local feature extraction for remote sensing images, which is based on a novel competency criterion and scale and location distribution constraints. The proposed method, called uniform competency (UC) local feature extraction, can be easily applied to any local feature detector for various kinds of applications. The proposed competency criterion is based on a weighted ranking process using three quality measures, including robustness, spatial saliency and scale parameters, which is performed in a multi-layer gridding schema. For evaluation, five state-of-the-art local feature detector approaches, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), scale-invariant feature operator (SFOP), maximally stable extremal region (MSER) and hessian-affine, are used. The proposed UC-based feature extraction algorithms were successfully applied to match various synthetic and real satellite image pairs, and the results demonstrate its capability to increase matching performance and to improve the spatial distribution. The code to carry out the UC feature extraction is available from href="https://www.researchgate.net/publication/317956777_UC-Feature_Extraction.
NASA Astrophysics Data System (ADS)
Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun
2017-09-01
Seed germination rate differs based on chemical treatments, and nondestructive measurements of germination rate have become an essential requirement in the field of agriculture. Seed scientists and other biologists are interested in optical sensing technologies-based biological discoveries due to nondestructive detection capability. Optical coherence tomography (OCT) has recently emerged as a powerful method for biological and plant material discoveries. We report an extended application of OCT by monitoring the germination rate acceleration of chemically primed seeds. To validate the versatility of the method, Capsicum annum seeds were primed using three chemical compounds: sterile distilled water (SDW), butandiol, and 1-hexadecene. Monitoring was performed using a 1310-nm swept source OCT system. The results confirmed more rapid morphological variations in the seeds treated with 1-hexadecene medium than the seeds treated with SDW and butandiol within 8 consecutive days. In addition, fresh weight measurements (gold standard) of seeds were monitored for 15 days, and the obtained results were correlated with the OCT results. Thus, such a method can be used in various agricultural fields, and OCT shows potential as a rigorous sensing method for selecting the optimal plant growth-promoting chemical compounds rapidly, when compared with the gold standard methods.
Angular Rate Sensing with GyroWheel Using Genetic Algorithm Optimized Neural Networks.
Zhao, Yuyu; Zhao, Hui; Huo, Xin; Yao, Yu
2017-07-22
GyroWheel is an integrated device that can provide three-axis control torques and two-axis angular rate sensing for small spacecrafts. Large tilt angle of its rotor and de-tuned spin rate lead to a complex and non-linear dynamics as well as difficulties in measuring angular rates. In this paper, the problem of angular rate sensing with the GyroWheel is investigated. Firstly, a simplified rate sensing equation is introduced, and the error characteristics of the method are analyzed. According to the analysis results, a rate sensing principle based on torque balance theory is developed, and a practical way to estimate the angular rates within the whole operating range of GyroWheel is provided by using explicit genetic algorithm optimized neural networks. The angular rates can be determined by the measurable values of the GyroWheel (including tilt angles, spin rate and torque coil currents), the weights and the biases of the neural networks. Finally, the simulation results are presented to illustrate the effectiveness of the proposed angular rate sensing method with GyroWheel.
NASA Astrophysics Data System (ADS)
Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H.
2017-09-01
With the rapid development of Precision Agriculture (PA) promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN). For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.
Wang, Gang; Zhao, Zhikai; Ning, Yongjie
2018-05-28
As the application of a coal mine Internet of Things (IoT), mobile measurement devices, such as intelligent mine lamps, cause moving measurement data to be increased. How to transmit these large amounts of mobile measurement data effectively has become an urgent problem. This paper presents a compressed sensing algorithm for the large amount of coal mine IoT moving measurement data based on a multi-hop network and total variation. By taking gas data in mobile measurement data as an example, two network models for the transmission of gas data flow, namely single-hop and multi-hop transmission modes, are investigated in depth, and a gas data compressed sensing collection model is built based on a multi-hop network. To utilize the sparse characteristics of gas data, the concept of total variation is introduced and a high-efficiency gas data compression and reconstruction method based on Total Variation Sparsity based on Multi-Hop (TVS-MH) is proposed. According to the simulation results, by using the proposed method, the moving measurement data flow from an underground distributed mobile network can be acquired and transmitted efficiently.
Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang
2009-10-01
Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images.
NASA Technical Reports Server (NTRS)
Curry, Mark A (Inventor); Senibi, Simon D (Inventor); Banks, David L (Inventor)
2010-01-01
A system and method for detecting damage to a structure is provided. The system includes a voltage source and at least one capacitor formed as a layer within the structure and responsive to the voltage source. The system also includes at least one sensor responsive to the capacitor to sense a voltage of the capacitor. A controller responsive to the sensor determines if damage to the structure has occurred based on the variance of the voltage of the capacitor from a known reference value. A method for sensing damage to a structure involves providing a plurality of capacitors and a controller, and coupling the capacitors to at least one surface of the structure. A voltage of the capacitors is sensed using the controller, and the controller calculates a change in the voltage of the capacitors. The method can include signaling a display system if a change in the voltage occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinsasser, Ed E., E-mail: edklein@uw.edu; Stanfield, Matthew M.; Banks, Jannel K. Q.
2016-05-16
We present a promising method for creating high-density ensembles of nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity magnetic imaging. Practically, narrow spin-resonance linewidths substantially reduce the optical and RF power requirements for ensemble-based sensing. The method combines isotope purified diamond growth, in situ nitrogen doping, and helium ion implantation to realize a 100 nm-thick sensing surface. The obtained 10{sup 17 }cm{sup −3} nitrogen-vacancy density is only a factor of 10 less than the highest densities reported to date, with an observed 200 kHz spin resonance linewidth over 10 times narrower.
Development of a paper-based carbon nanotube sensing microfluidic device for biological detection.
Yang, Shih-I; Lei, Kin Fong; Tsai, Shiao-Wen; Hsu, Hsiao-Ting
2013-01-01
Carbon nanotube (CNT) has been utilized for the biological detection due to its extremely sensitive to biological molecules. A paper-based CNT sensing microfluidic device has been developed for the detection of protein, i.e., biotin-avidin, binding. We have developed a fabrication method that allows controlled deposition of bundled CNTs with well-defined dimensions to form sensors on paper. Then, polydimethyl siloxane (PDMS) was used to pattern the hydrophobic boundary on paper to form the reaction sites. The proposed fabrication method is based on vacuum filtration process with a metal mask covering on a filter paper for the definition of the dimension of sensor. The length, width, and thickness of the CNT-based sensors are readily controlled by the metal mask and the weight of the CNT powder used during the filtration process, respectively. Homogeneous deposition of CNTs with well-defined dimensions can be achieved. The CNT-based sensor on paper has been demonstrated on the detection of the protein binding. Biotin was first immobilized on the CNT's sidewall and avidin suspended solution was applied to the site. The result of the biotin-avidin binding was measured by the resistance change of the sensor, which is a label-free detection method. It showed the CNT is sensitive to the biological molecules and the proposed paper-based CNT sensing device is a possible candidate for point-of-care biosensors. Thus, electrical bio-assays on paper-based microfluidics can be realized to develop low cost, sensitive, and specific diagnostic devices.
Monitoring Traffic Information with a Developed Acceleration Sensing Node.
Ye, Zhoujing; Wang, Linbing; Xu, Wen; Gao, Zhifei; Yan, Guannan
2017-12-05
In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line). Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring.
Monitoring Traffic Information with a Developed Acceleration Sensing Node
Ye, Zhoujing; Wang, Linbing; Xu, Wen; Gao, Zhifei; Yan, Guannan
2017-01-01
In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line). Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring. PMID:29206169
A sparse equivalent source method for near-field acoustic holography.
Fernandez-Grande, Efren; Xenaki, Angeliki; Gerstoft, Peter
2017-01-01
This study examines a near-field acoustic holography method consisting of a sparse formulation of the equivalent source method, based on the compressive sensing (CS) framework. The method, denoted Compressive-Equivalent Source Method (C-ESM), encourages spatially sparse solutions (based on the superposition of few waves) that are accurate when the acoustic sources are spatially localized. The importance of obtaining a non-redundant representation, i.e., a sensing matrix with low column coherence, and the inherent ill-conditioning of near-field reconstruction problems is addressed. Numerical and experimental results on a classical guitar and on a highly reactive dipole-like source are presented. C-ESM is valid beyond the conventional sampling limits, making wide-band reconstruction possible. Spatially extended sources can also be addressed with C-ESM, although in this case the obtained solution does not recover the spatial extent of the source.
Peng, Lan; Cao, Xuan; Xiong, Bin; He, Yan; Yeung, Edward S
2016-06-18
We reported a novel scattering switch-on detection technique using flash-lamp polarization darkfield microscopy (FLPDM) for target-induced plasmon-coupling based sensing in homogeneous solution. With this method, we demonstrated sub-nM sensitivity for hydrogen sulfide (H2S) detection over a dynamic range of five orders of magnitude. This robust technique holds great promise for applications in toxic environmental pollutants and biological molecules.
Spectral estimates of net radiation and soil heat flux
Daughtry, C.S.T.; Kustas, William P.; Moran, M.S.; Pinter, P. J.; Jackson, R. D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.
1990-01-01
Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under nonadvective conditions. ?? 1990.
Investigation of cladding and coating stripping methods for specialty optical fibers
NASA Astrophysics Data System (ADS)
Lee, Jung-Ryul; Dhital, Dipesh; Yoon, Dong-Jin
2011-03-01
Fiber optic sensing technology is used extensively in several engineering fields, including smart structures, health and usage monitoring, non-destructive testing, minimum invasive sensing, safety monitoring, and other advanced measurement fields. A general optical fiber consists of a core, cladding, and coating layers. Many sensing principles require that the cladding or coating layer should be removed or modified. In addition, since different sensing systems are needed for different types of optical fibers, it is very important to find and sort out the suitable cladding or coating removal method for a particular fiber. This study focuses on finding the cladding and coating stripping methods for four recent specialty optical fibers, namely: hard polymer-clad fiber, graded-index plastic optical fiber, copper/carbon-coated optical fiber, and aluminum-coated optical fiber. Several methods, including novel laser stripping and conventional chemical and mechanical stripping, were tried to determine the most suitable and efficient technique. Microscopic investigation of the fiber surfaces was used to visually evaluate the mechanical reliability. Optical time domain reflectometric signals of the successful removal cases were investigated to further examine the optical reliability. Based on our results, we describe and summarize the successful and unsuccessful methods.
Adaptive compressive learning for prediction of protein-protein interactions from primary sequence.
Zhang, Ya-Nan; Pan, Xiao-Yong; Huang, Yan; Shen, Hong-Bin
2011-08-21
Protein-protein interactions (PPIs) play an important role in biological processes. Although much effort has been devoted to the identification of novel PPIs by integrating experimental biological knowledge, there are still many difficulties because of lacking enough protein structural and functional information. It is highly desired to develop methods based only on amino acid sequences for predicting PPIs. However, sequence-based predictors are often struggling with the high-dimensionality causing over-fitting and high computational complexity problems, as well as the redundancy of sequential feature vectors. In this paper, a novel computational approach based on compressed sensing theory is proposed to predict yeast Saccharomyces cerevisiae PPIs from primary sequence and has achieved promising results. The key advantage of the proposed compressed sensing algorithm is that it can compress the original high-dimensional protein sequential feature vector into a much lower but more condensed space taking the sparsity property of the original signal into account. What makes compressed sensing much more attractive in protein sequence analysis is its compressed signal can be reconstructed from far fewer measurements than what is usually considered necessary in traditional Nyquist sampling theory. Experimental results demonstrate that proposed compressed sensing method is powerful for analyzing noisy biological data and reducing redundancy in feature vectors. The proposed method represents a new strategy of dealing with high-dimensional protein discrete model and has great potentiality to be extended to deal with many other complicated biological systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Enhancing SERS by Means of Supramolecular Charge Transfer
NASA Technical Reports Server (NTRS)
Wong, Eric; Flood, Amar; Morales, Alfredo
2009-01-01
In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.
A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene
Zhu, Zhigang; Garcia-Gancedo, Luis; Flewitt, Andrew J.; Xie, Huaqing; Moussy, Francis; Milne, William I.
2012-01-01
There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs) by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area. PMID:22778628
Wearable carbon nanotube based dry-electrodes for electrophysiological sensors
NASA Astrophysics Data System (ADS)
Kang, Byeong-Cheol; Ha, Tae-Jun
2018-05-01
In this paper, we demonstrate all-solution-processed carbon nanotube (CNT) dry-electrodes for the detection of electrophysiological signals such as electrocardiograms (ECG) and electromyograms (EMG). The key parameters of P, Q, R, S, and T peaks are successfully extracted by such CNT based dry-electrodes, which is comparable with conventional silver/chloride (Ag/AgCl) wet-electrodes with a conducting gel film for the ECG recording. Furthermore, the sensing performance of CNT based dry-electrodes is secured during the bending test of 200 cycles, which is essential for wearable electrophysiological sensors in a non-invasive method on human skin. We also investigate the application of wearable CNT based dry-electrodes directly attached to the human skins such as forearm for sensing the electrophysiological signals. The accurate and rapid sensing response can be achieved by CNT based dry-electrodes to supervise the health condition affected by excessive physical movements during the real-time measurements.
A self-sensing active magnetic bearing based on a direct current measurement approach.
Niemann, Andries C; van Schoor, George; du Rand, Carel P
2013-09-11
Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.
Cylindrical optical resonators: fundamental properties and bio-sensing characteristics
NASA Astrophysics Data System (ADS)
Khozeymeh, Foroogh; Razaghi, Mohammad
2018-04-01
In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).
Remote sensing for site characterization
Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.; Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.
2000-01-01
This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.
Key Issues in the Analysis of Remote Sensing Data: A report on the workshop
NASA Technical Reports Server (NTRS)
Swain, P. H. (Principal Investigator)
1981-01-01
The procedures of a workshop assessing the state of the art of machine analysis of remotely sensed data are summarized. Areas discussed were: data bases, image registration, image preprocessing operations, map oriented considerations, advanced digital systems, artificial intelligence methods, image classification, and improved classifier training. Recommendations of areas for further research are presented.
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPAs Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
Measurement Equivalence of Teachers' Sense of Efficacy Scale Using Latent Growth Methods
ERIC Educational Resources Information Center
Basokçu, T. Oguz; Ögretmen, T.
2016-01-01
This study is based on the application of latent growth modeling, which is one of structural equation models on real data. Teachers' Sense of Efficacy Scale (TSES), which was previously adapted into Turkish was administered to 200 preservice teachers at different time intervals for three times and study data was collected. Measurement equivalence…
Detecting and measuring metabolic byproducts by electrochemical sensing
NASA Technical Reports Server (NTRS)
Wilkins, J. R.; Stoner, G. E.
1974-01-01
Method of detecting certain groups of bacteria is based on sensing buildup in molecular hydrogen. Apparatus is easy to assemble and use, and it has added advantage that hydrogen evolution by test micro-organisms can be measured automatically and accurately. System has been used to detect and enumerate variety of gram-negative bacteria of enterobacteriaceae group.
Microbial detection method based on sensing molecular hydrogen
NASA Technical Reports Server (NTRS)
Wilkins, J. R.; Stoner, G. E.; Boykin, E. H.
1974-01-01
A simple method for detecting bacteria, based on the time of hydrogen evolution, was developed and tested against various members of the Enterobacteriaceae group. The test system consisted of (1) two electrodes, platinum and a reference electrode, (2) a buffer amplifier, and (3) a strip-chart recorder. Hydrogen evolution was measured by an increase in voltage in the negative (cathodic) direction. A linear relationship was established between inoculum size and the time hydrogen was detected (lag period). Lag times ranged from 1 h for 1 million cells/ml to 7 h for 1 cell/ml. For each 10-fold decrease in inoculum, length of the lag period increased 60 to 70 min. Based on the linear relationship between inoculum and lag period, these results indicate the potential application of the hydrogen-sensing method for rapidly detecting coliforms and other gas-producing microorganisms in a variety of clinical, food, and other samples.
Wysocki, Gerard; Weidmann, Damien
2010-12-06
A spectroscopic method of molecular detection based on dispersion measurements using a frequency-chirped laser source is presented. An infrared quantum cascade laser emitting around 1912 cm(-1) is used as a tunable spectroscopic source to measure dispersion that occurs in the vicinity of molecular ro-vibrational transitions. The sample under study is a mixture of nitric oxide in dry nitrogen. Two experimental configurations based on a coherent detection scheme are investigated and discussed. The theoretical models, which describe the observed spectral signals, are developed and verified experimentally. The method is particularly relevant to optical sensing based on mid-infrared quantum cascade lasers as the high chirp rates available with those sources can significantly enhance the magnitude of the measured dispersion signals. The method relies on heterodyne beatnote frequency measurements and shows high immunity to variations in the optical power received by the photodetector.
The Extraction of Post-Earthquake Building Damage Informatiom Based on Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Chen, M.; Wang, X.; Dou, A.; Wu, X.
2018-04-01
The seismic damage information of buildings extracted from remote sensing (RS) imagery is meaningful for supporting relief and effective reduction of losses caused by earthquake. Both traditional pixel-based and object-oriented methods have some shortcoming in extracting information of object. Pixel-based method can't make fully use of contextual information of objects. Object-oriented method faces problem that segmentation of image is not ideal, and the choice of feature space is difficult. In this paper, a new stratage is proposed which combines Convolution Neural Network (CNN) with imagery segmentation to extract building damage information from remote sensing imagery. the key idea of this method includes two steps. First to use CNN to predicate the probability of each pixel and then integrate the probability within each segmentation spot. The method is tested through extracting the collapsed building and uncollapsed building from the aerial image which is acquired in Longtoushan Town after Ms 6.5 Ludian County, Yunnan Province earthquake. The results show that the proposed method indicates its effectiveness in extracting damage information of buildings after earthquake.
An Improved Image Matching Method Based on Surf Algorithm
NASA Astrophysics Data System (ADS)
Chen, S. J.; Zheng, S. Z.; Xu, Z. G.; Guo, C. C.; Ma, X. L.
2018-04-01
Many state-of-the-art image matching methods, based on the feature matching, have been widely studied in the remote sensing field. These methods of feature matching which get highly operating efficiency, have a disadvantage of low accuracy and robustness. This paper proposes an improved image matching method which based on the SURF algorithm. The proposed method introduces color invariant transformation, information entropy theory and a series of constraint conditions to increase feature points detection and matching accuracy. First, the model of color invariant transformation is introduced for two matching images aiming at obtaining more color information during the matching process and information entropy theory is used to obtain the most information of two matching images. Then SURF algorithm is applied to detect and describe points from the images. Finally, constraint conditions which including Delaunay triangulation construction, similarity function and projective invariant are employed to eliminate the mismatches so as to improve matching precision. The proposed method has been validated on the remote sensing images and the result benefits from its high precision and robustness.
Random-Forest Classification of High-Resolution Remote Sensing Images and Ndsm Over Urban Areas
NASA Astrophysics Data System (ADS)
Sun, X. F.; Lin, X. G.
2017-09-01
As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3D geometry data, our method proceeds in three main stages: feature extraction, classification, and classified result refinement. First, we extract color, vegetation index and texture features from the multi-spectral image and compute the height, elevation texture and differential morphological profile (DMP) features from the 3D geometry data. Then in the classification stage, multiple random forest (RF) classifiers are trained separately, then combined to form a RF ensemble to estimate each sample's category probabilities. Finally the probabilities along with the feature importance indicator outputted by RF ensemble are used to construct a fully connected conditional random field (FCCRF) graph model, by which the classification results are refined through mean-field based statistical inference. Experiments on the ISPRS Semantic Labeling Contest dataset show that our proposed 3-stage method achieves 86.9% overall accuracy on the test data.
