Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management
USDA-ARS?s Scientific Manuscript database
Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...
NASA Astrophysics Data System (ADS)
Shinar, J.; Shinar, R.
The chapter describes the development, advantages, challenges, and potential of an emerging, compact photoluminescence-based sensing platform for chemical and biological analytes, including multiple analytes. In this platform, the excitation source is an array of organic light-emitting device (OLED) pixels that is structurally integrated with the sensing component. Steps towards advanced integration with additionally a thin-film-based photodetector are also described. The performance of the OLED-based sensing platform is examined for gas-phase and dissolved oxygen, glucose, lactate, ethanol, hydrazine, and anthrax lethal factor.
Novel remote sensor systems: design, prototyping, and characterization
NASA Astrophysics Data System (ADS)
Kayastha, V.; Gibbons, S.; Lamb, J. E.; Giedd, R. E.
2014-06-01
We have designed and tested a prototype TRL4 radio-frequency (RF) sensing platform containing a transceiver that interrogates a passive carbon nanotube (CNT)-based sensor platform. The transceiver can be interfaced to a server technology such as a Bluetooth® or Wi-Fi device for further connectivity. The novelty of a very-low-frequency (VLF) implementation in the transceiver design will ultimately enable deep penetration into the ground or metal structures to communicate with buried sensing platforms. The sensor platform generally consists of printed electronic devices made of CNTs on flexible poly(ethylene terephthalate) (PET) and Kapton® substrates. This novel remote sensing system can be integrated with both passive and active sensing platforms. It offers unique characteristics suitable for a variety of sensing applications. The proposed sensing platforms can take on different form factors and the RF output of the sensing platforms could be modulated by humidity, temperature, pressure, strain, or vibration signals. Resonant structures were designed and constructed to operate in the very-high-frequency (VHF) and VLF ranges. In this presentation, we will report results of our continued effort to develop a commercially viable transceiver capable of interrogating the conformally mounted sensing platforms made from CNTs or silver-based nanomaterials on polyimide substrates over a broad range of frequencies. The overall performance of the sensing system with different sensing elements and at different frequency ranges will be discussed.
Kim, Min-Gu; Alrowais, Hommood; Kim, Choongsoon; Yeon, Pyungwoo; Ghovanloo, Maysam; Brand, Oliver
2017-06-27
Lightweight, flexible, stretchable, and wireless sensing platforms have gained significant attention for personal healthcare and environmental monitoring applications. This paper introduces an all-soft (flexible and stretchable), battery-free, and wireless chemical microsystem using gallium-based liquid metal (eutectic gallium-indium alloy, EGaIn) and poly(dimethylsiloxane) (PDMS), fabricated using an advanced liquid metal thin-line patterning technique based on soft lithography. Considering its flexible, stretchable, and lightweight characteristics, the proposed sensing platform is well suited for wearable sensing applications either on the skin or on clothing. Using the microfluidic sensing platform, detection of liquid-phase and gas-phase volatile organic compounds (VOC) is demonstrated using the same design, which gives an opportunity to have the sensor operate under different working conditions and environments. In the case of liquid-phase chemical sensing, the wireless sensing performance and microfluidic capacitance tunability for different dielectric liquids are evaluated using analytical, numerical, and experimental approaches. In the case of gas-phase chemical sensing, PDMS is used both as a substrate and a sensing material. The gas sensing performance is evaluated and compared to a silicon-based, solid-state gas sensor with a PDMS sensing film.
Remote sensing image segmentation based on Hadoop cloud platform
NASA Astrophysics Data System (ADS)
Li, Jie; Zhu, Lingling; Cao, Fubin
2018-01-01
To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.
Handheld Microneedle-Based Electrolyte Sensing Platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Philip R.; Rivas, Rhiana; Johnson, David
2015-11-01
Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.
Nanopaper as an Optical Sensing Platform.
Morales-Narváez, Eden; Golmohammadi, Hamed; Naghdi, Tina; Yousefi, Hossein; Kostiv, Uliana; Horák, Daniel; Pourreza, Nahid; Merkoçi, Arben
2015-07-28
Bacterial cellulose nanopaper (BC) is a multifunctional material known for numerous desirable properties: sustainability, biocompatibility, biodegradability, optical transparency, thermal properties, flexibility, high mechanical strength, hydrophilicity, high porosity, broad chemical-modification capabilities and high surface area. Herein, we report various nanopaper-based optical sensing platforms and describe how they can be tuned, using nanomaterials, to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. We also describe several nanopaper configurations, including cuvettes, plates and spots that we printed or punched on BC. The platforms include a colorimetric-based sensor based on nanopaper containing embedded silver and gold nanoparticles; a photoluminescent-based sensor, comprising CdSe@ZnS quantum dots conjugated to nanopaper; and a potential up-conversion sensing platform constructed from nanopaper functionalized with NaYF4:Yb(3+)@Er(3+)&SiO2 nanoparticles. We have explored modulation of the plasmonic or photoluminescent properties of these platforms using various model biologically relevant analytes. Moreover, we prove that BC is and advantageous preconcentration platform that facilitates the analysis of small volumes of optically active materials (∼4 μL). We are confident that these platforms will pave the way to optical (bio)sensors or theranostic devices that are simple, transparent, flexible, disposable, lightweight, miniaturized and perhaps wearable.
NASA Astrophysics Data System (ADS)
Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu
2014-03-01
With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.
NASA Astrophysics Data System (ADS)
Wang, Liuzheng; He, Xiang; Zhang, Wei; Liu, Yong; Banks, Craig E.; Zhang, Ying
2018-02-01
The structure-property relationship between biomineralized calcium phosphate compounds upon a fluorescent quenching-recovery platform and their distinct crystalline structure and surficial functional groups are investigated. A fluorescence-based sensing platform is shown to be viable for the sensing of 8-hydroxy-2-deoxy-guanosine in simulated systems.
Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications
NASA Astrophysics Data System (ADS)
Sapsford, Kim E.
Sensing platforms based on the principle of total internal reflection (TIR) represent a fairly mature yet still expanding and exciting field of research. Sensor development has mainly been driven by the need for rapid, stand-alone, automated devices for application in the fields of clinical diagnosis and screening, food and water safety, environmental monitoring, and chemical and biological warfare agent detection. The technologies highlighted in this chapter are continually evolving, taking advantage of emerging advances in microfabrication, lab-on-a-chip, excitation, and detection techniques. This chapter describes many of the underlying principles of TIR-based sensing platforms and additionally focusses on planar TIR fluorescence (TIRF)-based chemical and biological sensors.
Wang, Liuzheng; He, Xiang; Zhang, Wei; Liu, Yong; Zhang, Ying
2018-01-01
The structure–property relationship between biomineralized calcium phosphate compounds upon a fluorescent quenching–recovery platform and their distinct crystalline structure and surficial functional groups are investigated. A fluorescence-based sensing platform is shown to be viable for the sensing of 8-hydroxy-2-deoxy-guanosine in simulated systems. PMID:29515827
Wang, Xinhao; Chang, Te-Wei; Lin, Guohong; Gartia, Manas Ranjan; Liu, Gang Logan
2017-01-03
Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore's absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system.
Leng, Yumin; Qian, Sihua; Wang, Yuhui; Lu, Cheng; Ji, Xiaoxu; Lu, Zhiwen; Lin, Hengwei
2016-01-01
Multidimensional sensing offers advantages in accuracy, diversity and capability for the simultaneous detection and discrimination of multiple analytes, however, the previous reports usually require complicated synthesis/fabrication process and/or need a variety of techniques (or instruments) to acquire signals. Therefore, to take full advantages of this concept, simple designs are highly desirable. Herein, a novel concept is conceived to construct multidimensional sensing platforms based on a single indicator that has capability of showing diverse color/fluorescence responses with the addition of different analytes. Through extracting hidden information from these responses, such as red, green and blue (RGB) alterations, a triple-channel-based multidimensional sensing platform could consequently be fabricated, and the RGB alterations are further applicable to standard statistical methods. As a proof-of-concept study, a triple-channel sensing platform is fabricated solely using dithizone with assistance of cetyltrimethylammonium bromide (CTAB) for hyperchromicity and sensitization, which demonstrates superior capabilities in detection and identification of ten common heavy metal ions at their standard concentrations of wastewater-discharge of China. Moreover, this sensing platform exhibits promising applications in semi-quantitative and even quantitative analysis individuals of these heavy metal ions with high sensitivity as well. Finally, density functional theory calculations are performed to reveal the foundations for this analysis. PMID:27146105
Dong, Zhen-Zhen; Yang, Chao; Vellaisamy, Kasipandi; Li, Guodong; Leung, Chung-Hang; Ma, Dik-Lung
2017-10-27
We have developed a Ag@Au core-shell nanoparticle (NP)/iridium(III) complex-based sensing platform for the sensitive luminescence "turn-on" sensing of cyanide ions, an acutely toxic pollutant. The assay is based on the quenching effect of Ag@Au NPs on the emission of complex 1, but luminescence is restored after the addition of cyanide anions due to their ability to dissolve the Au shell. Our sensing platform exhibited a high sensitivity toward cyanide anions with a detection limit of 0.036 μM, and also showed high selectivity for cyanide over 10-fold excess amounts of other anions. The sensing platform was also successfully applied to monitor cyanide anions in drinking water and in living cells.
Functional photonic crystal fiber sensing devices
NASA Astrophysics Data System (ADS)
Villatoro, Joel; Finazzi, Vittoria; Pruneri, Valerio
2011-12-01
We report on a functional, highly reproducible and cost effective sensing platform based on photonic crystal fibers (PCFs). The platform consists of a centimeter-length segment of an index-guiding PCF fusion spliced to standard single mode fibers (SMFs). The voids of the PCF are intentionally sealed over an adequate length in the PCF-SMF interfaces. A microscopic collapsed region in the PCF induces a mode field mismatch which combined with the axial symmetry of the structure allow the efficient excitation and recombination or overlapping of azimuthal symmetric modes in the PCF. The transmission or reflection spectrum of the devices exhibits a high-visibility interference pattern or a single, profound and narrow notch. The interference pattern or the notch position shifts when the length of the PCF experiences microelongations or when liquids or coatings are present on the PCF surface. Thus, the platform here proposed can be useful for sensing diverse parameters such as strain, vibration, pressure, humidity, refractive index, gases, etc. Unlike other PCF-based sensing platforms the multiplexing of the devices here proposed is simple for which it is possible to implement PCF-based sensor arrays or networks.
NASA Astrophysics Data System (ADS)
Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang
2018-02-01
The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.
An object-based storage model for distributed remote sensing images
NASA Astrophysics Data System (ADS)
Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng
2006-10-01
It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.
Silicon-nanomembrane-based photonic crystal nanostructures for chip-integrated open sensor systems
NASA Astrophysics Data System (ADS)
Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Lin, Cheyun; Wang, Xiaolong; Chen, Ray T.
2011-11-01
We experimentally demonstrate two devices on the photonic crystal platform for chip-integrated optical absorption spectroscopy and chip-integrated biomolecular microarray assays. Infrared optical absorption spectroscopy and biomolecular assays based on conjugate-specific binding principles represent two dominant sensing mechanisms for a wide spectrum of applications in environmental pollution sensing in air and water, chem-bio agents and explosives detection for national security, microbial contamination sensing in food and beverages to name a few. The easy scalability of photonic crystal devices to any wavelength ensures that the sensing principles hold across a wide electromagnetic spectrum. Silicon, the workhorse of the electronics industry, is an ideal platform for the above optical sensing applications.
Flow-through nanohole array based sensor implemented on analogue smartphone components
NASA Astrophysics Data System (ADS)
Gomez-Cruz, Juan; Nair, Srijit; Ascanio, Gabriel; Escobedo, Carlos
2017-08-01
Mobile communications have massively populated the consumer electronics market over the past few years and it is now ubiquitous, providing a timeless opportunity for the development of smartphone-based technologies as point-of-care (POC) diagnosis tools1 . The expectation for a fully integrated smartphone-based sensor that enables applications such as environmental monitoring, explosive detection and biomedical analysis has increased among the scientific community in the past few years2,3. The commercialization forecast for smartphone-based sensing technologies is very promising, but reliable, miniature and cost-effective sensing platforms that can adapt to portable electronics in still under development. In this work, we present an integrated sensing platform based on flow-through metallic nanohole arrays. The nanohole arrays are 260 nm in diameter and 520 nm in pitch, fabricated using Focused Ion Beam (FIB) lithography. A white LED resembling a smartphone flash LED serves as light source to excite surface plasmons and the signal is recorded via a Complementary Metal-Oxide-Semiconductor (CMOS) module. The sensing abilities of the integrated sensing platform is demonstrated for the detection of (i) changes in bulk refractive index (RI), (ii) real-time monitoring of surface modification by receptor-analyte system of streptavidin-biotin.
A Fiber-Tip Label-Free Biological Sensing Platform: A Practical Approach toward In-Vivo Sensing
François, Alexandre; Reynolds, Tess; Monro, Tanya M.
2015-01-01
The platform presented here was devised to address the unmet need for real time label-free in vivo sensing by bringing together a refractive index transduction mechanism based on Whispering Gallery Modes (WGM) in dye doped microspheres and Microstructured Optical Fibers. In addition to providing remote excitation and collection of the WGM signal, the fiber provides significant practical advantages such as an easy manipulation of the microresonator and the use of this sensor in a dip sensing architecture, alleviating the need for a complex microfluidic interface. Here, we present the first demonstration of the use of this approach for biological sensing and evaluate its limitation in a sensing configuration deprived of liquid flow which is most likely to occur in an in vivo setting. We also demonstrate the ability of this sensing platform to be operated above its lasing threshold, enabling enhanced device performance. PMID:25585104
Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †
Frank, Jared A.; Brill, Anthony; Kapila, Vikram
2016-01-01
Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464
Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.
Frank, Jared A; Brill, Anthony; Kapila, Vikram
2016-08-20
Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.
OLED-based biosensing platform with ZnO nanoparticles for enzyme immobilization
NASA Astrophysics Data System (ADS)
Cai, Yuankun; Shinar, Ruth; Shinar, Joseph
2009-08-01
Organic light-emitting diode (OLED)-based sensing platforms are attractive for photoluminescence (PL)-based monitoring of a variety of analytes. Among the promising OLED attributes for sensing applications is the thin and flexible size and design of the OLED pixel array that is used for PL excitation. To generate a compact, fielddeployable sensor, other major sensor components, such as the sensing probe and the photodetector, in addition to the thin excitation source, should be compact. To this end, the OLED-based sensing platform was tested with composite thin biosensing films, where oxidase enzymes were immobilized on ZnO nanoparticles, rather than dissolved in solution, to generate a more compact device. The analytes tested, glucose, cholesterol, and lactate, were monitored by following their oxidation reactions in the presence of oxygen and their respective oxidase enzymes. During such reactions, oxygen is consumed and its residual concentration, which is determined by the initial concentration of the above-mentioned analytes, is monitored. The sensors utilized the oxygen-sensitive dye Pt octaethylporphyrin, embedded in polystyrene. The enzymes were sandwiched between two thin ZnO layers, an approach that was found to improve the stability of the sensing probes.
Zhang, Wei; Zong, Peisong; Zheng, Xiuwen; Wang, Libin
2013-04-15
We demonstrate a novel high-performance DNA hybridization biosensor with a carbon nanotubes (CNTs)-based nanocomposite membrane as the enhanced sensing platform. The platform was constructed by homogenously distributing ordered FePt nanoparticles (NPs) onto the CNTs matrix. The surface structure and electrochemical performance of the FePt/CNTs nanocomposite membrane were systematically investigated. Such a nanostructured composite membrane platform could combine with the advantages of FePt NPs and CNTs, greatly facilitate the electron-transfer process and the sensing behavior for DNA detection, leading to excellent sensitivity and selectivity. The complementary target genes from acute promyelocytic leukemia could be quantified in a wide range of 1.0×10⁻¹² mol/L to 1.0×10⁻⁶ mol/L using electrochemical impedance spectroscopy, and the detection limit was 2.1×10⁻¹³ mol/L under the optimal conditions. In addition, the DNA electrochemical biosensor was highly selective to discriminate single-base or double-base mismatched sequences. Copyright © 2012 Elsevier B.V. All rights reserved.
Optofluidic platforms based on surface-enhanced Raman scattering.
Lim, Chaesung; Hong, Jongin; Chung, Bong Geun; deMello, Andrew J; Choo, Jaebum
2010-05-01
We report recent progress in the development of surface-enhanced Raman scattering (SERS)-based optofluidic platforms for the fast and sensitive detection of chemical and biological analytes. In the current context, a SERS-based optofluidic platform is defined as an integrated analytical device composed of a microfluidic element and a sensitive Raman spectrometer. Optofluidic devices for SERS detection normally involve nanocolloid-based microfluidic systems or metal nanostructure-embedded microfluidic systems. In the current review, recent advances in both approaches are surveyed and assessed. Additionally, integrated real-time sensing systems that combine portable Raman spectrometers with microfluidic devices are also reviewed. Such real-time sensing systems have significant utility in environmental monitoring, forensic science and homeland defense applications.
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R
2018-02-23
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (
NASA Astrophysics Data System (ADS)
Luo, Liang; Song, Ting; Wang, Haoqiang; Yuan, Qunhui; Zhou, Shenghai
2018-03-01
Inspired by low toxicity and good biocompatibility of biomass derived quantum dot (QD), we herein developed a cytosine derived quantum dot, namely cyt-dot, via a one-step hydrothermal synthesis. The as-prepared cyt-dot emits blue fluorescence (FL) containing abundant oxygen (20.6 at.%) and nitrogen (24.1 at.%) contents. The cyt-dot based sensing platform shows exclusive selectivity for Hg(II) while being insensitive towards Fe(III) and Ag(I), which are important interference that usually cannot be ruled out. The detection limit for Hg(II) is of 11 nM, which is very close to the guideline value of 10 nM allowed by the U.S. Environmental Protection Agency in drinking water. In real water sample analyses, the present sensing platform can fulfil satisfied recoveries ranging from 100% to 108%. Besides, the acidity of solution has almost no effect on the sensing performance of the cyt-dot in a pH range of 5-8, suggesting its potential applications in sensing and bio-imaging.
Heng, Sabrina; McDevitt, Christopher A; Kostecki, Roman; Morey, Jacqueline R; Eijkelkamp, Bart A; Ebendorff-Heidepriem, Heike; Monro, Tanya M; Abell, Andrew D
2016-05-25
Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn(2+) sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn(2+) in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (μL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.
Paper-based electrochemical sensing platform with integral battery and electrochromic read-out.
Liu, Hong; Crooks, Richard M
2012-03-06
We report a battery-powered, microelectrochemical sensing platform that reports its output using an electrochromic display. The platform is fabricated based on paper fluidics and uses a Prussian blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. The integrated metal/air battery powers both the electrochemical sensor and the electrochromic read-out, which are in electrical contact via a paper reservoir. The sample activates the battery and the presence of analyte in the sample initiates the color change of the Prussian blue spot. The entire system is assembled on the lab bench, without the need for cleanroom facilities. The applicability of the device to point-of-care sensing is demonstrated by qualitative detection of 0.1 mM glucose and H(2)O(2) in artificial urine samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.; ...
2018-01-18
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less
Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms.
García-Miranda Ferrari, Alejandro; Foster, Christopher W; Kelly, Peter J; Brownson, Dale A C; Banks, Craig E
2018-06-08
Screen-printed electrochemical sensing platforms, due to their scales of economy and high reproducibility, can provide a useful approach to translate laboratory-based electrochemistry into the field. An important factor when utilising screen-printed electrodes (SPEs) is the determination of their real electrochemical surface area, which allows for the benchmarking of these SPEs and is an important parameter in quality control. In this paper, we consider the use of cyclic voltammetry and chronocoulometry to allow for the determination of the real electrochemical area of screen-printed electrochemical sensing platforms, highlighting to experimentalists the various parameters that need to be diligently considered and controlled in order to obtain useful measurements of the real electroactive area.
Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel
2017-03-15
We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.
NASA Technical Reports Server (NTRS)
Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg
1992-01-01
The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.
Zhang, Xiaowei; Han, Yanchao; Li, Jing; Zhang, Libing; Jia, Xiaofang; Wang, Erkang
2014-02-04
In this work, a novel and universal ion sensing platform was presented, which enables the visual detection of various ions with high sensitivity and selectivity. Coaxial potential signals (millivolt-scale) of the sample from the self-referencing (SR) ion selective chip can be transferred into the ad620-based amplifier with an output of volt-scale potentials. The amplified voltage is high enough to drive a light emitting diode (LED), which can be used as an amplifier and indicator to report the sample information. With this double amplification device (light emitting diode-based self-referencing-ion selective field-effect transistor, LED-SR-ISFET), a tiny change of the sample concentration can be observed with a distinguishable variation of LED brightness by visual inspection. This LED-based luminescent platform provided a facile, low-cost, and rapid sensing strategy without the need of additional expensive chemiluminescence reagent and instruments. Moreover, the SR mode also endows this device excellent stability and reliability. With this innovative design, sensitive determination of K(+), H(+), and Cl(-) by the naked eye was achieved. It should also be noticed that this sensing strategy can easily be extended to other ions (or molecules) by simply integrating the corresponding ion (or molecule) selective electrode.
Ultrahigh-sensitive sensing platform based on p-type dumbbell-like Co3O4 network
NASA Astrophysics Data System (ADS)
Zhou, Tingting; Zhang, Tong; Zhang, Rui; Lou, Zheng; Deng, Jianan; Wang, Lili
2017-12-01
Development of high performance room temperature sensors remains a grand challenge for high demand of practical application. Metal oxide semiconductors (MOSs) have many advantages over others due to their easy functionalization, high surface area, and low cost. However, they typically need a high work temperature during sensing process. Here, p-type sensing layer is reported, consisting of pore-rich dumbbell-like Co3O4 particles (DP-Co3O4) with intrinsic high catalytic activity. The gas sensor (GS) based DP-Co3O4 catalyst exhibits ultrahigh NH3 sensing activity along with excellent stability over other structure based NH3 GSs in room temperature work environment. In addition, the unique structure of DP-Co3O4 with pore-rich and high catalytic activity endows fast gas diffusion rate and high sensitivity at room temperature. Taken together, the findings in this work highlight the merit of integrating highly active materials in p-type materials, offering a framework to develop high-sensitivity room temperature sensing platforms.
NASA Astrophysics Data System (ADS)
Freer, J. E.; Richardson, T.; Yang, Z.
2012-12-01
Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to present this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data.We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.
NASA Astrophysics Data System (ADS)
Freer, J.; Richardson, T. S.
2012-04-01
Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to display this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data. We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-01-01
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-11-28
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.
SPR based hybrid electro-optic biosensor for β-lactam antibiotics determination in water
NASA Astrophysics Data System (ADS)
Galatus, Ramona; Feier, Bogdan; Cristea, Cecilia; Cennamo, Nunzio; Zeni, Luigi
2017-09-01
The present work aims to provide a hybrid platform capable of complementary and sensitive detection of β-lactam antibiotics, ampicillin in particular. The use of an aptamer specific to ampicillin assures good selectivity and sensitivity for the detection of ampicillin from different matrice. This new approach is dedicated for a portable, remote sensing platform based on low-cost, small size and low-power consumption solution. The simple experimental hybrid platform integrates the results from the D-shape surface plasmon resonance plastic optical fiber (SPR-POF) and from the electrochemical (bio)sensor, for the analysis of ampicillin, delivering sensitive and reliable results. The SPR-POF already used in many previous applications is embedded in a new experimental setup with fluorescent fibers emitters, for broadband wavelength analysis, low-power consumption and low-heating capabilities of the sensing platform.
Dao, Nhu-Ngoc; Park, Minho; Kim, Joongheon; Cho, Sungrae
2017-01-01
As an important part of IoTization trends, wireless sensing technologies have been involved in many fields of human life. In cellular network evolution, the long term evolution advanced (LTE-A) networks including machine-type communication (MTC) features (named LTE-M) provide a promising infrastructure for a proliferation of Internet of things (IoT) sensing platform. However, LTE-M may not be optimally exploited for directly supporting such low-data-rate devices in terms of energy efficiency since it depends on core technologies of LTE that are originally designed for high-data-rate services. Focusing on this circumstance, we propose a novel adaptive modulation and coding selection (AMCS) algorithm to address the energy consumption problem in the LTE-M based IoT-sensing platform. The proposed algorithm determines the optimal pair of MCS and the number of primary resource blocks (#PRBs), at which the transport block size is sufficient to packetize the sensing data within the minimum transmit power. In addition, a quantity-oriented resource planning (QORP) technique that utilizes these optimal MCS levels as main criteria for spectrum allocation has been proposed for better adapting to the sensing node requirements. The simulation results reveal that the proposed approach significantly reduces the energy consumption of IoT sensing nodes and #PRBs up to 23.09% and 25.98%, respectively.
Dao, Nhu-Ngoc; Park, Minho; Kim, Joongheon
2017-01-01
As an important part of IoTization trends, wireless sensing technologies have been involved in many fields of human life. In cellular network evolution, the long term evolution advanced (LTE-A) networks including machine-type communication (MTC) features (named LTE-M) provide a promising infrastructure for a proliferation of Internet of things (IoT) sensing platform. However, LTE-M may not be optimally exploited for directly supporting such low-data-rate devices in terms of energy efficiency since it depends on core technologies of LTE that are originally designed for high-data-rate services. Focusing on this circumstance, we propose a novel adaptive modulation and coding selection (AMCS) algorithm to address the energy consumption problem in the LTE-M based IoT-sensing platform. The proposed algorithm determines the optimal pair of MCS and the number of primary resource blocks (#PRBs), at which the transport block size is sufficient to packetize the sensing data within the minimum transmit power. In addition, a quantity-oriented resource planning (QORP) technique that utilizes these optimal MCS levels as main criteria for spectrum allocation has been proposed for better adapting to the sensing node requirements. The simulation results reveal that the proposed approach significantly reduces the energy consumption of IoT sensing nodes and #PRBs up to 23.09% and 25.98%, respectively. PMID:28796804
Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur
2012-01-01
This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system. PMID:22736956
Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur
2012-01-01
This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.
Heightened sense for sensing: recent advances in pathogen immunoassay sensing platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, N; Tarasow, T; Tok, J B
2007-01-09
As part of its own defense mechanism, most bacteria have developed an innate ability to enable toxic secretion to ward off potential predators or invaders. However, this naturally occurring process has been abused since over production of the bacteria's toxin molecules could render them as potential bioweapons. As these processes (also known as ''black biology'') can be clandestinely performed in a laboratory, the threat of inflicting enormous potential damage to a nation's security and economy is invariably clear and present. Thus, efficient detection of these biothreat agents in a timely and accurate manner is highly desirable. A wealth of publicationsmore » describing various pathogen immuno-sensing advances has appeared over the last few years, and it is not the intent of this review article to detail each reported approach. Instead, we aim to survey a few recent highlights in hopes of providing the reader an overall sense of the breath of these sensing systems and platforms. Antigen targets are diverse and complex as they encompass proteins, whole viruses, and bacterial spores. The signaling processes for these reported immunoassays are usually based on colorimetric, optical, or electrochemical changes. Of equal interest is the type of platform in which the immunoassay can be performed. A few platforms suitable for pathogen detection are described.« less
a Hadoop-Based Distributed Framework for Efficient Managing and Processing Big Remote Sensing Images
NASA Astrophysics Data System (ADS)
Wang, C.; Hu, F.; Hu, X.; Zhao, S.; Wen, W.; Yang, C.
2015-07-01
Various sensors from airborne and satellite platforms are producing large volumes of remote sensing images for mapping, environmental monitoring, disaster management, military intelligence, and others. However, it is challenging to efficiently storage, query and process such big data due to the data- and computing- intensive issues. In this paper, a Hadoop-based framework is proposed to manage and process the big remote sensing data in a distributed and parallel manner. Especially, remote sensing data can be directly fetched from other data platforms into the Hadoop Distributed File System (HDFS). The Orfeo toolbox, a ready-to-use tool for large image processing, is integrated into MapReduce to provide affluent image processing operations. With the integration of HDFS, Orfeo toolbox and MapReduce, these remote sensing images can be directly processed in parallel in a scalable computing environment. The experiment results show that the proposed framework can efficiently manage and process such big remote sensing data.
Self-sensing paper-based actuators employing ferromagnetic nanoparticles and graphite
NASA Astrophysics Data System (ADS)
Phan, Hoang-Phuong; Dinh, Toan; Nguyen, Tuan-Khoa; Vatani, Ashkan; Md Foisal, Abu Riduan; Qamar, Afzaal; Kermany, Atieh Ranjbar; Dao, Dzung Viet; Nguyen, Nam-Trung
2017-04-01
Paper-based microfluidics and sensors have attracted great attention. Although a large number of paper-based devices have been developed, surprisingly there are only a few studies investigating paper actuators. To fulfill the requirements for the integration of both sensors and actuators into paper, this work presents an unprecedented platform which utilizes ferromagnetic particles for actuation and graphite for motion monitoring. The use of the integrated mechanical sensing element eliminates the reliance on image processing for motion detection and also allows real-time measurements of the dynamic response in paper-based actuators. The proposed platform can also be quickly fabricated using a simple process, indicating its potential for controllable paper-based lab on chip.
Proximal hyperspectral sensing and data analysis approaches for field-based plant phenomics
USDA-ARS?s Scientific Manuscript database
Field-based plant phenomics requires robust crop sensing platforms and data analysis tools to successfully identify cultivars that exhibit phenotypes with high agronomic and economic importance. Such efforts will lead to genetic improvements that maintain high crop yield with concomitant tolerance t...
Application of remote sensing for planning purposes
NASA Technical Reports Server (NTRS)
Hughes, T. H. (Editor)
1977-01-01
Types of remotely sensed data are many and varied but, all are primarily dependent on the sensor platform and the kind of sensing system used. A sensor platform is the type of aircraft or satellite to which a sensing system is attached; each platform has its own inherent advantages and disadvantages. Selected attributes of several current or recently used platforms are outlined. Though sensing systems are highly varied, they may be divided into various operational categories such as cameras, electromechanical scanners, and radars.
A Truthful Incentive Mechanism for Online Recruitment in Mobile Crowd Sensing System.
Chen, Xiao; Liu, Min; Zhou, Yaqin; Li, Zhongcheng; Chen, Shuang; He, Xiangnan
2017-01-01
We investigate emerging mobile crowd sensing (MCS) systems, in which new cloud-based platforms sequentially allocate homogenous sensing jobs to dynamically-arriving users with uncertain service qualities. Given that human beings are selfish in nature, it is crucial yet challenging to design an efficient and truthful incentive mechanism to encourage users to participate. To address the challenge, we propose a novel truthful online auction mechanism that can efficiently learn to make irreversible online decisions on winner selections for new MCS systems without requiring previous knowledge of users. Moreover, we theoretically prove that our incentive possesses truthfulness, individual rationality and computational efficiency. Extensive simulation results under both real and synthetic traces demonstrate that our incentive mechanism can reduce the payment of the platform, increase the utility of the platform and social welfare.
Challenges in paper-based fluorogenic optical sensing with smartphones
NASA Astrophysics Data System (ADS)
Ulep, Tiffany-Heather; Yoon, Jeong-Yeol
2018-05-01
Application of optically superior, tunable fluorescent nanotechnologies have long been demonstrated throughout many chemical and biological sensing applications. Combined with microfluidics technologies, i.e. on lab-on-a-chip platforms, such fluorescent nanotechnologies have often enabled extreme sensitivity, sometimes down to single molecule level. Within recent years there has been a peak interest in translating fluorescent nanotechnology onto paper-based platforms for chemical and biological sensing, as a simple, low-cost, disposable alternative to conventional silicone-based microfluidic substrates. On the other hand, smartphone integration as an optical detection system as well as user interface and data processing component has been widely attempted, serving as a gateway to on-board quantitative processing, enhanced mobility, and interconnectivity with informational networks. Smartphone sensing can be integrated to these paper-based fluorogenic assays towards demonstrating extreme sensitivity as well as ease-of-use and low-cost. However, with these emerging technologies there are always technical limitations that must be addressed; for example, paper's autofluorescence that perturbs fluorogenic sensing; smartphone flash's limitations in fluorescent excitation; smartphone camera's limitations in detecting narrow-band fluorescent emission, etc. In this review, physical optical setups, digital enhancement algorithms, and various fluorescent measurement techniques are discussed and pinpointed as areas of opportunities to further improve paper-based fluorogenic optical sensing with smartphones.
Recent developments in OLED-based chemical and biological sensors
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Zhou, Zhaoqun; Cai, Yuankun; Shinar, Ruth
2007-09-01
Recent developments in the structurally integrated OLED-based platform of luminescent chemical and biological sensors are reviewed. In this platform, an array of OLED pixels, which is structurally integrated with the sensing elements, is used as the photoluminescence (PL) excitation source. The structural integration is achieved by fabricating the OLED array and the sensing element on opposite sides of a common glass substrate or on two glass substrates that are attached back-to-back. As it does not require optical fibers, lens, or mirrors, it results in a uniquely simple, low-cost, and potentially rugged geometry. The recent developments on this platform include the following: (1) Enhancing the performance of gas-phase and dissolved oxygen sensors. This is achieved by (a) incorporating high-dielectric TiO II nanoparticles in the oxygen-sensitive Pt and Pd octaethylporphyrin (PtOEP and PdOEP, respectively)- doped polystyrene (PS) sensor films, and (b) embedding the oxygen-sensitive dyes in a matrix of polymer blends such as PS:polydimethylsiloxane (PDMS). (2) Developing sensor arrays for simultaneous detection of multiple serum analytes, including oxygen, glucose, lactate, and alcohol. The sensing element for each analyte consists of a PtOEP-doped PS oxygen sensor, and a solution containing the oxidase enzyme specific to the analyte. Each sensing element is coupled to two individually addressable OLED pixels and a Si photodiode photodetector (PD). (3) Enhancing the integration of the platform, whereby a PD array is also structurally integrated with the OLED array and sensing elements. This enhanced integration is achieved by fabricating an array of amorphous or nanocrystalline Si-based PDs, followed by fabrication of the OLED pixels in the gaps between these Si PDs.
A Design of a Novel Airborne Aerosol Spectrometer for Remote Sensing Validation
NASA Astrophysics Data System (ADS)
Adler, G. A.; Brock, C. A.; Dube, W. P.; Erdesz, F.; Gordon, T.; Law, D. C.; Manfred, K.; Mason, B. J.; McLaughlin, R. J.; Richardson, M.; Wagner, N. L.; Washenfelder, R. A.; Murphy, D. M.
2016-12-01
Aerosols and their effect on the radiative properties of clouds contribute one of the largest sources of uncertainty to the Earth's energy budget. Many current global assessments, of atmospheric aerosol radiative forcing rely heavily on remote sensing observation; therefore, in situ aircraft and ground-based measurements are essential for validation of remote sensing measurements. Cavity ringdown spectrometers (CRD) measure aerosol extinction and are commonly used to validate remote sensing observations. These instruments have been deployed on aircraft based platforms over the years thus providing the opportunity to measure these properties over large areas in various conditions. However, deployment of the CRD on an aircraft platform has drawbacks. Typically, aircraft based CRDs draw sampled aerosol into a cabin based instrument through long lengths of tubing. This limits the ability of the instrument to measure: 1) Course mode aerosols (e.g. dust) 2) Aerosols at high relative humidity (above 90%) Here we describe the design of a novel aircraft based open path CRD. The open path CRD is intended to be mounted external to the cabin and has no sample tubing for aerosol delivery, thus measuring optical properties of all aerosol at the ambient conditions. However, the design of an open path CRD for operation on a wing-mounted aircraft platform has certain design complexities. The instrument's special design features include 2 CRD channels, 2 airfoils around the open Path CRD and a configuration which could be easily aligned and rigid at the same time. This novel implementation of cavity ringdown spectroscopy will provide a better assessment of the accuracy of remote sensing satellite measurements
Recent progress on gas sensor based on quantum cascade lasers and hollow fiber waveguides
NASA Astrophysics Data System (ADS)
Liu, Ningwu; Sun, Juan; Deng, Hao; Ding, Junya; Zhang, Lei; Li, Jingsong
2017-02-01
Mid-infrared laser spectroscopy provides an ideal platform for trace gas sensing applications. Despite this potential, early MIR sensing applications were limited due to the size of the involved optical components, e.g. light sources and sample cells. A potential solution to this demand is the integration of hollow fiber waveguide with novelty quantum cascade lasers.Recently QCLs had great improvements in power, efficiency and wavelength range, which made the miniaturized platforms for gas sensing maintaining or even enhancing the achievable sensitivity conceivable. So that the miniaturization of QCLs and HWGs can be evolved into a mini sensor, which may be tailored to a variety of real-time and in situ applications ranging from environmental monitoring to workplace safety surveillance. In this article, we introduce QCLs and HWGs, display the applications of HWG based on QCL gas sensing and discuss future strategies for hollow fiber coupled quantum cascade laser gas sensor technology.
Kim, Jimin P; Xie, Zhiwei; Creer, Michael; Liu, Zhiwen; Yang, Jian
2017-01-01
Chloride is an essential electrolyte that maintains homeostasis within the body, where abnormal chloride levels in biological fluids may indicate various diseases such as Cystic Fibrosis. However, current analytical solutions for chloride detection fail to meet the clinical needs of both high performance and low material or labor costs, hindering translation into clinical settings. Here we present a new class of fluorescence chloride sensors derived from a facile citrate -based synthesis platform that utilize dynamic quenching mechanisms. Based on this low-cost platform, we demonstrate for the first time a selective sensing strategy that uses a single fluorophore to detect multiple halides simultaneously, promising both selectivity and automation to improve performance and reduce labor costs. We also demonstrate the clinical utility of citrate-based sensors as a new sweat chloride test method for the diagnosis of Cystic Fibrosis by performing analytical validation with sweat controls and clinical validation with sweat from individuals with or without Cystic Fibrosis. Lastly, molecular modeling studies reveal the structural mechanism behind chloride sensing, serving to expand this class of fluorescence sensors with improved chloride sensitivities. Thus citrate-based fluorescent materials may enable low-cost, automated multi-analysis systems for simpler, yet accurate, point-of-care diagnostics that can be readily translated into clinical settings. More broadly, a wide range of medical, industrial, and environmental applications can be achieved with such a facile synthesis platform, demonstrated in our citrate-based biodegradable polymers with intrinsic fluorescence sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andretta, Antonio, E-mail: Antonio-Andretta@klopman.com; Terranova, Maria Letizia; Lavecchia, Teresa
2014-06-19
Carbon nanotubes (CNT) and CNT-based active materials have been used to assemble the gas sensing unit of innovative platforms able to detect toxic atmospheres developing in confined workplaces. The main goal of the project was to realize a full-featured, operator-friendly safety detection and monitoring system based on multifunctional textiles nanotechnologies. The fabricated sensing platform consists of a multiple gas detector coupled with a specifically designed telecommunication infrastructure. The portable device, totally integrated in the workwear, offers several advantages over the conventional safety tools employed in industrial work activities.
NASA Astrophysics Data System (ADS)
Andretta, Antonio; Terranova, Maria Letizia; Lavecchia, Teresa; Gay, Stefano; Picano, Alfredo; Mascioletti, Alessandro; Stirpe, Daniele; Cucchiella, Cristian; Pascucci, Eddy; Dugnani, Giovanni; Gatti, Davide; Laria, Giuseppe; Codenotti, Barbara; Maldini, Giorgio; Roth, Siegmar; Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela
2014-06-01
Carbon nanotubes (CNT) and CNT-based active materials have been used to assemble the gas sensing unit of innovative platforms able to detect toxic atmospheres developing in confined workplaces. The main goal of the project was to realize a full-featured, operator-friendly safety detection and monitoring system based on multifunctional textiles nanotechnologies. The fabricated sensing platform consists of a multiple gas detector coupled with a specifically designed telecommunication infrastructure. The portable device, totally integrated in the workwear, offers several advantages over the conventional safety tools employed in industrial work activities.
Mid-infrared materials and devices on a Si platform for optical sensing
Singh, Vivek; Lin, Pao Tai; Patel, Neil; Lin, Hongtao; Li, Lan; Zou, Yi; Deng, Fei; Ni, Chaoying; Hu, Juejun; Giammarco, James; Soliani, Anna Paola; Zdyrko, Bogdan; Luzinov, Igor; Novak, Spencer; Novak, Jackie; Wachtel, Peter; Danto, Sylvain; Musgraves, J David; Richardson, Kathleen; Kimerling, Lionel C; Agarwal, Anuradha M
2014-01-01
In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiNx waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors. PMID:27877641
Current and emerging challenges of field effect transistor based bio-sensing
NASA Astrophysics Data System (ADS)
Matsumoto, Akira; Miyahara, Yuji
2013-10-01
Field-effect-transistor (FET) based electrical signal transduction is an increasingly prevalent strategy for bio-sensing. This technique, often termed ``Bio-FETs'', provides an essentially label-free and real-time based bio-sensing platform effective for a variety of targets. This review highlights recent progress and challenges in the field. A special focus is on the comprehension of emerging nanotechnology-based approaches to facilitate signal-transduction and amplification. Some new targets of Bio-FETs and the future perspectives are also discussed.
Current and emerging challenges of field effect transistor based bio-sensing.
Matsumoto, Akira; Miyahara, Yuji
2013-11-21
Field-effect-transistor (FET) based electrical signal transduction is an increasingly prevalent strategy for bio-sensing. This technique, often termed "Bio-FETs", provides an essentially label-free and real-time based bio-sensing platform effective for a variety of targets. This review highlights recent progress and challenges in the field. A special focus is on the comprehension of emerging nanotechnology-based approaches to facilitate signal-transduction and amplification. Some new targets of Bio-FETs and the future perspectives are also discussed.
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhang, Di; Deng, Xinyu; Sun, Ying; Wang, Xinghua; Ma, Pinyi; Song, Daqian
2018-02-01
Herein we report a novel polydopamine-silver nanoparticle-polydopamine-gold (PDA-AgNPs-PDA-Au) film based surface plasmon resonance (SPR) biosensor for horse IgG detection. The PDA-AgNPs-PDA-Au film sensing platform was built on Au-film via layer-by-layer self-assembly. Ag ion was reduced in situ to AgNPs in presence of PDA. The top PDA layer can prevent AgNPs from being oxidized and connect with antibody via Schiff alkali reaction directly. The morphology and thickness of the modified gold film were characterized using scanning electron microscope and Talystep. Experimental results show that the PDA-AgNPs-PDA-Au film sensing platform is stable, regenerative and sensitive for horse IgG detection. The detection limit of horse IgG obtained with the present biosensor is 0.625 μg mL- 1, which is 2-fold and 4-fold lower than that obtained with biosensor based on PDA modified Au film and conventional biosensor based on MPA, respectively. Furthermore, when challenged to real serum samples, our sensor exhibited excellent specificity to horse IgG, suggesting its potential for industrial application.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms
NASA Astrophysics Data System (ADS)
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-01
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-10
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
USDA-ARS?s Scientific Manuscript database
Remote sensing systems based on consumer-grade cameras have been increasingly used in scientific research and remote sensing applications because of their low cost and ease of use. However, the performance of consumer-grade cameras for practical applications have not been well documented in related ...
A Truthful Incentive Mechanism for Online Recruitment in Mobile Crowd Sensing System
Chen, Xiao; Liu, Min; Zhou, Yaqin; Li, Zhongcheng; Chen, Shuang; He, Xiangnan
2017-01-01
We investigate emerging mobile crowd sensing (MCS) systems, in which new cloud-based platforms sequentially allocate homogenous sensing jobs to dynamically-arriving users with uncertain service qualities. Given that human beings are selfish in nature, it is crucial yet challenging to design an efficient and truthful incentive mechanism to encourage users to participate. To address the challenge, we propose a novel truthful online auction mechanism that can efficiently learn to make irreversible online decisions on winner selections for new MCS systems without requiring previous knowledge of users. Moreover, we theoretically prove that our incentive possesses truthfulness, individual rationality and computational efficiency. Extensive simulation results under both real and synthetic traces demonstrate that our incentive mechanism can reduce the payment of the platform, increase the utility of the platform and social welfare. PMID:28045441
Validation of Ocean Color Remote Sensing Reflectance Using Autonomous Floats
NASA Technical Reports Server (NTRS)
Gerbi, Gregory P.; Boss, Emanuel; Werdell, P. Jeremy; Proctor, Christopher W.; Haentjens, Nils; Lewis, Marlon R.; Brown, Keith; Sorrentino, Diego; Zaneveld, J. Ronald V.; Barnard, Andrew H.;
2016-01-01
The use of autonomous proling oats for observational estimates of radiometric quantities in the ocean is explored, and the use of this platform for validation of satellite-based estimates of remote sensing reectance in the ocean is examined. This effort includes comparing quantities estimated from oat and satellite data at nominal wavelengths of 412, 443, 488, and 555 nm, and examining sources and magnitudes of uncertainty in the oat estimates. This study had 65 occurrences of coincident high-quality observations from oats and MODIS Aqua and 15 occurrences of coincident high-quality observations oats and Visible Infrared Imaging Radi-ometer Suite (VIIRS). The oat estimates of remote sensing reectance are similar to the satellite estimates, with disagreement of a few percent in most wavelengths. The variability of the oatsatellite comparisons is similar to the variability of in situsatellite comparisons using a validation dataset from the Marine Optical Buoy (MOBY). This, combined with the agreement of oat-based and satellite-based quantities, suggests that oats are likely a good platform for validation of satellite-based estimates of remote sensing reectance.
NASA Technical Reports Server (NTRS)
1988-01-01
One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.
NASA Astrophysics Data System (ADS)
Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong
2018-05-01
An activatable fluorescence monitoring platform based on a novel Maillard reaction product from D-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of D-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO4, resulting from a new complex (GLA-KMnO4) formation between GLA and KMnO4. Upon addition of D-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for D-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for D-isoascorbic acid or tartaric acid, because the detection limits were 5.9 μM and 21.5 μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of D-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results.
Gogoi, Neelam; Barooah, Mayuri; Majumdar, Gitanjali; Chowdhury, Devasish
2015-02-11
A robust solid sensing platform for an on-site operational and accurate detection of heavy metal is still a challenge. We introduce chitosan based carbon dots rooted agarose hydrogel film as a hybrid solid sensing platform for detection of heavy metal ions. The fabrication of the solid sensing platform is centered on simple electrostatic interaction between the NH3+ group present in the carbon dots and the OH- groups present in agarose. Simply on dipping the hydrogel film strip into the heavy metal ion solution, in particular Cr6+, Cu2+, Fe3+, Pb2+, Mn2+, the strip displays a color change, viz., Cr6+→yellow, Cu2+→blue, Fe3+→brown, Pb2+→white, Mn2+→tan brown. The optical detection limit of the respective metal ion is found to be 1 pM for Cr6+, 0.5 μM for Cu2+, and 0.5 nM for Fe3+, Pb2+, and Mn2+ by studying the changes in UV-visible reflectance spectrum of the hydrogel film. Moreover, the hydrogel film finds applicability as an efficient filtration membrane for separation of these quintet heavy metal ions. The strategic fundamental feature of this sensing platform is the successful capability of chitosan to form colored chelates with transition metals. This proficient hybrid hydrogel solid sensing platform is thus the most suitable to employ as an on-site operational, portable, cheap colorimetric-optical detector of heavy metal ion with potential skill in their separation. Details of the possible mechanistic insight into the colorimetric detection and ion separation are also discussed.
Citizen Sensors for SHM: Towards a Crowdsourcing Platform
Ozer, Ekin; Feng, Maria Q.; Feng, Dongming
2015-01-01
This paper presents an innovative structural health monitoring (SHM) platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the authors have investigated the reliability of smartphone accelerometers for vibration-based SHM. This paper takes a step further to integrate mobile sensing and web-based computing for a prospective crowdsourcing-based SHM platform. An iOS application was developed to enable citizens to measure structural vibration and upload the data to a server with smartphones. A web-based platform was developed to collect and process the data automatically and store the processed data, such as modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile and web-based platforms were tested to collect the low-amplitude ambient vibration data of a bridge structure. Possible sources of uncertainties related to citizens were investigated, including the phone location, coupling conditions, and sampling duration. The field test results showed that the vibration data acquired by smartphones operated by citizens without expertise are useful for identifying structural modal properties with high accuracy. This platform can be further developed into an automated, smart, sustainable, cost-free system for long-term monitoring of structural integrity of spatially distributed urban infrastructure. Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it offers hybrid solutions to transitional crowdsourcing parameters. PMID:26102490
Simple diazonium chemistry to develop specific gene sensing platforms.
