Sample records for sensing strategy based

  1. A novel 3D Cartesian random sampling strategy for Compressive Sensing Magnetic Resonance Imaging.

    PubMed

    Valvano, Giuseppe; Martini, Nicola; Santarelli, Maria Filomena; Chiappino, Dante; Landini, Luigi

    2015-01-01

    In this work we propose a novel acquisition strategy for accelerated 3D Compressive Sensing Magnetic Resonance Imaging (CS-MRI). This strategy is based on a 3D cartesian sampling with random switching of the frequency encoding direction with other K-space directions. Two 3D sampling strategies are presented. In the first strategy, the frequency encoding direction is randomly switched with one of the two phase encoding directions. In the second strategy, the frequency encoding direction is randomly chosen between all the directions of the K-Space. These strategies can lower the coherence of the acquisition, in order to produce reduced aliasing artifacts and to achieve a better image quality after Compressive Sensing (CS) reconstruction. Furthermore, the proposed strategies can reduce the typical smoothing of CS due to the limited sampling of high frequency locations. We demonstrated by means of simulations that the proposed acquisition strategies outperformed the standard Compressive Sensing acquisition. This results in a better quality of the reconstructed images and in a greater achievable acceleration.

  2. Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.

    PubMed

    Zheng, Enhao; Manca, Silvia; Yan, Tingfang; Parri, Andrea; Vitiello, Nicola; Wang, Qining

    2017-10-01

    This paper presents a novel strategy aiming to acquire an accurate and walking-speed-adaptive estimation of the gait phase through noncontact capacitive sensing and adaptive oscillators (AOs). The capacitive sensing system is designed with two sensing cuffs that can measure the leg muscle shape changes during walking. The system can be dressed above the clothes and free human skin from contacting to electrodes. In order to track the capacitance signals, the gait phase estimator is designed based on the AO dynamic system due to its ability of synchronizing with quasi-periodic signals. After the implementation of the whole system, we first evaluated the offline estimation performance by experiments with 12 healthy subjects walking on a treadmill with changing speeds. The strategy achieved an accurate and consistent gait phase estimation with only one channel of capacitance signal. The average root-mean-square errors in one stride were 0.19 rad (3.0% of one gait cycle) for constant walking speeds and 0.31 rad (4.9% of one gait cycle) for speed transitions even after the subjects rewore the sensing cuffs. We then validated our strategy in a real-time gait phase estimation task with three subjects walking with changing speeds. Our study indicates that the strategy based on capacitive sensing and AOs is a promising alternative for the control of exoskeleton/orthosis.

  3. 2005 AG20/20 Annual Review

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; McKellip, Rodney D.

    2005-01-01

    Topics covered include: Implementation and Validation of Sensor-Based Site-Specific Crop Management; Enhanced Management of Agricultural Perennial Systems (EMAPS) Using GIS and Remote Sensing; Validation and Application of Geospatial Information for Early Identification of Stress in Wheat; Adapting and Validating Precision Technologies for Cotton Production in the Mid-Southern United States - 2004 Progress Report; Development of a System to Automatically Geo-Rectify Images; Economics of Precision Agriculture Technologies in Cotton Production-AG 2020 Prescription Farming Automation Algorithms; Field Testing a Sensor-Based Applicator for Nitrogen and Phosphorus Application; Early Detection of Citrus Diseases Using Machine Vision and DGPS; Remote Sensing of Citrus Tree Stress Levels and Factors; Spectral-based Nitrogen Sensing for Citrus; Characterization of Tree Canopies; In-field Sensing of Shallow Water Tables and Hydromorphic Soils with an Electromagnetic Induction Profiler; Maintaining the Competitiveness of Tree Fruit Production Through Precision Agriculture; Modeling and Visualizing Terrain and Remote Sensing Data for Research and Education in Precision Agriculture; Thematic Soil Mapping and Crop-Based Strategies for Site-Specific Management; and Crop-Based Strategies for Site-Specific Management.

  4. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    PubMed

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy.

  5. A ratiometric strategy -based electrochemical sensing interface for the sensitive and reliable detection of imidacloprid.

    PubMed

    Li, Xueyan; Kan, Xianwen

    2018-04-30

    In this study, a ratiometric strategy-based electrochemical sensor was developed by electropolymerization of thionine (THI) and β-cyclodextrin (β-CD) composite films on a glassy carbon electrode surface for imidacloprid (IMI) detection. THI played the role of an inner reference element to provide a built-in correction. In addition, the modified β-CD showed good selective enrichment for IMI to improve the sensitivity and anti-interference ability of the sensor. The current ratio between IMI and THI was calculated as the detected signal for IMI sensing. Compared with common single-signal sensing, the proposed ratiometric strategy showed a higher linear range and a lower limit of detection of 4.0 × 10-8-1.0 × 10-5 mol L-1 and 1.7 × 10-8 mol L-1, respectively, for IMI detection. On the other hand, the ratiometric strategy endowed the sensor with good accuracy, reproducibility, and stability. The sensor was also used for IMI determination in real samples with satisfactory results. The simple, effective, and reliable way reported in this study can be further used to prepare ratiometric strategy-based electrochemical sensors for the selective and sensitive detection of other compounds with good accuracy and stability.

  6. Current and emerging challenges of field effect transistor based bio-sensing

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akira; Miyahara, Yuji

    2013-10-01

    Field-effect-transistor (FET) based electrical signal transduction is an increasingly prevalent strategy for bio-sensing. This technique, often termed ``Bio-FETs'', provides an essentially label-free and real-time based bio-sensing platform effective for a variety of targets. This review highlights recent progress and challenges in the field. A special focus is on the comprehension of emerging nanotechnology-based approaches to facilitate signal-transduction and amplification. Some new targets of Bio-FETs and the future perspectives are also discussed.

  7. Current and emerging challenges of field effect transistor based bio-sensing.

    PubMed

    Matsumoto, Akira; Miyahara, Yuji

    2013-11-21

    Field-effect-transistor (FET) based electrical signal transduction is an increasingly prevalent strategy for bio-sensing. This technique, often termed "Bio-FETs", provides an essentially label-free and real-time based bio-sensing platform effective for a variety of targets. This review highlights recent progress and challenges in the field. A special focus is on the comprehension of emerging nanotechnology-based approaches to facilitate signal-transduction and amplification. Some new targets of Bio-FETs and the future perspectives are also discussed.

  8. Self-Regulated Learning and a Sense of Achievement in MOOCs among High School Science and Technology Students

    ERIC Educational Resources Information Center

    Cohen, Lizi; Magen-Nagar, Noga

    2016-01-01

    This study, conducted in Israel, examined how learning strategies and motivational orientations contributed to high school students' sense of achievement in a massive open online course. The objective was to integrate an innovative teaching-learning strategy into the educational system that is based on online learning for students in subjects that…

  9. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors.

    PubMed

    Jin, Hui; Gui, Rijun; Yu, Jianbo; Lv, Wei; Wang, Zonghua

    2017-05-15

    Previously developed electrochemical biosensors with single-electric signal output are probably affected by intrinsic and extrinsic factors. In contrast, the ratiometric electrochemical biosensors (RECBSs) with dual-electric signal outputs have an intrinsic built-in correction to the effects from system or background electric signals, and therefore exhibit a significant potential to improve the accuracy and sensitivity in electrochemical sensing applications. In this review, we systematically summarize the fabrication strategies, sensing modes and analytical applications of RECBSs. First, the different fabrication strategies of RECBSs were introduced, referring to the analytes-induced single- and dual-dependent electrochemical signal strategies for RECBSs. Second, the different sensing modes of RECBSs were illustrated, such as differential pulse voltammetry, square wave voltammetry, cyclic voltammetry, alternating current voltammetry, electrochemiluminescence, and so forth. Third, the analytical applications of RECBSs were discussed based on the types of target analytes. Finally, the forthcoming development and future prospects in the research field of RECBSs were also highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Silicon Nanowire-Based Devices for Gas-Phase Sensing

    PubMed Central

    Cao, Anping; Sudhölter, Ernst J.R.; de Smet, Louis C.P.M.

    2014-01-01

    Since their introduction in 2001, SiNW-based sensor devices have attracted considerable interest as a general platform for ultra-sensitive, electrical detection of biological and chemical species. Most studies focus on detecting, sensing and monitoring analytes in aqueous solution, but the number of studies on sensing gases and vapors using SiNW-based devices is increasing. This review gives an overview of selected research papers related to the application of electrical SiNW-based devices in the gas phase that have been reported over the past 10 years. Special attention is given to surface modification strategies and the sensing principles involved. In addition, future steps and technological challenges in this field are addressed. PMID:24368699

  11. Facet‐Controlled Synthetic Strategy of Cu2O‐Based Crystals for Catalysis and Sensing

    PubMed Central

    Shang, Yang

    2015-01-01

    Shape‐dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low‐index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu2O nanocrystals, including the three basic Cu2O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu2O nanocrystals enclosed by high‐index planes. We then discuss in detail the three main facet‐controlled synthetic strategies (deposition, etching and templating) to fabricate Cu2O‐based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet‐controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet‐dependent properties of the Cu2O and Cu2O‐based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet‐related directions. PMID:27980909

  12. Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing.

    PubMed

    Shang, Yang; Guo, Lin

    2015-10-01

    Shape-dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low-index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu 2 O nanocrystals, including the three basic Cu 2 O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu 2 O nanocrystals enclosed by high-index planes. We then discuss in detail the three main facet-controlled synthetic strategies (deposition, etching and templating) to fabricate Cu 2 O-based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet-controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet-dependent properties of the Cu 2 O and Cu 2 O-based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet-related directions.

  13. Dual signal amplification for highly sensitive electrochemical detection of uropathogens via enzyme-based catalytic target recycling.

    PubMed

    Su, Jiao; Zhang, Haijie; Jiang, Bingying; Zheng, Huzhi; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2011-11-15

    We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. The Effects of a Grouping by Tens Manipulative on Children's Strategy Use, Base Ten Understanding and Mathematical Knowledge

    ERIC Educational Resources Information Center

    Pagar, Dana

    2013-01-01

    Manipulatives have the potential to be powerful tools in helping children improve their number sense, develop advanced mathematical strategies, and build an understanding of the base ten number system. Physical manipulatives used in classrooms, however, are often not designed to promote efficient strategy use, such as counting on, and typically do…

  15. Interfacing geographic information systems and remote sensing for rural land-use analysis

    NASA Technical Reports Server (NTRS)

    Nellis, M. Duane; Lulla, Kamlesh; Jensen, John

    1990-01-01

    Recent advances in computer-based geographic information systems (GISs) are briefly reviewed, with an emphasis on the incorporation of remote-sensing data in GISs for rural applications. Topics addressed include sampling procedures for rural land-use analyses; GIS-based mapping of agricultural land use and productivity; remote sensing of land use and agricultural, forest, rangeland, and water resources; monitoring the dynamics of irrigation agriculture; GIS methods for detecting changes in land use over time; and the development of land-use modeling strategies.

  16. Apply an Augmented Reality in a Mobile Guidance to Increase Sense of Place for Heritage Places

    ERIC Educational Resources Information Center

    Chang, Yu-Lien; Hou, Huei-Tse; Pan, Chao-Yang; Sung, Yao-Ting; Chang, Kuo-En

    2015-01-01

    Based on the sense of place theory and the design principles of guidance and interpretation, this study developed an augmented reality mobile guidance system that used a historical geo-context-embedded visiting strategy. This tool for heritage guidance and educational activities enhanced visitor sense of place. This study consisted of 3 visitor…

  17. LORAKS Makes Better SENSE: Phase-Constrained Partial Fourier SENSE Reconstruction without Phase Calibration

    PubMed Central

    Kim, Tae Hyung; Setsompop, Kawin; Haldar, Justin P.

    2016-01-01

    Purpose Parallel imaging and partial Fourier acquisition are two classical approaches for accelerated MRI. Methods that combine these approaches often rely on prior knowledge of the image phase, but the need to obtain this prior information can place practical restrictions on the data acquisition strategy. In this work, we propose and evaluate SENSE-LORAKS, which enables combined parallel imaging and partial Fourier reconstruction without requiring prior phase information. Theory and Methods The proposed formulation is based on combining the classical SENSE model for parallel imaging data with the more recent LORAKS framework for MR image reconstruction using low-rank matrix modeling. Previous LORAKS-based methods have successfully enabled calibrationless partial Fourier parallel MRI reconstruction, but have been most successful with nonuniform sampling strategies that may be hard to implement for certain applications. By combining LORAKS with SENSE, we enable highly-accelerated partial Fourier MRI reconstruction for a broader range of sampling trajectories, including widely-used calibrationless uniformly-undersampled trajectories. Results Our empirical results with retrospectively undersampled datasets indicate that when SENSE-LORAKS reconstruction is combined with an appropriate k-space sampling trajectory, it can provide substantially better image quality at high-acceleration rates relative to existing state-of-the-art reconstruction approaches. Conclusion The SENSE-LORAKS framework provides promising new opportunities for highly-accelerated MRI. PMID:27037836

  18. Boronic acid-based chemical sensors for saccharides.

    PubMed

    Zhang, Xiao-Tai; Liu, Guang-Jian; Ning, Zhang-Wei; Xing, Guo-Wen

    2017-11-27

    During the past decades, the interaction between boronic acids-functionalized sensors and saccharides is of great interest in the frontier domain of the interdiscipline concerning both biology and chemistry. Various boronic acid-based sensing systems have been developed to detect saccharides and corresponding derivatives in vitro as well as in vivo, which embrace unimolecular sensors, two-component sensing ensembles, functional assemblies, and boronic acid-loaded nanomaterials or surfaces. New sensing strategies emerge in endlessly with excellent selectivity and sensitivity. In this review, several typical sensing systems were introduced and some promising examples were highlighted to enable the deep insight of saccharides sensing on the basis of boronic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide

    PubMed Central

    Qiu, Huazhang; Wu, Namei; Zheng, Yanjie; Chen, Min; Weng, Shaohuang; Chen, Yuanzhong; Lin, Xinhua

    2015-01-01

    A robust and versatile signal-on fluorescence sensing strategy was developed to provide label-free detection of various target analytes. The strategy used SYBR Green I dye and graphene oxide as signal reporter and signal-to-background ratio enhancer, respectively. Multidrug resistance protein 1 (MDR1) gene and mercury ion (Hg2+) were selected as target analytes to investigate the generality of the method. The linear relationship and specificity of the detections showed that the sensitive and selective analyses of target analytes could be achieved by the proposed strategy with low detection limits of 0.5 and 2.2 nM for MDR1 gene and Hg2+, respectively. Moreover, the strategy was used to detect real samples. Analytical results of MDR1 gene in the serum indicated that the developed method is a promising alternative approach for real applications in complex systems. Furthermore, the recovery of the proposed method for Hg2+ detection was acceptable. Thus, the developed label-free signal-on fluorescence sensing strategy exhibited excellent universality, sensitivity, and handling convenience. PMID:25565810

  20. Optimization of strand displacement amplification-sensitized G-quadruplex DNAzyme-based sensing system and its application in activity detection of uracil-DNA glycosylase.

    PubMed

    Du, Yi-Chen; Jiang, Hong-Xin; Huo, Yan-Fang; Han, Gui-Mei; Kong, De-Ming

    2016-03-15

    As an isothermal nucleic acid amplification technique, strand displacement amplification (SDA) reaction has been introduced in G-quadruplex DNAzyme-based sensing system to improve the sensing performance. To further provide useful information for the design of SDA-amplified G-quadruplex DNAzyme-based sensors, the effects of nicking site number in SDA template DNA were investigated. With the increase of the nicking site number from 1 to 2, enrichment of G-quadruplex DNAzyme by SDA is changed from a linear amplification to an exponential amplification, thus greatly increasing the amplification efficiency and subsequently improving the sensing performance of corresponding sensing system. The nicking site number cannot be further increased because more nicking sites might result in high background signals. However, we demonstrated that G-quadruplex DNAzyme enrichment efficiency could be further improved by introducing a cross-triggered SDA strategy, in which two templates each has two nicking sites are used. To validate the proposed cross-triggered SDA strategy, we used it to develop a sensing platform for the detection of uracil-DNA glycosylase (UDG) activity. The sensor enables sensitive detection of UDG activity in the range of 1 × 10(-4)-1 U/mL with a detection limit of 1 × 10(-4)U/mL. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers

    PubMed Central

    Xu, Lin; Zhang, Zhaowei; Zhang, Qi; Li, Peiwu

    2016-01-01

    Mycotoxin contamination threatens health and life of humans and animals throughout the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin contamination. Advanced sensors based on antibodies or aptamers boast the advantages of high sensitivity and rapidity, and have been used in the mycotoxin sensing. These sensors are miniaturized, thereby lowering costs, and are applicable to high-throughput modes. In this work, the latest developments in sensing strategies for mycotoxin determination were critically discussed. Optical and electrochemical sensing modes were compared. The sensing methods for single mycotoxin or multiple mycotoxins in food samples were reviewed, along with the challenges and the future of antibody or aptamer-based sensors. This work might promote academic studies and industrial applications for mycotoxin sensing. PMID:27529281

  2. Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells.

    PubMed

    Kubota, Ryou; Hamachi, Itaru

    2015-07-07

    Chemical sensing of amino acids, peptides, and proteins provides fruitful information to understand their biological functions, as well as to develop the medical and technological applications. To detect amino acids, peptides, and proteins in vitro and in vivo, vast kinds of chemical sensors including small synthetic binders/sensors, genetically-encoded fluorescent proteins and protein-based semisynthetic biosensors have been intensely investigated. This review deals with concepts, strategies, and applications of protein recognition and sensing using small synthetic binders/sensors, which are now actively studied but still in the early stage of investigation. The recognition strategies for peptides and proteins can be divided into three categories: (i) recognition of protein substructures, (ii) protein surface recognition, and (iii) protein sensing through protein-ligand interaction. Here, we overview representative examples of protein recognition and sensing, and discuss biological or diagnostic applications such as potent inhibitors/modulators of protein-protein interactions.

  3. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    NASA Astrophysics Data System (ADS)

    xue, Zhonghua; He, Nan; Rao, Honghong; Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui; Lu, Xiaoquan

    2017-02-01

    Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  4. Advanced Lighting Controls for Reducing Energy Use and Cost in DoD Installations

    DTIC Science & Technology

    2013-03-01

    of advanced lighting control strategies including occupancy sensing, light tuning, daylight harvesting and proper lighting design is an effective way...details of this project and the results obtained. 15. SUBJECT TERMS Integrated lighting controls, occupancy sensing, daylight harvesting , personalized...provide energy savings through occupancy sensing, dimming and daylight harvesting . II. Dynalite is a distributed control-based, wired networked building

  5. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices

    PubMed Central

    O'Toole, Martina; Diamond, Dermot

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements. PMID:27879829

  6. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.

    PubMed

    O'Toole, Martina; Diamond, Dermot

    2008-04-07

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.

  7. Research on optimal path planning algorithm of task-oriented optical remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng

    2015-08-01

    GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.

  8. Portable, universal, and visual ion sensing platform based on the light emitting diode-based self-referencing-ion selective field-effect transistor.

    PubMed

    Zhang, Xiaowei; Han, Yanchao; Li, Jing; Zhang, Libing; Jia, Xiaofang; Wang, Erkang

    2014-02-04

    In this work, a novel and universal ion sensing platform was presented, which enables the visual detection of various ions with high sensitivity and selectivity. Coaxial potential signals (millivolt-scale) of the sample from the self-referencing (SR) ion selective chip can be transferred into the ad620-based amplifier with an output of volt-scale potentials. The amplified voltage is high enough to drive a light emitting diode (LED), which can be used as an amplifier and indicator to report the sample information. With this double amplification device (light emitting diode-based self-referencing-ion selective field-effect transistor, LED-SR-ISFET), a tiny change of the sample concentration can be observed with a distinguishable variation of LED brightness by visual inspection. This LED-based luminescent platform provided a facile, low-cost, and rapid sensing strategy without the need of additional expensive chemiluminescence reagent and instruments. Moreover, the SR mode also endows this device excellent stability and reliability. With this innovative design, sensitive determination of K(+), H(+), and Cl(-) by the naked eye was achieved. It should also be noticed that this sensing strategy can easily be extended to other ions (or molecules) by simply integrating the corresponding ion (or molecule) selective electrode.

  9. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview.