NASA Technical Reports Server (NTRS)
Tsang, Leung; Hwang, Jenq-Neng
1996-01-01
A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.
Disambiguating ambiguous biomedical terms in biomedical narrative text: an unsupervised method.
Liu, H; Lussier, Y A; Friedman, C
2001-08-01
With the growing use of Natural Language Processing (NLP) techniques for information extraction and concept indexing in the biomedical domain, a method that quickly and efficiently assigns the correct sense of an ambiguous biomedical term in a given context is needed concurrently. The current status of word sense disambiguation (WSD) in the biomedical domain is that handcrafted rules are used based on contextual material. The disadvantages of this approach are (i) generating WSD rules manually is a time-consuming and tedious task, (ii) maintenance of rule sets becomes increasingly difficult over time, and (iii) handcrafted rules are often incomplete and perform poorly in new domains comprised of specialized vocabularies and different genres of text. This paper presents a two-phase unsupervised method to build a WSD classifier for an ambiguous biomedical term W. The first phase automatically creates a sense-tagged corpus for W, and the second phase derives a classifier for W using the derived sense-tagged corpus as a training set. A formative experiment was performed, which demonstrated that classifiers trained on the derived sense-tagged corpora achieved an overall accuracy of about 97%, with greater than 90% accuracy for each individual ambiguous term.
Efficient Kriging via Fast Matrix-Vector Products
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Raykar, Vikas C.; Duraiswami, Ramani; Mount, David M.
2008-01-01
Interpolating scattered data points is a problem of wide ranging interest. Ordinary kriging is an optimal scattered data estimator, widely used in geosciences and remote sensing. A generalized version of this technique, called cokriging, can be used for image fusion of remotely sensed data. However, it is computationally very expensive for large data sets. We demonstrate the time efficiency and accuracy of approximating ordinary kriging through the use of fast matrixvector products combined with iterative methods. We used methods based on the fast Multipole methods and nearest neighbor searching techniques for implementations of the fast matrix-vector products.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
[On-Orbit Multispectral Sensor Characterization Based on Spectral Tarps].
Li, Xin; Zhang, Li-ming; Chen, Hong-yao; Xu, Wei-wei
2016-03-01
The multispectral remote sensing technology has been a primary means in the research of biomass monitoring, climate change, disaster prediction and etc. The spectral sensitivity is essential in the quantitative analysis of remote sensing data. When the sensor is running in the space, it will be influenced by cosmic radiation, severe change of temperature, chemical molecular contamination, cosmic dust and etc. As a result, the spectral sensitivity will degrade by time, which has great implication on the accuracy and consistency of the physical measurements. This paper presents a characterization method of the degradation based on man-made spectral targets. Firstly, a degradation model is established in the paper. Then, combined with equivalent reflectance of spectral targets measured and inverted from image, the degradation characterization can be achieved. The simulation and on orbit experiment results showed that, using the proposed method, the change of center wavelength and band width can be monotored. The method proposed in the paper has great significance for improving the accuracy of long time series remote sensing data product and comprehensive utilization level of multi sensor data products.
A survey on object detection in optical remote sensing images
NASA Astrophysics Data System (ADS)
Cheng, Gong; Han, Junwei
2016-07-01
Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.
Wu, Min-Hsien; Yang, Hung-Wei; Hua, Mu-Yi; Peng, Yen-Bo; Pan, Tung-Ming
2013-09-15
This paper reports an electrolyte-insulator-semiconductor (EIS) device featuring a novel high-κ GdTixOy sensing membrane for high-performance pH sensing and glucose biosensing. The effect of the annealing temperature (700, 800, or 900°C) on the sensing properties of the GdTixOy membranes was investigated. The GdTixOy EIS device annealed at 900°C exhibited the greatest pH sensing performance, including the highest sensitivity (62.12mV/pH), the smallest hysteresis voltage (5mV), and the lowest drift rate (0.4mV/h), presumably because of its well-crystallized GdTixOy structure. To overcome the problems typically encountered during the practical application of biosensors (e.g., protein adsorption; preservation of enzymatic activity), we employed Fe3O4-based magnetic nanoparticles (MNPs) as enzyme carriers. The adsorption of serum protein on the unmodified sensing membrane led to poor EIS-based pH sensing (r(2)=0.71); the performance was greatly improved, however, after attaching the MNPs to the sensing membrane, thereby blocking protein adsorption significantly (by 98%) and allowing excellent pH sensing (r(2)=0.99). Moreover, we prepared a hybrid configuration of the proposed GdTixOy membrane-EIS, with magnetically attached glucose oxidase-immobilized MNPs, for glucose biosensing. The use of MNPs as enzyme carriers effectively preserved the enzymatic activity of glucose oxidase, with 45.3% of the original enzymatic activity retained after 120h of storage at 4°C (compared with complete loss of the free enzyme's activity under the same storage conditions). In addition, the proposed biosensor exhibited superior detection sensitivity of 11.03mV/mM relative to that (8.17mV/mM) obtained using the conventional enzyme immobilization method. Finally, we established the accuracy of the proposed method for blood glucose measurement; gratifyingly, blood glucose detection was comparable with the high-sensitivity glucose quantification obtained using a commercial glucose assay kit. Copyright © 2013 Elsevier B.V. All rights reserved.
Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science
NASA Astrophysics Data System (ADS)
Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.
2017-09-01
Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.
Study on Building Extraction from High-Resolution Images Using Mbi
NASA Astrophysics Data System (ADS)
Ding, Z.; Wang, X. Q.; Li, Y. L.; Zhang, S. S.
2018-04-01
Building extraction from high resolution remote sensing images is a hot research topic in the field of photogrammetry and remote sensing. However, the diversity and complexity of buildings make building extraction methods still face challenges in terms of accuracy, efficiency, and so on. In this study, a new building extraction framework based on MBI and combined with image segmentation techniques, spectral constraint, shadow constraint, and shape constraint is proposed. In order to verify the proposed method, worldview-2, GF-2, GF-1 remote sensing images covered Xiamen Software Park were used for building extraction experiments. Experimental results indicate that the proposed method improve the original MBI significantly, and the correct rate is over 86 %. Furthermore, the proposed framework reduces the false alarms by 42 % on average compared to the performance of the original MBI.
Camera-based micro interferometer for distance sensing
NASA Astrophysics Data System (ADS)
Will, Matthias; Schädel, Martin; Ortlepp, Thomas
2017-12-01
Interference of light provides a high precision, non-contact and fast method for measurement method for distances. Therefore this technology dominates in high precision systems. However, in the field of compact sensors capacitive, resistive or inductive methods dominates. The reason is, that the interferometric system has to be precise adjusted and needs a high mechanical stability. As a result, we have usual high-priced complex systems not suitable in the field of compact sensors. To overcome these we developed a new concept for a very small interferometric sensing setup. We combine a miniaturized laser unit, a low cost pixel detector and machine vision routines to realize a demonstrator for a Michelson type micro interferometer. We demonstrate a low cost sensor smaller 1cm3 including all electronics and demonstrate distance sensing up to 30 cm and resolution in nm range.
The Role of Remote Sensing in Assessing Forest Biomass in Appalachian South Carolina
NASA Technical Reports Server (NTRS)
Shain, W.; Nix, L.
1982-01-01
Information is presented on the use of color infrared aerial photographs and ground sampling methods to quantify standing forest biomass in Appalachian South Carolina. Local tree biomass equations are given and subsequent evaluation of stand density and size classes using remote sensing methods is presented. Methods of terrain analysis, environmental hazard rating, and subsequent determination of accessibility of forest biomass are discussed. Computer-based statistical analyses are used to expand individual cover-type specific ground sample data to area-wide cover type inventory figures based on aerial photographic interpretation and area measurement. Forest biomass data are presented for the study area in terms of discriminant size classes, merchantability limits, accessibility (as related to terrain and yield/harvest constraints), and potential environmental impact of harvest.
Extended use of two crossed Babinet compensators for wavefront sensing in adaptive optics
NASA Astrophysics Data System (ADS)
Paul, Lancelot; Kumar Saxena, Ajay
2010-12-01
An extended use of two crossed Babinet compensators as a wavefront sensor for adaptive optics applications is proposed. This method is based on the lateral shearing interferometry technique in two directions. A single record of the fringes in a pupil plane provides the information about the wavefront. The theoretical simulations based on this approach for various atmospheric conditions and other errors of optical surfaces are provided for better understanding of this method. Derivation of the results from a laboratory experiment using simulated atmospheric conditions demonstrates the steps involved in data analysis and wavefront evaluation. It is shown that this method has a higher degree of freedom in terms of subapertures and on the choice of detectors, and can be suitably adopted for real-time wavefront sensing for adaptive optics.
Extended FDD-WT method based on correcting the errors due to non-synchronous sensing of sensors
NASA Astrophysics Data System (ADS)
Tarinejad, Reza; Damadipour, Majid
2016-05-01
In this research, a combinational non-parametric method called frequency domain decomposition-wavelet transform (FDD-WT) that was recently presented by the authors, is extended for correction of the errors resulting from asynchronous sensing of sensors, in order to extend the application of the algorithm for different kinds of structures, especially for huge structures. Therefore, the analysis process is based on time-frequency domain decomposition and is performed with emphasis on correcting time delays between sensors. Time delay estimation (TDE) methods are investigated for their efficiency and accuracy for noisy environmental records and the Phase Transform - β (PHAT-β) technique was selected as an appropriate method to modify the operation of traditional FDD-WT in order to achieve the exact results. In this paper, a theoretical example (3DOF system) has been provided in order to indicate the non-synchronous sensing effects of the sensors on the modal parameters; moreover, the Pacoima dam subjected to 13 Jan 2001 earthquake excitation was selected as a case study. The modal parameters of the dam obtained from the extended FDD-WT method were compared with the output of the classical signal processing method, which is referred to as 4-Spectral method, as well as other literatures relating to the dynamic characteristics of Pacoima dam. The results comparison indicates that values are correct and reliable.
NASA Astrophysics Data System (ADS)
Wang, Ying; Liu, Qi; Wang, Jun; Wang, Qiong-Hua
2018-03-01
We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach–Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single-pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405130 and 61320106015).
Change Detection of Remote Sensing Images by Dt-Cwt and Mrf
NASA Astrophysics Data System (ADS)
Ouyang, S.; Fan, K.; Wang, H.; Wang, Z.
2017-05-01
Aiming at the significant loss of high frequency information during reducing noise and the pixel independence in change detection of multi-scale remote sensing image, an unsupervised algorithm is proposed based on the combination between Dual-tree Complex Wavelet Transform (DT-CWT) and Markov random Field (MRF) model. This method first performs multi-scale decomposition for the difference image by the DT-CWT and extracts the change characteristics in high-frequency regions by using a MRF-based segmentation algorithm. Then our method estimates the final maximum a posterior (MAP) according to the segmentation algorithm of iterative condition model (ICM) based on fuzzy c-means(FCM) after reconstructing the high-frequency and low-frequency sub-bands of each layer respectively. Finally, the method fuses the above segmentation results of each layer by using the fusion rule proposed to obtain the mask of the final change detection result. The results of experiment prove that the method proposed is of a higher precision and of predominant robustness properties.
Ground-based remote sensing scheme for monitoring aerosol–cloud interactions
Sarna, Karolina; Russchenberg, Herman W. J.
2016-03-14
A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution measurements from a lidar, a radar and a radiometer, which allow us to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example case studies were chosen from the Atmospheric Radiation Measurementmore » (ARM) Program deployment on Graciosa Island, Azores, Portugal, in 2009 to present the method. We use the cloud droplet effective radius ( r e) to represent cloud microphysical properties and an integrated value of the attenuated backscatter coefficient (ATB) below the cloud to represent the aerosol concentration. All data from each case study are divided into bins of the liquid water path (LWP), each 10 g m -2 wide. For every LWP bin we present the correlation coefficient between ln r e and ln ATB, as well as ACI r (defined as ACI r = -d ln r e d ln ATB, change in cloud droplet effective radius with aerosol concentration). Obtained values of ACI r are in the range 0.01–0.1. In conclusion, we show that ground-based remote sensing instruments used in synergy can efficiently and continuously monitor aerosol–cloud interactions.« less
Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration.
Kim, Min-Cheol; Silberberg, Yaron R; Abeyaratne, Rohan; Kamm, Roger D; Asada, H Harry
2018-01-16
Filopodia have a key role in sensing both chemical and mechanical cues in surrounding extracellular matrix (ECM). However, quantitative understanding is still missing in the filopodial mechanosensing of local ECM stiffness, resulting from dynamic interactions between filopodia and the surrounding 3D ECM fibers. Here we present a method for characterizing the stiffness of ECM that is sensed by filopodia based on the theory of elasticity and discrete ECM fiber. We have applied this method to a filopodial mechanosensing model for predicting directed cell migration toward stiffer ECM. This model provides us with a distribution of force and displacement as well as their time rate of changes near the tip of a filopodium when it is bound to the surrounding ECM fibers. Aggregating these effects in each local region of 3D ECM, we express the local ECM stiffness sensed by the cell and explain polarity in the cellular durotaxis mechanism.
A High Sensitivity Three-Dimensional-Shape Sensing Patch Prepared by Lithography and Inkjet Printing
Huang, Yi-Ren; Kuo, Sheng-An; Stach, Michal; Liu, Chia-Hsing; Liao, Kuan-Hsun; Lo, Cheng-Yao
2012-01-01
A process combining conventional photolithography and a novel inkjet printing method for the manufacture of high sensitivity three-dimensional-shape (3DS) sensing patches was proposed and demonstrated. The supporting curvature ranges from 1.41 to 6.24 × 10−2 mm−1 and the sensing patch has a thickness of less than 130 μm and 20 × 20 mm2 dimensions. A complete finite element method (FEM) model with simulation results was calculated and performed based on the buckling of columns and the deflection equation. The results show high compatibility of the drop-on-demand (DOD) inkjet printing with photolithography and the interferometer design also supports bi-directional detection of deformation. The 3DS sensing patch can be operated remotely without any power consumption. It provides a novel and alternative option compared with other optical curvature sensors. PMID:22666025
A Noise Spectroscopy-Based Selective Gas Sensing with MOX Gas Sensors
NASA Astrophysics Data System (ADS)
Gomri, S.; Seguin, J.; Contaret, T.; Fiorido, T.; Aguir, K.
We propose a new method for obtaining a fluctuation-enhanced sensing (FES) signature of a gas using a single metal oxide (MOX) gas micro sensor. Starting from our model of adsorption-desorption (A-D) noise previously developed, we show theoretically that the product of frequency by the power spectrum density (PSD) of the gas sensing layer resistance fluctuations often has a maximum which is characteristic of the gas. This property was experimentally confirmed in the case of the detection of NO2 and O3 using a WO3 sensing layer. This method could be useful for classifying gases. Furthermore, our noise measurements confirm our previous model showing that PSD of the A-Dnoise in MOX gas sensor is a combination of Lorentzians having a low frequency magnitude and a cut-off frequency which depends on the nature of the detected gas.
Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime
2010-01-01
This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks.
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R
2018-02-23
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (
Fluorescence based explosive detection: from mechanisms to sensory materials.
Sun, Xiangcheng; Wang, Ying; Lei, Yu
2015-11-21
The detection of explosives is one of the current pressing concerns in global security. In the past few decades, a large number of emissive sensing materials have been developed for the detection of explosives in vapor, solution, and solid states through fluorescence methods. In recent years, great efforts have been devoted to develop new fluorescent materials with various sensing mechanisms for detecting explosives in order to achieve super-sensitivity, ultra-selectivity, as well as fast response time. This review article starts with a brief introduction on various sensing mechanisms for fluorescence based explosive detection, and then summarizes in an exhaustive and systematic way the state-of-the-art of fluorescent materials for explosive detection with a focus on the research in the recent 5 years. A wide range of fluorescent materials, such as conjugated polymers, small fluorophores, supramolecular systems, bio-inspired materials and aggregation induced emission-active materials, and their sensing performance and sensing mechanism are the centerpiece of this review. Finally, conclusions and future outlook are presented and discussed.
Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor.
Rifat, Ahmmed A; Haider, Firoz; Ahmed, Rajib; Mahdiraji, Ghafour Amouzad; Mahamd Adikan, F R; Miroshnichenko, Andrey E
2018-02-15
Highly sensitive and miniaturized sensors are highly desirable for real-time analyte/sample detection. In this Letter, we propose a highly sensitive plasmonic sensing scheme with the miniaturized photonic crystal fiber (PCF) attributes. A large cavity is introduced in the first ring of the PCFs for the efficient field excitation of the surface plasmon polariton mode and proficient infiltration of the sensing elements. Due to the irregular air-hole diameter in the first ring, the cavity exhibits the birefringence behavior which enhances the sensing performance. The novel plasmonic material gold has been used considering the chemical stability in an aqueous environment. The guiding properties and the effects of the sensing performance with different parameters have been investigated by the finite element method, and the proposed PCFs have been fabricated using the stack-and-draw fiber drawing method. The proposed sensor performance was investigated based on the wavelength and amplitude sensing techniques and shows the maximum sensitivities of 11,000 nm/RIU and 1,420 RIU -1 , respectively. It also shows the maximum sensor resolutions of 9.1×10 -6 and 7×10 -6 RIU for the wavelength and amplitude sensing schemes, respectively, and the maximum figure of merits of 407. Furthermore, the proposed sensor is able to detect the analyte refractive indices in the range of 1.33-1.42; as a result, it will find the possible applications in the medical diagnostics, biomolecules, organic chemical, and chemical analyte detection.
Potential for using remote sensing to estimate carbon fluxes across northern peatlands - A review.
Lees, K J; Quaife, T; Artz, R R E; Khomik, M; Clark, J M
2018-02-15
Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large changes in the greenhouse gas (GHG) balance of the Earth's atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy covariance towers. However, remote sensing has several advantages over these traditional approaches in terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for such estimations, considering the indices and models developed to make use of the data. Past studies, which have used remote sensing data in comparison with ground-based calculations of carbon fluxes over Northern peatland landscapes, are discussed, as well as the challenges of working with remote sensing on peatlands. Finally, we suggest areas in need of future work on this topic. We conclude that the application of remote sensing to models of carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland sites undergoing restoration. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Zhicheng; Peng, Kai; Liu, Xiaokang; Pu, Hongji; Chen, Ziran
2018-05-01
High-precision displacement sensors, which can measure large displacements with nanometer resolution, are key components in many ultra-precision fabrication machines. In this paper, a new capacitive nanometer displacement sensor with differential sensing structure is proposed for long-range linear displacement measurements based on an approach denoted time grating. Analytical models established using electric field coupling theory and an area integral method indicate that common-mode interference will result in a first-harmonic error in the measurement results. To reduce the common-mode interference, the proposed sensor design employs a differential sensing structure, which adopts a second group of induction electrodes spatially separated from the first group of induction electrodes by a half-pitch length. Experimental results based on a prototype sensor demonstrate that the measurement accuracy and the stability of the sensor are substantially improved after adopting the differential sensing structure. Finally, a prototype sensor achieves a measurement accuracy of ±200 nm over the full 200 mm measurement range of the sensor.
Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification
NASA Astrophysics Data System (ADS)
Gao, Hui
2018-04-01
The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.
Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method.