Revenga-Parra, M; García-Mendiola, T; González-Costas, J; González-Romero, E; Marín, A García; Pau, J L; Pariente, F; Lorenzo, E
2014-02-27
A simple strategy for covalent immobilizing DNA sequences, based on the formation of stable diazonized conducting platforms, is described. The electrochemical reduction of 4-nitrobenzenediazonium salt onto screen-printed carbon electrodes (SPCE) in aqueous media gives rise to terminal grafted amino groups. The presence of primary aromatic amines allows the formation of diazonium cations capable to react with the amines present at the DNA capture probe. As a comparison a second strategy based on the binding of aminated DNA capture probes to the developed diazonized conducting platforms through a crosslinking agent was also employed. The resulting DNA sensing platforms were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and spectroscopic ellipsometry. The hybridization event with the complementary sequence was detected using hexaamineruthenium (III) chloride as electrochemical indicator. Finally, they were applied to the analysis of a 145-bp sequence from the human gene MRP3, reaching a detection limit of 210 pg μL(-1). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Chang-Beom; Kim, Kwan-Soo; Song, Ki-Bong
2013-05-01
The importance of early Alzheimer's disease (AD) detection has been recognized to diagnose people at high risk of AD. The existence of intra/extracellular beta-amyloid (Aβ) of brain neurons has been regarded as the most archetypal hallmark of AD. The existing computed-image-based neuroimaging tools have limitations on accurate quantification of nanoscale Aβ peptides due to optical diffraction during imaging processes. Therefore, we propose a new method that is capable of evaluating a small amount of Aβ peptides by using photo-sensitive field-effect transistor (p-FET) integrated with magnetic force-based microbead collecting platform and selenium(Se) layer (thickness ~700 nm) as an optical filter. This method demonstrates a facile approach for the analysis of Aβ quantification using magnetic force and magnetic silica microparticles (diameter 0.2~0.3 μm). The microbead collecting platform mainly consists of the p-FET sensing array and the magnet (diameter ~1 mm) which are placed beneath each sensing region of the p-FET, which enables the assembly of the Aβ antibody conjugated microbeads, captures the Aβ peptides from samples, measures the photocurrents generated by the Q-dot tagged with Aβ peptides, and consequently results in the effective Aβ quantification.
Kara, Adnane; Rouillard, Camille; Mathault, Jessy; Boisvert, Martin; Tessier, Frédéric; Landari, Hamza; Melki, Imene; Laprise-Pelletier, Myriam; Boisselier, Elodie; Fortin, Marc-André; Boilard, Eric; Greener, Jesse; Miled, Amine
2016-05-28
In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an "intelligent" drug delivery system based on a feedback loop to monitor drug delivery.
Kara, Adnane; Rouillard, Camille; Mathault, Jessy; Boisvert, Martin; Tessier, Frédéric; Landari, Hamza; Melki, Imene; Laprise-Pelletier, Myriam; Boisselier, Elodie; Fortin, Marc-André; Boilard, Eric; Greener, Jesse; Miled, Amine
2016-01-01
In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μM was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an “intelligent” drug delivery system based on a feedback loop to monitor drug delivery. PMID:27240377
A Multi-Technology Communication Platform for Urban Mobile Sensing.
Almeida, Rodrigo; Oliveira, Rui; Luís, Miguel; Senna, Carlos; Sargento, Susana
2018-04-12
A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network.
Leccardi, Matteo; Decarli, Massimiliano; Lorenzelli, Leandro; Milani, Paolo; Mettala, Petteri; Orava, Risto; Barborini, Emanuele
2012-01-01
We have fabricated and tested in long-term field operating conditions a wireless unit for outdoor air quality monitoring. The unit is equipped with two multiparametric sensors, one miniaturized thermo-hygrometer, front-end analogical and digital electronics, and an IEEE 802.15.4 based module for wireless data transmission. Micromachined platforms were functionalized with nanoporous metal-oxides to obtain multiparametric sensors, hosting gas-sensitive, anemometric and temperature transducers. Nanoporous metal-oxide layer was directly deposited on gas sensing regions of micromachined platform batches by hard-mask patterned supersonic cluster beam deposition. An outdoor, roadside experiment was arranged in downtown Milan (Italy), where one wireless sensing unit was continuously operated side by side with standard gas chromatographic instrumentation for air quality measurements. By means of a router PC, data from sensing unit and other instrumentation were collected, merged, and sent to a remote data storage server, through an UMTS device. The whole-system robustness as well as sensor dataset characteristics were continuously characterized over a run-time period of 18 months. PMID:22969394
NASA Astrophysics Data System (ADS)
Farrell, Mikella E.; Strobbia, Pietro; Sarkes, Deborah A.; Stratis-Cullum, Dimitra N.; Cullum, Brian M.; Pellegrino, Paul M.
2016-05-01
The utility of peptide-based molecular sensing for the development of novel biosensors has resulted in a significant increase in their development and usage for sensing targets like chemical, biological, energetic and toxic materials. Using peptides as a molecular recognition element is particularly advantageous because there are several mature peptide synthesis protocols that already exist, peptide structures can be tailored, selected and manipulated to be highly discerning towards desired targets, peptides can be modified to be very stable in a host of environments and stable under many different conditions, and through the development of bifunctionalized peptides can be synthesized to also bind onto desired sensing platforms (various metal materials, glass, etc.). Two examples of the several Army relevant biological targets for peptide-based sensing platforms include Ricin and Abrin. Ricin and Abrin are alarming threats because both can be weaponized and there is no antidote for exposure. Combining the sensitivity of SERS with the selectivity of a bifunctional peptide allows for the emergence of dynamic hazard sensor for Army application.
Smartphone-Based Food Diagnostic Technologies: A Review.
Rateni, Giovanni; Dario, Paolo; Cavallo, Filippo
2017-06-20
A new generation of mobile sensing approaches offers significant advantages over traditional platforms in terms of test speed, control, low cost, ease-of-operation, and data management, and requires minimal equipment and user involvement. The marriage of novel sensing technologies with cellphones enables the development of powerful lab-on-smartphone platforms for many important applications including medical diagnosis, environmental monitoring, and food safety analysis. This paper reviews the recent advancements and developments in the field of smartphone-based food diagnostic technologies, with an emphasis on custom modules to enhance smartphone sensing capabilities. These devices typically comprise multiple components such as detectors, sample processors, disposable chips, batteries and software, which are integrated with a commercial smartphone. One of the most important aspects of developing these systems is the integration of these components onto a compact and lightweight platform that requires minimal power. To date, researchers have demonstrated several promising approaches employing various sensing techniques and device configurations. We aim to provide a systematic classification according to the detection strategy, providing a critical discussion of strengths and weaknesses. We have also extended the analysis to the food scanning devices that are increasingly populating the Internet of Things (IoT) market, demonstrating how this field is indeed promising, as the research outputs are quickly capitalized on new start-up companies.
Smartphone-Based Food Diagnostic Technologies: A Review
Rateni, Giovanni; Dario, Paolo; Cavallo, Filippo
2017-01-01
A new generation of mobile sensing approaches offers significant advantages over traditional platforms in terms of test speed, control, low cost, ease-of-operation, and data management, and requires minimal equipment and user involvement. The marriage of novel sensing technologies with cellphones enables the development of powerful lab-on-smartphone platforms for many important applications including medical diagnosis, environmental monitoring, and food safety analysis. This paper reviews the recent advancements and developments in the field of smartphone-based food diagnostic technologies, with an emphasis on custom modules to enhance smartphone sensing capabilities. These devices typically comprise multiple components such as detectors, sample processors, disposable chips, batteries and software, which are integrated with a commercial smartphone. One of the most important aspects of developing these systems is the integration of these components onto a compact and lightweight platform that requires minimal power. To date, researchers have demonstrated several promising approaches employing various sensing techniques and device configurations. We aim to provide a systematic classification according to the detection strategy, providing a critical discussion of strengths and weaknesses. We have also extended the analysis to the food scanning devices that are increasingly populating the Internet of Things (IoT) market, demonstrating how this field is indeed promising, as the research outputs are quickly capitalized on new start-up companies. PMID:28632188
Chem/bio sensing with non-classical light and integrated photonics.
Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B
2018-01-29
Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.
Maduraiveeran, Govindhan; Sasidharan, Manickam; Ganesan, Vellaichamy
2018-04-30
Introduction of novel functional nanomaterials and analytical technologies signify a foremost possibility for the advance of electrochemical sensor and biosensor platforms/devices for a broad series of applications including biological, biomedical, biotechnological, clinical and medical diagnostics, environmental and health monitoring, and food industries. The design of sensitive and selective electrochemical biological sensor platforms are accomplished conceivably by offering new surface modifications, microfabrication techniques, and diverse nanomaterials with unique properties for in vivo and in vitro medical analysis via relating a sensibly planned electrode/solution interface. The advantageous attributes such as low-cost, miniaturization, energy efficient, easy fabrication, online monitoring, and the simultaneous sensing capability are the driving force towards continued growth of electrochemical biosensing platforms, which have fascinated the interdisciplinary research arenas spanning chemistry, material science, biological science, and medical industries. The electrochemical biosensor platforms have potential applications in the early-stage detection and diagnosis of disease as stout and tunable diagnostic and therapeutic systems. The key aim of this review is to emphasize the newest development in the design of sensing and biosensing platforms based on functional nanomaterials for biological and biomedical applications. High sensitivity and selectivity, fast response, and excellent durability in biological media are all critical aspects which will also be wisely addressed. Potential applications of electrochemical sensor and biosensor platforms based on advanced functional nanomaterials for neuroscience diagnostics, clinical, point-of-care diagnostics and medical industries are also concisely presented. Copyright © 2017 Elsevier B.V. All rights reserved.
A cloud computing based platform for sleep behavior and chronic diseases collaborative research.
Kuo, Mu-Hsing; Borycki, Elizabeth; Kushniruk, Andre; Huang, Yueh-Min; Hung, Shu-Hui
2014-01-01
The objective of this study is to propose a Cloud Computing based platform for sleep behavior and chronic disease collaborative research. The platform consists of two main components: (1) a sensing bed sheet with textile sensors to automatically record patient's sleep behaviors and vital signs, and (2) a service-oriented cloud computing architecture (SOCCA) that provides a data repository and allows for sharing and analysis of collected data. Also, we describe our systematic approach to implementing the SOCCA. We believe that the new cloud-based platform can provide nurse and other health professional researchers located in differing geographic locations with a cost effective, flexible, secure and privacy-preserved research environment.
Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches.
Rawassizadeh, Reza; Tomitsch, Martin; Nourizadeh, Manouchehr; Momeni, Elaheh; Peery, Aaron; Ulanova, Liudmila; Pazzani, Michael
2015-09-08
As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras.
Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches
Rawassizadeh, Reza; Tomitsch, Martin; Nourizadeh, Manouchehr; Momeni, Elaheh; Peery, Aaron; Ulanova, Liudmila; Pazzani, Michael
2015-01-01
As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras. PMID:26370997
Kumeria, Tushar; Santos, Abel; Losic, Dusan
2014-01-01
Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150
Silicon Nanowire-Based Devices for Gas-Phase Sensing
Cao, Anping; Sudhölter, Ernst J.R.; de Smet, Louis C.P.M.
2014-01-01
Since their introduction in 2001, SiNW-based sensor devices have attracted considerable interest as a general platform for ultra-sensitive, electrical detection of biological and chemical species. Most studies focus on detecting, sensing and monitoring analytes in aqueous solution, but the number of studies on sensing gases and vapors using SiNW-based devices is increasing. This review gives an overview of selected research papers related to the application of electrical SiNW-based devices in the gas phase that have been reported over the past 10 years. Special attention is given to surface modification strategies and the sensing principles involved. In addition, future steps and technological challenges in this field are addressed. PMID:24368699
Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong
2018-05-05
An activatable fluorescence monitoring platform based on a novel Maillard reaction product from d-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of d-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO 4 , resulting from a new complex (GLA-KMnO 4 ) formation between GLA and KMnO 4 . Upon addition of d-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for d-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for d-isoascorbic acid or tartaric acid, because the detection limits were 5.9μM and 21.5μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of d-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Although conventional high-altitude airborne remote sensing and low-altitude unmanned aerial system (UAS) based remote sensing share many commonalities, one of the major differences between the two remote sensing platforms is that the latter has much smaller image footprint. To cover the same area o...
USDA-ARS?s Scientific Manuscript database
Field-based high-throughput phenotyping is an emerging approach to characterize difficult, time-sensitive plant traits in relevant growing conditions. Proximal sensing carts have been developed as an alternative platform to more costly high-clearance tractors for phenotyping dynamic traits in the fi...
Song, Yonghai; Liu, Hongyu; Tan, Hongliang; Xu, Fugang; Jia, Jianbo; Zhang, Lixue; Li, Zhuang; Wang, Li
2014-02-18
A facile and effective electrochemical sensing platform for the detection of glucose and urea in one sample without separation was developed using chitosan-reduced graphene oxide (CS-rGO)/concanavalin A (Con A) as a sensing layer. The CS-rGO/Con A with pH-dependent surface net charges exhibited pH-switchable response to negatively charged Fe(CN)6(3-). The principle for glucose and urea detection was essentially based on in situ pH-switchable enzyme-catalyzed reaction in which the oxidation of glucose catalyzed by glucose oxidase or the hydrolyzation of urea catalyzed by urease resulted in a pH change of electrolyte solution to give different electrochemical responses toward Fe(CN)6(3-). It was verified by cyclic voltammograms, differential pulse voltammograms, and electrochemical impedance spectroscopy. The resistance to charge transfer or amperometric current changed proportionally toward glucose concentration from 1.0 to 10.0 mM and urea concentration from 1.0 to 7.0 mM. On the basis of human serum experiments, the sensing platform was proved to be suitable for simultaneous assay of glucose and urea in a practical biosystem. This work not only gives a way to detect glucose and urea in one sample without separation but also provides a potential strategy for the detection of nonelectroactive species based on the enzyme-catalyzed reaction and pH-switchable biosensor.
Decentralized asset management for collaborative sensing
NASA Astrophysics Data System (ADS)
Malhotra, Raj P.; Pribilski, Michael J.; Toole, Patrick A.; Agate, Craig
2017-05-01
There has been increased impetus to leverage Small Unmanned Aerial Systems (SUAS) for collaborative sensing applications in which many platforms work together to provide critical situation awareness in dynamic environments. Such applications require critical sensor observations to be made at the right place and time to facilitate the detection, tracking, and classification of ground-based objects. This further requires rapid response to real-world events and the balancing of multiple, competing mission objectives. In this context, human operators become overwhelmed with management of many platforms. Further, current automated planning paradigms tend to be centralized and don't scale up well to many collaborating platforms. We introduce a decentralized approach based upon information-theory and distributed fusion which enable us to scale up to large numbers of collaborating Small Unmanned Aerial Systems (SUAS) platforms. This is exercised against a military application involving the autonomous detection, tracking, and classification of critical mobile targets. We further show that, based upon monte-carlo simulation results, our decentralized approach out-performs more static management strategies employed by human operators and achieves similar results to a centralized approach while being scalable and robust to degradation of communication. Finally, we describe the limitations of our approach and future directions for our research.
NASA Astrophysics Data System (ADS)
Alvarez, Mar; Fariña, David; Escuela, Alfonso M.; Sendra, Jose Ramón; Lechuga, Laura M.
2013-01-01
We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.
Alvarez, Mar; Fariña, David; Escuela, Alfonso M; Sendra, Jose Ramón; Lechuga, Laura M
2013-01-01
We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.
A Multi-Technology Communication Platform for Urban Mobile Sensing
Almeida, Rodrigo; Oliveira, Rui
2018-01-01
A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network. PMID:29649175
Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors
NASA Astrophysics Data System (ADS)
Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing
2015-12-01
Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.
Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors
Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing
2015-01-01
Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113
Analysis and experimental evaluation of a Stewart platform-based force/torque sensor
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.
1992-01-01
The kinematic analysis and experimentation of a force/torque sensor whose design is based on the mechanism of the Stewart Platform are discussed. Besides being used for measurement of forces/torques, the sensor also serves as a compliant platform which provides passive compliance during a robotic assembly task. It consists of two platforms, the upper compliant platform (UCP) and the lower compliant platform (LCP), coupled together through six spring-loaded pistons whose length variations are measured by six linear voltage differential transformers (LVDT) mounted along the pistons. Solutions to the forward and inverse kinematics of the force sensor are derived. Based on the known spring constant and the piston length changes, forces/torques applied to the LCP gripper are computed using vector algebra. Results of experiments conducted to evaluate the sensing capability of the force sensor are reported and discussed.
Mulpur, Pradyumna; Yadavilli, Sairam; Mulpur, Praharsha; Kondiparthi, Neeharika; Sengupta, Bishwambhar; Rao, Apparao M; Podila, Ramakrishna; Kamisetti, Venkataramaniah
2015-10-14
The relatively low sensitivity of fluorescence detection schemes, which are mainly limited by the isotropic nature of fluorophore emission, can be overcome by utilizing surface plasmon coupled emission (SPCE). In this study, we demonstrate directional emission from fluorophores on flexible Ag-C60 SPCE sensor platforms for point-of-care sensing, in healthcare and forensic sensing scenarios, with at least 10 times higher sensitivity than traditional fluorescence sensing schemes. Adopting the highly sensitive Ag-C60 SPCE platform based on glass and novel low-cost flexible substrates, we report the unambiguous detection of acid-fast Mycobacterium tuberculosis (Mtb) bacteria at densities as low as 20 Mtb mm(-2); from non-acid-fast bacteria (e.g., E. coli and S. aureus), and the specific on-site detection of acid-fast sperm cells in human semen samples. In combination with the directional emission and high-sensitivity of SPCE platforms, we also demonstrate the utility of smartphones that can replace expensive and cumbersome detectors to enable rapid hand-held detection of analytes in resource-limited settings; a much needed critical advance to biosensors, for developing countries.
NASA Astrophysics Data System (ADS)
Bareth, G.; Bolten, A.; Gnyp, M. L.; Reusch, S.; Jasper, J.
2016-06-01
The development of UAV-based sensing systems for agronomic applications serves the improvement of crop management. The latter is in the focus of precision agriculture which intends to optimize yield, fertilizer input, and crop protection. Besides, in some cropping systems vehicle-based sensing devices are less suitable because fields cannot be entered from certain growing stages onwards. This is true for rice, maize, sorghum, and many more crops. Consequently, UAV-based sensing approaches fill a niche of very high resolution data acquisition on the field scale in space and time. While mounting RGB digital compact cameras to low-weight UAVs (< 5 kg) is well established, the miniaturization of sensors in the last years also enables hyperspectral data acquisition from those platforms. From both, RGB and hyperspectral data, vegetation indices (VIs) are computed to estimate crop growth parameters. In this contribution, we compare two different sensing approaches from a low-weight UAV platform (< 5 kg) for monitoring a nitrogen field experiment of winter wheat and a corresponding farmers' field in Western Germany. (i) A standard digital compact camera was flown to acquire RGB images which are used to compute the RGBVI and (ii) NDVI is computed from a newly modified version of the Yara N-Sensor. The latter is a well-established tractor-based hyperspectral sensor for crop management and is available on the market since a decade. It was modified for this study to fit the requirements of UAV-based data acquisition. Consequently, we focus on three objectives in this contribution: (1) to evaluate the potential of the uncalibrated RGBVI for monitoring nitrogen status in winter wheat, (2) investigate the UAV-based performance of the modified Yara N-Sensor, and (3) compare the results of the two different UAV-based sensing approaches for winter wheat.
Multimodal sensing strategies for detecting transparent barriers indoors from a mobile platform
NASA Astrophysics Data System (ADS)
Acevedo, Isaiah; Kleine, R. Kaleb; Kraus, Dustan; Mascareñas, David
2015-04-01
There is currently an interest in developing mobile sensing platforms that fly indoors. The primary goal for these platforms is to be able to successfully navigate a building under various lighting and environmental conditions. There are numerous research challenges associated with this goal, one of which is the platform's ability to detect and identify the presence of transparent barriers. Transparent barriers could include windows, glass partitions, or skylights. For example, in order to successfully navigate inside of a structure, these platforms will need to sense if a space contains a transparent barrier and whether or not this space can be traversed. This project's focus has been developing a multimodal sensing system that can successfully identify such transparent barriers under various lighting conditions while aboard a mobile platform. Along with detecting transparent barriers, this sensing platform is capable of distinguishing between reflective, opaque, and transparent barriers. It will be critical for this system to be able to identify transparent barriers in real-time in order for the navigation system to maneuver accordingly. The properties associated with the interaction between various frequencies of light and transparent materials were one of the techniques leveraged to solve this problem.
Ma, Dik-Lung; Wang, Modi; He, Bingyong; Yang, Chao; Wang, Wanhe; Leung, Chung-Hang
2015-09-02
In this study, a series of 10 in-house cyclometalated iridium(III) complexes bearing different auxiliary ligands were tested for their selectivity toward split G-quadruplex in order to construct a label-free switch-on cocaine detection platform employing a three-way junction architecture and a G-quadruplex motif as a signal output unit. Through two rounds of screening, we discovered that the iridium(III) complex 7 exhibited excellent selectivity toward the intermolecular G-quadruplex motif. A detection limit as low as 30 nM for cocaine can be achieved by this sensing approach with a linear relationship between luminescence intensity and cocaine concentration established from 30 to 300 nM. Furthermore, this sensing approach could detect cocaine in diluted oral fluid. We hope that our simple, signal-on, label-free oligonucleotide-based sensing method for cocaine using a three-way DNA junction architecture could act as a useful platform in bioanalytical research.
Commercial potential of remote sensing data from the Earth observing system
NASA Technical Reports Server (NTRS)
Merry, Carolyn J.; Tomlin, Sandra M.
1992-01-01
The purpose was to assess the market potential of remote sensing value-added products from the Earth Observing System (EOS) platform. Sensors on the EOS platform were evaluated to determine which qualities and capabilities could be useful to the commercial user. The approach was to investigate past and future satellite data distribution programs. A questionnaire was developed for use in a telephone survey. Based on the results of the survey of companies that add value to remotely sensed data, conversations with the principal investigators in charge of each EOS sensor, a study of past commercial satellite data ventures, and reading from the commercial remote sensing industry literature, three recommendations were developed: develop a strategic plan for commercialization of EOS data, define a procedure for commercial users within the EOS data stream, and develop an Earth Observations Commercial Applications Program-like demonstration program within NASA using EOS simulated data.
Research on Land Use Changes in Panjin City Basing on Remote Sensing Data
NASA Astrophysics Data System (ADS)
Ding, Hua; Li, Ru Ren; Shuang Sun, Li; Wang, Xin; Liu, Yu Mei
2018-05-01
Taking Landsat remote sensing image as the main data source, the research on land use changes in Panjin City in 2005 to 2015 is made with the support of remote sensing platform and GIS platform in this paper; the range of land use changes and change rate are analyzed through the classification of remote sensing image; the dynamic analysis on land changes is made with the help of transfer matrix of land use type; the quantitative calculation on all kinds of dynamic change features of land changes is made by utilizing mathematical model; and the analysis on driving factors of land changes of image is made at last. The research results show that, in recent ten years, the area of cultivated land in Panjin City decreased, the area of vegetation increased, and meanwhile the area of road increased drastically, the settlement place decreased than ever, and water area changed slightly.
NASA Astrophysics Data System (ADS)
de Kok, R.; WeŻyk, P.; PapieŻ, M.; Migo, L.
2017-10-01
To convince new users of the advantages of the Sentinel_2 sensor, a simplification of classic remote sensing tools allows to create a platform of communication among domain specialists of agricultural analysis, visual image interpreters and remote sensing programmers. An index value, known in the remote sensing user domain as "Zabud" was selected to represent, in color, the essentials of a time series analysis. The color index used in a color atlas offers a working platform for an agricultural field control. This creates a database of test and training areas that enables rapid anomaly detection in the agricultural domain. The use cases and simplifications now function as an introduction to Sentinel_2 based remote sensing, in an area that before relies on VHR imagery and aerial data, to serve mainly the visual interpretation. The database extension with detected anomalies allows developers of open source software to design solutions for further agricultural control with remote sensing.
NASA Astrophysics Data System (ADS)
Uludag, Yildiz
2014-06-01
Once viewed solely as a tool to analyse biomolecular interactions, biosensors are gaining widespread interest for diagnostics, biological defense, environmental and quality assurance in agriculture/food industries. Advanced micro fabrication techniques have facilitated integration of microfluidics with sensing functionalities on the same chip making system automation more convenient1. Biosensor devices relying on lab-on-a-chip technologies and nanotechnology has attracted much of attention in recent years for biological defense research and development. However, compared with the numerous publications and patents available, the commercialization of biosensors technology has significantly lagged behind the research output. This paper reviews the reasons behind the slow commercialisation of biosensors with an insight to the critical stages of a biosensor development from the sensor chip fabrication to surface chemistry applications and nanotechnology applications in sensing with case studies. In addition, the paper includes the description of a new biodetection platform based on Real-time Electrochemical ProfilingTM (REPTM) that comprises novel electrode arrays and nanoparticle based sensing. The performance of the REPTM platform has been tested for the detection of Planktothrix agardhii, one of the toxic bloom-forming cyanobacteria, usually found in shallow fresh water sources that can be used for human consumption. The optimised REPTM assay allowed the detection of P. agardhii DNA down to 6 pM. This study, showed the potential of REPTM as a new biodetection platform for toxic bacteria and hence further studies will involve the development of a portable multi-analyte biosensor based on REPTM technology for on-site testing.
Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai
2018-03-01
With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.
Development of Photoacoustic Sensing Platforms at the US Army Research Laboratory
2016-09-01
RDX and TNT explosives with carbon dioxide laser. J Appl Spectrosc. 2006;73(1):123–129. 45. Petzold A, Niessner R. Photoacoustic soot sensor for in...Development of Photoacoustic Sensing Platforms at the US Army Research Laboratory by Ellen L Holthoff and Paul M Pellegrino Sensors and Electron Devices...NOTES 14. ABSTRACT Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while
Wang, Xinxing; Nan, Fuxin; Zhao, Jinlong; Yang, Tao; Ge, Tong; Jiao, Kui
2015-02-15
A label-free and ultrasensitive electrochemical DNA biosensor, based on thin-layer molybdenum disulfide (MoS2) nanosheets sensing platform and differential pulse voltammetry detection, is constructed in this paper. The thin-layer MoS2 nanosheets were prepared via a simple ultrasound exfoliation method from bulk MoS2, which is simpler and no distortion compared with mechanical cleavage and lithium intercalation. Most importantly, this procedure allows the formation of MoS2 with enhanced electrochemical activity. Based on the high electrochemical activity and different affinity toward ssDNA versus dsDNA of the thin-layer MoS2 nanosheets sensing platform, the tlh gene sequence assay can be performed label-freely from 1.0 × 10(-16)M to 1.0 × 10(-10)M with a detection limit of 1.9 × 10(-17)M. Without labeling and the use of amplifiers, the detection method described here not only expands the application of MoS2, but also offers a viable alternative for DNA analysis, which has the priority in sensitivity, simplicity, and costs. Moreover, the proposed sensing platform has good electrocatalytic activity, and can be extended to detect more targets, such as guanine and adenine, which further expands the application of MoS2. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis
2016-03-21
Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field.
Novel Developments of Mobile Sensing Based on the Integration of Microfluidic Devices and Smartphone
Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis
2016-01-01
Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS2) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS2 offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS2 in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS2 enables applications to remote infield testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS2 by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field. PMID:26899264
Portable Laser Spectrometer for Airborne and Ground-Based Remote Sensing of Geological CO2 Emissions
NASA Technical Reports Server (NTRS)
Queisser, Manuel; Burton, Mike; Allan, Graham R.; Chiarugi, Antonio
2017-01-01
A 24 kilogram, suitcase-sized, CW (Continuous Wave) Laser Remote Sensing Spectrometer (LARSS) with an approximately 2-kilometer range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online-offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.
Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio
2017-07-15
A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.
Metal-organic frameworks as biosensors for luminescence-based detection and imaging
Miller, Sophie E.; Teplensky, Michelle H.; Moghadam, Peyman Z.; Fairen-Jimenez, David
2016-01-01
Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses. PMID:27499847
A Reasoning Hardware Platform for Real-Time Common-Sense Inference
Barba, Jesús; Santofimia, Maria J.; Dondo, Julio; Rincón, Fernando; Sánchez, Francisco; López, Juan Carlos
2012-01-01
Enabling Ambient Intelligence systems to understand the activities that are taking place in a supervised context is a rather complicated task. Moreover, this task cannot be successfully addressed while overlooking the mechanisms (common-sense knowledge and reasoning) that entitle us, as humans beings, to successfully undertake it. This work is based on the premise that Ambient Intelligence systems will be able to understand and react to context events if common-sense capabilities are embodied in them. However, there are some difficulties that need to be resolved before common-sense capabilities can be fully deployed to Ambient Intelligence. This work presents a hardware accelerated implementation of a common-sense knowledge-base system intended to improve response time and efficiency. PMID:23012540
Tobing, Landobasa Y. M.; Tjahjana, Liliana; Zhang, Dao Hua; Zhang, Qing; Xiong, Qihua
2013-01-01
Metamaterials provide a good platform for biochemical sensing due to its strong field localization at nanoscale. In this work, we show that electric and magnetic resonant modes in split-ring-resonator (SRR) can be efficiently excited under unpolarized light illumination when the SRRs are arranged in fourfold rotationally symmetric lattice configuration. The fabrication and characterization of deep subwavelength (~λ/15) gold-based SRR structures with resonator size as small as ~ 60 nm are reported with magnetic resonances in Vis-NIR spectrum range. The feasibility for sensing is demonstrated with refractive index sensitivity as high as ~ 636 nm/RIU. PMID:23942416
Hot air balloons fill gap in atmospheric and sensing platforms
NASA Astrophysics Data System (ADS)
Watson, Steven M.; Price, Russ
Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.
Heightened sense for sensing: recent advances in pathogen immunoassay sensing platforms.
Fischer, Nicholas O; Tarasow, Theodore M; Tok, Jeffrey B-H
2007-03-01
Rapid and efficient sensors are essential for effective defense against the emerging threat of bioterrorism and biological warfare. This review article describes several recent immunosensing advances that are relevant to biothreat detection. These highly diverse examples are intended to demonstrate the breadth of these immunochemical sensing systems and platforms while highlighting those technologies that are suitable for pathogen detection.
Quantification of Protein Biomarker Using SERS Nano-Stress Sensing with Peak Intensity Ratiometry
NASA Astrophysics Data System (ADS)
Goh, Douglas; Kong, Kien Voon; Jayakumar, Perumal; Gong, Tianxun; Dinish, U. S.; Olivo, Malini
We report a surface enhanced Raman spectroscopy (SERS) ratiometry method based on peak intensity coupled in a nano-stress sensing platform to detect and quantify biological molecules. Herein, we employed an antibody-conjugated p-aminothiophenol (ATP) functionalized on a bimetallic-film-over-nanosphere (BMFON) substrate as a sensitive SERS platform to detect human haptoglobin (Hp) protein, which is an acute phase protein and a biomarker for various cancers. Correlation between change in the ATP spectral characteristics and concentration of Hp protein was established by examining the peak intensity ratio at 1572cm-1 and 1592cm-1 that reflects the degree of stress experienced by the aromatic ring of ATP during Hp protein-antibody interaction. Development of this platform shows the potential in developing a low-cost and sensitive SERS sensor for the pre-screening of various biomarkers.
Tan, Hongliang; Tang, Gonge; Wang, Zhixiong; Li, Qian; Gao, Jie; Wu, Shimeng
2016-10-12
Metal-organic frameworks (MOFs) have emerged as very fascinating functional materials due to their tunable nature and diverse applications. In this work, we prepared a magnetic porous carbon (MPC) nanocomposite by employing iron-containing MOFs (MIL-88A) as precursors through a one-pot thermolysis method. It was found that the MPC can absorb selectively single-stranded DNA (ssDNA) probe to form MPC/ssDNA complex and subsequently quench the labelled fluorescent dye of the ssDNA probe, which is resulted from the synergetic effect of magnetic nanoparticles and carbon matrix. Upon the addition of complementary target DNA, however, the absorbed ssDNA probe could be released from MPC surface by forming double-stranded DNA with target DNA, and accompanied by the recovery of the fluorescence of ssDNA probe. Based on these findings, a sensing platform with low background signal for DNA fluorescent detection was developed. The proposed sensing platform exhibits high sensitivity with detection limit of 1 nM and excellent selectivity to specific target DNA, even single-base mismatched nucleotide can be distinguished. We envision that the presented study would provide a new perspective on the potential applications of MOF-derived nanocomposites in biomedical fields. Copyright © 2016 Elsevier B.V. All rights reserved.
Circuit design advances for ultra-low power sensing platforms
NASA Astrophysics Data System (ADS)
Wieckowski, Michael; Dreslinski, Ronald G.; Mudge, Trevor; Blaauw, David; Sylvester, Dennis
2010-04-01
This paper explores the recent advances in circuit structures and design methodologies that have enabled ultra-low power sensing platforms and opened up a host of new applications. Central to this theme is the development of Near Threshold Computing (NTC) as a viable design space for low power sensing platforms. In this paradigm, the system's supply voltage is approximately equal to the threshold voltage of its transistors. Operating in this "near-threshold" region provides much of the energy savings previously demonstrated for subthreshold operation while offering more favorable performance and variability characteristics. This makes NTC applicable to a broad range of power-constrained computing segments including energy constrained sensing platforms. This paper explores the barriers to the adoption of NTC and describes current work aimed at overcoming these obstacles in the circuit design space.
Biomolecule-embedded metal-organic frameworks as an innovative sensing platform.
Kempahanumakkagari, Sureshkumar; Kumar, Vanish; Samaddar, Pallabi; Kumar, Pawan; Ramakrishnappa, Thippeswamy; Kim, Ki-Hyun
Technological advancements combined with materials research have led to the generation of enormous types of novel substrates and materials for use in various biological/medical, energy, and environmental applications. Lately, the embedding of biomolecules in novel and/or advanced materials (e.g., metal-organic frameworks (MOFs), nanoparticles, hydrogels, graphene, and their hybrid composites) has become a vital research area in the construction of an innovative platform for various applications including sensors (or biosensors), biofuel cells, and bioelectronic devices. Due to the intriguing properties of MOFs (e.g., framework architecture, topology, and optical properties), they have contributed considerably to recent progresses in enzymatic catalysis, antibody-antigen interactions, or many other related approaches. Here, we aim to describe the different strategies for the design and synthesis of diverse biomolecule-embedded MOFs for various sensing (e.g., optical, electrochemical, biological, and miscellaneous) techniques. Additionally, the benefits and future prospective of MOFs-based biomolecular immobilization as an innovative sensing platform are discussed along with the evaluation on their performance to seek for further development in this emerging research area. Copyright © 2018. Published by Elsevier Inc.
Highly Sensitive Bulk Silicon Chemical Sensors with Sub-5 nm Thin Charge Inversion Layers.
Fahad, Hossain M; Gupta, Niharika; Han, Rui; Desai, Sujay B; Javey, Ali
2018-03-27
There is an increasing demand for mass-producible, low-power gas sensors in a wide variety of industrial and consumer applications. Here, we report chemical-sensitive field-effect-transistors (CS-FETs) based on bulk silicon wafers, wherein an electrostatically confined sub-5 nm thin charge inversion layer is modulated by chemical exposure to achieve a high-sensitivity gas-sensing platform. Using hydrogen sensing as a "litmus" test, we demonstrate large sensor responses (>1000%) to 0.5% H 2 gas, with fast response (<60 s) and recovery times (<120 s) at room temperature and low power (<50 μW). On the basis of these performance metrics as well as standardized benchmarking, we show that bulk silicon CS-FETs offer similar or better sensing performance compared to emerging nanostructures semiconductors while providing a highly scalable and manufacturable platform.
SAW Sensors for Chemical Vapors and Gases
Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.
2017-01-01
Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future. PMID:28397760
SAW Sensors for Chemical Vapors and Gases
Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.
2017-04-08
Here, surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identifymore » new opportunities and needs for additional research in this area moving into the future.« less
SAW Sensors for Chemical Vapors and Gases.
Devkota, Jagannath; Ohodnicki, Paul R; Greve, David W
2017-04-08
Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future.
A wearable fingernail chemical sensing platform: pH sensing at your fingertips.
Kim, Jayoung; Cho, Thomas N; Valdés-Ramírez, Gabriela; Wang, Joseph
2016-04-01
This article demonstrates an example of a wearable chemical sensor based on a fingernail platform. Fingernails represent an attractive wearable platform, merging beauty products with chemical sensing, to enable monitoring of our surrounding environment. The new colorimetric pH fingernail sensor relies on coating artificial nails with a recognition layer consisted of pH indicators entrapped in a polyvinyl chloride (PVC) matrix. Such color changing fingernails offer fast and reversible response to pH changes, repeated use, and intense color change detected easily with naked eye. The PVC matrix prevents leaching out of the indicator molecules from the fingernail sensor toward such repeated use. The limited narrow working pH range of a single pH indicator has been addressed by multiplexing three different pH indicators: bromothymol blue (pH 6.0-7.6), bromocresol green (pH 3.8-5.4), and cresol red (pH 7.2-8.8), as demonstrated for analyses of real-life samples of acidic, neutral, and basic character. The new concept of an optical wearable chemical sensor on fingernail platforms can be expanded towards diverse analytes for various applications in connection to the judicious design of the recognition layer. Copyright © 2016 Elsevier B.V. All rights reserved.
An organophosphonate strategy for functionalizing silicon photonic biosensors
Shang, Jing; Cheng, Fang; Dubey, Manish; Kaplan, Justin M.; Rawal, Meghana; Jiang, Xi; Newburg, David S.; Sullivan, Philip A.; Andrade, Rodrigo B.; Ratner, Daniel M.
2012-01-01
Silicon photonic microring resonators have established their potential for label-free and low-cost biosensing applications. However, the long-term performance of this optical sensing platform requires robust surface modification and biofunctionalization. Herein, we demonstrate a conjugation strategy based on an organophosphonate surface coating and vinyl sulfone linker to biofunctionalize silicon resonators for biomolecular sensing. To validate this method, a series of glycans, including carbohydrates and glycoconjugates, were immobilized on divinyl sulfone (DVS)/organophosphonate-modified microrings and used to characterize carbohydrate-protein and norovirus particle interactions. This biofunctional platform was able to orthogonally detect multiple specific carbohydrate-protein interactions simultaneously. Additionally, the platform was capable of reproducible binding after multiple regenerations by high-salt, high-pH or low-pH solutions and after 1-month storage in ambient conditions. This remarkable stability and durability of the organophosphonate immobilization strategy will facilitate the application of silicon microring resonators in various sensing conditions, prolong their lifetime, and minimize the cost for storage and delivery; these characteristics are requisite for developing biosensors for point-of-care and distributed diagnostics and other biomedical applications. In addition, the platform demonstrated its ability to characterize carbohydrate-mediated host-virus interactions, providing a facile method for discovering new anti-viral agents to prevent infectious disease. PMID:22220731
Smart Phones: Platform Enabling Modular, Chemical, Biological, and Explosives Sensing
2013-07-01
Smart phones: Platform Enabling Modular, Chemical, Biological, and Explosives Sensing by Amethist S. Finch , Matthew Coppock, Justin R...Chemical, Biological, and Explosives Sensing Amethist S. Finch , Matthew Coppock, Justin R. Bickford, Marvin A. Conn, Thomas J. Proctor, and...Explosives Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Amethist S. Finch , Matthew Coppock, Justin R
Paper as a platform for sensing applications and other devices: a review.
Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris
2015-04-29
Paper is a ubiquitous material that has various applications in day to day life. A sheet of paper is produced by pressing moist wood cellulose fibers together. Paper offers unique properties: paper allows passive liquid transport, it is compatible with many chemical and biochemical moieties, it exhibits piezoelectricity, and it is biodegradable. Hence, paper is an attractive low-cost functional material for sensing devices. In recent years, researchers in the field of science and engineering have witnessed an exponential growth in the number of research contributions that focus on the development of cost-effective and scalable fabrication methods and new applications of paper-based devices. In this review article, we highlight recent advances in the development of paper-based sensing devices in the areas of electronics, energy storage, strain sensing, microfluidic devices, and biosensing, including piezoelectric paper. Additionally, this review includes current limitations of paper-based sensing devices and points out issues that have limited the commercialization of some of the paper-based sensing devices.
USDA-ARS?s Scientific Manuscript database
A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...
Parylene C-Based Flexible Electronics for pH Monitoring Applications
Trantidou, Tatiana; Tariq, Mehvesh; Terracciano, Cesare M.; Toumazou, Christofer; Prodromakis, Themistoklis
2014-01-01
Emerging materials in the field of implantable sensors should meet the needs for biocompatibility; transparency; flexibility and integrability. In this work; we present an integrated approach for implementing flexible bio-sensors based on thin Parylene C films that serve both as flexible support substrates and as active H+ sensing membranes within the same platform. Using standard micro-fabrication techniques; a miniaturized 40-electrode array was implemented on a 5 μm-thick Parylene C film. A thin capping film (1 μm) of Parylene on top of the array was plasma oxidized and served as the pH sensing membrane. The sensor was evaluated with the use of extended gate discrete MOSFETs to separate the chemistry from the electronics and prolong the lifetime of the sensor. The chemical sensing array spatially maps the local pH levels; providing a reliable and rapid-response (<5 s) system with a sensitivity of 23 mV/pH. Moreover; it preserves excellent encapsulation integrity and low chemical drifts (0.26–0.38 mV/min). The proposed approach is able to deliver hybrid flexible sensing platforms that will facilitate concurrent electrical and chemical recordings; with application in real-time physiological recordings of organs and tissues. PMID:24988379
Parylene C-based flexible electronics for pH monitoring applications.
Trantidou, Tatiana; Tariq, Mehvesh; Terracciano, Cesare M; Toumazou, Christofer; Prodromakis, Themistoklis
2014-07-01
Emerging materials in the field of implantable sensors should meet the needs for biocompatibility; transparency; flexibility and integrability. In this work; we present an integrated approach for implementing flexible bio-sensors based on thin Parylene C films that serve both as flexible support substrates and as active H(+) sensing membranes within the same platform. Using standard micro-fabrication techniques; a miniaturized 40-electrode array was implemented on a 5 μm-thick Parylene C film. A thin capping film (1 μm) of Parylene on top of the array was plasma oxidized and served as the pH sensing membrane. The sensor was evaluated with the use of extended gate discrete MOSFETs to separate the chemistry from the electronics and prolong the lifetime of the sensor. The chemical sensing array spatially maps the local pH levels; providing a reliable and rapid-response (<5 s) system with a sensitivity of 23 mV/pH. Moreover; it preserves excellent encapsulation integrity and low chemical drifts (0.26-0.38 mV/min). The proposed approach is able to deliver hybrid flexible sensing platforms that will facilitate concurrent electrical and chemical recordings; with application in real-time physiological recordings of organs and tissues.
Nanoband array electrode as a platform for high sensitivity enzyme-based glucose biosensing.
Falk, Magnus; Sultana, Reshma; Swann, Marcus J; Mount, Andrew R; Freeman, Neville J
2016-12-01
We describe a novel glucose biosensor based on a nanoband array electrode design, manufactured using standard semiconductor processing techniques, and bio-modified with glucose oxidase immobilized at the nanoband electrode surface. The nanoband array architecture allows for efficient diffusion of glucose and oxygen to the electrode, resulting in a thousand-fold improvement in sensitivity and wide linear range compared to a conventional electrode. The electrode constitutes a robust and manufacturable sensing platform. Copyright © 2016 Elsevier B.V. All rights reserved.
Surface-enhanced chiroptical spectroscopy with superchiral surface waves.
Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo
2018-07-01
We study the chiroptical properties of one-dimensional photonic crystals supporting superchiral surface waves by introducing a simple formalism based on the Fresnel reflection matrix. We show that the proposed framework provides useful insights on the behavior of all the relevant chiroptical quantities, allowing for a deeper understanding of surface-enhanced chiral sensing platforms based on one-dimensional photonic crystals. Finally, we analyze and discuss the limitations of such platforms as the surface concentration of the target chiral analytes is gradually increased. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VOLTTRON is an agent execution platform providing services to its agents that allow them to easily communicate with physical devices and other resources. VOLTTRON delivers an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions. VOLTTRON can independently manage a wide range of applications, such as HVAC systems, electric vehicles, distributed energy or entire building loads, leading to improved operational efficiency.
Unique Offerings of the ISS as an Earth Observing Platform
NASA Technical Reports Server (NTRS)
Cooley, Victor M.
2013-01-01
The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.
Gyrocopter-Based Remote Sensing Platform
NASA Astrophysics Data System (ADS)
Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.
2015-04-01
In this paper the development of a lightweight and highly modularized airborne sensor platform for remote sensing applications utilizing a gyrocopter as a carrier platform is described. The current sensor configuration consists of a high resolution DSLR camera for VIS-RGB recordings. As a second sensor modality, a snapshot hyperspectral camera was integrated in the aircraft. Moreover a custom-developed thermal imaging system composed of a VIS-PAN camera and a LWIR-camera is used for aerial recordings in the thermal infrared range. Furthermore another custom-developed highly flexible imaging system for high resolution multispectral image acquisition with up to six spectral bands in the VIS-NIR range is presented. The performance of the overall system was tested during several flights with all sensor modalities and the precalculated demands with respect to spatial resolution and reliability were validated. The collected data sets were georeferenced, georectified, orthorectified and then stitched to mosaics.
HIgh-Q Optical Micro-cavity Resonators as High Sensitive Bio-chemical and Ultrasonic Sensors
NASA Astrophysics Data System (ADS)
Ling, Tao
Optical micro-cavity resonators have quickly emerged in the past few years as a new sensing platform in a wide range of applications, such as bio-chemical molecular detection, environmental monitoring, acoustic and electromagnetic waves detection. In this thesis, we will mainly focus on developing high sensitivity silica micro-tube resonator bio-chemical sensors and high sensitivity polymer micro-ring resonator acoustic sensors. In high sensitivity silica micro-tube resonator bio-chemical sensors part: We first demonstrated a prism coupled silica micro-tube bio-chemical sensing platform to overcome the reliability problem in a fiber coupled thin wall silica micro-tube sensing platform. In refractive index sensing experiment, a unique resonance mode with sensitivity around 600nm/refractive index unit (RIU) has been observed. Surface sensing experiments also have been performed in this platform to detect lipid monolayer, lipid bilayer, electrostatic self assemble layer-by-layer as well as the interaction between the lipid bilayer and proteins. Then a theoretical study on various sensing properties on the silica micro-tube based sensing platform has been realized. Furthermore, we have proposed a coupled cavity system to further enhance the device's sensitivity above 1000nm/RIU. In high sensitivity polymer micro-ring resonator acoustic sensors part: We first presented a simplified fabrication process and realized a polymer microring with a Q factor around 6000. The fabricated device has been used to detect acoustic wave with noise equivalent pressure (NEP) around 230Pa over 1-75MHz frequency rang, which is comparable to state-of-art piezoelectric transducer and the device's frequency response also have been characterized to be up to 90MHz. A new fabrication process combined with resist reflow and thermal oxidation process has been used to improve the Q factor up to 10 5 and the device's NEP has been tested to be around 88Pa over 1-75MHz range. Further improving the device's Q factor has been realized by shifting the device's working wavelength to near-visible wavelength and further reducing the device's sidewall roughness. A record new high Q-˜x105 has been measured and the device's NEP as low as 21Pa has been measured. Furthermore, a smaller size polymer microring device has been developed and fabricated to realize larger angle beam forming applications.
An Adaptive Web-Based Learning Environment for the Application of Remote Sensing in Schools
NASA Astrophysics Data System (ADS)
Wolf, N.; Fuchsgruber, V.; Riembauer, G.; Siegmund, A.
2016-06-01
Satellite images have great educational potential for teaching on environmental issues and can promote the motivation of young people to enter careers in natural science and technology. Due to the importance and ubiquity of remote sensing in science, industry and the public, the use of satellite imagery has been included into many school curricular in Germany. However, its implementation into school practice is still hesitant, mainly due to lack of teachers' know-how and education materials that align with the curricula. In the project "Space4Geography" a web-based learning platform is developed with the aim to facilitate the application of satellite imagery in secondary school teaching and to foster effective student learning experiences in geography and other related subjects in an interdisciplinary way. The platform features ten learning modules demonstrating the exemplary application of original high spatial resolution remote sensing data (RapidEye and TerraSAR-X) to examine current environmental issues such as droughts, deforestation and urban sprawl. In this way, students will be introduced into the versatile applications of spaceborne earth observation and geospatial technologies. The integrated web-based remote sensing software "BLIF" equips the students with a toolset to explore, process and analyze the satellite images, thereby fostering the competence of students to work on geographical and environmental questions without requiring prior knowledge of remote sensing. This contribution presents the educational concept of the learning environment and its realization by the example of the learning module "Deforestation of the rainforest in Brasil".
Liu, Tao; Hu, Rong; Lv, Yi-Fan; Wu, Yuan; Liang, Hao; Huan, Shuang-Yan; Zhang, Xiao-Bing; Tan, Weihong; Yu, Ru-Qin
2014-08-15
Fluorescent sensing systems based on the quenching of fluorophores have found wide applications in bioassays. An efficient quencher will endow the sensing system a high sensitivity. The frequently used quenchers are based on organic molecules or nanomaterials, which usually need tedious synthesizing and modifying steps, and exhibit different quenching efficiencies to different fluorophores. In this work, we for the first time report that aggregated perylene derivative can serve as a broad-spectrum and label-free quencher that is able to efficiently quench a variety of fluorophores, such as green, red and far red dyes labeled on DNA. By choosing nucleases as model biomolecules, such a broad-spectrum quencher was then employed to construct a multiplexed bioassay platform through a label-free manner. Due to the high quenching efficiency of the aggregated perylene, the proposed platform could detect nuclease with high sensitivity, with a detection limit of 0.03U/mL for EcoRV, and 0.05U/mL for EcoRI. The perylene quencher does not affect the activity of nuclease, which makes it possible to design post-addition type bioassay platform. Moreover, the proposed platform allows simultaneous and multicolor analysis of nucleases in homogeneous solution, demonstrating its value of potential application in rapid screening of multiple bio-targets. Copyright © 2014 Elsevier B.V. All rights reserved.