    PubMed

    Huang, Jinhui; Shi, Yahui; Zeng, Guangming; Gu, Yanling; Chen, Guiqiu; Shi, Lixiu; Hu, Yi; Tang, Bi; Zhou, Jianxin

    2016-08-01

    Quorum sensing (QS) is a communication process between cells, in which bacteria secrete and sense the specific chemicals, and regulate gene expression in response to population density. Quorum quenching (QQ) blocks QS system, and inhibits gene expression mediating bacterial behaviors. Given the extensive research of acyl-homoserine lactone (AHL) signals, existences and effects of AHL-based QS and QQ in biological wastewater treatments are being subject to high concern. This review summarizes AHL structure, synthesis mode, degradation mechanisms, analytical methods, environmental factors, AHL-based QS and QQ mechanisms. The existences and roles of AHL-based QS and QQ in biomembrane processes, activated sludge processes and membrane bioreactors are summarized and discussed, and corresponding exogenous regulation strategy by selective enhancement of AHL-based QS or QQ coexisting in biological wastewater treatments is suggested. Such strategies including the addition of AHL signals, AHL-producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve wastewater treatment performance without killing or limiting bacterial survival and growth. This review will present the theoretical and practical cognition for bacterial AHL-based QS and QQ, suggest the feasibility of exogenous regulation strategies in biological wastewater treatments, and provide useful information to scientists and engineers who work in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Preservice Teachers' Sense of Efficacy: Video vs. Face-to-Face Observations

    ERIC Educational Resources Information Center

    Chisenhall, Debra Ellen

    2016-01-01

    This study examined preservice elementary education students' sense of efficacy regarding student engagement, instructional strategies, and classroom management based on the type of observations they completed. A total sample size of 64 elementary education students enrolled in four sections of an introductory elementary education course and…

  11. LORAKS makes better SENSE: Phase-constrained partial fourier SENSE reconstruction without phase calibration.

    PubMed

    Kim, Tae Hyung; Setsompop, Kawin; Haldar, Justin P

    2017-03-01

    Parallel imaging and partial Fourier acquisition are two classical approaches for accelerated MRI. Methods that combine these approaches often rely on prior knowledge of the image phase, but the need to obtain this prior information can place practical restrictions on the data acquisition strategy. In this work, we propose and evaluate SENSE-LORAKS, which enables combined parallel imaging and partial Fourier reconstruction without requiring prior phase information. The proposed formulation is based on combining the classical SENSE model for parallel imaging data with the more recent LORAKS framework for MR image reconstruction using low-rank matrix modeling. Previous LORAKS-based methods have successfully enabled calibrationless partial Fourier parallel MRI reconstruction, but have been most successful with nonuniform sampling strategies that may be hard to implement for certain applications. By combining LORAKS with SENSE, we enable highly accelerated partial Fourier MRI reconstruction for a broader range of sampling trajectories, including widely used calibrationless uniformly undersampled trajectories. Our empirical results with retrospectively undersampled datasets indicate that when SENSE-LORAKS reconstruction is combined with an appropriate k-space sampling trajectory, it can provide substantially better image quality at high-acceleration rates relative to existing state-of-the-art reconstruction approaches. The SENSE-LORAKS framework provides promising new opportunities for highly accelerated MRI. Magn Reson Med 77:1021-1035, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Throughput assurance of wireless body area networks coexistence based on stochastic geometry

    PubMed Central

    Wang, Yinglong; Shu, Minglei; Wu, Shangbin

    2017-01-01

    Wireless body area networks (WBANs) are expected to influence the traditional medical model by assisting caretakers with health telemonitoring. Within WBANs, the transmit power of the nodes should be as small as possible owing to their limited energy capacity but should be sufficiently large to guarantee the quality of the signal at the receiving nodes. When multiple WBANs coexist in a small area, the communication reliability and overall throughput can be seriously affected due to resource competition and interference. We show that the total network throughput largely depends on the WBANs distribution density (λp), transmit power of their nodes (Pt), and their carrier-sensing threshold (γ). Using stochastic geometry, a joint carrier-sensing threshold and power control strategy is proposed to meet the demand of coexisting WBANs based on the IEEE 802.15.4 standard. Given different network distributions and carrier-sensing thresholds, the proposed strategy derives a minimum transmit power according to varying surrounding environment. We obtain expressions for transmission success probability and throughput adopting this strategy. Using numerical examples, we show that joint carrier-sensing thresholds and transmit power strategy can effectively improve the overall system throughput and reduce interference. Additionally, this paper studies the effects of a guard zone on the throughput using a Matern hard-core point process (HCPP) type II model. Theoretical analysis and simulation results show that the HCPP model can increase the success probability and throughput of networks. PMID:28141841

  13. Singlet oxygen-based electrosensing by molecular photosensitizers

    NASA Astrophysics Data System (ADS)

    Trashin, Stanislav; Rahemi, Vanoushe; Ramji, Karpagavalli; Neven, Liselotte; Gorun, Sergiu M.; de Wael, Karolien

    2017-07-01

    Enzyme-based electrochemical biosensors are an inspiration for the development of (bio)analytical techniques. However, the instability and reproducibility of the reactivity of enzymes, combined with the need for chemical reagents for sensing remain challenges for the construction of useful devices. Here we present a sensing strategy inspired by the advantages of enzymes and photoelectrochemical sensing, namely the integration of aerobic photocatalysis and electrochemical analysis. The photosensitizer, a bioinspired perfluorinated Zn phthalocyanine, generates singlet-oxygen from air under visible light illumination and oxidizes analytes, yielding electrochemically-detectable products while resisting the oxidizing species it produces. Compared with enzymatic detection methods, the proposed strategy uses air instead of internally added reactive reagents, features intrinsic baseline correction via on/off light switching and shows C-F bonds-type enhanced stability. It also affords selectivity imparted by the catalytic process and nano-level detection, such as 20 nM amoxicillin in μl sample volumes.

  14. Singlet oxygen-based electrosensing by molecular photosensitizers

    PubMed Central

    Trashin, Stanislav; Rahemi, Vanoushe; Ramji, Karpagavalli; Neven, Liselotte; Gorun, Sergiu M.; De Wael, Karolien

    2017-01-01

    Enzyme-based electrochemical biosensors are an inspiration for the development of (bio)analytical techniques. However, the instability and reproducibility of the reactivity of enzymes, combined with the need for chemical reagents for sensing remain challenges for the construction of useful devices. Here we present a sensing strategy inspired by the advantages of enzymes and photoelectrochemical sensing, namely the integration of aerobic photocatalysis and electrochemical analysis. The photosensitizer, a bioinspired perfluorinated Zn phthalocyanine, generates singlet-oxygen from air under visible light illumination and oxidizes analytes, yielding electrochemically-detectable products while resisting the oxidizing species it produces. Compared with enzymatic detection methods, the proposed strategy uses air instead of internally added reactive reagents, features intrinsic baseline correction via on/off light switching and shows C-F bonds-type enhanced stability. It also affords selectivity imparted by the catalytic process and nano-level detection, such as 20 nM amoxicillin in μl sample volumes.

  15. Biosensing Using Magnetic Particle Detection Techniques

    PubMed Central

    Chen, Yi-Ting; Kolhatkar, Arati G.; Zenasni, Oussama; Xu, Shoujun

    2017-01-01

    Magnetic particles are widely used as signal labels in a variety of biological sensing applications, such as molecular detection and related strategies that rely on ligand-receptor binding. In this review, we explore the fundamental concepts involved in designing magnetic particles for biosensing applications and the techniques used to detect them. First, we briefly describe the magnetic properties that are important for bio-sensing applications and highlight the associated key parameters (such as the starting materials, size, functionalization methods, and bio-conjugation strategies). Subsequently, we focus on magnetic sensing applications that utilize several types of magnetic detection techniques: spintronic sensors, nuclear magnetic resonance (NMR) sensors, superconducting quantum interference devices (SQUIDs), sensors based on the atomic magnetometer (AM), and others. From the studies reported, we note that the size of the MPs is one of the most important factors in choosing a sensing technique. PMID:28994727

  16. Reciprocally-Benefited Secure Transmission for Spectrum Sensing-Based Cognitive Radio Sensor Networks

    PubMed Central

    Wang, Dawei; Ren, Pinyi; Du, Qinghe; Sun, Li; Wang, Yichen

    2016-01-01

    The rapid proliferation of independently-designed and -deployed wireless sensor networks extremely crowds the wireless spectrum and promotes the emergence of cognitive radio sensor networks (CRSN). In CRSN, the sensor node (SN) can make full use of the unutilized licensed spectrum, and the spectrum efficiency is greatly improved. However, inevitable spectrum sensing errors will adversely interfere with the primary transmission, which may result in primary transmission outage. To compensate the adverse effect of spectrum sensing errors, we propose a reciprocally-benefited secure transmission strategy, in which SN’s interference to the eavesdropper is employed to protect the primary confidential messages while the CRSN is also rewarded with a loose spectrum sensing error probability constraint. Specifically, according to the spectrum sensing results and primary users’ activities, there are four system states in this strategy. For each state, we analyze the primary secrecy rate and the SN’s transmission rate by taking into account the spectrum sensing errors. Then, the SN’s transmit power is optimally allocated for each state so that the average transmission rate of CRSN is maximized under the constraint of the primary maximum permitted secrecy outage probability. In addition, the performance tradeoff between the transmission rate of CRSN and the primary secrecy outage probability is investigated. Moreover, we analyze the primary secrecy rate for the asymptotic scenarios and derive the closed-form expression of the SN’s transmission outage probability. Simulation results show that: (1) the performance of the SN’s average throughput in the proposed strategy outperforms the conventional overlay strategy; (2) both the primary network and CRSN benefit from the proposed strategy. PMID:27897988

  17. UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression.

    PubMed

    Madore, Bruno

    2004-08-01

    This work aims at improving the performance of parallel imaging by using it with our "unaliasing by Fourier-encoding the overlaps in the temporal dimension" (UNFOLD) temporal strategy. A self-calibration method called "self, hybrid referencing with UNFOLD and GRAPPA" (SHRUG) is presented. SHRUG combines the UNFOLD-based sensitivity mapping strategy introduced in the TSENSE method by Kellman et al. (5), with the strategy introduced in the GRAPPA method by Griswold et al. (10). SHRUG merges the two approaches to alleviate their respective limitations, and provides fast self-calibration at any given acceleration factor. UNFOLD-SENSE further includes an UNFOLD artifact suppression scheme to significantly suppress artifacts and amplified noise produced by parallel imaging. This suppression scheme, which was published previously (4), is related to another method that was presented independently as part of TSENSE. While the two are equivalent at accelerations < or = 2.0, the present approach is shown here to be significantly superior at accelerations > 2.0, with up to double the artifact suppression at high accelerations. Furthermore, a slight modification of Cartesian SENSE is introduced, which allows departures from purely Cartesian sampling grids. This technique, termed variable-density SENSE (vdSENSE), allows the variable-density data required by SHRUG to be reconstructed with the simplicity and fast processing of Cartesian SENSE. UNFOLD-SENSE is given by the combination of SHRUG for sensitivity mapping, vdSENSE for reconstruction, and UNFOLD for artifact/amplified noise suppression. The method was implemented, with online reconstruction, on both an SSFP and a myocardium-perfusion sequence. The results from six patients scanned with UNFOLD-SENSE are presented.

  18. Seamline Determination Based on PKGC Segmentation for Remote Sensing Image Mosaicking

    PubMed Central

    Dong, Qiang; Liu, Jinghong

    2017-01-01

    This paper presents a novel method of seamline determination for remote sensing image mosaicking. A two-level optimization strategy is applied to determine the seamline. Object-level optimization is executed firstly. Background regions (BRs) and obvious regions (ORs) are extracted based on the results of parametric kernel graph cuts (PKGC) segmentation. The global cost map which consists of color difference, a multi-scale morphological gradient (MSMG) constraint, and texture difference is weighted by BRs. Finally, the seamline is determined in the weighted cost from the start point to the end point. Dijkstra’s shortest path algorithm is adopted for pixel-level optimization to determine the positions of seamline. Meanwhile, a new seamline optimization strategy is proposed for image mosaicking with multi-image overlapping regions. The experimental results show the better performance than the conventional method based on mean-shift segmentation. Seamlines based on the proposed method bypass the obvious objects and take less time in execution. This new method is efficient and superior for seamline determination in remote sensing image mosaicking. PMID:28749446

  19. Array-based sensing using nanoparticles: an alternative approach for cancer diagnostics.

    PubMed

    Le, Ngoc D B; Yazdani, Mahdieh; Rotello, Vincent M

    2014-07-01

    Array-based sensing using nanoparticles (NPs) provides an attractive alternative to specific biomarker-focused strategies for cancer diagnosis. The physical and chemical properties of NPs provide both the recognition and transduction capabilities required for biosensing. Array-based sensors utilize a combined response from the interactions between sensors and analytes to generate a distinct pattern (fingerprint) for each analyte. These interactions can be the result of either the combination of multiple specific biomarker recognition (specific binding) or multiple selective binding responses, known as chemical nose sensing. The versatility of the latter array-based sensing using NPs can facilitate the development of new personalized diagnostic methodologies in cancer diagnostics, a necessary evolution in the current healthcare system to better provide personalized treatments. This review will describe the basic principle of array-based sensors, along with providing examples of both invasive and noninvasive samples used in cancer diagnosis.

  20. Advances on Aryldiazonium Salt Chemistry Based Interfacial Fabrication for Sensing Applications.

    PubMed

    Cao, Chaomin; Zhang, Yin; Jiang, Cheng; Qi, Meng; Liu, Guozhen

    2017-02-15

    Aryldiazonium salts as coupling agents for surface chemistry have evidenced their wide applications for the development of sensors. Combined with advances in nanomaterials, current trends in sensor science and a variety of particular advantages of aryldiazonium salt chemistry in sensing have driven the aryldiazonium salt-based sensing strategies to grow at an astonishing pace. This review focuses on the advances in the use of aryldiazonium salts for modifying interfaces in sensors and biosensors during the past decade. It will first summarize the current methods for modification of interfaces with aryldiazonium salts, and then discuss the sensing applications of aryldiazonium salts modified on different transducers (bulky solid electrodes, nanomaterials modified bulky solid electrodes, and nanoparticles). Finally, the challenges and perspectives that aryldiazonium salt chemistry is facing in sensing applications are critically discussed.

  1. Multimodal Sensing Strategy Using pH Dependent Fluorescence Switchable System

    NASA Astrophysics Data System (ADS)

    Muthurasu, A.; Ganesh, V.

    2016-12-01

    Biomolecules assisted preparation of fluorescent gold nanoparticles (FL-Au NPs) has been reported in this work using glucose oxidase enzyme as both reducing and stabilizing agent and demonstrated their application through multimodal sensing strategy for selective detection of cysteine (Cys). Three different methods namely fluorescence turn OFF-ON strategy, naked eye detection and electrochemical methods are used for Cys detection by employing FL-Au NPs as a common probe. In case of fluorescence turn-OFF method a strong interaction between Au NPs and thiol results in quenching of fluorescence due to replacement of glucose oxidase by Cys at neutral pH. Second mode is based on fluorescence switch-ON strategy where initial fluorescence is significantly quenched by either excess acid or base and further addition of Cys results in appearance of rosy-red and green fluorescence respectively. Visual colour change and fluorescence emission arises due to etching of Au atoms on the surface by thiol leading to formation of Au nanoclusters. Finally, electrochemical sensing of Cys is also carried out using cyclic voltammetry in 0.1 M PBS solution. These findings provide a suitable platform for Cys detection over a wide range of pH and concentration levels and hence the sensitivity can also be tuned accordingly.

  2. Fluorescence intensity- and lifetime-based glucose sensing using glucose/galactose-binding protein.

    PubMed

    Pickup, John C; Khan, Faaizah; Zhi, Zheng-Liang; Coulter, Jonathan; Birch, David J S

    2013-01-01

    We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested. © 2013 Diabetes Technology Society.

  3. Pairwise diversity ranking of polychotomous features for ensemble physiological signal classifiers.

    PubMed

    Gupta, Lalit; Kota, Srinivas; Molfese, Dennis L; Vaidyanathan, Ravi

    2013-06-01

    It is well known that fusion classifiers for physiological signal classification with diverse components (classifiers or data sets) outperform those with less diverse components. Determining component diversity, therefore, is of the utmost importance in the design of fusion classifiers that are often employed in clinical diagnostic and numerous other pattern recognition problems. In this article, a new pairwise diversity-based ranking strategy is introduced to select a subset of ensemble components, which when combined will be more diverse than any other component subset of the same size. The strategy is unified in the sense that the components can be classifiers or data sets. Moreover, the classifiers and data sets can be polychotomous. Classifier-fusion and data-fusion systems are formulated based on the diversity-based selection strategy, and the application of the two fusion strategies are demonstrated through the classification of multichannel event-related potentials. It is observed that for both classifier and data fusion, the classification accuracy tends to increase/decrease when the diversity of the component ensemble increases/decreases. For the four sets of 14-channel event-related potentials considered, it is shown that data fusion outperforms classifier fusion. Furthermore, it is demonstrated that the combination of data components that yield the best performance, in a relative sense, can be determined through the diversity-based selection strategy.

  4. Sense of coherence, self-regulated learning and academic performance in first year nursing students: A cluster analysis approach.

    PubMed

    Salamonson, Yenna; Ramjan, Lucie M; van den Nieuwenhuizen, Simon; Metcalfe, Lauren; Chang, Sungwon; Everett, Bronwyn

    2016-03-01

    This paper examines the relationship between nursing students' sense of coherence, self-regulated learning and academic performance in bioscience. While there is increasing recognition of a need to foster students' self-regulated learning, little is known about the relationship of psychological strengths, particularly sense of coherence and academic performance. Using a prospective, correlational design, 563 first year nursing students completed the three dimensions of sense of coherence scale - comprehensibility, manageability and meaningfulness, and five components of self-regulated learning strategy - elaboration, organisation, rehearsal, self-efficacy and task value. Cluster analysis was used to group respondents into three clusters, based on their sense of coherence subscale scores. Although there were no sociodemographic differences in sense of coherence subscale scores, those with higher sense of coherence were more likely to adopt self-regulated learning strategies. Furthermore, academic grades collected at the end of semester revealed that higher sense of coherence was consistently related to achieving higher academic grades across all four units of study. Students with higher sense of coherence were more self-regulated in their learning approach. More importantly, the study suggests that sense of coherence may be an explanatory factor for students' successful adaptation and transition in higher education, as indicated by the positive relationship of sense of coherence to academic performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Modeling the role of quorum sensing in interspecies competition in biofilms

    NASA Astrophysics Data System (ADS)

    Narla, Avaneesh V.; Wingreen, Ned S.; Borenstein, David B.

    Bacteria grow on surfaces in complex immobile communities known as biofilms, composed of cells embedded in an extracellular matrix. Within biofilms, bacteria often communicate, cooperate, and compete within their own species and with other species using Quorum Sensing (QS). QS refers to the process by which bacteria produce, secrete, and subsequently detect small molecules called autoinducers as a way to assess the local population density of their species, or of other species. QS is known to regulate the production of extracellular matrix. We investigated the possible benefit of QS in regulating matrix production to best gain access to a nutrient that diffuses from a source positioned away from the surface on which the biofilm grows. We employed Agent-Based Modeling (ABM), a form of simulation that allows cells to modify their behavior based on local inputs, e.g. nutrient and QS concentrations. We first determined the optimal fixed strategies (that do not use QS) for pairwise competitions, and then demonstrated that simple QS-based strategies can be superior to any fixed strategy. In nature, species can compete by sensing and/or interfering with each other's QS signals, and we explore approaches for targeting specific species via QS-interference. A.V.N. and N.S.W. contributed equally to this project.

  6. Global versus local mechanisms of temperature sensing in ion channels.

    PubMed

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  7. Ultrathin Tungsten Oxide Nanowires/Reduced Graphene Oxide Composites for Toluene Sensing

    PubMed Central

    Hassan, Muhammad; Wang, Zhi-Hua; Huang, Wei-Ran; Li, Min-Qiang; Chen, Jia-Fu

    2017-01-01

    Graphene-based composites have gained great attention in the field of gas sensor fabrication due to their higher surface area with additional functional groups. Decorating one-dimensional (1D) semiconductor nanomaterials on graphene also show potential benefits in gas sensing applications. Here we demonstrate the one-pot and low cost synthesis of W18O49 NWs/rGO composites with different amount of reduced graphene oxide (rGO) which show excellent gas-sensing properties towards toluene and strong dependence on their chemical composition. As compared to pure W18O49 NWs, an improved gas sensing response (2.8 times higher) was achieved in case of W18O49 NWs composite with 0.5 wt. % rGO. Promisingly, this strategy can be extended to prepare other nanowire based composites with excellent gas-sensing performance. PMID:28961178

  8. Landscape design strategies for post-disaster reconstructions based on traditional ethical wisdom

    NASA Astrophysics Data System (ADS)

    Yi, Shouli; Hu, Di; Gao, Suping; Lei, Ting; Chen, Qibin

    2018-03-01

    In the face of the black swan events which frequently happened globally, I take the earthquake of Ya'an, happened at 4.20 in Sichuan, as an example of my subject. The results indicate that the social responsibility of landscape architects is a post-disaster reconstruction of a material and spiritual homeland for victims and mental care for individuals, which specifically reflected in the process of rebuilding victims' sense of security. The reconstruction of a sense of security must follow certain ethics and moralities which embody the ecological wisdom. We take a typical case of Ya'an Lushan Snow Mountain Village-the earthquake distress area, we found the incidence of disease was up to 68.6% through the PTSD analysis, indicating the overall absence of a sense of security. To solve the problem and reconstruct people's mental and material homeland, the article discussed the strategies and solutions to post-disaster landscape design based on traditional ethical wisdom.

  9. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.

    PubMed

    Wang, Meng; Li, Sijin; Zhao, Huimin

    2016-01-01

    The development of high-throughput phenotyping tools is lagging far behind the rapid advances of genotype generation methods. To bridge this gap, we report a new strategy for design, construction, and fine-tuning of intracellular-metabolite-sensing/regulation gene circuits by repurposing bacterial transcription factors and eukaryotic promoters. As proof of concept, we systematically investigated the design and engineering of bacterial repressor-based xylose-sensing/regulation gene circuits in Saccharomyces cerevisiae. We demonstrated that numerous properties, such as induction ratio and dose-response curve, can be fine-tuned at three different nodes, including repressor expression level, operator position, and operator sequence. By applying these gene circuits, we developed a cell sorting based, rapid and robust high-throughput screening method for xylose transporter engineering and obtained a sugar transporter HXT14 mutant with 6.5-fold improvement in xylose transportation capacity. This strategy should be generally applicable and highly useful for evolutionary engineering of proteins, pathways, and genomes in S. cerevisiae. © 2015 Wiley Periodicals, Inc.

  10. Human skin wetness perception: psychophysical and neurophysiological bases.

    PubMed

    Filingeri, Davide; Havenith, George

    2015-01-01

    The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception.