Wang, Zhihui; Zhang, Ling; Liu, Jin; Jiang, Hao; Li, Chunzhong
2018-05-30
Recently, flexible pressure sensors featuring high sensitivity, broad sensing range and real-time detection have aroused great attention owing to their crucial role in the development of artificial intelligent devices and healthcare systems. Herein, highly sensitive pressure sensors based on hemisphere-microarray flexible substrates are fabricated via inversely templating honeycomb structures deriving from a facile and static breath figure process. The interlocked and subtle microstructures greatly improve the sensing characteristics and compressibility of the as-prepared pressure sensor, endowing it a sensitivity as high as 196 kPa-1 and a wide pressure sensing range (0-100 kPa), as well as other superior performance, including a lower detection limit of 0.5 Pa, fast response time (<26 ms) and high reversibility (>10 000 cycles). Based on the outstanding sensing performance, the potential capability of our pressure sensor in capturing physiological information and recognizing speech signals has been demonstrated, indicating promising application in wearable and intelligent electronics.
NASA Astrophysics Data System (ADS)
Alshehhi, Rasha; Marpu, Prashanth Reddy
2017-04-01
Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.
V S, Unni; Mishra, Deepak; Subrahmanyam, G R K S
2016-12-01
The need for image fusion in current image processing systems is increasing mainly due to the increased number and variety of image acquisition techniques. Image fusion is the process of combining substantial information from several sensors using mathematical techniques in order to create a single composite image that will be more comprehensive and thus more useful for a human operator or other computer vision tasks. This paper presents a new approach to multifocus image fusion based on sparse signal representation. Block-based compressive sensing integrated with a projection-driven compressive sensing (CS) recovery that encourages sparsity in the wavelet domain is used as a method to get the focused image from a set of out-of-focus images. Compression is achieved during the image acquisition process using a block compressive sensing method. An adaptive thresholding technique within the smoothed projected Landweber recovery process reconstructs high-resolution focused images from low-dimensional CS measurements of out-of-focus images. Discrete wavelet transform and dual-tree complex wavelet transform are used as the sparsifying basis for the proposed fusion. The main finding lies in the fact that sparsification enables a better selection of the fusion coefficients and hence better fusion. A Laplacian mixture model fit is done in the wavelet domain and estimation of the probability density function (pdf) parameters by expectation maximization leads us to the proper selection of the coefficients of the fused image. Using the proposed method compared with the fusion scheme without employing the projected Landweber (PL) scheme and the other existing CS-based fusion approaches, it is observed that with fewer samples itself, the proposed method outperforms other approaches.
NASA Astrophysics Data System (ADS)
Sternberg, Oren; Bednarski, Valerie R.; Perez, Israel; Wheeland, Sara; Rockway, John D.
2016-09-01
Non-invasive optical techniques pertaining to the remote sensing of power quality disturbances (PQD) are part of an emerging technology field typically dominated by radio frequency (RF) and invasive-based techniques. Algorithms and methods to analyze and address PQD such as probabilistic neural networks and fully informed particle swarms have been explored in industry and academia. Such methods are tuned to work with RF equipment and electronics in existing power grids. As both commercial and defense assets are heavily power-dependent, understanding electrical transients and failure events using non-invasive detection techniques is crucial. In this paper we correlate power quality empirical models to the observed optical response. We also empirically demonstrate a first-order approach to map household, office and commercial equipment PQD to user functions and stress levels. We employ a physics-based image and signal processing approach, which demonstrates measured non-invasive (remote sensing) techniques to detect and map the base frequency associated with the power source to the various PQD on a calibrated source.
NASA Astrophysics Data System (ADS)
Luo, Qiu; Xin, Wu; Qiming, Xiong
2017-06-01
In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.
Adaptive wavefront sensor based on the Talbot phenomenon.
Podanchuk, Dmytro V; Goloborodko, Andrey A; Kotov, Myhailo M; Kovalenko, Andrey V; Kurashov, Vitalij N; Dan'ko, Volodymyr P
2016-04-20
A new adaptive method of wavefront sensing is proposed and demonstrated. The method is based on the Talbot self-imaging effect, which is observed in an illuminating light beam with strong second-order aberration. Compensation of defocus and astigmatism is achieved with an appropriate choice of size of the rectangular unit cell of the diffraction grating, which is performed iteratively. A liquid-crystal spatial light modulator is used for this purpose. Self-imaging of rectangular grating in the astigmatic light beam is demonstrated experimentally. High-order aberrations are detected with respect to the compensated second-order aberration. The comparative results of wavefront sensing with a Shack-Hartmann sensor and the proposed sensor are adduced.
Research on metallic material defect detection based on bionic sensing of human visual properties
NASA Astrophysics Data System (ADS)
Zhang, Pei Jiang; Cheng, Tao
2018-05-01
Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.
Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds
USDA-ARS?s Scientific Manuscript database
A dielectric-based method is presented for moisture determination in almonds independent of bulk density. The dielectric properties of almond were measured between 5 and 15 GHz, with a 1-GHz increments, for samples with moisture contents ranging from 4.8% to 16.5%, wet basis, bulk densities ranging ...
Mode separation in frequency-wavenumber domain through compressed sensing of far-field Lamb waves
NASA Astrophysics Data System (ADS)
Gao, Fei; Zeng, Liang; Lin, Jing; Luo, Zhi
2017-07-01
This method based on Lamb waves shows great potential for long-range damage detection. Mode superposition resulting from multi-modal and dispersive characteristics makes signal interpretation and damage feature extraction difficult. Mode separation in the frequency-wavenumber (f-k) domain using a 1D sparse sensing array is a promising solution. However, due to the lack of prior knowledge about damage location, this method based on 1D linear measurement, for the mode extraction of arbitrary reflections caused by defects that are not in line with the sensor array, is restricted. In this paper, an improved compressed sensing method under the far-field assumption is established, which is beneficial to the reconstruction of reflections in the f-k domain. Hence, multiple components consisting of structure and damage features could be recovered via a limited number of measurements. Subsequently, a mode sweeping process based on theoretical dispersion curves has been designed for mode characterization and direction of arrival estimation. Moreover, 2D f-k filtering and inverse transforms are applied to the reconstructed f-k distribution in order to extract the purified mode of interest. As a result, overlapping waveforms can be separated and the direction of defects can be estimated. A uniform linear sensor array consisting of 16 laser excitations is finally employed for experimental investigations and the results demonstrate the efficiency of the proposed method.
Leng, Yumin; Qian, Sihua; Wang, Yuhui; Lu, Cheng; Ji, Xiaoxu; Lu, Zhiwen; Lin, Hengwei
2016-01-01
Multidimensional sensing offers advantages in accuracy, diversity and capability for the simultaneous detection and discrimination of multiple analytes, however, the previous reports usually require complicated synthesis/fabrication process and/or need a variety of techniques (or instruments) to acquire signals. Therefore, to take full advantages of this concept, simple designs are highly desirable. Herein, a novel concept is conceived to construct multidimensional sensing platforms based on a single indicator that has capability of showing diverse color/fluorescence responses with the addition of different analytes. Through extracting hidden information from these responses, such as red, green and blue (RGB) alterations, a triple-channel-based multidimensional sensing platform could consequently be fabricated, and the RGB alterations are further applicable to standard statistical methods. As a proof-of-concept study, a triple-channel sensing platform is fabricated solely using dithizone with assistance of cetyltrimethylammonium bromide (CTAB) for hyperchromicity and sensitization, which demonstrates superior capabilities in detection and identification of ten common heavy metal ions at their standard concentrations of wastewater-discharge of China. Moreover, this sensing platform exhibits promising applications in semi-quantitative and even quantitative analysis individuals of these heavy metal ions with high sensitivity as well. Finally, density functional theory calculations are performed to reveal the foundations for this analysis. PMID:27146105
Cong-Cong, Xia; Cheng-Fang, Lu; Si, Li; Tie-Jun, Zhang; Sui-Heng, Lin; Yi, Hu; Ying, Liu; Zhi-Jie, Zhang
2016-12-02
To explore the technique of maximum entropy model for extracting Oncomelania hupensis snail habitats in Poyang Lake zone. The information of snail habitats and related environment factors collected in Poyang Lake zone were integrated to set up the maximum entropy based species model and generate snail habitats distribution map. Two Landsat 7 ETM+ remote sensing images of both wet and drought seasons in Poyang Lake zone were obtained, where the two indices of modified normalized difference water index (MNDWI) and normalized difference vegetation index (NDVI) were applied to extract snail habitats. The ROC curve, sensitivities and specificities were applied to assess their results. Furthermore, the importance of the variables for snail habitats was analyzed by using Jackknife approach. The evaluation results showed that the area under receiver operating characteristic curve (AUC) of testing data by the remote sensing-based method was only 0.56, and the sensitivity and specificity were 0.23 and 0.89 respectively. Nevertheless, those indices above-mentioned of maximum entropy model were 0.876, 0.89 and 0.74 respectively. The main concentration of snail habitats in Poyang Lake zone covered the northeast part of Yongxiu County, northwest of Yugan County, southwest of Poyang County and middle of Xinjian County, and the elevation was the most important environment variable affecting the distribution of snails, and the next was land surface temperature (LST). The maximum entropy model is more reliable and accurate than the remote sensing-based method for the sake of extracting snail habitats, which has certain guiding significance for the relevant departments to carry out measures to prevent and control high-risk snail habitats.
Teutsch, T; Mesch, M; Giessen, H; Tarin, C
2015-01-01
In this contribution, a method to select discrete wavelengths that allow an accurate estimation of the glucose concentration in a biosensing system based on metamaterials is presented. The sensing concept is adapted to the particular application of ophthalmic glucose sensing by covering the metamaterial with a glucose-sensitive hydrogel and the sensor readout is performed optically. Due to the fact that in a mobile context a spectrometer is not suitable, few discrete wavelengths must be selected to estimate the glucose concentration. The developed selection methods are based on nonlinear support vector regression (SVR) models. Two selection methods are compared and it is shown that wavelengths selected by a sequential forward feature selection algorithm achieves an estimation improvement. The presented method can be easily applied to different metamaterial layouts and hydrogel configurations.
Influencing factors on professional commitment in Iranian nurses: A qualitative study
Jafaraghaee, Fateme; Mehrdad, Neda; Parvizy, Soroor
2014-01-01
Background: Dissatisfaction and tending to leave are some of the major nursing problems around the world. Professional commitment is a key factor in attracting and keeping the nurses in their profession. Commitment is a cultural dependent variable. Some organizational and socio-cultural factors are counted as the drivers of professional commitment. This study aimed to explore factors influencing the professional commitment in Iranian nurses. Materials and Methods: A qualitative content analysis was used to obtain rich data. We performed 21 in-depth face-to-face semi-structured interviews. The sampling was based on the maximum variation with the staff nurses and managers in 5 university affiliated hospitals. Constant comparative method used for data analysis Results: Two main categories were emerged: “Challenging with different feelings” and “Managers’ role”. Challenging with different feelings had two subcategories: “Burnout” and “sense of valuing”. The other theme was composed of three subcategories: “Gratitude or punishment climate”, “manager's view of caring” and “knowledge-based vs. routine-based nursing”. Conclusions: Findings revealed the burnout as a common sense in nurses. They also sensed being valued because of having a chance to help others. Impediments in the health care system such as work overload and having more concern in the benefits of organization rather than patient's care and wellbeing lead to a sense of humiliation and frustration. Congruence between the managers and nurses’ perceived values of the profession would be a main driver to the professional commitment. Making a sense of support and gratitude, valuing the care and promoting the knowledge-based practice were among the other important factors for making the professional commitment. PMID:24949071
Zhu, Zhaoyi; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Cao, Zhaoliang; Hu, Lifa; Xuan, Li
2016-10-17
The centroid-based Shack-Hartmann wavefront sensor (SHWFS) treats the sampled wavefronts in the sub-apertures as planes, and the slopes of the sub-wavefronts are used to reconstruct the whole pupil wavefront. The problem is that the centroid method may fail to sense the high-order modes for strong turbulences, decreasing the precision of the whole pupil wavefront reconstruction. To solve this problem, we propose a sub-wavefront estimation method for SHWFS based on the focal plane sensing technique, by which more Zernike modes than the two slopes can be sensed in each sub-aperture. In this paper, the effects on the sub-wavefront estimation method of the related parameters, such as the spot size, the phase offset with its set amplitude and the pixels number in each sub-aperture, are analyzed and these parameters are optimized to achieve high efficiency. After the optimization, open-loop measurement is realized. For the sub-wavefront sensing, we achieve a large linearity range of 3.0 rad RMS for Zernike modes Z2 and Z3, and 2.0 rad RMS for Zernike modes Z4 to Z6 when the pixel number does not exceed 8 × 8 in each sub-aperture. The whole pupil wavefront reconstruction with the modified SHWFS is realized to analyze the improvements brought by the optimized sub-wavefront estimation method. Sixty-five Zernike modes can be reconstructed with a modified SHWFS containing only 7 × 7 sub-apertures, which could reconstruct only 35 modes by the centroid method, and the mean RMS errors of the residual phases are less than 0.2 rad2, which is lower than the 0.35 rad2 by the centroid method.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-11-09
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2016-01-01
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865
A Multi-Stage Method for Connecting Participatory Sensing and Noise Simulations
Hu, Mingyuan; Che, Weitao; Zhang, Qiuju; Luo, Qingli; Lin, Hui
2015-01-01
Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment), and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1) spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic input sources for noise simulations on multiple spatio-temporal scales. PMID:25621604
A multi-stage method for connecting participatory sensing and noise simulations.
Hu, Mingyuan; Che, Weitao; Zhang, Qiuju; Luo, Qingli; Lin, Hui
2015-01-22
Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment), and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1) spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic input sources for noise simulations on multiple spatio-temporal scales.
NASA Astrophysics Data System (ADS)
Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene
2016-07-01
Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.
Embedded Piezoresistive Microcantilever Sensors for Chemical and Biological Sensing
NASA Astrophysics Data System (ADS)
Porter, Timothy; Eastman, Michael; Kooser, Ara; Manygoats, Kevin; Zhine, Rosalie
2003-03-01
Microcantilever sensors based on embedded piezoresisative technology offer a promising, low-cost method of sensing chemical and biological species. Here, we present data on the detection of various gaseous analytes, including volatile organic compounds (VOC's) and carbon monoxide. Also, we have used these sensors to detect the protein bovine serum albumin (BSA), a protein important in the study of human childhood diabetes.
ERIC Educational Resources Information Center
Vásquez, Gonzalo Camacho
2017-01-01
A reflection about two classroom experiences is presented in the attempt to incorporate the Logic of Sense into the notion of inquiry for learning. The author used the method of Experimentation introduced by Deleuze and Guattari, who based its principles on philosophical conceptions by Baruch Spinoza. The first experience is conducted with…
Scalable Quantum Networks for Distributed Computing and Sensing
2016-04-01
probabilistic measurement , so we developed quantum memories and guided-wave implementations of same, demonstrating controlled delay of a heralded single...Second, fundamental scalability requires a method to synchronize protocols based on quantum measurements , which are inherently probabilistic. To meet...AFRL-AFOSR-UK-TR-2016-0007 Scalable Quantum Networks for Distributed Computing and Sensing Ian Walmsley THE UNIVERSITY OF OXFORD Final Report 04/01
Macrobend optical sensing for pose measurement in soft robot arms
NASA Astrophysics Data System (ADS)
Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar
2015-12-01
This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic tracking system (NDI Aurora) for validation.
A Robust False Matching Points Detection Method for Remote Sensing Image Registration
NASA Astrophysics Data System (ADS)
Shan, X. J.; Tang, P.
2015-04-01
Given the influences of illumination, imaging angle, and geometric distortion, among others, false matching points still occur in all image registration algorithms. Therefore, false matching points detection is an important step in remote sensing image registration. Random Sample Consensus (RANSAC) is typically used to detect false matching points. However, RANSAC method cannot detect all false matching points in some remote sensing images. Therefore, a robust false matching points detection method based on Knearest- neighbour (K-NN) graph (KGD) is proposed in this method to obtain robust and high accuracy result. The KGD method starts with the construction of the K-NN graph in one image. K-NN graph can be first generated for each matching points and its K nearest matching points. Local transformation model for each matching point is then obtained by using its K nearest matching points. The error of each matching point is computed by using its transformation model. Last, L matching points with largest error are identified false matching points and removed. This process is iterative until all errors are smaller than the given threshold. In addition, KGD method can be used in combination with other methods, such as RANSAC. Several remote sensing images with different resolutions and terrains are used in the experiment. We evaluate the performance of KGD method, RANSAC + KGD method, RANSAC, and Graph Transformation Matching (GTM). The experimental results demonstrate the superior performance of the KGD and RANSAC + KGD methods.
Wang, Ling; Han, Bingxu; Dai, Lei; Zhou, Huizhu; Li, Yuehua; Wu, Yinlin; Zhu, Jing
2013-11-15
A novel amperometric-type NO2 sensor based on La10Si5NbO27.5 (LSNO) electrolyte and nano-structured CuO sensing electrode was fabricated and tested. A bilayer LSNO electrolyte including both a dense layer and a porous layer was prepared by conventional solid state reaction method and screen-printing technology. The nano-structured CuO sensing electrode was in situ fabricated in LSNO porous layer by impregnating method. The composition and microstructure of the sample were characterized by XRD and SEM, respectively. The results showed that the CuO particles with diameters range of 200-500 nm were homogeneously dispersed on the LSNO backbone in porous layer. The sensor exhibited well sensing characteristics to NO2. The response current was almost linear to NO2 concentration in the range of 25-500 ppm at 600-800 °C. With increase of operating temperature, the sensitivity increased and reached 297 nA/ppm at 800 °C. The response currents toward NO2 were slightly affected by coexistent O2 (0-21 vol%) and CO2 (0-5 vol%). Copyright © 2013 Elsevier B.V. All rights reserved.
Region of interest extraction based on multiscale visual saliency analysis for remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan
2015-01-01
Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.
NASA Astrophysics Data System (ADS)
Wu, Bitao; Wu, Gang; Yang, Caiqian; He, Yi
2018-05-01
A novel damage identification method for concrete continuous girder bridges based on spatially-distributed long-gauge strain sensing is presented in this paper. First, the variation regularity of the long-gauge strain influence line of continuous girder bridges which changes with the location of vehicles on the bridge is studied. According to this variation regularity, a calculation method for the distribution regularity of the area of long-gauge strain history is investigated. Second, a numerical simulation of damage identification based on the distribution regularity of the area of long-gauge strain history is conducted, and the results indicate that this method is effective for identifying damage and is not affected by the speed, axle number and weight of vehicles. Finally, a real bridge test on a highway is conducted, and the experimental results also show that this method is very effective for identifying damage in continuous girder bridges, and the local element stiffness distribution regularity can be revealed at the same time. This identified information is useful for maintaining of continuous girder bridges on highways.
Remote rainfall sensing for landslide hazard analysis
Wieczorek, Gerald F.; McWreath, Harry; Davenport, Clay
2001-01-01
Methods of assessing landslide hazards and providing warnings are becoming more advanced as remote sensing of rainfall provides more detailed temporal and spatial data on rainfall distribution. Two recent landslide disasters are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. For the June 27, 1995, storm in Madison County, Virginia, USA, National Weather Service WSR-88D Doppler radar provided rainfall estimates based on a relation between cloud reflectivity and moisture content on a 1 sq. km. resolution every 6 minutes. Ground-based measurements of rainfall intensity and precipitation total, in addition to landslide timing and distribution, were compared with the radar-derived rainfall data. For the December 14-16, 1999, storm in Vargas State, Venezuela, infrared sensing from the GOES-8 satellite of cloud top temperatures provided the basis for NOAA/NESDIS rainfall estimates on a 16 sq. km. resolution every 30 minutes. These rainfall estimates were also compared with ground-based measurements of rainfall and landslide distribution. In both examples, the remotely sensed data either overestimated or underestimated ground-based values by up to a factor of 2. The factors that influenced the accuracy of rainfall data include spatial registration and map projection, as well as prevailing wind direction, cloud orientation, and topography.