Qin, Guoxing; Zhao, Shulin; Huang, Yong; Jiang, Jing; Liu, Yi-Ming
2013-08-15
In this article, we report a gold nanoparticles (AuNPs) sensing platform based on chemiluminescence resonance energy transfer (CRET) for light on detection of biomolecules. In designing such a CRET-based biosensing platform, the aptamer was first covalently labeled with a chemiluminescent reagent, N-(4-aminobutyl)-N-ethylisoluminol (ABEI). The ABEI labeled aptamer was then hybridized with AuNPs functionalized ssDNA which was complementary to the aptamer, obtaining the aptasensor. The CRET between ABEI and AuNPs in the aptasensor led to the CL quenching of ABEI. In the presence of a target analyte, it formed a complex with aptamer, and released ABEI-aptamer from AuNPs surface that resulted in CL recovery of ABEI. To test this design, a thrombin (used as a model analyte) aptasensor was prepared and evaluated. The results indicate that the proposed approach is simple and provided a linear range of 50-550 pM for thrombin detection with a detection limit of 15 pM. This new methodology can be easily extended to assay other biomolecules by simply changing the recognition sequence with the substrate aptamer. Copyright © 2013 Elsevier B.V. All rights reserved.
Place, Skyler; Rubin, Channah; Gorrostieta, Cristina; Mead, Caroline; Kane, John; Marx, Brian P; Feast, Joshua; Deckersbach, Thilo; Pentland, Alex “Sandy”; Nierenberg, Andrew; Azarbayejani, Ali
2017-01-01
Background There is a critical need for real-time tracking of behavioral indicators of mental disorders. Mobile sensing platforms that objectively and noninvasively collect, store, and analyze behavioral indicators have not yet been clinically validated or scalable. Objective The aim of our study was to report on models of clinical symptoms for post-traumatic stress disorder (PTSD) and depression derived from a scalable mobile sensing platform. Methods A total of 73 participants (67% [49/73] male, 48% [35/73] non-Hispanic white, 33% [24/73] veteran status) who reported at least one symptom of PTSD or depression completed a 12-week field trial. Behavioral indicators were collected through the noninvasive mobile sensing platform on participants’ mobile phones. Clinical symptoms were measured through validated clinical interviews with a licensed clinical social worker. A combination hypothesis and data-driven approach was used to derive key features for modeling symptoms, including the sum of outgoing calls, count of unique numbers texted, absolute distance traveled, dynamic variation of the voice, speaking rate, and voice quality. Participants also reported ease of use and data sharing concerns. Results Behavioral indicators predicted clinically assessed symptoms of depression and PTSD (cross-validated area under the curve [AUC] for depressed mood=.74, fatigue=.56, interest in activities=.75, and social connectedness=.83). Participants reported comfort sharing individual data with physicians (Mean 3.08, SD 1.22), mental health providers (Mean 3.25, SD 1.39), and medical researchers (Mean 3.03, SD 1.36). Conclusions Behavioral indicators passively collected through a mobile sensing platform predicted symptoms of depression and PTSD. The use of mobile sensing platforms can provide clinically validated behavioral indicators in real time; however, further validation of these models and this platform in large clinical samples is needed. PMID:28302595
NASA Astrophysics Data System (ADS)
Coelho, L.; Queirós, R. B.; Santos, J. L.; Martins, M. Cristina L.; Viegas, D.; Jorge, P. A. S.
2014-03-01
Surface Plasmon Resonance (SPR) is the base for some of the most sensitive label free optical fiber biosensors. However, most solutions presented to date require the use of fragile fiber optic structure such as adiabatic tapers or side polished fibers. On the other hand, long-period fiber gratings (LPG) present themselves as an interesting solution to attain an evanescent wave refractive index sensor platform while preserving the optical fiber integrity. The combination of these two approaches constitute a powerful platform that can potentially reach the highest sensitivities as it was recently demonstrated by detailed theoretical study [1, 2]. In this work, a LPG-SPR platform is explored in different configurations (metal coating between two LPG - symmetric and asymmetric) operating in the telecom band (around 1550 nm). For this purpose LPGs with period of 396 μm are combined with tailor made metallic thin films. In particular, the sensing regions were coated with 2 nm of chromium to improve the adhesion to the fiber and 16 nm of gold followed by a 100 nm thick layer of TiO2 dielectric material strategically chosen to attain plasmon resonance in the desired wavelength range. The obtained refractometric platforms were then validated as a biosensor. For this purpose the detection of thrombin using an aptamer based probe was used as a model system for protein detection. The surface of the sensing fibers were cleaned with isopropanol and dried with N2 and then the aminated thrombin aptamer (5'-[NH2]- GGTTGGTGTGGTTGG-3') was immobilized by physisorption using Poly-L-Lysine (PLL) as cationic polymer. Preliminary results indicate the viability of the LPFG-SPR-APTAMER as a flexible platforms point of care diagnostic biosensors.
Qiao, Xiujuan; Li, Kunxia; Xu, Jinqiong; Cheng, Ni; Sheng, Qinglin; Cao, Wei; Yue, Tianli; Zheng, Jianbin
2018-08-15
Cardiac troponin I (cTnI) is a specific and sensitive biomarker for the early diagnosis of acute myocardial infarction and for the subsequent clinical treatments. In this work, novel electrochemical sensing platform for sensing of cTnI based on aptamer-MoS 2 nanoconjugates was proposed. For comparison, core-shell Au@SiO 2 @Au nanoparticles were also used for sensing of cTnI. The sensing schemes and electrochemical responses of the proposed sensors were investigated by electrochemical impedance spectroscopy (EIS) in 5.0 mM K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ] (1:1) solution containing 0.1 M KCl, respectively. Results showed that the aptamer-Au@SiO 2 @Au based aptasensor shows a linear rage of 10 pM-10.0 μM with the detection limits of 1.23 pM For the aptamer-MoS 2 nanosheets based aptasensor, the linear range for cTnI detection was from 10 pM to 1.0 μM with a lower detection limit of 0.95 pM Meanwhile, both the sensors were successfully applied for detection of cTnI in human blood samples. The two kinds of aptsensors have been successfully used for detecting of cTnI in human blood serums. Moreover, no negligible signal changes could be observed in the presence of non-targets of CK-MB and Myo, suggesting the good potential for clinic diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Silicon nitride photonics: from visible to mid-infrared wavelengths
NASA Astrophysics Data System (ADS)
Micó, Gloria; Bru, Luis A.; Pastor, Daniel; Doménech, David; Fernández, Juan; Sánchez, Ana; Cirera, Josep M.; Domínguez, Carlos; Muñoz, Pascual
2018-02-01
Silicon nitride has received a lot of attention during the last ten years, for applications such as bio-photonics, tele/datacom, optical signal processing and sensing. In this paper, firstly an updated review of the state of the art of silicon nitride photonics integration platforms will be provided. Secondly, our developments on a moderate confinement Si3N4 platform in the near-infrared will be presented. Finally, our steps towards establishing a Si3N4 based platform for broadband operation spanning from visible to mid-infrared wavelengths will be introduced.
The Real-Time Monitoring Service Platform for Land Supervision Based on Cloud Integration
NASA Astrophysics Data System (ADS)
Sun, J.; Mao, M.; Xiang, H.; Wang, G.; Liang, Y.
2018-04-01
Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.
Swiontek, Stephen E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh
2013-01-01
The commonly used optical sensor based on surface plasmon-polariton wave phenomenon can sense just one chemical, because only one SPP wave can be guided by the interface of a metal and a dielectric material contained in the sensor. Multiple analytes could be detected and/or the sensing reliability for a single analyte could be enhanced, if multiple SPP-wave modes could be excited on a single metal/dielectric interface. For that to happen, the partnering dielectric material must be periodically non-homogeneous. Using a chiral sculptured thin film (CSTF) as that material in a SPP-wave platform, we show that the angular locations of multiple SPP-wave modes shift when the void regions of the CSTF are infiltrated with a fluid. The sensitivities realized in the proof-of-concept experiments are comparable to state-of-research values. PMID:23474988
Peptide–Nanowire Hybrid Materials for Selective Sensing of Small Molecules
McAlpine, Michael C.; Agnew, Heather D.; Rohde, Rosemary D.; Blanco, Mario; Ahmad, Habib; Stuparu, Andreea D.; Goddard, William A.
2013-01-01
The development of a miniaturized sensing platform for the selective detection of chemical odorants could stimulate exciting scientific and technological opportunities. Oligopeptides are robust substrates for the selective recognition of a variety of chemical and biological species. Likewise, semiconducting nanowires are extremely sensitive gas sensors. Here we explore the possibilities and chemistries of linking peptides to silicon nanowire sensors for the selective detection of small molecules. The silica surface of the nanowires is passivated with peptides using amide coupling chemistry. The peptide/nanowire sensors can be designed, through the peptide sequence, to exhibit orthogonal responses to acetic acid and ammonia vapors, and can detect traces of these gases from “chemically camouflaged” mixtures. Through both theory and experiment, we find that this sensing selectivity arises from both acid/base reactivity and from molecular structure. These results provide a model platform for what can be achieved in terms of selective and sensitive “electronic noses.” PMID:18576642
NDSI products system based on Hadoop platform
NASA Astrophysics Data System (ADS)
Zhou, Yan; Jiang, He; Yang, Xiaoxia; Geng, Erhui
2015-12-01
Snow is solid state of water resources on earth, and plays an important role in human life. Satellite remote sensing is significant in snow extraction with the advantages of cyclical, macro, comprehensiveness, objectivity, timeliness. With the continuous development of remote sensing technology, remote sensing data access to the trend of multiple platforms, multiple sensors and multiple perspectives. At the same time, in view of the remote sensing data of compute-intensive applications demand increase gradually. However, current the producing system of remote sensing products is in a serial mode, and this kind of production system is used for professional remote sensing researchers mostly, and production systems achieving automatic or semi-automatic production are relatively less. Facing massive remote sensing data, the traditional serial mode producing system with its low efficiency has been difficult to meet the requirements of mass data timely and efficient processing. In order to effectively improve the production efficiency of NDSI products, meet the demand of large-scale remote sensing data processed timely and efficiently, this paper build NDSI products production system based on Hadoop platform, and the system mainly includes the remote sensing image management module, NDSI production module, and system service module. Main research contents and results including: (1)The remote sensing image management module: includes image import and image metadata management two parts. Import mass basis IRS images and NDSI product images (the system performing the production task output) into HDFS file system; At the same time, read the corresponding orbit ranks number, maximum/minimum longitude and latitude, product date, HDFS storage path, Hadoop task ID (NDSI products), and other metadata information, and then create thumbnails, and unique ID number for each record distribution, import it into base/product image metadata database. (2)NDSI production module: includes the index calculation, production tasks submission and monitoring two parts. Read HDF images related to production task in the form of a byte stream, and use Beam library to parse image byte stream to the form of Product; Use MapReduce distributed framework to perform production tasks, at the same time monitoring task status; When the production task complete, calls remote sensing image management module to store NDSI products. (3)System service module: includes both image search and DNSI products download. To image metadata attributes described in JSON format, return to the image sequence ID existing in the HDFS file system; For the given MapReduce task ID, package several task output NDSI products into ZIP format file, and return to the download link (4)System evaluation: download massive remote sensing data and use the system to process it to get the NDSI products testing the performance, and the result shows that the system has high extendibility, strong fault tolerance, fast production speed, and the image processing results with high accuracy.
Understanding the Microphysical Properties of Developing Cloud Clusters During TCS-08
2012-09-30
sensed satellite data In addition to the lightning data , geostationary infrared brightness temperatures and MODIS data have been used to analyze...detailed investigation of genesis using remote-sensed observations from platforms that are maintained on a more permanent basis including satellite -based...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
NASA Astrophysics Data System (ADS)
Makowski, Christopher
The coastal (terrestrial) and benthic environments along the southeast Florida continental shelf show a unique biophysical succession of marine features from a highly urbanized, developed coastal region in the north (i.e. northern Miami-Dade County) to a protective marine sanctuary in the southeast (i.e. Florida Keys National Marine Sanctuary). However, the establishment of a standard bio-geomorphological classification scheme for this area of coastal and benthic environments is lacking. The purpose of this study was to test the hypothesis and answer the research question of whether new parameters of integrating geomorphological components with dominant biological covers could be developed and applied across multiple remote sensing platforms for an innovative way to identify, interpret, and classify diverse coastal and benthic environments along the southeast Florida continental shelf. An ordered manageable hierarchical classification scheme was developed to incorporate the categories of Physiographic Realm, Morphodynamic Zone, Geoform, Landform, Dominant Surface Sediment, and Dominant Biological Cover. Six different remote sensing platforms (i.e. five multi-spectral satellite image sensors and one high-resolution aerial orthoimagery) were acquired, delineated according to the new classification scheme, and compared to determine optimal formats for classifying the study area. Cognitive digital classification at a nominal scale of 1:6000 proved to be more accurate than autoclassification programs and therefore used to differentiate coastal marine environments based on spectral reflectance characteristics, such as color, tone, saturation, pattern, and texture of the seafloor topology. In addition, attribute tables were created in conjugation with interpretations to quantify and compare the spatial relationships between classificatory units. IKONOS-2 satellite imagery was determined to be the optimal platform for applying the hierarchical classification scheme. However, each remote sensing platform had beneficial properties depending on research goals, logistical restrictions, and financial support. This study concluded that a new hierarchical comprehensive classification scheme for identifying coastal marine environments along the southeast Florida continental shelf could be achieved by integrating geomorphological features with biological coverages. This newly developed scheme, which can be applied across multiple remote sensing platforms with GIS software, establishes an innovative classification protocol to be used in future research studies.
NASA Astrophysics Data System (ADS)
Vargas, S. A., Jr.; Tweedie, C. E.; Oberbauer, S. F.
2013-12-01
The need to improve the spatial and temporal scaling and extrapolation of plot level measurements of ecosystem structure and function to the landscape level has been identified as a persistent research challenge in the arctic terrestrial sciences. Although there has been a range of advances in remote sensing capabilities on satellite, fixed wing, helicopter and unmanned aerial vehicle platforms over the past decade, these present costly, logistically challenging (especially in the Arctic), technically demanding solutions for applications in an arctic environment. Here, we present a relatively low cost alternative to these platforms that uses kite aerial photography (KAP). Specifically, we demonstrate how digital elevation models (DEMs) were derived from this system for a coastal arctic landscape near Barrow, Alaska. DEMs of this area acquired from other remote sensing platforms such as Terrestrial Laser Scanning (TLS), Airborne Laser Scanning, and satellite imagery were also used in this study to determine accuracy and validity of results. DEMs interpolated using the KAP system were comparable to DEMs derived from the other platforms. For remotely sensing acre to kilometer square areas of interest, KAP has proven to be a low cost solution from which derived products that interface ground and satellite platforms can be developed by users with access to low-tech solutions and a limited knowledge of remote sensing.
NASA Astrophysics Data System (ADS)
Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali
2016-04-01
There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.
Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali
2016-01-01
There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips. PMID:27098564
Lai, Jian-Lun; Liao, Chien-Jen; Su, Guo-Dung John
2012-11-27
There are two critical parameters for microbolometers: the temperature coefficient of resistance (TCR) of the sensing material, and the thermal conductance of the insulation structure. Cytochrome c protein, having a high TCR, is a good candidate for infrared detection. We can use SU-8 photoresist for the thermal insulation structure, given its low thermal conductance. In this study, we designed a platform structure based on a SU-8 photoresist. We fabricated an infrared sensing pixel and recorded a high TCR for this new structure. The SU-8 photoresist insulation structure was fabricated using the exposure dose method. We experimentally demonstrated high values of TCR from 22%/K to 25.7%/K, and the measured noise was 1.2 × 10(-8) V2/Hz at 60 Hz. When the bias current was 2 μA, the calculated voltage responsivity was 1.16 × 10(5) V/W. This study presents a new kind of microbolometer based on cytochrome c protein on top of an SU-8 photoresist platform that does not require expensive vacuum deposition equipment.
Using an SU-8 Photoresist Structure and Cytochrome C Thin Film Sensing Material for a Microbolometer
Lai, Jian-Lun; Liao, Chien-Jen; Su, Guo-Dung John
2012-01-01
There are two critical parameters for microbolometers: the temperature coefficient of resistance (TCR) of the sensing material, and the thermal conductance of the insulation structure. Cytochrome c protein, having a high TCR, is a good candidate for infrared detection. We can use SU-8 photoresist for the thermal insulation structure, given its low thermal conductance. In this study, we designed a platform structure based on a SU-8 photoresist. We fabricated an infrared sensing pixel and recorded a high TCR for this new structure. The SU-8 photoresist insulation structure was fabricated using the exposure dose method. We experimentally demonstrated high values of TCR from 22%/K to 25.7%/K, and the measured noise was 1.2 × 10−8 V2/Hz at 60 Hz. When the bias current was 2 μA, the calculated voltage responsivity was 1.16 × 105 V/W. This study presents a new kind of microbolometer based on cytochrome c protein on top of an SU-8 photoresist platform that does not require expensive vacuum deposition equipment. PMID:23443384
Andre, Rafaela S; Kwak, Dongwook; Dong, Qiuchen; Zhong, Wei; Correa, Daniel S; Mattoso, Luiz H C; Lei, Yu
2018-04-01
Ammonia (NH₃) gas is a prominent air pollutant that is frequently found in industrial and livestock production environments. Due to the importance in controlling pollution and protecting public health, the development of new platforms for sensing NH₃ at room temperature has attracted great attention. In this study, a sensitive NH₃ gas device with enhanced selectivity is developed based on zinc oxide nanofibers (ZnO NFs) decorated with poly(styrene sulfonate) (PSS) and operated at room temperature. ZnO NFs were prepared by electrospinning followed by calcination at 500 °C for 3 h. The electrospun ZnO NFs are characterized to evaluate the properties of the as-prepared sensing materials. The loading of PSS to prepare ZnO NFs/PSS composite is also optimized based on the best sensing performance. Under the optimal composition, ZnO NFs/PSS displays rapid, reversible, and sensitive response upon NH₃ exposure at room temperature. The device shows a dynamic linear range up to 100 ppm and a limit of detection of 3.22 ppm and enhanced selectivity toward NH₃ in synthetic air, against NO₂ and CO, compared to pure ZnO NFs. Additionally, a sensing mechanism is proposed to illustrate the sensing performance using ZnO NFs/PSS composite. Therefore, this study provides a simple methodology to design a sensitive platform for NH₃ monitoring at room temperature.
A Ubiquitous Optical Microsystem Platform with Application to Optical Metrology and Chemical Sensing
NASA Astrophysics Data System (ADS)
Gerling, John David
This dissertation is concerned with the development of a novel, versatile optical sensor platform for optical metrology and chemical sensing. We demonstrate the feasibility of embedding optical components between bonded silicon wafers with receptor cavities and optical windows to create a self-contained sensor microsystem that can be used for in-situ measurement of hostile environments. Arrays of these sensors internal to a silicon wafer can enable optical sensing for in-situ, real-time mapping and process development for the semiconductor industry in the form of an instrumented substrate. Single-die versions of these optical sensor platforms can also enable point-of-care diagnostics, high throughput disease screening, bio-warfare agent detection, and environmental monitoring. Our first discussion will focus on a single-wavelength interferometry-based prototype sensor. Several applications are demonstrated using this single wavelength prototype: refractive index monitoring, SiO2 plasma etching, chemical mechanical polishing, photoresist cure and dissolution, copper etch end-point detection, and also nanopore wetting phenomena. Subsequent sections of this dissertation will describe efforts to improve the optical sensor platform to achieve multi-wavelength sensing function. We explore the use of an off-the-shelf commercial RGB sensor for colorimetric monitoring of copper and aluminum thin-film etchings. We then expand upon our prior work and concepts to realize a fully integrated, chip-sized microspectrometer with a photon engine based on a diffraction grating. The design, fabrication, and demonstration of a working prototype with dimensions < 1 mm thick using standard planar microfabrication techniques is described. Proof-of-concept demonstrations indicate the working principle of dispersion, although with a low spectral resolution of 120 nm. With working knowledge of the issues of the first prototype, we present an improved 5-channel microspectrometer with a spectral range 400-900 nm and demonstrate its ability for spectral identification with 3 different phosphor powder samples. Finally, we conclude with suggestions for future areas of research.
All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers.
Wienhold, T; Kraemmer, S; Wondimu, S F; Siegle, T; Bog, U; Weinzierl, U; Schmidt, S; Becker, H; Kalt, H; Mappes, T; Koeber, S; Koos, C
2015-09-21
We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 10(5) and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid resonators, this approach replaces technically demanding vacuum-based dry etching and serial laser-based reflow techniques by solution-based processing and parallel thermal reflow. This enables scaling to large-area substrates, and hence significantly reduces device costs. Moreover, the resonators can be fabricated on arbitrary substrate materials, e.g., on transparent and flexible polymer foils. Doping the microgoblets with the organic dye pyrromethene 597 transforms the passive resonators into lasers. Devices have lasing thresholds below 0.6 nJ per pulse and can be efficiently pumped via free-space optics using a compact and low-cost green laser diode. We demonstrate that arrays of microgoblet lasers can be readily integrated into a state-of-the-art microfluidic chip replicated via injection moulding. In a proof-of-principle experiment, we show the viability of the lab-on-a-chip via refractometric sensing, demonstrating a bulk refractive index sensitivity (BRIS) of 10.56 nm per refractive index unit.
Vehicle-based Methane Mapping Helps Find Natural Gas Leaks and Prioritize Leak Repairs
NASA Astrophysics Data System (ADS)
von Fischer, J. C.; Weller, Z.; Roscioli, J. R.; Lamb, B. K.; Ferrara, T.
2017-12-01
Recently, mobile methane sensing platforms have been developed to detect and locate natural gas (NG) leaks in urban distribution systems and to estimate their size. Although this technology has already been used in targeted deployment for prioritization of NG pipeline infrastructure repair and replacement, one open question regarding this technology is how effective the resulting data are for prioritizing infrastructure repair and replacement. To answer this question we explore the accuracy and precision of the natural gas leak location and emission estimates provided by methane sensors placed on Google Street View (GSV) vehicles. We find that the vast majority (75%) of methane emitting sources detected by these mobile platforms are NG leaks and that the location estimates are effective at identifying the general location of leaks. We also show that the emission rate estimates from mobile detection platforms are able to effectively rank NG leaks for prioritizing leak repair. Our findings establish that mobile sensing platforms are an efficient and effective tool for improving the safety and reducing the environmental impacts of low-pressure NG distribution systems by reducing atmospheric methane emissions.
A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors
NASA Astrophysics Data System (ADS)
Mathew, Ribu; Ravi Sankar, A.
2018-06-01
In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.
Graphene-bimetal plasmonic platform for ultra-sensitive biosensing
NASA Astrophysics Data System (ADS)
Tong, Jinguang; Jiang, Li; Chen, Huifang; Wang, Yiqin; Yong, Ken-Tye; Forsberg, Erik; He, Sailing
2018-03-01
A graphene-bimetal plasmonic platform for surface plasmon resonance biosensing with ultra-high sensitivity was proposed and optimized. In this hybrid configuration, graphene nanosheets was employed to effectively absorb the excitation light and serve as biomolecular recognition elements for increased adsorption of analytes. Coating of an additional Au film prevents oxidation of the Ag substrate during manufacturing process and enhances the sensitivity at the same time. Thus, a bimetal Au-Ag substrate enables improved sensing performance and promotes stability of this plasmonic sensor. In this work we optimized the number of graphene layers as well as the thickness of the Au film and the Ag substrate based on the phase-interrogation sensitivity. We found an optimized configuration consisting of 6 layers of graphene coated on a bimetal surface consisting of a 5 nm Au film and a 30 nm Ag film. The calculation results showed the configuration could achieve a phase sensitivity as high as 1 . 71 × 106 deg/RIU, which was more than 2 orders of magnitude higher than that of bimetal structure and graphene-silver structure. Due to this enhanced sensing performance, the graphene-bimetal plasmonic platform proposed in this paper is potential for ultra-sensitive plasmonic sensing.
Design of a colorimetric sensing platform using reflection mode plasmonic colour filters
NASA Astrophysics Data System (ADS)
Mudachathi, Renilkumar; Tanaka, Takuo
2017-08-01
Plasmonic nano structures fabricated using inexpensive and abundant aluminum metal shows intense narrow reflection peaks with strong response to the external stimuli, provides a simple yet powerful detection mechanism that is well suited for the development of low cost and low power sensors, such as colorimetric sensors, which transduces external stimuli or environmental changes in to visible colour changes. Such low cost and disposable sensors have huge demands in the point-of-care and home health care diagnostic applications. We present the design of a colorimetric sensing platform based on reflection mode plasmonic colour filters on both silicon and glass substrate, which demonstrate a sharp colour change for varying ambient refractive index. The sensor is essentially a plasmonic metamaterial in which the aluminum square plate hovering on a PMMA nano pillar in the background of a perforated aluminum reflector forms the unit cell which is arranged periodically in a 2D square lattice. The meta-surface has two distinct absorption peaks in the visible region leaving a strong reflection band, which strongly responds to the ambient refractive index change, provides a means for the realization of low cost colorimetric sensing platform.
Infrared detection based on localized modification of Morpho butterfly wings.
Zhang, Fangyu; Shen, Qingchen; Shi, Xindong; Li, Shipu; Wang, Wanlin; Luo, Zhen; He, Gufeng; Zhang, Peng; Tao, Peng; Song, Chengyi; Zhang, Wang; Zhang, Di; Deng, Tao; Shang, Wen
2015-02-01
Inspired by butterflies an advanced detection and sensing system is developed. The hierarchical nanoarchitecture of Morpho butterfly wings is shown to facilitate the selective modification of such a structure, which results in a sensitive infrared response. These findings offer a new path both for detecting infrared photons and for generating nanostructured bimaterial systems for high-performance sensing platforms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cheng, Fei; Yang, Xiaodong; Gao, Jie
2014-06-01
An infrared refractive index sensor based on plasmonic perfect absorbers for glucose concentration sensing is experimentally demonstrated. Utilizing substantial absorption contrast between a perfect absorber (∼98% at normal incidence) and a non-perfect absorber upon the refractive index change, a maximum value of figure of merit (FOM*) about 55 and a bulk wavelength sensitivity about 590 nm/RIU are achieved. The demonstrated sensing platform provides great potential in improving the performance of plasmonic refractive index sensors and developing future surface enhanced infrared spectroscopy.
NASA Astrophysics Data System (ADS)
Bharathkumar, S.; Sakar, M.; Balakumar, S.
2018-04-01
We made an attempt to construct a photocatalytic and biosensor platform by using bismuth ferrite (BiFeO3/BFO) particulates and fibers nanostructures towards the degradation of dye and electrochemical sensing of ascorbic acid. The crystal phase and morphology of the BFO nanostructures were confirmed using XRD and FESEM respectively. Further, their photocatalytic activity was tested under sunlight. The BFO fibers showed relatively an enhanced degradation property and an efficient electrochemical sensing property compared to the Particulates.
Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications
Fernández, Román; García, Pablo; García, María; Jiménez, Yolanda; Arnau, Antonio
2017-01-01
Acoustic wave resonators have become suitable devices for a broad range of sensing applications due to their sensitivity, low cost, and integration capability, which are all factors that meet the requirements for the resonators to be used as sensing elements for portable point of care (PoC) platforms. In this work, the design, characterization, and validation of a 150 MHz high fundamental frequency quartz crystal microbalance (HFF-QCM) sensor for bio-sensing applications are introduced. Finite element method (FEM) simulations of the proposed design are in good agreement with the electrical characterization of the manufactured resonators. The sensor is also validated for bio-sensing applications. For this purpose, a specific sensor cell was designed and manufactured that addresses the critical requirements associated with this type of sensor and application. Due to the small sensing area and the sensor’s fragility, these requirements include a low-volume flow chamber in the nanoliter range, and a system approach that provides the appropriate pressure control for assuring liquid confinement while maintaining the integrity of the sensor with a good base line stability and easy sensor replacement. The sensor characteristics make it suitable for consideration as the elemental part of a sensor matrix in a multichannel platform for point of care applications. PMID:28885551
Madou, Marc; Zoval, Jim; Jia, Guangyao; Kido, Horacio; Kim, Jitae; Kim, Nahui
2006-01-01
In this paper, centrifuge-based microfluidic platforms are reviewed and compared with other popular microfluidic propulsion methods. The underlying physical principles of centrifugal pumping in microfluidic systems are presented and the various centrifuge fluidic functions, such as valving, decanting, calibration, mixing, metering, heating, sample splitting, and separation, are introduced. Those fluidic functions have been combined with analytical measurement techniques, such as optical imaging, absorbance, and fluorescence spectroscopy and mass spectrometry, to make the centrifugal platform a powerful solution for medical and clinical diagnostics and high throughput screening (HTS) in drug discovery. Applications of a compact disc (CD)-based centrifuge platform analyzed in this review include two-point calibration of an optode-based ion sensor, an automated immunoassay platform, multiple parallel screening assays, and cellular-based assays. The use of modified commercial CD drives for high-resolution optical imaging is discussed as well. From a broader perspective, we compare technical barriers involved in applying microfluidics for sensing and diagnostic use and applying such techniques to HTS. The latter poses less challenges and explains why HTS products based on a CD fluidic platform are already commercially available, whereas we might have to wait longer to see commercial CD-based diagnostics.
Optical fibre multi-parameter sensing with secure cloud based signal capture and processing
NASA Astrophysics Data System (ADS)
Newe, Thomas; O'Connell, Eoin; Meere, Damien; Yuan, Hongwei; Leen, Gabriel; O'Keeffe, Sinead; Lewis, Elfed
2016-05-01
Recent advancements in cloud computing technologies in the context of optical and optical fibre based systems are reported. The proliferation of real time and multi-channel based sensor systems represents significant growth in data volume. This coupled with a growing need for security presents many challenges and presents a huge opportunity for an evolutionary step in the widespread application of these sensing technologies. A tiered infrastructural system approach is adopted that is designed to facilitate the delivery of Optical Fibre-based "SENsing as a Service- SENaaS". Within this infrastructure, novel optical sensing platforms, deployed within different environments, are interfaced with a Cloud-based backbone infrastructure which facilitates the secure collection, storage and analysis of real-time data. Feedback systems, which harness this data to affect a change within the monitored location/environment/condition, are also discussed. The cloud based system presented here can also be used with chemical and physical sensors that require real-time data analysis, processing and feedback.
Doherty, Brenda; Csáki, Andrea; Thiele, Matthias; Zeisberger, Matthias; Schwuchow, Anka; Kobelke, Jens; Fritzsche, Wolfgang; Schmidt, Markus A
2017-02-01
Detecting small quantities of specific target molecules is of major importance within bioanalytics for efficient disease diagnostics. One promising sensing approach relies on combining plasmonically-active waveguides with microfluidics yielding an easy-to-use sensing platform. Here we introduce suspended-core fibres containing immobilised plasmonic nanoparticles surrounding the guiding core as a concept for an entirely integrated optofluidic platform for efficient refractive index sensing. Due to the extremely small optical core and the large adjacent microfluidic channels, over two orders of magnitude of nanoparticle coverage densities have been accessed with millimetre-long sample lengths showing refractive index sensitivities of 170 nm/RIU for aqueous analytes where the fibre interior is functionalised by gold nanospheres. Our concept represents a fully integrated optofluidic sensing system demanding small sample volumes and allowing for real-time analyte monitoring, both of which are highly relevant within invasive bioanalytics, particularly within molecular disease diagnostics and environmental science.
Micro-UAV tracking framework for EO exploitation
NASA Astrophysics Data System (ADS)
Browning, David; Wilhelm, Joe; Van Hook, Richard; Gallagher, John
2012-06-01
Historically, the Air Force's research into aerial platforms for sensing systems has focused on low-, mid-, and highaltitude platforms. Though these systems are likely to comprise the majority of the Air Force's assets for the foreseeable future, they have limitations. Specifically, these platforms, their sensor packages, and their data exploitation software are unsuited for close-quarter surveillance, such as in alleys and inside of buildings. Micro-UAVs have been gaining in popularity, especially non-fixed-wing platforms such as quad-rotors. These platforms are much more appropriate for confined spaces. However, the types of video exploitation techniques that can effectively be used are different from the typical nadir-looking aerial platform. This paper discusses the creation of a framework for testing existing and new video exploitation algorithms, as well as describes a sample micro-UAV-based tracker.
NASA Astrophysics Data System (ADS)
Te, Yao; Jeseck, Pascal; Hadji-Lazaro, Juliette
2012-11-01
In a growing world with more than 7 billion inhabitants and big emerging countries such as China, Brazil and India, emissions of anthropogenic pollutants are increasing continuously. Monitoring and control of atmospheric pollutants in megacities have become a major challenge for scientists and public health authorities in environmental research area. The QualAir platform at University Pierre et Marie Curie (UPMC), is an innovating experimental research platform dedicated to survey urban atmospheric pollution and air quality. A Bruker Optics IFS 125HR Fourier transform spectrometer belonged to the Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique (LPMAA), was adapted for ground-based atmospheric measurements. As one of the major instruments of the QualAir platform, this ground-based Fourier transform spectrometer (QualAir FTS) analyses the composition of the urban atmosphere of Paris, which is the third largest European megacity. The continuous monitoring of atmospheric pollutants is essential to improve the understanding of urban air pollution processes. Associated with a sun-tracker, the QualAir remote sensing FTS operates in solar infrared absorption and enables to monitor many trace gases, and to follow up their variability in the Ile-de-France region. Concentrations of atmospheric pollutants are retrieved by the radiative transfer model PROFFIT. These ground-based remote sensing measurements are compared to ground in-situ measurements and to satellite data from IASI-MetOp (Infrared Atmospheric Sounding Interferometer). The remote sensing total column of the carbon monoxide (CO) obtained from January 2009 to June 2012, has a seasonal variability with a maximum in April and a minimum in October. While, after 2008, the mean CO level is quite stable (no significant decrease as before 2008).
Small unmanned aircraft systems for remote sensing and Earth science research
NASA Astrophysics Data System (ADS)
Hugenholtz, Chris H.; Moorman, Brian J.; Riddell, Kevin; Whitehead, Ken
2012-06-01
To understand and predict Earth-surface dynamics, scientists often rely on access to the latest remote sensing data. Over the past several decades, considerable progress has been made in the development of specialized Earth observation sensors for measuring a wide range of processes and features. Comparatively little progress has been made, however, in the development of new platforms upon which these sensors can be deployed. Conventional platforms are still almost exclusively restricted to piloted aircraft and satellites. For many Earth science research questions and applications these platforms do not yet have the resolution or operational flexibility to provide answers affordably. The most effective remote sensing data match the spatiotemporal scale of the process or feature of interest. An emerging technology comprising unmanned aircraft systems (UAS), also known as unmanned aerial vehicles (UAV), is poised to offer a viable alternative to conventional platforms for acquiring high-resolution remote sensing data with increased operational flexibility, lower cost, and greater versatility (Figure 1).
Integrated optical sensors for 2D spatial chemical mapping (Conference Presentation)
NASA Astrophysics Data System (ADS)
Flores, Raquel; Janeiro, Ricardo; Viegas, Jaime
2017-02-01
Sensors based on optical waveguides for chemical sensing have attracted increasing interest over the last two decades, fueled by potential applications in commercial lab-on-a-chip devices for medical and food safety industries. Even though the early studies were oriented for single-point detection, progress in device size reduction and device yield afforded by photonics foundries have opened the opportunity for distributed dynamic chemical sensing at the microscale. This will allow researchers to follow the dynamics of chemical species in field of microbiology, and microchemistry, with a complementary method to current technologies based on microfluorescence and hyperspectral imaging. The study of the chemical dynamics at the surface of photoelectrodes in water splitting cells are a good candidate to benefit from such optochemical sensing devices that includes a photonic integrated circuit (PIC) with multiple sensors for real-time detection and spatial mapping of chemical species. In this project, we present experimental results on a prototype integrated optical system for chemical mapping based on the interaction of cascaded resonant optical devices, spatially covered with chemically sensitive polymers and plasmon-enhanced nanostructured metal/metal-oxide claddings offering chemical selectivity in a pixelated surface. In order to achieve a compact footprint, the prototype is based in a silicon photonics platform. A discussion on the relative merits of a photonic platform based on large bandgap metal oxides and nitrides which have higher chemical resistance than silicon is also presented.
Du, Yaran; Li, Xiqian; Lv, Xueju; Jia, Qiong
2017-09-13
Free bilirubin, a key biomarker for jaundice, was detected with a newly designed fluorescent postsynthetically modified metal organic framework (MOF) (UIO-66-PSM) sensor. UiO-66-PSM was prepared based on the aldimine condensation reaction of UiO-66-NH 2 with 2,3,4-trihydroxybenzaldehyde. The fluorescence of UIO-66-PSM could be effectively quenched by free bilirubin via a fluorescent resonant energy transfer process, thus achieving its recognition of free bilirubin. It was the first attempt to design a MOF-based fluorescent probe for sensing free bilirubin. The probe exhibited fast response time, low detection limit, wide linear range, and high selectivity toward free bilirubin. The sensing system enabled the monitor of free bilirubin in real human serum. Hence, the reported free bilirubin sensing platform has potential applications for clinical diagnosis of jaundice.
Cooperative remote sensing and actuation using networked unmanned vehicles
NASA Astrophysics Data System (ADS)
Chao, Haiyang
This dissertation focuses on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes in the current information-rich world. The target scenarios are environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks, etc. AggieAir, a small and low-cost unmanned aircraft system, is designed based on the remote sensing requirements from environmental monitoring missions. The state estimation problem and the advanced lateral flight controller design problem are further attacked focusing on the small unmanned aerial vehicle (UAV) platform. Then the UAV-based remote sensing problem is focused with further flight test results. Given the measurements from unmanned vehicles, the actuation algorithms are needed for missions like the diffusion control. A consensus-based central Voronoi tessellation (CVT) algorithm is proposed for better control of the diffusion process. Finally, the dissertation conclusion and some new research suggestions are presented.
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori
2017-01-01
Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori
2017-08-28
Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.
Measurement of baseline and orientation between distributed aerospace platforms.
Wang, Wen-Qin
2013-01-01
Distributed platforms play an important role in aerospace remote sensing, radar navigation, and wireless communication applications. However, besides the requirement of high accurate time and frequency synchronization for coherent signal processing, the baseline between the transmitting platform and receiving platform and the orientation of platform towards each other during data recording must be measured in real time. In this paper, we propose an improved pulsed duplex microwave ranging approach, which allows determining the spatial baseline and orientation between distributed aerospace platforms by the proposed high-precision time-interval estimation method. This approach is novel in the sense that it cancels the effect of oscillator frequency synchronization errors due to separate oscillators that are used in the platforms. Several performance specifications are also discussed. The effectiveness of the approach is verified by simulation results.
Montgomery, Beronda L.
2014-01-01
Light is harvested in cyanobacteria by chlorophyll-containing photosystems embedded in the thylakoid membranes and phycobilisomes (PBSs), photosystem-associated light-harvesting antennae. Light absorbed by the PBSs and photosystems can be converted to chemical energy through photosynthesis. Photosynthetically fixed carbon pools, which are constrained by photosynthetic light capture versus the dissipation of excess light absorbed, determine the available organismal energy budget. The molecular bases of the environmental regulation of photosynthesis, photoprotection, and photomorphogenesis are still being elucidated in cyanobacteria. Thus, the potential impacts of these phenomena on the efficacy of developing cyanobacteria as robust biotechnological platforms require additional attention. Current advances and persisting needs for developing cyanobacterial production platforms that are related to light sensing and harvesting include the development of tools to balance the utilization of absorbed photons for conversion to chemical energy and biomass versus light dissipation in photoprotective mechanisms. Such tools can be used to direct energy to more effectively support the production of desired bioproducts from sunlight. PMID:25023122
NASA Astrophysics Data System (ADS)
Mulpur, Pradyumna; Podila, Ramakrishna; Rao, Apparao M.; Kamisetti, Venkataramaniah
2016-06-01
In this study, we report the first time implementation of single/multi-walled carbon nanotubes, as novel spacer materials, on a silver (Ag) thin-film based surface plasmon coupled emission (SPCE) platform. The engineered Ag-CNT SPCE substrates enabled the realization of up to ∼10-fold enhancement in fluorescence signal intensity, of the rhodamine b dye. This study addresses the issue that, while many of the biochemical sensing strategies are based on fluorescence, they are all fundamentally limited by the isotropic nature of the phenomenon that results in low signal collection efficiency (<1%). Pursuant to the aim of realizing superior levels of signal sensitivity, we previously reported graphene and C60 as novel spacer materials, and similarly project CNTs in this study as ‘active’ contributors for the amplification of fluorescence signals on the SPCE platform that generates highly directional emission, with very high signal to noise ratios and >50% signal collection efficiency. Considering the easy functionalization of these carbon nano-allotropes, and their high sensitivity; the economical Ag-CNT SPCE platforms can be effectively extended towards sensing applications.
Yan, Xu; Li, Hongxia; Hu, Tianyu; Su, Xingguang
2017-05-15
Assays for organophosphorus pesticides (OPs) with high sensitivity as well as on-site screening have been urgently required to protect ecosystem and prevent disease. Herein, a novel fluorimetric sensing platform was constructed for quantitative detection of OPs via tyrosinase (TYR) enzyme-controlled quenching of gold nanoclusters (AuNCs). One-step green synthetic approach was developed for the synthesis of AuNCs by using chicken egg white (CEW) as template and stabilizer. Initially, TYR can catalyze the oxidation of dopamine to dopaminechrome, which can efficiently quench the fluorescence intensity of AuNCs at 630nm based on dynamic quenching process. However, with the presence of OPs, the activity of TYR was inhibited, resulting in the fluorescence recovery of AuNCs. This proposed fluorescence platform was demonstrated to enable rapid detection for OPs (paraoxon as model) and to provide excellent sensitivity with a detection limit of 0.1ngmL -1 . Significantly, the fluorescence probe was used to prepare paper-based test strips for visual detection of OPs, which validated the excellent potential for real-time and on-site application. Copyright © 2016 Elsevier B.V. All rights reserved.
Remote sensing and eLearning 2.0 for school education
NASA Astrophysics Data System (ADS)
Voss, Kerstin; Goetzke, Roland; Hodam, Henryk
2010-10-01
The "Remote Sensing in Schools" project aims at improving the integration of "Satellite remote sensing" into school teaching. Therefore, it is the project's overall objective to teach students in primary and secondary schools the basics and fields of application of remote sensing. Existing results show that many teachers are interested in remote sensing and at same time motivated to integrate it into their teaching. Despite the good intention, in the end, the implementation often fails due to the complexity and poor set-up of the information provided. Therefore, a comprehensive and well-structured learning platform on the topic of remote sensing is developed. The platform shall allow a structured introduction to the topic.
Thermotropic Liquid Crystal-Assisted Chemical and Biological Sensors
Honaker, Lawrence W.; Usol’tseva, Nadezhda; Mann, Elizabeth K.
2017-01-01
In this review article, we analyze recent progress in the application of liquid crystal-assisted advanced functional materials for sensing biological and chemical analytes. Multiple research groups demonstrate substantial interest in liquid crystal (LC) sensing platforms, generating an increasing number of scientific articles. We review trends in implementing LC sensing techniques and identify common problems related to the stability and reliability of the sensing materials as well as to experimental set-ups. Finally, we suggest possible means of bridging scientific findings to viable and attractive LC sensor platforms. PMID:29295530
Bioresponsive controlled release from mesoporous silica nanocontainers with glucometer readout.
Hou, Li; Zhu, Chunling; Wu, Xiaoping; Chen, Guonan; Tang, Dianping
2014-02-11
A novel sensing platform for monitoring small molecules without the need for sample separation and washing is developed by using a commercialized personal glucose meter based on bioresponsive controlled release of glucose from aptamer-gated mesoporous silica nanocontainers.
Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project
NASA Astrophysics Data System (ADS)
Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.
2016-09-01
The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.
Thermal Isomerization of Hydroxyazobenzenes as a Platform for Vapor Sensing
2018-01-01
Photoisomerization of azobenzene derivatives is a versatile tool for devising light-responsive materials for a broad range of applications in photonics, robotics, microfabrication, and biomaterials science. Some applications rely on fast isomerization kinetics, while for others, bistable azobenzenes are preferred. However, solid-state materials where the isomerization kinetics depends on the environmental conditions have been largely overlooked. Herein, an approach to utilize the environmental sensitivity of isomerization kinetics is developed. It is demonstrated that thin polymer films containing hydroxyazobenzenes offer a conceptually novel platform for sensing hydrogen-bonding vapors in the environment. The concept is based on accelerating the thermal cis–trans isomerization rate through hydrogen-bond-catalyzed changes in the thermal isomerization pathway, which allows for devising a relative humidity sensor with high sensitivity and quick response to relative humidity changes. The approach is also applicable for detecting other hydrogen-bonding vapors such as methanol and ethanol. Employing isomerization kinetics of azobenzenes for vapor sensing opens new intriguing possibilities for using azobenzene molecules in the future. PMID:29607244
Hill, Ryan T.
2015-01-01
The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594
Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions
2018-01-01
Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present. PMID:29392173
LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application
NASA Astrophysics Data System (ADS)
Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin
2014-11-01
The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product validation.
An Embedded Microretroreflector-Based Microfluidic Immunoassay Platform
Raja, Balakrishnan; Pascente, Carmen; Knoop, Jennifer; Shakarisaz, David; Sherlock, Tim; Kemper, Steven; Kourentzi, Katerina; Renzi, Ronald F.; Hatch, Anson V.; Olano, Juan; Peng, Bi-Hung; Ruchhoeft, Paul; Willson, Richard
2017-01-01
We present a microfluidic immunoassay platform based on the use of linear microretroreflectors embedded in a transparent polymer layer as an optical sensing surface, and micron-sized magnetic particles as light-blocking labels. Retroreflectors return light directly to its source and are highly detectable using inexpensive optics. The analyte is immuno-magnetically pre-concentrated from a sample and then captured on an antibody-modified microfluidic substrate comprised of embedded microretroreflectors, thereby blocking reflected light. Fluidic force discrimination is used to increase specificity of the assay, following which a difference imaging algorithm that can see single 3 μm magnetic particles without optical calibration is used to detect and quantify signal intensity from each sub-array of retroreflectors. We demonstrate the utility of embedded microretroreflectors as a new sensing modality through a proof-of-concept immunoassay for a small, obligate intracellular bacterial pathogen, Rickettsia conorii, the causative agent of Mediterranean Spotted Fever. The combination of large sensing area, optimized surface chemistry and microfluidic protocols, automated image capture and analysis, and high sensitivity of the difference imaging results in a sensitive immunoassay with a limit of detection of roughly 4000 R. conorii per mL. PMID:27025227
Analytical Calculation of Sensing Parameters on Carbon Nanotube Based Gas Sensors
Akbari, Elnaz; Buntat, Zolkafle; Ahmad, Mohd Hafizi; Enzevaee, Aria; Yousof, Rubiyah; Iqbal, Syed Muhammad Zafar; Ahmadi, Mohammad Taghi.; Sidik, Muhammad Abu Bakar; Karimi, Hediyeh
2014-01-01
Carbon Nanotubes (CNTs) are generally nano-scale tubes comprising a network of carbon atoms in a cylindrical setting that compared with silicon counterparts present outstanding characteristics such as high mechanical strength, high sensing capability and large surface-to-volume ratio. These characteristics, in addition to the fact that CNTs experience changes in their electrical conductance when exposed to different gases, make them appropriate candidates for use in sensing/measuring applications such as gas detection devices. In this research, a model for a Field Effect Transistor (FET)-based structure has been developed as a platform for a gas detection sensor in which the CNT conductance change resulting from the chemical reaction between NH3 and CNT has been employed to model the sensing mechanism with proposed sensing parameters. The research implements the same FET-based structure as in the work of Peng et al. on nanotube-based NH3 gas detection. With respect to this conductance change, the I–V characteristic of the CNT is investigated. Finally, a comparative study shows satisfactory agreement between the proposed model and the experimental data from the mentioned research. PMID:24658617
NASA Astrophysics Data System (ADS)
Näsi, R.; Viljanen, N.; Kaivosoja, J.; Hakala, T.; Pandžić, M.; Markelin, L.; Honkavaara, E.