  11. Improving First-Year Intervention Strategies at Universities by Focusing on Meaning and Purpose in Life

    ERIC Educational Resources Information Center

    Shin, Joo Yeon

    2013-01-01

    Research has increasingly appreciated the potential benefits of having a higher sense of meaning in life for positive college student development. Drawing on Steger's (2009) meaning development model, this study investigated the effects of a 6-week web-based intervention designed to enhance a sense of meaning in life among college freshmen. The…

  12. Integration of remote sensing and hydrologic modeling through multi-disciplinary semiarid field campaigns: Moonsoon 1990, Walnut Gulch 1992, and SALSA-MEX

    NASA Technical Reports Server (NTRS)

    Moran, M. S.; Goodrich, D. C.; Kustas, W. P.

    1994-01-01

    A research and modeling strategy is presented for development of distributed hydrologic models given by a combination of remotely sensed and ground based data. In support of this strategy, two experiments Moonsoon'90 and Walnut Gulch'92 were conducted in a semiarid rangeland southeast of Tucson, Arizona, (U.S.) and a third experiment, the SALSA-MEX (Semi Arid Land Surface Atmospheric Mountain Experiment) was proposed. Results from the Moonsoon'90 experiment substantially advanced the understanding of the hydrologic and atmospheric fluxes in an arid environment and provided insight into the use of remote sensing data for hydrologic modeling. The Walnut Gulch'92 experiment addressed the seasonal hydrologic dynamics of the region and the potential of combined optical microwave remote sensing for hydrologic applications. SALSA-MEX will combine measurements and modeling to study hydrologic processes influenced by surrounding mountains, such as enhanced precipitation, snowmelt and recharge to ground water aquifers. The results from these experiments, along with the extensive experimental data bases, should aid the research community in large scale modeling of mass and energy exchanges across the soil-plant-atmosphere interface.

  13. Adaptive Sampling for Urban Air Quality through Participatory Sensing

    PubMed Central

    Zeng, Yuanyuan; Xiang, Kai

    2017-01-01

    Air pollution is one of the major problems of the modern world. The popularization and powerful functions of smartphone applications enable people to participate in urban sensing to better know about the air problems surrounding them. Data sampling is one of the most important problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling Scheme for Urban Air Quality (AS-air) through participatory sensing. Firstly, we propose to find the pattern rules of air quality according to the historical data contributed by participants based on Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning process to choose and adapt the sampling parameter based on Q-learning. The evaluation results show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied outside air environment with good sampling efficiency. PMID:29099766

  14. Pressure sensing element based on the BN-graphene-BN heterostructure

    NASA Astrophysics Data System (ADS)

    Li, Mengwei; Wu, Chenggen; Zhao, Shiliang; Deng, Tao; Wang, Junqiang; Liu, Zewen; Wang, Li; Wang, Gao

    2018-04-01

    In this letter, we report a pressure sensing element based on the graphene-boron nitride (BN) heterostructure. The heterostructure consists of monolayer graphene sandwiched between two layers of vertically stacked dielectric BN nanofilms. The BN layers were used to protect the graphene layer from oxidation and pollution. Pressure tests were performed to investigate the characteristics of the BN-graphene-BN pressure sensing element. A sensitivity of 24.85 μV/V/mmHg is achieved in the pressure range of 130-180 kPa. After exposing the BN-graphene-BN pressure sensing element to the ambient environment for 7 days, the relative resistance change in the pressure sensing element is only 3.1%, while that of the reference open-faced graphene device without the BN protection layers is 15.7%. Thus, this strategy is promising for fabricating practical graphene pressure sensors with improved performance and stability.

  15. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor.

    PubMed

    Zheng, Wanli; Teng, Jun; Cheng, Lin; Ye, Yingwang; Pan, Daodong; Wu, Jingjing; Xue, Feng; Liu, Guodong; Chen, Wei

    2016-06-15

    An electrochemical aptasensor for trace detection of aflatoxin B1 (AFB1) was developed by using an aptamer as the recognition unit while adopting the telomerase and EXO III based two-round signal amplification strategy as the signal enhancement units. The telomerase amplification was used to elongate the ssDNA probes on the surface of gold nanoparticles, by which the signal response range of the signal-off model electrochemical aptasensor could be correspondingly enlarged. Then, the EXO III amplification was used to hydrolyze the 3'-end of the dsDNA after the recognition of target AFB1, which caused the release of bounded AFB1 into the sensing system, where it participated in the next recognition-sensing cycle. With this two-round signal amplified electrochemical aptasensor, target AFB1 was successfully measured at trace concentrations with excellent detection limit of 0.6*10(-4)ppt and satisfied specificity due to the excellent affinity of the aptamer against AFB1. Based on this designed two-round signal amplification strategy, both the sensing range and detection limit were greatly improved. This proposed ultrasensitive electrochemical aptasensor method was also validated by comparison with the classic instrumental methods. Importantly, this hetero-enzyme based two-round signal amplified electrochemical aptasensor offers a great promising protocol for ultrasensitive detection of AFB1 and other mycotoxins by replacing the core recognition sequence of the aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A nonlinear strategy for sensor based vehicle path control

    NASA Technical Reports Server (NTRS)

    Mayr, R.

    1994-01-01

    A method of transverse control which makes use of nonlinear formulations is presented. The strategy is utilized to stabilize a vehicle. The vehicle is autonomously guided and takes its control inputs from an optical sensing system. Additionally, the velocity of the vehicle is dictated by a longitudinal controller, which is also discussed.

  17. Improving the position control of a two degrees of freedom robotic sensing antenna using fractional-order controllers

    NASA Astrophysics Data System (ADS)

    Feliu-Talegon, D.; Feliu-Batlle, V.

    2017-06-01

    Flexible links combined with force and torque sensors can be used to detect obstacles in mobile robotics, as well as for surface and object recognition. These devices, called sensing antennae, perform an active sensing strategy in which a servomotor system moves the link back and forth until it hits an object. At this instant, information of the motor angles combined with force and torque measurements allow calculating the positions of the hitting points, which are valuable information about the object surface. In order to move the antenna fast and accurately, this article proposes a new closed-loop control for driving this flexible link-based sensor. The control strategy is based on combining a feedforward term and a feedback phase-lag compensator of fractional order. We demonstrate that some drawbacks of the control of these sensing devices like the apparition of spillover effects when a very fast positioning of the antenna tip is desired, and actuator saturation caused by high-frequency sensor noise, can be significantly reduced by using our newly proposed fractional-order controllers. We have applied these controllers to the position control of a prototype of sensing antenna and experiments have shown the improvements attained with this technique in the accurate and vibration free motion of its tip (the fractional-order controller reduced ten times the residual vibration obtained with the integer-order controller).

  18. Establishing a sense of urgency for leading transformational change.

    PubMed

    Shirey, Maria R

    2011-04-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author discusses successful tactics for establishing a sense of urgency to facilitate organizational change.

  19. Label-Free Fluorescent DNA Dendrimers for microRNA Detection Based On Nonlinear Hybridization Chain Reaction-Mediated Multiple G-Quadruplex with Low Background Signal.

    PubMed

    Xue, Qingwang; Liu, Chunxue; Li, Xia; Dai, Li; Wang, Huaisheng

    2018-04-18

    Various fluorescent sensing systems for miRNA detection have been developed, but they mostly contain enzymatic amplification reactions and label procedures. The strict reaction conditions of tool enzymes and the high cost of labeling limit their potential applications, especially in complex biological matrices. Here, we have addressed the difficult problems and report a strategy for label-free fluorescent DNA dendrimers based on enzyme-free nonlinear hybridization chain reaction (HCR)-mediated multiple G-quadruplex for simple, sensitive, and selective detection of miRNAs with low-background signal. In the strategy, a split G-quadruplex (3:1) sequence is ingeniously designed at both ends of two double-stranded DNAs, which is exploited as building blocks for nonlinear HCR assembly, thereby acquiring a low background signal. A hairpin switch probe (HSP) was employed as recognition and transduction element. Upon sensing the target miRNA, the nonlinear HCR assembly of two blocks (blocks-A and blocks-B) was initiated with the help of two single-stranded DNA assistants, resulting in chain-branching growth of DNA dendrimers with multiple G-quadruplex incorporation. With the zinc(II)-protoporphyrin IX (ZnPPIX) selectively intercalated into the multiple G-quadruplexes, fluorescent DNA dendrimers were obtained, leading to an exponential fluorescence intensity increase. Benefiting from excellent performances of nonlinear HCR and low background signal, this strategy possesses the characteristics of a simplified reaction operation process, as well as high sensitivity. Moreover, the proposed fluorescent sensing strategy also shows preferable selectivity, and can be implemented without modified DNA blocks. Importantly, the strategy has also been tested for miRNA quantification with high confidence in breast cancer cells. Thus, this proposed strategy for label-free fluorescent DNA dendrimers based on a nonlinear HCR-mediated multiple G-quadruplex will be turned into an alternative approach for simple, sensitive, and selective miRNA quantification.

  20. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    PubMed

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  1. Utilizing hyaluronic acid as a versatile platform for fluorescence resonance energy transfer-based glucose sensing.

    PubMed

    Ge, Minghao; Bai, Pengli; Chen, Mingli; Tian, Jingjing; Hu, Jun; Zhi, Xu; Yin, Huancai; Yin, Jian

    2018-03-01

    Here, we utilized the ultrasonic emulsification technique to generate hyaluronic acid microspheres incorporating a fluorescence-based glucose biosensor. We synthesized a novel lanthanide ion luminophore based on Eu 3+ . Eu sulfosuccinimidyl dextran (Eu-dextran) and Alexa Fluor 647 sulfosuccinimidyl-ConA (Alexa Fluor 647-ConA) were encapsulated in hyaluronic acid hydrogel to generate microspheres. Glucose sensing was carried out using a fluorescence resonance energy transfer (FRET)-based assay principle. A proportional fluorescence intensity increase was found within a 0.5-10-mM glucose concentration range. The glucose-sensing strategy showed an excellent tolerance for potential interferents. Meanwhile, the fluorescent signal of hyaluronic acid microspheres was very stable after testing for 72 h in glucose solution. Overall, hyaluronic acid microspheres encapsulating sensing biomolecules offer a stable and biocompatible biosensor for a variety of applications including cell culture systems, tissue engineering, detection of blood glucose, etc. Graphical abstract We report an ingenious biosensor encapsulated in hyaluronic acid microspheres for monitoring of glucose. Glucose sensing is carried out using a fluorescence resonance energy transfer-based assay principle with a novel lanthanide ions luminophore. The glucose detection system has excellent biocompatibility and stability for monitoring of glucose.

  2. Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds

    PubMed Central

    Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Tan, Li Ying; Krishnan, Thiba; Chong, Yee Meng; Chan, Kok-Gan

    2013-01-01

    Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms. PMID:23669710

  3. Constructing conceptual knowledge and promoting "number sense" from computer-managed practice in rounding whole numbers

    NASA Astrophysics Data System (ADS)

    Hativa, Nira

    1993-12-01

    This study sought to identify how high achievers learn and understand new concepts in arithmetic from computer-based practice which provides full solutions to examples but without verbal explanations. Four high-achieving second graders were observed in their natural school settings throughout all their computer-based practice sessions which involved the concept of rounding whole numbers, a concept which was totally new to them. Immediate post-session interviews inquired into students' strategies for solutions, errors, and their understanding of the underlying mathematical rules. The article describes the process through which the students construct their knowledge of the rounding concepts and the errors and misconceptions encountered in this process. The article identifies the cognitive abilities that promote student self-learning of the rounding concepts, their number concepts and "number sense." Differences in the ability to generalise, "mathematical memory," mindfulness of work and use of cognitive strategies are shown to account for the differences in patterns of, and gains in, learning and in maintaining knowledge among the students involved. Implications for the teaching of estimation concepts and of promoting students' "number sense," as well as for classroom use of computer-based practice are discussed.

  4. Human skin wetness perception: psychophysical and neurophysiological bases

    PubMed Central

    Filingeri, Davide; Havenith, George

    2015-01-01

    The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception. PMID:27227008

  5. The Sense of Quality of Life and Religious Strategies of Coping with Stress in Prison Inmates.

    PubMed

    Talik, Elżbieta; Skowroński, Bartłomiej

    2018-06-01

    The aim of the presented research was to analyze differences in religious strategies of coping with stress in a group of prison inmates characterized by different levels of the sense of quality of life-general, psychophysical, psychosocial, personal, and metaphysical. The participants were 390 males, aged 19-68 years, serving sentences in prisons in Poland. The measures used were the Sense of Quality of Life Questionnaire by M. Straś-Romanowska and K. I. Pargament's RCOPE Questionnaire. As expected, individuals with a high sense of quality of life-both general and pertaining to specific dimensions-more often chose positive religious strategies, whereas participants with a low sense of quality of life more often chose negative strategies. The exception was the metaphysical aspect of the quality of life: individuals with a high intensity of this dimension more often chose some of the positive as well as negative religious strategies.

  6. Increasing Adolescent Self-Esteem: Group Strategies to Address Wellness and Process

    ERIC Educational Resources Information Center

    Mills, Bethany; McBride, Dawn Lorraine

    2016-01-01

    The authors present a therapeutic resource for school counselors who need a tangible method to integrate self-esteem strategies into their psychoeducational group programs. The focus of the group is a comprehensive wellness model based on five senses of self and how each self must be addressed to promote healthy life decisions. Special attention…

  7. "Just Because" Interventions: Engaging Hard-to-Reach Students

    ERIC Educational Resources Information Center

    Winter, Travis; Haines-Burnham, James

    2005-01-01

    This article is a description of a relationship-intensive intervention strategy for students with emotional and behavioral problems. This strategy has been used as a supplement to the point and level system to insure that all kids have positive experiences with staff and gain a sense of belonging. Students are selected by staff based on the belief…

  8. Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles.

    PubMed

    Li, Xiaokun; Zhang, Youlin; Chang, Yulei; Xue, Bin; Kong, Xianggui; Chen, Wei

    2017-06-15

    In view of the high biotoxicity and trace concentration of mercury (Hg) in environmental water, developing simple, ultra-sensitive and highly selective method capable of simultaneous determination of various Hg species has attracted wide attention. Here, we present a novel catalysis-reduction strategy for sensing inorganic and organic mercury in aqueous solution through the cooperative effect of AuNP-catalyzed properties and the formation of gold amalgam. For the first time, a new AuNP-catalyzed-organic reaction has been discovered and directly used for sensing Hg 2+ , Hg 2 2+ and CH 3 Hg + according to the change of the amount of the catalytic product induced by the deposition of Hg atoms on the surface of AuNPs. The detection limit of Hg species is 5.0pM (1 ppt), which is 3 orders of magnitude lower than the U.S. Environmental Protection Agency (EPA) limit value of Hg for drinking water (2 ppb). The high selectivity can be exceptionally achieved by the specific formation of gold amalgam. Moreover, the application for detecting tap water samples further demonstrates that this AuNP-based assay can be an excellent method used for sensing mercury at very low content in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy.

    PubMed

    Yang, Xingwang; Qian, Jing; Jiang, Ling; Yan, Yuting; Wang, Kan; Liu, Qian; Wang, Kun

    2014-04-01

    Ochratoxin A (OTA) has a number of toxic effects to both humans and animals, so developing sensitive detection method is of great importance. Herein, we describe an ultrasensitive electrochemical aptasensor for OTA based on the two-level cascaded signal amplification strategy with methylene blue (MB) as a redox indicator. In this method, capture DNA, aptamers, and reporter DNA functionalized-gold nanoparticles (GNPs) were immobilized on the electrode accordingly, where GNPs were used as the first-level signal enhancer. To receive the more sensitive response, a larger number of guanine (G)-rich DNA was bound to the GNPs' surface to provide abundant anchoring sites for MB to achieve the second-level signal amplification. By employing this novel strategy, an ~8.5 (±0.3) fold amplification in signal intensity was obtained. Afterward, OTA was added to force partial GNPs/G-rich DNA to release from the sensing interface and thus decreased the electrochemical response. An effective sensing range from 2.5pM to 2.5nM was received with an extremely low detection limit of 0.75 (±0.12) pM. This amplification strategy has the potential to be the main technology for aptamer-based electrochemical biosensor in a variety of fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Research Advances on Radiation Transfer Modeling and Inversion for Multi-Scale Land Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.

    2011-09-01

    At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.

  11. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks

    PubMed Central

    Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-01-01

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid “particle degeneracy” problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network. PMID:29267252

  12. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks.

    PubMed

    Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-12-21

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  13. Identification of Number Sense Strategies Used by Pre-Service Elementary Teachers

    ERIC Educational Resources Information Center

    Sengul, Sare

    2013-01-01

    The purpose of this study was to identify the use of number sense strategies by pre-service teachers studying at the department of elementary education. Compared to the previous one; new mathematics curriculum places more emphasis on various strategies such as estimation strategies, computational estimation strategies, rounding and mental…

  14. Differentiated Science Inquiry

    ERIC Educational Resources Information Center

    Llewellyn, Douglas

    2010-01-01

    Given that each child learns differently, it makes sense that one type of science instruction does not fit all. Best-selling author Douglas Llewellyn gives teachers standards-based strategies for differentiating inquiry-based science instruction to more effectively meet the needs of all students. This book takes the concept of inquiry-based…

  15. Tapered optical fiber sensor based on localized surface plasmon resonance.

    PubMed

    Lin, Hsing-Ying; Huang, Chen-Han; Cheng, Gia-Ling; Chen, Nan-Kuang; Chui, Hsiang-Chen

    2012-09-10

    A tapered fiber localized surface plasmon resonance (LSPR) sensor is demonstrated for refractive index sensing and label-free biochemical detection. The sensing strategy relies on the interrogation of the transmission intensity change due to the evanescent field absorption of immobilized gold nanoparticles on the tapered fiber surface. The refractive index resolution based on the interrogation of transmission intensity change is calculated to be 3.2×10⁻⁵ RIU. The feasibility of DNP-functionalized tapered fiber LSPR sensor in monitoring anti-DNP antibody with different concentrations spiked in buffer is examined. Results suggest that the compact sensor can perform qualitative and quantitative biochemical detection in real-time and thus has potential to be used in biomolecular sensing applications.

  16. Coding Strategies and Implementations of Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han

    This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.

  17. Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition.

    PubMed

    Hou, Ting; Zhang, Lianfang; Sun, Xinzhi; Li, Feng

    2016-01-15

    Herein, we reported a facile and highly sensitive biphasic photoelectrochemical (PEC) sensing strategy based on enzymatic product-mediated in situ formation of CdS quantum dots (QDs), and assayed the activity and inhibition of acetylcholinesterase (AChE) in its optimal state. Upon the hydrolysis of acetylthiocholine catalyzed by AChE, the product thiocholine stabilizes the in situ formation of CdS QDs in homogenous solution. Due to the electrostatic attraction, the resulting tertiary amino group-functionalized CdS QDs are attached to the surface of the negatively charged indium tin oxide (ITO) electrode, generating significant PEC response upon illumination in the presence of electron donors. By taking full advantage of the in situ formation of CdS QDs in homogenous solution, this strategy is capable of detecting AChE activity and inhibition in its optimal state. A directly measured detection limit of 0.01mU/mL for AChE activity is obtained, which is superior to those obtained by some fluorescence methods. The inhibition of AChE activity by aldicarb is successfully detected, and the corresponding IC50 is determined to be 13μg/L. In addition to high sensitivity and good selectivity, this strategy also exhibits additional advantages of simplicity, low cost and easy operation. To the best of our knowledge, the as-proposed strategy is the first example demonstrating the application of CdS QDs formed in situ for biphasic PEC detection of enzyme activity and inhibition. More significantly, it opens up a new horizon for the development of homogenous PEC sensing platforms, and has great potential in probing many other analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Recent progress on gas sensor based on quantum cascade lasers and hollow fiber waveguides

    NASA Astrophysics Data System (ADS)

    Liu, Ningwu; Sun, Juan; Deng, Hao; Ding, Junya; Zhang, Lei; Li, Jingsong

    2017-02-01

    Mid-infrared laser spectroscopy provides an ideal platform for trace gas sensing applications. Despite this potential, early MIR sensing applications were limited due to the size of the involved optical components, e.g. light sources and sample cells. A potential solution to this demand is the integration of hollow fiber waveguide with novelty quantum cascade lasers.Recently QCLs had great improvements in power, efficiency and wavelength range, which made the miniaturized platforms for gas sensing maintaining or even enhancing the achievable sensitivity conceivable. So that the miniaturization of QCLs and HWGs can be evolved into a mini sensor, which may be tailored to a variety of real-time and in situ applications ranging from environmental monitoring to workplace safety surveillance. In this article, we introduce QCLs and HWGs, display the applications of HWG based on QCL gas sensing and discuss future strategies for hollow fiber coupled quantum cascade laser gas sensor technology.

  19. Sensing Strategies for Disambiguating among Multiple Objects in Known Poses.

    DTIC Science & Technology

    1985-08-01

    ELEMENT. PROIECT. TASK Artificial Inteligence Laboratory AE OKUI UBR 545 Technology Square Cambridge, MA 021.39 11. CONTROLLING OFFICE NAME AND ADDRESS 12...AD-Ali65 912 SENSING STRATEGIES FOR DISAMBIGURTING MONG MULTIPLE 1/1 OBJECTS IN KNOWN POSES(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL ...or Dist Special 1 ’ MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 855 August, 1985 Sensing Strategies for

  20. Development of an Undergraduate Course--Internet-Based Instrumentation and Control

    ERIC Educational Resources Information Center

    Zhuang, Hanqi; Morgera, Salvatore D.

    2007-01-01

    The objective, strategy, and implementation details of a new undergraduate course, Internet-based Instrumentation and Control, are presented. The course has a companion laboratory that is supported by the National Science Foundation and industry. The combination is offered to senior-level undergraduate engineering students interested in sensing,…

  1. Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform.