Disaster Emergency Rapid Assessment Based on Remote Sensing and Background Data
NASA Astrophysics Data System (ADS)
Han, X.; Wu, J.
2018-04-01
The period from starting to the stable conditions is an important stage of disaster development. In addition to collecting and reporting information on disaster situations, remote sensing images by satellites and drones and monitoring results from disaster-stricken areas should be obtained. Fusion of multi-source background data such as population, geography and topography, and remote sensing monitoring information can be used in geographic information system analysis to quickly and objectively assess the disaster information. According to the characteristics of different hazards, the models and methods driven by the rapid assessment of mission requirements are tested and screened. Based on remote sensing images, the features of exposures quickly determine disaster-affected areas and intensity levels, and extract key disaster information about affected hospitals and schools as well as cultivated land and crops, and make decisions after emergency response with visual assessment results.
Transformer partial discharge monitoring based on optical fiber sensing
NASA Astrophysics Data System (ADS)
Wang, Kun; Tong, Xinglin; Zhu, Xiaolong
2014-06-01
The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the optical fiber sensing technology, we have done some research on fiber optics Fabry-Perot (FP) sensing which can be useful for the transformer on online partial discharge monitoring. This research aimed at improving the reliability of power system safety monitoring. We have done some work as follows: designing a set for fiber optics FP sensor preparation, according to the fabrication procedure strictly making out the sensors, building a reasonable signal demodulation system for fiber optics FP sensing, doing a preliminary analysis about online partial discharge signal monitoring, including the research on different discharge intensities with the same measuring distance and different measuring distances with the same discharge intensity, and then making a detailed analysis of the experimental results.
DLA based compressed sensing for high resolution MR microscopy of neuronal tissue
NASA Astrophysics Data System (ADS)
Nguyen, Khieu-Van; Li, Jing-Rebecca; Radecki, Guillaume; Ciobanu, Luisa
2015-10-01
In this work we present the implementation of compressed sensing (CS) on a high field preclinical scanner (17.2 T) using an undersampling trajectory based on the diffusion limited aggregation (DLA) random growth model. When applied to a library of images this approach performs better than the traditional undersampling based on the polynomial probability density function. In addition, we show that the method is applicable to imaging live neuronal tissues, allowing significantly shorter acquisition times while maintaining the image quality necessary for identifying the majority of neurons via an automatic cell segmentation algorithm.
NASA Astrophysics Data System (ADS)
Hilker, T.; Hall, F. G.; Dyrud, L. P.; Slagowski, S.
2014-12-01
Frequent earth observations are essential for assessing the risks involved with global climate change, its feedbacks on carbon, energy and water cycling and consequences for live on earth. Often, satellite-remote sensing is the only practical way to provide such observations at comprehensive spatial scales, but relationships between land surface parameters and remotely sensed observations are mostly empirical and cannot easily be scaled across larger areas or over longer time intervals. For instance, optically based methods frequently depend on extraneous effects that are unrelated to the surface property of interest, including the sun-server geometry or background reflectance. As an alternative to traditional, mono-angle techniques, multi-angle remote sensing can help overcome some of these limitations by allowing vegetation properties to be derived from comprehensive reflectance models that describe changes in surface parameters based on physical principles and radiative transfer theory. Recent results have shown in theoretical and experimental research that multi-angle techniques can be used to infer and scale the photosynthetic rate of vegetation, its biochemical and structural composition robustly from remote sensing. Multi-angle remote sensing could therefore revolutionize estimates of the terrestrial carbon uptake as scaling of primary productivity may provide a quantum leap in understanding the spatial and temporal complexity of terrestrial earth science. Here, we introduce a framework of next generation tower-based instruments to a novel and unique constellation of nano-satellites (Figure 1) that will allow us to systematically scale vegetation parameters from stand to global levels. We provide technical insights, scientific rationale and present results. We conclude that future earth observation from multi-angle satellite constellations, supported by tower based remote sensing will open new opportunities for earth system science and earth system modeling.
A modified JPEG-LS lossless compression method for remote sensing images
NASA Astrophysics Data System (ADS)
Deng, Lihua; Huang, Zhenghua
2015-12-01
As many variable length source coders, JPEG-LS is highly vulnerable to channel errors which occur in the transmission of remote sensing images. The error diffusion is one of the important factors which infect its robustness. The common method of improving the error resilience of JPEG-LS is dividing the image into many strips or blocks, and then coding each of them independently, but this method reduces the coding efficiency. In this paper, a block based JPEP-LS lossless compression method with an adaptive parameter is proposed. In the modified scheme, the threshold parameter RESET is adapted to an image and the compression efficiency is close to that of the conventional JPEG-LS.
Yan, Keyi; Toku, Yuhki; Morita, Yasuyuki; Ju, Yang
2018-06-22
In this research, we propose a new simple method to fabricate hydrogen gas sensor by stacking the multiwall carbon nanotube (MWCNT) sheets. MWCNT sheet offers a larger surface area and more CNT contacts, which are key factors for gas sensing, because of its super-high alignment and end-to-end structure comparing to the traditional CNT film. Besides, MWCNT sheet can be directly drawn from the spinnable CNT array in large scales. Therefore, this method is a potential answer for the mass production and commercialization of CNT based sensor with high response. By stacking different layers of sheet, microstructure and CNT interactions in the layers were changed and their influences towards gas sensing were investigated. It was observed that the sample with 3 layers of sheet and functionalized with 3 nm-thick Pd showed the best gas sensing performance with a response of 12.31% at 4% H2 and response time below 200 s. © 2018 IOP Publishing Ltd.
Wang, Meng; Li, Sijin; Zhao, Huimin
2016-01-01
The development of high-throughput phenotyping tools is lagging far behind the rapid advances of genotype generation methods. To bridge this gap, we report a new strategy for design, construction, and fine-tuning of intracellular-metabolite-sensing/regulation gene circuits by repurposing bacterial transcription factors and eukaryotic promoters. As proof of concept, we systematically investigated the design and engineering of bacterial repressor-based xylose-sensing/regulation gene circuits in Saccharomyces cerevisiae. We demonstrated that numerous properties, such as induction ratio and dose-response curve, can be fine-tuned at three different nodes, including repressor expression level, operator position, and operator sequence. By applying these gene circuits, we developed a cell sorting based, rapid and robust high-throughput screening method for xylose transporter engineering and obtained a sugar transporter HXT14 mutant with 6.5-fold improvement in xylose transportation capacity. This strategy should be generally applicable and highly useful for evolutionary engineering of proteins, pathways, and genomes in S. cerevisiae. © 2015 Wiley Periodicals, Inc.
Safe Tissue Manipulation in Retinal Microsurgery via Motorized Instruments with Force Sensing.
Gonenc, Berk; Gehlbach, Peter; Taylor, Russell H; Iordachita, Iulian
2017-01-01
Retinal microsurgery involves careful manipulation of delicate tissues by applying very small amount of forces most of which lie below the tactile sensory threshold of the surgeons. Membrane peeling is a common task in this domain, where application of excessive peeling forces can easily lead to serious complications, hence needs to be avoided. To quantify tool-tissue interaction forces during retinal microsurgery, various force-sensing tools were developed based on fiber Bragg grating sensors, yet the most beneficial way of using the acquired force information is currently unknown. In this study, using a motorized force-sensing micro-forceps tool, we develop an assistive method that enhances safety during membrane peeling by automatically opening the forceps and releasing the tissue based on the detected peeling forces. Through peeling experiments using bandages, we demonstrate that our method can effectively maintain the peeling force at a safe level even in case of non-homogeneous adhesion properties of the membrane.
Ölçer, İbrahim; Öncü, Ahmet
2017-06-05
Distributed vibration sensing based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ -OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ -OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems.
Ölçer, İbrahim; Öncü, Ahmet
2017-01-01
Distributed vibration sensing based on phase-sensitive optical time domain reflectometry (ϕ-OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ-OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ-OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems. PMID:28587240
Methodology of remote sensing data interpretation and geological applications. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.
1982-01-01
Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.
Microbial detection method based on sensing molecular hydrogen
NASA Technical Reports Server (NTRS)
Wilkins, J. R.; Stoner, G. E.; Boykin, E. H.
1974-01-01
An approach involving the measurement of hydrogen evolution by test organisms was used to detect and enumerate various members of the Enterobacteriaceae group. The experimental setup for measuring hydrogen evolution consisted of a test tube containing two electrodes plus broth and organisms. The test tube was kept in a water bath at a temperature of 35 C. It is pointed out that the hydrogen-sensing method, coupled with the pressure transducer technique reported by Wilkins (1974) could be used in various experiments in which gas production by microorganisms is being measured.
Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.
Yang, Mengzhao; Song, Wei; Mei, Haibin
2017-07-23
The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.
Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm
Song, Wei; Mei, Haibin
2017-01-01
The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient. PMID:28737699
NASA Astrophysics Data System (ADS)
López-Burgos, V.; Rajagopal, S.; Martinez Baquero, G. F.; Gupta, H. V.
2009-12-01
Rapidly growing population in the southwestern US is leading to increasing demand and decreasing availability of water, requiring a detailed quantification of hydrological processes. The integration of detailed spatial information of water fluxes from remote sensing platforms, and hydrological models coupled with ground based data is an important step towards this goal. This project is exploring the use of Snow Water Equivalent (SWE) estimates to update the snow component of the Variable Infiltration Capacity model (VIC). SWE estimates are obtained by combining SNOTEL data with MODIS Snow Cover Area (SCA) information. Because, cloud cover corrupts the estimates of SCA, a rule-based method is used to clean up the remotely sensed images. The rules include a time interpolation method, and the probability of a pixel for been covered with snow based on the relationships between elevation, temperature, lapse rate, aspect and topographic shading. The approach is used to improve streamflow predictions on two rivers managed by the Salt River Project, a water and energy supplier in central Arizona. This solution will help improve the management of reservoirs in the Salt and Verde River in Phoenix, Arizona (tributaries of the lower Colorado River basin), by incorporating physically based distributed models and remote sensing observations into their Decision Support Tools and planning tools. This research seeks to increase the knowledge base used to manage reservoirs and groundwater resources in a region affected by a long-term drought. It will be applicable and relevant for other water utility companies facing the challenges of climate change and decreasing water resources.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Feng, Xuezhi; Xiao, Pengfeng; He, Guangjun; Zhu, Liujun
2015-04-01
Segmentation of remote sensing images is a critical step in geographic object-based image analysis. Evaluating the performance of segmentation algorithms is essential to identify effective segmentation methods and optimize their parameters. In this study, we propose region-based precision and recall measures and use them to compare two image partitions for the purpose of evaluating segmentation quality. The two measures are calculated based on region overlapping and presented as a point or a curve in a precision-recall space, which can indicate segmentation quality in both geometric and arithmetic respects. Furthermore, the precision and recall measures are combined by using four different methods. We examine and compare the effectiveness of the combined indicators through geometric illustration, in an effort to reveal segmentation quality clearly and capture the trade-off between the two measures. In the experiments, we adopted the multiresolution segmentation (MRS) method for evaluation. The proposed measures are compared with four existing discrepancy measures to further confirm their capabilities. Finally, we suggest using a combination of the region-based precision-recall curve and the F-measure for supervised segmentation evaluation.
Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.
2011-01-01
We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.
Reyes, J F García; Barrales, P Ortega; Díaz, A Molina
2005-03-15
A novel, single and robust solid surface fluorescence-based sensing device assembled in a continuous flow system has been developed for the determination of trace amounts of aluminium in water samples. The proposed method is based on the transient immobilization of the target species on an appropriate active solid sensing zone (C(18) silica gel). The target species was the fluorogenic chelate, formed as a result of the on-line complexation of Al(III) with chromotropic acid (CA) at pH 4.1. The fluorescence of the complex is continuously monitored at an emission wavelength of 390nm upon excitation at 361nm. The instrumental, chemical and flow-injection variables affecting the fluorescence signal were carefully investigated and optimized. After selecting the most suitable conditions, the sensing system was calibrated in the range 10-500mugl(-1), obtaining a detection limit of 2.6mugl(-1), and a R.S.D. of 2.2%, with a sampling frequency of 24h(-1). In addition, the selectivity of the proposed methodology was evaluated by performing interference studies with different cations and anions which could affect the analytical response. Finally, the proposed method, which meets the EU regulations regarding the aluminium content in drinking waters, was satisfactorily applied to different water samples, with recoveries between 97 and 105%. The simplicity, low cost and easy operation are the main advantages of the present procedure.
Compressive Sensing via Nonlocal Smoothed Rank Function
Fan, Ya-Ru; Liu, Jun; Zhao, Xi-Le
2016-01-01
Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction. PMID:27583683
The study method of estimation tidal flat with remote sensing waterlines
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; Liu, Xiangyang; Zhang, Yuanyuan; Liu, Chaoshun; Sun, Zhibin
2016-09-01
A tidal flat, the important potential land resource, is the sensitive area of intersection between the sea and the land. With Chinese HJ-1A/B remote sensing images of 2014 as data sources, based on the definition of a tidal flat, using DSAS software and Jenks Natural Breaks classification method synthetically, a more reasonable and accurate method of extracting tidal flat was imposed. In addition, the Bohai Rim was taken as an example to carry out investigation on the current situation of tidal flat. This paper can provide basic date and scientific evidence for rational utilization and sustainable development of tidal flat.
Research on the Construction of Remote Sensing Automatic Interpretation Symbol Big Data
NASA Astrophysics Data System (ADS)
Gao, Y.; Liu, R.; Liu, J.; Cheng, T.
2018-04-01
Remote sensing automatic interpretation symbol (RSAIS) is an inexpensive and fast method in providing precise in-situ information for image interpretation and accuracy. This study designed a scientific and precise RSAIS data characterization method, as well as a distributed and cloud architecture massive data storage method. Additionally, it introduced an offline and online data update mode and a dynamic data evaluation mechanism, with the aim to create an efficient approach for RSAIS big data construction. Finally, a national RSAIS database with more than 3 million samples covering 86 land types was constructed during 2013-2015 based on the National Geographic Conditions Monitoring Project of China and then annually updated since the 2016 period. The RSAIS big data has proven to be a good method for large scale image interpretation and field validation. It is also notable that it has the potential to solve image automatic interpretation with the assistance of deep learning technology in the remote sensing big data era.
Oxygen Sensing Based on the Yellowing of Newspaper.
Yu, Jingjing; Qin, Xingcai; Xian, Xiaojun; Tao, Nongjian
2018-01-26
Newspaper is known to turn yellow over time. We show here that this yellowing process is sensitive to oxygen when exposed to UV light, leading to oxygen sensing. Oxygen sensing is critical to many applications, including industrial process control and breath analysis, but the existing oxygen sensors have limitations, especially for breath analysis that operates at 100% humidity. The UV irradiation also triggers fluorescence emission from newspaper, and the fluorescence intensity depends on oxygen concentration, providing an additional oxygen sensing method. Newspaper is stable in ambient air, and reactive to oxygen only with UV activation, which overcomes the instability issue of a typical colorimetric sensor in ambient air. The newspaper oxygen sensor works in 100% relative humidity air, containing various interferents. These unique properties of newspaper promise low cost and reliable oxygen sensing applications.
Fiber-reinforced dielectric elastomer laminates with integrated function of actuating and sensing
NASA Astrophysics Data System (ADS)
Li, Tiefeng; Xie, Yuhan; Li, Chi; Yang, Xuxu; Jin, Yongbin; Liu, Junjie; Huang, Xiaoqiang
2015-04-01
The natural limbs of animals and insects integrate muscles, skins and neurons, providing both the actuating and sensing functions simultaneously. Inspired by the natural structure, we present a novel structure with integrated function of actuating and sensing with dielectric elastomer (DE) laminates. The structure can deform when subjected to high voltage loading and generate corresponding output signal in return. We investigate the basic physical phenomenon of dielectric elastomer experimentally. It is noted that when applying high voltage, the actuating dielectric elastomer membrane deforms and the sensing dielectric elastomer membrane changes the capacitance in return. Based on the concept, finite element method (FEM) simulation has been conducted to further investigate the electromechanical behavior of the structure.
Zhang, Xingwang; Zhou, Guangya; Shi, Peng; Du, Han; Lin, Tong; Teng, Jinghua; Chau, Fook Siong
2016-03-15
Complex refractive index sensing is proposed and experimentally demonstrated in optofluidic sensors based on silicon photonic crystal nanobeam cavities. The sensitivities are 58 and 139 nm/RIU, respectively, for the real part (n) and the imaginary part (κ) of the complex refractive index, and the corresponding detection limits are 1.8×10(-5) RIU for n and 4.1×10(-6) RIU for κ. Moreover, the capability of the complex refractive index sensing method to detect the concentration composition of the ternary mixture is demonstrated without the surface immobilization of functional groups, which is impossible to realize with the conventional refractive index sensing scheme.
Apparatus for sensing volatile organic chemicals in fluids
Hughes, Robert C.; Manginell, Ronald P.; Jenkins, Mark W.; Kottenstette, Richard; Patel, Sanjay V.
2005-06-07
A chemical-sensing apparatus is formed from the combination of a chemical preconcentrator which sorbs and concentrates particular volatile organic chemicals (VOCs) and one or more chemiresistors that sense the VOCs after the preconcentrator has been triggered to release them in concentrated form. Use of the preconcentrator and chemiresistor(s) in combination allows the VOCs to be detected at lower concentration than would be possible using the chemiresistor(s) alone and further allows measurements to be made in a variety of fluids, including liquids (e.g. groundwater). Additionally, the apparatus provides a new mode of operation for sensing VOCs based on the measurement of decay time constants, and a method for background correction to improve measurement precision.
NASA Astrophysics Data System (ADS)
Dikmese, Sener; Srinivasan, Sudharsan; Shaat, Musbah; Bader, Faouzi; Renfors, Markku
2014-12-01
Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario.
Efficient data assimilation algorithm for bathymetry application
NASA Astrophysics Data System (ADS)
Ghorbanidehno, H.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.
2017-12-01
Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing techniques. Data assimilation methods combine the remote sensing data and nearshore hydrodynamic models to estimate the unknown bathymetry and the corresponding uncertainties. In particular, several recent efforts have combined Kalman Filter-based techniques such as ensembled-based Kalman filters with indirect video-based observations to address the bathymetry inversion problem. However, these methods often suffer from ensemble collapse and uncertainty underestimation. Here, the Compressed State Kalman Filter (CSKF) method is used to estimate the bathymetry based on observed wave celerity. In order to demonstrate the accuracy and robustness of the CSKF method, we consider twin tests with synthetic observations of wave celerity, while the bathymetry profiles are chosen based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, NC. The first test case is a bathymetry estimation problem for a spatially smooth and temporally constant bathymetry profile. The second test case is a bathymetry estimation problem for a temporally evolving bathymetry from a smooth to a non-smooth profile. For both problems, we compare the results of CSKF with those obtained by the local ensemble transform Kalman filter (LETKF), which is a popular ensemble-based Kalman filter method.
Remote sensing of chemical warfare agent by CO2 -lidar
NASA Astrophysics Data System (ADS)
Geiko, Pavel P.; Smirnov, Sergey S.
2014-11-01
The possibilities of remote sensing of chemical warfare agent by differential absorption method were analyzed. The CO2 - laser emission lines suitable for sounding of chemical warfare agent with provision for disturbing absorptions by water vapor were choose. The detection range of chemical warfare agents was estimated for a lidar based on CO2 - laser The other factors influencing upon echolocation range were analyzed.