2017-10-01
Multispectral and hyperspectral imaging is usually acquired by satellite and aircraft platforms. Recently, miniaturized hyperspectral 2D frame cameras have showed great potential to precise agriculture estimations and they are feasible to combine with lightweight platforms, such as drones. Drone platform is a flexible tool for remote sensing applications with environment and agriculture. The assessment and comparison of different platforms such as satellite, aircraft and drones with different sensors, such as hyperspectral and RGB cameras is an important task in order to understand the potential of the data provided by these equipment and to select the most appropriate according to the user applications and requirements. In this context, open and permanent test fields are very significant and helpful experimental environment, since they provide a comparative data for different platforms, sensors and users, allowing multi-temporal analyses as well. Objective of this work was to investigate the feasibility of an open permanent test field in context of precision agriculture. Satellite (Sentinel-2), aircraft and drones with hyperspectral and RGB cameras were assessed in this study to estimate biomass, using linear regression models and in-situ samples. Spectral data and 3D information were used and compared in different combinations to investigate the quality of the models. The biomass estimation accuracies using linear regression models were better than 90 % for the drone based datasets. The results showed that the use of spectral and 3D features together improved the estimation model. However, estimation of nitrogen content was less accurate with the evaluated remote sensing sensors. The open and permanent test field showed to be suitable to provide an accurate and reliable reference data for the commercial users and farmers.
Fan, Daoqing; Zhu, Xiaoqing; Zhai, Qingfeng; Wang, Erkang; Dong, Shaojun
2016-09-20
In this work, the effective fluorescence quenching ability of polydopamine nanotubes (PDANTs) toward various fluorescent dyes was studied and further applied to fluorescent biosensing for the first time. The PDANTs could quench the fluorophores with different emission frequencies, aminomethylcoumarin acetate (AMCA), 6-carboxyfluorescein (FAM), 6-carboxytetramethylrhodamine (TAMRA), and Cy5. All the quenching efficiencies reached to more than 97%. Taking advantage of PDANTs' different affinities toward ssDNA and dsDNA and utilizing the complex of FAM-labeled ssDNA and PDANTs as a sensing platform, we achieved highly sensitive and selective detection of human immunodeficiency virus (HIV) DNA and adenosine triphosphate (ATP) assisted with Exonuclease III amplification. The limits of detection (LODs) of HIV DNA and ATP reached to 3.5 pM and 150 nM, respectively, which were all lower than that of previous nanoquenchers with Exo III amplification, and the platform also presented good applicability in biological samples. Fluorescent sensing applications of this nanotube enlightened other targets detection based upon it and enriched the building blocks of fluorescent sensing platforms. This polydopamine nanotube also possesses excellent biocompatibility and biodegradability, which is suitable for future drug delivery, cell imaging, and other biological applications.
Wearable Textile Platform for Assessing Stroke Patient Treatment in Daily Life Conditions
Lorussi, Federico; Carbonaro, Nicola; De Rossi, Danilo; Paradiso, Rita; Veltink, Peter; Tognetti, Alessandro
2016-01-01
Monitoring physical activities during post-stroke rehabilitation in daily life may help physicians to optimize and tailor the training program for patients. The European research project INTERACTION (FP7-ICT-2011-7-287351) evaluated motor capabilities in stroke patients during the recovery treatment period. We developed wearable sensing platform based on the sensor fusion among inertial, knitted piezoresistive sensors and textile EMG electrodes. The device was conceived in modular form and consists of a separate shirt, trousers, glove, and shoe. Thanks to the novel fusion approach it has been possible to develop a model for the shoulder taking into account the scapulo-thoracic joint of the scapular girdle, considerably improving the estimation of the hand position in reaching activities. In order to minimize the sensor set used to monitor gait, a single inertial sensor fused with a textile goniometer proved to reconstruct the orientation of all the body segments of the leg. Finally, the sensing glove, endowed with three textile goniometers and three force sensors showed good capabilities in the reconstruction of grasping activities and evaluating the interaction of the hand with the environment, according to the project specifications. This paper reports on the design and the technical evaluation of the performance of the sensing platform, tested on healthy subjects. PMID:27047939
NASA Technical Reports Server (NTRS)
Barber, Bryan; Kahn, Laura; Wong, David
1990-01-01
Offshore operations such as oil drilling and radar monitoring require semisubmersible platforms to remain stationary at specific locations in the Gulf of Mexico. Ocean currents, wind, and waves in the Gulf of Mexico tend to move platforms away from their desired locations. A computer model was created to predict the station keeping requirements of a platform. The computer simulation uses remote sensing data from satellites and buoys as input. A background of the project, alternate approaches to the project, and the details of the simulation are presented.
Design of the smart scenic spot service platform
NASA Astrophysics Data System (ADS)
Yin, Min; Wang, Shi-tai
2015-12-01
With the deepening of the smart city construction, the model "smart+" is rapidly developing. Guilin, the international tourism metropolis fast constructing need smart tourism technology support. This paper studied the smart scenic spot service object and its requirements. And then constructed the smart service platform of the scenic spot application of 3S technology (Geographic Information System (GIS), Remote Sensing (RS) and Global Navigation Satellite System (GNSS)) and the Internet of things, cloud computing. Based on Guilin Seven-star Park scenic area as an object, this paper designed the Seven-star smart scenic spot service platform framework. The application of this platform will improve the tourists' visiting experience, make the tourism management more scientifically and standardly, increase tourism enterprises operating earnings.
Zhi, Lihua; Zeng, Xiaofan; Wang, Hao; Hai, Jun; Yang, Xiangliang; Wang, Baodui; Zhu, Yanhong
2017-07-18
The development of sensitive and reliable methods to monitor the presence of mercuric ions in cells and organisms is of great importance to biological research and biomedical applications. In this work, we propose a strategy to construct a solar-driven nanoprobe using a 3D Au@MoS 2 heterostructure as a photocatalyst and rhodamine B (RB) as a fluorescent and color change reporter molecule for monitoring Hg 2+ in living cells and animals. The sensing mechanism is based on the photoinduced electron formation of gold amalgam in the 3D Au@MoS 2 heterostructure under visible light illumination. This formation is able to remarkably inhibit the photocatalytic activity of the heterostructure toward RB decomposition. As a result, "OFF-ON" fluorescence and color change are produced. Such characteristics enable this new sensing platform to sensitively and selectively detect Hg 2+ in water by fluorescence and colorimetric methods. The detection limits of the fluorescence assay and colorimetric assay are 0.22 and 0.038 nM for Hg 2+ , respectively; these values are well below the acceptable limits in drinking water standards (10 nM). For the first time, such photocatalysis-based sensing platform is successfully used to monitor Hg 2+ in live cells and mice. Our work therefore opens a promising photocatalysis-based analysis methodology for highly sensitive and selective in vivo Hg 2+ bioimaging studies.
A pH-Sensing Optode for Mapping Spatiotemporal Gradients in 3D Paper-Based Cell Cultures.
Kenney, Rachael M; Boyce, Matthew W; Whitman, Nathan A; Kromhout, Brenden P; Lockett, Matthew R
2018-02-06
Paper-based cultures are an emerging platform for preparing 3D tissue-like structures. Chemical gradients can be imposed upon these cultures, generating microenvironments similar to those found in poorly vascularized tumors. There is increasing evidence that the tumor microenvironment is responsible for promoting drug resistance and increased invasiveness. Acidosis, or the acidification of the extracellular space, is particularly important in promoting these aggressive cancer phenotypes. To better understand how cells respond to acidosis there is a need for 3D culture platforms that not only model relevant disease states but also contain sensors capable of quantifying small molecules in the extracellular environment. In this work, we describe pH-sensing optodes that are capable of generating high spatial and temporal resolution maps of pH gradients in paper-based cultures. This sensor was fabricated by suspending microparticles containing pH-sensitive (fluorescein) and pH-insensitive (diphenylanthracene) dyes in a polyurethane hydrogel, which was then coated onto a transparent film. The pH-sensing films have a fast response time, are reversible, stable in long-term culture environments, have minimal photobleaching, and are not cytotoxic. These films have a pK a of 7.61 ± 0.04 and are sensitive in the pH range corresponding to normal and tumorigenic tissues. With these optodes, we measured the spatiotemporal evolution of pH gradients in paper-based tumor models.
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E; Svoboda, John M; West, Phillip B; Heath, Gail L; Scott, Clark L
2015-01-27
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E [Idaho Falls, ID; Svoboda, John M [Idaho Falls, ID; West, Phillip B [Idaho Falls, ID; Heath, Gail L [Iona, ID; Scott, Clark L [Idaho Falls, ID
2010-08-31
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E; Svoboda, John M.; West, Phillip B.; Heath, Gail L.; Scott, Clark L.
2016-07-19
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Optical Fiber Sensing Using Quantum Dots
Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz
2007-01-01
Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms. PMID:28903308
Wang, Fuan; Freage, Lina; Orbach, Ron; Willner, Itamar
2013-09-03
The progressive development of amplified DNA sensors and aptasensors using replication/nicking enzymes/DNAzyme machineries is described. The sensing platforms are based on the tailoring of a DNA template on which the recognition of the target DNA or the formation of the aptamer-substrate complex trigger on the autonomous isothermal replication/nicking processes and the displacement of a Mg(2+)-dependent DNAzyme that catalyzes the generation of a fluorophore-labeled nucleic acid acting as readout signal for the analyses. Three different DNA sensing configurations are described, where in the ultimate configuration the target sequence is incorporated into a nucleic acid blocker structure associated with the sensing template. The target-triggered isothermal autonomous replication/nicking process on the modified template results in the formation of the Mg(2+)-dependent DNAzyme tethered to a free strand consisting of the target sequence. This activates additional template units for the nucleic acid self-replication process, resulting in the ultrasensitive detection of the target DNA (detection limit 1 aM). Similarly, amplified aptamer-based sensing platforms for cocaine are developed along these concepts. The modification of the cocaine-detection template by the addition of a nucleic acid sequence that enables the autonomous secondary coupled activation of a polymerization/nicking machinery and DNAzyme generation path leads to an improved analysis of cocaine (detection limit 10 nM).
Pseudorandom Noise Code-Based Technique for Cloud and Aerosol Discrimination Applications
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.; Harrison, Fenton Wallace
2011-01-01
NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a PN code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths. Keywords: ASCENDS, CO2 sensing, O2 sensing, PN codes, CW lidar
Emerging GaN-based HEMTs for mechanical sensing within harsh environments
NASA Astrophysics Data System (ADS)
Köck, Helmut; Chapin, Caitlin A.; Ostermaier, Clemens; Häberlen, Oliver; Senesky, Debbie G.
2014-06-01
Gallium nitride based high-electron-mobility transistors (HEMTs) have been investigated extensively as an alternative to Si-based power transistors by academia and industry over the last decade. It is well known that GaN-based HEMTs outperform Si-based technologies in terms of power density, area specific on-state resistance and switching speed. Recently, wide band-gap material systems have stirred interest regarding their use in various sensing fields ranging from chemical, mechanical, biological to optical applications due to their superior material properties. For harsh environments, wide bandgap sensor systems are deemed to be superior when compared to conventional Si-based systems. A new monolithic sensor platform based on the GaN HEMT electronic structure will enable engineers to design highly efficient propulsion systems widely applicable to the automotive, aeronautics and astronautics industrial sectors. In this paper, the advancements of GaN-based HEMTs for mechanical sensing applications are discussed. Of particular interest are multilayered heterogeneous structures where spontaneous and piezoelectric polarization between the interface results in the formation of a 2-dimensional electron gas (2DEG). Experimental results presented focus on the signal transduction under strained operating conditions in harsh environments. It is shown that a conventional AlGaN/GaN HEMT has a strong dependence of drain current under strained conditions, thus representing a promising future sensor platform. Ultimately, this work explores the sensor performance of conventional GaN HEMTs and leverages existing technological advances available in power electronics device research. The results presented have the potential to boost GaN-based sensor development through the integration of HEMT device and sensor design research.
Avionics and Power Management for Low-Cost High-Altitude Balloon Science Platforms
NASA Technical Reports Server (NTRS)
Chin, Jeffrey; Roberts, Anthony; McNatt, Jeremiah
2016-01-01
High-altitude balloons (HABs) have become popular as educational and scientific platforms for planetary research. This document outlines key components for missions where low cost and rapid development are desired. As an alternative to ground-based vacuum and thermal testing, these systems can be flight tested at comparable costs. Communication, solar, space, and atmospheric sensing experiments often require environments where ground level testing can be challenging or impossible in certain cases. When performing HAB research the ability to monitor the status of the platform and gather data is key for both scientific and recoverability aspects of the mission. A few turnkey platform solutions are outlined that leverage rapidly evolving open-source engineering ecosystems. Rather than building custom components from scratch, these recommendations attempt to maximize simplicity and cost of HAB platforms to make launches more accessible to everyone.
USDA-ARS?s Scientific Manuscript database
The objective of this work was to design, construct, and test the self-propelled aquatic platform for imaging, multi-tier water sampling, water quality sensing, and depth profiling to document microbial content and environmental covariates in the interior of irrigation ponds and reservoirs. The plat...
A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform
Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes
2015-01-01
This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587
Photoinduced Electron Transfer Based Ion Sensing within an Optical Fiber
Englich, Florian V.; Foo, Tze Cheung; Richardson, Andrew C.; Ebendorff-Heidepriem, Heike; Sumby, Christopher J.; Monro, Tanya M.
2011-01-01
We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium ions is demonstrated. The performance of the dip sensor operating in a high sodium concentration regime (925 ppm Na+) and for lower sodium concentration environments (18.4 ppm Na+) is explored and future approaches to improving the sensor’s signal stability, sensitivity and selectivity are discussed. PMID:22163712
Smartphone Based Platform for Colorimetric Sensing of Dyes
NASA Astrophysics Data System (ADS)
Dutta, Sibasish; Nath, Pabitra
We demonstrate the working of a smartphone based optical sensor for measuring absorption band of coloured dyes. By integration of simple laboratory optical components with the camera unit of the smartphone we have converted it into a visible spectrometer with a pixel resolution of 0.345 nm/pixel. Light from a broadband optical source is allowed to transmit through a specific dye solution. The transmitted light signal is captured by the camera of the smartphone. The present sensor is inexpensive, portable and light weight making it an ideal handy sensor suitable for different on-field sensing.
Wu, Chun-Chang; Chuang, Wen-Yu; Wu, Ching-Da; Su, Yu-Cheng; Huang, Yung-Yang; Huang, Yang-Jing; Peng, Sheng-Yu; Yu, Shih-An; Lin, Chih-Ting; Lu, Shey-Shi
2017-01-01
A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO2 detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO2 sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS) system-on-chip (SoC) is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE), an analog-to-digital convertor (ADC), a digital controller and a power management unit (PMU). Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC) module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO2/Humidity) sensing platform that demonstrates a true self-powering functionality for long-term operations. PMID:28353680
Wu, Chun-Chang; Chuang, Wen-Yu; Wu, Ching-Da; Su, Yu-Cheng; Huang, Yung-Yang; Huang, Yang-Jing; Peng, Sheng-Yu; Yu, Shih-An; Lin, Chih-Ting; Lu, Shey-Shi
2017-03-29
A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO₂ detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO₂ sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS) system-on-chip (SoC) is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE), an analog-to-digital convertor (ADC), a digital controller and a power management unit (PMU). Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC) module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO₂/Humidity) sensing platform that demonstrates a true self-powering functionality for long-term operations.
2011-11-01
RX-TY-TR-2011-0096-01) develops a novel computer vision sensor based upon the biological vision system of the common housefly , Musca domestica...01 summarizes the development of a novel computer vision sensor based upon the biological vision system of the common housefly , Musca domestica
Rossi, Stefano; Gazzola, Enrico; Capaldo, Pietro; Borile, Giulia; Romanato, Filippo
2018-05-18
Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30⁻50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration.
Rossi, Stefano; Gazzola, Enrico; Capaldo, Pietro; Borile, Giulia; Romanato, Filippo
2018-01-01
Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30–50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration. PMID:29783711
NASA Technical Reports Server (NTRS)
Baker, G. R.; Fethe, T. P.
1975-01-01
Research in the application of remotely sensed data from LANDSAT or other airborne platforms to the efficient management of a large timber based forest industry was divided into three phases: (1) establishment of a photo/ground sample correlation, (2) investigation of techniques for multi-spectral digital analysis, and (3) development of a semi-automated multi-level sampling system. To properly verify results, three distinct test areas were selected: (1) Jacksonville Mill Region, Lower Coastal Plain, Flatwoods, (2) Pensacola Mill Region, Middle Coastal Plain, and (3) Mississippi Mill Region, Middle Coastal Plain. The following conclusions were reached: (1) the probability of establishing an information base suitable for management requirements through a photo/ground double sampling procedure, alleviating the ground sampling effort, is encouraging, (2) known classification techniques must be investigated to ascertain the level of precision possible in separating the many densities involved, and (3) the multi-level approach must be related to an information system that is executable and feasible.
Place, Skyler; Blanch-Hartigan, Danielle; Rubin, Channah; Gorrostieta, Cristina; Mead, Caroline; Kane, John; Marx, Brian P; Feast, Joshua; Deckersbach, Thilo; Pentland, Alex Sandy; Nierenberg, Andrew; Azarbayejani, Ali
2017-03-16
There is a critical need for real-time tracking of behavioral indicators of mental disorders. Mobile sensing platforms that objectively and noninvasively collect, store, and analyze behavioral indicators have not yet been clinically validated or scalable. The aim of our study was to report on models of clinical symptoms for post-traumatic stress disorder (PTSD) and depression derived from a scalable mobile sensing platform. A total of 73 participants (67% [49/73] male, 48% [35/73] non-Hispanic white, 33% [24/73] veteran status) who reported at least one symptom of PTSD or depression completed a 12-week field trial. Behavioral indicators were collected through the noninvasive mobile sensing platform on participants' mobile phones. Clinical symptoms were measured through validated clinical interviews with a licensed clinical social worker. A combination hypothesis and data-driven approach was used to derive key features for modeling symptoms, including the sum of outgoing calls, count of unique numbers texted, absolute distance traveled, dynamic variation of the voice, speaking rate, and voice quality. Participants also reported ease of use and data sharing concerns. Behavioral indicators predicted clinically assessed symptoms of depression and PTSD (cross-validated area under the curve [AUC] for depressed mood=.74, fatigue=.56, interest in activities=.75, and social connectedness=.83). Participants reported comfort sharing individual data with physicians (Mean 3.08, SD 1.22), mental health providers (Mean 3.25, SD 1.39), and medical researchers (Mean 3.03, SD 1.36). Behavioral indicators passively collected through a mobile sensing platform predicted symptoms of depression and PTSD. The use of mobile sensing platforms can provide clinically validated behavioral indicators in real time; however, further validation of these models and this platform in large clinical samples is needed. ©Skyler Place, Danielle Blanch-Hartigan, Channah Rubin, Cristina Gorrostieta, Caroline Mead, John Kane, Brian P Marx, Joshua Feast, Thilo Deckersbach, Alex “Sandy” Pentland, Andrew Nierenberg, Ali Azarbayejani. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.03.2017.
Biosensing with optical fiber gratings
NASA Astrophysics Data System (ADS)
Chiavaioli, Francesco; Baldini, Francesco; Tombelli, Sara; Trono, Cosimo; Giannetti, Ambra
2017-06-01
Optical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.
Ge, Minghao; Bai, Pengli; Chen, Mingli; Tian, Jingjing; Hu, Jun; Zhi, Xu; Yin, Huancai; Yin, Jian
2018-03-01
Here, we utilized the ultrasonic emulsification technique to generate hyaluronic acid microspheres incorporating a fluorescence-based glucose biosensor. We synthesized a novel lanthanide ion luminophore based on Eu 3+ . Eu sulfosuccinimidyl dextran (Eu-dextran) and Alexa Fluor 647 sulfosuccinimidyl-ConA (Alexa Fluor 647-ConA) were encapsulated in hyaluronic acid hydrogel to generate microspheres. Glucose sensing was carried out using a fluorescence resonance energy transfer (FRET)-based assay principle. A proportional fluorescence intensity increase was found within a 0.5-10-mM glucose concentration range. The glucose-sensing strategy showed an excellent tolerance for potential interferents. Meanwhile, the fluorescent signal of hyaluronic acid microspheres was very stable after testing for 72 h in glucose solution. Overall, hyaluronic acid microspheres encapsulating sensing biomolecules offer a stable and biocompatible biosensor for a variety of applications including cell culture systems, tissue engineering, detection of blood glucose, etc. Graphical abstract We report an ingenious biosensor encapsulated in hyaluronic acid microspheres for monitoring of glucose. Glucose sensing is carried out using a fluorescence resonance energy transfer-based assay principle with a novel lanthanide ions luminophore. The glucose detection system has excellent biocompatibility and stability for monitoring of glucose.
A High Performance Impedance-based Platform for Evaporation Rate Detection.
Chou, Wei-Lung; Lee, Pee-Yew; Chen, Cheng-You; Lin, Yu-Hsin; Lin, Yung-Sheng
2016-10-17
This paper describes the method of a novel impedance-based platform for the detection of the evaporation rate. The model compound hyaluronic acid was employed here for demonstration purposes. Multiple evaporation tests on the model compound as a humectant with various concentrations in solutions were conducted for comparison purposes. A conventional weight loss approach is known as the most straightforward, but time-consuming, measurement technique for evaporation rate detection. Yet, a clear disadvantage is that a large volume of sample is required and multiple sample tests cannot be conducted at the same time. For the first time in literature, an electrical impedance sensing chip is successfully applied to a real-time evaporation investigation in a time sharing, continuous and automatic manner. Moreover, as little as 0.5 ml of test samples is required in this impedance-based apparatus, and a large impedance variation is demonstrated among various dilute solutions. The proposed high-sensitivity and fast-response impedance sensing system is found to outperform a conventional weight loss approach in terms of evaporation rate detection.
A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor
Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang
2015-01-01
A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis. PMID:26569239
A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.
Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang
2015-11-09
A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.
Ionospheric Profiles from Ultraviolet Remote Sensing
1998-01-01
remote sensing of the ionosphere from orbiting space platforms. Remote sensing of the nighttime ionosphere is a relatively straightforward process due to the absence of the complications brought about by daytime solar radiation. Further, during the nighttime hours, the O(+)-H(+) transition level in both the mid- and low-latitude ionospheres lies around 750 km, which is within the range of accuracy of the path matrix inversion. The intensity of the O(+)-e(-) recombination radiation as observed from orbiting space platforms can now be used to
Polymer waveguide grating sensor integrated with a thin-film photodetector
Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo
2014-01-01
This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407
Wei, Wei; Nong, Jinpeng; Zhang, Guiwen; Tang, Linlong; Jiang, Xiao; Chen, Na; Luo, Suqin; Lan, Guilian; Zhu, Yong
2016-01-01
A graphene-based long-period fiber grating (LPFG) surface plasmon resonance (SPR) sensor is proposed. A monolayer of graphene is coated onto the Ag film surface of the LPFG SPR sensor, which increases the intensity of the evanescent field on the surface of the fiber and thereby enhances the interaction between the SPR wave and molecules. Such features significantly improve the sensitivity of the sensor. The experimental results demonstrate that the sensitivity of the graphene-based LPFG SPR sensor can reach 0.344 nm%−1 for methane, which is improved 2.96 and 1.31 times with respect to the traditional LPFG sensor and Ag-coated LPFG SPR sensor, respectively. Meanwhile, the graphene-based LPFG SPR sensor exhibits excellent response characteristics and repeatability. Such a SPR sensing scheme offers a promising platform to achieve high sensitivity for gas-sensing applications. PMID:28025483
Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science
NASA Astrophysics Data System (ADS)
Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.
2017-09-01
Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; Xu, Fuxiang; Song, Debin; Zheng, Xiangyu; Chen, Maosi
2017-09-01
This paper conducted dynamic monitoring over the green tide (large green alga—Ulva prolifera) occurred in the Yellow Sea in 2014 to 2016 by the use of multi-source remote sensing data, including GF-1 WFV, HJ-1A/1B CCD, CBERS-04 WFI, Landsat-7 ETM+ and Landsta-8 OLI, and by the combination of VB-FAH (index of Virtual-Baseline Floating macroAlgae Height) with manual assisted interpretation based on remote sensing and geographic information system technologies. The result shows that unmanned aerial vehicle (UAV) and shipborne platform could accurately monitor the distribution of Ulva prolifera in small spaces, and therefore provide validation data for the result of remote sensing monitoring over Ulva prolifera. The result of this research can provide effective information support for the prevention and control of Ulva prolifera.
Gomez-Cruz, Juan; Nair, Srijit; Manjarrez-Hernandez, Angel; Gavilanes-Parra, Sandra; Ascanio, Gabriel; Escobedo, Carlos
2018-05-30
Rapid, inexpensive and sensitive detection of uropathogenic Escherichia coli (UPEC), a common cause of ascending urinary tract infections (UTIs) including cystitis and pyelonephritis, is critical given the increasing number of cases and its recurrence worldwide. In this paper, we present a label-free nanoplasmonic sensing platform, built with off-the-shelf optical and electronic components, which can detect intact UPEC at concentrations lower than the physiological limit for UTI diagnosis, in real time. The sensing platform consists of a red LED light source, lens assembly, CMOS detector, Raspberry Pi interface in conjugation with a metallic flow-through nanohole array-based sensor. Detection is achieved exploiting nanoplasmonic phenomena from the nanohole arrays through surface plasmon resonance imaging (SPRi) technique. The platform has a bulk sensitivity of 212 pixel intensity unit (PIU)/refractive index unit (RIU), and a resolution in the order of 10 -6 RIU. We demonstrate capture and detection of UPEC with a detection limit of ~100 CFU/ml - a concentration well below the threshold limit for UTI diagnosis in clinical samples. We also demonstrate detection of UPEC in spiked human urine samples for two different concentrations of bacteria. This work is particularly relevant for point-of-care applications, especially for regions around the world where accessibility to medical facilities is heavily dependent upon economy, and availability. Copyright © 2018 Elsevier B.V. All rights reserved.
Integrated long-range UAV/UGV collaborative target tracking
NASA Astrophysics Data System (ADS)
Moseley, Mark B.; Grocholsky, Benjamin P.; Cheung, Carol; Singh, Sanjiv
2009-05-01
Coordinated operations between unmanned air and ground assets allow leveraging of multi-domain sensing and increase opportunities for improving line of sight communications. While numerous military missions would benefit from coordinated UAV-UGV operations, foundational capabilities that integrate stove-piped tactical systems and share available sensor data are required and not yet available. iRobot, AeroVironment, and Carnegie Mellon University are working together, partially SBIR-funded through ARDEC's small unit network lethality initiative, to develop collaborative capabilities for surveillance, targeting, and improved communications based on PackBot UGV and Raven UAV platforms. We integrate newly available technologies into computational, vision, and communications payloads and develop sensing algorithms to support vision-based target tracking. We first simulated and then applied onto real tactical platforms an implementation of Decentralized Data Fusion, a novel technique for fusing track estimates from PackBot and Raven platforms for a moving target in an open environment. In addition, system integration with AeroVironment's Digital Data Link onto both air and ground platforms has extended our capabilities in communications range to operate the PackBot as well as in increased video and data throughput. The system is brought together through a unified Operator Control Unit (OCU) for the PackBot and Raven that provides simultaneous waypoint navigation and traditional teleoperation. We also present several recent capability accomplishments toward PackBot-Raven coordinated operations, including single OCU display design and operation, early target track results, and Digital Data Link integration efforts, as well as our near-term capability goals.
Qiao, Li'na; Qian, Sihua; Wang, Yuhui; Yan, Shifeng; Lin, Hengwei
2018-03-26
Fluorescent carbon dots (CDs) have received considerable attention in recent years due to their superior optical properties. To take further advantages of these unique features, herein, a CDs-based "lab-on-a-nanoparticle" approach for the detection and discrimination of antibiotics is developed. The sensing platform was designed based on the different channel's fluorescence recoveries or further quenching of the full-color emissive CDs (F-CDs) and metal ion ensembles upon the addition of antibiotics. The F-CDs exhibited unusually comparable emission intensity nearly across the entire visible spectrum even as the excitation wavelength is shifted, making it very suitable for the construction of multi-channel sensing systems. The sensing platform was fabricated on the basis of the competing interaction of metal ions with the F-CDs and antibiotics. Three metal ions (i.e., Cu 2+ , Ce 3+ and Eu 3+ ) can efficiently quench the fluorescence of the F-CDs. Upon the addition of antibiotics, the fluorescent intensities either recovered at different emission wavelengths or were further quenched to various degrees. The fluorescence response patterns at different emission wavelength were characteristic for each antibiotic and can be quantitatively differentiated by standard statistical methods (e.g., hierarchical clustering analysis and principal component analysis). Moreover, as an example, the proposed method was applied for quantitative detection of oxytetracycline with a limit of detection to be 0.06 μm. Finally, the sensing system was successfully employed for residual antibiotics detection and identification in real food samples. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ferhan, Abdul Rahim; Ma, Gamaliel Junren; Jackman, Joshua A.; Sut, Tun Naw; Park, Jae Hyeon; Cho, Nam-Joon
2017-01-01
The integration of supported lipid membranes with surface-based nanoplasmonic arrays provides a powerful sensing approach to investigate biointerfacial phenomena at membrane interfaces. While a growing number of lipid vesicles, protein, and nucleic acid systems have been explored with nanoplasmonic sensors, there has been only very limited investigation of the interactions between solution-phase nanomaterials and supported lipid membranes. Herein, we established a surface-based localized surface plasmon resonance (LSPR) sensing platform for probing the interaction of dielectric nanoparticles with supported lipid bilayer (SLB)-coated, plasmonic nanodisk arrays. A key emphasis was placed on controlling membrane functionality by tuning the membrane surface charge vis-à-vis lipid composition. The optical sensing properties of the bare and SLB-coated sensor surfaces were quantitatively compared, and provided an experimental approach to evaluate nanoparticle–membrane interactions across different SLB platforms. While the interaction of negatively-charged silica nanoparticles (SiNPs) with a zwitterionic SLB resulted in monotonic adsorption, a stronger interaction with a positively-charged SLB resulted in adsorption and lipid transfer from the SLB to the SiNP surface, in turn influencing the LSPR measurement responses based on the changing spatial proximity of transferred lipids relative to the sensor surface. Precoating SiNPs with bovine serum albumin (BSA) suppressed lipid transfer, resulting in monotonic adsorption onto both zwitterionic and positively-charged SLBs. Collectively, our findings contribute a quantitative understanding of how supported lipid membrane coatings influence the sensing performance of nanoplasmonic arrays, and demonstrate how the high surface sensitivity of nanoplasmonic sensors is well-suited for detecting the complex interactions between nanoparticles and lipid membranes. PMID:28644423
NASA Astrophysics Data System (ADS)
Cho, Won-Ju; Lim, Cheol-Min
2018-02-01
In this study, we developed a cost-effective ion-sensing field-effect transistor (FET) with an extended gate (EG) fabricated on a separative paper substrate. The pH sensing characteristics of the paper EG was compared with those of other EGs fabricated on silicon, glass, or polyimide substrates. The fabricated paper-based EGFET exhibited excellent sensitivity close to the Nernst response limit as well as to that of the other substrate-based EGFETs. In addition, we found that all EGFETs, regardless of the substrate, have similar non-ideal behavior, i.e., drift phenomenon and hysteresis width. To investigate the degradation and durability of the paper EG after prolonged use, aging-effect tests were carried out in terms of the hysteresis width and sensitivity over a course of 30 days. As a result, the paper EG maintained stable pH sensing characteristics after 30 days. Therefore, we expect that paper EGFETs can provide a cost-effective sensor platform.
Remotely Powered Reconfigurable Receiver for Extreme Environment Sensing Platforms
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.
2012-01-01
Wireless sensors connected in a local network offer revolutionary exploration capabilities, but the current solutions do not work in extreme environments of low temperatures (200K) and low to moderate radiation levels (<50 krad). These sensors (temperature, radiation, infrared, etc.) would need to operate outside the spacecraft/ lander and be totally independent of power from the spacecraft/lander. Flash memory field-programmable gate arrays (FPGAs) are being used as the main signal processing and protocol generation platform in a new receiver. Flash-based FPGAs have been shown to have at least 100 reduced standby power and 10 reduction operating power when compared to normal SRAM-based FPGA technology.
HERA: A New Platform for Embedding Agents in Heterogeneous Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Alonso, Ricardo S.; de Paz, Juan F.; García, Óscar; Gil, Óscar; González, Angélica
Ambient Intelligence (AmI) based systems require the development of innovative solutions that integrate distributed intelligent systems with context-aware technologies. In this sense, Multi-Agent Systems (MAS) and Wireless Sensor Networks (WSN) are two key technologies for developing distributed systems based on AmI scenarios. This paper presents the new HERA (Hardware-Embedded Reactive Agents) platform, that allows using dynamic and self-adaptable heterogeneous WSNs on which agents are directly embedded on the wireless nodes This approach facilitates the inclusion of context-aware capabilities in AmI systems to gather data from their surrounding environments, achieving a higher level of ubiquitous and pervasive computing.
Chen, Guan-Hua; Chen, Wei-Yu; Yen, Yu-Chun; Wang, Chia-Wei; Chang, Huan-Tsung; Chen, Chien-Fu
2014-07-15
An on-field colorimetric sensing strategy employing gold nanoparticles (AuNPs) and a paper-based analytical platform was investigated for mercury ion (Hg(2+)) detection at water sources. By utilizing thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry, label-free detection oligonucleotide sequences were attached to unmodified gold nanoparticles to provide rapid mercury ion sensing without complicated and time-consuming thiolated or other costly labeled probe preparation processes. Not only is this strategy's sensing mechanism specific toward Hg(2+), rather than other metal ions, but also the conformational change in the detection oligonucleotide sequences introduces different degrees of AuNP aggregation that causes the color of AuNPs to exhibit a mixture variance. To eliminate the use of sophisticated equipment and minimize the power requirement for data analysis and transmission, the color variance of multiple detection results were transferred and concentrated on cellulose-based paper analytical devices, and the data were subsequently transmitted for the readout and storage of results using cloud computing via a smartphone. As a result, a detection limit of 50 nM for Hg(2+) spiked pond and river water could be achieved. Furthermore, multiple tests could be performed simultaneously with a 40 min turnaround time. These results suggest that the proposed platform possesses the capability for sensitive and high-throughput on-site mercury pollution monitoring in resource-constrained settings.
Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain
2014-05-16
The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices.
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Dongming; Feng, Maria Q.
2017-10-01
State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces.
NASA Astrophysics Data System (ADS)
Dovis, Fabio; Lo Presti, Letizia; Magli, Enrico; Mulassano, Paolo; Olmo, Gabriella
2001-12-01
The international community agrees that the new technology based on the use of Unmanned Air Vehicles High Altitude Very long Endurance (UAV-HAVE) could play an important role for the development of remote sensing and telecommunication applications. A UAV-HAVE vehicle can be described as a low- cost flying infrastructure (compared with satellites) optimized for long endurance operations at an altitude of about 20 km. Due to such features, its role is similar to satellites, with the major advantages of being less expensive, more flexible, movable on demand, and suitable for a larger class of applications. According to this background, Politecnico di Torino is involved as coordinator in an important project named HeliNet, that represent one of the main activities in Europe in the field of stratospheric platforms, and is concerned with the development of a network of UAV-HAVE aircraft. A key point of this project is the feasibility study for the provision of several services, namely traffic monitoring, environmental surveillance, broadband communications and navigation. This paper reports preliminary results on the HeliNet imaging system and its remote sensing applications. In fact, many environmental surveillance services (e.g. regional public services for agriculture, hydrology, fire protection, and more) require very high-resolution imaging, and can be offered at a lower cost if operated by a shared platform. The philosophy behind the HeliNet project seems to be particularly suitable to manage such missions. In particular, we present a system- level study of possible imaging payloads to be mounted on- board of a stratospheric platform to collect Earth observation data. Firstly, we address optical payloads such as multispectral and/or hyperspectral ones, which are a very short-term objective of the project. Secondly, as an example of mid-term on-board payload, we examine the possibility to carry on the platform a light-SAR system. For both types of payload, we show how intelligent processing algorithms for environmental data can be run on-board in real-time, in order to make data analysis and transmission more effective, and designed to match the constrains imposed by a UAV-HAVE platform. The results of the study lead to the conclusion that the stratospheric technology seems to be a competitive infrastructure (with respect to the satellites) in the remote sensing scenarios described above.
3D MOEMS-based optical micro-bench platform for the miniaturization of sensing devices
NASA Astrophysics Data System (ADS)
Garcia-Blanco, Sonia; Caron, Jean-Sol; Leclair, Sébastien; Topart, Patrice A.; Jerominek, Hubert
2008-02-01
As we enter into the 21st century, the need for miniaturized portable diagnostic devices is increasing continuously. Portable devices find important applications for point-of-care diagnostics, patient self-monitoring and in remote areas, such as unpopulated regions where the cost of large laboratory facilities is not justifiable, underdeveloped countries and other remote locations such as space missions. The advantage of miniaturized sensing optical systems includes not only the reduced weight and size but also reduced cost, decreased time to results and robustness (e.g. no need for frequent re-alignments). Recent advances in micro-fabrication and assembly technologies have enabled important developments in the field of miniaturized sensing systems. INO has developed a technology platform for the three dimensional integration of MOEMS on an optical microbench. Building blocks of the platform include microlenses, micromirrors, dichroic beamsplitters, filters and optical fibers, which can be positioned using passive alignment structures to build the desired miniaturised system. The technology involves standard microfabrication, thick resist UV-lithography, thick metal electroplating, soldering, replication in sol-gel materials and flip-chip bonding processes. The technology is compatible with wafer-to-wafer bonding. A placement accuracy of +/- 5 μm has been demonstrated thanks to the integration of alignment marks co registered with other optical elements fabricated on different wafers. In this paper, the building blocks of the technology will be detailed. The design and fabrication of a 5x5 channels light processing unit including optical fibers, mirrors and collimating microlenses will be described. Application of the technology to various kinds of sensing devices will be discussed.
Intercomparison of in-situ and remote sensing δD signals in tropospheric water vapour
NASA Astrophysics Data System (ADS)
Schneider, Matthias; González, Yenny; Dyroff, Christoph; Christner, Emanuel; García, Omaira; Wiegele, Andreas; Andrey, Javier; Barthlott, Sabine; Blumenstock, Thomas; Guirado, Carmen; Hase, Frank; Ramos, Ramon; Rodríguez, Sergio; Sepúveda, Eliezer
2014-05-01
The main mission of the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi-global tropospheric water vapour isototopologue dataset of a good and well-documented quality. We present a first empirical validation of MUSICA's remote sensing δD products (ground-based FTIR within NDACC, Network for the Detection of Atmospheric Composition Change, and space-based with IASI, Infrared Atmospheric Sounding Interferometer, flown on METOP). As reference we use in-situ measurements made on the island of Tenerife at two different altitudes (2370 and 3550 m a.s.l., using two Picarro L2120-i water isotopologue analyzers) and aboard an aircraft (between 200 and 6800 m a.s.l., using the homemade ISOWAT instrument).
Hill, Ryan T
2015-01-01
The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.
Sun, Zhong Yu; Chen, Yan Qiao; Yang, Long; Tang, Guang Liang; Yuan, Shao Xiong; Lin, Zhi Wen
2017-02-01
Low-altitude unmanned aerial vehicles (UAV) remote sensing system overcomes the deficiencies of space and aerial remote sensing system in resolution, revisit period, cloud cover and cost, which provides a novel method for ecological research on mesoscale. This study introduced the composition of UAV remote sensing system, reviewed its applications in species, population, community and ecosystem ecology research. Challenges and opportunities of UAV ecology were identified to direct future research. The promising research area of UAV ecology includes the establishment of species morphology and spectral characteristic data base, species automatic identification, the revelation of relationship between spectral index and plant physiological processes, three-dimension monitoring of ecosystem, and the integration of remote sensing data from multi resources and multi scales. With the development of UAV platform, data transformation and sensors, UAV remote sensing technology will have wide application in ecology research.
A Wearable Mobile Sensor Platform to Assist Fruit Grading
Aroca, Rafael V.; Gomes, Rafael B.; Dantas, Rummennigue R.; Calbo, Adonai G.; Gonçalves, Luiz M. G.
2013-01-01
Wearable computing is a form of ubiquitous computing that offers flexible and useful tools for users. Specifically, glove-based systems have been used in the last 30 years in a variety of applications, but mostly focusing on sensing people's attributes, such as finger bending and heart rate. In contrast, we propose in this work a novel flexible and reconfigurable instrumentation platform in the form of a glove, which can be used to analyze and measure attributes of fruits by just pointing or touching them with the proposed glove. An architecture for such a platform is designed and its application for intuitive fruit grading is also presented, including experimental results for several fruits. PMID:23666134
Cellphone-based devices for bioanalytical sciences
Vashist, Sandeep Kumar; Mudanyali, Onur; Schneider, E.Marion; Zengerle, Roland; Ozcan, Aydogan
2014-01-01
During the last decade, there has been a rapidly growing trend toward the use of cellphone-based devices (CBDs) in bioanalytical sciences. For example, they have been used for digital microscopy, cytometry, read-out of immunoassays and lateral flow tests, electrochemical and surface plasmon resonance based bio-sensing, colorimetric detection and healthcare monitoring, among others. Cellphone can be considered as one of the most prospective devices for the development of next-generation point-of-care (POC) diagnostics platforms, enabling mobile healthcare delivery and personalized medicine. With more than 6.5 billion cellphone subscribers worldwide and approximately 1.6 billion new devices being sold each year, cellphone technology is also creating new business and research opportunities. Many cellphone-based devices, such as those targeted for diabetic management, weight management, monitoring of blood pressure and pulse rate, have already become commercially-available in recent years. In addition to such monitoring platforms, several other CBDs are also being introduced, targeting e.g., microscopic imaging and sensing applications for medical diagnostics using novel computational algorithms and components already embedded on cellphones. This manuscript aims to review these recent developments in CBDs for bioanalytical sciences along with some of the challenges involved and the future opportunities. PMID:24287630
Secure distribution for high resolution remote sensing images
NASA Astrophysics Data System (ADS)
Liu, Jin; Sun, Jing; Xu, Zheng Q.
2010-09-01
The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.
Pierini, Gastón D; Foster, Christopher W; Rowley-Neale, Samuel J; Fernández, Héctor; Banks, Craig E
2018-06-12
Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs.
The International Space Station: A Unique Platform For Terrestrial Remote Sensing
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Evans, Cynthia A.
2012-01-01
The International Space Station (ISS) became operational in November of 2000, and until recently remote sensing activities and operations have focused on handheld astronaut photography of the Earth. This effort builds from earlier NASA and Russian space programs (e.g. Evans et al. 2000; Glazovskiy and Dessinov 2000). To date, astronauts have taken more than 600,000 images of the Earth s land surface, oceans, and atmospheric phenomena from orbit using film and digital cameras as part two payloads: NASA s Crew Earth Observations experiment (http://eol.jsc.nasa.gov/) and Russia s Uragan experiment (Stefanov et al. 2012). Many of these images have unique attributes - varying look angles, ground resolutions, and illumination - that are not available from other remote sensing platforms. Despite this large volume of imagery and clear capability for Earth remote sensing, the ISS historically has not been perceived as an Earth observations platform by many remote sensing scientists. With the recent installation of new facilities and sophisticated sensor systems, and additional systems manifested and in development, that perception is changing to take advantage of the unique capabilities and viewing opportunities offered by the ISS.
Zhu, Chen; Chen, Yizheng; Zhuang, Yiyang; Huang, Jie
2018-04-24
We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments.
Displacement and Strain Measurement up to 1000 °C Using a Hollow Coaxial Cable Fabry-Perot Resonator
Chen, Yizheng; Zhuang, Yiyang
2018-01-01
We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments. PMID:29695063
NASA Technical Reports Server (NTRS)
1982-01-01
Research issues in the area of electromagnetic measurements and signal handling of remotely sensed data are identified. The following seven issues are discussed; platform/sensor system position and velocity, platform/sensor attitudes and attitude rates, optics and antennas, detectors and associated electronics, sensor calibration, signal handling, and system design.
Mission planning for large microwave radiometers
NASA Technical Reports Server (NTRS)
Schartel, W. A.
1984-01-01
Earth orbiting, remote sensing platforms that use microwave radiometers as sensors are susceptible to data interpretation difficulties. The capability of the large microwave radiometer (LMR) was augmented with the inclusion of auxillary sensors that expand and enhance the LMR capability. The final system configuration demonstrates a holistic approach in the design of future orbiting remote sensing platforms that use a LMR as the core instrument.
NASA Astrophysics Data System (ADS)
Croce, Robert A., Jr.
Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications. The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled outer membranes. The concentration of glucose and hydrogen peroxide within the sensor geometry, the transient response and the device response time has been simulated for both systems.
It is currently possible to measure landscape change over large areas and determine trends in environmental condition using advanced space-based technologies accompanied by geospatial analyses of the remotely sensed data. There are numerous earth-observing satellite platforms fo...
Chen, Jian; Wang, Jun-Feng; Wu, Xue-Zhong; Rong, Zhen; Dong, Pei-Tao; Xiao, Rui
2018-06-01
We developed a high-performance surface-enhanced Raman scattering (SERS) sensing platform that can be used for specific and sensitive DNA detection. The SERS platform combines the advantages of Au film over nanosphere (AuFON) substrate and Ag@PATP@SiO2 SERS tag. SERS tag-on-AuFON is a sensing system that operates by the self-assembly of SERS tag onto an AuFON substrate in the presence of target DNAs. The SERS signals can be dramatically enhanced by the formation of "hot spots" in the interstices between the assembled nanostructures, as confirmed by finite-difference time-domain (FDTD) simulation. As a new sensing platform, SERS tag-on-AuFON was utilized to detect Staphylococcus aureus (S. aureus) DNA with a limit of detection at 1 nM. A linear relationship was also observed between the SERS intensity at Raman peak 1439 cm-1 and the logarithm of target DNA concentrations ranging from 1 μM to 1 nM. Besides, the sensing platform showed good homogeneity, with a relative standard deviation of about 1%. The sensitive SERS platform created in this study is a promising tool for detecting trace biochemical molecules because of its relatively simple and effective fabrication procedure, high sensitivity, and high reproducibility of the SERS effect.
Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction.
Jin, Hye Jun; Lee, Sang Hun; Kim, Tae Hyun; Park, Juhun; Song, Hyun Seok; Park, Tai Hyun; Hong, Seunghun
2012-05-15
We developed a nanovesicle-based bioelectronic nose (NBN) that could recognize a specific odorant and mimic the receptor-mediated signal transmission of human olfactory systems. To build an NBN, we combined a single-walled carbon nanotube-based field effect transistor with cell-derived nanovesicles containing human olfactory receptors and calcium ion signal pathways. Importantly, the NBN took advantages of cell signal pathways for sensing signal amplification, enabling ≈ 100 times better sensitivity than that of previous bioelectronic noses based on only olfactory receptor protein and carbon nanotube transistors. The NBN sensors exhibited a human-like selectivity with single-carbon-atomic resolution and a high sensitivity of 1 fM detection limit. Moreover, this sensor platform could mimic a receptor-meditated cellular signal transmission in live cells. This sensor platform can be utilized for the study of molecular recognition and biological processes occurring at cell membranes and also for various practical applications such as food screening and medical diagnostics. Copyright © 2012 Elsevier B.V. All rights reserved.
Capone, S; Manera, M G; Taurino, A; Siciliano, P; Rella, R; Luby, S; Benkovicova, M; Siffalovic, P; Majkova, E
2014-02-04
Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.
Biosensor platform based on carbon nanotubes covalently modified with aptamers
NASA Astrophysics Data System (ADS)
Komarov, I. A.; Rubtsova, E. I.; Golovin, A. V.; Bobrinetskiy, I. I.
2016-12-01
We developed a new platform for biosensing applications. Aptamers as sensitive agents have a great potential and gives us possibility to have highest possible selectivity among other sensing agents like enzymes or antibodies. We covalently bound aptamers to the functional groups of c-CNTs and then put this system on the surface of polymer substrate. Thus we got high sensitive flexible transparent biological sensors. We also suggest that by varying aptamer type we can make set of biosensors for disease detection which can be integrated into self-healthcare systems and gadgets.
NASA Technical Reports Server (NTRS)
Giardino, Marco J.; Haley, Bryan S.
2005-01-01
Cultural resource management consists of research to identify, evaluate, document and assess cultural resources, planning to assist in decision-making, and stewardship to implement the preservation, protection and interpretation of these decisions and plans. One technique that may be useful in cultural resource management archaeology is remote sensing. It is the acquisition of data and derivative information about objects or materials (targets) located on the Earth's surface or in its atmosphere by using sensor mounted on platforms located at a distance from the targets to make measurements on interactions between the targets and electromagnetic radiation. Included in this definition are systems that acquire imagery by photographic methods and digital multispectral sensors. Data collected by digital multispectral sensors on aircraft and satellite platforms play a prominent role in many earth science applications, including land cover mapping, geology, soil science, agriculture, forestry, water resource management, urban and regional planning, and environmental assessments. Inherent in the analysis of remotely sensed data is the use of computer-based image processing techniques. Geographical information systems (GIS), designed for collecting, managing, and analyzing spatial information, are also useful in the analysis of remotely sensed data. A GIS can be used to integrate diverse types of spatially referenced digital data, including remotely sensed and map data. In archaeology, these tools have been used in various ways to aid in cultural resource projects. For example, they have been used to predict the presence of archaeological resources using modern environmental indicators. Remote sensing techniques have also been used to directly detect the presence of unknown sites based on the impact of past occupation on the Earth's surface. Additionally, remote sensing has been used as a mapping tool aimed at delineating the boundaries of a site or mapping previously unknown features. All of these applications are pertinent to the goals of site discovery and assessment in cultural resource management.