    PubMed

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R

    2018-02-23

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (

  2. Enhanced damping for bridge cables using a self-sensing MR damper

    NASA Astrophysics Data System (ADS)

    Chen, Z. H.; Lam, K. H.; Ni, Y. Q.

    2016-08-01

    This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.

  3. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications.

    PubMed

    Zhang, Zhiyang; Wang, Han; Chen, Zhaopeng; Wang, Xiaoyan; Choo, Jaebum; Chen, Lingxin

    2018-08-30

    Plasmonic colorimetric sensors have emerged as a powerful tool in chemical and biological sensing applications due to the localized surface plasmon resonance (LSPR) extinction in the visible range. Among the plasmonic sensors, the most famous sensing mode is the "aggregation" plasmonic colorimetric sensor which is based on plasmon coupling due to nanoparticle aggregation. Herein, this review focuses on the newly-developing plasmonic colorimetric sensing mode - the etching or the growth of metal nanoparticles induces plasmon changes, namely, "non-aggregation" plasmonic colorimetric sensor. This type of sensors has attracted increasing interest because of their exciting properties of high sensitivity, multi-color changes, and applicability to make a test strip. Of particular interest, the test strip by immobilization of nanoparticles on the substrate can avoid the influence of nanoparticle auto-aggregation and increase the simplicity in storage and use. Although there are many excellent reviews available that describe the advance of plasmonic sensors, limited attention has been paid to the plasmonic colorimetric sensors based on etching or growth of metal nanoparticles. This review highlights recent progress on strategies and application of "non-aggregation" plasmonic colorimetric sensors. We also provide some personal insights into current challenges associated with "non-aggregation" plasmonic colorimetric sensors and propose future research directions. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Chemical copatterning strategies using azlactone-based block copolymers

    DOE PAGES

    Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.; ...

    2017-09-01

    Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less

  5. Chemical copatterning strategies using azlactone-based block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.

    Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less

  6. Research Advances on Radiation Transfer Modeling and Inversion for Multi-scale Land Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.

    2011-12-01

    As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.

  7. Compressive sensing based machine learning strategy for characterizing the flow around a cylinder with limited pressure measurements

    NASA Astrophysics Data System (ADS)

    Bright, Ido; Lin, Guang; Kutz, J. Nathan

    2013-12-01

    Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.

  8. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    PubMed

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  9. Self-Evaluation of PANDA-FBG Based Sensing System for Dynamic Distributed Strain and Temperature Measurement.

    PubMed

    Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi

    2017-10-12

    A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG) distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.

  10. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.

    PubMed

    Bitarafan, Mohammad H; DeCorby, Ray G

    2017-07-31

    For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities-with an air or vacuum gap between a pair of high reflectance mirrors-offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  11. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information

    PubMed Central

    Bitarafan, Mohammad H.; DeCorby, Ray G.

    2017-01-01

    For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics. PMID:28758967

  12. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis.

    PubMed

    Yang, Qian; Li, Jinhua; Wang, Xiaoyan; Peng, Hailong; Xiong, Hua; Chen, Lingxin

    2018-07-30

    One pressing concern today is to construct sensors that can withstand various disturbances for highly selective and sensitive detecting trace analytes in complicated samples. Molecularly imprinted polymers (MIPs) with tailor-made binding sites are preferred to be recognition elements in sensors for effective targets detection, and fluorescence measurement assists in highly sensitive detection and user-friendly control. Accordingly, molecular imprinting-based fluorescence sensors (MI-FL sensors) have attracted great research interest in many fields such as chemical and biological analysis. Herein, we comprehensively review the recent advances in MI-FL sensors construction and applications, giving insights on sensing principles and signal transduction mechanisms, focusing on general construction strategies for intrinsically fluorescent or nonfluorescent analytes and improvement strategies in sensing performance, particularly in sensitivity. Construction strategies are well overviewed, mainly including the traditional indirect methods of competitive binding against pre-bound fluorescent indicators, employment of fluorescent functional monomers and embedding of fluorescence substances, and novel rational designs of hierarchical architecture (core-shell/hollow and mesoporous structures), post-imprinting modification, and ratiometric fluorescence detection. Furthermore, MI-FL sensor based microdevices are discussed, involving micromotors, test strips and microfluidics, which are more portable for rapid point-of-care detection and in-field diagnosing. Finally, the current challenges and future perspectives of MI-FL sensors are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. THE ROLES OF METAL IONS IN REGULATION BY RIBOSWITCHES

    PubMed Central

    2012-01-01

    Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metalloregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs. PMID:22010271

  14. Reliable fusion of control and sensing in intelligent machines. Thesis

    NASA Technical Reports Server (NTRS)

    Mcinroy, John E.

    1991-01-01

    Although robotics research has produced a wealth of sophisticated control and sensing algorithms, very little research has been aimed at reliably combining these control and sensing strategies so that a specific task can be executed. To improve the reliability of robotic systems, analytic techniques are developed for calculating the probability that a particular combination of control and sensing algorithms will satisfy the required specifications. The probability can then be used to assess the reliability of the design. An entropy formulation is first used to quickly eliminate designs not capable of meeting the specifications. Next, a framework for analyzing reliability based on the first order second moment methods of structural engineering is proposed. To ensure performance over an interval of time, lower bounds on the reliability of meeting a set of quadratic specifications with a Gaussian discrete time invariant control system are derived. A case study analyzing visual positioning in robotic system is considered. The reliability of meeting timing and positioning specifications in the presence of camera pixel truncation, forward and inverse kinematic errors, and Gaussian joint measurement noise is determined. This information is used to select a visual sensing strategy, a kinematic algorithm, and a discrete compensator capable of accomplishing the desired task. Simulation results using PUMA 560 kinematic and dynamic characteristics are presented.

  15. Remote sensing of global croplands for food security

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Biradar, Chandrashekhar M.; Turral, Hugh; Lyon, John G.

    2009-01-01

    Increases in populations have created an increasing demand for food crops while increases in demand for biofuels have created an increase in demand for fuel crops. What has not increased is the amount of croplands and their productivity. These and many other factors such as decreasing water resources in a changing climate have created a crisis like situation in global food security. Decision makers in these situations need accurate information based on science. Remote Sensing of Global Croplands for Food Security provides a comprehensive knowledge base in use of satellite sensor-based maps and statistics that can be used to develop strategies for croplands (irrigated and rainfed) and their water use for food security.

  16. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    PubMed Central

    Wang, Guizhou; Liu, Jianbo; He, Guojin

    2013-01-01

    This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808

  17. So, Here's the Story

    ERIC Educational Resources Information Center

    Columba, Lynn

    2013-01-01

    Mathematics is about reasoning, patterns, and making sense of things. Children's literature provides a powerful opportunity to foster unique experiences in mathematics learning. Storybooks, thinking strategies, and manipulatives offer a winning combination for mastering multiplication facts based on conceptual ideas and relationships. The most…

  18. A Common Sense Approach to Strategy.

    DTIC Science & Technology

    1987-05-01

    the war in his business ventures. His capacity for rational thought simply carried over into the military arena. It allowed him to effectively glean...are intelligence, situational awareness. and a decision process based on logic. Outstanding inteligence methods and exceptional intellect gave Forrest

  19. Joint Workshop on New Technologies for Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Elphic, Rick C. (Editor); Mckay, David S. (Editor)

    1992-01-01

    The workshop included talks on NASA's and DOE's role in Space Exploration Initiative, lunar geology, lunar resources, the strategy for the first lunar outpost, and an industry perspective on lunar resources. The sessions focused on four major aspects of lunar resource assessment: (1) Earth-based remote sensing of the Moon; (2) lunar orbital remote sensing; (3) lunar lander and roving investigations; and (4) geophysical and engineering consideration. The workshop ended with a spirited discussion of a number of issues related to resource assessment.

  20. Strategies of Number Sense in Pre-Service Secondary Mathematics Teachers

    ERIC Educational Resources Information Center

    Almeida, Rut; Bruno, Alicia; Perdomo-Díaz, Josefa

    2016-01-01

    This paper presents some results of an investigation on the number sense of a group of pre-service secondary teachers from Spain. The objective of this research was to analyze students' use of strategies associated to number sense and compare them with those obtained in a previous study with pre-service primary teachers in Taiwan, (Yang, Reys…

  1. Optimisation of sensing time and transmission time in cognitive radio-based smart grid networks

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Fu, Yuli; Yang, Junjie

    2016-07-01

    Cognitive radio (CR)-based smart grid (SG) networks have been widely recognised as emerging communication paradigms in power grids. However, a sufficient spectrum resource and reliability are two major challenges for real-time applications in CR-based SG networks. In this article, we study the traffic data collection problem. Based on the two-stage power pricing model, the power price is associated with the efficient received traffic data in a metre data management system (MDMS). In order to minimise the system power price, a wideband hybrid access strategy is proposed and analysed, to share the spectrum between the SG nodes and CR networks. The sensing time and transmission time are jointly optimised, while both the interference to primary users and the spectrum opportunity loss of secondary users are considered. Two algorithms are proposed to solve the joint optimisation problem. Simulation results show that the proposed joint optimisation algorithms outperform the fixed parameters (sensing time and transmission time) algorithms, and the power cost is reduced efficiently.

  2. Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less

  3. Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform

    DOE PAGES

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.; ...

    2018-01-18

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less

  4. Development of Ion Chemosensors Based on Porphyrin Analogues.

    PubMed

    Ding, Yubin; Zhu, Wei-Hong; Xie, Yongshu

    2017-02-22

    Sensing of metal ions and anions is of great importance because of their widespread distribution in environmental systems and biological processes. Colorimetric and fluorescent chemosensors based on organic molecular species have been demonstrated to be effective for the detection of various ions and possess the significant advantages of low cost, high sensitivity, and convenient implementation. Of the available classes of organic molecules, porphyrin analogues possess inherently many advantageous features, making them suitable for the design of ion chemosensors, with the targeted sensing behavior achieved and easily modulated based on their following characteristics: (1) NH moieties properly disposed for binding of anions through cooperative hydrogen-bonding interactions; (2) multiple pyrrolic N atoms or other heteroatoms for selectively chelating metal ions; (3) variability of macrocycle size and peripheral substitution for modulation of ion selectivity and sensitivity; and (4) tunable near-infrared emission and good biocompatibility. In this Review, design strategies, sensing mechanisms, and sensing performance of ion chemosensors based on porphyrin analogues are described by use of extensive examples. Ion chemosensors based on normal porphyrins and linear oligopyrroles are also briefly described. This Review provides valuable information for researchers of related areas and thus may inspire the development of more practical and effective approaches for designing high-performance ion chemosensors based on porphyrin analogues and other relevant compounds.

  5. Designer cells programming quorum-sensing interference with microbes.

    PubMed

    Sedlmayer, Ferdinand; Hell, Dennis; Müller, Marius; Ausländer, David; Fussenegger, Martin

    2018-05-08

    Quorum sensing is a promising target for next-generation anti-infectives designed to address evolving bacterial drug resistance. The autoinducer-2 (AI-2) is a key quorum-sensing signal molecule which regulates bacterial group behaviors and is recognized by many Gram-negative and Gram-positive bacteria. Here we report a synthetic mammalian cell-based microbial-control device that detects microbial chemotactic formyl peptides through a formyl peptide sensor (FPS) and responds by releasing AI-2. The microbial-control device was designed by rewiring an artificial receptor-based signaling cascade to a modular biosynthetic AI-2 production platform. Mammalian cells equipped with the microbial-control gene circuit detect formyl peptides secreted from various microbes with high sensitivity and respond with robust AI-2 production, resulting in control of quorum sensing-related behavior of pathogenic Vibrio harveyi and attenuation of biofilm formation by the human pathogen Candida albicans. The ability to manipulate mixed microbial populations through fine-tuning of AI-2 levels may provide opportunities for future anti-infective strategies.

  6. A parallel method of atmospheric correction for multispectral high spatial resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin

    2018-03-01

    The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.

  7. How a gender gap in belonging contributes to the gender gap in physics participation

    NASA Astrophysics Data System (ADS)

    Stout, Jane G.; Ito, Tiffany A.; Finkelstein, Noah D.; Pollock, Steven J.

    2013-01-01

    A great deal of research indicates that feeling a secure sense of belonging in academic settings is critical to students' achievement. In the current work, we present data collected over multiple semesters of a calculus-based introductory physics class indicating that women feel a lower sense of belonging than men in physics. This finding is important because our data also indicate that having a strong sense of belonging in physics positively predicts the degree to which all students see the value of physics in their daily life (an outcome that predicts motivation and persistence in achievement settings) as well as performance on exams in the course. We identify one potential antecedent of women's relatively lower sense of belonging in physics, namely, negative cultural stereotypes about women's inferior ability in physics compared to men. We then discuss pedagogical strategies that might be employed to enhance women's sense of belonging in physics.

  8. Strategies for Improving the Performance of Sensors Based on Organic Field-Effect Transistors.

    PubMed

    Wu, Xiaohan; Mao, Shun; Chen, Junhong; Huang, Jia

    2018-04-01

    Organic semiconductors (OSCs) have been extensively studied as sensing channel materials in field-effect transistors due to their unique charge transport properties. Stimulation caused by its environmental conditions can readily change the charge-carrier density and mobility of OSCs. Organic field-effect transistors (OFETs) can act as both signal transducers and signal amplifiers, which greatly simplifies the device structure. Over the past decades, various sensors based on OFETs have been developed, including physical sensors, chemical sensors, biosensors, and integrated sensor arrays with advanced functionalities. However, the performance of OFET-based sensors still needs to be improved to meet the requirements from various practical applications, such as high sensitivity, high selectivity, and rapid response speed. Tailoring molecular structures and micro/nanofilm structures of OSCs is a vital strategy for achieving better sensing performance. Modification of the dielectric layer and the semiconductor/dielectric interface is another approach for improving the sensor performance. Moreover, advanced sensory functionalities have been achieved by developing integrated device arrays. Here, a brief review of strategies used for improving the performance of OFET sensors is presented, which is expected to inspire and provide guidance for the design of future OFET sensors for various specific and practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fuzzy control of burnout of multilayer ceramic actuators

    NASA Astrophysics Data System (ADS)

    Ling, Alice V.; Voss, David; Christodoulou, Leo

    1996-08-01

    To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.

  10. Remote sensing based crop type mapping and evapotranspiration estimates at the farm level in arid regions of the globe

    NASA Astrophysics Data System (ADS)

    Ozdogan, M.; Serrat-Capdevila, A.; Anderson, M. C.

    2017-12-01

    Despite increasing scarcity of freshwater resources, there is dearth of spatially explicit information on irrigation water consumption through evapotranspiration, particularly in semi-arid and arid geographies. Remote sensing, either alone or in combination with ground surveys, is increasingly being used for irrigation water management by quantifying evaporative losses at the farm level. Increased availability of observations, sophisticated algorithms, and access to cloud-based computing is also helping this effort. This presentation will focus on crop-specific evapotranspiration estimates at the farm level derived from remote sensing in a number of water-scarce regions of the world. The work is part of a larger effort to quantify irrigation water use and improve use efficiencies associated with several World Bank projects. Examples will be drawn from India, where groundwater based irrigation withdrawals are monitored with the help of crop type mapping and evapotranspiration estimates from remote sensing. Another example will be provided from a northern irrigation district in Mexico, where remote sensing is used for detailed water accounting at the farm level. These locations exemplify the success stories in irrigation water management with the help of remote sensing with the hope that spatially disaggregated information on evapotranspiration can be used as inputs for various water management decisions as well as for better water allocation strategies in many other water scarce regions.

  11. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices.

    PubMed

    Chen, Guan-Hua; Chen, Wei-Yu; Yen, Yu-Chun; Wang, Chia-Wei; Chang, Huan-Tsung; Chen, Chien-Fu

    2014-07-15

    An on-field colorimetric sensing strategy employing gold nanoparticles (AuNPs) and a paper-based analytical platform was investigated for mercury ion (Hg(2+)) detection at water sources. By utilizing thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry, label-free detection oligonucleotide sequences were attached to unmodified gold nanoparticles to provide rapid mercury ion sensing without complicated and time-consuming thiolated or other costly labeled probe preparation processes. Not only is this strategy's sensing mechanism specific toward Hg(2+), rather than other metal ions, but also the conformational change in the detection oligonucleotide sequences introduces different degrees of AuNP aggregation that causes the color of AuNPs to exhibit a mixture variance. To eliminate the use of sophisticated equipment and minimize the power requirement for data analysis and transmission, the color variance of multiple detection results were transferred and concentrated on cellulose-based paper analytical devices, and the data were subsequently transmitted for the readout and storage of results using cloud computing via a smartphone. As a result, a detection limit of 50 nM for Hg(2+) spiked pond and river water could be achieved. Furthermore, multiple tests could be performed simultaneously with a 40 min turnaround time. These results suggest that the proposed platform possesses the capability for sensitive and high-throughput on-site mercury pollution monitoring in resource-constrained settings.

  12. An optimal sample data usage strategy to minimize overfitting and underfitting effects in regression tree models based on remotely-sensed data

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Picotte, Joshua J.; Howard, Danny; Smith, Kelcy; Nelson, Kurtis

    2016-01-01

    Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data) may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI) were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD) between the predicted and actual NDVI (scaled NDVI, value from 0–200) and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MADtraining = 2.5 and MADtesting = 2.4), which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.

  13. Fog-Based Two-Phase Event Monitoring and Data Gathering in Vehicular Sensor Networks

    PubMed Central

    Yang, Fan; Su, Jinsong; Zhou, Qifeng; Wang, Tian; Zhang, Lu; Xu, Yifan

    2017-01-01

    Vehicular nodes are equipped with more and more sensing units, and a large amount of sensing data is generated. Recently, more and more research considers cooperative urban sensing as the heart of intelligent and green city traffic management. The key components of the platform will be a combination of a pervasive vehicular sensing system, as well as a central control and analysis system, where data-gathering is a fundamental component. However, the data-gathering and monitoring are also challenging issues in vehicular sensor networks because of the large amount of data and the dynamic nature of the network. In this paper, we propose an efficient continuous event-monitoring and data-gathering framework based on fog nodes in vehicular sensor networks. A fog-based two-level threshold strategy is adopted to suppress unnecessary data upload and transmissions. In the monitoring phase, nodes sense the environment in low cost sensing mode and generate sensed data. When the probability of the event is high and exceeds some threshold, nodes transfer to the event-checking phase, and some nodes would be selected to transfer to the deep sensing mode to generate more accurate data of the environment. Furthermore, it adaptively adjusts the threshold to upload a suitable amount of data for decision making, while at the same time suppressing unnecessary message transmissions. Simulation results showed that the proposed scheme could reduce more than 84 percent of the data transmissions compared with other existing algorithms, while it detects the events and gathers the event data. PMID:29286320

  14. ADHD and math - The differential effect on calculation and estimation.

    PubMed

    Ganor-Stern, Dana; Steinhorn, Ofir

    2018-05-31

    Adults with ADHD were compared to controls when solving multiplication problems exactly and when estimating the results of multidigit multiplication problems relative to reference numbers. The ADHD participants were slower than controls in the exact calculation and in the estimation tasks, but not less accurate. The ADHD participants were similar to controls in showing enhanced accuracy and speed for smaller problem sizes, for trials in which the reference numbers were smaller (vs. larger) than the exact answers and for reference numbers that were far (vs. close) from the exact answer. The two groups similarly used the approximated calculation and the sense of magnitude strategies. They differed however in strategy execution, mainly of the approximated calculation strategy, which requires working memory resources. The increase in reaction time associated with using the approximated calculation strategy was larger for the ADHD compared to the control participants. Thus, ADHD seems to selectively impair calculation processes in estimation tasks that rely on working memory, but it does not hamper estimation skills that are based on sense of magnitude. The educational implications of these findings are discussed. Copyright © 2018. Published by Elsevier B.V.

  15. Colorimetric and Fluorescent Dual Mode Sensing of Alcoholic Strength in Spirit Samples with Stimuli-Responsive Infinite Coordination Polymers.

    PubMed

    Deng, Jingjing; Ma, Wenjie; Yu, Ping; Mao, Lanqun

    2015-07-07

    This study demonstrates a new strategy for colorimetric and fluorescent dual mode sensing of alcoholic strength (AS) in spirit samples based on stimuli-responsive infinite coordination polymers (ICPs). The ICP supramolecular network is prepared with 1,4-bis(imidazol-1-ylmethyl)benzene (bix) as the ligand and Zn(2+) as the central metal ion in ethanol, in which rhodamine B (RhB) is encapsulated through self-adaptive chemistry. In pure ethanol solvent, the as-formed RhB/Zn(bix) is well dispersed and quite stable. However, the addition of water into the ethanol dispersion of RhB/Zn(bix) destroys Zn(bix) network structure, resulting in the release of RhB from ICP into the solvent. As a consequence, the solvent displays the color of released RhB and, at the meantime, turns on the fluorescence of RhB, which constitutes a new mechanism for colorimetric and fluorescent dual mode sensing of AS in commercial spirit samples. With the method developed here, we could distinguish the AS of different commercial spirit samples by the naked eye within a wide linear range from 20 to 100% vol and by monitoring the increase of fluorescent intensity of the released RhB. This study not only offers a new method for on-spot visible detection of AS in commercial spirit samples, but also provides a strategy for designing dual mode sensing mechanisms for different analytical purposes based on novel stimuli-responsive materials.