Lee, Seung-Jae; Serre, Marc L; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Jerrett, Michael
2012-12-01
A better understanding of the adverse health effects of chronic exposure to fine particulate matter (PM2.5) requires accurate estimates of PM2.5 variation at fine spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 exposures, but relatively few studies have compared remote-sensing estimates to those derived from monitor-based data. We evaluated and compared the predictive capabilities of remote sensing and geostatistical interpolation. We developed a space-time geostatistical kriging model to predict PM2.5 over the continental United States and compared resulting predictions to estimates derived from satellite retrievals. The kriging estimate was more accurate for locations that were about 100 km from a monitoring station, whereas the remote sensing estimate was more accurate for locations that were > 100 km from a monitoring station. Based on this finding, we developed a hybrid map that combines the kriging and satellite-based PM2.5 estimates. We found that for most of the populated areas of the continental United States, geostatistical interpolation produced more accurate estimates than remote sensing. The differences between the estimates resulting from the two methods, however, were relatively small. In areas with extensive monitoring networks, the interpolation may provide more accurate estimates, but in the many areas of the world without such monitoring, remote sensing can provide useful exposure estimates that perform nearly as well.
NASA Astrophysics Data System (ADS)
Qiu, Xiang; Dai, Ming; Yin, Chuan-li
2017-09-01
Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.
Sun, Zhong Yu; Chen, Yan Qiao; Yang, Long; Tang, Guang Liang; Yuan, Shao Xiong; Lin, Zhi Wen
2017-02-01
Low-altitude unmanned aerial vehicles (UAV) remote sensing system overcomes the deficiencies of space and aerial remote sensing system in resolution, revisit period, cloud cover and cost, which provides a novel method for ecological research on mesoscale. This study introduced the composition of UAV remote sensing system, reviewed its applications in species, population, community and ecosystem ecology research. Challenges and opportunities of UAV ecology were identified to direct future research. The promising research area of UAV ecology includes the establishment of species morphology and spectral characteristic data base, species automatic identification, the revelation of relationship between spectral index and plant physiological processes, three-dimension monitoring of ecosystem, and the integration of remote sensing data from multi resources and multi scales. With the development of UAV platform, data transformation and sensors, UAV remote sensing technology will have wide application in ecology research.
Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches.
Rawassizadeh, Reza; Tomitsch, Martin; Nourizadeh, Manouchehr; Momeni, Elaheh; Peery, Aaron; Ulanova, Liudmila; Pazzani, Michael
2015-09-08
As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras.
Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches
Rawassizadeh, Reza; Tomitsch, Martin; Nourizadeh, Manouchehr; Momeni, Elaheh; Peery, Aaron; Ulanova, Liudmila; Pazzani, Michael
2015-01-01
As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras. PMID:26370997
Sequential deconvolution from wave-front sensing using bivariate simplex splines
NASA Astrophysics Data System (ADS)
Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai
2015-05-01
Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.
Rapid deployable global sensing hazard alert system
Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M
2015-04-28
A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.
NASA Astrophysics Data System (ADS)
Wang, Le
2003-10-01
Modern forest management poses an increasing need for detailed knowledge of forest information at different spatial scales. At the forest level, the information for tree species assemblage is desired whereas at or below the stand level, individual tree related information is preferred. Remote Sensing provides an effective tool to extract the above information at multiple spatial scales in the continuous time domain. To date, the increasing volume and readily availability of high-spatial-resolution data have lead to a much wider application of remotely sensed products. Nevertheless, to make effective use of the improving spatial resolution, conventional pixel-based classification methods are far from satisfactory. Correspondingly, developing object-based methods becomes a central challenge for researchers in the field of Remote Sensing. This thesis focuses on the development of methods for accurate individual tree identification and tree species classification. We develop a method in which individual tree crown boundaries and treetop locations are derived under a unified framework. We apply a two-stage approach with edge detection followed by marker-controlled watershed segmentation. Treetops are modeled from radiometry and geometry aspects. Specifically, treetops are assumed to be represented by local radiation maxima and to be located near the center of the tree-crown. As a result, a marker image was created from the derived treetop to guide a watershed segmentation to further differentiate overlapping trees and to produce a segmented image comprised of individual tree crowns. The image segmentation method developed achieves a promising result for a 256 x 256 CASI image. Then further effort is made to extend our methods to the multiscales which are constructed from a wavelet decomposition. A scale consistency and geometric consistency are designed to examine the gradients along the scale-space for the purpose of separating true crown boundary from unwanted textures occurring due to branches and twigs. As a result from the inverse wavelet transform, the tree crown boundary is enhanced while the unwanted textures are suppressed. Based on the enhanced image, an improvement is achieved when applying the two-stage methods to a high resolution aerial photograph. To improve tree species classification, we develop a new method to choose the optimal scale parameter with the aid of Bhattacharya Distance (BD), a well-known index of class separability in traditional pixel-based classification. The optimal scale parameter is then fed in the process of a region-growing-based segmentation as a break-off value. Our object classification achieves a better accuracy in separating tree species when compared to the conventional Maximum Likelihood Classification (MLC). In summary, we develop two object-based methods for identifying individual trees and classifying tree species from high-spatial resolution imagery. Both methods achieve promising results and will promote integration of Remote Sensing and GIS in forest applications.
NASA Astrophysics Data System (ADS)
Tatar, Nurollah; Saadatseresht, Mohammad; Arefi, Hossein; Hadavand, Ahmad
2018-06-01
Unwanted contrast in high resolution satellite images such as shadow areas directly affects the result of further processing in urban remote sensing images. Detecting and finding the precise position of shadows is critical in different remote sensing processing chains such as change detection, image classification and digital elevation model generation from stereo images. The spectral similarity between shadow areas, water bodies, and some dark asphalt roads makes the development of robust shadow detection algorithms challenging. In addition, most of the existing methods work on pixel-level and neglect the contextual information contained in neighboring pixels. In this paper, a new object-based shadow detection framework is introduced. In the proposed method a pixel-level shadow mask is built by extending established thresholding methods with a new C4 index which enables to solve the ambiguity of shadow and water bodies. Then the pixel-based results are further processed in an object-based majority analysis to detect the final shadow objects. Four different high resolution satellite images are used to validate this new approach. The result shows the superiority of the proposed method over some state-of-the-art shadow detection method with an average of 96% in F-measure.
Garrett, Natalie L; Sekine, Ryo; Dixon, Matthew W A; Tilley, Leann; Bambery, Keith R; Wood, Bayden R
2015-09-07
Surface enhanced Raman scattering (SERS) is a powerful tool with great potential to provide improved bio-sensing capabilities. The current 'gold-standard' method for diagnosis of malaria involves visual inspection of blood smears using light microscopy, which is time consuming and can prevent early diagnosis of the disease. We present a novel surface-enhanced Raman spectroscopy substrate based on gold-coated butterfly wings, which enabled detection of malarial hemozoin pigment within lysed blood samples containing 0.005% and 0.0005% infected red blood cells.
Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers
Fan, Maomian; McBurnett, Shelly Roper; Andrews, Carrie J.; Allman, Amity M.; Bruno, John G.; Kiel, Johnathan L.
2008-01-01
Here we describe a new DNA capture element (DCE) sensing system, based on the quenching and dequenching of a double-stranded aptamer. This system shows very good sensitivity and thermal stability. While quenching, dequenching, and separating the DCE systems made from different aptamers (all selected by SELEX), an alternative method to rapidly select aptamers was developed—the Aptamer Selection Express (ASExp). This process has been used to select aptamers against different types of targets (Bacillus anthracis spores, Bacillus thuringiensis spores, MS-2 bacteriophage, ovalbumin, and botulinum neurotoxin). The DCE systems made from botulinum neurotoxin aptamers selected by ASExp have been investigated. The results of this investigation indicate that ASExp can be used to rapidly select aptamers for the DCE sensing system. PMID:19183794
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.; ...
2018-01-18
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less
Bi, Fukun; Chen, Jing; Zhuang, Yin; Bian, Mingming; Zhang, Qingjun
2017-01-01
With the rapid development of optical remote sensing satellites, ship detection and identification based on large-scale remote sensing images has become a significant maritime research topic. Compared with traditional ocean-going vessel detection, inshore ship detection has received increasing attention in harbor dynamic surveillance and maritime management. However, because the harbor environment is complex, gray information and texture features between docked ships and their connected dock regions are indistinguishable, most of the popular detection methods are limited by their calculation efficiency and detection accuracy. In this paper, a novel hierarchical method that combines an efficient candidate scanning strategy and an accurate candidate identification mixture model is presented for inshore ship detection in complex harbor areas. First, in the candidate region extraction phase, an omnidirectional intersected two-dimension scanning (OITDS) strategy is designed to rapidly extract candidate regions from the land-water segmented images. In the candidate region identification phase, a decision mixture model (DMM) is proposed to identify real ships from candidate objects. Specifically, to improve the robustness regarding the diversity of ships, a deformable part model (DPM) was employed to train a key part sub-model and a whole ship sub-model. Furthermore, to improve the identification accuracy, a surrounding correlation context sub-model is built. Finally, to increase the accuracy of candidate region identification, these three sub-models are integrated into the proposed DMM. Experiments were performed on numerous large-scale harbor remote sensing images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency. PMID:28640236
Bi, Fukun; Chen, Jing; Zhuang, Yin; Bian, Mingming; Zhang, Qingjun
2017-06-22
With the rapid development of optical remote sensing satellites, ship detection and identification based on large-scale remote sensing images has become a significant maritime research topic. Compared with traditional ocean-going vessel detection, inshore ship detection has received increasing attention in harbor dynamic surveillance and maritime management. However, because the harbor environment is complex, gray information and texture features between docked ships and their connected dock regions are indistinguishable, most of the popular detection methods are limited by their calculation efficiency and detection accuracy. In this paper, a novel hierarchical method that combines an efficient candidate scanning strategy and an accurate candidate identification mixture model is presented for inshore ship detection in complex harbor areas. First, in the candidate region extraction phase, an omnidirectional intersected two-dimension scanning (OITDS) strategy is designed to rapidly extract candidate regions from the land-water segmented images. In the candidate region identification phase, a decision mixture model (DMM) is proposed to identify real ships from candidate objects. Specifically, to improve the robustness regarding the diversity of ships, a deformable part model (DPM) was employed to train a key part sub-model and a whole ship sub-model. Furthermore, to improve the identification accuracy, a surrounding correlation context sub-model is built. Finally, to increase the accuracy of candidate region identification, these three sub-models are integrated into the proposed DMM. Experiments were performed on numerous large-scale harbor remote sensing images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency.
Ooya, Tooru; Sakata, Yasuhiko; Choi, Hyung Woo; Takeuchi, Toshifumi
2016-07-01
Enzymatic degradation of poly(ε-caprolactone) (PCL) thin films was analyzed by reflectometric interference spectroscopy (RIfS)-based sensing system, and validated by attenuated total reflection infrared spectroscopy (ATR-IR) imaging. The degradation of the PCL thin film spin-coated on the silicon substrate on which 65-nm silicon nitride layer was deposited as an interference layer was easily monitored by shifting the peak bottom of reflectance spectra (Δλ) that is known to be proportional to the thickness of thin films. The Δλ values decreased with increasing the concentration of lipase from Pseudomonas cepacia, and the obtained sensorgrams were applied for kinetic analysis using a curve fitting software. ATR-IR spectra and imaging analysis on the surface of the PCL film revealed that carbonyl groups on the surface decreased with time, resulting from proceeding with the enzymatic hydrolysis, and importantly, extinction of the carbonyl group was declined with proportional to the decrease in the film thickness measured by the RIfS system. Consequently, the present RIfS-based label-free monitoring system can provide a simple and reliable way for evaluating biodegradability on synthetic materials. A RIfS-based sensing system in combination with ATR-IR measurements can be an analytical method for evaluation of biodegradability of polymeric thin films. This study demonstrates the utility of the RIfS-based sensing approach for analyzing the lipase-catalyzed degradation of PCL. Despite the RIfS is known as an inexpensive label-free detection method for biological interaction, the RIfS applications as monitoring methods for enzymatic degradation of biodegradable polymers had not been systematically explored. This study additionally demonstrated the capability of combined analysis of the biodegradation with ATR-IR spectra/imaging and RIfS measurements, which could be broadly applied towards evaluating biodegradability of various biodegradable polymers in environmental protection research. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Li, Dan; Duan, Huazhen; Ma, Yadan; Deng, Wei
2018-05-01
This study demonstrates a novel strategy for colorimetric/surface-enhanced Raman scattering (SERS) dual-mode sensing of sulfur dioxide (SO 2 ) by coupling headspace sampling (HS) with paper-based analytical device (PAD). The smart and multifunctional PAD is fabricated with a vacuum filtration method in which 4-mercaptopyridine (Mpy)-modified gold nanorods (GNRs)-reduced graphene oxide (rGO) hybrids (rGO/MPy-GNRs), anhydrous methanol, and starch-iodine complex are immobilized into cellulose-based filter papers. The resultant PAD exhibits a deep-blue color with a strong absorption peak at 600 nm due to the formation of an intermolecular charge-transfer complex between starch and iodine. However, the addition of SO 2 induces the Karl Fischer reaction, resulting in the decrease of color and increase of SERS signals. Therefore, the PAD can be used not only as a naked-eye indicator of SO 2 changed from blue to colorless but also as a highly sensitive SERS substrates because of the SO 2 -triggered conversion of Mpy to pyridine methyl sulfate on the GNRs. A distinguishable change in the color was observed at a SO 2 concentration of 5 μM by the naked eye, and a detection limit as low as 1.45 μM was obtained by virtue of UV-vis spectroscopy. The PAD-based SERS method is effective over a wide range of concentrations (1 μM to 2000 μM) for SO 2 , and the detection limit for SO 2 is found to be 1 μM. The HS-PAD based colorimetric/SERS method is applied for the determination of SO 2 in wine, and the detection results match well with those obtained from the traditional Monier-Williams method. This study not only offers a new method for on-site monitoring of SO 2 but also provides a new strategy for designing of paper-based sensing platform for a wide range of field-test applications.
Tian, Tian; Li, Chang; Xu, Jinkang; Ma, Jiayi
2018-03-18
Detecting urban areas from very high resolution (VHR) remote sensing images plays an important role in the field of Earth observation. The recently-developed deep convolutional neural networks (DCNNs), which can extract rich features from training data automatically, have achieved outstanding performance on many image classification databases. Motivated by this fact, we propose a new urban area detection method based on DCNNs in this paper. The proposed method mainly includes three steps: (i) a visual dictionary is obtained based on the deep features extracted by pre-trained DCNNs; (ii) urban words are learned from labeled images; (iii) the urban regions are detected in a new image based on the nearest dictionary word criterion. The qualitative and quantitative experiments on different datasets demonstrate that the proposed method can obtain a remarkable overall accuracy (OA) and kappa coefficient. Moreover, it can also strike a good balance between the true positive rate (TPR) and false positive rate (FPR).
The ship edge feature detection based on high and low threshold for remote sensing image
NASA Astrophysics Data System (ADS)
Li, Xuan; Li, Shengyang
2018-05-01
In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.
Estimation of Land Surface Temperature from GCOM-W1 AMSR2 Data over the Chinese Landmass
NASA Astrophysics Data System (ADS)
Zhou, Ji; Dai, Fengnan; Zhang, Xiaodong
2016-04-01
As one of the most important parameter at the interface between the earth's surface and atmosphere, land surface temperature (LST) plays a crucial role in many fields, such as climate change monitoring and hydrological modeling. Satellite remote sensing provides the unique possibility to observe LST of large regions at diverse spatial and temporal scales. Compared with thermal infrared (TIR) remote sensing, passive microwave (PW) remote sensing has a better ability in overcoming the influences of clouds; thus, it can be used to improve the temporal resolution of current satellite TIR LST. However, most of current methods for estimation LST from PW remote sensing are empirical and have unsatisfied generalization. In this study, a semi-empirical method is proposed to estimate LST from the observation of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the Global Change Observation Mission 1st-WATER "SHIZUKU" satellite (GCOM-W1). The method is based on the PW radiation transfer equation, which is simplified based on (1) the linear relationship between the emissivities of horizontal and vertical polarization channels at the same frequency and (2) the significant relationship between atmospheric parameters and the atmospheric water vapor content. An iteration approach is used to best fit the pixel-based coefficients in the simplified radiation transfer equation of the horizontal and vertical polarization channels at each frequency. Then an integration approach is proposed to generate the ensemble estimation from estimations of multiple frequencies for different land cover types. This method is trained with the AMSR2 brightness temperature and MODIS LST in 2013 over the entire Chinese landmass and then it is tested with the data in 2014. Validation based on in situ LSTs measured in northwestern China demonstrates that the proposed method has a better accuracy than the polarization radiation method, with a root-mean squared error of 3 K. Although the proposal method is applied to AMSR2 data, it has good ability to extend to other satellite PW sensors, such as the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) on board the Aqua satellite and the Special Sensor Microwave/Imager (SSM/I) on board the Defense Meteorological Satellite Program (DMSP) satellite. It would be beneficial in providing LST to applications at continental and global scales.
NASA Astrophysics Data System (ADS)
Evett, Steven R.; Kustas, William P.; Gowda, Prasanna H.; Anderson, Martha C.; Prueger, John H.; Howell, Terry A.
2012-12-01
In 2008, scientists from seven federal and state institutions worked together to investigate temporal and spatial variations of evapotranspiration (ET) and surface energy balance in a semi-arid irrigated and dryland agricultural region of the Southern High Plains in the Texas Panhandle. This Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08) involved determination of micrometeorological fluxes (surface energy balance) in four weighing lysimeter fields (each 4.7 ha) containing irrigated and dryland cotton and in nearby bare soil, wheat stubble and rangeland fields using nine eddy covariance stations, three large aperture scintillometers, and three Bowen ratio systems. In coordination with satellite overpasses, flux and remote sensing aircraft flew transects over the surrounding fields and region encompassing an area contributing fluxes from 10 to 30 km upwind of the USDA-ARS lysimeter site. Tethered balloon soundings were conducted over the irrigated fields to investigate the effect of advection on local boundary layer development. Local ET was measured using four large weighing lysimeters, while field scale estimates were made by soil water balance with a network of neutron probe profile water sites and from the stationary flux systems. Aircraft and satellite imagery were obtained at different spatial and temporal resolutions. Plot-scale experiments dealt with row orientation and crop height effects on spatial and temporal patterns of soil surface temperature, soil water content, soil heat flux, evaporation from soil in the interrow, plant transpiration and canopy and soil radiation fluxes. The BEAREX08 field experiment was unique in its assessment of ET fluxes over a broad range in spatial scales; comparing direct and indirect methods at local scales with remote sensing based methods and models using aircraft and satellite imagery at local to regional scales, and comparing mass balance-based ET ground truth with eddy covariance and remote sensing-based methods. Here we present an overview of the experiment and a summary of preliminary findings described in this special issue of AWR. Our understanding of the role of advection in the measurement and modeling of ET is advanced by these papers integrating measurements and model estimates.
The study of active tectonic based on hyperspectral remote sensing
NASA Astrophysics Data System (ADS)
Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.