Development of paper-based wireless communication modules for point-of-care diagnostic applications
NASA Astrophysics Data System (ADS)
Smith, Suzanne; Bezuidenhout, Petroné H.; Land, Kevin; Korvink, Jan G.; Mager, Dario
2016-02-01
We present an ultra-high frequency radio frequency identification based wireless communication set-up for paper-based point-of-care diagnostic applications, based on a sensing radio frequency identification chip. Paper provides a low-cost, disposable platform for ease of fluidic handling without bulky instrumentation, and is thus ideally suited for point-ofcare applications; however, result communication - a crucial aspect for healthcare to be implemented effectively - is still lacking. Printing of radio frequency identification antennas and electronic circuitry for sensing on paper are presented, with read out of the results using a radio frequency identification reader illustrated, demonstrating the feasibility of developing integrated, all-printed solutions for point-of-care diagnosis in resource-limited settings.
Wide-Area Persistent Energy-Efficient Maritime Sensing
2015-09-30
Matt Reynolds, Lefteris Kampianakis, and Andreas Pedrosse-Engel at UW designed and tested a Software Defined Radar testbed as well as an Arduino - based ...hardware based on a software-defined radio platform. 2) Development of a standalone Arduino - based backscatter node. 3) Analysis of the limits of the... Arduino - based node that can modulate radar backscatter with data received from a sensor using a low-power Arduino Nano processor. Figure 5 shows a
Nemati, Mahdieh; Santos, Abel
2018-01-01
Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA) to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time). The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA), which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS) signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT) using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA)-modified NAA (i.e., sensing element) and quercetin (i.e., analyte). BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT) to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different concentrations of quercetin. The multi-point sensing performance of BL-NAAs was determined for each pore layer, with an average sensitivity and low limit of detection of 600 nm (mg mL−1)−1 and 0.14 mg mL−1, respectively. BL-NAAs photonic structures have the capability to be used as platforms for multi-point RIfS sensing of biomolecules that can be further extended for simultaneous size-exclusion separation and multi-analyte sensing using these bilayered nanostructures. PMID:29415436
Polymer nanofiber-carbon nanotube network generating circuits
NASA Astrophysics Data System (ADS)
Mutlu, Mustafa Umut; Akın, Osman; Yildiz, Ümit Hakan
2018-02-01
The polymer nanofiber carbon nanotube (CNT) based devices attracts attention since they promise high performance for next generation devices such as wearable electronics, ultra-light weighted appliances and foldable devices. This abstract describes the utilization of polymer nanofibers and CNT as major component of low cost foldable photo-resistor. We use polymer nanofiber as template guiding CNTs to generate nanocircuits and conductive sensing network. The controlled combination of CNTs and polymer nanofibers provide opportunities for device miniaturization without loss of performance. The nanofiber-CNT network based photo-resistor exhibits broad band response 400 to 1600 nm that holding promises for ultra-thin devices and new sensing platforms.
NASA Astrophysics Data System (ADS)
Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang
2017-10-01
In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.
Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array
Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A.
2016-01-01
Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging. PMID:27739472
Selvaraj, Viji; Thomas, Neethi; Anthuvan, Allen Joseph; Nagamony, Ponpandian; Chinnuswamy, Viswanathan
2017-12-14
In the present study, an attempt was made to develop a proof of concept for the detection of nitroaromatic explosive derivatives through the photoluminescence (PL) quenching process using functionalized diatom frustules as a sensing platform. The diatom frustules are composed of nanostructured, highly porous biogenic silica material and emit strong, visible blue PL upon UV excitation. PL-active biosilica was isolated from the marine diatom Nitzschia sp. and was amine-functionalized to develop a sensing platform. Functionalized diatom frustules were further characterized using field emission scanning electron microscope and a series of spectroscopic methods. When nitroaromatic compounds were bound to the functionalized diatom frustules biosilica, the PL intensity from the functionalized biosilica was partially quenched due to the electrophilic nature of the nitro (-NO) groups. The quenching process confirmed the Meisenheimer complex formation and was investigated by using Fourier transform infrared spectroscopy and time-resolved photoluminescence studies. The developed platform was further evaluated for its sensitivity and specificity, and the limit of detection (LOD) of the assay was determined as 1 μM for a series of nitroaromatic explosive compounds. In conclusion, the developed sensing platform will have great utility in the development of on-site detection platforms for sensitive detection of warfare explosive nitroaromatic compounds from the environment.
Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path
Bergeron, Hugo; Sinclair, Laura C.; Swann, William C.; Nelson, Craig W.; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R.; Coddington, Ian; Newbury, Nathan R.
2018-01-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10−14 at one second and below 10−17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems. PMID:29607352
Tung, Thanh Tran
2017-01-01
The early diagnosis of diseases, e.g., Parkinson’s and Alzheimer’s disease, diabetes, and various types of cancer, and monitoring the response of patients to the therapy plays a critical role in clinical treatment; therefore, there is an intensive research for the determination of many clinical analytes. In order to achieve point-of-care sensing in clinical practice, sensitive, selective, cost-effective, simple, reliable, and rapid analytical methods are required. Biosensors have become essential tools in biomarker sensing, in which electrode material and architecture play critical roles in achieving sensitive and stable detection. Carbon nanomaterials in the form of particle/dots, tube/wires, and sheets have recently become indispensable elements of biosensor platforms due to their excellent mechanical, electronic, and optical properties. This review summarizes developments in this lucrative field by presenting major biosensor types and variability of sensor platforms in biomedical applications. PMID:28825646
Policy 2.0 Platform for Mobile Sensing and Incentivized Targeted Shifts in Mobility Behavior
Semanjski, Ivana; Lopez Aguirre, Angel Javier; De Mol, Johan; Gautama, Sidharta
2016-01-01
Sustainable mobility and smart mobility management play important roles in achieving smart cities’ goals. In this context we investigate the role of smartphones as mobility behavior sensors and evaluate the responsivity of different attitudinal profiles towards personalized route suggestion incentives delivered via mobile phones. The empirical results are based on mobile sensed data collected from more than 3400 people’s real life over a period of six months. The findings show which user profiles are most likely to accept such incentives and how likely they are to result in more sustainable mode choices. In addition we provide insights into tendencies towards accepting more sustainable route options for different trip purposes and illustrate smart city platform potential (for collection of mobility behavior data and delivery of incentives) as a tool for development of personalized mobility management campaigns and policies. PMID:27399700
Status and Perspectives of Ion Track Electronics for Advanced Biosensing
NASA Astrophysics Data System (ADS)
Fink, D.; Muñoz, H. Gerardo; Alfonta, L.; Mandabi, Y.; Dias, J. F.; de Souza, C. T.; Bacakova, L. E.; Vacík, J.; Hnatowicz, V.; Kiv, A. E.; Fuks, D.; Papaleo, R. M.
New multifunctional ion irradiation-based three-dimensional electronic structures are developed for biotechnological applications, specifically for sensing of biomaterials, bacteria and mammalian cells. This is accomplished by combined micrometric surface and nanometric bulk microstructuring of insulators (specifically of polymer foils and SiO2/Si hybride structures) by adequate ion beams. Our main goal is the production of a cheap small universal generic working platform with multifunctional properties for biomedical analysis. Surface engineering of this platform enables cell bonding and its bulk engineering enables the extraction of cell secrets, for the sake of intercepting and analyzing the biomolecules used in cell communication. The exact knowledge of the spectrum of these cell-secreted signalling molecules should enable one to identify unambiguously the cell type. This knowledge will help developing strategies for preventive quorum sensing of bacteria, with the aim of fighting bacterial infections in an ecologically secure way.
Bergeron, Hugo; Sinclair, Laura C; Swann, William C; Nelson, Craig W; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Newbury, Nathan R
2016-04-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 -14 at one second and below 10 -17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.
Sonochemically Fabricated Microelectrode Arrays for Use as Sensing Platforms
Collyer, Stuart D.; Davis, Frank; Higson, Séamus P.J.
2010-01-01
The development, manufacture, modification and subsequent utilisation of sonochemically-formed microelectrode arrays is described for a range of applications. Initial fabrication of the sensing platform utilises ultrasonic ablation of electrochemically insulating polymers deposited upon conductive carbon substrates, forming an array of up to 70,000 microelectrode pores cm−2. Electrochemical and optical analyses using these arrays, their enhanced signal response and stir-independence area are all discussed. The growth of conducting polymeric “mushroom” protrusion arrays with entrapped biological entities, thereby forming biosensors is detailed. The simplicity and inexpensiveness of this approach, lending itself ideally to mass fabrication coupled with unrivalled sensitivity and stir independence makes commercial viability of this process a reality. Application of microelectrode arrays as functional components within sensors include devices for detection of chlorine, glucose, ethanol and pesticides. Immunosensors based on microelectrode arrays are described within this monograph for antigens associated with prostate cancer and transient ischemic attacks (strokes). PMID:22399926
Sequeira, Filipa; Duarte, Daniel; Bilro, Lúcia; Rudnitskaya, Alisa; Pesavento, Maria; Zeni, Luigi; Cennamo, Nunzio
2016-01-01
We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471) through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI) range (1.33–1.39), the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10−3 refractive index units, RIU) was obtained with 6 cm sensing length. In the RI range (1.41–1.47), the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost. PMID:27983608
Sequeira, Filipa; Duarte, Daniel; Bilro, Lúcia; Rudnitskaya, Alisa; Pesavento, Maria; Zeni, Luigi; Cennamo, Nunzio
2016-12-13
We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471) through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI) range (1.33-1.39), the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10 -3 refractive index units, RIU) was obtained with 6 cm sensing length. In the RI range (1.41-1.47), the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost.
Remote Sensing as a Demonstration of Applied Physics.
ERIC Educational Resources Information Center
Colwell, Robert N.
1980-01-01
Provides information about the field of remote sensing, including discussions of geo-synchronous and sun-synchronous remote-sensing platforms, the actual physical processes and equipment involved in sensing, the analysis of images by humans and machines, and inexpensive, small scale methods, including aerial photography. (CS)
Design and analysis of photonic crystal micro-cavity based optical sensor platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Amit Kumar, E-mail: amitgoyal.ceeri@gmail.com; Dutta, Hemant Sankar, E-mail: hemantdutta97@gmail.com; Pal, Suchandan, E-mail: spal@ceeri.ernet.in
2016-04-13
In this paper, the design of a two-dimensional photonic crystal micro-cavity based integrated-optic sensor platform is proposed. The behaviour of designed cavity is analyzed using two-dimensional Finite Difference Time Domain (FDTD) method. The structure is designed by deliberately inserting some defects in a photonic crystal waveguide structure. Proposed structure shows a quality factor (Q) of about 1e5 and the average sensitivity of 500nm/RIU in the wavelength range of 1450 – 1580 nm. Sensing technique is based on the detection of shift in upper-edge cut-off wavelength for a reference signal strength of –10 dB in accordance with the change in refractive index ofmore » analyte.« less
Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors.
Fahad, Hossain Mohammad; Shiraki, Hiroshi; Amani, Matin; Zhang, Chuchu; Hebbar, Vivek Srinivas; Gao, Wei; Ota, Hiroki; Hettick, Mark; Kiriya, Daisuke; Chen, Yu-Ze; Chueh, Yu-Lun; Javey, Ali
2017-03-01
There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting H 2 S, H 2 , and NO 2 at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors.
Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors
Fahad, Hossain Mohammad; Shiraki, Hiroshi; Amani, Matin; Zhang, Chuchu; Hebbar, Vivek Srinivas; Gao, Wei; Ota, Hiroki; Hettick, Mark; Kiriya, Daisuke; Chen, Yu-Ze; Chueh, Yu-Lun; Javey, Ali
2017-01-01
There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting H2S, H2, and NO2 at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors. PMID:28378017
Wang, Yijia; Zeinhom, Mohamed M A; Yang, Mingming; Sun, Rongrong; Wang, Shengfu; Smith, Jordan N; Timchalk, Charles; Li, Lei; Lin, Yuehe; Du, Dan
2017-09-05
Onsite rapid detection of herbicides and herbicide residuals in environmental and biological specimens are important for agriculture, environmental concerns, food safety, and health care. The traditional method for herbicide detection requires expensive laboratory equipment and a long turnaround time. In this work, we developed a single-stripe microliter plate smartphone-based colorimetric device for rapid and low-cost in-field tests. This portable smartphone platform is capable of screening eight samples in a single-stripe microplate. The device combined the advantages of small size (50 × 100 × 160 mm 3 ) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and rhodamine B, for the red and green channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for detection of the herbicide 2,4-dichlorophenoxyacetic acid in the range of 1 to 80 ppb. Spiked samples of tap water, rat serum, plasma, and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all of the spiked samples using the microplate reader and from 93.7% to 106.9% for all of the samples using the smartphone device. This work validated that the smartphone optical-sensing platform is comparable to the commercial microplate reader; it is eligible for onsite, rapid, and low-cost detection of herbicides for environmental evaluation and biological monitoring.
A WebGIS system on the base of satellite data processing system for marine application
NASA Astrophysics Data System (ADS)
Gong, Fang; Wang, Difeng; Huang, Haiqing; Chen, Jianyu
2007-10-01
From 2002 to 2004, a satellite data processing system for marine application had been built up in State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, State Oceanic Administration). The system received satellite data from TERRA, AQUA, NOAA-12/15/16/17/18, FY-1D and automatically generated Level3 products and Level4 products(products of single orbit and merged multi-orbits products) deriving from Level0 data, which is controlled by an operational control sub-system. Currently, the products created by this system play an important role in the marine environment monitoring, disaster monitoring and researches. Now a distribution platform has been developed on this foundation, namely WebGIS system for querying and browsing of oceanic remote sensing data. This system is based upon large database system-Oracle. We made use of the space database engine of ArcSDE and other middleware to perform database operation in addition. J2EE frame was adopted as development model, and Oracle 9.2 DBMS as database background and server. Simply using standard browsers(such as IE6.0), users can visit and browse the public service information that provided by system, including browsing for oceanic remote sensing data, and enlarge, contract, move, renew, traveling, further data inquiry, attribution search and data download etc. The system is still under test now. Founding of such a system will become an important distribution platform of Chinese satellite oceanic environment products of special topic and category (including Sea surface temperature, Concentration of chlorophyll, and so on), for the exaltation of satellite products' utilization and promoting the data share and the research of the oceanic remote sensing platform.
Bhunia, Subhajit; Dey, Nilanjan; Pradhan, Anirban; Bhattacharya, Santanu
2018-06-20
A donor-acceptor based conjugated microporous polymer, PER@NiP-CMOP-1, has been synthesized which can achieve highly sensitive stereo-specific "Turn ON" biosensing of an aminoglycoside up to the ppb level. The coordination-driven inhibition of photo-induced electron transfer (d-PET) for d-electrons and the rotational freezing are the key factors for the recovery of the emission.
Remote sensing techniques for conservation and management of natural vegetation ecosystems
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Verdesio, J. J.; Dossantos, J. R.
1981-01-01
The importance of using remote sensing techniques, in the visible and near-infrared ranges, for mapping, inventory, conservation and management of natural ecosystems is discussed. Some examples realized in Brazil or other countries are given to evaluate the products from orbital platform (MSS and RBV imagery of LANDSAT) and aerial level (photography) for ecosystems study. The maximum quantitative and qualitative information which can be obtained from each sensor, at different level, are discussed. Based on the developed experiments it is concluded that the remote sensing technique is a useful tool in mapping vegetation units, estimating biomass, forecasting and evaluation of fire damage, disease detection, deforestation mapping and change detection in land-use. In addition, remote sensing techniques can be used in controling implantation and planning natural/artificial regeneration.
CubeSat Remote Sensing: A Survey of Current Capabilities
NASA Astrophysics Data System (ADS)
Hegel, D.
2014-12-01
Recent years have seen dramatic growth in the availability and capability of very small satellites for atmospheric sensing, and other space-based science, as the simplicity of integration and low cost of these platforms enables projects that would otherwise be prohibitively expensive, or demand excessive expertise/infrastructure to execute. This paper surveys the current state-of-the-art for CubeSat performance, including pointing accuracy, geolocation, available power, and data downlink capacity. Applications for up-coming missions, such as CeREs, MinXSS, and HARP will also be discussed.
The mid-IR silicon photonics sensor platform (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kimerling, Lionel; Hu, Juejun; Agarwal, Anuradha M.
2017-02-01
Advances in integrated silicon photonics are enabling highly connected sensor networks that offer sensitivity, selectivity and pattern recognition. Cost, performance and the evolution path of the so-called `Internet of Things' will gate the proliferation of these networks. The wavelength spectral range of 3-8um, commonly known as the mid-IR, is critical to specificity for sensors that identify materials by detection of local vibrational modes, reflectivity and thermal emission. For ubiquitous sensing applications in this regime, the sensors must move from premium to commodity level manufacturing volumes and cost. Scaling performance/cost is critically dependent on establishing a minimum set of platform attributes for point, wearable, and physical sensing. Optical sensors are ideal for non-invasive applications. Optical sensor device physics involves evanescent or intra-cavity structures for applied to concentration, interrogation and photo-catalysis functions. The ultimate utility of a platform is dependent on sample delivery/presentation modalities; system reset, recalibration and maintenance capabilities; and sensitivity and selectivity performance. The attributes and performance of a unified Glass-on-Silicon platform has shown good prospects for heterogeneous integration on materials and devices using a low cost process flow. Integrated, single mode, silicon photonic platforms offer significant performance and cost advantages, but they require discovery and qualification of new materials and process integration schemes for the mid-IR. Waveguide integrated light sources based on rare earth dopants and Ge-pumped frequency combs have promise. Optical resonators and waveguide spirals can enhance sensitivity. PbTe materials are among the best choices for a standard, waveguide integrated photodetector. Chalcogenide glasses are capable of transmitting mid-IR signals with high transparency. Integrated sensor case studies of i) high sensitivity analyte detection in solution; ii) gas sensing in air and iii) on-chip spectrometry provide good insight into the tradeoffs being made en route to ubiquitous sensor deployment in an Internet of Things.
Cheng, Qin; Xia, Shanhong; Tong, Jianhua; Wu, Kangbing
2015-08-05
It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO3 nanoparticles (nano-CaCO3) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO3. The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO3 weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO3 weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L(-1) for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. Copyright © 2015 Elsevier B.V. All rights reserved.
In plane optical sensor based on organic electronic devices
NASA Astrophysics Data System (ADS)
Koetse, Marc; Rensing, Peter; van Heck, Gert; Sharpe, Ruben; Allard, Bart; Wieringa, Fokko; Kruijt, Peter; Meulendijks, Nicole; Jansen, Henk; Schoo, Herman
2008-08-01
Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils with OLED and OPD arrays form an in-plane optical sensor platform (IPOS). This platform can be extended with a wireless data and signal processing unit yielding a sensor node. The focus of our research is to engage the node in a healthcare application, in which a bandage is able to monitor the vital signs of a person, a so-called Smart Bandage. One of the principles that is described here is based on measuring the absorption modulation of blood volume induced by the pulse (photoplethysmography). The information from such a bandage could be used to monitor wound healing by measuring the perfusion in the skin. The OLED and OPD devices are manufactured on separate foils and glass substrates by means of printing and coating technologies. Furthermore, the modular approach allows for the application of the optical sensing unit in a variety of other fields including chemical sensing. This, ultimately enables the measurement of a large variety of physiological parameters using the same bandage and the same basic sensor architecture. Here we discuss the build-up of our device in general terms. Specific characteristics of the used OLEDs and OPDs are shown and finally we demonstrate the functionality by simultaneously recorded photoplethysmograms of our device and a clinical pulseoximeter.
NASA Astrophysics Data System (ADS)
Pathak, Anisha; Parveen, Shama; Gupta, Banshi D.
2017-09-01
A facile approach is presented for the detection of bovine serum albumin (BSA), based on fiber optic surface plasmon resonance (FOSPR) combined with molecular imprinting (MI). The probe is fabricated by exploiting the plasmonic property of silver thin film and vinyl-functionalised carbon nanotube-based MIP platform. BSA template molecules are imprinted on the MIP layer coated over multi-walled carbon nanotubes to ensure high specificity of the probe in the interfering environments. In addition, FOSPR endorses the sensor capability of real-time and remote sensing along with very high sensitivity due to the use of nanostructured MI platform. The response of the probe is considered in terms of the absorbance spectrum recorded for various concentrations of BSA. The sensor shows a wide dynamic range of 0-350 ng l-1 with a considerably linear response up to 100 ng l-1 in the peak absorbance wavelength with BSA concentration. A highest sensitivity of 0.862 nm per ng l-1 is achieved for the lowest concentration of BSA and it decreases with the increase in BSA concentration. The performance of the present sensor is compared with those reported in the literature in terms of the limit of detection. It is found that the probe possesses a lowest LOD of 0.386 ng l-1 in addition to other advantages such as real-time online monitoring, high sensitivity, high specificity, and remote sensing.
Microcantilever-based platforms as biosensing tools.
Alvarez, Mar; Lechuga, Laura M
2010-05-01
The fast and progressive growth of the biotechnology and pharmaceutical fields forces the development of new and powerful sensing techniques for process optimization and detection of biomolecules at very low concentrations. During the last years, the simplest MEMS structures, i.e. microcantilevers, have become an emerging and promising technology for biosensing applications, due to their small size, fast response, high sensitivity and their compatible integration into "lab-on-a-chip" devices. This article provides an overview of some of the most interesting bio-detections carried out during the last 2-3 years with the microcantilever-based platforms, which highlight the continuous expansion of this kind of sensor in the medical diagnosis field, reaching limits of detection at the single molecule level.
Mathault, Jessy; Zamprogno, Pauline; Greener, Jesse; Miled, Amine
2015-08-01
This paper presents a new microfluidic platform that can simultaneously measure and locally modulate neurotransmitter concentration in a neuron network. This work focuses on the development of a first prototype including a potentiostat and electrode functionalization to detect several neurotransmitter's simultaneously. We tested dopamine as proof of concept to validate functionality. The system is based on 320 bidirectional electrode array for dielectrophoretic manipulation and cyclic voltammetry. Each electrode is connected to a mechanical multiplexer in order to reduce noise interference and fully isolate the electrode. The multiplexing rate is 476 kHz and each electrode can drive a signal with an amplitude of 60 V pp for dielectrophoretic manipulation.
NASA Technical Reports Server (NTRS)
2012-01-01
Topics include: Computational Ghost Imaging for Remote Sensing; Digital Architecture for a Trace Gas Sensor Platform; Dispersed Fringe Sensing Analysis - DFSA; Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors; Gas Composition Sensing Using Carbon Nanotube Arrays; Sensor for Boundary Shear Stress in Fluid Flow; Model-Based Method for Sensor Validation; Qualification of Engineering Camera for Long-Duration Deep Space Missions; Remotely Powered Reconfigurable Receiver for Extreme Environment Sensing Platforms; Bump Bonding Using Metal-Coated Carbon Nanotubes; In Situ Mosaic Brightness Correction; Simplex GPS and InSAR Inversion Software; Virtual Machine Language 2.1; Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction; Pandora Operation and Analysis Software; Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane; Processing of Nanosensors Using a Sacrificial Template Approach; High-Temperature Shape Memory Polymers; Modular Flooring System; Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids; Materials That Enhance Efficiency and Radiation Resistance of Solar Cells; Low-Cost, Rugged High-Vacuum System; Static Gas-Charging Plug; Floating Oil-Spill Containment Device; Stemless Ball Valve; Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs; Oxygen-Methane Thruster; Lunar Navigation Determination System - LaNDS; Launch Method for Kites in Low-Wind or No-Wind Conditions; Supercritical CO2 Cleaning System for Planetary Protection and Contamination Control Applications; Design and Performance of a Wideband Radio Telescope; Finite Element Models for Electron Beam Freeform Fabrication Process Autonomous Information Unit for Fine-Grain Data Access Control and Information Protection in a Net-Centric System; Vehicle Detection for RCTA/ANS (Autonomous Navigation System); Image Mapping and Visual Attention on the Sensory Ego-Sphere; HyDE Framework for Stochastic and Hybrid Model-Based Diagnosis; and IMAGESEER - IMAGEs for Education and Research.
NASA Astrophysics Data System (ADS)
Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye
2017-10-01
Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.
Crescentini, Marco; Thei, Frederico; Bennati, Marco; Saha, Shimul; de Planque, Maurits R R; Morgan, Hywel; Tartagni, Marco
2015-06-01
Lipid bilayer membrane (BLM) arrays are required for high throughput analysis, for example drug screening or advanced DNA sequencing. Complex microfluidic devices are being developed but these are restricted in terms of array size and structure or have integrated electronic sensing with limited noise performance. We present a compact and scalable multichannel electrophysiology platform based on a hybrid approach that combines integrated state-of-the-art microelectronics with low-cost disposable fluidics providing a platform for high-quality parallel single ion channel recording. Specifically, we have developed a new integrated circuit amplifier based on a novel noise cancellation scheme that eliminates flicker noise derived from devices under test and amplifiers. The system is demonstrated through the simultaneous recording of ion channel activity from eight bilayer membranes. The platform is scalable and could be extended to much larger array sizes, limited only by electronic data decimation and communication capabilities.
D Visibility Analysis in Urban Environment - Cognition Research Based on Vge
NASA Astrophysics Data System (ADS)
Lin, T. P.; Lin, H.; Hu, M. Y.
2013-09-01
The author in this research attempts to illustrate a measurable relationship between the physical environment and human's visual perception, including the distance, visual angle impact and visual field (a 3D isovist conception) against human's cognition way, by using a 3D visibility analysis method based on the platform of Virtual Geographic Environment (VGE). The whole project carries out in the CUHK campus (the Chinese University of Hong Kong), by adopting a virtual 3D model of the whole campus and survey in real world. A possible model for the simulation of human cognition in urban spaces is expected to be the output of this research, such as what the human perceive from the environment, how their feelings and behaviours are and how they affect the surrounding world. Kevin Lynch raised 5 elements of urban design in 1960s, which are "vitality, sense, fit, access and control". As the development of urban design, several problems around the human's cognitive and behaviour have come out. Due to the restriction of sensing knowledge in urban spaces, the research among the "sense" and the "fit" of urban design were not quite concerned in recent decades. The geo-spatial cognition field comes into being in 1997 and developed in recent 15 years, which made great effort in way-finding and urban behaviour simulation based on the platform of GIS (geographic information system) or VGE. The platform of VGE is recognized as a proper tool for the analysis of human's perception in urban places, because of its efficient 3D spatial data management and excellent 3D visualization for output result. This article will generally describe the visibility analysis method based on the 3D VGE platform. According to the uncertainty and variety of human perception existed in this research, the author attempts to arrange a survey of observer investigation and validation for the analysis results. Four figures related with space and human's perception will be mainly concerned in this proposal: openness, permeability, environmental pressure and visibility, and these will also be used as the identification for different type of spaces. Generally, the author is aiming at contributing a possible way to understand the reason of human's cognition in geo-spatial area, and provides efficient mathematical model between spatial information and visual perception to the related research field.
Cyber-physical geographical information service-enabled control of diverse in-situ sensors.
Chen, Nengcheng; Xiao, Changjiang; Pu, Fangling; Wang, Xiaolei; Wang, Chao; Wang, Zhili; Gong, Jianya
2015-01-23
Realization of open online control of diverse in-situ sensors is a challenge. This paper proposes a Cyber-Physical Geographical Information Service-enabled method for control of diverse in-situ sensors, based on location-based instant sensing of sensors, which provides closed-loop feedbacks. The method adopts the concepts and technologies of newly developed cyber-physical systems (CPSs) to combine control with sensing, communication, and computation, takes advantage of geographical information service such as services provided by the Tianditu which is a basic geographic information service platform in China and Sensor Web services to establish geo-sensor applications, and builds well-designed human-machine interfaces (HMIs) to support online and open interactions between human beings and physical sensors through cyberspace. The method was tested with experiments carried out in two geographically distributed scientific experimental fields, Baoxie Sensor Web Experimental Field in Wuhan city and Yemaomian Landslide Monitoring Station in Three Gorges, with three typical sensors chosen as representatives using the prototype system Geospatial Sensor Web Common Service Platform. The results show that the proposed method is an open, online, closed-loop means of control.
Ren, Xiang; Zhang, Tong; Wu, Dan; Yan, Tao; Pang, Xuehui; Du, Bin; Lou, Wanruo; Wei, Qin
2017-08-15
Herein, a super-labeled immunoassay was fabricated for matrix metalloproteinases-2 detection. A self-corrosion ITO micro circuit board was designed in this sensing platform to reduce the random error in the same testing condition, and the self-constructed sensing platform is portable with a cheap price. The K-modified graphene (K-GS) was utilized as the matrix material, which was synthesized well by phenylate and phenanthrene through the polar bond of nonpolar molecule phenylate and the π-π interaction for the first time. An aptamer-based labels based on Au nanoparticles (AuNPs), thionine (Th) and horseradish peroxidase (HRP) were applied as the signal source for tri infinite amplification. This fabricated super-labeled immunoassay exhibit excellent performance for MMPs-2 detection. It displayed a broad linear range of 10 -4 -10ng/mL with a low detection limit of 35 fg/mL, which may have a potential application in the clinical diagnose. Copyright © 2017 Elsevier B.V. All rights reserved.
Cyber-Physical Geographical Information Service-Enabled Control of Diverse In-Situ Sensors
Chen, Nengcheng; Xiao, Changjiang; Pu, Fangling; Wang, Xiaolei; Wang, Chao; Wang, Zhili; Gong, Jianya
2015-01-01
Realization of open online control of diverse in-situ sensors is a challenge. This paper proposes a Cyber-Physical Geographical Information Service-enabled method for control of diverse in-situ sensors, based on location-based instant sensing of sensors, which provides closed-loop feedbacks. The method adopts the concepts and technologies of newly developed cyber-physical systems (CPSs) to combine control with sensing, communication, and computation, takes advantage of geographical information service such as services provided by the Tianditu which is a basic geographic information service platform in China and Sensor Web services to establish geo-sensor applications, and builds well-designed human-machine interfaces (HMIs) to support online and open interactions between human beings and physical sensors through cyberspace. The method was tested with experiments carried out in two geographically distributed scientific experimental fields, Baoxie Sensor Web Experimental Field in Wuhan city and Yemaomian Landslide Monitoring Station in Three Gorges, with three typical sensors chosen as representatives using the prototype system Geospatial Sensor Web Common Service Platform. The results show that the proposed method is an open, online, closed-loop means of control. PMID:25625906
Modular extracellular sensor architecture for engineering mammalian cell-based devices.
Daringer, Nichole M; Dudek, Rachel M; Schwarz, Kelly A; Leonard, Joshua N
2014-12-19
Engineering mammalian cell-based devices that monitor and therapeutically modulate human physiology is a promising and emerging frontier in clinical synthetic biology. However, realizing this vision will require new technologies enabling engineered circuitry to sense and respond to physiologically relevant cues. No existing technology enables an engineered cell to sense exclusively extracellular ligands, including proteins and pathogens, without relying upon native cellular receptors or signal transduction pathways that may be subject to crosstalk with native cellular components. To address this need, we here report a technology we term a Modular Extracellular Sensor Architecture (MESA). This self-contained receptor and signal transduction platform is maximally orthogonal to native cellular processes and comprises independent, tunable protein modules that enable performance optimization and straightforward engineering of novel MESA that recognize novel ligands. We demonstrate ligand-inducible activation of MESA signaling, optimization of receptor performance using design-based approaches, and generation of MESA biosensors that produce outputs in the form of either transcriptional regulation or transcription-independent reconstitution of enzymatic activity. This systematic, quantitative platform characterization provides a framework for engineering MESA to recognize novel ligands and for integrating these sensors into diverse mammalian synthetic biology applications.
The community FabLab platform: applications and implications in biomedical engineering.
Stephenson, Makeda K; Dow, Douglas E
2014-01-01
Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.
Eriksson, Jens; Khranovskyy, Volodymyr; Iakimov, Tihomir; Lloyd Spetz, Anita; Yakimova, Rositsa
2016-01-01
A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium–graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I–V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed. PMID:28144530
Shtepliuk, Ivan; Eriksson, Jens; Khranovskyy, Volodymyr; Iakimov, Tihomir; Lloyd Spetz, Anita; Yakimova, Rositsa
2016-01-01
A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current-voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium-graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I - V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.
Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications
NASA Astrophysics Data System (ADS)
Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra
2011-09-01
Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).
Integrated remotely sensed datasets for disaster management
NASA Astrophysics Data System (ADS)
McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart
2008-10-01
Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.
Zhu, Xinxin; Jin, Hui; Gao, Cuili; Gui, Rijun; Wang, Zonghua
2017-01-01
In this article, a facile aqueous synthesis of carbon dots (CDs) was developed by using natural kelp as a new carbon source. Through hydrothermal carbonization of kelp juice, fluorescent CDs were prepared and the CDs' surface was modified with polyethylenimine (PEI). The PEI-modified CDs were conjugated with fluorescein isothiocyanate (FITC) to fabricate CDs-FITC composites. To exploit broad applications, the CDs-FITC composites were developed as fluorescent sensing or imaging platforms of pH and Cu 2+ . Analytical performances of the composites-based fluorescence (FL) sensors were evaluated, including visual FL imaging of pH in glass bottle, ratiometric FL sensing of pH in yogurt samples, visual FL latent fingerprint and leaf imaging detection of [Cu 2+ ], dual-signal FL sensing of [Cu 2+ ] in yogurt and human serum samples. Experimental results from ratiometric, visual, dual-signal FL sensing and imaging applications confirmed the high feasibility, accuracy, stabilization and simplicity of CDs-FITC composites-based FL sensors for the detection of pH and Cu 2+ ions in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
All-metal meta-surfaces for narrowband light absorption and high performance sensing
NASA Astrophysics Data System (ADS)
Liu, Zhengqi; Liu, Guiqiang; Fu, Guolan; Liu, Xiaoshan; Huang, Zhenping; Gu, Gang
2016-11-01
We report an experimental scheme for high performance sensing by an all-metal meta-surface (AMMS) platform. A dual-band resonant absorption spectrum with a bandwidth down to a single-digit nanometer level and an absorbance up to 89% is achieved due to the surface lattice resonances supported by the resonators array and their hybridization coupling with the particle plasmon resonances. The sensing application in the analysis of the sodium chloride solution has been demonstrated, where remarkable changes from a spectral ‘dark state’ to ‘bright state’ and vice versa are observed. Sensing performance factors of the figure of merit exceeding 50 and the spectral intensity change related FoM* up to 1075 are simultaneously achieved. The corresponding detection limit is as low as 8.849 × 10-6 RIU. These features make such an AMMS-based sensor a promising route for efficient bio-chemical sensing, etc.
Swetnam, Tyson L.; Gillan, Jeffrey K.; Sankey, Temuulen T.; McClaran, Mitchel P.; Nichols, Mary H.; Heilman, Philip; McVay, Jason
2018-01-01
Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor at larger spatial scale and temporal repetition. Despite the utility of sUAS and handheld SfM for monitoring vegetation phenology and structure, their spatial extents are small relative to manned aircraft. PMID:29379511
Swetnam, Tyson L; Gillan, Jeffrey K; Sankey, Temuulen T; McClaran, Mitchel P; Nichols, Mary H; Heilman, Philip; McVay, Jason
2017-01-01
Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor at larger spatial scale and temporal repetition. Despite the utility of sUAS and handheld SfM for monitoring vegetation phenology and structure, their spatial extents are small relative to manned aircraft.
Fast neutron counting in a mobile, trailer-based search platform
NASA Astrophysics Data System (ADS)
Hayward, Jason P.; Sparger, John; Fabris, Lorenzo; Newby, Robert J.
2017-12-01
Trailer-based search platforms for detection of radiological and nuclear threats are often based upon coded aperture gamma-ray imaging, because this method can be rendered insensitive to local variations in gamma background while still localizing the source well. Since gamma source emissions are rather easily shielded, in this work we consider the addition of fast neutron counting to a mobile platform for detection of sources containing Pu. A proof-of-concept system capable of combined gamma and neutron coded-aperture imaging was built inside of a trailer and used to detect a 252Cf source while driving along a roadway. Neutron detector types employed included EJ-309 in a detector plane and EJ-299-33 in a front mask plane. While the 252Cf gamma emissions were not readily detectable while driving by at 16.9 m standoff, the neutron emissions can be detected while moving. Mobile detection performance for this system and a scaled-up system design are presented, along with implications for threat sensing.
Kartanas, Tadas; Ostanin, Victor; Challa, Pavan Kumar; Daly, Ronan; Charmet, Jerome; Knowles, Tuomas P J
2017-11-21
Microelectromechanical systems (MEMS) have enabled the development of a new generation of sensor platforms. Acoustic sensor operation in liquid, the native environment of biomolecules, causes, however, significant degradation of sensing performance due to viscous drag and relies on the availability of capture molecules to bind analytes of interest to the sensor surface. Here, we describe a strategy to interface MEMS sensors with microfluidic platforms through an aerosol spray. Our sensing platform comprises a microfluidic spray nozzle and a microcantilever array operated in dynamic mode within a closed loop oscillator. A solution containing the analyte is sprayed uniformly through picoliter droplets onto the microcantilever surface; the micrometer-scale drops evaporate rapidly and leave the solutes behind, adding to the mass of the cantilever. This sensing scheme results in a 50-fold increase in the quality factor compared to operation in liquid, yet allows the analytes to be introduced into the sensing system from a solution phase. It achieves a 370 femtogram limit of detection, and we demonstrate quantitative label-free analysis of inorganic salts and model proteins. These results demonstrate that the standard resolution limits of cantilever sensing in dynamic mode can be overcome with the integration of spray microfluidics with MEMS.
Luo, X; Huang, M; He, D; Wang, M; Zhang, Y; Jiang, P
2018-05-29
High electrical conductivity and the exposure to more active sites are crucial to boost the performance of a glucose sensor. A porous binary metal oxide nanoarray integrated on a binder-free 3D electrode is expected to offer a highly sensitive sensing platform. As a model, porous NiCo2O4 nanowire arrays supported on carbon cloth (NiCo2O4 NWA/CC) have been prepared and used for enzyme-free glucose sensing. NiCo2O4 NWA/CC shows larger effective surface area, superior electronic conductivity, and higher catalytic activity towards enzyme-free glucose sensing, with a linear range from 1 μM to 0.63 mM, a sensitivity of 4.12 mA mM-1 cm-2, and low detection limit of 0.5 μM. Moreover, NiCo2O4 NWA/CC also displays good selectivity and stability and thus, it can be reliable for glucose detection in human serum samples. These findings inspire the fabrication of a high-performance electrochemical sensing platform by preparing porous binary metal oxide nanoarrays supported on a 3D conductive substrate.
An evaluation of a UAV guidance system with consumer grade GPS receivers
NASA Astrophysics Data System (ADS)
Rosenberg, Abigail Stella
Remote sensing has been demonstrated an important tool in agricultural and natural resource management and research applications, however there are limitations that exist with traditional platforms (i.e., hand held sensors, linear moves, vehicle mounted, airplanes, remotely piloted vehicles (RPVs), unmanned aerial vehicles (UAVs) and satellites). Rapid technological advances in electronics, computers, software applications, and the aerospace industry have dramatically reduced the cost and increased the availability of remote sensing technologies. Remote sensing imagery vary in spectral, spatial, and temporal resolutions and are available from numerous providers. Appendix A presented results of a test project that acquired high-resolution aerial photography with a RPV to map the boundary of a 0.42 km2 fire area. The project mapped the boundaries of the fire area from a mosaic of the aerial images collected and compared this with ground-based measurements. The project achieved a 92.4% correlation between the aerial assessment and the ground truth data. Appendix B used multi-objective analysis to quantitatively assess the tradeoffs between different sensor platform attributes to identify the best overall technology. Experts were surveyed to identify the best overall technology at three different pixel sizes. Appendix C evaluated the positional accuracy of a relatively low cost UAV designed for high resolution remote sensing of small areas in order to determine the positional accuracy of sensor readings. The study evaluated the accuracy and uncertainty of a UAV flight route with respect to the programmed waypoints and of the UAV's GPS position, respectively. In addition, the potential displacement of sensor data was evaluated based on (1) GPS measurements on board the aircraft and (2) the autopilot's circuit board with 3-axis gyros and accelerometers (i.e., roll, pitch, and yaw). The accuracies were estimated based on a 95% confidence interval or similar methods. The accuracy achieved in the second and third manuscripts demonstrates that reasonably priced, high resolution remote sensing via RPVs and UAVs is practical for agriculture and natural resource professionals.
Smith, Jamie P; Metters, Jonathan P; Irving, Craig; Sutcliffe, Oliver B; Banks, Craig E
2014-01-21
The production and abuse of new psychoactive substances, known as "legal highs" which mimic traditional drugs of abuse is becoming a global epidemic. Traditional analytical methodologies exist which can provide confirmatory analysis but there is a requirement for an on-the-spot analytical screening tool that could be used to determine whether a substance, or sample matrix contains such legal, or formally "legal highs". In this paper the electrochemical sensing of (±)-methcathinone and related compounds at a range of commercially available electrode substrates is explored. We demonstrate for the first time that this class of "legal highs" are electrochemically active providing a novel sensing protocol based upon their electrochemical oxidation. Screen-printed graphite sensing platforms are favoured due to their proven ability to be mass-produced providing large numbers of reliable and reproducible electrode sensing platforms that preclude the requirement of surface pre-treatment such as mechanical polishing as is the case in the use of solid/re-usable electrode substrates. Additionally they hold potential to be used on-site potentially being the basis of an on-site legal high screening device. Consequently the electroanalytical sensing of (±)-methcathinone (3a), (±)-4′-methylmethcathinone [3b, 4-MMC, (±)-mephedrone] and (±)-4′-methyl-N-ethylcathinone (3c, 4-MEC) is explored using screen-printed sensing platforms with the effect of pH explored upon the analytical response with their analytical efficiency evaluated towards the target legal highs. Interesting at pH values below 6 the voltammetric response quantitatively changes from that of an electrochemically irreversible response to that of a quasi-reversible signature which can be used analytically. It is demonstrated for the first time that the electroanalytical sensing of (±)-methcathinone (3a), (±)-mephedrone (3b) and 4-MEC (3c) are possible with accessible linear ranges found to correspond to 16–200 μg mL(−1) for 3a (at pH 12) and 16–350 μg mL(−1) for both 3b and 3c in pH 2, with limits of detection (3σ) found to correspond to 44.5, 39.8 and 84.2 μg mL(−1) respectively. Additionally adulterants that are commonly incorporated into cathinone legal highs are electrochemically explored at both pH 2 and 12.
Point of care optical device for sepsis diagnosis
NASA Astrophysics Data System (ADS)
Baldini, F.; Bolzoni, L.; Giannetti, A.; Porro, G.; Senesi, F.; Trono, C.
2009-10-01
The discrimination of viral and bacterial sepsis is an important issue in intensive care patients. For this purpose, the simultaneous measurements of different analytes are necessary. Among the possible candidates, C-reactive protein (CRP) and procalcitonin (PCT) are probably the most important ones. A novel optical platform was designed and realised for the implementation of fluorescence-based immunoassays. The core of the optical platform is a plastic biochip, constituted by 13 microchannels (50 μm high, 600 μm width, 10 mm long) through which the sample flows. The sensing layer, where the immunochemical reaction takes place, is located on the upper part of each microchannel. The chip is interrogated with a novel optoelectronic platform, based on fluorescence anisotropy. A line-shaped beam from a 635-nm laser-diode excites perpendicularly the sensing layer and great many of the emitted remains entrapped inside the chip. The particular shape of the top of the chip allows to guide the emitted fluorescence along the same direction of the microchannel. The fluorescence which comes out on the lateral side from the chip is collected by a single plastic optical fibre and sent to an amplified photodiode. The device was characterised by the implementation of the sandwich assay for CRP and PCT spiked in serum. Limit of quantifications of 4.5 and of 6 μg L-1 in serum solution were achieved for CRP and PCT, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Guocheng; Wang, Jun; Li, Zhaohui
2011-09-20
In this work, a poly(dimethylsiloxane) (PDMS) microchip-based immuno-sensing platform with integrated pneumatic micro valves is described. The microchip was fabricated with multiple layer soft lithography technology. By controlling the activation status of corresponding valves, reagent flows in the microchannel network can be well manipulated so that immuno-reactions only take place at designated reaction zones (DRZs). Four DRZs are included in the prototype microchip. Since these DRZs are all isolated from each other by micro valves, cross contamination is prevented. Using the inner surface of the all-PDMS microchannel as immunoassay substrate, on-chip sandwich format solid phase immunoassay was performed to demonstratemore » the feasibility of this immuno-sensing platform. Mouse IgG and fluorescein isothiocyanate (FITC) were used as the model analyte and the signal reporter respectively. Only 10 ul sample is needed for the assay and low detection limit of 5 ng/ml (≈33 pM) was achieved though low-cost polyclonal antibodies were used in our experiment for feasibility study only. The encouraging results from mouse IgG immunoassay proved the feasibility of our microchip design. With slight modification of the assay protocol, the same chip design can be used for multi-target detection and can provide a simple, cost-effective and integrated microchip solution for multiplex immunoassay applications.« less
Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain
2014-01-01
The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices. PMID:24841244
Preliminary results of BTDF calibration of transmissive solar diffusers for remote sensing
NASA Astrophysics Data System (ADS)
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-09-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their onboard transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
NASA Astrophysics Data System (ADS)
Woolard, Dwight L.; Luo, Ying; Gelmont, Boris L.; Globus, Tatiana; Jensen, James O.
2005-05-01
A biological(bio)-molecular inspired electronic architecture is presented that offers the potential for defining nanoscale sensor platforms with enhanced capabilities for sensing terahertz (THz) frequency bio-signatures. This architecture makes strategic use of integrated biological elements to enable communication and high-level function within densely-packed nanoelectronic systems. In particular, this architecture introduces a new paradigm for establishing hybrid Electro-THz-Optical (ETO) communication channels where the THz-frequency spectral characteristics that are uniquely associated with the embedded bio-molecules are utilized directly. Since the functionality of this architecture is built upon the spectral characteristics of bio-molecules, this immediately allows for defining new methods for enhanced sensing of THz bio-signatures. First, this integrated sensor concept greatly facilitates the collection of THz bio-signatures associated with embedded bio-molecules via interactions with the time-dependent signals propagating through the nanoelectronic circuit. Second, it leads to a new Multi-State Spectral Sensing (MS3) approach where bio-signature information can be collected from multiple metastable state conformations. This paper will also introduce a new class of prototype devices that utilize THz-sensitive bio-molecules to achieve molecular-level sensing and functionality. Here, new simulation results are presented for a class of bio-molecular components that exhibit the prescribed type of ETO characteristics required for realizing integrated sensor platforms. Most noteworthy, this research derives THz spectral bio-signatures for organic molecules that are amenable to photo-induced metastable-state conformations and establishes an initial scientific foundation and design blueprint for an enhanced THz bio-signature sensing capability.
Ion Sensitive Transparent-Gate Transistor for Visible Cell Sensing.
Sakata, Toshiya; Nishimura, Kotaro; Miyazawa, Yuuya; Saito, Akiko; Abe, Hiroyuki; Kajisa, Taira
2017-04-04
In this study, we developed an ion-sensitive transparent-gate transistor (IS-TGT) for visible cell sensing. The gate sensing surface of the IS-TGT is transparent in a solution because a transparent amorphous oxide semiconductor composed of amorphous In-Ga-Zn-oxide (a-IGZO) with a thin SiO 2 film gate that includes an indium tin oxide (ITO) film as the source and drain electrodes is utilized. The pH response of the IS-TGT was found to be about 56 mV/pH, indicating approximately Nernstian response. Moreover, the potential signals of the IS-TGT for sodium and potassium ions, which are usually included in biological environments, were evaluated. The optical and electrical properties of the IS-TGT enable cell functions to be monitored simultaneously with microscopic observation and electrical measurement. A platform based on the IS-TGT can be used as a simple and cost-effective plate-cell-sensing system based on thin-film fabrication technology in the research field of life science.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards
Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.
2018-01-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions. PMID:29657544
Booth, Marsilea Adela; Vogel, Robert; Curran, James M; Harbison, SallyAnn; Travas-Sejdic, Jadranka
2013-07-15
Despite the plethora of DNA sensor platforms available, a portable, sensitive, selective and economic sensor able to rival current fluorescence-based techniques would find use in many applications. In this research, probe oligonucleotide-grafted particles are used to detect target DNA in solution through a resistive pulse nanopore detection technique. Using carbodiimide chemistry, functionalized probe DNA strands are attached to carboxylated dextran-based magnetic particles. Subsequent incubation with complementary target DNA yields a change in surface properties as the two DNA strands hybridize. Particle-by-particle analysis with resistive pulse sensing is performed to detect these changes. A variable pressure method allows identification of changes in the surface charge of particles. As proof-of-principle, we demonstrate that target hybridization is selectively detected at micromolar concentrations (nanomoles of target) using resistive pulse sensing, confirmed by fluorescence and phase analysis light scattering as complementary techniques. The advantages, feasibility and limitations of using resistive pulse sensing for sample analysis are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Designer cells programming quorum-sensing interference with microbes.