  16. On Searching Available Channels with Asynchronous MAC-Layer Spectrum Sensing

    NASA Astrophysics Data System (ADS)

    Jiang, Chunxiao; Ma, Xin; Chen, Canfeng; Ma, Jian; Ren, Yong

    Dynamic spectrum access has become a focal issue recently, in which identifying the available spectrum plays a rather important role. Lots of work has been done concerning secondary user (SU) synchronously accessing primary user's (PU's) network. However, on one hand, SU may have no idea about PU's communication protocols; on the other, it is possible that communications among PU are not based on synchronous scheme at all. In order to address such problems, this paper advances a strategy for SU to search available spectrums with asynchronous MAC-layer sensing. With this method, SUs need not know the communication mechanisms in PU's network when dynamically accessing. We will focus on four aspects: 1) strategy for searching available channels; 2) vacating strategy when PUs come back; 3) estimation of channel parameters; 4) impact of SUs' interference on PU's data rate. The simulations show that our search strategy not only can achieve nearly 50% less interference probability than equal allocation of total search time, but also well adapts to time-varying channels. Moreover, access by our strategies can attain 150% more access time than random access. The moment matching estimator shows good performance in estimating and tracing time-varying channels.

  17. Reactive underwater object inspection based on artificial electric sense.

    PubMed

    Lebastard, Vincent; Boyer, Frédéric; Lanneau, Sylvain

    2016-07-26

    Weakly electric fish can perform complex cognitive tasks based on extracting information from blurry electric images projected from their immediate environment onto their electro-sensitive skin. In particular they can be trained to recognize the intrinsic properties of objects such as their shape, size and electric nature. They do this by means of novel perceptual strategies that exploit the relations between the physics of a self-generated electric field, their body morphology and the ability to perform specific movement termed probing motor acts (PMAs). In this article we artificially reproduce and combine these PMAs to build an autonomous control strategy that allows an artificial electric sensor to find electrically contrasted objects, and to orbit around them based on a minimum set of measurements and simple reactive feedback control laws of the probe's motion. The approach does not require any simulation models and could be implemented on an autonomous underwater vehicle (AUV) equipped with artificial electric sense. The AUV has only to satisfy certain simple geometric properties, such as bi-laterally (left/right) symmetrical electrodes and possess a reasonably high aspect (length/width) ratio.

  18. Amino Acid Sensing in Skeletal Muscle

    PubMed Central

    Moro, Tatiana; Ebert, Scott M.; Adams, Christopher M.; Rasmussen, Blake B.

    2016-01-01

    Aging impairs skeletal muscle protein synthesis, leading to muscle weakness and atrophy. However, the underlying molecular mechanisms remain poorly understood. Here, we review evidence that mTORC1- and ATF4-mediated amino acid sensing pathways, triggered by impaired amino acid delivery to aged skeletal muscle, may play important roles in skeletal muscle aging. Interventions that alleviate age-related impairments in muscle protein synthesis, strength and/or muscle mass appear to do so by reversing age-related changes in skeletal muscle amino acid delivery, mTORC1 activity and/or ATF4 activity. An improved understanding of the mechanisms and roles of amino acid sensing pathways in skeletal muscle may lead to evidence-based strategies to attenuate sarcopenia. PMID:27444066

  19. Synthesizing Existing CSMA and TDMA Based MAC Protocols for VANETs

    PubMed Central

    Huang, Jiawei; Li, Qi; Zhong, Shaohua; Liu, Lianhai; Zhong, Ping; Wang, Jianxin; Ye, Jin

    2017-01-01

    Many Carrier Sense Multiple Access (CSMA) and Time Division Multiple Access (TDMA) based medium access control (MAC) protocols for vehicular ad hoc networks (VANETs) have been proposed recently. Contrary to the common perception that they are competitors, we argue that the underlying strategies used in these MAC protocols are complementary. Based on this insight, we design CTMAC, a MAC protocol that synthesizes existing strategies; namely, random accessing channel (used in CSMA-style protocols) and arbitral reserving channel (used in TDMA-based protocols). CTMAC swiftly changes its strategy according to the vehicle density, and its performance is better than the state-of-the-art protocols. We evaluate CTMAC using at-scale simulations. Our results show that CTMAC reduces the channel completion time and increases the network goodput by 45% for a wide range of application workloads and network settings. PMID:28208590

  20. Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells

    NASA Astrophysics Data System (ADS)

    Wu, Yafeng; Han, Jianyu; Xue, Peng; Xu, Rong; Kang, Yuejun

    2015-01-01

    MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of them is able to monitor miRNA levels expressed in living cancer cells in a real-time fashion. Some fluorescennt biosensors developed recently from carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO), and carbon nanoparticles, have been successfully used for assaying miRNA in vitro; however the preparation processes are often expensive, complicated and time-consuming, which have motivated the research on other substitute and novel materials. Herein we present a novel sensing strategy based on peptide nucleic acid (PNA) probes labeled with fluorophores and conjugated with an NMOF vehicle to monitor multiplexed miRNAs in living cancer cells. The NMOF works as a fluorescence quencher of the labelled PNA that is firmly bound with the metal center. In the presence of a target miRNA, PNA is hybridized and released from the NMOF leading to the recovery of fluorescence. This miRNA sensor not only enables the quantitative and highly specific detection of multiplexed miRNAs in living cancer cells, but it also allows the precise and in situ monitoring of the spatiotemporal changes of miRNA expression.MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of them is able to monitor miRNA levels expressed in living cancer cells in a real-time fashion. Some fluorescennt biosensors developed recently from carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO), and carbon nanoparticles, have been successfully used for assaying miRNA in vitro; however the preparation processes are often expensive, complicated and time-consuming, which have motivated the research on other substitute and novel materials. Herein we present a novel sensing strategy based on peptide nucleic acid (PNA) probes labeled with fluorophores and conjugated with an NMOF vehicle to monitor multiplexed miRNAs in living cancer cells. The NMOF works as a fluorescence quencher of the labelled PNA that is firmly bound with the metal center. In the presence of a target miRNA, PNA is hybridized and released from the NMOF leading to the recovery of fluorescence. This miRNA sensor not only enables the quantitative and highly specific detection of multiplexed miRNAs in living cancer cells, but it also allows the precise and in situ monitoring of the spatiotemporal changes of miRNA expression. Electronic supplementary information (ESI) available: Extra figures and tables. See DOI: 10.1039/c4nr05447d

  1. Team Science Approach to Developing Consensus on Research Good Practices for Practice-Based Research Networks: A Case Study.

    PubMed

    Campbell-Voytal, Kimberly; Daly, Jeanette M; Nagykaldi, Zsolt J; Aspy, Cheryl B; Dolor, Rowena J; Fagnan, Lyle J; Levy, Barcey T; Palac, Hannah L; Michaels, LeAnn; Patterson, V Beth; Kano, Miria; Smith, Paul D; Sussman, Andrew L; Williams, Robert; Sterling, Pamela; O'Beirne, Maeve; Neale, Anne Victoria

    2015-12-01

    Using peer learning strategies, seven experienced PBRNs working in collaborative teams articulated procedures for PBRN Research Good Practices (PRGPs). The PRGPs is a PBRN-specific resource to facilitate PBRN management and staff training, to promote adherence to study protocols, and to increase validity and generalizability of study findings. This paper describes the team science processes which culminated in the PRGPs. Skilled facilitators used team science strategies and methods from the Technology of Participation (ToP®), and the Consensus Workshop Method to support teams to codify diverse research expertise in practice-based research. The participatory nature of "sense-making" moved through identifiable stages. Lessons learned include (1) team input into the scope of the final outcome proved vital to project relevance; (2) PBRNs with diverse domains of research expertise contributed broad knowledge on each topic; and (3) ToP® structured facilitation techniques were critical for establishing trust and clarifying the "sense-making" process. © 2015 Wiley Periodicals, Inc.

  2. Simple diazonium chemistry to develop specific gene sensing platforms.

    PubMed

    Revenga-Parra, M; García-Mendiola, T; González-Costas, J; González-Romero, E; Marín, A García; Pau, J L; Pariente, F; Lorenzo, E

    2014-02-27

    A simple strategy for covalent immobilizing DNA sequences, based on the formation of stable diazonized conducting platforms, is described. The electrochemical reduction of 4-nitrobenzenediazonium salt onto screen-printed carbon electrodes (SPCE) in aqueous media gives rise to terminal grafted amino groups. The presence of primary aromatic amines allows the formation of diazonium cations capable to react with the amines present at the DNA capture probe. As a comparison a second strategy based on the binding of aminated DNA capture probes to the developed diazonized conducting platforms through a crosslinking agent was also employed. The resulting DNA sensing platforms were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and spectroscopic ellipsometry. The hybridization event with the complementary sequence was detected using hexaamineruthenium (III) chloride as electrochemical indicator. Finally, they were applied to the analysis of a 145-bp sequence from the human gene MRP3, reaching a detection limit of 210 pg μL(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A Dispersion-Dominated Chromogenic Strategy for Colorimetric Sensing of Glutathione at the Nanomolar Level Using Gold Nanoparticles.

    PubMed

    Xianyu, Yunlei; Xie, Yangzhouyun; Wang, Nuoxin; Wang, Zhuo; Jiang, Xingyu

    2015-11-04

    A dispersion-dominated chromogenic strategy for glutathione sensing is developed. Glutathione prevents the aggregation of arginine-modified gold nanoparticles via mercury-thiol interaction, which allows for glutathione sensing at the nanomolar level (10.9 × 10(-9) m) with facile operation and naked-eye readout. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of fluorescent probes based on protection-deprotection of the key functional groups for biological imaging.

    PubMed

    Tang, Yonghe; Lee, Dayoung; Wang, Jiaoliang; Li, Guanhan; Yu, Jinghua; Lin, Weiying; Yoon, Juyoung

    2015-08-07

    Recently, the strategy of protection-deprotection of functional groups has been widely employed to design fluorescent probes, as the protection-deprotection of functional groups often induces a marked change in electronic properties. Significant advances have been made in the development of analyte-responsive fluorescent probes based on the protection-deprotection strategy. In this tutorial review, we highlight the representative examples of small-molecule based fluorescent probes for bioimaging, which are operated via the protection-deprotection of key functional groups such as aldehyde, hydroxyl, and amino functional groups reported from 2010 to 2014. The discussion includes the general protection-deprotection methods for aldehyde, hydroxyl, or amino groups, as well as the design strategies, sensing mechanisms, and deprotection modes of the representative fluorescent imaging probes applied to bio-imaging.

  5. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    PubMed Central

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  6. Regular Deployment of Wireless Sensors to Achieve Connectivity and Information Coverage

    PubMed Central

    Cheng, Wei; Li, Yong; Jiang, Yi; Yin, Xipeng

    2016-01-01

    Coverage and connectivity are two of the most critical research subjects in WSNs, while regular deterministic deployment is an important deployment strategy and results in some pattern-based lattice WSNs. Some studies of optimal regular deployment for generic values of rc/rs were shown recently. However, most of these deployments are subject to a disk sensing model, and cannot take advantage of data fusion. Meanwhile some other studies adapt detection techniques and data fusion to sensing coverage to enhance the deployment scheme. In this paper, we provide some results on optimal regular deployment patterns to achieve information coverage and connectivity as a variety of rc/rs, which are all based on data fusion by sensor collaboration, and propose a novel data fusion strategy for deployment patterns. At first the relation between variety of rc/rs and density of sensors needed to achieve information coverage and connectivity is derived in closed form for regular pattern-based lattice WSNs. Then a dual triangular pattern deployment based on our novel data fusion strategy is proposed, which can utilize collaborative data fusion more efficiently. The strip-based deployment is also extended to a new pattern to achieve information coverage and connectivity, and its characteristics are deduced in closed form. Some discussions and simulations are given to show the efficiency of all deployment patterns, including previous patterns and the proposed patterns, to help developers make more impactful WSN deployment decisions. PMID:27529246

  7. Condition assessment of reinforced concrete beams using dynamic data measured with distributed long-gage macro-strain sensors

    NASA Astrophysics Data System (ADS)

    Hong, W.; Wu, Z. S.; Yang, C. Q.; Wan, C. F.; Wu, G.; Zhang, Y. F.

    2012-06-01

    A new condition assessment strategy of reinforced concrete (RC) beams is proposed in this paper. This strategy is based on frequency analysis of the dynamic data measured with distributed long-gage macro-stain sensors. After extracting modal macro-strain, the reference-based damage index is theoretically deducted in which the variations of modal flexural rigidity and modal neutral axis height are considered. The reference-free damage index is also presented for comparison. Both finite element simulation and experiment investigations were carried out to verify the proposed method. The manufacturing procedure of long-gage fiber Bragg grating (FBG) sensor chosen in the experiment is firstly presented, followed by an experimental study on the essential sensing properties of the long-gage macro-strain sensors and the results verify the excellent sensing properties, in particular the measurement accuracy and dynamic measuring capacity. Modal analysis results of a concrete beam show that the damage appearing in the beam can be well identified by the damage index while the vibration testing results of a RC beam show that the proposed method can not only capture small crack initiation but its propagation. It can be concluded that distributed long-gage dynamic macro-strain sensing technique has great potential for the condition assessment of RC structures subjected to dynamic loading.

  8. A novel colorimetric aptasensor for ultrasensitive detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles.

    PubMed

    Abnous, Khalil; Danesh, Noor Mohammad; Ramezani, Mohammad; Taghdisi, Seyed Mohammad; Emrani, Ahmad Sarreshtehdar

    2018-08-22

    Herein, a novel colorimetric aptasensor was introduced for detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles (AuNPs) and the catalytic activity of the surfaces of AuNPs. Simplicity and detection of cocaine in a short time (only 35 min) are some of the unique features of the proposed sensing strategy. In the presence of cocaine, triple-fragment aptamer (TFA) forms on the surfaces of AuNPs, leading to a significant decrease of the catalytic activity of AuNPs and the color of samples remains yellow. In the absence of target, TFA does not form on the surfaces of AuNPs and 4-Nitrophenol, as a colorimetric agent, has more access to the surfaces of AuNPs, resulting in the reduction of 4-Nitrophenol and the color of sample changes from yellow to colorless. The sensing strategy showed good specificity, a limit of detection (LOD) of 440 pM and a dynamic range over 2-100 nM. The sensing method was also successfully applied to detect cocaine in spiked human serum samples with recovery of 94.71-98.63%. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Yeast-based biosensors: design and applications.

    PubMed

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  10. An organophosphonate strategy for functionalizing silicon photonic biosensors

    PubMed Central

    Shang, Jing; Cheng, Fang; Dubey, Manish; Kaplan, Justin M.; Rawal, Meghana; Jiang, Xi; Newburg, David S.; Sullivan, Philip A.; Andrade, Rodrigo B.; Ratner, Daniel M.

    2012-01-01

    Silicon photonic microring resonators have established their potential for label-free and low-cost biosensing applications. However, the long-term performance of this optical sensing platform requires robust surface modification and biofunctionalization. Herein, we demonstrate a conjugation strategy based on an organophosphonate surface coating and vinyl sulfone linker to biofunctionalize silicon resonators for biomolecular sensing. To validate this method, a series of glycans, including carbohydrates and glycoconjugates, were immobilized on divinyl sulfone (DVS)/organophosphonate-modified microrings and used to characterize carbohydrate-protein and norovirus particle interactions. This biofunctional platform was able to orthogonally detect multiple specific carbohydrate-protein interactions simultaneously. Additionally, the platform was capable of reproducible binding after multiple regenerations by high-salt, high-pH or low-pH solutions and after 1-month storage in ambient conditions. This remarkable stability and durability of the organophosphonate immobilization strategy will facilitate the application of silicon microring resonators in various sensing conditions, prolong their lifetime, and minimize the cost for storage and delivery; these characteristics are requisite for developing biosensors for point-of-care and distributed diagnostics and other biomedical applications. In addition, the platform demonstrated its ability to characterize carbohydrate-mediated host-virus interactions, providing a facile method for discovering new anti-viral agents to prevent infectious disease. PMID:22220731

  11. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures.

    PubMed

    Zang, Yang; Lei, Jianping; Ju, Huangxian

    2017-10-15

    Photoelectrochemical (PEC) biosensing is a popular research hotspot that has attracted substantial attention from chemists and biologists due to its low cost and desirable sensitivity. The PEC biosensing mainly refers to the influence of the interaction between recognition element and analyte on photocurrent signal, which involves the charge and energy transfer of PEC reaction between electron donor/acceptor and photoactive material upon light irradiation. Understanding the fundamentals of PEC strategy benefits the development of next-generation PEC sensors. However, the research on detection mechanism of PEC sensors is in the initial stage and need to be further exploited. Thus, with a particular focus on the signal transduction formats, this review highlights the novel concept on PEC sensing strategies, and categorizes the recent illustrative examples into three signaling principles: reactant determinant, electron transfer and energy transfer, providing the comprehensive design guidelines for researchers to develop more advanced PEC sensors. The prospects and challenges for future work are also included. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.

    PubMed

    Wang, Chaoguang; Wu, Xuezhong; Dong, Peitao; Chen, Jian; Xiao, Rui

    2016-12-15

    Paraquat (PQ) pollutions are ultra-toxic to human beings and hard to be decomposed in the environment, thus requiring an on-site detection strategy. Herein, we developed a robust and rapid PQ sensing strategy based on the surface-enhanced Raman scattering (SERS) technique. A hybrid SERS substrate was prepared by grafting the Au@Ag core-shell nanoparticles (NPs) on the Au film over slightly etched nanoparticles (Au FOSEN). Hotspots were engineered at the junctions as indicated by the finite difference time domain calculation. SERS performance of the hybrid substrate was explored using p-ATP as the Raman probe. The hybrid substrate gives higher enhancement factor comparing to either the Au FOSEN substrate or the Au@Ag core-shell NPs, and exhibits excellent reproducibility, homogeneity and stability. The proposed SERS substrates were prepared in batches for the practical PQ sensing. The total analysis time for a single sample, including the pre-treatment and measurement, was less than 5min with a PQ detection limit of 10nM. Peak intensities of the SERS signal were plotted as a function of the PQ concentrations to calibrate the sensitivity by fitting the Hill's equation. The plotted calibration curve showed a good log-log linearity with the coefficient of determination of 0.98. The selectivity of the sensing proposal was based on the "finger print" Raman spectra of the analyte. The proposed substrate exhibited good recovery when it applied to real water samples, including lab tap water, bottled water, and commercially obtained apple juice and grape juice. This SERS-based PQ detection method is simple, rapid, sensitive and selective, which shows great potential in pesticide residue and additives abuse monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Estimation of crop water requirements using remote sensing for operational water resources management

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  14. A Framework for Wetlands Research: Development of a Wetlands Data Base

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Issues related to the assembly of a comprehensive global wetlands data base are presented. A strategy to collect relevant data for wetland ecosystems through remote sensing inventories of wetland distribution was discussed. Elements of a research program on biogenic gas fluxes were identified. The major wetland parameters and their functional importance to material exchange mechanisms are summarized.

  15. Location and Modality Effects in Online Dating: Rich Modality Profile and Location-Based Information Cues Increase Social Presence, While Moderating the Impact of Uncertainty Reduction Strategy.

    PubMed

    Jung, Soyoung; Roh, Soojin; Yang, Hyun; Biocca, Frank

    2017-09-01

    This study investigates how different interface modality features of online dating sites, such as location awareness cues and modality of profiles, affect the sense of social presence of a prospective date. We also examined how various user behaviors aimed at reducing uncertainty about online interactions affect social presence perceptions and are affected by the user interface features. Male users felt a greater sense of social presence when exposed to both location and accessibility cues (geographical proximity) and a richer medium (video profiles). Viewing a richer medium significantly increased the sense of social presence among female participants whereas location-based information sharing features did not directly affect their social presence perception. Augmented social presence, as a mediator, contributed to users' greater intention to meet potential dating partners in a face-to-face setting and to buy paid memberships on online dating sites.

  16. Wireless gas detection with a smartphone via rf communication

    PubMed Central

    Azzarelli, Joseph M.; Mirica, Katherine A.; Ravnsbæk, Jens B.; Swager, Timothy M.

    2014-01-01

    Chemical sensing is of critical importance to human health, safety, and security, yet it is not broadly implemented because existing sensors often require trained personnel, expensive and bulky equipment, and have large power requirements. This study reports the development of a smartphone-based sensing strategy that employs chemiresponsive nanomaterials integrated into the circuitry of commercial near-field communication tags to achieve non-line-of-sight, portable, and inexpensive detection and discrimination of gas-phase chemicals (e.g., ammonia, hydrogen peroxide, cyclohexanone, and water) at part-per-thousand and part-per-million concentrations. PMID:25489066

  17. Chinese Students Making Sense of Problem-Based Learning and Western Teaching--Pitfalls and Coping Strategies

    ERIC Educational Resources Information Center

    Gram, Malene; Jaeger, Kirsten; Liu, Junyang; Qing, Li; Wu, Xiangying

    2013-01-01

    Culturally different imaginations of student and teacher roles, incongruent perceptions of academic standards, and diverging conceptualizations of learning may cause "difficult times" for institutions and individual learners involved in international education. Universities practicing alternative approaches to teaching and learning, for…

  18. Sensible and Crazy Numbers

    ERIC Educational Resources Information Center

    Russo, James

    2017-01-01

    Using a game-based context and concentrating explicitly on language, students in the early years are able to make sense about place value amid the vagaries of the English language in naming numbers. This conceptual approach to understanding place value allows students to further develop number strategies beyond counting by ones.

  19. Testing of Cerex Open-Path Ultraviolet Differential Optical Absorption Spectroscopy Systems for Fenceline Monitoring Applications

    EPA Science Inventory

    Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...

  20. Testing of Cerex Open-Path Ultraviolet Differential Optical Absorption Spectroscopy System for Fenceline Monitoring Applications

    EPA Science Inventory

    Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...

  1. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

    PubMed Central

    Hou, Bin; Wang, Yunhong; Liu, Qingjie

    2016-01-01

    Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation. PMID:27618903

  2. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images.

    PubMed

    Hou, Bin; Wang, Yunhong; Liu, Qingjie

    2016-08-27

    Characterizations of up to date information of the Earth's surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.