2017-12-01
As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm), which different with the spectrum of the none-fault zone. It could help us welly located the fault zone. The located result correspond well to the physical prospecting method result. The above study shown that Hypersepctral remote sensing technology provide a new method for active study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langet, Hélène; Laboratoire des Signaux et Systèmes, CentraleSupélec, Gif-sur-Yvette F-91192; Center for Visual Computing, CentraleSupélec, Châtenay-Malabry F-92295
2015-09-15
Purpose: This paper addresses the reconstruction of x-ray cone-beam computed tomography (CBCT) for interventional C-arm systems. Subsampling of CBCT is a significant issue with C-arms due to their slow rotation and to the low frame rate of their flat panel x-ray detectors. The aim of this work is to propose a novel method able to handle the subsampling artifacts generally observed with analytical reconstruction, through a content-driven hierarchical reconstruction based on compressed sensing. Methods: The central idea is to proceed with a hierarchical method where the most salient features (high intensities or gradients) are reconstructed first to reduce the artifactsmore » these features induce. These artifacts are addressed first because their presence contaminates less salient features. Several hierarchical schemes aiming at streak artifacts reduction are introduced for C-arm CBCT: the empirical orthogonal matching pursuit approach with the ℓ{sub 0} pseudonorm for reconstructing sparse vessels; a convex variant using homotopy with the ℓ{sub 1}-norm constraint of compressed sensing, for reconstructing sparse vessels over a nonsparse background; homotopy with total variation (TV); and a novel empirical extension to nonlinear diffusion (NLD). Such principles are implemented with penalized iterative filtered backprojection algorithms. For soft-tissue imaging, the authors compare the use of TV and NLD filters as sparsity constraints, both optimized with the alternating direction method of multipliers, using a threshold for TV and a nonlinear weighting for NLD. Results: The authors show on simulated data that their approach provides fast convergence to good approximations of the solution of the TV-constrained minimization problem introduced by the compressed sensing theory. Using C-arm CBCT clinical data, the authors show that both TV and NLD can deliver improved image quality by reducing streaks. Conclusions: A flexible compressed-sensing-based algorithmic approach is proposed that is able to accommodate for a wide range of constraints. It is successfully applied to C-arm CBCT images that may not be so well approximated by piecewise constant functions.« less
Rapid Change Detection Algorithm for Disaster Management
NASA Astrophysics Data System (ADS)
Michel, U.; Thunig, H.; Ehlers, M.; Reinartz, P.
2012-07-01
This paper focuses on change detection applications in areas where catastrophic events took place which resulted in rapid destruction especially of manmade objects. Standard methods for automated change detection prove not to be sufficient; therefore a new method was developed and tested. The presented method allows a fast detection and visualization of change in areas of crisis or catastrophes. While often new methods of remote sensing are developed without user oriented aspects, organizations and authorities are not able to use these methods because of absence of remote sensing know how. Therefore a semi-automated procedure was developed. Within a transferable framework, the developed algorithm can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated Temporal Change Index (TCI) only panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas where rebuilding has already started.
Electronic drop sensing in microfluidic devices: automated operation of a nanoliter viscometer
Srivastava, Nimisha; Burns, Mark A.
2007-01-01
We describe three droplet sensing techniques: a digital electrode, an analog electrode, and a thermal method. All three techniques use a single layer of metal lines that is easy to microfabricate and an electronic signal can be produced using low DC voltages. While the electrode methods utilize changes in electrical conductivity when the air/liquid interface of the droplet passes over a pair of electrodes, the thermal method is based on convective heat loss from a locally heated region. For the electrode method, the analog technique is able to detect 25 nL droplets while the digital technique is capable of detecting droplets as small as 100 pL. For thermal sensing, temperature profiles in the range of 36 °C and higher were used. Finally, we have used the digital electrode method and an array of electrodes located at preset distances to automate the operation of a previously described microfluidic viscometer. The viscometer is completely controlled by a laptop computer, and the total time for operation including setup, calibration, sample addition and viscosity calculation is approximately 4 minutes. PMID:16738725
Seamless contiguity method for parallel segmentation of remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Geng; Wang, Guanghui; Yu, Mei; Cui, Chengling
2015-12-01
Seamless contiguity is the key technology for parallel segmentation of remote sensing data with large quantities. It can be effectively integrate fragments of the parallel processing into reasonable results for subsequent processes. There are numerous methods reported in the literature for seamless contiguity, such as establishing buffer, area boundary merging and data sewing. et. We proposed a new method which was also based on building buffers. The seamless contiguity processes we adopt are based on the principle: ensuring the accuracy of the boundary, ensuring the correctness of topology. Firstly, block number is computed based on data processing ability, unlike establishing buffer on both sides of block line, buffer is established just on the right side and underside of the line. Each block of data is segmented respectively and then gets the segmentation objects and their label value. Secondly, choose one block(called master block) and do stitching on the adjacent blocks(called slave block), process the rest of the block in sequence. Through the above processing, topological relationship and boundaries of master block are guaranteed. Thirdly, if the master block polygons boundaries intersect with buffer boundary and the slave blocks polygons boundaries intersect with block line, we adopt certain rules to merge and trade-offs them. Fourthly, check the topology and boundary in the buffer area. Finally, a set of experiments were conducted and prove the feasibility of this method. This novel seamless contiguity algorithm provides an applicable and practical solution for efficient segmentation of massive remote sensing image.
Hassan, Moinuddin; Ilev, Ilko
2014-10-01
Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm(2). The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.
NASA Astrophysics Data System (ADS)
Hassan, Moinuddin; Ilev, Ilko
2014-10-01
Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm2. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Moinuddin, E-mail: moinuddin.hassan@fda.hhs.gov; Ilev, Ilko
2014-10-15
Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contactmore » and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.« less
Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images
NASA Astrophysics Data System (ADS)
Ardila, Juan P.; Tolpekin, Valentyn A.; Bijker, Wietske; Stein, Alfred
2011-11-01
Identification of tree crowns from remote sensing requires detailed spectral information and submeter spatial resolution imagery. Traditional pixel-based classification techniques do not fully exploit the spatial and spectral characteristics of remote sensing datasets. We propose a contextual and probabilistic method for detection of tree crowns in urban areas using a Markov random field based super resolution mapping (SRM) approach in very high resolution images. Our method defines an objective energy function in terms of the conditional probabilities of panchromatic and multispectral images and it locally optimizes the labeling of tree crown pixels. Energy and model parameter values are estimated from multiple implementations of SRM in tuning areas and the method is applied in QuickBird images to produce a 0.6 m tree crown map in a city of The Netherlands. The SRM output shows an identification rate of 66% and commission and omission errors in small trees and shrub areas. The method outperforms tree crown identification results obtained with maximum likelihood, support vector machines and SRM at nominal resolution (2.4 m) approaches.
VoPham, Trang; Wilson, John P; Ruddell, Darren; Rashed, Tarek; Brooks, Maria M; Yuan, Jian-Min; Talbott, Evelyn O; Chang, Chung-Chou H; Weissfeld, Joel L
2015-08-01
Accurate pesticide exposure estimation is integral to epidemiologic studies elucidating the role of pesticides in human health. Humans can be exposed to pesticides via residential proximity to agricultural pesticide applications (drift). We present an improved geographic information system (GIS) and remote sensing method, the Landsat method, to estimate agricultural pesticide exposure through matching pesticide applications to crops classified from temporally concurrent Landsat satellite remote sensing images in California. The image classification method utilizes Normalized Difference Vegetation Index (NDVI) values in a combined maximum likelihood classification and per-field (using segments) approach. Pesticide exposure is estimated according to pesticide-treated crop fields intersecting 500 m buffers around geocoded locations (e.g., residences) in a GIS. Study results demonstrate that the Landsat method can improve GIS-based pesticide exposure estimation by matching more pesticide applications to crops (especially temporary crops) classified using temporally concurrent Landsat images compared to the standard method that relies on infrequently updated land use survey (LUS) crop data. The Landsat method can be used in epidemiologic studies to reconstruct past individual-level exposure to specific pesticides according to where individuals are located.
[Gas analyzer "HelicoSense" as a new device for diagnosis of the Helicobacter infection].
Kozlov, A V; Evstratova, Iu S; Novikova, V P; Tkachenko, E I; Khochinskaia, O Iu
2006-01-01
According to recommendations of the European Health Committee, noninvasive methods should be preferred for diagnosis of Helicobacter pylori (HP) infection in children. Equipment and reagents for respiration diagnostic tests available from foreign manufacturers have rather high cost, which hinders their use in domestic medical institutions. A new noninvasive electrochemical technique for HP detection is based on the use of HelicoSense gas analyzer. 150 patients (100 children 6-17 years old and 50 adults 18-78 years old) participated in mulicenter testing of the developed technique. Chronic gastritis was previously diagnosed by endoscopic and morphological examination in all patients. HP status was studied using bacteriological, serological, and cytological methods, as well as the Helpil test. The obtained results were compared to the results of examination with HelicoSense gas analyzer. Our study showed that HelicoSense gas analyzer provides easy use, patient's safety, and possibility of rapid testing. Its application does not require specially trained medical personnel. The device provides high specificity (86.7%) and high sensitivity (93.7%).
NASA Astrophysics Data System (ADS)
Wang, Lixia; Pei, Jihong; Xie, Weixin; Liu, Jinyuan
2018-03-01
Large-scale oceansat remote sensing images cover a big area sea surface, which fluctuation can be considered as a non-stationary process. Short-Time Fourier Transform (STFT) is a suitable analysis tool for the time varying nonstationary signal. In this paper, a novel ship detection method using 2-D STFT sea background statistical modeling for large-scale oceansat remote sensing images is proposed. First, the paper divides the large-scale oceansat remote sensing image into small sub-blocks, and 2-D STFT is applied to each sub-block individually. Second, the 2-D STFT spectrum of sub-blocks is studied and the obvious different characteristic between sea background and non-sea background is found. Finally, the statistical model for all valid frequency points in the STFT spectrum of sea background is given, and the ship detection method based on the 2-D STFT spectrum modeling is proposed. The experimental result shows that the proposed algorithm can detect ship targets with high recall rate and low missing rate.
Nanocomposite thin films for high temperature optical gas sensing of hydrogen
Ohodnicki, Jr., Paul R.; Brown, Thomas D.
2013-04-02
The disclosure relates to a plasmon resonance-based method for H.sub.2 sensing in a gas stream at temperatures greater than about 500.degree. C. utilizing a hydrogen sensing material. The hydrogen sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. At high temperatures, blue shift of the plasmon resonance optical absorption peak indicates the presence of H.sub.2. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.
Nanocomposite thin films for optical gas sensing
Ohodnicki, Paul R; Brown, Thomas D
2014-06-03
The disclosure relates to a plasmon resonance-based method for gas sensing in a gas stream utilizing a gas sensing material. In an embodiment the gas stream has a temperature greater than about 500.degree. C. The gas sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. Changes in the chemical composition of the gas stream are detected by changes in the plasmon resonance peak. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.
Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends
Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime
2010-01-01
This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks. PMID:22163582
Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey.
Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Fukuda, Toshio; Ren, Hongliang
2017-08-01
Continuum robots provide inherent structural compliance with high dexterity to access the surgical target sites along tortuous anatomical paths under constrained environments and enable to perform complex and delicate operations through small incisions in minimally invasive surgery. These advantages enable their broad applications with minimal trauma and make challenging clinical procedures possible with miniaturized instrumentation and high curvilinear access capabilities. However, their inherent deformable designs make it difficult to realize 3-D intraoperative real-time shape sensing to accurately model their shape. Solutions to this limitation can lead themselves to further develop closely associated techniques of closed-loop control, path planning, human-robot interaction, and surgical manipulation safety concerns in minimally invasive surgery. Although extensive model-based research that relies on kinematics and mechanics has been performed, accurate shape sensing of continuum robots remains challenging, particularly in cases of unknown and dynamic payloads. This survey investigates the recent advances in alternative emerging techniques for 3-D shape sensing in this field and focuses on the following categories: fiber-optic-sensor-based, electromagnetic-tracking-based, and intraoperative imaging modality-based shape-reconstruction methods. The limitations of existing technologies and prospects of new technologies are also discussed.
Smartphone-based point-of-care testing of salivary α-amylase for personal psychological measurement.
Zhang, Lin; Yang, Wentao; Yang, Yuankui; Liu, Hong; Gu, Zhongze
2015-11-07
Here we report a smartphone-based potentiometric biosensor for point-of-care testing of salivary α-amylase (sAA), which is one of the most sensitive indices of autonomic nervous system activity, and therefore a promising non-invasive biomarker for mental health. The biosensing system includes a smartphone having a sAA-detection App, a potentiometric reader and a sensing chip with preloaded reagents. The saliva sample wicks into the reaction zone on the sensing chip so that the sAA reacts with the preloaded reagents, resulting in conversion of an electron mediator Fe(CN)6(3-) to Fe(CN)6(4-). The sensing chip is then pressed by fingers to push the reaction mixture into the detection zone for the potentiometric measurement. The potential measured by the smartphone-powered potentiometric reader is sent to the smartphone App via the USB port, and converted into sAA concentration based on a calibration curve. Using our method, sAA in real human sample is quantitatively analyzed within 5 min. The results are in good agreement with that obtained using a reference method, and correlated to psychological states of the subjects.
NASA Astrophysics Data System (ADS)
Kim, Chang-Beom; Kim, Kwan-Soo; Song, Ki-Bong
2013-05-01
The importance of early Alzheimer's disease (AD) detection has been recognized to diagnose people at high risk of AD. The existence of intra/extracellular beta-amyloid (Aβ) of brain neurons has been regarded as the most archetypal hallmark of AD. The existing computed-image-based neuroimaging tools have limitations on accurate quantification of nanoscale Aβ peptides due to optical diffraction during imaging processes. Therefore, we propose a new method that is capable of evaluating a small amount of Aβ peptides by using photo-sensitive field-effect transistor (p-FET) integrated with magnetic force-based microbead collecting platform and selenium(Se) layer (thickness ~700 nm) as an optical filter. This method demonstrates a facile approach for the analysis of Aβ quantification using magnetic force and magnetic silica microparticles (diameter 0.2~0.3 μm). The microbead collecting platform mainly consists of the p-FET sensing array and the magnet (diameter ~1 mm) which are placed beneath each sensing region of the p-FET, which enables the assembly of the Aβ antibody conjugated microbeads, captures the Aβ peptides from samples, measures the photocurrents generated by the Q-dot tagged with Aβ peptides, and consequently results in the effective Aβ quantification.
Methods of DNA methylation detection
NASA Technical Reports Server (NTRS)
Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)
2010-01-01
The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.
NASA Astrophysics Data System (ADS)
Dorigo, W. A.; Zurita-Milla, R.; de Wit, A. J. W.; Brazile, J.; Singh, R.; Schaepman, M. E.
2007-05-01
During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise. In this paper, we present an overview of different methods that can be used to derive biophysical and biochemical canopy state variables from optical remote sensing data in the VNIR-SWIR regions. The overview is based on an extensive literature review where both statistical-empirical and physically based methods are discussed. Subsequently, the prevailing techniques of assimilating remote sensing data into agroecosystem models are outlined. The increasing complexity of data assimilation methods and of models describing agroecosystem functioning has significantly increased computational demands. For this reason, we include a short section on the potential of parallel processing to deal with the complex and computationally intensive algorithms described in the preceding sections. The studied literature reveals that many valuable techniques have been developed both for the retrieval of canopy state variables from reflective remote sensing data as for assimilating the retrieved variables in agroecosystem models. However, for agroecosystem modeling and remote sensing data assimilation to be commonly employed on a global operational basis, emphasis will have to be put on bridging the mismatch between data availability and accuracy on one hand, and model and user requirements on the other. This could be achieved by integrating imagery with different spatial, temporal, spectral, and angular resolutions, and the fusion of optical data with data of different origin, such as LIDAR and radar/microwave.
Gu, Xiangping; Zhou, Xiaofeng; Sun, Yanjing
2018-02-28
Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.
He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong
2011-01-01
This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM. PMID:22346682
He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong
2011-01-01
This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.
Li, Zhao-Liang
2018-01-01
Few studies have examined hyperspectral remote-sensing image classification with type-II fuzzy sets. This paper addresses image classification based on a hyperspectral remote-sensing technique using an improved interval type-II fuzzy c-means (IT2FCM*) approach. In this study, in contrast to other traditional fuzzy c-means-based approaches, the IT2FCM* algorithm considers the ranking of interval numbers and the spectral uncertainty. The classification results based on a hyperspectral dataset using the FCM, IT2FCM, and the proposed improved IT2FCM* algorithms show that the IT2FCM* method plays the best performance according to the clustering accuracy. In this paper, in order to validate and demonstrate the separability of the IT2FCM*, four type-I fuzzy validity indexes are employed, and a comparative analysis of these fuzzy validity indexes also applied in FCM and IT2FCM methods are made. These four indexes are also applied into different spatial and spectral resolution datasets to analyze the effects of spectral and spatial scaling factors on the separability of FCM, IT2FCM, and IT2FCM* methods. The results of these validity indexes from the hyperspectral datasets show that the improved IT2FCM* algorithm have the best values among these three algorithms in general. The results demonstrate that the IT2FCM* exhibits good performance in hyperspectral remote-sensing image classification because of its ability to handle hyperspectral uncertainty. PMID:29373548
DLA based compressed sensing for high resolution MR microscopy of neuronal tissue.
Nguyen, Khieu-Van; Li, Jing-Rebecca; Radecki, Guillaume; Ciobanu, Luisa
2015-10-01
In this work we present the implementation of compressed sensing (CS) on a high field preclinical scanner (17.2 T) using an undersampling trajectory based on the diffusion limited aggregation (DLA) random growth model. When applied to a library of images this approach performs better than the traditional undersampling based on the polynomial probability density function. In addition, we show that the method is applicable to imaging live neuronal tissues, allowing significantly shorter acquisition times while maintaining the image quality necessary for identifying the majority of neurons via an automatic cell segmentation algorithm. Copyright © 2015 Elsevier Inc. All rights reserved.
[Research on hyperspectral remote sensing in monitoring snow contamination concentration].
Tang, Xu-guang; Liu, Dian-wei; Zhang, Bai; Du, Jia; Lei, Xiao-chun; Zeng, Li-hong; Wang, Yuan-dong; Song, Kai-shan
2011-05-01
Contaminants in the snow can be used to reflect regional and global environmental pollution caused by human activities. However, so far, the research on space-time monitoring of snow contamination concentration for a wide range or areas difficult for human to reach is very scarce. In the present paper, based on the simulated atmospheric deposition experiments, the spectroscopy technique method was applied to analyze the effect of different contamination concentration on the snow reflectance spectra. Then an evaluation of snow contamination concentration (SCC) retrieval methods was conducted using characteristic index method (SDI), principal component analysis (PCA), BP neural network and RBF neural network method, and the estimate effects of four methods were compared. The results showed that the neural network model combined with hyperspectral remote sensing data could estimate the SCC well.
Applications of Synthetic Microchannel and Nanopore Systems
NASA Astrophysics Data System (ADS)
Hinkle, Thomas Preston
This thesis describes research conducted on the physics and applications of micro- and nanoscale ion-conducting channels. Making use of the nanoscale physics that takes place in the vicinity of charged surfaces, there is the possibility that nanopores, holes on the order of 1 nm in size, could be used to make complex integrated ionic circuits. For inspiration on what such circuits could achieve we only need to look to biology systems, immensely complex machines that at their most basic level require precise control of ions and intercellular electric potentials to function. In order to contribute to the ever expanding field of nanopore research, we engineered novel hybrid insulator-conductor nanopores that behave analagously to ionic diodes, which allow passage of current flow in one direction but severely limit the current in the opposite direction. The experiments revealed that surface polarization of the conducting material can induce the formation of an electrical double layer in the same way static surface charges can. Furthermore, we showed that the hybrid device behaved similar to an ionic diode, and could see potential use as a standard rectifying element in ionic circuits. Another application based on ion conducting channels is resistive pulse sensing, a single particle detection and characterization method. We present three main experiments that expand the capacity of resistive pulse sensing for particle characterization. First, we demonstrate how resistive pulse sensing in pores with longitudinal irregularities can be used to measure the lengths of individual nanoparticles. Then, we describe an entirely new hybrid approach to resistive pulse sensing, whereby the electrical measurements are combined with simultaneous optical imaging. The hybrid method allows for validation of the resistive pulse signals and will greatly contribute to their interpretability. We present experiments that explore some of the possibilities of the hybrid method. Then, building off the hybrid method we present experiments performed to measure single particle deformability with resistive pulse sensing. Using a novel microfluidic channel design, we were able to reproducibily induce bidirectional deformation of cells. We describe how these deformations could be detected with the resistive pulse signal alone, paving the way for resistive pulse sensing based cell deformability cytometers.