Sedlmayer, Ferdinand; Hell, Dennis; Müller, Marius; Ausländer, David; Fussenegger, Martin
2018-05-08
Quorum sensing is a promising target for next-generation anti-infectives designed to address evolving bacterial drug resistance. The autoinducer-2 (AI-2) is a key quorum-sensing signal molecule which regulates bacterial group behaviors and is recognized by many Gram-negative and Gram-positive bacteria. Here we report a synthetic mammalian cell-based microbial-control device that detects microbial chemotactic formyl peptides through a formyl peptide sensor (FPS) and responds by releasing AI-2. The microbial-control device was designed by rewiring an artificial receptor-based signaling cascade to a modular biosynthetic AI-2 production platform. Mammalian cells equipped with the microbial-control gene circuit detect formyl peptides secreted from various microbes with high sensitivity and respond with robust AI-2 production, resulting in control of quorum sensing-related behavior of pathogenic Vibrio harveyi and attenuation of biofilm formation by the human pathogen Candida albicans. The ability to manipulate mixed microbial populations through fine-tuning of AI-2 levels may provide opportunities for future anti-infective strategies.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards.
Wright, Daniel B; Mantilla, Ricardo; Peters-Lidard, Christa D
2017-04-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards
NASA Technical Reports Server (NTRS)
Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.
2017-01-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, Rainy Day can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, Rainy Day can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. Rainy Day can be useful for hazard modeling under nonstationary conditions.
Energy Analysis of Decoders for Rakeness-Based Compressed Sensing of ECG Signals.
Pareschi, Fabio; Mangia, Mauro; Bortolotti, Daniele; Bartolini, Andrea; Benini, Luca; Rovatti, Riccardo; Setti, Gianluca
2017-12-01
In recent years, compressed sensing (CS) has proved to be effective in lowering the power consumption of sensing nodes in biomedical signal processing devices. This is due to the fact the CS is capable of reducing the amount of data to be transmitted to ensure correct reconstruction of the acquired waveforms. Rakeness-based CS has been introduced to further reduce the amount of transmitted data by exploiting the uneven distribution to the sensed signal energy. Yet, so far no thorough analysis exists on the impact of its adoption on CS decoder performance. The latter point is of great importance, since body-area sensor network architectures may include intermediate gateway nodes that receive and reconstruct signals to provide local services before relaying data to a remote server. In this paper, we fill this gap by showing that rakeness-based design also improves reconstruction performance. We quantify these findings in the case of ECG signals and when a variety of reconstruction algorithms are used either in a low-power microcontroller or a heterogeneous mobile computing platform.
In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber.
Zhang, Nan; Humbert, Georges; Wu, Zhifang; Li, Kaiwei; Shum, Perry Ping; Zhang, Nancy Meng Ying; Cui, Ying; Auguste, Jean-Louis; Dinh, Xuan Quyen; Wei, Lei
2016-11-28
An in-line optofluidic refractive index (RI) sensing platform is constructed by splicing a side-channel photonic crystal fiber (SC-PCF) with side-polished single mode fibers. A long-period grating (LPG) combined with an intermodal interference between LP01 and LP11 core modes is used for sensing the RI of the liquid in the side channel. The resonant dip shows a nonlinear wavelength shift with increasing RI over the measured range from 1.3330 to 1.3961. The RI response of this sensing platform for a low RI range of 1.3330-1.3780 is approximately linear, and exhibits a sensitivity of 1145 nm/RIU. Besides, the detection limit of our sensing scheme is improved by around one order of magnitude by introducing the intermodal interference.
Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; Zettl, Alex; Carraro, Carlo; Maboudian, Roya
2017-01-25
A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.
Scalable Algorithms for Clustering Large Geospatiotemporal Data Sets on Manycore Architectures
NASA Astrophysics Data System (ADS)
Mills, R. T.; Hoffman, F. M.; Kumar, J.; Sreepathi, S.; Sripathi, V.
2016-12-01
The increasing availability of high-resolution geospatiotemporal data sets from sources such as observatory networks, remote sensing platforms, and computational Earth system models has opened new possibilities for knowledge discovery using data sets fused from disparate sources. Traditional algorithms and computing platforms are impractical for the analysis and synthesis of data sets of this size; however, new algorithmic approaches that can effectively utilize the complex memory hierarchies and the extremely high levels of available parallelism in state-of-the-art high-performance computing platforms can enable such analysis. We describe a massively parallel implementation of accelerated k-means clustering and some optimizations to boost computational intensity and utilization of wide SIMD lanes on state-of-the art multi- and manycore processors, including the second-generation Intel Xeon Phi ("Knights Landing") processor based on the Intel Many Integrated Core (MIC) architecture, which includes several new features, including an on-package high-bandwidth memory. We also analyze the code in the context of a few practical applications to the analysis of climatic and remotely-sensed vegetation phenology data sets, and speculate on some of the new applications that such scalable analysis methods may enable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; Liu, Guodong; Wu, Hong
2008-01-01
In this paper, we demonstrate an electrochemical high-throughput sensing platform for simple, sensitive detection of PSA based on QD labels. This sensing platform uses a microplate for immunoreactions and disposable screen-printed electrodes (SPE) for electrochemical stripping analysis of metal ions released from QD labels. With the 96-well microplate, capturing antibodies are conveniently immobilized to the well surface, and the process of immunoreaction is easily controlled. The formed sandwich complexes on the well surface are also easily isolated from reaction solutions. In particular, a microplate-based electrochemical assay can make it feasible to conduct a parallel analysis of several samples or multiplemore » protein markers. This assay offers a number of advantages including (1) simplicity, cost-effectiveness, (2) high sensitivity, (3) capability to sense multiple samples or targets in parallel, and (4) a potentially portable device with an SPE array implanted in the microplate. This PSA assay is sensitive because it uses two amplification processes: (1) QDs as a label for enhancing electrical signal since secondary antibodies are linked to QDs that contain a large number of metal atoms and (2) there is inherent signal amplification for electrochemical stripping analysis—preconcentration of metal ion onto the electrode surface for amplifying electrical signals. Therefore, the high sensitivity of this method, stemming from dual signal amplification via QD labels and pre-concentration, allows low concentration levels to be detected while using small sample volumes. Thus, this QD-based electrochemical detection approach offers a simple, rapid, cost-effective, and high throughput assay of PSA.« less
Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian
2015-01-01
A high-sensitivity Mach-Zehnder interferometer (MZI) biochemical sensing platform based on Silicon-in-insulator (SOI) rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM) simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD) method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 μm, an outside rib height of 5 μm and a rib width of 2.5 μm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU) is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10−6 RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto-) electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things. PMID:26343678
Conductometric Sensors for Detection of Elemental Mercury Vapor
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Homer, M. L.; Shevade, A. V.; Lara, L. M.; Yen, S.-P. S.; Kisor, A. K.; Manatt, K. S.
2008-01-01
Several organic and inorganic materials have been tested for possible incorporation into a sensing array in order to add elemental mercury vapor to the suite of chemical species detected. Materials have included gold films, treated gold films, polymer-carbon composite films, gold-polymer-carbon composite films and palladium chloride sintered films. The toxicity of mercury and its adverse effect on human and animal health has made environmental monitoring of mercury in gas and liquid phases important (1,2). As consumer products which contain elemental mercury, such as fluorescent lighting, become more widespread, the need to monitor environments for the presence of vapor phase elemental mercury will increase. Sensors in use today to detect mercury in gaseous streams are generally based on amalgam formation with gold or other metals, including noble metals and aluminum. Recently, NASA has recognized a need to detect elemental mercury vapor in the breathing atmosphere of the crew cabin in spacecraft and has requested that such a capability be incorporated into the JPL Electronic Nose (3). The detection concentration target for this application is 10 parts-per-billion (ppb), or 0.08 mg/m3. In order to respond to the request to incorporate mercury sensing into the JPL Electronic Nose (ENose) platform, it was necessary to consider only conductometric methods of sensing, as any other transduction method would have required redesign of the platform. Any mercury detection technique which could not be incorporated into the existing platform, such as an electrochemical technique, could not be considered.
Fang, Aijin; Chen, Hongyu; Li, Haitao; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo
2017-01-15
A dual-functional platform for the sensing of acetylcholinesterase (AChE) activity and cadmium ions (Cd 2+ ) was developed based on the fluorescence resonance energy transfer (FRET) between NaYF 4 :Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) via glutathione regulation. The detection mechanism is based on the fact that AuNPs can quench the fluorescence of UCNPs. AChE catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine which reacts with AuNPs by S-Au conjunction and results the aggregation of AuNPs and change in fluorescence of UCNPs. Therefore, the AChE activity can be detected through the changes of the color of solution and fluorescence recovery of UCNPs. However, the presence of glutathione (GSH) can protect AuNPs from aggregation and enlarge the inter-particle distance between AuNPs and UCNPs. When Cd 2+ is added into the stable mixture of AuNPs, GSH and AChE/ATC, Cd 2+ could interact with GSH to form a spherical shaped (GSH) 4 Cd complex, which decreases the free GSH on the surface of AuNPs to weaken the stability of AuNPs and lead to the easily aggregation of them in the system. The aggregated-AuNPs are released from the surface of UCNPs, which results in the fluorescence of UCNPs gradually recovered. Under the optimized conditions, the detection limits of AChE activity and Cd 2+ are estimated to be 0.015mU/mL and 0.2µM, respectively. The small molecules regulated dual-functional platform based on UCNPs/AuNPs is a simple, label-free method and can be applied for the turn-on fluorescence detection of AChE activity in human serum and Cd 2+ in real water samples. The present work demonstrates a general strategy for the design of small molecules regulated multifunctional platform and will be expanded for different areas in the future. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Hao; Hirose, Mitsuhito; Greenwood, William; Xiao, Yong; Lynch, Jerome; Zekkos, Dimitrios; Kamat, Vineet
2016-04-01
Unmanned aerial vehicles (UAVs) can serve as a powerful mobile sensing platform for assessing the health of civil infrastructure systems. To date, the majority of their uses have been dedicated to vision and laser-based spatial imaging using on-board cameras and LiDAR units, respectively. Comparatively less work has focused on integration of other sensing modalities relevant to structural monitoring applications. The overarching goal of this study is to explore the ability for UAVs to deploy a network of wireless sensors on structures for controlled vibration testing. The study develops a UAV platform with an integrated robotic gripper that can be used to install wireless sensors in structures, drop a heavy weight for the introduction of impact loads, and to uninstall wireless sensors for reinstallation elsewhere. A pose estimation algorithm is embedded in the UAV to estimate the location of the UAV during sensor placement and impact load introduction. The Martlet wireless sensor network architecture is integrated with the UAV to provide the UAV a mobile sensing capability. The UAV is programmed to command field deployed Martlets, aggregate and temporarily store data from the wireless sensor network, and to communicate data to a fixed base station on site. This study demonstrates the integrated UAV system using a simply supported beam in the lab with Martlet wireless sensors placed by the UAV and impact load testing performed. The study verifies the feasibility of the integrated UAV-wireless monitoring system architecture with accurate modal characteristics of the beam estimated by modal analysis.
Graphite paper-based bipolar electrode electrochemiluminescence sensing platform.
Zhang, Xin; Ding, Shou-Nian
2017-08-15
In this work, aiming at the construction of a disposable, wireless, low-cost and sensitive system for bioassay, we report a closed bipolar electrode electrochemiluminescence (BPE-ECL) sensing platform based on graphite paper as BPE for the first time. Graphite paper is qualified as BPE due to its unique properties such as excellent electrical conductivity, uniform composition and ease of use. This simple BPE-ECL device was applied to the quantitative analysis of oxidant (H 2 O 2 ) and biomarker (CEA) respectively, according to the principle of BPE sensing-charge balance. For the H 2 O 2 analysis, Pt NPs were electrodeposited onto the cathode through a bipolar electrodeposition approach to promote the sensing performance. As a result, this BPE-ECL device exhibited a wide linear range of 0.001-15mM with a low detection limit of 0.5µM (S/N=3) for H 2 O 2 determination. For the determination of CEA, chitosan-multi-walled carbon nanotubes (CS-MWCNTs) were employed to supply a hydrophilic interface for immobilizing primary antibody (Ab 1 ); and Au@Pt nanostructures were conjugated with secondary antibody (Ab 2 ) as catalysts for H 2 O 2 reduction. Under the optimal conditions, the BPE-ECL immunodevice showed a wide linear range of 0.01-60ngmL -1 with a detection limit of 5.0pgmL -1 for CEA. Furthermore, it also displayed satisfactory selectivity, excellent stability and good reproducibility. The developed method opened a new avenue to clinical bioassay. Copyright © 2017 Elsevier B.V. All rights reserved.
A low-cost photonic biosensor built on a polymer platform
NASA Astrophysics Data System (ADS)
Wang, Linghua; Kodeck, Valérie; Van Vlierberghe, Sandra; Ren, Jun; Teng, Jie; Han, Xiuyou; Jian, Xigao; Baets, Roel; Morthier, Geert; Zhao, Mingshan
2011-12-01
Planar integrated optical biosensors are becoming more and more important as they facilitate label-free and real time monitoring biosensing with high sensitivity. In this paper, the systematic research on one kind of optical biosensor, based on a resonant principle in a polymer ring resonator, will be presented. Reduced footprint and high sensitivity are advantages of this kind of biosensor. Rather than expensive CMOS fabrication, the device with high performance is fabricated through a simple UV based soft imprint technique utilizing self-developed low loss polymer material. The measurement results for the bulk sensing of a NaCl solution and the surface sensing of a minimal amount of avidin molecules in a buffered solution will be presented.
Passive hybrid sensing tag with flexible substrate saw device
Skinner, Jack L.; Chu, Eric Y.; Ho, Harvey
2012-12-25
The integration of surface acoustic wave (SAW) filters, microfabricated transmission lines, and sensors onto polymer substrates in order to enable a passive wireless sensor platform is described herein. Incident microwave pulses on an integrated antenna are converted to an acoustic wave via a SAW filter and transmitted to an impedance based sensor, which for this work is a photodiode. Changes in the sensor state induce a corresponding change in the impedance of the sensor resulting in a reflectance profile. Data collected at a calibrated receiver is used to infer the state of the sensor. Based on this principal, light levels were passively and wirelessly demonstrated to be sensed at distances of up to about 12 feet.
NASA Astrophysics Data System (ADS)
Gheorghiu, E.; Gheorghiu, M.; David, S.; Polonschii, C.
Chemical cues and nano-topographies present on the surface or in the extracellular medium strongly influence the fate and adhesion of biological cells. Careful tuning of cell—matrix interaction via engineered surfaces, either attractive or repulsive, require non-invasive, long time monitoring capabilities and lay the foundation of sensing platforms for risk assessment. Aiming to assess changes underwent by biointerfaces due to cell—environment interaction (in particular nanotechnology products), we have developed hybrid cellular platforms allowing for time based dual assays, i.e., impedance/dielectric spectroscopy (IS) and Surface Plasmon Resonance (SPR). Such platforms comprising Flow Injection Analysis (FIA) have been advanced to assess the interaction between selected (normal and malignant) cells and nano-patterned and/or chemically modified surfaces, as well as the impact of engineered nanoparticles, revealed by the related changes exhibited by cell membrane, morphology, adhesion and monolayer integrity. Besides experimental aspects dealing with measurement set-up, we will emphasize theoretical aspects related to: dielectric modeling. Aiming for a quantitative approach, microscopic models on dielectric behavior of ensembles of interconnected cells have been developed and their capabilities will be outlined within the presentation. Assessment of affinity reactions as revealed by dielectric/impedance assays of biointerfaces. Modeling the dynamics of the impedance in relation to the “quality” of cell layer and sensor's active surface, this study presents further developments of our approach described in Analytical Chemistry, 2002. Data analysis. This issue is related to the following basic question: Are there “simple” Biosensing Platforms? When coping with cellular platforms, either in suspension or immobilized (on filters, adhered on surfaces or entrapped, e.g., on using set-ups) there is an intrinsic nonlinear behavior of biological systems related to cellular mechanisms involved in sensing, i.e., adaptation to stimuli. This should not mean that when coping with living cells, stray effects might not also corrupt the measurement itself, introducing distinct dynamics. Besides targeted/specific process, analytical platforms might exhibit additional ones due to “stray influences” that could include the effect of, e.g.: supporting matrix, nonspecific binding and temperature variation. Stray processes interfere with the desired ones and the measured data could display a non-monotonous behavior.
Highly selective gas sensor arrays based on thermally reduced graphene oxide.
Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander
2013-06-21
The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.
2011-01-01
NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.
A component-based system for agricultural drought monitoring by remote sensing.
Dong, Heng; Li, Jun; Yuan, Yanbin; You, Lin; Chen, Chao
2017-01-01
In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM) to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China's Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring.
A component-based system for agricultural drought monitoring by remote sensing
Yuan, Yanbin; You, Lin; Chen, Chao
2017-01-01
In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM) to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China’s Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring. PMID:29236700
A Software Platform for Post-Processing Waveform-Based NDE
NASA Technical Reports Server (NTRS)
Roth, Donald J.; Martin, Richard E.; Seebo, Jeff P.; Trinh, Long B.; Walker, James L.; Winfree, William P.
2007-01-01
Ultrasonic, microwave, and terahertz nondestructive evaluation imaging systems generally require the acquisition of waveforms at each scan point to form an image. For such systems, signal and image processing methods are commonly needed to extract information from the waves and improve resolution of, and highlight, defects in the image. Since some similarity exists for all waveform-based NDE methods, it would seem a common software platform containing multiple signal and image processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. This presentation describes NASA Glenn Research Center's approach in developing a common software platform for processing waveform-based NDE signals and images. This platform is currently in use at NASA Glenn and at Lockheed Martin Michoud Assembly Facility for processing of pulsed terahertz and ultrasonic data. Highlights of the software operation will be given. A case study will be shown for use with terahertz data. The authors also request scientists and engineers who are interested in sharing customized signal and image processing algorithms to contribute to this effort by letting the authors code up and include these algorithms in future releases.
I3Mote: An Open Development Platform for the Intelligent Industrial Internet
Martinez, Borja; Vilajosana, Xavier; Kim, Il Han; Zhou, Jianwei; Tuset-Peiró, Pere; Xhafa, Ariton; Poissonnier, Dominique; Lu, Xiaolin
2017-01-01
In this article we present the Intelligent Industrial Internet (I3) Mote, an open hardware platform targeting industrial connectivity and sensing deployments. The I3Mote features the most advanced low-power components to tackle sensing, on-board computing and wireless/wired connectivity for demanding industrial applications. The platform has been designed to fill the gap in the industrial prototyping and early deployment market with a compact form factor, low-cost and robust industrial design. I3Mote is an advanced and compact prototyping system integrating the required components to be deployed as a product, leveraging the need for adopting industries to build their own tailored solution. This article describes the platform design, firmware and software ecosystem and characterizes its performance in terms of energy consumption. PMID:28452945
Vierling, L.A.; Fersdahl, M.; Chen, X.; Li, Z.; Zimmerman, P.
2006-01-01
We describe a new remote sensing system called the Short Wave Aerostat-Mounted Imager (SWAMI). The SWAMI is designed to acquire co-located video imagery and hyperspectral data to study basic remote sensing questions and to link landscape level trace gas fluxes with spatially and temporally appropriate spectral observations. The SWAMI can fly at altitudes up to 2 km above ground level to bridge the spatial gap between radiometric measurements collected near the surface and those acquired by other aircraft or satellites. The SWAMI platform consists of a dual channel hyperspectral spectroradiometer, video camera, GPS, thermal infrared sensor, and several meteorological and control sensors. All SWAMI functions (e.g. data acquisition and sensor pointing) can be controlled from the ground via wireless transmission. Sample data from the sampling platform are presented, along with several potential scientific applications of SWAMI data.
Hynes, Martin; Wang, Han; Kilmartin, Liam
2009-01-01
Over the last decade, there has been substantial research interest in the application of accelerometry data for many forms of automated gait and activity analysis algorithms. This paper introduces a summary of new "of-the-shelf" mobile phone handset platforms containing embedded accelerometers which support the development of custom software to implement real time analysis of the accelerometer data. An overview of the main software programming environments which support the development of such software, including Java ME based JSR 256 API, C++ based Motion Sensor API and the Python based "aXYZ" module, is provided. Finally, a sample application is introduced and its performance evaluated in order to illustrate how a standard mobile phone can be used to detect gait activity using such a non-intrusive and easily accepted sensing platform.
A high throughput geocomputing system for remote sensing quantitative retrieval and a case study
NASA Astrophysics Data System (ADS)
Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting
2011-12-01
The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.
Sensing parasites: Proteomic and advanced bio-detection alternatives.
Sánchez-Ovejero, Carlos; Benito-Lopez, Fernando; Díez, Paula; Casulli, Adriano; Siles-Lucas, Mar; Fuentes, Manuel; Manzano-Román, Raúl
2016-03-16
Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for bio-sensing parasites in their hosts, showing the newest opportunities offered by modern "-omics" and platforms for parasite detection and control. Copyright © 2016 Elsevier B.V. All rights reserved.
Grande, Marco; Vincenti, Maria Antonietta; Stomeo, Tiziana; Morea, Giuseppe; Marani, Roberto; Marrocco, Valeria; Petruzzelli, Vincenzo; D'Orazio, Antonella; Cingolani, Roberto; De Vittorio, Massimo; de Ceglia, Domenico; Scalora, Michael
2011-10-24
In this paper we discuss the possibility of implementing a novel bio-sensing platform based on the observation of the shift of the leaky surface plasmon mode that occurs at the edge of the plasmonic band gap of metal gratings, when an analyte is deposited on top of the metallic structure. We report numerical calculations, fabrication and experimental measurements to prove the sensing capability of a two-dimensional array of gold nano-patches in the detection of a small quantity of Isopropyl Alcohol (IPA) deposited on top of sensor surface. The calculated sensitivity of our device approaches a value of 1000 nm/RIU with a corresponding Figure of Merit (FOM) of 222 RIU(-1). The presence of IPA can also be visually estimated by observing a color variation in the diffracted field. We show that color brightness and intensity variations can be ascribed to a change in the aperture size, keeping the periodicity constant, and to different types of analyte deposited on the sample, respectively. Moreover, we demonstrate that unavoidable fabrication imperfections revealed by the presence of rounded corners and surface roughness do not significantly affect device performance. © 2011 Optical Society of America
Liu, Xiaoqiang; Feng, Heqing; Zhao, Ruoxia; Wang, Yanbing; Liu, Xiuhua
2012-01-15
The direct electrochemistry of horseradish peroxidase (HRP) on a novel sensing platform modified glassy carbon electrode (GCE) has been achieved. This sensing platform consists of Nafion, hydrophilic room-temperature ionic liquid (RTIL) and Au nanoparticles dotted titanate nanotubes (GNPs-TNTs). The composite of RTIL and GNPs-TNTs was immobilized on the electrode surface through the gelation of a small amount of HRP aqueous solution. The composite was characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and infrared spectroscopy (IR). UV-Vis and IR spectroscopy demonstrated that HRP in the composite could retain its native secondary structure and biochemical activity. The HRP-immobilized electrode was investigated by cyclic voltammetry and chronoamperometry. The results from both techniques showed that the direct electron transfer between the nanocomposite modified electrodes and heme in HRP could be realized. The biosensor responded to H(2)O(2) in the linear range from 5×10(-6) to 1×10(-3) mol L(-1) with a detection limit of 2.1×10(-6) mol L(-1) (based on the S/N=3). Copyright © 2011 Elsevier B.V. All rights reserved.
Deployable wavelength optimizer for multi-laser sensing and communication undersea
NASA Astrophysics Data System (ADS)
Neuner, Burton; Hening, Alexandru; Pascoguin, B. Melvin; Dick, Brian; Miller, Martin; Tran, Nghia; Pfetsch, Michael
2017-05-01
This effort develops and tests algorithms and a user-portable optical system designed to autonomously optimize the laser communication wavelength in open and coastal oceans. In situ optical meteorology and oceanography (METOC) data gathered and analyzed as part of the auto-selection process can be stored and forwarded. The system performs closedloop optimization of three visible-band lasers within one minute by probing the water column via passive retroreflector and polarization optics, selecting the ideal wavelength, and enabling high-speed communication. Backscattered and stray light is selectively blocked by employing polarizers and wave plates, thus increasing the signal-to-noise ratio. As an advancement in instrumentation, we present autonomy software and portable hardware, and demonstrate this new system in two environments: ocean bay seawater and outdoor test pool freshwater. The next generation design is also presented. Once fully miniaturized, the optical payload and software will be ready for deployment on manned and unmanned platforms such as buoys and vehicles. Gathering timely and accurate ocean sensing data in situ will dramatically increase the knowledge base and capabilities for environmental sensing, defense, and industrial applications. Furthermore, communicating on the optimal channel increases transfer rates, propagation range, and mission length, all while reducing power consumption in undersea platforms.
A Software Architecture for Adaptive Modular Sensing Systems
Lyle, Andrew C.; Naish, Michael D.
2010-01-01
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration. PMID:22163614
A software architecture for adaptive modular sensing systems.
Lyle, Andrew C; Naish, Michael D
2010-01-01
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.
High resolution remote sensing missions of a tethered satellite
NASA Technical Reports Server (NTRS)
Vetrella, S.; Moccia, A.
1986-01-01
The application of the Tethered Satellite (TS) as an operational remote sensing platform is studied. It represents a new platform capable of covering the altitudes between airplanes and free flying satellites, offering an adequate lifetime, high geometric and radiometric resolution and improved cartographic accuracy. Two operational remote sensing missions are proposed: one using two linear array systems for along track stereoscopic observation and one using a synthetic aperture radar combined with an interferometric technique. These missions are able to improve significantly the accuracy of future real time cartographic systems from space, also allowing, in the case of active microwave systems, the Earth's observation both in adverse weather and at any time, day or night. Furthermore, a simulation program is described in which, in order to examine carefully the potentiality of the TS as a new remote sensing platform, the orbital and attitude dynamics description of the TSS is integrated with the sensor viewing geometry, the Earth's ellipsoid, the atmospheric effects, the Sun illumination and the digital elevation model. A preliminary experiment has been proposed which consist of a metric camera to be deployed downwards during the second Shuttle demonstration flight.
Automated system for the calibration of magnetometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel
2009-04-01
A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical University. There are three axes of rotation in this design (compared to two axes in the previous version). The addition of the third axis allows us to calibrate more complex devices. An electronic compass based on a vector fluxgate magnetometer and micro electro mechanical systems (MEMS) accelerometer is one example. The new platform can also be used tomore » evaluate the parameters of the compass in all possible variations in azimuth, pitch, and roll. The system is based on piezoelectric motors, which are placed on a platform made of aluminum, brass, plastic, and glass. Position sensing is accomplished through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented.« less
Membrane-mirror-based autostereoscopic display for tele-operation and teleprescence applications
NASA Astrophysics Data System (ADS)
McKay, Stuart; Mair, Gordon M.; Mason, Steven; Revie, Kenneth
2000-05-01
An autostereoscopic display for telepresence and tele- operation applications has been developed at the University of Strathclyde in Glasgow, Scotland. The research is a collaborative effort between the Imaging Group and the Transparent Telepresence Research Group, both based at Strathclyde. A key component of the display is the directional screen; a 1.2-m diameter Stretchable Membrane Mirror is currently used. This patented technology enables large diameter, small f No., mirrors to be produced at a fraction of the cost of conventional optics. Another key element of the present system is an anthropomorphic and anthropometric stereo camera sensor platform. Thus, in addition to mirror development, research areas include sensor platform design focused on sight, hearing, research areas include sensor platform design focused on sight, hearing, and smell, telecommunications, display systems for all visual, aural and other senses, tele-operation, and augmented reality. The sensor platform is located at the remote site and transmits live video to the home location. Applications for this technology are as diverse as they are numerous, ranging from bomb disposal and other hazardous environment applications to tele-conferencing, sales, education and entertainment.
Ionospheric Profiles from Ultraviolet Remote Sensing
1997-09-30
The long-term goal of this project is to obtain ionospheric profiles from ultraviolet remote sensing of the ionosphere from orbiting space platforms... Remote sensing of the nighttime ionosphere is a more straightforward process because of the absence of the complications brought about by daytime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katipamula, Srinivas; Gowri, Krishnan; Hernandez, George
This paper describes one such reference process that can be deployed to provide continuous automated conditioned-based maintenance management for buildings that have BIM, a building automation system (BAS) and a computerized maintenance management software (CMMS) systems. The process can be deployed using an open source transactional network platform, VOLTTRON™, designed for distributed sensing and controls and supports both energy efficiency and grid services.
Development of a Ubiquitous Learning Platform Based on a Real-Time Help-Seeking Mechanism
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Wu, Chih-Hsiang; Tseng, Judy C. R.; Huang, Iwen
2011-01-01
The popularity of mobile devices has encouraged the advance of ubiquitous learning, in which students are situated in a real-world learning environment with support from the digital world via the use of mobile, wireless communications, or even sensing technologies. Most of the ubiquitous learning systems are implemented with high-cost sensing…
Using Voicethread to Create Community in Online Learning
ERIC Educational Resources Information Center
Delmas, Peggy M.
2017-01-01
A sense of belonging to a learning community has been identified as one of the factors contributing to greater student satisfaction and persistence in online education programs. Using the community of inquiry framework as a theoretical guide, the purpose of this study was to explore the role of VoiceThread, a web-based platform that facilitates…
Wu, Te-Haw; Liu, Ching-Ping; Chien, Chih-Te; Lin, Shu-Yi
2013-08-26
Herein, a promising sensing approach based on the structure fragmentation of poly(amidoamine) (PAMAM) dendrimers for the selective detection of intracellular hypochlorite (OCl(-)) is reported. PAMAM dendrimers were easily disrupted by a cascade of oxidations in the tertiary amines of the dendritic core to produce an unsaturated hydroxylamine with blue fluorescence. Specially, the novel fluorophore was only sensitive to OCl(-), one of reactive oxygen species (ROS), resulting in an irreversible fluorescence turn-off. The fluorescent hydroxylamine was selectively oxidised by OCl(-) to form a labile oxoammonium cation that underwent further degradation. Without using any troublesomely synthetic steps, the novel sensing platform based on the fragmentation of PAMAM dendrimers, can be applied to detect OCl(-) in macrophage cells. The results suggest that the sensing approach may be useful for the detection of intracellular OCl(-) with minimal interference from biological matrixes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Timothy L.; Venedam, Richard J.
2013-03-01
Sensors designed to detect the presence of methyl salicylate (MeS) have been tested. These sensors use a sensor platform based on the embedded piezoresistive microcantilever (EPM) design. Sensing materials tested in this study included the polymer poly (ethylene vinyl acetate), or PEVA as well as a composite sensing material consisting of the enzyme SA-binding protein 2, or SABP-2. The SABP-2 was immobilized within a biocompatible Hypol gel matrix. The PEVA-based sensors exhibited slower but reversible responses to MeS vapors, recovering fully to their initial state after the analyte was removed. SABP-2 sensors exhibited faster overall response to the introduction ofmore » MeS, responding nearly instantly. These sensors, however, do not recover after exposures have ended. Sensors using the SABP-2 sensing materials act instead as integrating sensors, measuring irreversibly the total MeS dose obtained.« less
Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin
2015-07-10
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.
Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture
Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin
2015-01-01
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology. PMID:26184205
Air-Sense: indoor environment monitoring evaluation system based on ZigBee network
NASA Astrophysics Data System (ADS)
Huang, Yang; Hu, Liang; Yang, Disheng; Liu, Hengchang
2017-08-01
In the modern life, people spend most of their time indoors. However, indoor environmental quality problems have always been affecting people’s social activities. In general, indoor environmental quality is also related to our indoor activities. Since most of the organic irritants and volatile gases are colorless, odorless and too tiny to be seen, because we have been unconsciously overlooked indoor environment quality. Consequently, our body suffer a great health problem. In this work, we propose Air-Sense system which utilizes the platform of ZigBee Network to collect and detect the real-time indoor environment quality. What’s more, Air-Sense system can also provide data analysis, and visualizing the results of the indoor environment to the user.
Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.
Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang
2018-02-01
A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.
Overall design of imaging spectrometer on-board light aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhongqi, H.; Zhengkui, C.; Changhua, C.
1996-11-01
Aerial remote sensing is the earliest remote sensing technical system and has gotten rapid development in recent years. The development of aerial remote sensing was dominated by high to medium altitude platform in the past, and now it is characterized by the diversity platform including planes of high-medium-low flying altitude, helicopter, airship, remotely controlled airplane, glider, and balloon. The widely used and rapidly developed platform recently is light aircraft. Early in the close of 1970s, Beijing Research Institute of Uranium Geology began aerial photography and geophysical survey using light aircraft, and put forward the overall design scheme of light aircraftmore » imaging spectral application system (LAISAS) in 19905. LAISAS is comprised of four subsystem. They are called measuring platform, data acquiring subsystem, ground testing and data processing subsystem respectively. The principal instruments of LAISAS include measuring platform controlled by inertia gyroscope, aerial spectrometer with high spectral resolution, imaging spectrometer, 3-channel scanner, 128-channel imaging spectrometer, GPS, illuminance-meter, and devices for atmospheric parameters measuring, ground testing, data correction and processing. LAISAS has the features of integrity from data acquisition to data processing and to application; of stability which guarantees the image quality and is comprised of measuring, ground testing device, and in-door data correction system; of exemplariness of integrated the technology of GIS, GPS, and Image Processing System; of practicality which embodied LAISAS with flexibility and high ratio of performance to cost. So, it can be used in the fields of fundamental research of Remote Sensing and large-scale mapping for resource exploration, environmental monitoring, calamity prediction, and military purpose.« less
Remote sensing with unmanned aircraft systems for precision agriculture applications
USDA-ARS?s Scientific Manuscript database
The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...
Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors
Santos, Abel; Kumeria, Tushar; Losic, Dusan
2014-01-01
Nanoporous anodic alumina (NAA) has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field. PMID:28788678
Reconfigurable, Cognitive Software-Defined Radio
NASA Technical Reports Server (NTRS)
Bhat, Arvind
2015-01-01
Software-defined radio (SDR) technology allows radios to be reconfigured to perform different communication functions without using multiple radios to accomplish each task. Intelligent Automation, Inc., has developed SDR platforms that switch adaptively between different operation modes. The innovation works by modifying both transmit waveforms and receiver signal processing tasks. In Phase I of the project, the company developed SDR cognitive capabilities, including adaptive modulation and coding (AMC), automatic modulation recognition (AMR), and spectrum sensing. In Phase II, these capabilities were integrated into SDR platforms. The reconfigurable transceiver design employs high-speed field-programmable gate arrays, enabling multimode operation and scalable architecture. Designs are based on commercial off-the-shelf (COTS) components and are modular in nature, making it easier to upgrade individual components rather than redesigning the entire SDR platform as technology advances.
Remote sensing for control of tsetse flies
NASA Technical Reports Server (NTRS)
Giddings, L. E.
1976-01-01
Remotely sensed information is discussed which has potential for aiding in the control or eradication of tsetse flies. Data are available from earth resources meteorological, and manned satellites, from airborne sensors, and possibly from data collection platforms. A new zone discrimination technique, based on data from meteorological satellites may also allow the identification of zones hospitable to one or another species of tsetse. For background, a review is presented of the vegetation of Tanzania and Zanzibar, and illustrations presented of automatic processing of data from these areas. In addition, a review is presented of the applicability of temperature data to tsetse areas.
NEON Airborne Remote Sensing of Terrestrial Ecosystems
NASA Astrophysics Data System (ADS)
Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.
2012-12-01
The National Ecological Observatory Network (NEON) is the continental-scale research platform that will collect information on ecosystems across the United States to advance our understanding and ability to forecast environmental change at the continental scale. One of NEON's observing systems, the Airborne Observation Platform (AOP), will fly an instrument suite consisting of a high-fidelity visible-to-shortwave infrared imaging spectrometer, a full waveform small footprint LiDAR, and a high-resolution digital camera on a low-altitude aircraft platform. NEON AOP is focused on acquiring data on several terrestrial Essential Climate Variables including bioclimate, biodiversity, biogeochemistry, and land use products. These variables are collected throughout a network of 60 sites across the Continental United States, Alaska, Hawaii and Puerto Rico via ground-based and airborne measurements. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON AOP plays the role of bridging the spatial scales from that of individual organisms and stands to the scale of satellite-based remote sensing. NEON is building 3 airborne systems to facilitate the routine coverage of NEON sites and provide the capacity to respond to investigator requests for specific projects. The first NEON imaging spectrometer, a next-generation VSWIR instrument, was recently delivered to NEON by JPL. This instrument has been integrated with a small-footprint waveform LiDAR on the first NEON airborne platform (AOP-1). A series of AOP-1 test flights were conducted during the first year of NEON's construction phase. The goal of these flights was to test out instrument functionality and performance, exercise remote sensing collection protocols, and provide provisional data for algorithm and data product validation. These test flights focused the following questions: What is the optimal remote sensing data collection protocol to meet NEON science requirements? How do aircraft altitude, spatial sampling, spatial resolution, and LiDAR instrument configuration affect data retrievals? What are appropriate algorithms to derive ECVs from AOP data? What methodology should be followed to validate AOP remote sensing products and how should ground truth data be collected? Early test flights were focused on radiometric and geometric calibration as well as processing from raw data to Level-1 products. Subsequent flights were conducted focusing on collecting vegetation chemistry and structure measurements. These test flights that were conducted during 2012 have proved to be extremely valuable for verifying instrument functionality and performance, exercising remote sensing collection protocols, and providing data for algorithm and science product validation. Results from these early flights are presented, including the radiometric and geometric calibration of the AOP instruments. These 2012 flight campaigns are just the first of a series of test flights that will take place over the next several years as part of the NEON observatory construction. Lessons learned from these early campaigns will inform both airborne and ground data collection methodologies for future campaigns as well as guide the AOP sampling strategy before NEON enters full science operations.
NASA Astrophysics Data System (ADS)
Shi, Yeyin; Thomasson, J. Alex; Yang, Chenghai; Cope, Dale; Sima, Chao
2017-05-01
Though sharing with many commonalities, one of the major differences between conventional high-altitude airborne remote sensing and low-altitude unmanned aerial system (UAS) based remote sensing is that the latter one has much smaller ground footprint for each image shot. To cover the same area on the ground, it requires the low-altitude UASbased platform to take many highly-overlapped images to produce a good mosaic, instead of just one or a few image shots by the high-altitude aerial platform. Such an UAS flight usually takes 10 to 30 minutes or even longer to complete; environmental lighting change during this time span cannot be ignored especially when spectral variations of various parts of a field are of interests. In this case study, we compared the visible reflectance of two aerial imagery - one generated from mosaicked UAS images, the other generated from a single image taken by a manned aircraft - over the same agricultural field to quantitatively evaluate their spectral variations caused by the different data acquisition strategies. Specifically, we (1) developed our customized ground calibration points (GCPs) and an associated radiometric calibration method for UAS data processing based on camera's sensitivity characteristics; (2) developed a basic comparison method for radiometrically calibrated data from the two aerial platforms based on regions of interests. We see this study as a starting point for a series of following studies to understand the environmental influence on UAS data and investigate the solutions to minimize such influence to ensure data quality.
NASA Astrophysics Data System (ADS)
Hu, Jiandong; Cao, Baiqiong; Wang, Shun; Li, Jianwei; Wei, Wensong; Zhao, Yuanyuan; Hu, Xinran; Zhu, Juanhua; Jiang, Min; Sun, Xiaohui; Chen, Ruipeng; Ma, Liuzheng
2016-03-01
A sensing system for an angle-scanning optical surface-plasmon-resonance (SPR) based biosensor has been designed with a laser line generator in which a P polarizer is embedded to utilize as an excitation source for producing the surface plasmon wave. In this system, the emitting beam from the laser line generator is controlled to realize the angle-scanning using a variable speed direct current (DC) motor. The light beam reflected from the prism deposited with a 50 nm Au film is then captured using the area CCD array which was controlled by a personal computer (PC) via a universal serial bus (USB) interface. The photoelectric signals from the high speed digital camera (an area CCD array) were converted by a 16 bit A/D converter before it transferred to the PC. One of the advantages of this SPR biosensing platform is greatly demonstrated by the label-free and real-time bio-molecular analysis without moving the area CCD array by following the laser line generator. It also could provide a low-cost surface plasmon resonance platform to improve the detection range in the measurement of bioanalytes. The SPR curve displayed on the PC screen promptly is formed by the effective data from the image on the area CCD array and the sensing responses of the platform to bulk refractive indices were calibrated using various concentrations of ethanol solution. These ethanol concentrations indicated with volumetric fraction of 5%, 10%, 15%, 20%, and 25%, respectively, were experimented to validate the performance of the angle-scanning optic SPR biosensing platform. As a result, the SPR sensor was capable to detect a change in the refractive index of the ethanol solution with the relative high linearity at the correlation coefficient of 0.9842. This greatly enhanced detection range is obtained from the position relationship between the laser line generator and the right-angle prism to allow direct quantification of the samples over a wide range of concentrations.
Solid state gas sensors for detection of explosives and explosive precursors
NASA Astrophysics Data System (ADS)
Chu, Yun
The increased number of terrorist attacks using improvised explosive devices (IEDs) over the past few years has made the trace detection of explosives a priority for the Department of Homeland Security. Considerable advances in early detection of trace explosives employing spectroscopic detection systems and other sensing devices have been made and have demonstrated outstanding performance. However, modern IEDs are not easily detectable by conventional methods and terrorists have adapted to avoid using metallic or nitro groups in the manufacturing of IEDs. Instead, more powerful but smaller compounds, such as TATP are being more frequently used. In addition, conventional detection techniques usually require large capital investment, labor costs and energy input and are incapable of real-time identification, limiting their application. Thus, a low cost detection system which is capable of continuous online monitoring in a passive mode is needed for explosive detection. In this dissertation, a thermodynamic based thin film gas sensor which can reliably detect various explosive compounds was developed and demonstrated. The principle of the sensors is based on measuring the heat effect associated with the catalytic decomposition of explosive compounds present in the vapor phase. The decomposition mechanism is complicated and not well known, but it can be affected by many parameters including catalyst, reaction temperature and humidity. Explosives that have relatively high vapor pressure and readily sublime at room temperature, like TATP and 2, 6-DNT, are ideal candidate for vapor phase detection using the thermodynamic gas sensor. ZnO, W2O 3, V2O5 and SnO2 were employed as catalysts. This sensor exhibited promising sensitivity results for TATP, but poor selectivity among peroxide based compounds. In order to improve the sensitivity and selectivity of the thermodynamic sensor, a Pd:SnO2 nanocomposite was fabricated and tested as part of this dissertation. A combinatorial chemistry techniques were used for catalyst discovery. Specially, a series of tin oxide catalysts with continuous varying composition of palladium were fabricated to screen for the optimum Pd loading to maximize specificity. Experimental results suggested that sensors with a 12 wt.% palladium loading generated the highest sensitivity while a 8 wt.% palladium loading provided greatest selectivity. XPS and XRD were used to study how palladium doping level affects the oxidation state and crystal structure of the nanocomposite catalyst. As with any passive detection system, a necessary theme of this dissertation was the mitigation of false positive. Toward this end, an orthogonal detection system comprised of two independent sensing platforms sharing one catalyst was demonstrated using TATP, 2, 6-DNT and ammonium nitrate as target molecules. The orthogonal sensor incorporated a thermodynamic based sensing platform to measure the heat effect associated with the decomposition of explosive molecules, and a conductometric sensing platform that monitors the change in electrical conductivity of the same catalyst when exposed to the explosive substances. Results indicate that the orthogonal sensor generates an effective response to explosives presented at part per billion level. In addition, with two independent sensing platforms, a built-in redundancy of results could be expected to minimize false positive.
Bloch surface wave structures for high sensitivity detection and compact waveguiding
NASA Astrophysics Data System (ADS)
Khan, Muhammad Umar; Corbett, Brian
2016-01-01
Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.
Mahmoud, Bahaa G; Khairy, Mohamed; Rashwan, Farouk A; Banks, Craig E
2017-02-07
To overcome the recent outbreaks of hepatotoxicity-related drugs, a new analytical tool for the continuously determination of these drugs in human fluids is required. Electrochemical-based analytical methods offer an effective, rapid, and simple tool for on-site determination of various organic and inorganic species. However, the design of a sensitive, selective, stable, and reproducible sensor is still a major challenge. In the present manuscript, a facile, one-pot hydrothermal synthesis of bismuth oxide (Bi 2 O 2.33 ) nanostructures (nanorods) was developed. These BiO nanorods were cast onto mass disposable graphite screen-printed electrodes (BiO-SPEs), allowing the ultrasensitive determination of acetaminophen (APAP) in the presence of its common interference isoniazid (INH), which are both found in drug samples. The simultaneous electroanalytical sensing using BiO-SPEs exhibited strong electrocatalytic activity toward the sensing of APAP and INH with an enhanced analytical signal (voltammetric peak) over that achievable at unmodified (bare) SPEs. The electroanalytical sensing of APAP and INH are possible with accessible linear ranges from 0.5 to 1250 μM and 5 to 1760 μM with limits of detection (3σ) of 30 nM and 1.85 μM, respectively. The stability, reproducibility, and repeatability of BiO-SPE were also investigated. The BiO-SPEs were evaluated toward the sensing of APAP and INH in human serum, urine, saliva, and tablet samples. The results presented in this paper demonstrate that BiO-SPEs sensing platforms provide a potential candidate for the accurate determination of APAP and INH within human fluids and pharmaceutical formulations.
Du, Yi-Chen; Jiang, Hong-Xin; Huo, Yan-Fang; Han, Gui-Mei; Kong, De-Ming
2016-03-15
As an isothermal nucleic acid amplification technique, strand displacement amplification (SDA) reaction has been introduced in G-quadruplex DNAzyme-based sensing system to improve the sensing performance. To further provide useful information for the design of SDA-amplified G-quadruplex DNAzyme-based sensors, the effects of nicking site number in SDA template DNA were investigated. With the increase of the nicking site number from 1 to 2, enrichment of G-quadruplex DNAzyme by SDA is changed from a linear amplification to an exponential amplification, thus greatly increasing the amplification efficiency and subsequently improving the sensing performance of corresponding sensing system. The nicking site number cannot be further increased because more nicking sites might result in high background signals. However, we demonstrated that G-quadruplex DNAzyme enrichment efficiency could be further improved by introducing a cross-triggered SDA strategy, in which two templates each has two nicking sites are used. To validate the proposed cross-triggered SDA strategy, we used it to develop a sensing platform for the detection of uracil-DNA glycosylase (UDG) activity. The sensor enables sensitive detection of UDG activity in the range of 1 × 10(-4)-1 U/mL with a detection limit of 1 × 10(-4)U/mL. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Maoteng; Zhang, Yongjun; Zhou, Shunping; Zhu, Junfeng; Xiong, Xiaodong
2016-07-01
In recent years, new platforms and sensors in photogrammetry, remote sensing and computer vision areas have become available, such as Unmanned Aircraft Vehicles (UAV), oblique camera systems, common digital cameras and even mobile phone cameras. Images collected by all these kinds of sensors could be used as remote sensing data sources. These sensors can obtain large-scale remote sensing data which consist of a great number of images. Bundle block adjustment of large-scale data with conventional algorithm is very time and space (memory) consuming due to the super large normal matrix arising from large-scale data. In this paper, an efficient Block-based Sparse Matrix Compression (BSMC) method combined with the Preconditioned Conjugate Gradient (PCG) algorithm is chosen to develop a stable and efficient bundle block adjustment system in order to deal with the large-scale remote sensing data. The main contribution of this work is the BSMC-based PCG algorithm which is more efficient in time and memory than the traditional algorithm without compromising the accuracy. Totally 8 datasets of real data are used to test our proposed method. Preliminary results have shown that the BSMC method can efficiently decrease the time and memory requirement of large-scale data.
Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.
Wang, Jiao; Deng, Zhiqiang
2017-06-01
A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.
USDA-ARS?s Scientific Manuscript database
Unmanned aircraft systems (UAS) have emerged as a low-cost and versatile remote sensing platform in recent years, but little work has been done on comparing imagery from manned and unmanned platforms for crop assessment. The objective of this study was to compare imagery taken from multiple cameras ...
NASA Astrophysics Data System (ADS)
Bernini, Romeo; Grimaldi, Immacolata A.; Persichetti, Gianluca; Testa, Genni
2017-02-01
In recent years, microbottle resonators that support non-degenerate whispering gallery modes (WGMs), propagating by successive total internal reflections close to the resonator surface and all along its axis, have been widely investigated due to their potential applications in optical sensing, microlasers and nonlinear optics. To overcome some drawbacks of the standard silica microbottle resonators, we focused our attention on polymers such as SU-8 resist and NOA resins. A drop of polymeric material is dispensed onto a fiber stem, providing a mechanical support for the bottle resonator, and is photo-polymerized by an UV lamp. The interrogation system, usually constituted by a tapered silica fiber evanescently coupled with the microresonator, is substituted by a more stable planar waveguide realized in SU-8 by means of standard photolithography technique. Moreover, for guarantying the stability to surrounding disturbance of the coupling between the microbottle resonator and the planar waveguide, the fiber stem is glued to substrate. Two drilled holes in the substrate allow the rise of the glue at the ends of the fiber stem and the fixing of sensor on PMMA substrate. In the present work, we presented an integrated full polymeric platform with self-assembled bottle microresonators packaged in a stable structure. SU-8 and NOA based microbottles are realized and morphologically characterized. The low autofluorescence emission and long term stability make the NOA based bottles suitable to be employed in a great variety of conditions. Bulk sensing measurements are performed by using water:ethanol solutions and a bulk sensitivity of 120 nm/RIU is estimated.