  3. Molecular dispersion spectroscopy – new capabilities in laser chemical sensing

    PubMed Central

    Nikodem, Michal; Wysocki, Gerard

    2012-01-01

    Laser spectroscopic techniques suitable for molecular dispersion sensing enable new applications and strategies in chemical detection. This paper discusses the current state-of-the art and provides an overview of recently developed chirped laser dispersion spectroscopy (CLaDS) based techniques. CLaDS and its derivatives allow for quantitative spectroscopy of trace-gases and enable new capabilities such as extended dynamic range of concentration measurements, high immunity to photodetected intensity fluctuations, or capability of direct processing of spectroscopic signals in optical domain. Several experimental configurations based on quantum cascade lasers and examples of molecular spectroscopic data are presented to demonstrate capabilities of molecular dispersion spectroscopy in the mid-infrared spectral region. PMID:22809459

  4. A new strategy for snow-cover mapping using remote sensing data and ensemble based systems techniques

    NASA Astrophysics Data System (ADS)

    Roberge, S.; Chokmani, K.; De Sève, D.

    2012-04-01

    The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological stations.

  5. Combined experimental and theoretical studies on selective sensing of zinc and pyrophosphate ions by rational design of compartmental chemosensor probe: Dual sensing behaviour via secondary recognition approach and cell imaging studies.

    PubMed

    Mawai, Kiran; Nathani, Sandip; Roy, Partha; Singh, U P; Ghosh, Kaushik

    2018-05-08

    A compartmental chemosensor probe HL has been designed and synthesized for the selective recognition of zinc ions over other transition metal ions via fluorescence "ON" strategy. The chemosensing behaviour of HL was demonstrated through fluorescence, absorption and NMR spectroscopic techniques. The molecular structure of the zinc complex derived from HL was determined by X-ray crystallography. A probable mechanism of this selective sensing behavior was described on the basis of spectroscopic results and theoretical studies by density functional theory (DFT). The biological applicability of the chemosensor HL was examined via cell imaging on HeLa cells. The HL-zinc complex served as a secondary fluorescent probe responding to the pyrophosphate anion specifically over other anions. The fluorescence enhancement of HL in association with Zn2+ ions was quenched in the presence of pyrophosphate (PPi). Thus, a dual response was established based on "OFF-ON-OFF" strategy for detection of both cation and anion. This phenomenon was utilized in the construction of a "INHIBIT" logic gate.

  6. Teachers' Sense of Efficacy: Examining the Relationship of Teacher Efficacy and Student Achievement

    NASA Astrophysics Data System (ADS)

    Alrefaei, Nouf

    The purpose of this study was to investigate which teachers' characteristics have an impact on teachers' sense of efficacy. In addition, the relationship between mathematics and science fifth grade teachers' sense of efficacy and student achievement was examined. Two characteristics related to teachers were examined: teachers' years of teaching experience and teachers' highest degree. Participants included 62 mathematics and science teachers from three school districts in Northwest Arkansas. When comparing fifth grade mathematics and science teachers' efficacy beliefs based on their highest degree, a significant difference in teachers' efficacy beliefs was found based on their degrees. Teachers with a Bachelor degree have higher total efficacy than teachers who hold Master's degrees. Moreover, an investigation to determine if there is a difference in mathematics and science teachers' efficacy beliefs in the three subscale of teachers' efficacy (for classroom management, for student engagement, and for instructional strategies) revealed a significant difference in teachers' efficacy for two of the three constructs. However, when examining teachers' sense of efficacy based on their teaching experience, no differences in teachers' efficacy were found. A correlation was conducted and the results indicated that there was no significant relationship between fifth grade teachers' sense of efficacy and students' achievement in the benchmark test in mathematics and science. The recommendations from this study should be used to inform other scholars and administrators of the importance of teachers' sense of efficacy in order to improve students' achievement gains.

  7. Best practices for creating social presence and caring behaviors online.

    PubMed

    Plante, Kathleen; Asselin, Marilyn E

    2014-01-01

    To identify best practices and evidence-based strategies for creating an online learning environment that encompasses caring behaviors and promotes social presence. Faculty who teach online classes are challenged to create a sense of social presence and caring behaviors in a virtual world in which students feel connected and part of the learning environment. To extrapolate evidence to support best practices, a review of literature was conducted focused on social presence and caring online. Faculty messages that are respectful, positive, encouraging, timely, and frequent foster social presence and caring behaviors while also allowing for caring interactions, mutual respect, and finding meaning in relationships. A variety of measures to emulate caring online intertwine with social presence to promote a sense of caring and belonging. More research is needed to support the evidence for these strategies.

  8. The Study of Number Sense and Teaching Practice

    ERIC Educational Resources Information Center

    Tsao, Yea-Ling; Lin, Yi-Chung

    2011-01-01

    The goal of this study was to investigate understanding of inservice elementary school teachers in Taiwan about number sense, teaching strategies of number sense and the development of number sense of students; and the profile of integrating number sense into mathematical instruction , and teaching practice. Data was gathered through interviews of…

  9. On the magnetic attitude control for spacecraft via the ɛ-strategies method

    NASA Astrophysics Data System (ADS)

    Smirnov, Georgi V.; Ovchinnikov, Mikhail; Miranda, Francisco

    2008-09-01

    We develop a new approach to stabilization problems based on a combination of the Lyapunov functions method with local controllability properties. The stabilizability is understood in the sense of ɛ-strategies introduced by Pontryagin in the frame of differential games theory. To illustrate the possibilities of our approach we consider a satellite with two magnetic coils directed along its principal inertia axes. Its circular orbit is neither polar nor equatorial. We show that there exists an ɛ-strategy stabilizing an Earth pointing satellite, whenever the deviations from the equilibrium position are small enough.

  10. School Management by Wandering Around.

    ERIC Educational Resources Information Center

    Frase, Larry; Hetzel, Robert

    Management by wandering around (MBWA) is the catalyst that brings teachers, aides, parents, and administrators together in the pursuit of excellent schools. This book, based on common sense and hundreds of years of experience, offers specific strategies and techniques for using MBWA to obtain excellence. The building blocks of school excellence,…

  11. Making the Abolition of War a Realistic Goal.

    ERIC Educational Resources Information Center

    Sharp, Gene

    As a means of counteracting current widespread acceptance of war and war preparations with a sense of resignation and hopelessness/powerlessness, this monograph proposes a nonviolent strategy by which citizens can discourage or thwart either internal usurpation or external invasion/occupation. Designated Civilian Based Defense (CBD), this system…

  12. Reversible Reasoning and the Working Backwards Problem Solving Strategy

    ERIC Educational Resources Information Center

    Ramful, Ajay

    2015-01-01

    Making sense of mathematical concepts and solving mathematical problems may demand different forms of reasoning. These could be either domain-based, such as algebraic, geometric or statistical reasoning, while others are more general such as inductive/deductive reasoning. This article aims at giving visibility to a particular form of reasoning…

  13. Shifting senses in lexical semantic development

    PubMed Central

    Rabagliati, Hugh; Marcus, Gary F.; Pylkkänen, Liina

    2010-01-01

    Most words are associated with multiple senses. A DVD can be round (when describing a disc), and a DVD can be an hour long (when describing a movie), and in each case DVD means something different. The possible senses of a word are often predictable, and also constrained, as words cannot take just any meaning: for example, although a movie can be an hour long, it cannot sensibly be described as round (unlike a DVD). Learning the scope and limits of word meaning is vital for the comprehension of natural language, but poses a potentially difficult learnability problem for children. By testing what senses children are willing to assign to a variety of words, we demonstrate that, in comprehension, the problem is solved using a productive learning strategy. Children are perfectly capable of assigning different senses to a word; indeed they are essentially adult-like at assigning licensed meanings. But difficulties arise in determining which senses are assignable: children systematically overestimate the possible senses of a word, allowing meanings that adults rule unlicensed (e.g., taking round movie to refer to a disc). By contrast, this strategy does not extend to production, in which children use licensed, but not unlicensed, senses. Children’s productive comprehension strategy suggests an early emerging facility for using context in sense resolution (a difficult task for natural language processing algorithms), but leaves an intriguing question as to the mechanisms children use to learn a restricted, adult-like set of senses. PMID:20638655

  14. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot.

    PubMed

    Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili

    2015-12-15

    Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  15. HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data

    NASA Astrophysics Data System (ADS)

    Heumann, B. W.; Guichard, F.; Seaquist, J. W.

    2005-05-01

    The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.

  16. Recent advances in integrated photonic sensors.

    PubMed

    Passaro, Vittorio M N; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-11-09

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection.

  17. Recent Advances in Integrated Photonic Sensors

    PubMed Central

    Passaro, Vittorio M. N.; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-01-01

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection. PMID:23202223

  18. A Decision Mixture Model-Based Method for Inshore Ship Detection Using High-Resolution Remote Sensing Images

    PubMed Central

    Bi, Fukun; Chen, Jing; Zhuang, Yin; Bian, Mingming; Zhang, Qingjun

    2017-01-01

    With the rapid development of optical remote sensing satellites, ship detection and identification based on large-scale remote sensing images has become a significant maritime research topic. Compared with traditional ocean-going vessel detection, inshore ship detection has received increasing attention in harbor dynamic surveillance and maritime management. However, because the harbor environment is complex, gray information and texture features between docked ships and their connected dock regions are indistinguishable, most of the popular detection methods are limited by their calculation efficiency and detection accuracy. In this paper, a novel hierarchical method that combines an efficient candidate scanning strategy and an accurate candidate identification mixture model is presented for inshore ship detection in complex harbor areas. First, in the candidate region extraction phase, an omnidirectional intersected two-dimension scanning (OITDS) strategy is designed to rapidly extract candidate regions from the land-water segmented images. In the candidate region identification phase, a decision mixture model (DMM) is proposed to identify real ships from candidate objects. Specifically, to improve the robustness regarding the diversity of ships, a deformable part model (DPM) was employed to train a key part sub-model and a whole ship sub-model. Furthermore, to improve the identification accuracy, a surrounding correlation context sub-model is built. Finally, to increase the accuracy of candidate region identification, these three sub-models are integrated into the proposed DMM. Experiments were performed on numerous large-scale harbor remote sensing images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency. PMID:28640236

  19. A Decision Mixture Model-Based Method for Inshore Ship Detection Using High-Resolution Remote Sensing Images.

    PubMed

    Bi, Fukun; Chen, Jing; Zhuang, Yin; Bian, Mingming; Zhang, Qingjun

    2017-06-22

    With the rapid development of optical remote sensing satellites, ship detection and identification based on large-scale remote sensing images has become a significant maritime research topic. Compared with traditional ocean-going vessel detection, inshore ship detection has received increasing attention in harbor dynamic surveillance and maritime management. However, because the harbor environment is complex, gray information and texture features between docked ships and their connected dock regions are indistinguishable, most of the popular detection methods are limited by their calculation efficiency and detection accuracy. In this paper, a novel hierarchical method that combines an efficient candidate scanning strategy and an accurate candidate identification mixture model is presented for inshore ship detection in complex harbor areas. First, in the candidate region extraction phase, an omnidirectional intersected two-dimension scanning (OITDS) strategy is designed to rapidly extract candidate regions from the land-water segmented images. In the candidate region identification phase, a decision mixture model (DMM) is proposed to identify real ships from candidate objects. Specifically, to improve the robustness regarding the diversity of ships, a deformable part model (DPM) was employed to train a key part sub-model and a whole ship sub-model. Furthermore, to improve the identification accuracy, a surrounding correlation context sub-model is built. Finally, to increase the accuracy of candidate region identification, these three sub-models are integrated into the proposed DMM. Experiments were performed on numerous large-scale harbor remote sensing images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency.

  20. A Research and Development Strategy for Unexploded Ordnance Sensing

    DTIC Science & Technology

    1996-04-01

    Each lane was carefully traversed with the MK-26 Ordnance Detector (dual fluxgate magnetometer hand-held unit) and the operator hand-excavated any...proton-precessing magnetometers , optically pumped magnetometers , fluxgates magnetometers , and magnetometers based on superconducting quantum...sensitivity better than 0.05 nT, and the optically-pumped magnetometers have sensitivity better than 0.005 nT. Fluxgate magnetometers are based on solid

  1. Position and speed control of brushless DC motors using sensorless techniques and application trends.

    PubMed

    Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime

    2010-01-01

    This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks.

  2. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.

    PubMed

    DeVries, Levi; Lagor, Francis D; Lei, Hong; Tan, Xiaobo; Paley, Derek A

    2015-03-25

    Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure approximate pressure gradients, whereas superficial neuromasts measure local flow velocities. By employing an artificial lateral line, the performance of underwater sensing and navigation strategies is improved in dark, cluttered, or murky environments where traditional sensing modalities may be hindered. This paper presents estimation and control strategies enabling an airfoil-shaped unmanned underwater vehicle to assimilate measurements from a bio-inspired, multi-modal artificial lateral line and estimate flow properties for feedback control. We utilize potential flow theory to model the fluid flow past a foil in a uniform flow and in the presence of an upstream obstacle. We derive theoretically justified nonlinear estimation strategies to estimate the free stream flowspeed, angle of attack, and the relative position of an upstream obstacle. The feedback control strategy uses the estimated flow properties to execute bio-inspired behaviors including rheotaxis (the tendency of fish to orient upstream) and station-holding (the tendency of fish to position behind an upstream obstacle). A robotic prototype outfitted with a multi-modal artificial lateral line composed of ionic polymer metal composite and embedded pressure sensors experimentally demonstrates the distributed flow sensing and closed-loop control strategies.

  3. Active Teaching Strategies for a Sense of Salience: End-of-Life Communication

    ERIC Educational Resources Information Center

    Kopp, Mary L.

    2013-01-01

    This study compared active teaching strategies with passive lecture by evaluating cognitive, affective, and psychomotor learning outcomes, while highlighting end-of-life communication in nursing education. The problem addressed was twofold: First, passive lecture prevents transfer to situational decision-making, or a sense of salience (Benner,…

  4. Association Between Bereaved Families' Sense of Security and Their Experience of Death in Cancer Patients: Cross-Sectional Population-Based Study.

    PubMed

    Igarashi, Ayumi; Miyashita, Mitsunori; Morita, Tatsuya; Akizuki, Nobuya; Akiyama, Miki; Shirahige, Yutaka; Sato, Kazuki; Yamamoto-Mitani, Noriko; Eguchi, Kenji

    2016-05-01

    The sense of security scale was developed to indicate care quality within the community. Bereaved families have perspective to evaluate the quality of the care system. The aim was to examine associations between end-of-life care and sense of security regarding regional cancer care among bereaved families. A cross-sectional population-based survey was conducted with families of cancer patients who died in regional areas of Japan. A total of 1046 family caregivers of patients responded to surveys (effective response rate of 65%). In multiple regression analyses, the families' higher age (P < 0.001), home death (P = 0.039), better health status of the family at patients' end of life (P = 0.016), lower caregiving burden (P < 0.001), and elements of perceived good patient death, including being free from physical distress (P < 0.001), trusting the physician (P < 0.001), living in calm circumstances (P = 0.042), and feeling that one's life was fulfilling (P = 0.035), were associated with a higher sense of security. Quality of death and lower burden on family caregivers were associated with families' sense of security. This suggests strategies for improving care quality for each patient to improve the sense of security. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  5. Exploration of use of SenseCam to support autobiographical memory retrieval within a cognitive-behavioural therapeutic intervention following acquired brain injury.

    PubMed

    Brindley, Rob; Bateman, Andrew; Gracey, Fergus

    2011-10-01

    Delivering effective psychotherapy to address the significant emotional consequences of acquired brain injury (ABI) is challenged by the presence of acquired cognitive impairments, especially retrieval of detailed autobiographical memories of emotional trigger events. Initial studies using a wearable camera (SenseCam) suggest long-term improvements in autobiographical retrieval of recorded events. In this study a single-case experimental design was implemented to explore the use of SenseCam as a memory aid for a man with a specific anxiety disorder and memory and executive difficulties following ABI. We predicted that SenseCam supported rehearsal of memories of events that trigger high levels of anxiety would yield improved retrieval of both factual detail and internal state information (thoughts and feelings) compared with a conventional psychotherapy aid (automatic thought record sheets, ATRs) and no strategy. The findings indicated SenseCam supported retrieval of anxiety trigger events was superior to ATRs or no strategy in terms of both detail and internal state information, with 94% of the information being recalled in the SenseCam condition, compared to 39% for the "no strategy" and 22% for the ATR conditions. It is concluded that SenseCam may be of use as a compensatory aid in psychotherapies relying on retrieval of emotionally salient trigger events.

  6. Building environment analysis based on temperature and humidity for smart energy systems.

    PubMed

    Yun, Jaeseok; Won, Kwang-Ho

    2012-10-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  7. Effector-triggered versus pattern-triggered immunity: how animals sense virulent pathogens

    PubMed Central

    Stuart, Lynda M.; Paquette, Nicholas; Boyer, Laurent

    2014-01-01

    A fundamental question of any immune system is how it can discriminate between pathogens and non-pathogens. Here, we discuss that this can be mediated by a surveillance system distinct from pattern recognition receptors that recognize conserved microbial patterns and can be based instead on the host’s ability to sense perturbations in host cells induced by bacterial toxins or ‘effectors’ that are exclusively encoded by virulent microorganisms. Such ‘effector-triggered immunity’ was previously thought to be restricted to plants, but recent data indicate that animals also use this strategy. PMID:23411798

  8. Timber Resources Inventory and Monitoring Joint Research Project

    NASA Technical Reports Server (NTRS)

    Hill, C. L.

    1985-01-01

    Primary objectives were to develop remote sensing analysis techniques for extracting forest related information from LANDSAT Multispectral Scanner (MMS) and Thematic Mapper data and to determine the extent to which International Paper Company information needs can be addressed with remote sensing information. The company actively manages 8.4 million acres of forest land. Traditionally, their forest inventories, updated on a three year cycle, are conducted through field surveys and aerial photography. The results reside in a digital forest data base containing 240 descriptive parameteres for individual forest stands. The information in the data base is used to develop seasonal and long range management strategies. Forest stand condition assessements (species composition, age, and density stratification) and identification of silvicultural activities (site preparation, planting, thinning, and harvest) are addressed.

  9. Optical Fibre Sensors Using Graphene-Based Materials: A Review

    PubMed Central

    Hernaez, Miguel; Zamarreño, Carlos R.; Melendi-Espina, Sonia; Bird, Liam R.; Mayes, Andrew G.; Arregui, Francisco J.

    2017-01-01

    Graphene and its derivatives have become the most explored materials since Novoselov and Geim (Nobel Prize winners for Physics in 2010) achieved its isolation in 2004. The exceptional properties of graphene have attracted the attention of the scientific community from different research fields, generating high impact not only in scientific journals, but also in general-interest newspapers. Optical fibre sensing is one of the many fields that can benefit from the use of these new materials, combining the amazing morphological, chemical, optical and electrical features of graphene with the advantages that optical fibre offers over other sensing strategies. In this document, a review of the current state of the art for optical fibre sensors based on graphene materials is presented. PMID:28098825

  10. Optical Fibre Sensors Using Graphene-Based Materials: A Review.

    PubMed

    Hernaez, Miguel; Zamarreño, Carlos R; Melendi-Espina, Sonia; Bird, Liam R; Mayes, Andrew G; Arregui, Francisco J

    2017-01-14

    Graphene and its derivatives have become the most explored materials since Novoselov and Geim (Nobel Prize winners for Physics in 2010) achieved its isolation in 2004. The exceptional properties of graphene have attracted the attention of the scientific community from different research fields, generating high impact not only in scientific journals, but also in general-interest newspapers. Optical fibre sensing is one of the many fields that can benefit from the use of these new materials, combining the amazing morphological, chemical, optical and electrical features of graphene with the advantages that optical fibre offers over other sensing strategies. In this document, a review of the current state of the art for optical fibre sensors based on graphene materials is presented.

  11. Active Implementation Frameworks for Successful Service Delivery: Catawba County Child Wellbeing Project

    ERIC Educational Resources Information Center

    Metz, Allison; Bartley, Leah; Ball, Heather; Wilson, Dawn; Naoom, Sandra; Redmond, Phil

    2015-01-01

    Traditional approaches to disseminating research based programs and innovations for children and families, which rely on practitioners and policy makers to make sense of research on their own, have been found insufficient. There is growing interest in strategies that "make it happen" by actively building the capacity of service providers…

  12. Mathematics in Early Childhood: Research-Based Rationale and Practical Strategies

    ERIC Educational Resources Information Center

    Linder, Sandra M.; Powers-Costello, Beth; Stegelin, Dolores A.

    2011-01-01

    Mathematics education is a critical part of the curriculum for students worldwide. The foundation for understanding mathematical concepts related to number sense begins early in life, and early childhood classrooms can provide the seeds for mathematical skills that will be needed later in life. In this article, the authors make a case for…

  13. A Historical Journey in Science Education through Role Playing

    ERIC Educational Resources Information Center

    Guha, Smita

    2013-01-01

    In order to avoid a routine classroom environment, teachers often employ the use of role-plays. This is an effective strategy because it is essential for teachers to engage their students with information through various methods. Role-playing provides the children with the opportunity to incorporate multiple senses into a knowledge-based, fun…

  14. Teaching Music to Students with Special Needs: A Label-Free Approach

    ERIC Educational Resources Information Center

    Hammel, Alice; Hourigan, Ryan

    2011-01-01

    A practical guide & reference manual, "Teaching Music to Students with Special Needs" addresses special needs in the broadest possible sense to equip teachers with proven, research-based curricular strategies that are grounded in both best practice and current special education law. Chapters address the full range of topics and issues music…

  15. Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of Cystic Fibrosis.