A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus
NASA Astrophysics Data System (ADS)
Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir
2016-07-01
This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.
Retrieving cloudy atmosphere parameters from RPG-HATPRO radiometer data
NASA Astrophysics Data System (ADS)
Kostsov, V. S.
2015-03-01
An algorithm for simultaneously determining both tropospheric temperature and humidity profiles and cloud liquid water content from ground-based measurements of microwave radiation is presented. A special feature of this algorithm is that it combines different types of measurements and different a priori information on the sought parameters. The features of its use in processing RPG-HATPRO radiometer data obtained in the course of atmospheric remote sensing experiments carried out by specialists from the Faculty of Physics of St. Petersburg State University are discussed. The results of a comparison of both temperature and humidity profiles obtained using a ground-based microwave remote sensing method with those obtained from radiosonde data are analyzed. It is shown that this combined algorithm is comparable (in accuracy) to the classical method of statistical regularization in determining temperature profiles; however, this algorithm demonstrates better accuracy (when compared to the method of statistical regularization) in determining humidity profiles.
NASA Astrophysics Data System (ADS)
Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu
2018-03-01
Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.
NASA Technical Reports Server (NTRS)
Farmer, F. H.; Jarrett, O., Jr.; Brown, C. A., Jr.
1983-01-01
The concentration and composition of phytoplankton populations are measured by an optical method which can be used either in situ or remotely. This method is based upon the in vivo light absorption characteristics of phytoplankton. To provide a data base for testing assumptions relative to the proposed method, visible absorbance spectra of pure cultures of 20 marine phytoplankton were obtained under laboratory conditions. Descriptive and analytical statistics were computed for the absorbance spectra and were used to make comparisons between members of major taxonomic groups and between groups. Spectral variation between the members of the major taxonomic groups was observed to be considerably less than the spectral variation between these groups. In several cases the differences between the mean absorbance spectra of major taxonomic groups are significant enough to be detected with passive remote sensing techniques.
Surface Profile and Stress Field Evaluation using Digital Gradient Sensing Method
Miao, C.; Sundaram, B. M.; Huang, L.; ...
2016-08-09
Shape and surface topography evaluation from measured orthogonal slope/gradient data is of considerable engineering significance since many full-field optical sensors and interferometers readily output accurate data of that kind. This has applications ranging from metrology of optical and electronic elements (lenses, silicon wafers, thin film coatings), surface profile estimation, wave front and shape reconstruction, to name a few. In this context, a new methodology for surface profile and stress field determination based on a recently introduced non-contact, full-field optical method called digital gradient sensing (DGS) capable of measuring small angular deflections of light rays coupled with a robust finite-difference-based least-squaresmore » integration (HFLI) scheme in the Southwell configuration is advanced here. The method is demonstrated by evaluating (a) surface profiles of mechanically warped silicon wafers and (b) stress gradients near growing cracks in planar phase objects.« less
A guided wave dispersion compensation method based on compressed sensing
NASA Astrophysics Data System (ADS)
Xu, Cai-bin; Yang, Zhi-bo; Chen, Xue-feng; Tian, Shao-hua; Xie, Yong
2018-03-01
The ultrasonic guided wave has emerged as a promising tool for structural health monitoring (SHM) and nondestructive testing (NDT) due to their capability to propagate over long distances with minimal loss and sensitivity to both surface and subsurface defects. The dispersion effect degrades the temporal and spatial resolution of guided waves. A novel ultrasonic guided wave processing method for both single mode and multi-mode guided waves dispersion compensation is proposed in this work based on compressed sensing, in which a dispersion signal dictionary is built by utilizing the dispersion curves of the guided wave modes in order to sparsely decompose the recorded dispersive guided waves. Dispersion-compensated guided waves are obtained by utilizing a non-dispersion signal dictionary and the results of sparse decomposition. Numerical simulations and experiments are implemented to verify the effectiveness of the developed method for both single mode and multi-mode guided waves.
Sensor Drift Compensation Algorithm based on PDF Distance Minimization
NASA Astrophysics Data System (ADS)
Kim, Namyong; Byun, Hyung-Gi; Persaud, Krishna C.; Huh, Jeung-Soo
2009-05-01
In this paper, a new unsupervised classification algorithm is introduced for the compensation of sensor drift effects of the odor sensing system using a conducting polymer sensor array. The proposed method continues updating adaptive Radial Basis Function Network (RBFN) weights in the testing phase based on minimizing Euclidian Distance between two Probability Density Functions (PDFs) of a set of training phase output data and another set of testing phase output data. The output in the testing phase using the fixed weights of the RBFN are significantly dispersed and shifted from each target value due mostly to sensor drift effect. In the experimental results, the output data by the proposed methods are observed to be concentrated closer again to their own target values significantly. This indicates that the proposed method can be effectively applied to improved odor sensing system equipped with the capability of sensor drift effect compensation
Atmospheric correction for inland water based on Gordon model
NASA Astrophysics Data System (ADS)
Li, Yunmei; Wang, Haijun; Huang, Jiazhu
2008-04-01
Remote sensing technique is soundly used in water quality monitoring since it can receive area radiation information at the same time. But more than 80% radiance detected by sensors at the top of the atmosphere is contributed by atmosphere not directly by water body. Water radiance information is seriously confused by atmospheric molecular and aerosol scattering and absorption. A slight bias of evaluation for atmospheric influence can deduce large error for water quality evaluation. To inverse water composition accurately we have to separate water and air information firstly. In this paper, we studied on atmospheric correction methods for inland water such as Taihu Lake. Landsat-5 TM image was corrected based on Gordon atmospheric correction model. And two kinds of data were used to calculate Raleigh scattering, aerosol scattering and radiative transmission above Taihu Lake. Meanwhile, the influence of ozone and white cap were revised. One kind of data was synchronization meteorology data, and the other one was synchronization MODIS image. At last, remote sensing reflectance was retrieved from the TM image. The effect of different methods was analyzed using in situ measured water surface spectra. The result indicates that measured and estimated remote sensing reflectance were close for both methods. Compared to the method of using MODIS image, the method of using synchronization meteorology is more accurate. And the bias is close to inland water error criterion accepted by water quality inversing. It shows that this method is suitable for Taihu Lake atmospheric correction for TM image.
Shearlet Features for Registration of Remotely Sensed Multitemporal Images
NASA Technical Reports Server (NTRS)
Murphy, James M.; Le Moigne, Jacqueline
2015-01-01
We investigate the role of anisotropic feature extraction methods for automatic image registration of remotely sensed multitemporal images. Building on the classical use of wavelets in image registration, we develop an algorithm based on shearlets, a mathematical generalization of wavelets that offers increased directional sensitivity. Initial experimental results on LANDSAT images are presented, which indicate superior performance of the shearlet algorithm when compared to classical wavelet algorithms.
NASA Astrophysics Data System (ADS)
Cao, Qiong; Gu, Lingjia; Ren, Ruizhi; Wang, Lang
2016-09-01
Building extraction currently is important in the application of high-resolution remote sensing imagery. At present, quite a few algorithms are available for detecting building information, however, most of them still have some obvious disadvantages, such as the ignorance of spectral information, the contradiction between extraction rate and extraction accuracy. The purpose of this research is to develop an effective method to detect building information for Chinese GF-1 data. Firstly, the image preprocessing technique is used to normalize the image and image enhancement is used to highlight the useful information in the image. Secondly, multi-spectral information is analyzed. Subsequently, an improved morphological building index (IMBI) based on remote sensing imagery is proposed to get the candidate building objects. Furthermore, in order to refine building objects and further remove false objects, the post-processing (e.g., the shape features, the vegetation index and the water index) is employed. To validate the effectiveness of the proposed algorithm, the omission errors (OE), commission errors (CE), the overall accuracy (OA) and Kappa are used at final. The proposed method can not only effectively use spectral information and other basic features, but also avoid extracting excessive interference details from high-resolution remote sensing images. Compared to the original MBI algorithm, the proposed method reduces the OE by 33.14% .At the same time, the Kappa increase by 16.09%. In experiments, IMBI achieved satisfactory results and outperformed other algorithms in terms of both accuracies and visual inspection
Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles.
Li, Xiaokun; Zhang, Youlin; Chang, Yulei; Xue, Bin; Kong, Xianggui; Chen, Wei
2017-06-15
In view of the high biotoxicity and trace concentration of mercury (Hg) in environmental water, developing simple, ultra-sensitive and highly selective method capable of simultaneous determination of various Hg species has attracted wide attention. Here, we present a novel catalysis-reduction strategy for sensing inorganic and organic mercury in aqueous solution through the cooperative effect of AuNP-catalyzed properties and the formation of gold amalgam. For the first time, a new AuNP-catalyzed-organic reaction has been discovered and directly used for sensing Hg 2+ , Hg 2 2+ and CH 3 Hg + according to the change of the amount of the catalytic product induced by the deposition of Hg atoms on the surface of AuNPs. The detection limit of Hg species is 5.0pM (1 ppt), which is 3 orders of magnitude lower than the U.S. Environmental Protection Agency (EPA) limit value of Hg for drinking water (2 ppb). The high selectivity can be exceptionally achieved by the specific formation of gold amalgam. Moreover, the application for detecting tap water samples further demonstrates that this AuNP-based assay can be an excellent method used for sensing mercury at very low content in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yan; Chen, Li-Li; Lian, Xiao-Xue; Li, Jiao
2018-03-01
La/ZnO nanoplates were successfully synthesized by a facile hydrothermal method. The structure and morphology of the products were characterized using x-ray diffraction and scanning electron microscopy. The gas-sensing properties of the as-prepared La/ZnO were also tested with a series of target gases, and a possible gas sensing mechanism was discussed. The results show that the as-prepared La/ZnO nanoparticles are mainly composde of a wurtzite ZnO and a little La2O3 phase with face-centered structure, showing a uniform plate-like morphology with a thickness of about 50 nm. The La/ZnO nanoplate-based sensors display a significantly better sensing performance than pure ZnO for the detection of acetone and ethanol. The 3 mol.% La/ZnO sensor shows high sensitivity (127) to 200 ppm acetone at a low working temperature (330°C), and 120-200 ppm ethanol at 300°C. Moreover, its response and recovery time for acetone and ethanol were 3 s and 4 s, 18 s and 11 s, respectively. This work demonstrates that La/ZnO nanoplate-based sensors have potential applications as practical sensors for acetone and ethanol.
Research on the remote sensing methods of drought monitoring in Chongqing
NASA Astrophysics Data System (ADS)
Yang, Shiqi; Tang, Yunhui; Gao, Yanghua; Xu, Yongjin
2011-12-01
There are regional and periodic droughts in Chongqing, which impacted seriously on agricultural production and people's lives. This study attempted to monitor the drought in Chongqing with complex terrain using MODIS data. First, we analyzed and compared three remote sensing methods for drought monitoring (time series of vegetation index, temperature vegetation dryness index (TVDI), and vegetation supply water index (VSWI)) for the severe drought in 2006. Then we developed a remote sensing based drought monitoring model for Chongqing by combining soil moisture data and meteorological data. The results showed that the three remote sensing based drought monitoring models performed well in detecting the occurrence of drought in Chongqing on a certain extent. However, Time Series of Vegetation Index has stronger sensitivity in time pattern but weaker in spatial pattern; although TVDI and VSWI can reflect inverse the whole process of severe drought in 2006 summer from drought occurred - increased - relieved - increased again - complete remission in spatial domain, but TVDI requires the situation of extreme drought and extreme moist both exist in study area which it is more difficult in Chongqing; VSWI is simple and practicable, which the correlation coefficient between VSWI and soil moisture data reaches significant levels. In summary, VSWI is the best model for summer drought monitoring in Chongqing.
Sensor and methods of detecting target materials and situations in closed systems
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.
2018-03-13
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.
Removing sun glint from optical remote sensing images of shallow rivers
Overstreet, Brandon T.; Legleiter, Carl
2017-01-01
Sun glint is the specular reflection of light from the water surface, which often causes unusually bright pixel values that can dominate fluvial remote sensing imagery and obscure the water-leaving radiance signal of interest for mapping bathymetry, bottom type, or water column optical characteristics. Although sun glint is ubiquitous in fluvial remote sensing imagery, river-specific methods for removing sun glint are not yet available. We show that existing sun glint-removal methods developed for multispectral images of marine shallow water environments over-correct shallow portions of fluvial remote sensing imagery resulting in regions of unreliable data along channel margins. We build on existing marine glint-removal methods to develop a river-specific technique that removes sun glint from shallow areas of the channel without overcorrection by accounting for non-negligible water-leaving near-infrared radiance. This new sun glint-removal method can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. For an example image of the gravel-bed Snake River, Wyoming, USA, observed-vs.-predicted R2 values for depth retrieval improved from 0.66 to 0.76 following sun glint removal. The methodology presented here is straightforward to implement and could be incorporated into image processing workflows for multispectral images that include a near-infrared band.
LandSense: A Citizen Observatory and Innovation Marketplace for Land Use and Land Cover Monitoring
NASA Astrophysics Data System (ADS)
Moorthy, Inian; Fritz, Steffen; See, Linda; McCallum, Ian
2017-04-01
Currently within the EU's Earth Observation (EO) monitoring framework, there is a need for low-cost methods for acquiring high quality in-situ data to create accurate and well-validated environmental monitoring products. To help address this need, a new four year Horizon 2020 project entitled LandSense will link remote sensing data with modern participatory data collection methods that involve citizen scientists. This paper will describe the citizen science activities within the LandSense Observatory that aim to deliver concrete, measurable and quality-assured ground-based data that will complement existing satellite monitoring systems. LandSense will deploy advanced tools, services and resources to mobilize and engage citizens to collect in-situ observations (i.e. ground-based data and visual interpretations of EO imagery). Integrating these citizen-driven in-situ data collections with established authoritative and open access data sources will help reduce costs, extend GEOSS and Copernicus capacities, and support comprehensive environmental monitoring systems. Policy-relevant campaigns will be implemented in close collaboration with multiple stakeholders to ensure that citizen observations address user requirements and contribute to EU-wide environmental governance and decision-making. Campaigns for addressing local and regional Land Use and Land Cover (LULC) issues are planned for select areas in Austria, France, Germany, Spain, Slovenia and Serbia. Novel LandSense services (LandSense Campaigner, FarmLand Support, Change Detector and Quality Assurance & Control) will be deployed and tested in these areas to address critical LULC issues (i.e. urbanization, agricultural land use and forest/habitat monitoring). For example, local residents in the cities of Vienna, Tulln, and Heidelberg will help cooperatively detect and map changes in land cover and green space to address key issues of urban sprawl, land take and flooding. Such campaigns are facilitated through numerous pathways of citizen empowerment via the LandSense Engagement Platform, i.e. tools for discussion, online voting collaborative mapping, as well as events linked to public consultation and cooperative planning. In addition to creating tools for data collection, quality assurance, and interaction with the public, the project aims to drive innovation through collaboration with the private sector. LandSense will build an innovation marketplace to attract a vast community of users across numerous disciplines and sectors and boost Europe's role in the business of ground-based monitoring. The anticipated outcomes of LandSense have considerable potential to lower expenditure costs on ground-based data collection and greatly extend the current sources of such data, thereby realizing citizen-powered innovations in the processing chain of LULC monitoring activities both within and beyond Europe.
New types of time domain reflectometry sensing waveguides for bridge scour monitoring
NASA Astrophysics Data System (ADS)
Lin, Chih-Ping; Wang, Kai; Chung, Chih-Chung; Weng, Yu-Wen
2017-07-01
Scour is a major threat to bridge safety, especially in harsh fluvial environments. Real-time monitoring of bridge scour is still very limited due to the lack of robust and economic scour monitoring device. Time domain reflectometry (TDR) is an emerging waveguide-based technique holding great promise to develop more durable scour monitoring devices. This study presents new types of TDR sensing waveguides in forms of either sensing rod or sensing wire, taking into account of the measurement range, durability, and ease of field installation. The sensing rod is composed of a hollow grooved steel rod paired up with a metal strip on the insulating groove, while the sensing wire consists of two steel strands with one of them coated with an insulating jacket. The measurement sensitivity is inevitably sacrificed when other properties such as the measurement range, field durability, and installation easiness are enhanced. Factors affecting the measurement sensitivity were identified and experimentally evaluated for better arranging the waveguide conductors. A data reduction method for scour-depth estimation without the need for identifying the sediment/water reflection and a two-step calibration procedure for rating propagation velocities were proposed to work with the new types of TDR sensing waveguides. Both the calibration procedure and the data reduction method were experimentally validated. The test results indicated that the new TDR sensing waveguide provides accurate scour depth measurements regardless of the sacrificed sensitivity. The insulating coating of the new TDR sensing waveguide was also demonstrated to be effective in extending the measurement range up to at least 15 m.
Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming
2018-01-01
There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893
Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming
2018-02-07
There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.
Testing the limits of gradient sensing
Lakhani, Vinal
2017-01-01
The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis) or grow (chemotropism) towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell’s accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts. PMID:28207738
Laser Doppler vibrometry measurement of the mechanical myogram
NASA Astrophysics Data System (ADS)
Rohrbaugh, John W.; Sirevaag, Erik J.; Richter, Edward J.
2013-12-01
Contracting muscles show complex dimensional changes that include lateral expansion. Because this expansion process is intrinsically vibrational, driven by repetitive actions of multiple motor units, it can be sensed and quantified using the method of Laser Doppler Vibrometry (LDV). LDV has a number of advantages over more traditional mechanical methods based on microphones and accelerometers. The LDV mechanical myogram from a small hand muscle (the first dorsal interosseous) was studied under conditions of elastic loading applied to the tip of the abducted index finger. The LDV signal was shown to be related systematically to the level of force production, and to compare favorably with conventional methods for sensing the mechanical and electrical aspects of muscle contraction.
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites
NASA Astrophysics Data System (ADS)
Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng
2015-08-01
GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.
TermehYousefi, Amin; Azhari, Saman; Khajeh, Amin; Hamidon, Mohd Nizar; Tanaka, Hirofumi
2017-08-01
Haptic sensors are essential devices that facilitate human-like sensing systems such as implantable medical devices and humanoid robots. The availability of conducting thin films with haptic properties could lead to the development of tactile sensing systems that stretch reversibly, sense pressure (not just touch), and integrate with collapsible. In this study, a nanocomposite based hemispherical artificial fingertip fabricated to enhance the tactile sensing systems of humanoid robots. To validate the hypothesis, proposed method was used in the robot-like finger system to classify the ripe and unripe tomato by recording the metabolic growth of the tomato as a function of resistivity change during a controlled indention force. Prior to fabrication, a finite element modeling (FEM) was investigated for tomato to obtain the stress distribution and failure point of tomato by applying different external loads. Then, the extracted computational analysis information was utilized to design and fabricate nanocomposite based artificial fingertip to examine the maturity analysis of tomato. The obtained results demonstrate that the fabricated conformable and scalable artificial fingertip shows different electrical property for ripe and unripe tomato. The artificial fingertip is compatible with the development of brain-like systems for artificial skin by obtaining periodic response during an applied load. Copyright © 2017. Published by Elsevier B.V.
Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites
NASA Astrophysics Data System (ADS)
Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.
2015-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.
Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.
Wang, Jiao; Deng, Zhiqiang
2017-06-01
A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.
[Review of estimation on oceanic primary productivity by using remote sensing methods.
Xu, Hong Yun; Zhou, Wei Feng; Ji, Shi Jian
2016-09-01
Accuracy estimation of oceanic primary productivity is of great significance in the assessment and management of fisheries resources, marine ecology systems, global change and other fields. The traditional measurement and estimation of oceanic primary productivity has to rely on in situ sample data by vessels. Satellite remote sensing has advantages of providing dynamic and eco-environmental parameters of ocean surface at large scale in real time. Thus, satellite remote sensing has increasingly become an important means for oceanic primary productivity estimation on large spatio-temporal scale. Combining with the development of ocean color sensors, the models to estimate the oceanic primary productivity by satellite remote sensing have been developed that could be mainly summarized as chlorophyll-based, carbon-based and phytoplankton absorption-based approach. The flexibility and complexity of the three kinds of models were presented in the paper. On this basis, the current research status for global estimation of oceanic primary productivity was analyzed and evaluated. In view of these, four research fields needed to be strengthened in further stu-dy: 1) Global oceanic primary productivity estimation should be segmented and studied, 2) to dee-pen the research on absorption coefficient of phytoplankton, 3) to enhance the technology of ocea-nic remote sensing, 4) to improve the in situ measurement of primary productivity.
Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials.
Dhara, Keerthy; Mahapatra, Debiprosad Roy
2017-12-13
An overview (with 376 refs.) is given here on the current state of methods for electrochemical sensing of glucose based on the use of advanced nanomaterials. An introduction into the field covers aspects of enzyme based sensing versus nonenzymatic sensing using nanomaterials. The next chapter cover the most commonly used nanomaterials for use in such sensors, with sections on uses of noble metals, transition metals, metal oxides, metal hydroxides, and metal sulfides, on bimetallic nanoparticles and alloys, and on other composites. A further section treats electrodes based on the use of carbon nanomaterials (with subsections on carbon nanotubes, on graphene, graphene oxide and carbon dots, and on other carbonaceous nanomaterials. The mechanisms for electro-catalysis are also discussed, and several Tables are given where the performance of sensors is being compared. Finally, the review addresses merits and limitations (such as the frequent need for working in strongly etching alkaline solutions and the need for diluting samples because sensors often have analytical ranges that are far below the glucose levels found in blood). We also address market/technology gaps in comparison to commercially available enzymatic sensors. Graphical Abstract Schematic representation of electrochemical nonenzymatic glucose sensing on the nanomaterials modified electrodes. At an applied potential, the nanomaterial-modified electrodes exhibit excellent electrocatalytic activity for direct oxidation of glucose oxidation.
NASA Astrophysics Data System (ADS)
Farda, N. M.; Danoedoro, P.; Hartono; Harjoko, A.
2016-11-01
The availably of remote sensing image data is numerous now, and with a large amount of data it makes “knowledge gap” in extraction of selected information, especially coastal wetlands. Coastal wetlands provide ecosystem services essential to people and the environment. The aim of this research is to extract coastal wetlands information from satellite data using pixel based and object based image mining approach. Landsat MSS, Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images located in Segara Anakan lagoon are selected to represent data at various multi temporal images. The input for image mining are visible and near infrared bands, PCA band, invers PCA bands, mean shift segmentation bands, bare soil index, vegetation index, wetness index, elevation from SRTM and ASTER GDEM, and GLCM (Harralick) or variability texture. There is three methods were applied to extract coastal wetlands using image mining: pixel based - Decision Tree C4.5, pixel based - Back Propagation Neural Network, and object based - Mean Shift segmentation and Decision Tree C4.5. The results show that remote sensing image mining can be used to map coastal wetlands ecosystem. Decision Tree C4.5 can be mapped with highest accuracy (0.75 overall kappa). The availability of remote sensing image mining for mapping coastal wetlands is very important to provide better understanding about their spatiotemporal coastal wetlands dynamics distribution.
Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging
NASA Astrophysics Data System (ADS)
Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen
2017-07-01
Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.
NASA Astrophysics Data System (ADS)
Lieberman, Robert A.
Various paper on chemical, biochemical, and environmental fiber sensors are presented. Some of the individual topics addressed include: evanescent-wave fiber optic (FO) biosensor, refractive-index sensors based on coupling to high-index multimode overlays, advanced technique in FO sensors, design of luminescence-based temperature sensors, NIR fluorescence in FO applications, FO sensor based on microencapsulated reagents, emitters and detectors for optical gas and chemical sensing, tunable fiber laser source for methane detection at 1.68 micron, FO fluorometer based on a dual-wavelength laser excitation source, thin polymer films as active components of FO chemical sensors, submicron optical sources for single macromolecule detection, nanometer optical fiber pH sensor. Also discussed are: microfabrication of optical sensor array, luminescent FO sensor for the measurement of pH, time-domain fluorescence methods as applied to pH sensing, characterization of a sol-gel-entrapped artificial receptor, FO technology for nuclear waste cleanup, spectroscopic gas sensing with IR hollow waveguides, dissolved-oxygen quenching of in situ fluorescence measurements.
2014-01-01
We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields. PMID:24917701
Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar
NASA Astrophysics Data System (ADS)
Chen, Qi
2015-08-01
Estimating tree aboveground biomass (AGB) and carbon (C) stocks using remote sensing is a critical component for understanding the global C cycle and mitigating climate change. However, the importance of allometry for remote sensing of AGB has not been recognized until recently. The overarching goals of this study are to understand the differences and relationships among three national-scale allometric methods (CRM, Jenkins, and the regional models) of the Forest Inventory and Analysis (FIA) program in the U.S. and to examine the impacts of using alternative allometry on the fitting statistics of remote sensing-based woody AGB models. Airborne lidar data from three study sites in the Pacific Northwest, USA were used to predict woody AGB estimated from the different allometric methods. It was found that the CRM and Jenkins estimates of woody AGB are related via the CRM adjustment factor. In terms of lidar-biomass modeling, CRM had the smallest model errors, while the Jenkins method had the largest ones and the regional method was between. The best model fitting from CRM is attributed to its inclusion of tree height in calculating merchantable stem volume and the strong dependence of non-merchantable stem biomass on merchantable stem biomass. This study also argues that it is important to characterize the allometric model errors for gaining a complete understanding of the remotely-sensed AGB prediction errors.
Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi
2017-10-12
A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG) distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.
Influence of humidity on CO2 gas sensors based on polyetherimide polymer film
NASA Astrophysics Data System (ADS)
Kang, Ting; Xie, Guangzhong; Zhou, Yong; Xie, Tao; Tai, Huiling
2014-09-01
Quartz Crystal Microbalance (QCM) coated with polyetherimide (PEI) by spin coating method was applied for carbon dioxide (CO2) gas detection at room temperature in this study. The experiments were performed in dry and humid air atmospheres, and the results revealed that the prepared CO2 sensor in moisture circumstance exhibited a larger sensing response than that at dry condition. An enhanced sensing response took place for CO2 detection with the existence of water molecules. The effect of different humidity on QCM sensor performances was investigated as well in this paper. A curve, which displayed a proportional relationship between sensing response and water vapor concentration, was obtained. Moreover, the relevant sensing mechanisms were investigated.
Sun, Chenglu; Li, Wei; Chen, Wei
2017-01-01
For extracting the pressure distribution image and respiratory waveform unobtrusively and comfortably, we proposed a smart mat which utilized a flexible pressure sensor array, printed electrodes and novel soft seven-layer structure to monitor those physiological information. However, in order to obtain high-resolution pressure distribution and more accurate respiratory waveform, it needs more time to acquire the pressure signal of all the pressure sensors embedded in the smart mat. In order to reduce the sampling time while keeping the same resolution and accuracy, a novel method based on compressed sensing (CS) theory was proposed. By utilizing the CS based method, 40% of the sampling time can be decreased by means of acquiring nearly one-third of original sampling points. Then several experiments were carried out to validate the performance of the CS based method. While less than one-third of original sampling points were measured, the correlation degree coefficient between reconstructed respiratory waveform and original waveform can achieve 0.9078, and the accuracy of the respiratory rate (RR) extracted from the reconstructed respiratory waveform can reach 95.54%. The experimental results demonstrated that the novel method can fit the high resolution smart mat system and be a viable option for reducing the sampling time of the pressure sensor array. PMID:28796188
NASA Astrophysics Data System (ADS)
Zhang, Yuning; Reisner, Walter
2012-02-01
Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We will discuss our recent progress on device fabrication and characterization. In particular, we demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the embedded pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule.
Learning Methods of Remote Sensing In the 2013 Curriculum of Secondary School
NASA Astrophysics Data System (ADS)
Lili Somantri, Nandi
2016-11-01
The new remote sensing material included in the subjects of geography in the curriculum of 1994. For geography teachers generation of 90s and over who in college do not get the material remote sensing, for teaching is a tough matter. Most teachers only give a theoretical matter, and do not carry out practical reasons in the lack of facilities and infrastructure of computer laboratories. Therefore, in this paper studies the importance about the method or manner of teaching remote sensing material in schools. The purpose of this paper is 1) to explain the position of remote sensing material in the study of geography, 2) analyze the Geography Curriculum 2013 Subjects related to remote sensing material, 3) describes a method of teaching remote sensing material in schools. The method used in this paper is a descriptive analytical study supported by the literature. The conclusion of this paper that the position of remote sensing in the study of geography is a method or a way to obtain spatial data earth's surface. In the 2013 curriculum remote sensing material has been applied to the study of land use and transportation. Remote sensing methods of teaching must go through a practicum, which starts from the introduction of the theory of remote sensing, data extraction phase of remote sensing imagery to produce maps, both visually and digitally, field surveys, interpretation of test accuracy, and improved maps.
NASA Astrophysics Data System (ADS)
Hunger, Sebastian; Karrasch, Pierre; Wessollek, Christine
2016-10-01
The European Water Framework Directive (Directive 2000/60/EC) is a mandatory agreement that guides the member states of the European Union in the field of water policy to fulfill the requirements for reaching the aim of the good ecological status of water bodies. In the last years several workflows and methods were developed to determine and evaluate the characteristics and the status of the water bodies. Due to their area measurements remote sensing methods are a promising approach to constitute a substantial additional value. With increasing availability of optical and radar remote sensing data the development of new methods to extract information from both types of remote sensing data is still in progress. Since most limitations of these data sets do not agree the fusion of both data sets to gain data with higher spectral resolution features the potential to obtain additional information in contrast to the separate processing of the data. Based thereupon this study shall research the potential of multispectral and radar remote sensing data and the potential of their fusion for the assessment of the parameters of water body structure. Due to the medium spatial resolution of the freely available multispectral Sentinel-2 data sets especially the surroundings of the water bodies and their land use are part of this study. SAR data is provided by the Sentinel-1 satellite. Different image fusion methods are tested and the combined products of both data sets are evaluated afterwards. The evaluation of the single data sets and the fused data sets is performed by means of a maximum-likelihood classification and several statistical measurements. The results indicate that the combined use of different remote sensing data sets can have an added value.
a Cognitive Approach to Teaching a Graduate-Level Geobia Course
NASA Astrophysics Data System (ADS)
Bianchetti, Raechel A.
2016-06-01
Remote sensing image analysis training occurs both in the classroom and the research lab. Education in the classroom for traditional pixel-based image analysis has been standardized across college curriculums. However, with the increasing interest in Geographic Object-Based Image Analysis (GEOBIA), there is a need to develop classroom instruction for this method of image analysis. While traditional remote sensing courses emphasize the expansion of skills and knowledge related to the use of computer-based analysis, GEOBIA courses should examine the cognitive factors underlying visual interpretation. This current paper provides an initial analysis of the development, implementation, and outcomes of a GEOBIA course that considers not only the computational methods of GEOBIA, but also the cognitive factors of expertise, that such software attempts to replicate. Finally, a reflection on the first instantiation of this course is presented, in addition to plans for development of an open-source repository for course materials.
Wavelet-Based Processing for Fiber Optic Sensing Systems
NASA Technical Reports Server (NTRS)
Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)
2016-01-01
The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.
Development of EPA OTM 10 for Landfill Applications
In 2006, the U.S. Environmental Protection Agency posted a new test method on its website called OTM 10 which describes direct measurement of pollutant mass emission flux from area sources using ground-based optical remote sensing. The method has validated application to relative...
Multidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform
Yu, Yeyang; Jin, Jin; Liu, Feng; Crozier, Stuart
2014-01-01
Compressed Sensing (CS) has been applied in dynamic Magnetic Resonance Imaging (MRI) to accelerate the data acquisition without noticeably degrading the spatial-temporal resolution. A suitable sparsity basis is one of the key components to successful CS applications. Conventionally, a multidimensional dataset in dynamic MRI is treated as a series of two-dimensional matrices, and then various matrix/vector transforms are used to explore the image sparsity. Traditional methods typically sparsify the spatial and temporal information independently. In this work, we propose a novel concept of tensor sparsity for the application of CS in dynamic MRI, and present the Higher-order Singular Value Decomposition (HOSVD) as a practical example. Applications presented in the three- and four-dimensional MRI data demonstrate that HOSVD simultaneously exploited the correlations within spatial and temporal dimensions. Validations based on cardiac datasets indicate that the proposed method achieved comparable reconstruction accuracy with the low-rank matrix recovery methods and, outperformed the conventional sparse recovery methods. PMID:24901331
Sensing Attribute Weights: A Novel Basic Belief Assignment Method
Jiang, Wen; Zhuang, Miaoyan; Xie, Chunhe; Wu, Jun
2017-01-01
Dempster–Shafer evidence theory is widely used in many soft sensors data fusion systems on account of its good performance for handling the uncertainty information of soft sensors. However, how to determine basic belief assignment (BBA) is still an open issue. The existing methods to determine BBA do not consider the reliability of each attribute; at the same time, they cannot effectively determine BBA in the open world. In this paper, based on attribute weights, a novel method to determine BBA is proposed not only in the closed world, but also in the open world. The Gaussian model of each attribute is built using the training samples firstly. Second, the similarity between the test sample and the attribute model is measured based on the Gaussian membership functions. Then, the attribute weights are generated using the overlap degree among the classes. Finally, BBA is determined according to the sensed attribute weights. Several examples with small datasets show the validity of the proposed method. PMID:28358325
Sensing Attribute Weights: A Novel Basic Belief Assignment Method.
Jiang, Wen; Zhuang, Miaoyan; Xie, Chunhe; Wu, Jun
2017-03-30
Dempster-Shafer evidence theory is widely used in many soft sensors data fusion systems on account of its good performance for handling the uncertainty information of soft sensors. However, how to determine basic belief assignment (BBA) is still an open issue. The existing methods to determine BBA do not consider the reliability of each attribute; at the same time, they cannot effectively determine BBA in the open world. In this paper, based on attribute weights, a novel method to determine BBA is proposed not only in the closed world, but also in the open world. The Gaussian model of each attribute is built using the training samples firstly. Second, the similarity between the test sample and the attribute model is measured based on the Gaussian membership functions. Then, the attribute weights are generated using the overlap degree among the classes. Finally, BBA is determined according to the sensed attribute weights. Several examples with small datasets show the validity of the proposed method.
Simple method for self-referenced and lable-free biosensing by using a capillary sensing element.
Liu, Yun; Chen, Shimeng; Liu, Qiang; Liu, Zigeng; Wei, Peng
2017-05-15
We demonstrated a simple method for self-reference and label free biosensing based on a capillary sensing element and common optoelectronic devices. The capillary sensing element is illuminated by a light-emitting diode (LED) light source and detected by a webcam. Part of gold film that deposited on the tubing wall is functionalized to carry on the biological information in the excited SPR modes. The end face of the capillary was monitored and separate regions of interest (ROIs) were selected as the measurement channel and the reference channel. In the ROIs, the biological information can be accurately extracted from the image by simple image processing. Moreover, temperature fluctuation, bulk RI fluctuation, light source fluctuation and other factors can be effectively compensated during detection. Our biosensing device has a sensitivity of 1145%/RIU and a resolution better than 5.287 × 10 -4 RIU, considering a 0.79% noise level. We apply it for concanavalin A (Con A) biological measurement, which has an approximately linear response to the specific analyte concentration. This simple method provides a new approach for multichannel SPR sensing and reference-compensated calibration of SPR signal for label-free detection.
Li, Shuo; Zhu, Yanchun; Xie, Yaoqin; Gao, Song
2018-01-01
Dynamic magnetic resonance imaging (DMRI) is used to noninvasively trace the movements of organs and the process of drug delivery. The results can provide quantitative or semiquantitative pathology-related parameters, thus giving DMRI great potential for clinical applications. However, conventional DMRI techniques suffer from low temporal resolution and long scan time owing to the limitations of the k-space sampling scheme and image reconstruction algorithm. In this paper, we propose a novel DMRI sampling scheme based on a golden-ratio Cartesian trajectory in combination with a compressed sensing reconstruction algorithm. The results of two simulation experiments, designed according to the two major DMRI techniques, showed that the proposed method can improve the temporal resolution and shorten the scan time and provide high-quality reconstructed images.
System and method for optical fiber based image acquisition suitable for use in turbine engines
Baleine, Erwan; A V, Varun; Zombo, Paul J.; Varghese, Zubin
2017-05-16
A system and a method for image acquisition suitable for use in a turbine engine are disclosed. Light received from a field of view in an object plane is projected onto an image plane through an optical modulation device and is transferred through an image conduit to a sensor array. The sensor array generates a set of sampled image signals in a sensing basis based on light received from the image conduit. Finally, the sampled image signals are transformed from the sensing basis to a representation basis and a set of estimated image signals are generated therefrom. The estimated image signals are used for reconstructing an image and/or a motion-video of a region of interest within a turbine engine.
NASA Technical Reports Server (NTRS)
Deepak, Adarsh; Wang, Pi-Huan
1985-01-01
The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.
Absolute radiometric calibration of advanced remote sensing systems
NASA Technical Reports Server (NTRS)
Slater, P. N.
1982-01-01
The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.
Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop
NASA Astrophysics Data System (ADS)
Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.
2018-04-01
The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.
Booth, Marsilea Adela; Vogel, Robert; Curran, James M; Harbison, SallyAnn; Travas-Sejdic, Jadranka
2013-07-15
Despite the plethora of DNA sensor platforms available, a portable, sensitive, selective and economic sensor able to rival current fluorescence-based techniques would find use in many applications. In this research, probe oligonucleotide-grafted particles are used to detect target DNA in solution through a resistive pulse nanopore detection technique. Using carbodiimide chemistry, functionalized probe DNA strands are attached to carboxylated dextran-based magnetic particles. Subsequent incubation with complementary target DNA yields a change in surface properties as the two DNA strands hybridize. Particle-by-particle analysis with resistive pulse sensing is performed to detect these changes. A variable pressure method allows identification of changes in the surface charge of particles. As proof-of-principle, we demonstrate that target hybridization is selectively detected at micromolar concentrations (nanomoles of target) using resistive pulse sensing, confirmed by fluorescence and phase analysis light scattering as complementary techniques. The advantages, feasibility and limitations of using resistive pulse sensing for sample analysis are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei
2016-11-28
We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.
Design of Intelligent Hydraulic Excavator Control System Based on PID Method
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong
Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.