Evaluation of computational endomicroscopy architectures for minimally-invasive optical biopsy
NASA Astrophysics Data System (ADS)
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2017-02-01
We are investigating compressive sensing architectures for applications in endomicroscopy, where the narrow diameter probes required for tissue access can limit the achievable spatial resolution. We hypothesize that the compressive sensing framework can be used to overcome the fundamental pixel number limitation in fiber-bundle based endomicroscopy by reconstructing images with more resolvable points than fibers in the bundle. An experimental test platform was assembled to evaluate and compare two candidate architectures, based on introducing a coded amplitude mask at either a conjugate image or Fourier plane within the optical system. The benchtop platform consists of a common illumination and object path followed by separate imaging arms for each compressive architecture. The imaging arms contain a digital micromirror device (DMD) as a reprogrammable mask, with a CCD camera for image acquisition. One arm has the DMD positioned at a conjugate image plane ("IP arm"), while the other arm has the DMD positioned at a Fourier plane ("FP arm"). Lenses were selected and positioned within each arm to achieve an element-to-pixel ratio of 16 (230,400 mask elements mapped onto 14,400 camera pixels). We discuss our mathematical model for each system arm and outline the importance of accounting for system non-idealities. Reconstruction of a 1951 USAF resolution target using optimization-based compressive sensing algorithms produced images with higher spatial resolution than bicubic interpolation for both system arms when system non-idealities are included in the model. Furthermore, images generated with image plane coding appear to exhibit higher spatial resolution, but more noise, than images acquired through Fourier plane coding.
PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING.
Georgiev, Georgi T; Butler, James J; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
Preliminary Results of BTDF Calibration of Transmissive Solar Diffusers for Remote Sensing
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute’s (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA’s Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples. PMID:28003712
On-a-chip biosensing with nano-optical resonators (Conference Presentation)
NASA Astrophysics Data System (ADS)
Quidant, Romain; Yavas, Ozlem; Sanz, Vanesa; Acimovic, Srdjan; Dobosz, Paulina
2016-09-01
Optical biosensing based on gold nanoparticles supporting localized surface plasmoncs (LSPR) potentially offers great opportunities for compact, sensitive and low cost diagnostic devices. While last two decades have witnessed a diversity of nanoplasmonic systems with outstanding sensitivity, the implementation of LSPR sensing into a real analytical device is only at its infancy. In this context, we present here our latest advances in the optical, label free detection of biomolecules based on gold nanoantennas integrated into a state-of-the-art microfluidic platform. We first demonstrate the capability of our platform to detect low concentrations (<1ng/ml) of protein cancer markers in human serum with low unspecific binding and high repeatability. In a second step we present a novel design that enables to simultaneously determine the absolute concentration of four different target molecules from an unknown sample. The system is validated in the context of breast cancer, as a strategy to assess the risk for brain metastasis. In the final part of the paper we discuss the use of LSPR sensing for the detection of other targets, including DNA and exosomes. Our research demonstrates the high potential of gold nanoparticles for the detection of different biomarkers in real biological samples and thus gets us closer to future LSPR-based point-of-care devices.
Novel nanoplasmonic biosensor integrated in a microfluidic channel
NASA Astrophysics Data System (ADS)
Solis-Tinoco, V.; Sepulveda, B.; Lechuga, L. M.
2015-06-01
An important motivation of the actual biosensor research is to develop a multiplexed sensing platform of high sensitivity fabricated with large-scale and low-cost technologies for applications such as diagnosis and monitoring of diseases, drug discovery and environmental control. Biosensors based on localized plasmon resonance (LSPR) have demonstrated to be a novel and effective platform for quantitative detection of biological and chemical analytes. Here, we describe a novel label-free nanobiosensor consisting of an array of closely spaced, vertical, elastomeric nanopillars capped with plasmonic gold nanodisks in a SU-8 channel. The principle is based on the refractive index sensing using the LSPR of gold nanodisks. The fabrication of the nanobiosensor is based on replica molding technique and gold nanodisks are incorporated on the polymer structures by e-beam evaporation. In this work, we provide the strategies for controlling the silicon nanostructure replication using thermal polymers and photopolymers with different Young's modulus, in order to minimize the common distortions in the process and to obtain a reliable replica of the Si master. The master mold of the biosensor consists of a hexagonal array of silicon nanopillars, whose diameter is ~200 nm, and whose height can range from 250 nm to 1.300 μm, separated 400 nm from the center to center, integrated in a SU-8 microfluidic channel.
NASA Astrophysics Data System (ADS)
Chiu, L.; Hao, X.; Kinter, J. L.; Stearn, G.; Aliani, M.
2017-12-01
The launch of GOES-16 series provides an opportunity to advance near real-time applications in natural hazard detection, monitoring and warning. This study demonstrates the capability and values of receiving real-time satellite-based Earth observations over a fast terrestrial networks and processing high-resolution remote sensing data in a university environment. The demonstration system includes 4 components: 1) Near real-time data receiving and processing; 2) data analysis and visualization; 3) event detection and monitoring; and 4) information dissemination. Various tools are developed and integrated to receive and process GRB data in near real-time, produce images and value-added data products, and detect and monitor extreme weather events such as hurricane, fire, flooding, fog, lightning, etc. A web-based application system is developed to disseminate near-real satellite images and data products. The images are generated with GIS-compatible format (GeoTIFF) to enable convenient use and integration in various GIS platforms. This study enhances the capacities for undergraduate and graduate education in Earth system and climate sciences, and related applications to understand the basic principles and technology in real-time applications with remote sensing measurements. It also provides an integrated platform for near real-time monitoring of extreme weather events, which are helpful for various user communities.
NASA Astrophysics Data System (ADS)
Chang, Te-Wei
With the advance of nanofabrication, the capability of nanoscale metallic structure fabrication opens a whole new study in nanoplasmonics, which is defined as the investigation of photon-electron interaction in the vicinity of nanoscale metallic structures. The strong oscillation of free electrons at the interface between metal and surrounding dielectric material caused by propagating surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) enables a variety of new applications in different areas, especially biological sensing techniques. One of the promising biological sensing applications by surface resonance polariton is surface enhanced Raman spectroscopy (SERS), which significantly reinforces the feeble signal of traditional Raman scattering by at least 104 times. It enables highly sensitive and precise molecule identification with the assistance of a SERS substrate. Until now, the design of new SERS substrate fabrication process is still thriving since no dominant design has emerged yet. The ideal process should be able to achieve both a high sensitivity and low cost device in a simple and reliable way. In this thesis two promising approaches for fabricating nanostructured SERS substrate are proposed: thermal dewetting technique and nanoimprint replica technique. These two techniques are demonstrated to show the capability of fabricating high performance SERS substrate in a reliable and cost efficient fashion. In addition, these two techniques have their own unique characteristics and can be integrated with other sensing techniques to build a serial or parallel sensing system. The breakthrough of a combination system with different sensing techniques overcomes the inherent limitations of SERS detection and leverages it to a whole new level of systematic sensing. The development of a sensing platform based on thermal dewetting technique is covered as the first half of this thesis. The process optimization, selection of substrate material, and improved deposition technique are discussed in detail. Interesting phenomena have been found including the influence of Raman enhancement on substrate material selection and hot-spot rich bimetallic nanostructures by physical vapor deposition on metallic seed array, which are barely discussed in past literature but significantly affect the performance of SERS substrate. The optimized bimetallic backplane assisted resonating nanoantenna (BARNA) SERS substrate is demonstrated with the enhancement factor (EF) of 5.8 x 108 with 4.7 % relative standard deviation. By serial combination with optical focusing from nanojet effect, the nanojet and surface enhanced Raman scattering (NASERS) are proved to provide more than three orders of enhancement and enable us to perform stable, nearly single molecule detection. The second part of this thesis includes the development of a parallel dual functional nano Lycurgus cup array (nanoLCA) plasmonic device fabricated by nanoimprint replica technique. The unique configuration of the periodic nanoscale cup-shaped substrate enables a novel hybrid resonance coupling between SPR from extraordinary (EOT) and LSPR from dense sidewall metal nanoparticles with only single deposition process. The sub-50nm dense sidewall metal nanoparticles lead to high SERS performance in solution based detection, by which most biological and chemical analyses are typically performed. The SERS EF was calculated as 2.8 x 107 in a solution based environment with 10.2 % RSD, which is so far the highest reported SERS enhancement achieved with similar periodic EOT devices. In addition, plasmonic colorimetric sensing can be achieved in the very same device and the sensitivity was calculated as 796 nm/RIU with the FOM of 12.7. It creates a unique complementary sensing platform with both rapid on-site colorimetric screening and follow-up precise Raman analysis for point of care and resource limited environment applications. The implementations of bifunctional sensing on opto-microfluidic and smartphone platforms are proposed and examined here as well.
Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting
NASA Astrophysics Data System (ADS)
Frish, Michael B.; Wainner, Richard T.; Laderer, Matthew C.; Allen, Mark G.; Rutherford, James; Wehnert, Paul; Dey, Sean; Gilchrist, John; Corbi, Ron; Picciaia, Daniele; Andreussi, Paolo; Furry, David
2013-05-01
Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).
Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications
Vegni, Lucio
2018-01-01
A modeling and design approach is proposed for nanoparticle-based electromagnetic devices. First, the structure properties were analytically studied using Maxwell’s equations. The method provides us a robust link between nanoparticles electromagnetic response (amplitude and phase) and their geometrical characteristics (shape, geometry, and dimensions). Secondly, new designs based on “metamaterial” concept are proposed, demonstrating great performances in terms of wide-angle range functionality and multi/wide behavior, compared to conventional devices working at the same frequencies. The approach offers potential applications to build-up new advanced platforms for sensing and medical diagnostics. Therefore, in the final part of the article, some practical examples are reported such as cancer detection, water content measurements, chemical analysis, glucose concentration measurements and blood diseases monitoring. PMID:29652853
Czugala, Monika; Gorkin, Robert; Phelan, Thomas; Gaughran, Jennifer; Curto, Vincenzo Fabio; Ducrée, Jens; Diamond, Dermot; Benito-Lopez, Fernando
2012-12-07
This work describes the first use of a wireless paired emitter detector diode device (PEDD) as an optical sensor for water quality monitoring in a lab-on-a-disc device. The microfluidic platform, based on an ionogel sensing area combined with a low-cost optical sensor, is applied for quantitative pH and qualitative turbidity monitoring of water samples at point-of-need. The autonomous capabilities of the PEDD system, combined with the portability and wireless communication of the full device, provide the flexibility needed for on-site water testing. Water samples from local fresh and brackish sources were successfully analysed using the device, showing very good correlation with standard bench-top systems.
In-motion optical sensing for assessment of animal well-being
NASA Astrophysics Data System (ADS)
Atkins, Colton A.; Pond, Kevin R.; Madsen, Christi K.
2017-05-01
The application of in-motion optical sensor measurements was investigated for inspecting livestock soundness as a means of animal well-being. An optical sensor-based platform was used to collect in-motion, weight-related information. Eight steers, weighing between 680 and 1134 kg, were evaluated twice. Six of the 8 steers were used for further evaluation and analysis. Hoof impacts caused plate flexion that was optically sensed. Observed kinetic differences between animals' strides at a walking or running/trotting gait with significant force distributions of animals' hoof impacts allowed for observation of real-time, biometric patterns. Overall, optical sensor-based measurements identified hoof differences between and within animals in motion that may allow for diagnosis of musculoskeletal unsoundness without visual evaluation.
Sun, Shu-Wen; Liu, Hai-Ling; Zhou, Yue; Wang, Feng-Bin; Xia, Xing-Hua
2017-10-17
An electrochemical sensor using ultralight and porous copper-nitrogen-doped graphene (CuNRGO) nanocomposite as the electrocatalyst has been constructed to simultaneously determine DNA bases such as guanine (G) and cytosine (C), adenine (A), and thymine (T). The nanocomposite is synthesized by thermally annealing an ice-templated structure of graphene oxide (GO) and Cu(phen) 2 . Because of the unique structure and the presence of Cu 2+ -N active sites, the CuNRGO exhibits outstanding electrocatalytic activity toward the oxidation of free DNA bases. After optimizing the experimental conditions, the CuNRGO-based electrochemical sensor shows good linear responses for the G, A, T, and C bases in the concentration ranges of 0.132-6.62 μM, 0.37-5.18 μM, 198.2-5551 μM, and 270.0-1575 μM, respectively. The results demonstrate that CuNRGO is a promising electrocatalyst for electrochemical sensing devices.
NASA Astrophysics Data System (ADS)
Costanzo, Antonio; Montuori, Antonio; Silva, Juan Pablo; Silvestri, Malvina; Musacchio, Massimo; Buongiorno, Maria Fabrizia; Stramondo, Salvatore
2016-08-01
In this work, a web-GIS procedure to map the risk of road blockage in urban environments through the combined use of space-borne and airborne remote sensing sensors is presented. The methodology concerns (1) the provision of a geo-database through the integration of space-borne multispectral images and airborne LiDAR data products; (2) the modeling of building vulnerability, based on the corresponding 3D geometry and construction time information; (3) the GIS-based mapping of road closure due to seismic- related building collapses based on the building characteristic height and the width of the road. Experimental results, gathered for the Cosenza urban area, allow demonstrating the benefits of both the proposed approach and the GIS-based integration of multi-platforms remote sensing sensors and techniques for seismic road assessment purposes.
USDA-ARS?s Scientific Manuscript database
Using unmanned aircraft systems (UAS) as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Most image acquisitions from UAS have been in the visible bands, while multispectral remote sensing ap...
Frontiers of Remote Sensing of the Oceans and Troposphere from Air and Space Platforms
NASA Technical Reports Server (NTRS)
1984-01-01
Several areas of remote sensing are addressed including: future satellite systems; air-sea interaction/wind; ocean waves and spectra/S.A.R.; atmospheric measurements (particulates and water vapor); synoptic and weather forecasting; topography; bathymetry; sea ice; and impact of remote sensing on synoptic analysis/forecasting.
Evapotranspiration estimates derived using multi-platform remote sensing in a semiarid region
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) is a key component of the water balance, especially in arid and semiarid regions. The current study takes advantage of spatially-distributed, near real-time information provided by satellite remote sensing to develop a regional scale ET product derived from remotely-sensed ob...
A novel robotic platform for laser-assisted transurethral surgery of the prostate.
Russo, S; Dario, P; Menciassi, A
2015-02-01
Benign prostatic hyperplasia (BPH) is the most common pathology afflicting ageing men. The gold standard for the surgical treatment of BPH is transurethral resection of the prostate. The laser-assisted transurethral surgical treatment of BPH is recently emerging as a valid clinical alternative. Despite this, there are still some issues that hinder the outcome of laser surgery, e.g., distal dexterity is strongly reduced by the current endoscopic instrumentation and contact between laser and prostatic tissue cannot be monitored and optimized. This paper presents a novel robotic platform for laser-assisted transurethral surgery of BPH. The system, designed to be compatible with the traditional endoscopic instrumentation, is composed of a catheter-like robot provided with a fiber optic-based sensing system and a cable-driven actuation mechanism. The sensing system allows contact monitoring between the laser and the hypertrophic tissue. The actuation mechanism allows steering of the laser fiber inside the prostatic urethra of the patient, when contact must be reached. The design of the proposed robotic platform along with its preliminary testing and evaluation is presented in this paper. The actuation mechanism is tested in in vitro experiments to prove laser steering performances according to the clinical requirements. The sensing system is calibrated in experiments aimed to evaluate the capability of discriminating the contact forces, between the laser tip and the prostatic tissue, from the pulling forces exerted on the cables, during laser steering. These results have been validated demonstrating the robot's capability of detecting sub-Newton contact forces even in combination with actuation.
Qiu, Gui-Hua; Weng, Zi-Hua; Hu, Pei-Pei; Duan, Wen-Jun; Xie, Bao-Ping; Sun, Bin; Tang, Xiao-Yan; Chen, Jin-Xiang
2018-04-01
From a three-dimensional (3D) metal-organic framework (MOF) of {[Cu(Cmdcp)(phen)(H 2 O)] 2 ·9H 2 O} n (1, H 3 CmdcpBr = N-carboxymethyl-(3,5-dicarboxyl)pyridinium bromide, phen = phenanthroline), a sensitive and selective fluorescence sensor has been developed for the simultaneous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded microRNA-like (miRNA-like) fragment. The results from molecular dynamics simulation confirmed that MOF 1 absorbs carboxyfluorescein (FAM)-tagged and 5(6)-carboxyrhodamine, triethylammonium salt (ROX)-tagged probe ss-DNA (probe DNA, P-DNA) by π … π stacking and hydrogen bonding, as well as additional electrostatic interactions to form a sensing platform of P-DNAs@1 with quenched FAM and ROX fluorescence. In the presence of targeted ebolavirus conserved RNA sequences or ebolavirus-encoded miRNA-like fragment, the fluorophore-labeled P-DNA hybridizes with the analyte to give a P-DNA@RNA duplex and released from MOF 1, triggering a fluorescence recovery. Simultaneous detection of two target RNAs has also been realized by single and synchronous fluorescence analysis. The formed sensing platform shows high sensitivity for ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment with detection limits at the picomolar level and high selectivity without cross-reaction between the two probes. MOF 1 thus shows the potential as an effective fluorescent sensing platform for the synchronous detection of two ebolavirus-related sequences, and offer improved diagnostic accuracy of Ebola virus disease. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Hwang, Gwo-Haur; Chu, Hui-Chun; Chen, Beyin; Cheng, Zheng Shan
2014-01-01
The rapid progress of wireless communication, sensing, and mobile technologies has enabled students to learn in an environment that combines learning resources from both the real world and the digital world. It can be viewed as a new learning style which has been called context-aware ubiquitous learning. Most context-aware ubiquitous learning…
Jiang, Keren; Wang, Yinan; Thakur, Garima; Kotsuchibashi, Yohei; Naicker, Selvaraj; Narain, Ravin; Thundat, Thomas
2017-05-10
A conjugated polymer interface consisting of an oxaborole containing polymer and a glycopolymer was used for achieving very high selectivity in dopamine (DA) detection. The optimum binding affinity between the polymers promotes the selectivity to DA through a displacement mechanism while remaining unaffected by other structurally related analogs and saccharide derivatives. Real-time detection of DA with very high selectivity and sensitivity has been demonstrated by immobilizing the polymer conjugates on surface plasmon resonance (SPR) and microcantilever (MCL) sensor platforms. Using the conjugated polymer sensing layer, the SPR biosensor was capable of detecting DA in the concentration range of 1 × 10 -9 to 1 × 10 -4 mol L -1 , whereas the MCL sensor showed a limit of detection (LOD) of 5 × 10 -11 mol L -1 . We find that the sensing mechanism is based on DA-induced reversible swelling of the conjugated polymer layer and this allows regeneration and reuse of the sensor multiple times. Also, we conclude that SPR is a suitable sensor platform for DA in-line detection at clinical level considering the detection time and stability, whereas MCL can achieve a much lower LOD.
Overview of the NASA tropospheric environmental quality remote sensing program
NASA Technical Reports Server (NTRS)
Allario, F.; Ayers, W. G.; Hoell, J. M.
1979-01-01
This paper will summarize the current NASA Tropospheric Environmental Quality Remote Sensing Program for studying the global and regional troposphere from space, airborne and ground-based platforms. As part of the program to develop remote sensors for utilization from space, NASA has developed a series of passive and active remote sensors which have undergone field test measurements from airborne and ground platforms. Recent measurements with active lidar and passive gas filter correlation and infrared heterodyne techniques will be summarized for measurements of atmospheric aerosols, CO, SO2, O3, and NH3. These measurements provide the data base required to assess the sensitivity of remote sensors for applications to urban and regional field measurement programs. Studies of Earth Observation Satellite Systems are currently being performed by the scientific community to assess the capability of satellite imagery to detect regions of elevated pollution in the troposphere. The status of NASA sponsored research efforts in interpreting satellite imagery for determining aerosol loadings over land and inland bodies of water will be presented, and comments on the potential of these measurements to supplement in situ and airborne remote sensors in detecting regional haze will be made.
Besar, Kalpana; Dailey, Jennifer; Katz, Howard E
2017-01-18
Ethylene sensing is a highly challenging problem for the horticulture industry because of the limited physiochemical reactivity of ethylene. Ethylene plays a very important role in the fruit life cycle and has a significant role in determining the shelf life of fruits. Limited ethylene monitoring capability results in huge losses to the horticulture industry as fruits may spoil before they reach the consumer, or they may not ripen properly. Herein we present a poly(3-hexylthiophene-2,5-diyl) (P3HT)-based organic field effect transistor as a sensing platform for ethylene with sensitivity of 25 ppm V/V. To achieve this response, we used N-(tert-Butoxy-carbonyloxy)-phthalimide and palladium particles as additives to the P3HT film. N-(tert-Butoxy-carbonyloxy)-phthalimide is used to increase the porosity of the P3HT, thereby increasing the overall sensor surface area, whereas the palladium (<1 μm diameter) particles are used as receptors for ethylene molecules in order to further enhance the sensitivity of the sensor platform. Both modifications give statistically significant sensitivity increases over pure P3HT. The sensor response is reversible and is also highly selective for ethylene compared to common solvent vapors.
Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform.
Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan
2016-04-01
Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis.
Chang, Andrew L.; McKeague, Maureen; Smolke, Christina D.
2015-01-01
Nucleic acid aptamers find widespread use as targeting and sensing agents in nature and biotechnology. Their ability to bind an extensive range of molecular targets, including small molecules, proteins, and ions, with high affinity and specificity enables their use in diverse diagnostic, therapeutic, imaging, and gene-regulatory applications. Here, we describe methods for characterizing aptamer kinetic and equilibrium binding properties using a surface plasmon resonance-based platform. This aptamer characterization platform is broadly useful for studying aptamer–ligand interactions, comparing aptamer properties, screening functional aptamers during in vitro selection processes, and prototyping aptamers for integration into nucleic acid devices. PMID:25432760
Smart phones: platform enabling modular, chemical, biological, and explosives sensing
NASA Astrophysics Data System (ADS)
Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.
2013-05-01
Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.
SERVIR-Africa: Developing an Integrated Platform for Floods Disaster Management in Africa
NASA Technical Reports Server (NTRS)
Macharia, Daniel; Korme, Tesfaye; Policelli, Fritz; Irwin, Dan; Adler, Bob; Hong, Yang
2010-01-01
SERVIR-Africa is an ambitious regional visualization and monitoring system that integrates remotely sensed data with predictive models and field-based data to monitor ecological processes and respond to natural disasters. It aims addressing societal benefits including floods and turning data into actionable information for decision-makers. Floods are exogenous disasters that affect many parts of Africa, probably second only to drought in terms of social-economic losses. This paper looks at SERVIR-Africa's approach to floods disaster management through establishment of an integrated platform, floods prediction models, post-event flood mapping and monitoring as well as flood maps dissemination in support of flood disaster management.
NASA Astrophysics Data System (ADS)
Weber, S. A.; Engel-Cox, J. A.; Hoff, R. M.; Prados, A.; Zhang, H.
2008-12-01
Integrating satellite- and ground-based aerosol optical depth (AOD) observations with surface total fine particulate (PM2.5) and sulfate concentrations allows for a more comprehensive understanding of local- and urban-scale air quality. This study evaluates the utility of integrated databases being developed for NOAA and EPA through the 3D-AQS project by examining the relationship between remotely-sensed AOD and PM2.5 concentrations for each platform for the summer of 2004 and the entire year of 2005. We compare results for the Baltimore, MD/Washington, DC metropolitan air shed, incorporating AOD products from the Terra and GOES-12 satellites, AERONET sunphotometer, and ground-based lidar, and PM2.5 concentrations from five surface monitoring sites. The satellite-derived products include AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR), as well as the GOES Aerosol/Smoke Product (GASP). The vertical profile of lidar backscatter is used to retrieve the planetary boundary layer (PBL) height in an attempt to capture only that fraction of the AOD arising from near surface aerosols. Adjusting the AOD data using platform- and season-specific ratios, calculated using the parameters of the regression equations, for two case studies resulted in a more accurate representation of surface PM2.5 concentrations when compared to a constant ratio that is currently being used in the NOAA IDEA product. This work demonstrates that quantitative relationships between remotely-sensed and in-situ aerosol observations in an integrated database can be computed and applied to improve the use of remotely-sensed observations for estimating surface concentrations.
The Performance Analysis of a Uav Based Mobile Mapping System Platform
NASA Astrophysics Data System (ADS)
Tsai, M. L.; Chiang, K. W.; Lo, C. F.; Ch, C. H.
2013-08-01
To facilitate applications such as environment detection or disaster monitoring, the development of rapid low cost systems for collecting near real-time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. This study develops a Direct Georeferencing (DG) based fixed-wing Unmanned Aerial Vehicle (UAV) photogrammetric platform where an Inertial Navigation System (INS)/Global Positioning System (GPS) integrated Positioning and Orientation System (POS) system is implemented to provide the DG capability of the platform. The performance verification indicates that the proposed platform can capture aerial images successfully. A flight test is performed to verify the positioning accuracy in DG mode without using Ground Control Points (GCP). The preliminary results illustrate that horizontal DG positioning accuracies in the x and y axes are around 5 m with 300 m flight height. The positioning accuracy in the z axis is less than 10 m. Such accuracy is good for near real-time disaster relief. The DG ready function of proposed platform guarantees mapping and positioning capability even in GCP free environments, which is very important for rapid urgent response for disaster relief. Generally speaking, the data processing time for the DG module, including POS solution generalization, interpolation, Exterior Orientation Parameters (EOP) generation, and feature point measurements, is less than one hour.
NASA Astrophysics Data System (ADS)
McNamara, Laura A.; Berg, Leif; Butler, Karin; Klein, Laura
2017-05-01
Even as remote sensing technology has advanced in leaps and bounds over the past decade, the remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.
Fog-Based Two-Phase Event Monitoring and Data Gathering in Vehicular Sensor Networks
Yang, Fan; Su, Jinsong; Zhou, Qifeng; Wang, Tian; Zhang, Lu; Xu, Yifan
2017-01-01
Vehicular nodes are equipped with more and more sensing units, and a large amount of sensing data is generated. Recently, more and more research considers cooperative urban sensing as the heart of intelligent and green city traffic management. The key components of the platform will be a combination of a pervasive vehicular sensing system, as well as a central control and analysis system, where data-gathering is a fundamental component. However, the data-gathering and monitoring are also challenging issues in vehicular sensor networks because of the large amount of data and the dynamic nature of the network. In this paper, we propose an efficient continuous event-monitoring and data-gathering framework based on fog nodes in vehicular sensor networks. A fog-based two-level threshold strategy is adopted to suppress unnecessary data upload and transmissions. In the monitoring phase, nodes sense the environment in low cost sensing mode and generate sensed data. When the probability of the event is high and exceeds some threshold, nodes transfer to the event-checking phase, and some nodes would be selected to transfer to the deep sensing mode to generate more accurate data of the environment. Furthermore, it adaptively adjusts the threshold to upload a suitable amount of data for decision making, while at the same time suppressing unnecessary message transmissions. Simulation results showed that the proposed scheme could reduce more than 84 percent of the data transmissions compared with other existing algorithms, while it detects the events and gathers the event data. PMID:29286320
Low-cost multispectral imaging for remote sensing of lettuce health
NASA Astrophysics Data System (ADS)
Ren, David D. W.; Tripathi, Siddhant; Li, Larry K. B.
2017-01-01
In agricultural remote sensing, unmanned aerial vehicle (UAV) platforms offer many advantages over conventional satellite and full-scale airborne platforms. One of the most important advantages is their ability to capture high spatial resolution images (1-10 cm) on-demand and at different viewing angles. However, UAV platforms typically rely on the use of multiple cameras, which can be costly and difficult to operate. We present the development of a simple low-cost imaging system for remote sensing of crop health and demonstrate it on lettuce (Lactuca sativa) grown in Hong Kong. To identify the optimal vegetation index, we recorded images of both healthy and unhealthy lettuce, and used them as input in an expectation maximization cluster analysis with a Gaussian mixture model. Results from unsupervised and supervised clustering show that, among four widely used vegetation indices, the blue wide-dynamic range vegetation index is the most accurate. This study shows that it is readily possible to design and build a remote sensing system capable of determining the health status of lettuce at a reasonably low cost (
Utilising the Intel RealSense Camera for Measuring Health Outcomes in Clinical Research.
Siena, Francesco Luke; Byrom, Bill; Watts, Paul; Breedon, Philip
2018-02-05
Applications utilising 3D Camera technologies for the measurement of health outcomes in the health and wellness sector continues to expand. The Intel® RealSense™ is one of the leading 3D depth sensing cameras currently available on the market and aligns itself for use in many applications, including robotics, automation, and medical systems. One of the most prominent areas is the production of interactive solutions for rehabilitation which includes gait analysis and facial tracking. Advancements in depth camera technology has resulted in a noticeable increase in the integration of these technologies into portable platforms, suggesting significant future potential for pervasive in-clinic and field based health assessment solutions. This paper reviews the Intel RealSense technology's technical capabilities and discusses its application to clinical research and includes examples where the Intel RealSense camera range has been used for the measurement of health outcomes. This review supports the use of the technology to develop robust, objective movement and mobility-based endpoints to enable accurate tracking of the effects of treatment interventions in clinical trials.
Architecture of a Service-Enabled Sensing Platform for the Environment
Kotsev, Alexander; Pantisano, Francesco; Schade, Sven; Jirka, Simon
2015-01-01
Recent technological advancements have led to the production of arrays of miniaturized sensors, often embedded in existing multitasking devices (e.g., smartphones, tablets) and using a wide range of radio standards (e.g., Bluetooth, Wi-Fi, 4G cellular networks). Altogether, these technological evolutions coupled with the diffusion of ubiquitous Internet connectivity provide the base-line technology for the Internet of Things (IoT). The rapid increase of IoT devices is enabling the definition of new paradigms of data collection and introduces the concept of mobile crowd-sensing. In this respect, new sensing methodologies promise to extend the current understanding of the environment and social behaviors by leveraging citizen-contributed data for a wide range of applications. Environmental sensing can however only be successful if all the heterogeneous technologies and infrastructures work smoothly together. As a result, the interconnection and orchestration of devices is one of the central issues of the IoT paradigm. With this in mind, we propose an approach for improving the accessibility of observation data, based on interoperable standards and on-device web services. PMID:25688593
Architecture of a service-enabled sensing platform for the environment.
Kotsev, Alexander; Pantisano, Francesco; Schade, Sven; Jirka, Simon
2015-02-13
Recent technological advancements have led to the production of arrays of miniaturized sensors, often embedded in existing multitasking devices (e.g., smartphones, tablets) and using a wide range of radio standards (e.g., Bluetooth, Wi-Fi, 4G cellular networks). Altogether, these technological evolutions coupled with the diffusion of ubiquitous Internet connectivity provide the base-line technology for the Internet of Things (IoT). The rapid increase of IoT devices is enabling the definition of new paradigms of data collection and introduces the concept of mobile crowd-sensing. In this respect, new sensing methodologies promise to extend the current understanding of the environment and social behaviors by leveraging citizen-contributed data for a wide range of applications. Environmental sensing can however only be successful if all the heterogeneous technologies and infrastructures work smoothly together. As a result, the interconnection and orchestration of devices is one of the central issues of the IoT paradigm. With this in mind, we propose an approach for improving the accessibility of observation data, based on interoperable standards and on-device web services.
NASA Astrophysics Data System (ADS)
Choi, Jin-Sil; Kim, Soojin; Yoo, Dongwon; Shin, Tae-Hyun; Kim, Hoyoung; Gomes, Muller D.; Kim, Sun Hee; Pines, Alexander; Cheon, Jinwoo
2017-05-01
Nanoscale distance-dependent phenomena, such as Förster resonance energy transfer, are important interactions for use in sensing and imaging, but their versatility for bioimaging can be limited by undesirable photon interactions with the surrounding biological matrix, especially in in vivo systems. Here, we report a new type of magnetism-based nanoscale distance-dependent phenomenon that can quantitatively and reversibly sense and image intra-/intermolecular interactions of biologically important targets. We introduce distance-dependent magnetic resonance tuning (MRET), which occurs between a paramagnetic `enhancer' and a superparamagnetic `quencher', where the T1 magnetic resonance imaging (MRI) signal is tuned ON or OFF depending on the separation distance between the quencher and the enhancer. With MRET, we demonstrate the principle of an MRI-based ruler for nanometre-scale distance measurement and the successful detection of both molecular interactions (for example, cleavage, binding, folding and unfolding) and biological targets in in vitro and in vivo systems. MRET can serve as a novel sensing principle to augment the exploration of a wide range of biological systems.
Xia, Jun; Tashpolat, Tiyip; Zhang, Fei; Ji, Hong-jiang
2011-07-01
The characteristic of object spectrum is not only the base of the quantification analysis of remote sensing, but also the main content of the basic research of remote sensing. The typical surface object spectral database in arid areas oasis is of great significance for applied research on remote sensing in soil salinization. In the present paper, the authors took the Ugan-Kuqa River Delta Oasis as an example, unified .NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develop the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the derivative spectral data and its drawings. In addition, the system initially possessed a simple spectral data mining and analysis capabilities, and this advantage provided an efficient, reliable and convenient data management and application platform for the Ugan-Kuqa River Delta Oasis's follow-up study in soil salinization. Finally, It's easy to maintain, convinient for secondary development and practically operating in good condition.
Remote sensing of sagebrush canopy nitrogen
Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.
2012-01-01
This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.
NASA Astrophysics Data System (ADS)
Vivoni, E.; Mascaro, G.; Shupe, J. W.; Hiatt, C.; Potter, C. S.; Miller, R. L.; Stanley, J.; Abraham, T.; Castilla-Rubio, J.
2012-12-01
Droughts and their hydrological consequences are a major threat to food security throughout the world. In arid and semiarid regions dependent on irrigated agriculture, prolonged droughts lead to significant and recurring economic and social losses. In this contribution, we present preliminary results on integrating a set of multi-resolution drought indices into a cloud computing-based visualization platform. We focused our initial efforts on Brazil due to a severe, on-going drought in a large agricultural area in the northeastern part of the country. The online platform includes drought products developed from: (1) a MODIS-based water stress index (WSI) based on inferences from normalized difference vegetation index and land surface temperature fields, (2) a volumetric water content (VWC) index obtained from application of the NASA CASA model, and (3) a set of AVHRR-based vegetation health indices obtained from NOAA/NESDIS. The drought indices are also presented in terms of anomalies with respect to a baseline period. Since our main objective is to engage stakeholders and decision-makers in Brazil, we incorporated other relevant geospatial data into the platform, including irrigation areas, dams and reservoirs, administrative units and annual climate information. We will also present a set of use cases developed to help stakeholders explore, query and provide feedback that allowed fine-tuning of the drought product delivery, presentation and analysis tools. Finally, we discuss potential next steps in development of the online platform, including applications at finer resolutions in specific basins and at a coarser global scale.
Integrated nanopore sensing platform with sub-microsecond temporal resolution
Rosenstein, Jacob K; Wanunu, Meni; Merchant, Christopher A; Drndic, Marija; Shepard, Kenneth L
2012-01-01
Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores. PMID:22426489
NASA Astrophysics Data System (ADS)
LIU, Yiping; XU, Qing; ZhANG, Heng; LV, Liang; LU, Wanjie; WANG, Dandi
2016-11-01
The purpose of this paper is to solve the problems of the traditional single system for interpretation and draughting such as inconsistent standards, single function, dependence on plug-ins, closed system and low integration level. On the basis of the comprehensive analysis of the target elements composition, map representation and similar system features, a 3D interpretation and draughting integrated service platform for multi-source, multi-scale and multi-resolution geospatial objects is established based on HTML5 and WebGL, which not only integrates object recognition, access, retrieval, three-dimensional display and test evaluation but also achieves collection, transfer, storage, refreshing and maintenance of data about Geospatial Objects and shows value in certain prospects and potential for growth.
Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system.
Zhou, Ming; Guo, Jidong; Guo, Li-ping; Bai, Jing
2008-06-15
In this paper, we report a novel all-carbon two-dimensionally ordered nanocomposite electrode system on the basis of the consideration of host-guest chemistry, which utilizes synergistic interactions between a nanostructured matrix of ordered mesoporous carbon (OMC) and an excellent electron acceptor of nanosized fullerene (C 60) to facilitate heterogeneous electron-transfer processes. The integration of OMC-C 60 by covalent interaction, especially its electrochemical applications for electrocatalysis, has not been explored thus far. Such integration may even appear to be counterintuitive because OMC and C 60 provide opposite electrochemical benefits in terms of facilitating heterogeneous electron-transfer processes. Nevertheless, the present work demonstrates the integration of OMC and C 60 can provide a remarkable synergistic augmentation of the current. To illuminate the concept, eight kinds of inorganic and organic electroactive compounds were employed to study the electrochemical response at an OMC-C 60 modified glassy carbon (OMC-C 60/GC) electrode for the first time, which shows more favorable electron-transfer kinetics than OMC/GC, carbon nanotube modified GC, C 60/GC, and GC electrodes. Such electrocatalytic behavior at OMC-C 60/GC electrode could be attributed to the unique physicochemical properties of OMC and C 60, especially the unusual host-guest synergy of OMC-C 60, which induced a substantial decrease in the overvoltage for NADH oxidation compared with GC electrode. The ability of OMC-C 60 to promote electron transfer not only suggests a new platform for the development of dehydrogenase-based bioelectrochemical devices but also indicates a potential of OMC-C 60 to be of a wide range of sensing applications because the electrocatalysis of different electroactive compounds at the OMC-C 60/GC electrode in this work should be a good model for constructing a novel and promising electrochemical sensing platform for further electrochemical detection of other biomolecules.
Design of an imaging spectrometer for earth observation using freeform mirrors
NASA Astrophysics Data System (ADS)
Peschel, T.; Damm, C.; Beier, M.; Gebhardt, A.; Risse, S.; Walter, I.; Sebastian, I.; Krutz, D.
2017-09-01
In 2017 the new hyperspectral DLR Earth Sensing Imaging Spectrometer (DESIS) will be integrated in the Multi-User-System for Earth Sensing (MUSES) platform [1] installed on the International Space Station (ISS).
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors
Zheng, Guang; Moskal, L. Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels. PMID:22574042
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.
Zheng, Guang; Moskal, L Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.
Kumar, Virendra; Kumar, Ajit; Diwan, Uzra; Upadhyay, K K
2013-09-28
A coumarin-based Schiff base (receptor 1) exhibited fluorescence enhancement selectively with Zn(2+) at a nanomolar level in near-aqueous medium (EtOH-H2O; 1:1, v/v). The response was instantaneous with a detection limit of 3.26 × 10(-9) M. The sensing event is supposed to incorporate a combinational effect of intramolecular charge transfer (ICT), chelation-enhanced fluorescence (CHEF) and C[double bond, length as m-dash]N isomerization mechanisms. Various spectroscopic methods, viz. IR, UV-visible, fluorescence and NMR in association with single crystal XRD studies, were used for thorough investigation of the structure of receptor 1 as well as of the sensing event. The Zn(2+) complex of receptor 1 exhibited a very nice 1D chain coordination polymeric framework in its single crystal XRD.
High Resolution Sensing and Control of Urban Water Networks
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Wong, B. P.; Kerkez, B.
2016-12-01
We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.
A Protein Nanopore-Based Approach for Bacteria Sensing
NASA Astrophysics Data System (ADS)
Apetrei, Aurelia; Ciuca, Andrei; Lee, Jong-kook; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor
2016-11-01
We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria ( Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.
Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform
De Palo, Maripina; Ciminelli, Caterina
2017-01-01
In this paper, we report on the design of a bio-multisensing platform for the selective label-free detection of protein biomarkers, carried out through a 3D numerical algorithm. The platform includes a number of biosensors, each of them is based on a plasmonic nanocavity, consisting of a periodic metal structure to be deposited on a silicon oxide substrate. Light is strongly confined in a region with extremely small size (=1.57 μm2), to enhance the light-matter interaction. A surface sensitivity Ss = 1.8 nm/nm has been calculated together with a detection limit of 128 pg/mm2. Such performance, together with the extremely small footprint, allow the integration of several devices on a single chip to realize extremely compact lab-on-chip microsystems. In addition, each sensing element of the platform has a good chemical stability that is guaranteed by the selection of gold for its fabrication. PMID:28783075
NASA Astrophysics Data System (ADS)
Coburn, C. A.; Qin, Y.; Zhang, J.; Staenz, K.
2015-12-01
Food security is one of the most pressing issues facing humankind. Recent estimates predict that over one billion people don't have enough food to meet their basic nutritional needs. The ability of remote sensing tools to monitor and model crop production and predict crop yield is essential for providing governments and farmers with vital information to ensure food security. Google Earth Engine (GEE) is a cloud computing platform, which integrates storage and processing algorithms for massive remotely sensed imagery and vector data sets. By providing the capabilities of storing and analyzing the data sets, it provides an ideal platform for the development of advanced analytic tools for extracting key variables used in regional and national food security systems. With the high performance computing and storing capabilities of GEE, a cloud-computing based system for near real-time crop land monitoring was developed using multi-source remotely sensed data over large areas. The system is able to process and visualize the MODIS time series NDVI profile in conjunction with Landsat 8 image segmentation for crop monitoring. With multi-temporal Landsat 8 imagery, the crop fields are extracted using the image segmentation algorithm developed by Baatz et al.[1]. The MODIS time series NDVI data are modeled by TIMESAT [2], a software package developed for analyzing time series of satellite data. The seasonality of MODIS time series data, for example, the start date of the growing season, length of growing season, and NDVI peak at a field-level are obtained for evaluating the crop-growth conditions. The system fuses MODIS time series NDVI data and Landsat 8 imagery to provide information of near real-time crop-growth conditions through the visualization of MODIS NDVI time series and comparison of multi-year NDVI profiles. Stakeholders, i.e., farmers and government officers, are able to obtain crop-growth information at crop-field level online. This unique utilization of GEE in combination with advanced analytic and extraction techniques provides a vital remote sensing tool for decision makers and scientists with a high-degree of flexibility to adapt to different uses.
Porous Silicon Structures as Optical Gas Sensors.
Levitsky, Igor A
2015-08-14
We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.
3D subsurface geological modeling using GIS, remote sensing, and boreholes data
NASA Astrophysics Data System (ADS)
Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos
2016-08-01
The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.
Concepts for a geostationary-like polar mission
NASA Astrophysics Data System (ADS)
Macdonald, Malcolm; Anderson, Pamela; Carrea, Laura; Dobke, Benjamin; Embury, Owen; Merchant, Chris; Bensi, Paolo
2014-10-01
An evidence-led scientific case for development of a space-based polar remote sensing platform at geostationary-like (GEO-like) altitudes is developed through methods including a data user survey. Whilst a GEO platform provides a nearstatic perspective, multiple platforms are required to provide circumferential coverage. Systems for achieving GEO-like polar observation likewise require multiple platforms however the perspective is non-stationery. A key choice is between designs that provide complete polar view from a single platform at any given instant, and designs where this is obtained by compositing partial views from multiple sensors. Users foresee an increased challenge in extracting geophysical information from composite images and consider the use of non-composited images advantageous. Users also find the placement of apogee over the pole to be preferable to the alternative scenarios. Thus, a clear majority of data users find the "Taranis" orbit concept to be better than a critical inclination orbit, due to the improved perspective offered. The geophysical products that would benefit from a GEO-like polar platform are mainly estimated from radiances in the visible/near infrared and thermal parts of the electromagnetic spectrum, which is consistent with currently proven technologies from GEO. Based on the survey results, needs analysis, and current technology proven from GEO, scientific and observation requirements are developed along with two instrument concepts with eight and four channels, based on Flexible Combined Imager heritage. It is found that an operational system could, mostly likely, be deployed from an Ariane 5 ES to a 16-hour orbit, while a proof-of-concept system could be deployed from a Soyuz launch to the same orbit.
Bellemare-Rousseau, Simon; Khalil, Mazen; Messaddeq, Younes
2018-01-01
In this paper, we present a new mobile wireless communication platform for real-time monitoring of an individual’s breathing rate. The platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna made from a multi-material fiber connected to a compact transmitter. Based on the resonance frequency of the antenna at approximately 2.4 GHz, the breathing sensor relies on its Bluetooth transmitter. The contactless and non-invasive sensor is designed without compromising the user’s comfort. The sensing mechanism of the system is based on the detection of the signal amplitude transmitted wirelessly by the sensor, which is found to be sensitive to strain. We demonstrate the capability of the platform to detect the breathing rates of four male volunteers who are not in movement. The breathing pattern is obtained through the received signal strength indicator (RSSI) which is filtered and analyzed with home-made algorithms in the portable system. Numerical simulations of human breath are performed to support the experimental detection, and both results are in a good agreement. Slow, fast, regular, irregular, and shallow breathing types are successfully recorded within a frequency interval of 0.16–1.2 Hz, leading to a breathing rate varying from 10 to 72 breaths per minute. PMID:29587396
Roudjane, Mourad; Bellemare-Rousseau, Simon; Khalil, Mazen; Gorgutsa, Stepan; Miled, Amine; Messaddeq, Younes
2018-03-25
In this paper, we present a new mobile wireless communication platform for real-time monitoring of an individual's breathing rate. The platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna made from a multi-material fiber connected to a compact transmitter. Based on the resonance frequency of the antenna at approximately 2.4 GHz, the breathing sensor relies on its Bluetooth transmitter. The contactless and non-invasive sensor is designed without compromising the user's comfort. The sensing mechanism of the system is based on the detection of the signal amplitude transmitted wirelessly by the sensor, which is found to be sensitive to strain. We demonstrate the capability of the platform to detect the breathing rates of four male volunteers who are not in movement. The breathing pattern is obtained through the received signal strength indicator (RSSI) which is filtered and analyzed with home-made algorithms in the portable system. Numerical simulations of human breath are performed to support the experimental detection, and both results are in a good agreement. Slow, fast, regular, irregular, and shallow breathing types are successfully recorded within a frequency interval of 0.16-1.2 Hz, leading to a breathing rate varying from 10 to 72 breaths per minute.
Development of fast wireless detection system for fixed offshore platform
NASA Astrophysics Data System (ADS)
Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping
2011-04-01
Offshore platforms' security is concerned since in 1950s and 1960s, and in the early 1980s some important specifications and standards are built, and all these provide technical basis of fixed platform design, construction, installation and evaluation. With the condition that more and more platforms are in serving over age, the research about the evaluation and detection technology of offshore platform has been a hotspot, especially underwater detection, and assessment method based on the finite element calculation. For fixed platform structure detection, conventional NDT methods, such as eddy current, magnetic powder, permeate, X-ray and ultrasonic, etc, are generally used. These techniques are more mature, intuitive, but underwater detection needs underwater robot, the necessary supporting tools of auxiliary equipment, and trained professional team, thus resources and cost used are considerable, installation time of test equipment is long. This project presents a new kind of fast wireless detection and damage diagnosis system for fixed offshore platform using wireless sensor networks, that is, wireless sensor nodes can be put quickly on the offshore platform, detect offshore platform structure global status by wireless communication, and then make diagnosis. This system is operated simply, suitable for offshore platform integrity states rapid assessment. The designed system consists in intelligence acquisition equipment and 8 wireless collection nodes, the whole system has 64 collection channels, namely every wireless collection node has eight 16-bit accuracy of A/D channels. Wireless collection node, integrated with vibration sensing unit, embedded low-power micro-processing unit, wireless transceiver unit, large-capacity power unit, and GPS time synchronization unit, can finish the functions such as vibration data collection, initial analysis, data storage, data wireless transmission. Intelligence acquisition equipment, integrated with high-performance computation unit, wireless transceiver unit, mobile power unit and embedded data analysis software, can totally control multi-wireless collection nodes, receive and analyze data, parameter identification. Data is transmitted at the 2.4GHz wireless communication channel, every sensing data channel in charge of data transmission is in a stable frequency band, control channel responsible for the control of power parameters is in a public frequency band. The test is initially conducted for the designed system, experimental results show that the system has good application prospects and practical value with fast arrangement, high sampling rate, high resolution, capacity of low frequency detection.
Optimized Hypervisor Scheduler for Parallel Discrete Event Simulations on Virtual Machine Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S
2013-01-01
With the advent of virtual machine (VM)-based platforms for parallel computing, it is now possible to execute parallel discrete event simulations (PDES) over multiple virtual machines, in contrast to executing in native mode directly over hardware as is traditionally done over the past decades. While mature VM-based parallel systems now offer new, compelling benefits such as serviceability, dynamic reconfigurability and overall cost effectiveness, the runtime performance of parallel applications can be significantly affected. In particular, most VM-based platforms are optimized for general workloads, but PDES execution exhibits unique dynamics significantly different from other workloads. Here we first present results frommore » experiments that highlight the gross deterioration of the runtime performance of VM-based PDES simulations when executed using traditional VM schedulers, quantitatively showing the bad scaling properties of the scheduler as the number of VMs is increased. The mismatch is fundamental in nature in the sense that any fairness-based VM scheduler implementation would exhibit this mismatch with PDES runs. We also present a new scheduler optimized specifically for PDES applications, and describe its design and implementation. Experimental results obtained from running PDES benchmarks (PHOLD and vehicular traffic simulations) over VMs show over an order of magnitude improvement in the run time of the PDES-optimized scheduler relative to the regular VM scheduler, with over 20 reduction in run time of simulations using up to 64 VMs. The observations and results are timely in the context of emerging systems such as cloud platforms and VM-based high performance computing installations, highlighting to the community the need for PDES-specific support, and the feasibility of significantly reducing the runtime overhead for scalable PDES on VM platforms.« less
Development of a pulsed 9.5 micron lidar for regional scale O3 measurement
NASA Technical Reports Server (NTRS)
Stewart, R. W.