    PubMed

    Kim, Jimin P; Xie, Zhiwei; Creer, Michael; Liu, Zhiwen; Yang, Jian

    2017-01-01

    Chloride is an essential electrolyte that maintains homeostasis within the body, where abnormal chloride levels in biological fluids may indicate various diseases such as Cystic Fibrosis. However, current analytical solutions for chloride detection fail to meet the clinical needs of both high performance and low material or labor costs, hindering translation into clinical settings. Here we present a new class of fluorescence chloride sensors derived from a facile citrate -based synthesis platform that utilize dynamic quenching mechanisms. Based on this low-cost platform, we demonstrate for the first time a selective sensing strategy that uses a single fluorophore to detect multiple halides simultaneously, promising both selectivity and automation to improve performance and reduce labor costs. We also demonstrate the clinical utility of citrate-based sensors as a new sweat chloride test method for the diagnosis of Cystic Fibrosis by performing analytical validation with sweat controls and clinical validation with sweat from individuals with or without Cystic Fibrosis. Lastly, molecular modeling studies reveal the structural mechanism behind chloride sensing, serving to expand this class of fluorescence sensors with improved chloride sensitivities. Thus citrate-based fluorescent materials may enable low-cost, automated multi-analysis systems for simpler, yet accurate, point-of-care diagnostics that can be readily translated into clinical settings. More broadly, a wide range of medical, industrial, and environmental applications can be achieved with such a facile synthesis platform, demonstrated in our citrate-based biodegradable polymers with intrinsic fluorescence sensing.

  16. Discrimination of Avian Influenza Virus using Host-cell Infection Fingerprinting by Sulfinate-based Fluorescence Superoxide Probe.

    PubMed

    Hong, Seong Cheol; Murale, Dhiraj P; Jang, Se-Young; Haque, Md Mamunul; Seo, Minah; Lee, Seok; Woo, Deok Ha; Kwon, Junghoon; Song, Chang-Seon; Kim, Yun Kyung; Lee, Jun-Seok

    2018-06-22

    Avian Influenza (AI) caused an annual epidemic outbreak that led to destroying tens of millions of poultry worldwide. Current gold standard AI diagnosis method is an embryonic egg-based hemagglutination assay followed by immunoblotting or PCR sequencing to confirm subtypes. It requires, however, specialized facilities to handle egg inoculation and incubation, and the subtyping methods relied on costly reagents. Here, we demonstrated the first differential sensing approach to distinguish AI subtypes using series of cell lines and fluorescent sensor. Susceptibility of AI virus differs depending on genetic backgrounds of host cells. Thus, we examined cells from different organ origin, and the infection patterns against a panel of cells were utilized for AI virus subtyping. To quantify AI infection, we designed a highly cell-permeable fluorescent superoxide sensor to visualize infection. Though many AI monitoring strategies relied on sophisticated antibody have been extensively studied, our differential sensing strategy successfully proved discriminations of AI subtypes and demonstrated as a useful primary screening platform to monitor a large number of samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Efficient Gas-Sensing for Formaldehyde with 3D Hierarchical Co3O4 Derived from Co5-Based MOF Microcrystals.

    PubMed

    Zhou, Wei; Wu, Ya-Pan; Zhao, Jun; Dong, Wen-Wen; Qiao, Xiu-Qing; Hou, Dong-Fang; Bu, Xianhui; Li, Dong-Sheng

    2017-11-20

    Detecting formaldehyde at low operating temperature and maintaining long-term stability are of great significance. In this work, a hierarchical Co 3 O 4 nanostructure has been fabricated by calcining Co 5 -based metal-organic framework (MOF) microcrystals. Co 3 O 4 -350 particles were used for efficient gas-sensing for the detecting of formaldehyde vapor at lower working temperature (170 °C), low detection limit of 10 ppm, and long-term stability (30 days), which not only is the optimal value among all reported pure Co 3 O 4 sensing materials for the detection of formaldehyde but also is superior to that of majority of Co 3 O 4 -based composites. Such extraordinarily efficient properties might be resulted from hierarchically structures, larger surface area and unique pore structure. This strategy is further confirmed that MOFs, especially Co-clusters MOFs, could be used as precursor to synthesize 3D nanostructure metal oxide materials with high-performance, which possess high porosity and more active sites and shorter ionic diffusion lengths.

  18. a model based on crowsourcing for detecting natural hazards

    NASA Astrophysics Data System (ADS)

    Duan, J.; Ma, C.; Zhang, J.; Liu, S.; Liu, J.

    2015-12-01

    Remote Sensing Technology provides a new method for the detecting,early warning,mitigation and relief of natural hazards. Given the suddenness and the unpredictability of the location of natural hazards as well as the actual demands for hazards work, this article proposes an evaluation model for remote sensing detecting of natural hazards based on crowdsourcing. Firstly, using crowdsourcing model and with the help of the Internet and the power of hundreds of millions of Internet users, this evaluation model provides visual interpretation of high-resolution remote sensing images of hazards area and collects massive valuable disaster data; secondly, this evaluation model adopts the strategy of dynamic voting consistency to evaluate the disaster data provided by the crowdsourcing workers; thirdly, this evaluation model pre-estimates the disaster severity with the disaster pre-evaluation model based on regional buffers; lastly, the evaluation model actuates the corresponding expert system work according to the forecast results. The idea of this model breaks the boundaries between geographic information professionals and the public, makes the public participation and the citizen science eventually be realized, and improves the accuracy and timeliness of hazards assessment results.

  19. Fluorescent carbon dots nanosensor for label-free determination of vitamin B12 based on inner filter effect

    NASA Astrophysics Data System (ADS)

    Ding, Longhua; Yang, Hongmei; Ge, Shenguang; Yu, Jinghua

    2018-03-01

    A simple and effective fluorescent assay for the determination of vitamin B12 was developed. In this study, carbon dots (CDs) were prepared by one-pot hydrothermal method and directly used as a fluorophore in the inner filter effect (IFE). Both of the maximum absorption peak of vitamin B12 and excitation maxima of CDs are located at 360 nm, hence, the excited light of CDs can be absorbed by vitamin B12, resulting in the fluorescence reduction of CDs. And the fluorescence intensity of CDs decreases with the increasing concentration of vitamin B12. This IFE-based sensing strategy shows a good linear relationship between the normalized fluorescence intensity and the concentration of vitamin B12 ranging from 0 to 60 μM, with a limit of detection (LOD) of 0.1 μM at a signal-to-noise ratio of 3. Furthermore, this proposed approach was successfully applied to vitamin B12 sensing in injections. This IFE sensing platform based on various fluorescent nanomaterials has a high promise for the detection of other biomolecules due to its inherent convenience.

  20. Correlation Study of Physics Achievement, Learning Strategy, Attitude and Gender in an Introductory Physics Course

    ERIC Educational Resources Information Center

    Sezgin Selcuk, Gamze

    2010-01-01

    This study investigates the relationship between multiple predictors of physics achievement including reported use of four learning strategy clusters (elaboration, organization, comprehension monitoring and rehearsal), attitudes towards physics (sense of care and sense of interest) and a demographic variable (gender) in order to determine the…

  1. Emergency Workers' Quality of Life: The Protective Role of Sense of Community, Efficacy Beliefs and Coping Strategies

    ERIC Educational Resources Information Center

    Cicognani, Elvira; Pietrantoni, Luca; Palestini, Luigi; Prati, Gabriele

    2009-01-01

    This study, involving a sample of 764 emergency workers, investigates dimensions of quality of life at work (Compassion fatigue, Burnout and Compassion satisfaction), and their relationships with Coping strategies and some psychosocial variables (Sense of Community, Collective Efficacy and Self-efficacy). Results indicate the usefulness of…

  2. Bioinspired magnetic reception and multimodal sensing.

    PubMed

    Taylor, Brian K

    2017-08-01

    Several animals use Earth's magnetic field in concert with other sensor modes to accomplish navigational tasks ranging from local homing to continental scale migration. However, despite extensive research, animal magnetic reception remains poorly understood. Similarly, the Earth's magnetic field offers a signal that engineered systems can leverage to navigate in environments where man-made positioning systems such as GPS are either unavailable or unreliable. This work uses a behavioral strategy inspired by the migratory behavior of sea turtles to locate a magnetic goal and respond to wind when it is present. Sensing is performed using a number of distributed sensors. Based on existing theoretical biology considerations, data processing is performed using combinations of circles and ellipses to exploit the distributed sensing paradigm. Agent-based simulation results indicate that this approach is capable of using two separate magnetic properties to locate a goal from a variety of initial conditions in both noiseless and noisy sensory environments. The system's ability to locate the goal appears robust to noise at the cost of overall path length.

  3. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  4. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    PubMed

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Fusion of shallow and deep features for classification of high-resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Gao, Lang; Tian, Tian; Sun, Xiao; Li, Hang

    2018-02-01

    Effective spectral and spatial pixel description plays a significant role for the classification of high resolution remote sensing images. Current approaches of pixel-based feature extraction are of two main kinds: one includes the widelyused principal component analysis (PCA) and gray level co-occurrence matrix (GLCM) as the representative of the shallow spectral and shape features, and the other refers to the deep learning-based methods which employ deep neural networks and have made great promotion on classification accuracy. However, the former traditional features are insufficient to depict complex distribution of high resolution images, while the deep features demand plenty of samples to train the network otherwise over fitting easily occurs if only limited samples are involved in the training. In view of the above, we propose a GLCM-based convolution neural network (CNN) approach to extract features and implement classification for high resolution remote sensing images. The employment of GLCM is able to represent the original images and eliminate redundant information and undesired noises. Meanwhile, taking shallow features as the input of deep network will contribute to a better guidance and interpretability. In consideration of the amount of samples, some strategies such as L2 regularization and dropout methods are used to prevent over-fitting. The fine-tuning strategy is also used in our study to reduce training time and further enhance the generalization performance of the network. Experiments with popular data sets such as PaviaU data validate that our proposed method leads to a performance improvement compared to individual involved approaches.

  6. Modeling perspectives on echolocation strategies inspired by bats flying in groups.

    PubMed

    Lin, Yuan; Abaid, Nicole

    2015-12-21

    Bats navigating with echolocation - which is a type of active sensing achieved by interpreting echoes resulting from self-generated ultrasonic pulses - exhibit unique behaviors during group flight. While bats may benefit from eavesdropping on their peers׳ echolocation, they also potentially suffer from confusion between their own and peers׳ pulses, caused by an effect called frequency jamming. This hardship of group flight is supported by experimental observations of bats simplifying their sound-scape by shifting their pulse frequencies or suppressing echolocation altogether. Here, we investigate eavesdropping and varying pulse emission rate from a modeling perspective to understand these behaviors׳ potential benefits and detriments. We define an agent-based model of echolocating bats avoiding collisions in a three-dimensional tunnel. Through simulation, we show that bats with reasonably accurate eavesdropping can reduce collisions compared to those neglecting information from peers. In large populations, bats minimize frequency jamming by decreasing pulse emission rate, while collision risk increases; conversely, increasing pulse emission rate minimizes collisions by allowing more sensing information generated per bat. These strategies offer benefits for both biological and engineered systems, since frequency jamming is a concern in systems using active sensing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    PubMed

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  8. Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion.

    PubMed

    Zhang, Xiaojuan; Reeves, Daniel B; Perreard, Irina M; Kett, Warren C; Griswold, Karl E; Gimi, Barjor; Weaver, John B

    2013-12-15

    Functionalized magnetic nanoparticles (mNPs) have shown promise in biosensing and other biomedical applications. Here we use functionalized mNPs to develop a highly sensitive, versatile sensing strategy required in practical biological assays and potentially in vivo analysis. We demonstrate a new sensing scheme based on magnetic spectroscopy of nanoparticle Brownian motion (MSB) to quantitatively detect molecular targets. MSB uses the harmonics of oscillating mNPs as a metric for the freedom of rotational motion, thus reflecting the bound state of the mNP. The harmonics can be detected in vivo from nanogram quantities of iron within 5s. Using a streptavidin-biotin binding system, we show that the detection limit of the current MSB technique is lower than 150 pM (0.075 pmole), which is much more sensitive than previously reported techniques based on mNP detection. Using mNPs conjugated with two anti-thrombin DNA aptamers, we show that thrombin can be detected with high sensitivity (4 nM or 2 pmole). A DNA-DNA interaction was also investigated. The results demonstrated that sequence selective DNA detection can be achieved with 100 pM (0.05 pmole) sensitivity. The results of using MSB to sense these interactions, show that the MSB based sensing technique can achieve rapid measurement (within 10s), and is suitable for detecting and quantifying a wide range of biomarkers or analytes. It has the potential to be applied in variety of biomedical applications or diagnostic analyses. © 2013 Elsevier B.V. All rights reserved.

  9. Long-range strategy for remote sensing: an integrated supersystem

    NASA Astrophysics Data System (ADS)

    Glackin, David L.; Dodd, Joseph K.

    1995-12-01

    Present large space-based remote sensing systems, and those planned for the next two decades, remain dichotomous and custom-built. An integrated architecture might reduce total cost without limiting system performance. An example of such an architecture, developed at The Aerospace Corporation, explores the feasibility of reducing overall space systems costs by forming a 'super-system' which will provide environmental, earth resources and theater surveillance information to a variety of users. The concept involves integration of programs, sharing of common spacecraft bus designs and launch vehicles, use of modular components and subsystems, integration of command and control and data capture functions, and establishment of an integrated program office. Smart functional modules that are easily tested and replaced are used wherever possible in the space segment. Data is disseminated to systems such as NASA's EOSDIS, and data processing is performed at established centers of expertise. This concept is advanced for potential application as a follow-on to currently budgeted and planned space-based remote sensing systems. We hope that this work will serve to engender discussion that may be of assistance in leading to multinational remote sensing systems with greater cost effectiveness at no loss of utility to the end user.

  10. Learning Science through the PDEODE Teaching Strategy: Helping Students Make Sense of Everyday Situations

    ERIC Educational Resources Information Center

    Costu, Bayram

    2008-01-01

    The aim of this study was to investigate effectiveness of PDEODE (Predict-Discuss-Explain-Observe-Discuss-Explain) teaching strategy in helping students make sense of everyday situations. For this, condensation concept was chosen among many science concepts since it is related to many everyday-life events. Forty-eight eleventh graders students…

  11. Communication and Education at Work: Latino Immigrants Making Sense and Dominating Language in Koreatown, New York City

    ERIC Educational Resources Information Center

    Velasquez, Karen

    2014-01-01

    This dissertation explores the work-based language education practices of undocumented Latino and Korean immigrants employed in Korean supermarkets and restaurants of Koreatown, New York City. The primary goal of this dissertation is to understand how immigrants educate each other about the communication strategies necessary for accomplishing work…

  12. Modelling Complexity: Making Sense of Leadership Issues in 14-19 Education

    ERIC Educational Resources Information Center

    Briggs, Ann R. J.

    2008-01-01

    Modelling of statistical data is a well established analytical strategy. Statistical data can be modelled to represent, and thereby predict, the forces acting upon a structure or system. For the rapidly changing systems in the world of education, modelling enables the researcher to understand, to predict and to enable decisions to be based upon…

  13. A double responsive smart upconversion fluorescence sensing material for glycoprotein.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo

    2016-11-15

    A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Conducting Polymer-Based Nanohybrid Transducers: A Potential Route to High Sensitivity and Selectivity Sensors

    PubMed Central

    Park, Seon Joo; Kwon, Oh Seok; Lee, Ji Eun; Jang, Jyongsik; Yoon, Hyeonseok

    2014-01-01

    The development of novel sensing materials provides good opportunities to realize previously unachievable sensor performance. In this review, conducting polymer-based nanohybrids are highlighted as innovative transducers for high-performance chemical and biological sensing devices. Synthetic strategies of the nanohybrids are categorized into four groups: (1) impregnation, followed by reduction; (2) concurrent redox reactions; (3) electrochemical deposition; (4) seeding approach. Nanocale hybridization of conducting polymers with inorganic components can lead to improved sorption, catalytic reaction and/or transport behavior of the material systems. The nanohybrids have thus been used to detect nerve agents, toxic gases, volatile organic compounds, glucose, dopamine, and DNA. Given further advances in nanohybrids synthesis, it is expected that sensor technology will also evolve, especially in terms of sensitivity and selectivity. PMID:24561406

  15. One-Dimensional Nanostructures: Microfluidic-Based Synthesis, Alignment and Integration towards Functional Sensing Devices

    PubMed Central

    Xing, Yanlong; Dittrich, Petra S.

    2018-01-01

    Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been used in applications such as catalysts, electronic instrumentation and sensors for physical parameters or chemical compounds and biomolecules and hence, can be considered as building blocks. Here, we outline and critically discuss promising strategies for microfluidic-assisted synthesis, alignment and various chemical and biochemical applications of 1D nanostructures. In particular, the use of 1D nanostructures for sensing chemical/biological compounds are reviewed. PMID:29303990

  16. Drag reduction in a turbulent channel flow using a passivity-based approach

    NASA Astrophysics Data System (ADS)

    Heins, Peter; Jones, Bryn; Sharma, Atul

    2013-11-01

    A new active feedback control strategy for attenuating perturbation energy in a turbulent channel flow is presented. Using a passivity-based approach, a controller synthesis procedure has been devised which is capable of making the linear dynamics of a channel flow as close to passive as is possible given the limitations on sensing and actuation. A controller that is capable of making the linearized flow passive is guaranteed to globally stabilize the true flow. The resulting controller is capable of greatly restricting the amount of turbulent energy that the nonlinearity can feed back into the flow. DNS testing of a controller using wall-sensing of streamwise and spanwise shear stress and actuation via wall transpiration acting upon channel flows with Reτ = 100 - 250 showed significant reductions in skin-friction drag.

  17. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy. PMID:27873877

  18. Efficient Wideband Spectrum Sensing with Maximal Spectral Efficiency for LEO Mobile Satellite Systems

    PubMed Central

    Li, Feilong; Li, Zhiqiang; Li, Guangxia; Dong, Feihong; Zhang, Wei

    2017-01-01

    The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU) with sufficient protection to licensed primary user (PU). Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS) in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO) mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS) framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS) is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework. PMID:28117712

  19. Disruptive innovations: new anti-infectives in the age of resistance

    PubMed Central

    Tegos, George P.; Hamblin, Michael R.

    2013-01-01

    This special issue of Current Opinion in Pharmacology is concerned with new developments in antimicrobial drugs and covers innovative strategies for dealing with microbial infection in the age of multi-antibiotic resistance. Despite widespread fears that many infectious diseases may become untreatable, disruptive innovations are in the process of being discovered and developed that may go some way to leading the fight-back against the rising threat. Natural products, quorum sensing inhibitors, biofilm disruptors, gallium-based drugs, cyclodextrin inhibitors of pore-forming toxins, anti-fungals that deal with biofilms, and light based antimicrobial strategies are specifically addressed. New non-vertebrate animal models of infection may facilitate high-throughput screening (HTS) of novel anti-infectives. PMID:24012294

  20. Building Environment Analysis based on Temperature and Humidity for Smart Energy Systems

    PubMed Central

    Yun, Jaeseok; Won, Kwang-Ho

    2012-01-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment. PMID:23202004

  1. Quality assurance and stability reference (QUASAR) monitoring concept for calibration/validation

    NASA Astrophysics Data System (ADS)

    Teillet, Philippe M.; Horler, D. N.; O'Neill, Norman T.

    1997-12-01

    The paper introduces the concept that calibration/validation (cal/val) can play an essential role in bringing remote sensing to mainstream consumers in an information-based society, provided that cal/val is an integral part of a quality-assurance strategy. A market model for remote sensing is introduced and used to demonstrate that quality assurance is the key to bridging the gap between early adopters of technology and mainstream markets. The paper goes on to propose the semi-continuous monitoring of quality assurance and stability reference (QUASAR) sites as an important first step towards a cal/val infrastructure beneficial to mainstream users. Prospective QUASAR test sites are described.

  2. Carbon Nanotubes as Optical Sensors in Biomedicine.

    PubMed

    Farrera, Consol; Torres Andón, Fernando; Feliu, Neus

    2017-11-28

    Single-walled carbon nanotubes (SWCNTs) have become potential candidates for a wide range of medical applications including sensing, imaging, and drug delivery. Their photophysical properties (i.e., the capacity to emit in the near-infrared), excellent photostability, and fluorescence, which is highly sensitive to the local environment, make SWCNTs promising optical probes in biomedicine. In this Perspective, we discuss the existing strategies for and challenges of using carbon nanotubes for medical diagnosis based on intracellular sensing as well as discuss also their biocompatibility and degradability. Finally, we highlight the potential improvements of this nanotechnology and future directions in the field of carbon nanotubes for biomedical applications.

  3. Headspace-Sampling Paper-Based Analytical Device for Colorimetric/Surface-Enhanced Raman Scattering Dual Sensing of Sulfur Dioxide in Wine.