1980-01-01
A pulsed infrared lidar system designed for application to the remote sensing of atmospheric trace gases from an airborne platform is described. The system is also capable of measuring the infrared backscatter characteristics of the ocean surface, terrain, cloud, and aerosol targets. The lidar employed is based on dual wavelength pulse energy measurements in the 9-11 micrometer wavelength region.
Compact 3D photonic crystals sensing platform with 45 degree angle polished fibers
NASA Astrophysics Data System (ADS)
Guo, Yuqing; Chen, Lu; Zhu, Jiali; Ni, Haibin; Xia, Wei; Wang, Ming
2017-07-01
Three dimensional photonic crystals are a kind of promising sensing materials in biology and chemistry. A compact structure, consists of planner colloidal crystals and 45 degree angle polished fiber, is proposed as a platform for accurate, fast, reliable three dimensional photonic crystals sensing in practice. This structure show advantages in compact size for integration and it is ease for large scale manufacture. Reflectivity of the 45 degree angle polished surface with and without a layer of Ag film are simulated by FDTD simulation. Refractive index sensing properties as well as mode distribution of this structure consists of both polystyrene opal and silica inverse opal film is investigated, and an experimental demonstration of silica inverse opal film is performed, which shows a sensitivity of 733 nm/RIU. Different kinds of three dimensional photonic crystals can also be applied in this structure for particular purpose.
C-MEMS for bio-sensing applications
NASA Astrophysics Data System (ADS)
Song, Yin; Agrawal, Richa; Wang, Chunlei
2015-05-01
Developing highly sensitive, selective, and reproducible miniaturized bio-sensing platforms require reliable biointerface which should be compatible with microfabrication techniques. In this study, we have fabricated pyrolyzed carbon arrays with high surface area as a bio-sensing electrode, and developed the surface functionalization methods to increase biomolecules immobilization efficiency and further understand electrochemical phenomena at biointerfaces. The carbon microelectrode arrays with high aspect ratio have been fabricated by carbon microelectromechanical systems (C-MEMS) and nanomaterials such as graphene have been integrated to further increase surface area. To achieve the efficient covalent immobilization of biomolecules, various oxidation and reduction functionalization methods have been investigated. The oxidation treatment in this study includes vacuum ultraviolet, electrochemical activation, UV/Ozone and oxygen RIE. The reduction treatment includes direct amination and diazonium grafting. The developed bio-sensing platform was then applied for several applications, such as: DNA sensor; H2O2 sensor; aptamer sensor and HIV sensor.
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Saylor, Mary S.; Kindle, Earl C.
1987-01-01
The major emphasis is on the advancement of remote sensing technology. In particular, the gas filter correlation radiometer (GFCR) technique was applied to the measurement of trace gas species, such as carbon monoxide (CO), from airborne and Earth orbiting platforms. Through a series of low altitude aircraft flights, high altitude aircraft flights, and orbiting space platform flights, data were collected and analyzed, culminating in the first global map of carbon monoxide concentration in the middle troposphere and stratosphere. The four major areas of this remote sensing program, known as the Measurement of Air Pollution from Satellites (MAPS) experiment, are: (1) data acquisition, (2) data processing, analysis, and interpretation algorithms, (3) data display techniques, and (4) information processing.
Virtual hospital--a computer-aided platform to evaluate the sense of direction.
Jiang, Ching-Fen; Li, Yuan-Shyi
2007-01-01
This paper presents a computer-aided platform, named Virtual Hospital (VH), to evaluate the wayfinding ability that is found impaired in senile people with early dementia. The development of the VH takes the advantage of virtual reality technology to make the evaluation of the sense of direction more convenient and accurate then the conventional way. A pilot study was carried out to test its feasibility in differentiating the sense of direction between different genders. The results with significant differences in the response time (p<0.05) and the pointing error (p<0.01) between genders suggest the potential of the VH for clinical uses. Further improvement on the human-machine interface is necessary to make it easy for geriatric people to use.
NASA Astrophysics Data System (ADS)
Mao, Hanping; Liu, Zhongshou
2018-01-01
In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples.
Hybrid Integrated Label-Free Chemical and Biological Sensors
Mehrabani, Simin; Maker, Ashley J.; Armani, Andrea M.
2014-01-01
Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach. PMID:24675757
Hybrid integrated label-free chemical and biological sensors.
Mehrabani, Simin; Maker, Ashley J; Armani, Andrea M
2014-03-26
Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.
A collaborative smartphone sensing platform for detecting and tracking hostile drones
NASA Astrophysics Data System (ADS)
Boddhu, Sanjay K.; McCartney, Matt; Ceccopieri, Oliver; Williams, Robert L.
2013-05-01
In recent years, not only United States Armed Services but other Law-enforcement agencies have shown increasing interest in employing drones for various surveillance and reconnaissance purposes. Further, recent advancements in autonomous drone control and navigation technology have tremendously increased the geographic extent of dronebased missions beyond the conventional line-of-sight coverage. Without any sophisticated requirement on data links to control them remotely (human-in-loop), drones are proving to be a reliable and effective means of securing personnel and soldiers operating in hostile environments. However, this autonomous breed of drones can potentially prove to be a significant threat when acquired by antisocial groups who wish to target property and life in urban settlements. To further escalate the issue, the standard detection techniques like RADARs, RF data link signature scanners, etc..., prove futile as the drones are smaller in size to evade successful detection by a RADAR based system in urban environment and being autonomous, have the capability of operating without a traceable active data link (RF). Hence, towards investigating possible practical solutions for the issue, the research team at AFRL's Tec^Edge Labs under SATE and YATE programs has developed a highly scalable, geographically distributable and easily deployable smartphone-based collaborative platform that can aid in detecting and tracking unidentified hostile drones. In its current state, this collaborative platform built on the paradigm of "Human-as-Sensors", consists primarily of an intelligent Smartphone application that leverages appropriate sensors on the device to capture a drone's attributes (flight direction, orientation, shape, color, etc..,) with real-time collaboration capabilities through a highly composable sensor cloud and an intelligent processing module (based on a Probabilistic model) that can estimate and predict the possible flight path of a hostile drone based on multiple (geographically distributed) observation data points. This developed collaborative sensing platform has been field tested and proven to be effective in providing real-time alerting mechanism for the personnel in the field to avert or subdue the potential damages caused by the detected hostile drones.
NASA Astrophysics Data System (ADS)
Ma, Y.; Liu, S.
2017-12-01
Accurate estimation of surface evapotranspiration (ET) with high quality is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. However, many aspects urgently need to deeply research, such as the applicability of the ET models, the parameterization schemes optimization at the regional scale, the temporal upscaling, the selecting and developing of the spatiotemporal data fusion method and ground-based validation over heterogeneous land surfaces. This project is based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism need further investigation, including the applicability and the influencing factors, such as local environment, and heterogeneity of the landscape, for improving estimation accuracy. Due to technical and budget limitations, so far, optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions in Southwest China. Here, a multi-source remote sensing data fusion method (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) method will be proposed through blending multi-source remote sensing data acquired by optical, and passive microwave remote sensors on board polar satellite platforms. The accurate "all-weather" ET estimation will be carried out for daily ET of the River Source Region in Southwest China, and then the remotely sensed ET results are overlapped with the footprint-weighted images of EC (eddy correlation) for ground-based validation.
Protein-based nanobiosensor for direct detection of hydrogen sulfide
NASA Astrophysics Data System (ADS)
Omidi, Meisam; Amoabediny, Ghasem; Yazdian, Fatemeh; Habibi-Rezaei, M.
2015-01-01
The chemically modified cytochrome c from equine heart, EC (232-700-9), was immobilized onto gold nanoparticles in order to develop a specific biosensing system for monitoring hydrogen sulfide down to the micromolar level, by means of a localized surface plasmon resonance spectroscopy. The sensing mechanism is based on the cytochrome-c conformational changes in the presence of H2S which alter the dielectric properties of the gold nanoparticles and the surface plasmon resonance peak undergoes a redshift. According to the experiments, it is revealed that H2S can be detected at a concentration of 4.0 μ \\text{M} (1.3 \\text{ppb}) by the fabricated biosensor. This simple, quantitative and sensitive sensing platform provides a rapid and convenient detection for H2S at concentrations far below the hazardous limit.
Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan
2015-09-15
Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Charging the quantum capacitance of graphene with a single biological ion channel.
Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J
2014-05-27
The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.
Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel
2015-01-01
The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents. PMID:24754625
NASA Astrophysics Data System (ADS)
Zhao, Ming-fu; Hu, Xin-Yu; Shao, Yun; Luo, Bin-bin; Wang, Xin
2008-10-01
This article analyses nowadays in common use of football robots in China, intended to improve the football robots' hardware platform system's capability, and designed a football robot which based on DSP core controller, and combined Fuzzy-PID control algorithm. The experiment showed, because of the advantages of DSP, such as quickly operation, various of interfaces, low power dissipation etc. It has great improvement on the football robot's performance of movement, controlling precision, real-time performance.
A TinyOS-based wireless neural interface.
Farshchi, Shahin; Mody, Istvan; Judy, Jack W
2004-01-01
The overlay of a neural interface upon a TinyOS-based sensing and communication platform is described. The system amplifies, digitally encodes, and transmits two EEG channels of neural signals from an un-tethered subject to a remote gateway, which routes the signals to a client PC. This work demonstrates the viability of the TinyOS-based sensor technology as a foundation for chronic remote biological monitoring applications, and thus provides an opportunity to create a system that can leverage from the frequent networking and communications advancements being made by the global TinyOS-development community.
NASA Astrophysics Data System (ADS)
Kang, Yvonne Q.; François, Alexandre; Riesen, Nicolas; Monro, Tanya M.
2018-02-01
Whispering Gallery Mode (WGM) biosensors have been widely exploited over the past decade, owing to their unprecedented detection limits and label free capability. WGM based sensing mechanisms, such as resonance frequency shift, linewidth broadening, and splitting of the two counter-propagating WGMs, have been extensively researched and applied for bio-chemical sensing. However, the mode-splitting of the originally degenerate WGMs from different equatorial planes on a fluorescent microsphere has not been fully investigated. In this work, we break the symmetry of the surrounding environment outside the microsphere by partially embedding the sphere into a high-refractive-index medium (i.e. glue), to lift the degeneracy of the modes from different WGM planes. The split-modes from multiple planes of the fluorescent microsphere are indiscriminately collected. It is found that the effective quality factor Q of the WGMs increases non-conventionally as the Refractive Index (RI) of the probing liquid increases up to the point where it is equal to that of the glue. This presents a new methodology for quantifying changes in the probing environment based on the Q spoiling of the resonances as determined by the RI difference between the environment and that of the reference glue. Furthermore, we find that this sensing platform opens the door to simple self-referenced sensing techniques based on the analysis of the spectral positions of subsets of the split modes.
Dennison, Genevieve H; Johnston, Martin R
2015-04-20
Organophosphorus chemical warfare agents (OP CWAs) are potent acetylcholinesterase inhibitors that can cause incapacitation and death within minutes of exposure, and furthermore are largely undetectable by the human senses. Fast, efficient, sensitive and selective detection of these compounds is therefore critical to minimise exposure. Traditional molecular-based sensing approaches have exploited the chemical reactivity of the OP CWAs, whereas more recently supramolecular-based approaches using non-covalent interactions have gained momentum. This is due, in part, to the potential development of sensors with second-generation properties, such as reversibility and multifunction capabilities. Supramolecular sensors also offer opportunities for incorporation of metal ions allowing for the exploitation of their unique properties. In particular, trivalent lanthanide ions are being increasingly used in the OP CWA sensing event and their use in supramolecular sensors is discussed in this Minireview. We focus on the fundamental interactions of simple lanthanide systems with OP CWAs and simulants, along with the development of more elaborate and complex systems including those containing nanotubes, polymers and gold nanoparticles. Whilst literature investigations into lanthanide-based OP CWA detection systems are relatively scarce, their unique and versatile properties provide a promising platform for the development of more efficient and complex sensing systems into the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.
Kong, Kien Voon; Dinish, U S; Lau, Weber Kam On; Olivo, Malini
2014-04-15
Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases. © 2013 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ding, Longhua; Yang, Hongmei; Ge, Shenguang; Yu, Jinghua
2018-03-01
A simple and effective fluorescent assay for the determination of vitamin B12 was developed. In this study, carbon dots (CDs) were prepared by one-pot hydrothermal method and directly used as a fluorophore in the inner filter effect (IFE). Both of the maximum absorption peak of vitamin B12 and excitation maxima of CDs are located at 360 nm, hence, the excited light of CDs can be absorbed by vitamin B12, resulting in the fluorescence reduction of CDs. And the fluorescence intensity of CDs decreases with the increasing concentration of vitamin B12. This IFE-based sensing strategy shows a good linear relationship between the normalized fluorescence intensity and the concentration of vitamin B12 ranging from 0 to 60 μM, with a limit of detection (LOD) of 0.1 μM at a signal-to-noise ratio of 3. Furthermore, this proposed approach was successfully applied to vitamin B12 sensing in injections. This IFE sensing platform based on various fluorescent nanomaterials has a high promise for the detection of other biomolecules due to its inherent convenience.
Su, Jiao; Zhang, Haijie; Jiang, Bingying; Zheng, Huzhi; Chai, Yaqin; Yuan, Ruo; Xiang, Yun
2011-11-15
We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences. Copyright © 2011 Elsevier B.V. All rights reserved.
Yang, Guijun; Liu, Jiangang; Zhao, Chunjiang; Li, Zhenhong; Huang, Yanbo; Yu, Haiyang; Xu, Bo; Yang, Xiaodong; Zhu, Dongmei; Zhang, Xiaoyan; Zhang, Ruyang; Feng, Haikuan; Zhao, Xiaoqing; Li, Zhenhai; Li, Heli; Yang, Hao
2017-01-01
Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI), chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs) equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping.
Yang, Guijun; Liu, Jiangang; Zhao, Chunjiang; Li, Zhenhong; Huang, Yanbo; Yu, Haiyang; Xu, Bo; Yang, Xiaodong; Zhu, Dongmei; Zhang, Xiaoyan; Zhang, Ruyang; Feng, Haikuan; Zhao, Xiaoqing; Li, Zhenhai; Li, Heli; Yang, Hao
2017-01-01
Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI), chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs) equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping. PMID:28713402
NASA Astrophysics Data System (ADS)
Demuth, Dustin; Nuest, Daniel; Bröring, Arne; Pebesma, Edzer
2013-04-01
In the past year, a group of open hardware enthusiasts and citizen scientists had large success in the crowd-funding of an open hardware-based sensor platform for air quality monitoring, called the Air Quality Egg. Via the kickstarter platform, the group was able to collect triple the amount of money than needed to fulfill their goals. Data generated by the Air Quality Egg is pushed to the data logging platform cosm.com, which makes the devices a part of the Internet of Things. The project aims at increasing the participation of citizens in the collection of data, the development of sensors, the operation of sensor stations, and, as data on cosm is publicly available, the sharing, visualization and analysis of data. Air Quality Eggs can measure NO2 and CO concentrations, as well as relative humidity and temperature. The chosen sensors are low-cost and have limited precision and accurracy. The Air Quality Egg consists of a stationary outdoor and a stationary indoor unit. Each outdoor unit will wirelessly transmit air quality measurements to the indoor unit, which forwards the data to cosm. Most recent versions of the Air Quality Egg allow a rough calibration of the gas sensors and on-the-fly conversion from raw sensor readings (impedance) to meaningful air quality data expressed in units of parts per billion. Data generated by these low-cost platforms are not intended to replace well-calibrated official monitoring stations, but rather augment the density of the total monitoring network with citizen sensors. To improve the usability of the Air Quality Egg, we present a new and more advanced concept, called the AirQuality SenseBox. We made the outdoor platform more autonomous and location-aware by adding solarpanels and rechargeable batteries as a power source. The AirQuality SenseBox knows its own position from a GPS device attached to the platform. As a mobile sensor platform, it can for instance be attached to vehicles. A low-cost and low-power wireless chipset reads the sensors and broadcasts the data. The data is received by gateways that convert the data and forward it to services. Although cosm is still supported, we also use services that are more common in the scientific domain, in particular the OGC Sensor Observation Service. In contrast to the ``One Sender - One Receiver'' (pair) setup proposed by the platform developers, we follow a ``Many Senders - Many Receivers'' (mesh) solution. As data is broadcasted by the platforms, it can be received and processed by any gateway, and, as the sender is not bound to the receiver, applications different from the gateways can receive and evaluate the data measured by the platform. Advantages of our solution are: (i) prepared gateways, which have more precise data at hand, can send calibration instructions to the mobile sensor platforms when those are in proximity; (ii) redundancy is obtained by adding additional gateways, to avoid the loss of data if a gateway fails; (iii) autonomous stations can be ubiquitous, are robust, do not require frequent maintenance, and can be placed at arbitrary locations; (iv) the standardized interface is vendor-independent and allows direct integration into existing analysis software.
NASA Astrophysics Data System (ADS)
Te, Y.; Jeseck, P.; Da Costa, J.; Deutscher, N. M.; Warneke, T.; Notholt, J.
2012-04-01
In a growing world with more than 7 billion inhabitants and big emerging countries such as China, Brazil and India, emissions of anthropogenic pollutants are increasing continuously. Monitoring and control of atmospheric pollutants in megacities have become a major challenge for scientists and public health authorities in environmental research area. The QualAir platform at University Pierre et Marie Curie (UPMC), is an innovating experimental research platform dedicated to survey greenhouse gases (GHGs) and urban air quality. As one of the major instruments of the QualAir platform, the ground-based Fourier transform spectrometer (QualAir FTS, IFS 125HR model) analyses the composition of the urban atmosphere of Paris, which is the third European megacity. The continuous monitoring of atmospheric pollutants is essential to improve the understanding of urban air pollution processes. Associated with a sun-tracker, the QualAir remote sensing FTS operates in solar infrared absorption and enables to monitor many trace gases, and to follow up their variability in the Ile-de-France region. A description of the QualAir FTS will be given. Concentrations of atmospheric GHG, especially CO2 and CH4, are retrieved by the radiative transfer model PROFFIT. Located in the centre of Paris, the QualAir FTS can provide new and complementary urban measurements as compared to unpolluted ground-based stations of existing networks (NDACC and TCCON). The work made by LPMAA to join the TCCON network will also be presented. TCCON-Orléans is a ground-based FTS of the TCCON network located in the forest of Orléans (100 km south of Paris). Preliminary comparisons of GHGs measurements from both sites will be shown. Such ground-based information will help to better characterize regional GHGs, especially regarding anthropogenic emissions and trends.
NASA Astrophysics Data System (ADS)
Butz, Andre; Solvejg Dinger, Anna; Bobrowski, Nicole; Kostinek, Julian; Fieber, Lukas; Fischerkeller, Constanze; Giuffrida, Giovanni Bruno; Hase, Frank; Klappenbach, Friedrich; Kuhn, Jonas; Lübcke, Peter; Tirpitz, Lukas; Tu, Qiansi
2017-04-01
Remote sensing of CO2 enhancements in volcanic plumes can be a tool to estimate volcanic CO2 emissions and thereby, to gain insight into the geological carbon cycle and into volcano interior processes. However, remote sensing of the volcanic CO2 is challenged by the large atmospheric background concentrations masking the minute volcanic signal. Here, we report on a demonstrator study conducted in September 2015 at Mt. Etna on Sicily, where we deployed an EM27/SUN Fourier Transform Spectrometer together with a UV spectrometer on a mobile remote sensing platform. The spectrometers were operated in direct-sun viewing geometry collecting cross-sectional scans of solar absorption spectra through the volcanic plume by operating the platform in stop-and-go patterns in 5 to 10 kilometers distance from the crater region. We successfully detected correlated intra-plume enhancements of CO2 and volcanic SO2, HF, HCl, and BrO. The path-integrated volcanic CO2 enhancements amounted to about 0.5 ppm (on top of the ˜400 ppm background). Key to successful detection of volcanic CO2 was A) the simultaneous observation of the O2 total column which allowed for correcting changes in the CO2 column caused by changes in observer altitude and B) the simultaneous measurement of volcanic species co-emitted with CO2 which allowed for discriminating intra-plume and extra-plume observations. The latter were used for subtracting the atmospheric CO2 background. The field study suggests that our remote sensing observatory is a candidate technique for volcano monitoring in safe distance from the crater region.
On-chip photonic particle sensor
NASA Astrophysics Data System (ADS)
Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian
2018-02-01
We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.
Northern Florida reef tract benthic metabolism scaled by remote sensing
Brock, J.C.; Yates, K.K.; Halley, R.B.; Kuffner, I.B.; Wright, C.W.; Hatcher, B.G.
2006-01-01
Holistic rates of excess organic carbon production (E) and calcification for a 0.5 km2 segment of the backreef platform of the northern Florida reef tract (NFRT) were estimated by combining biotope mapping using remote sensing with community metabolic rates determined with a benthic incubation system. The use of ASTER multispectral satellite imaging for the spatial scaling of benthic metabolic processes resulted in errors in E and net calcification (G) of 48 and 431% respectively, relative to estimates obtained using AISA hyperspectral airborne scanning. At 19 and 125%, the E and G errors relative to the AISA-based estimates were less pronounced for an analysis that used IKONOS multispectral satellite imagery to spatially extrapolate the chamber process measurements. Our scaling analysis indicates that the holistic calcification rate of the backreef platform of the northern Florida reef tract is negligible at 0.07 g CaCO3 m-2 d-1. All of the mapped biotopes in this reef zone are net heterotrophic, resulting in an estimated holistic excess production rate of -0.56 g C m-2 d-1, and an overall gross primary production to respiration ratio of 0.85. Based on our finding of ubiquitous heterotrophy, we infer that the backreef platform of the NFRT is a sink for external inputs of suspended particulate organic matter. Further, our results suggest that the inward advection of inorganic nutrients is not a dominant forcing mechanism for benthic biogeochemical function in the NFRT. We suggest that the degradation of the northern Florida reef tract may parallel the community phase shifts documented within other reef systems polluted by organic detritus.
Optimal Remote Sensing with Small Unmanned Aircraft Systems and Risk Management
NASA Astrophysics Data System (ADS)
Stark, Brandon
Over the past decade, the rapid rise of Unmanned Aircraft Systems (UASs) has blossomed into a new component of the aviation industry. Though regulations within the United States lagged, the promise of the ability of Small Unmanned Aircraft Systems (SUASs), or those UAS that weigh less than 55 lbs, has driven significant advances in small scale aviation technology. The dream of a small, low-cost aerial platform that can fly anywhere and keep humans safely away from the `dull, dangerous and dirty' jobs, has encouraged many to examine the possibilities of utilizing SUAS in new and transformative ways, especially as a new tool in remote sensing. However, as with any new tool, there remains significant challenges in realizing the full potential of SUAS-based remote sensing. Within this dissertation, two specific challenges are addressed: validating the use of SUAS as a remote sensing platform and improving the safety and management of SUAS. The use of SUAS in remote sensing is a relatively new challenge and while it has many similarities to other remote sensing platforms, the dynamic nature of its operation makes it unique. In this dissertation, a closer look at the methodology of using SUAS reveals that while many view SUAS as an alternative to satellite imagery, this is an incomplete view and that the current common implementation introduces a new source of error that has significant implications on the reliability of the data collected. It can also be seen that a new approach to remote sensing with an SUAS can be developed by addressing the spatial, spectral and temporal factors that can now be more finely adjusted with the use of SUAS. However, to take the full advantage of the potential of SUAS, they must uphold the promise of improved safety. This is not a trivial challenge, especially for the integration into the National Airspace System (NAS) and for the safety management and oversight of diverse UAS operations. In this dissertation, the challenge of integrating SUAS in the NAS is addressed by presenting an analysis of enabling flight operations at night, developing a swarm safety management system for improving SUAS robustness, investigating the use of new technology on SUAS to improve air safety, and developing a novel framework to better understand human-SUAS interaction. Addressing the other side of safety, this dissertation discusses the struggle of large diverse organizations to balance acceptance, safety and oversight for UAS operations and the development of a novel implementation of a UAS Safety Management System.
2010-12-01
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
2010-12-06
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
NASA Astrophysics Data System (ADS)
Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.
2014-04-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in-situ datasets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing dataset is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, mid-latitudes, and arctic) and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier-Transform InfraRed) remote sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study is both, a theoretical and an empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.
NASA Astrophysics Data System (ADS)
Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.
2014-08-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in situ data sets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing data set is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, midlatitudes, and Arctic), and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote-sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier Transform InfraRed) remote-sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study presents theoretical and empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.
NASA Astrophysics Data System (ADS)
Vargas Zesati, Sergio A.
The Arctic is being impacted by climate change more than any other region on Earth. Impacts to terrestrial ecosystems have the potential to manifest through feedbacks with other components of the Earth System. Of particular concern is the potential for the massive store of soil organic carbon to be released from arctic permafrost to the atmosphere where it could exacerbate greenhouse warming and impact global climate and biogeochemical cycles. Even though substantial gains to our understanding of the changing Arctic have been made, especially over the past decade, linking research results from plot to regional scales remains a challenge due to the lack of adequate low/mid-altitude sampling platforms, logistic constraints, and the lack of cross-scale validation of research methodologies. The prime motivation of this study is to advance observational capacities suitable for documenting multi-scale environmental change in arctic terrestrial landscapes through the development and testing of novel ground-based and low altitude remote sensing methods. Specifically this study addressed the following questions: • How well can low-cost kite aerial photography and advanced computer vision techniques model the microtopographic heterogeneity of changing tundra surfaces? • How does imagery from kite aerial photography and fixed time-lapse digital cameras (pheno-cams) compare in their capacity to monitor plot-level phenological dynamics of arctic vegetation communities? • Can the use of multi-scale digital imaging systems be scaled to improve measurements of ecosystem properties and processes at the landscape level? • How do results from ground-based and low altitude digital remote sensing of the spatiotemporal variability in ecosystem processes compare with those from satellite remote sensing platforms? Key findings from this study suggest that cost-effective alternative digital imaging and remote sensing methods are suitable for monitoring and quantifying plot to landscape level ecosystem structure and phenological dynamics at multiple temporal scales. Overall, this study has furthered our knowledge of how tundra ecosystems in the Arctic change seasonally and how such change could impact remote sensing studies conducted from multiple platforms and across multiple spatial scales. Additionally, this study also highlights the urgent need for research into the validation of satellite products in order to better understand the causes and consequences of the changing Arctic and its potential effects on global processes. This study focused on sites located in northern Alaska and was formed in collaboration with Florida International University (FIU) and Grand Valley State University (GVSU) as a contribution to the US Arctic Observing Network (AON). All efforts were supported through the National Science Foundation (NSF), the Cyber-ShARE Center of Excellence, and the International Tundra Experiment (ITEX).
Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.
Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth
2015-12-04
Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.
2014-01-01
NASA or NOAA Earth-observing satellites are not the only space-based TIR platforms. The European Space Agency (ESA), the Chinese, and other countries have in orbit or plan to launch TIR remote sensing systems. Satellite remote sensing provides an excellent opportunity to study land-atmosphere energy exchanges at the regional scale. A predominant application of TIR data has been in inferring evaporation, evapotranspiration (ET), and soil moisture. In addition to using TIR data for ET and soil moisture analysis over vegetated surfaces, there is also a need for using these data for assessment of drought conditions. The concept of ecological thermodynamics provides a quantification of surface energy fluxes for landscape characterization in relation to the overall amount of energy input and output from specific land cover types.
Conjugated amplifying polymers for optical sensing applications.
Rochat, Sébastien; Swager, Timothy M
2013-06-12
Thanks to their unique optical and electrochemical properties, conjugated polymers have attracted considerable attention over the last two decades and resulted in numerous technological innovations. In particular, their implementation in sensing schemes and devices was widely investigated and produced a multitude of sensory systems and transduction mechanisms. Conjugated polymers possess numerous attractive features that make them particularly suitable for a broad variety of sensing tasks. They display sensory signal amplification (compared to their small-molecule counterparts) and their structures can easily be tailored to adjust solubility, absorption/emission wavelengths, energy offsets for excited state electron transfer, and/or for use in solution or in the solid state. This versatility has made conjugated polymers a fluorescence sensory platform of choice in the recent years. In this review, we highlight a variety of conjugated polymer-based sensory mechanisms together with selected examples from the recent literature.
Remote real-time monitoring of subsurface landfill gas migration.
Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot
2011-01-01
The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.
Remote Real-Time Monitoring of Subsurface Landfill Gas Migration
Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot
2011-01-01
The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975
Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors
Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth
2015-01-01
Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ying; Li, Zhaohui; Weber, Thomas J.
2013-07-23
Adenosine-5’-triphosphate (ATP) and guanosine-5’-triphosphate (GTP) are primary energy resources and function coordinately for numerous reactions such as microtubule assembly, insulin secretion and ion channel regulation. We have developed a novel DNA/RNA aptamer- graphene oxide nanosheet (GO-nS) sensing platform that can selectively and simultaneously detect ATP and GTP in live cells. A fluorescent tag is covalently attached to aptamers and fluorescence is quenched upon binding of aptamer to the GO-nS. Fluorescently tagged aptamers that selectively bind ATP or GTP were isolated from an aptamer library and were adsorbed onto GO-nS. Upon incubation with targets (ATP and/or GTP), the aptamers readily dissociatedmore » from GO-nS and the fluorescent signal was recovered. By covalently attaching fluorophores, both ATP and GTP sensing aptamers could be exploited to simultaneously visualize aptamer dissociation in live cells. In addition, the GO-nS appear to be biocompatible and protect the adsorbed DNA/RNA aptamers from enzymatic cleavage. Our results support the application of aptamer/GO-nS as a sensing platform for nucleotides in living cells and have implications for the development of additional sensor platforms for other bio-molecules that show selective interactions with aptamers and other biomarkers.« less
Photonic elements in smart systems for use in aerospace platforms
NASA Astrophysics Data System (ADS)
Adamovsky, Grigory; Baumbick, Robert J.; Tabib-Azar, Massood
1998-07-01
To compete globally in the next millennium, designers of new transportation vehicles will have to be innovative. Keen competition will reward innovative concepts that are developed and proven first. In order to improve reliability of aerospace platforms and reduce operating cots, new technologies must be exploited to produce autonomous systems, based on highly distributed, smart systems, which can be treated as line replaceable units. These technologies include photonics, which provide sensing and information transfer functions, and micro electro mechanical systems that will produce the actuation and, in some cases, may even provide a computing capability that resembles the hydro- mechanical control system used in older aircraft systems. The combination of these technologies will provide unique systems that will enable achieving the reliability and cost goals dictated by global market. In the article we review some of these issues and discuss a role of photonics in smart system for aerospace platforms.
Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms
NASA Astrophysics Data System (ADS)
Bryson, M.; Johnson-Roberson, M.; Murphy, R.
2012-07-01
Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.
Bakas, Idriss; Hayat, Akhtar; Piletsky, Sergey; Piletska, Elena; Chehimi, Mohamed M; Noguer, Thierry; Rouillon, Régis
2014-12-01
We report here a novel method to detect methidathion organophosphorous insecticides. The sensing platform was architected by the combination of molecularly imprinted polymers and sol-gel technique on inexpensive, portable and disposable screen printed carbon electrodes. Electrochemical impedimetric detection technique was employed to perform the label free detection of the target analyte on the designed MIP/sol-gel integrated platform. The selection of the target specific monomer by electrochemical impedimetric methods was consistent with the results obtained by the computational modelling method. The prepared electrochemical MIP/sol-gel based sensor exhibited a high recognition capability toward methidathion, as well as a broad linear range and a low detection limit under the optimized conditions. Satisfactory results were also obtained for the methidathion determination in waste water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Design of self-contained sensor for monitoring of deep-sea offshore platform
NASA Astrophysics Data System (ADS)
Song, Yang; Yu, Yan; Zhang, Chunwei; Dong, Weijie; Ou, Jinping
2013-04-01
Offshore platform, which is the base of the production and living in the sea, is the most important infrastructure for developing oil and gas resources. At present, there are almost 6500 offshore platforms servicing in the 53 countries' sea areas around the world, creating great wealth for the world. In general, offshore platforms may work for 20 years, however, offshore platforms are expensive, complex, bulky, and so many of them are on extended active duty. Because of offshore platforms servicing in the harsh marine environment for a long time, the marine environment have a great impact on the offshore platforms. Besides, with the impact and erosion of seawater, and material aging, the offshore platform is possible to be in unexpected situations when a badly sudden situation happens. Therefore, it is of great significance to monitor the marine environment and offshore platforms. The self-contained sensor for deep-sea offshore platform with its unique design, can not only effectively extend the working time of the sensor with the capability of converting vibration energy to electrical energy, but also simultaneously collect the data of acceleration, inclination, temperature and humidity of the deep sea, so that we can achieve the purpose of monitoring offshore platforms through analyzing the collected data. The self-contained sensor for monitoring of deep-sea offshore platform includes sensing unit, data collecting and storage unit, the energy supply unit. The sensing unit with multi-variables, consists of an accelerometer LIS344ALH, an inclinometer SCA103T and a temperature and humidity sensor SHT11; the data collecting and storage unit includes the MSP430 low-power MCU, large capacity memory, clock circuit and the communication interface, the communication interface includes USB interface, serial ports and wireless interface; in addition, the energy supply unit, converting vibration to electrical energy to power the overall system, includes the electromagnetic generator, voltage multiplier circuit and a super capacitor which can withstand virtually unlimited number of charge-discharge cycles. When the seawater impacts on offshore platforms to produce vibration, electromagnetic generator converts vibration to electrical energy, its output(~ 1 V 50 Hz AC) is stepped up and rectified by a voltage multiplier circuit, and the energy is stored in a super capacitor. It is controlled by the MSP430 that monitors the voltage level on the super capacitor. The super capacitor charges the Li-ion battery when the voltage on the super capacitor reaches a threshold, then the whole process of energy supply is completed. The self-contained sensor for deep-sea offshore platform has good application prospects and practical value with small size, low power, being easy to install, converting vibration energy to supply power and high detection accuracy.
NASA Astrophysics Data System (ADS)
Li, Qiang; Huang, Guoliang; Gan, Wupeng; Chen, Shengyi
2009-08-01
Biomolecular interactions can be detected by many established technologies such as fluorescence imaging, surface plasmon resonance (SPR)[1-4], interferometry and radioactive labeling of the analyte. In this study, we have designed and constructed a label-free, real-time sensing platform and its operating imaging instrument that detects interactions using optical phase differences from the accumulation of biological material on solid substrates. This system allows us to monitor biomolecular interactions in real time and quantify concentration changes during micro-mixing processes by measuring the changes of the optical path length (OPD). This simple interferometric technology monitors the optical phase difference resulting from accumulated biomolecular mass. A label-free protein chip that forms a 4×4 probe array was designed and fabricated using a commercial microarray robot spotter on solid substrates. Two positive control probe lines of BSA (Bovine Serum Albumin) and two experimental human IgG and goat IgG was used. The binding of multiple protein targets was performed and continuously detected by using this label-free and real-time sensing platform.
Incentivizing Verifiable Privacy-Protection Mechanisms for Offline Crowdsensing Applications
Sun, Jiajun; Liu, Ningzhong
2017-01-01
Incentive mechanisms of crowdsensing have recently been intensively explored. Most of these mechanisms mainly focus on the standard economical goals like truthfulness and utility maximization. However, enormous privacy and security challenges need to be faced directly in real-life environments, such as cost privacies. In this paper, we investigate offline verifiable privacy-protection crowdsensing issues. We firstly present a general verifiable privacy-protection incentive mechanism for the offline homogeneous and heterogeneous sensing job model. In addition, we also propose a more complex verifiable privacy-protection incentive mechanism for the offline submodular sensing job model. The two mechanisms not only explore the private protection issues of users and platform, but also ensure the verifiable correctness of payments between platform and users. Finally, we demonstrate that the two mechanisms satisfy privacy-protection, verifiable correctness of payments and the same revenue as the generic one without privacy protection. Our experiments also validate that the two mechanisms are both scalable and efficient, and applicable for mobile devices in crowdsensing applications based on auctions, where the main incentive for the user is the remuneration. PMID:28869574
Incentivizing Verifiable Privacy-Protection Mechanisms for Offline Crowdsensing Applications.
Sun, Jiajun; Liu, Ningzhong
2017-09-04
Incentive mechanisms of crowdsensing have recently been intensively explored. Most of these mechanisms mainly focus on the standard economical goals like truthfulness and utility maximization. However, enormous privacy and security challenges need to be faced directly in real-life environments, such as cost privacies. In this paper, we investigate offline verifiable privacy-protection crowdsensing issues. We firstly present a general verifiable privacy-protection incentive mechanism for the offline homogeneous and heterogeneous sensing job model. In addition, we also propose a more complex verifiable privacy-protection incentive mechanism for the offline submodular sensing job model. The two mechanisms not only explore the private protection issues of users and platform, but also ensure the verifiable correctness of payments between platform and users. Finally, we demonstrate that the two mechanisms satisfy privacy-protection, verifiable correctness of payments and the same revenue as the generic one without privacy protection. Our experiments also validate that the two mechanisms are both scalable and efficient, and applicable for mobile devices in crowdsensing applications based on auctions, where the main incentive for the user is the remuneration.
Earth observations from space: Outlook for the geological sciences
NASA Technical Reports Server (NTRS)
Short, N. M.; Lowman, P. D., Jr.
1973-01-01
Remote sensing from space platforms is discussed as another tool available to geologists. The results of Nimbus observations, the ERTS program, and Skylab EREP are reviewed, and a multidisciplinary approach is recommended for meeting the challenges of remote sensing.
Li, Wen-Jie; Zhang, Shi-Huang; Wang, Hui-Min
2011-12-01
Ecosystem services evaluation is a hot topic in current ecosystem management, and has a close link with human beings welfare. This paper summarized the research progress on the evaluation of ecosystem services based on geographic information system (GIS) and remote sensing (RS) technology, which could be reduced to the following three characters, i. e., ecological economics theory is widely applied as a key method in quantifying ecosystem services, GIS and RS technology play a key role in multi-source data acquisition, spatiotemporal analysis, and integrated platform, and ecosystem mechanism model becomes a powerful tool for understanding the relationships between natural phenomena and human activities. Aiming at the present research status and its inadequacies, this paper put forward an "Assembly Line" framework, which was a distributed one with scalable characteristics, and discussed the future development trend of the integration research on ecosystem services evaluation based on GIS and RS technologies.
Non-contact FBG sensing based steam turbine rotor dynamic balance vibration detection system
NASA Astrophysics Data System (ADS)
Li, Tianliang; Tan, Yuegang; Cai, Lin
2015-10-01
This paper has proposed a non-contact vibration sensor based on fiber Bragg grating sensing, and applied to detect vibration of steam turbine rotor dynamic balance experimental platform. The principle of the sensor has been introduced, as well as the experimental analysis; performance of non-contact FBG vibration sensor has been analyzed in the experiment; in addition, turbine rotor dynamic vibration detection system based on eddy current displacement sensor and non-contact FBG vibration sensor have built; finally, compared with results of signals under analysis of the time domain and frequency domain. The analysis of experimental data contrast shows that: the vibration signal analysis of non-contact FBG vibration sensor is basically the same as the result of eddy current displacement sensor; it verified that the sensor can be used for non-contact measurement of steam turbine rotor dynamic balance vibration.
2010-12-06
raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with...results compared with those from remote - sensing models and from direct measurements. The agreement from different determinations suggests that...reasonable results for remote sensing reflectance of clear blue water to turbid brown water are obtainable from above-surface measurements, even under conditions of high waves.
Biologically inspired collision avoidance system for unmanned vehicles
NASA Astrophysics Data System (ADS)
Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.
2009-05-01
In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.
Zhou, Haifeng; Ran, Guoxia; Masson, Jean-Francois; Wang, Chan; Zhao, Yuan; Song, Qijun
2018-05-15
Biosensors based on converting the concentration of analytes in complex samples into single electrochemical signals are attractive candidates as low cost, high-throughput, portable and renewable sensor platforms. Here, we describe a simple but practical analytical device for sensing an anticancer drug in whole blood, using the detection of methotrexate (MTX) as a model system. In this biosensor, a novel carbon-based composite, tungsten phosphide embedded nitrogen-doped carbon nanotubes (WP/N-CNT), was fixed to the electrode surface that supported redox cycling. The electronic transmission channel in nitrogen doped carbon nanotubes (N-CNT) and the synergistic effect of uniform distribution tungsten phosphide (WP) ensured that the electrode materials have outstanding electrical conductivity and catalytic performance. Meanwhile, the surface electronic structure also endows its surprisingly reproducible performance. To demonstrate portable operation for MTX sensing, screen printing electrodes (SPE) was modified with WP/N-CNT. The sensor exhibited low detection limits (45 nM), wide detection range (0.01-540 μM), good selectivity and long-term stability for the determination of MTX. In addition, the technique was successfully applied for the determination of MTX in whole blood. Copyright © 2018 Elsevier B.V. All rights reserved.
Srivastava, Mani; Abdelzaher, Tarek; Szymanski, Boleslaw
2012-01-13
The first decade of the century witnessed a proliferation of devices with sensing and communication capabilities in the possession of the average individual. Examples range from camera phones and wireless global positioning system units to sensor-equipped, networked fitness devices and entertainment platforms (such as Wii). Social networking platforms emerged, such as Twitter, that allow sharing information in real time. The unprecedented deployment scale of such sensors and connectivity options ushers in an era of novel data-driven applications that rely on inputs collected by networks of humans or measured by sensors acting on their behalf. These applications will impact domains as diverse as health, transportation, energy, disaster recovery, intelligence and warfare. This paper surveys the important opportunities in human-centric sensing, identifies challenges brought about by such opportunities and describes emerging solutions to these challenges.
Mao, Hanping; Liu, Zhongshou
2018-01-15
In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe 3 O 4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N 2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Registration and Fusion of Multiple Source Remotely Sensed Image Data
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline
2004-01-01
Earth and Space Science often involve the comparison, fusion, and integration of multiple types of remotely sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, global coverage of an area at multiple resolutions, map updating or validation of new instruments, as well as integration of data provided by multiple instruments carried on multiple platforms, e.g. in spacecraft constellations or fleets of planetary rovers. Our focus is on developing methods to perform fast, accurate and automatic image registration and fusion. General methods for automatic image registration are being reviewed and evaluated. Various choices for feature extraction, feature matching and similarity measurements are being compared, including wavelet-based algorithms, mutual information and statistically robust techniques. Our work also involves studies related to image fusion and investigates dimension reduction and co-kriging for application-dependent fusion. All methods are being tested using several multi-sensor datasets, acquired at EOS Core Sites, and including multiple sensors such as IKONOS, Landsat-7/ETM+, EO1/ALI and Hyperion, MODIS, and SeaWIFS instruments. Issues related to the coregistration of data from the same platform (i.e., AIRS and MODIS from Aqua) or from several platforms of the A-train (i.e., MLS, HIRDLS, OMI from Aura with AIRS and MODIS from Terra and Aqua) will also be considered.
Eyeglasses based wireless electrolyte and metabolite sensor platform.
Sempionatto, Juliane R; Nakagawa, Tatsuo; Pavinatto, Adriana; Mensah, Samantha T; Imani, Somayeh; Mercier, Patrick; Wang, Joseph
2017-05-16
The demand for wearable sensors has grown rapidly in recent years, with increasing attention being given to epidermal chemical sensing. Here, we present the first example of a fully integrated eyeglasses wireless multiplexed chemical sensing platform capable of real-time monitoring of sweat electrolytes and metabolites. The new concept has been realized by integrating an amperometric lactate biosensor and a potentiometric potassium ion-selective electrode into the two nose-bridge pads of the glasses and interfacing them with a wireless electronic backbone placed on the glasses' arms. Simultaneous real-time monitoring of sweat lactate and potassium levels with no apparent cross-talk is demonstrated along with wireless signal transduction. The electrochemical sensors were screen-printed on polyethylene terephthalate (PET) stickers and placed on each side of the glasses' nose pads in order to monitor sweat metabolites and electrolytes. The electronic backbone on the arms of the glasses' frame offers control of the amperometric and potentiometric transducers and enables Bluetooth wireless data transmission to the host device. The new eyeglasses system offers an interchangeable-sensor feature in connection with a variety of different nose-bridge amperometric and potentiometric sensor stickers. For example, the lactate bridge-pad sensor was replaced with a glucose one to offer convenient monitoring of sweat glucose. Such a fully integrated wireless "Lab-on-a-Glass" multiplexed biosensor platform can be readily expanded for the simultaneous monitoring of additional sweat electrolytes and metabolites.
GOATS 2008 Autonomous, Adaptive Multistatic Acoustic Sensing
2008-09-30
To develop net-centric, autonomous underwater vehicle sensing concepts for littoral MCM and ASW, exploiting collaborative and environmentally...unlimited 13. SUPPLEMENTARY NOTES code 1 only 14. ABSTRACT To develop net-centric, autonomous underwater vehicle sensing concepts for littoral MCM and...of autonomous underwater vehicle networks as platforms for new sonar concepts exploring the full 3-D acoustic environment of shallow water (SW) and
Rasheed, P Abdul; Sandhyarani, N
2017-11-15
Development of a sensitive, specific and cost-effective DNA detection method is motivated by increasing demand for the early stage diagnosis of genetic diseases. Recent developments in the design and fabrication of efficient sensor platforms based on nanostructures make the highly sensitive sensors which could indicate very low detection limit to the level of few molecules, a realistic possibility. Electrochemical detection methods are widely used in DNA diagnostics as it provide simple, accurate and inexpensive platform for DNA detection. In addition, the electrochemical DNA sensors provide direct electronic signal without the use of expensive signal transduction equipment and facilitates the immobilization of single stranded DNA (ssDNA) probe sequences on a wide variety of electrode substrates. It has been found that a range of nanomaterials such as metal nanoparticles (MNPs), carbon based nanomaterials, quantum dots (QDs), magnetic nanoparticles and polymeric NPs have been introduced in the sensor design to enhance the sensing performance of electrochemical DNA sensor. In this review, we discuss recent progress in the design and fabrication of efficient electrochemical genosensors based on carbon nanostructures such as carbon nanotubes, graphene, graphene oxide and nanodiamonds. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
xue, Zhonghua; He, Nan; Rao, Honghong; Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui; Lu, Xiaoquan
2017-02-01
Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.
Dissolved oxygen sensing using organometallic dyes deposited within a microfluidic environment
NASA Astrophysics Data System (ADS)
Chen, Q. L.; Ho, H. P.; Jin, L.; Chu, B. W.-K.; Li, M. J.; Yam, V. W.-W.
2008-02-01
This work primarily aims to integrate dissolved oxygen sensing capability with a microfluidic platform containing arrays of micro bio-reactors or bio-activity indicators. The measurement of oxygen concentration is of significance for a variety of bio-related applications such as cell culture and gene expression. Optical oxygen sensors based on luminescence quenching are gaining much interest in light of their low power consumption, quick response and high analyte sensitivity in comparison to similar oxygen sensing devices. In our microfluidic oxygen sensor device, a thin layer of oxygen-sensitive luminescent organometallic dye is covalently bonded to a glass slide. Micro flow channels are formed on the glass slide using patterned PDMS (Polydimethylsiloxane). Dissolved oxygen sensing is then performed by directing an optical excitation probe beam to the area of interest within the microfluidic channel. The covalent bonding approach for sensor layer formation offers many distinct advantages over the physical entrapment method including minimizing dye leaching, ensuring good stability and fabrication simplicity. Experimental results confirm the feasibility of the device.
Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing
NASA Astrophysics Data System (ADS)
Feng, Zhihong; Xie, Yuan; Chen, Jiancui; Yu, Yuanyuan; Zheng, Shijun; Zhang, Rui; Li, Quanning; Chen, Xuejiao; Sun, Chongling; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua
2017-06-01
The unique properties of two dimensional (2D) materials make them promising candidates for chemical and biological sensing applications. However, most 2D nanomaterial sensors suffer very long recovery time due to slow molecular desorption at room temperature. Here, we report a highly sensitive molybdenum ditelluride (MoTe2) gas sensor for NO2 and NH3 detection with greatly enhanced recovery rate. The effects of gate bias on sensing performance have been systematically studied. It is found that the recovery kinetics can be effectively adjusted by biasing the sensor to different gate voltages. Under the optimum biasing potential, the MoTe2 sensor can achieve more than 90% recovery after each sensing cycle well within 10 min at room temperature. The results demonstrate the potential of MoTe2 as a promising candidate for high-performance chemical sensors. The idea of exploiting gate bias to adjust molecular desorption kinetics can be readily applied to much wider sensing platforms based on 2D nanomaterials.