    PubMed

    Li, Dan; Duan, Huazhen; Ma, Yadan; Deng, Wei

    2018-05-01

    This study demonstrates a novel strategy for colorimetric/surface-enhanced Raman scattering (SERS) dual-mode sensing of sulfur dioxide (SO 2 ) by coupling headspace sampling (HS) with paper-based analytical device (PAD). The smart and multifunctional PAD is fabricated with a vacuum filtration method in which 4-mercaptopyridine (Mpy)-modified gold nanorods (GNRs)-reduced graphene oxide (rGO) hybrids (rGO/MPy-GNRs), anhydrous methanol, and starch-iodine complex are immobilized into cellulose-based filter papers. The resultant PAD exhibits a deep-blue color with a strong absorption peak at 600 nm due to the formation of an intermolecular charge-transfer complex between starch and iodine. However, the addition of SO 2 induces the Karl Fischer reaction, resulting in the decrease of color and increase of SERS signals. Therefore, the PAD can be used not only as a naked-eye indicator of SO 2 changed from blue to colorless but also as a highly sensitive SERS substrates because of the SO 2 -triggered conversion of Mpy to pyridine methyl sulfate on the GNRs. A distinguishable change in the color was observed at a SO 2 concentration of 5 μM by the naked eye, and a detection limit as low as 1.45 μM was obtained by virtue of UV-vis spectroscopy. The PAD-based SERS method is effective over a wide range of concentrations (1 μM to 2000 μM) for SO 2 , and the detection limit for SO 2 is found to be 1 μM. The HS-PAD based colorimetric/SERS method is applied for the determination of SO 2 in wine, and the detection results match well with those obtained from the traditional Monier-Williams method. This study not only offers a new method for on-site monitoring of SO 2 but also provides a new strategy for designing of paper-based sensing platform for a wide range of field-test applications.

  4. Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends

    PubMed Central

    Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime

    2010-01-01

    This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks. PMID:22163582

  5. Colorimetric Detection with Aptamer-Gold Nanoparticle Conjugates: Effect of Aptamer Length on Response

    DTIC Science & Technology

    2012-11-01

    random bases to its 5’ end and the response of these Apt-AuNPs was evaluated. These extra bases were designed to avoid interactions with the RBA...its 5’ end and the response of these Apt-AuNPs was evaluated. These extra bases were designed to avoid interactions with the RBA binding site. We...produces a purple-blue color.4.5 AuNP-based sensing strategies are designed by promoting a change in the AuNPs stability and aggregation state as a result

  6. Reimagining Building Sensing and Control (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polese, L.

    2014-06-01

    Buildings are responsible for 40% of US energy consumption, and sensing and control technologies are an important element in creating a truly sustainable built environment. Motion-based occupancy sensors are often part of these control systems, but are usually altered or disabled in response to occupants' complaints, at the expense of energy savings. Can we leverage commodity hardware developed for other sectors and embedded software to produce more capable sensors for robust building controls? The National Renewable Energy Laboratory's (NREL) 'Image Processing Occupancy Sensor (IPOS)' is one example of leveraging embedded systems to create smarter, more reliable, multi-function sensors that openmore » the door to new control strategies for building heating, cooling, ventilation, and lighting control. In this keynote, we will discuss how cost-effective embedded systems are changing the state-of-the-art of building sensing and control.« less

  7. Sensor fusion IV: Control paradigms and data structures; Proceedings of the Meeting, Boston, MA, Nov. 12-15, 1991

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1992-01-01

    Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.

  8. Application of ionic liquids in electrochemical sensing systems.

    PubMed

    Shiddiky, Muhammad J A; Torriero, Angel A J

    2011-01-15

    Since 1992, when the room temperature ionic liquids (ILs) based on the 1-alkyl-3-methylimidazolium cation were reported to provide an attractive combination of an electrochemical solvent and electrolyte, ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, and lithium batteries. However, it has only been in the last few years that electrochemical biosensors based on carbon ionic liquid electrodes (CILEs) and IL-modified macrodisk electrodes have been reported. However, there are still a lot of challenges in achieving IL-based sensitive, selective, and reproducible biosensors for high speed analysis of biological and environmental compounds of interest. This review discusses the principles of operation of electrochemical biosensors based on CILEs and IL/composite-modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed. Key challenges and opportunities of IL-based biosensors to further development and use are considered. Emphasis is given to direct electron-transfer reaction and electrocatalysis of hemeproteins and enzyme-modified composite electrodes. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Systematic review of smartphone-based passive sensing for health and wellbeing.

    PubMed

    Cornet, Victor P; Holden, Richard J

    2018-01-01

    To review published empirical literature on the use of smartphone-based passive sensing for health and wellbeing. A systematic review of the English language literature was performed following PRISMA guidelines. Papers indexed in computing, technology, and medical databases were included if they were empirical, focused on health and/or wellbeing, involved the collection of data via smartphones, and described the utilized technology as passive or requiring minimal user interaction. Thirty-five papers were included in the review. Studies were performed around the world, with samples of up to 171 (median n = 15) representing individuals with bipolar disorder, schizophrenia, depression, older adults, and the general population. The majority of studies used the Android operating system and an array of smartphone sensors, most frequently capturing accelerometry, location, audio, and usage data. Captured data were usually sent to a remote server for processing but were shared with participants in only 40% of studies. Reported benefits of passive sensing included accurately detecting changes in status, behavior change through feedback, and increased accountability in participants. Studies reported facing technical, methodological, and privacy challenges. Studies in the nascent area of smartphone-based passive sensing for health and wellbeing demonstrate promise and invite continued research and investment. Existing studies suffer from weaknesses in research design, lack of feedback and clinical integration, and inadequate attention to privacy issues. Key recommendations relate to developing passive sensing strategies matching the problem at hand, using personalized interventions, and addressing methodological and privacy challenges. As evolving passive sensing technology presents new possibilities for health and wellbeing, additional research must address methodological, clinical integration, and privacy issues. Doing so depends on interdisciplinary collaboration between informatics and clinical experts. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The improvement of gas-sensing properties of SnO2/zeolite-assembled composite

    NASA Astrophysics Data System (ADS)

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan

    2018-05-01

    SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of 10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the "filtering effect" by the pores of ZSM-5.

  11. Family Quality of Life and Psychological Well-Being in Parents of Children with Autism Spectrum Disorders: A Double ABCX Model

    ERIC Educational Resources Information Center

    Pozo, P.; Sarriá, E.; Brioso, A.

    2014-01-01

    Background: This study examined family quality of life (FQOL) and psychological well-being from a multidimensional perspective. The proposed model was based on the double ABCX model, with severity of the disorder, behaviour problems, social support, sense of coherence (SOC) and coping strategies as components. Method: One hundred and eighteen…

  12. Lighting up micromotors with quantum dots for smart chemical sensing.

    PubMed

    Jurado-Sánchez, B; Escarpa, A; Wang, J

    2015-09-25

    A new "on-the-fly" chemical optical detection strategy based on the incorporation of fluorescence CdTe quantum dots (QDs) on the surface of self-propelled tubular micromotors is presented. The motion-accelerated binding of trace Hg to the QDs selectively quenches the fluorescence emission and leads to an effective discrimination between different mercury species and other co-existing ions.

  13. Exploring Place and Practicing Justice: Preparing Pre-Service Teachers for Success in Rural Schools

    ERIC Educational Resources Information Center

    Azano, Amy Price; Stewart, Trevor Thomas

    2015-01-01

    This article examines efforts made by a teacher preparation program to provide pre-service teachers with an introduction to the rural context, strategies for place-based pedagogy, and a field experience in rural schools. The study explores the influence of these efforts, along with how students' sense of place and educational upbringing, might be…

  14. Controlled Environments Enable Adaptive Management in Aquatic Ecosystems Under Altered Environments

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2016-01-01

    Ecosystems worldwide are impacted by altered environment conditions resulting from climate, drought, and land use changes. Gaps in the science knowledge base regarding plant community response to these novel and rapid changes limit both science understanding and management of ecosystems. We describe how CE Technologies have enabled the rapid supply of gap-filling science, development of ecosystem simulation models, and remote sensing assessment tools to provide science-informed, adaptive management methods in the impacted aquatic ecosystem of the California Sacramento-San Joaquin River Delta. The Delta is the hub for California's water, supplying Southern California agriculture and urban communities as well as the San Francisco Bay area. The changes in environmental conditions including temperature, light, and water quality and associated expansion of invasive aquatic plants negatively impact water distribution and ecology of the San Francisco Bay/Delta complex. CE technologies define changes in resource use efficiencies, photosynthetic productivity, evapotranspiration, phenology, reproductive strategies, and spectral reflectance modifications in native and invasive species in response to altered conditions. We will discuss how the CE technologies play an enabling role in filling knowledge gaps regarding plant response to altered environments, parameterization and validation of ecosystem models, development of satellite-based, remote sensing tools, and operational management strategies.

  15. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform.

    PubMed

    Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-04-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis.

  16. Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review.

    PubMed

    Wu, Chunsheng; Lillehoj, Peter B; Wang, Ping

    2015-11-07

    Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.

  17. Nanoporous Superhydrophobic Coatings that Promote the Extended Release of Water-Labile Quorum Sensing Inhibitors and Enable Long-Term Modulation of Quorum Sensing in Staphylococcus aureus

    PubMed Central

    2015-01-01

    Materials and coatings that inhibit bacterial colonization are of interest in a broad range of biomedical, environmental, and industrial applications. In view of the rapid increase in bacterial resistance to conventional antibiotics, the development of new strategies that target nonessential pathways in bacterial pathogens—and that thereby limit growth and reduce virulence through nonbiocidal means—has attracted considerable attention. Bacterial quorum sensing (QS) represents one such target, and is intimately connected to virulence in many human pathogens. Here, we demonstrate that the properties of nanoporous, polymer-based superhydrophobic coatings can be exploited to host and subsequently sustain the extended release of potent and water-labile peptide-based inhibitors of QS (QSIs) in Staphylococcus aureus. Our results demonstrate that these peptidic QSIs can be released into surrounding media for periods of at least 8 months, and that they strongly inhibit agr-based QS in S. aureus for at least 40 days. These results also suggest that these extremely nonwetting coatings can confer protection against the rapid hydrolysis of these water-labile peptides, thereby extending their useful lifetimes. Finally, we demonstrate that these peptide-loaded superhydrophobic coatings can strongly modulate the QS-controlled formation of biofilm in wild-type S. aureus. These nanoporous superhydrophobic films provide a new, useful, and nonbiocidal approach to the design of coatings that attenuate bacterial virulence. This approach has the potential to be general, and could prove suitable for the encapsulation, protection, and release of other classes of water-sensitive agents. We anticipate that the materials, strategies, and concepts reported here will enable new approaches to the long-term attenuation of QS and associated bacterial phenotypes in a range of basic research and applied contexts. PMID:26501126

  18. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.

    PubMed

    Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping

    2014-08-07

    A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.

  19. A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal.

    PubMed

    Lu, Li-Min; Zhang, Xiao-Bing; Kong, Rong-Mei; Yang, Bin; Tan, Weihong

    2011-08-03

    Many types of fluorescent sensing systems have been reported for biological small molecules. Particularly, several methods have been developed for the recognition of ATP or NAD(+), but they only show moderate sensitivity, and they cannot discriminate either ATP or NAD(+) from their respective analogues. We have addressed these limitations and report here a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based amplified detection to develop a ligation-triggered DNAzyme cascade, resulting in ultrahigh sensitivity. First, the 8-17 DNAzyme is split into two separate oligonucleotide fragments as the building blocks for the DNA ligation reaction, thereby providing a zero-background signal to improve overall sensitivity. Next, a CAMB strategy is further employed for amplified signal detection achieved through cycling and regenerating the DNAzyme to realize the true enzymatic multiple turnover (one enzyme catalyzes the cleavage of several substrates) of catalytic beacons. This combination of zero-background signal and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of 100 and 50 pM for ATP and NAD(+), respectively, much lower than those of previously reported biosensors. Moreover, by taking advantage of the highly specific biomolecule-dependence of the DNA ligation reaction, the developed DNAzyme cascades show significantly high selectivity toward the target cofactor (ATP or NAD(+)), and the target biological small molecule can be distinguished from its analogues. Therefore, as a new and universal platform for the design of DNA ligation reaction-based sensing systems, this novel ligation-triggered DNAzyme cascade method may find a broad spectrum of applications in both environmental and biomedical fields.

  20. Learning Strategies as a Mediator for Motivation and a Sense of Achievement among Students Who Study in MOOCs

    ERIC Educational Resources Information Center

    Magen-Nagar, Noga; Cohen, Lizi

    2017-01-01

    The goal of the research was to examine the contribution of learning strategies as a mediator for motivation and a sense of achievement in a Massive Open Online Course (MOOC), among students who participate in a unique program in Israel, called "Academy Online--MOOCs in the Israeli Education System." The goal of the program was to…

  1. Simple and robust strategy for potentiometric detection of glucose using fluorinated phenylboronic acid self-assembled monolayer.

    PubMed

    Matsumoto, Akira; Matsumoto, Hiroko; Maeda, Yasuhiro; Miyahara, Yuji

    2013-09-01

    Field effect transistor (FET) based signal-transduction (Bio-FET) is an emerging technique for label-free and real-time basis biosensors for a wide range of targets. Glucose has constantly been of interest due to its clinical relevance. Use of glucose oxidase (GOD) and a lectin protein Concanavalin A are two common strategies to generate glucose-dependent electrochemical events. However, these protein-based materials are intolerant of long-term usage and storage due to their inevitable denaturing. A phenylboronic acid (PBA) modified self-assembled monolayer (SAM) on a gold electrode with an optimized disassociation constant of PBA, that is, 3-fluoro-4-carbamoyl-PBA possessing its pKa of 7.1, was prepared and utilized as an extended gate electrode for Bio-FET. The prepared electrode showed a glucose-dependent change in the surface potential under physiological conditions, thus providing a remarkably simple rationale for the glyco-sensitive Bio-FET. Importantly, the PBA modified electrode showed tolerance to relatively severe heat and drying treatments; conditions under which protein based materials would surely be denatured. A PBA modified SAM with optimized disassociation constant (pKa) can exhibit a glucose-dependent change in the surface potential under physiological conditions, providing a remarkably simple but robust method for the glyco-sensing. This protein-free, totally synthetic glyco-sensing strategy may offer cheap, robust and easily accessible platform that may be useful in developing countries. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Determinants of engagement in mental health consumer-run organizations.

    PubMed

    Brown, Louis Davis; Townley, Greg

    2015-04-01

    Mental health consumer-run organizations (CROs) are a low-cost, evidence-based strategy for promoting recovery. To increase CRO utilization, characteristics that promote engagement need to be identified and encouraged. The study examined individual and organizational characteristics that predict three types of engagement in CROs-attendance, leadership involvement, and socially supportive involvement. Surveys were administered to 250 CRO members attending 20 CROs. Leaders of each CRO reported organizational characteristics through a separate questionnaire. Multilevel regression models examined relationships between predictors and indicators of CRO engagement. Perceived sense of community was the only characteristic that predicted attendance, leadership involvement, and socially supportive involvement (p<.001). Perceived organizational empowerment, shared leadership, peer counseling, and several demographic characteristics also predicted some measures of engagement. CROs that can effectively promote sense of community, organizational empowerment, shared leadership, and peer counseling may be better able to engage participants. The discussion considers several strategies to enhance these characteristics, such as collectively establishing values and practicing shared decision making.

  3. Determinants of Engagement in Mental Health Consumer-Run Organizations

    PubMed Central

    Brown, Louis Davis; Townley, Greg

    2015-01-01

    Objective Mental health consumer-run organizations (CROs) are a low-cost, evidence-based strategy for promoting recovery. To increase CRO utilization, characteristics that promote engagement need to be identified and encouraged. The study examined individual and organizational characteristics that predict three types of engagement in CROs—attendance, leadership involvement, and socially supportive involvement. Methods Surveys were administered to 250 CRO members attending 20 CROs. Leaders of each CRO reported organizational characteristics through a separate questionnaire. Multilevel regression models examined relationships between predictors and indicators of CRO engagement. Results Perceived sense of community was the only characteristic that predicted attendance as well as leadership involvement and socially supportive involvement. Perceived organizational empowerment, shared leadership, peer counseling, and several demographic characteristics also predicted some measures of engagement. Conclusions CROs that can effectively promote sense of community, organizational empowerment, shared leadership, and peer counseling may be better able to engage participants. The discussion considers several strategies to enhance these characteristics, such as collectively establishing values and practicing shared decision making. PMID:25554965

  4. Characterization of in-use light-duty gasoline vehicle emissions by remote sensing in Beijing: impact of recent control measures.

    PubMed

    Zhou, Yu; Fu, Lixin; Cheng, Linglin

    2007-09-01

    China's national government and Beijing city authorities have adopted additional control measures to reduce the negative impact of vehicle emissions on Beijing's air quality. An evaluation of the effectiveness of these measures may provide guidance for future vehicle emission control strategy development. In-use emissions from light-duty gasoline vehicles (LDGVs) were investigated at five sites in Beijing with remote sensing instrumentation. Distance-based mass emission factors were derived with fuel consumption modeled on real world data. The results show that the recently implemented aggressive control strategies are significantly reducing the emissions of on-road vehicles. Older vehicles are contributing substantially to the total fleet emissions. An earlier program to retrofit pre-Euro cars with three-way catalysts produced little emission reduction. The impact of model year and driving conditions on the average mass emission factors indicates that the durability of vehicles emission controls may be inadequate in Beijing.

  5. Molecular basis of cooperativity in pH-triggered supramolecular self-assembly

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhao, Tian; Wang, Chensu; Lin, Zhiqiang; Huang, Gang; Sumer, Baran D.; Gao, Jinming

    2016-10-01

    Supramolecular self-assembly offers a powerful strategy to produce high-performance, stimuli-responsive nanomaterials. However, lack of molecular understanding of stimulated responses frequently hampers our ability to rationally design nanomaterials with sharp responses. Here we elucidated the molecular pathway of pH-triggered supramolecular self-assembly of a series of ultra-pH sensitive (UPS) block copolymers. Hydrophobic micellization drove divergent proton distribution in either highly protonated unimer or neutral micelle states along the majority of the titration coordinate unlike conventional small molecular or polymeric bases. This all-or-nothing two-state solution is a hallmark of positive cooperativity. Integrated modelling and experimental validation yielded a Hill coefficient of 51 in pH cooperativity for a representative UPS block copolymer, by far the largest reported in the literature. These data suggest hydrophobic micellization and resulting positive cooperativity offer a versatile strategy to convert responsive nanomaterials into binary on/off switchable systems for chemical and biological sensing, as demonstrated in an additional anion sensing model.

  6. Nanomaterials derived from metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Dang, Song; Zhu, Qi-Long; Xu, Qiang

    2018-01-01

    The thermal transformation of metal-organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanent porosities and controllable functionalities that enable their good performance in sensing, gas storage, catalysis and energy-related applications. Although progress has been made to tune the morphologies of MOF-derived structures at the nanometre scale, it remains crucial to further our knowledge of the relationship between morphology and performance. In this Review, we summarize the synthetic strategies and optimized methods that enable control over the size, morphology, composition and structure of the derived nanomaterials. In addition, we compare the performance of materials prepared by the MOF-templated strategy and other synthetic methods. Our aim is to reveal the relationship between the morphology and the physico-chemical properties of MOF-derived nanostructures to optimize their performance for applications such as sensing, catalysis, and energy storage and conversion.

  7. Unmanned Aerial Systems as Part of a Multi-Component Assessment Strategy to Address Climate Change and Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Vrekoussis, Mihalis; Sciare, Jean; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos

    2015-04-01

    Unmanned Aerial Systems (UAS) have been established as versatile tools for different applications, providing data and observations for atmospheric and Earth-Systems research. They offer an urgently needed link between in-situ ground based measurements and satellite remote sensing observations and are distinguished by significant versatility, flexibility and moderate operational costs. UAS have the proven potential to contribute to a multi-component assessment strategy that combines remote-sensing, numerical modelling and surface measurements in order to elucidate important atmospheric processes. This includes physical and chemical transformations related to ongoing climate change as well as issues linked to aerosol-cloud interactions and air quality. The distinct advantages offered by UAS comprise, to name but a few: (i) their ability to operate from altitudes of a few meters to up to a few kilometers; (ii) their capability to perform autonomously controlled missions, which provides for repeat-measurements to be carried out at precisely defined locations; (iii) their relative ease of operation, which enables flexible employment at short-term notice and (iv) the employment of more than one platform in stacked formation, which allows for unique, quasi-3D-observations of atmospheric properties and processes. These advantages are brought to bear in combining in-situ ground based observations and numerical modeling with UAS-based remote sensing in elucidating specific research questions that require both horizontally and vertically resolved measurements at high spatial and temporal resolutions. Employing numerical atmospheric modelling, UAS can provide survey information over spatially and temporally localized, focused areas of evolving atmospheric phenomena, as they become identified by the numerical models. Conversely, UAS observations offer urgently needed data for model verification and provide boundary conditions for numerical models. In this presentation, we will briefly describe the current elements of our observational capabilities that enable the aforementioned multi-component assessment strategy by the Unmanned Systems Research Laboratory of the Cyprus Institute. This strategy is applied and utilized in the context of the EU-funded BACCHUS project, aside from other tasks. The ongoing and planned observations are particularly relevant as they are carried out in the Eastern Mediterranean and the Middle East, a region characterized by increasing anthropogenic pressures and ongoing and anticipated severe climatic changes and their impacts.

  8. MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity.

    PubMed

    Drobek, Martin; Kim, Jae-Hun; Bechelany, Mikhael; Vallicari, Cyril; Julbe, Anne; Kim, Sang Sub

    2016-04-06

    Gas sensors are of a great interest for applications including toxic or explosive gases detection in both in-house and industrial environments, air quality monitoring, medical diagnostics, or control of food/cosmetic properties. In the area of semiconductor metal oxides (SMOs)-based sensors, a lot of effort has been devoted to improve the sensing characteristics. In this work, we report on a general methodology for improving the selectivity of SMOx nanowires sensors, based on the coverage of ZnO nanowires with a thin ZIF-8 molecular sieve membrane. The optimized ZnO@ZIF-8-based nanocomposite sensor shows markedly selective response to H2 in comparison with the pristine ZnO nanowires sensor, while showing the negligible sensing response to C7H8 and C6H6. This original MOF-membrane encapsulation strategy applied to nanowires sensor architecture pave the way for other complex 3D architectures and various types of applications requiring either gas or ion selectivity, such as biosensors, photo(catalysts), and electrodes.

  9. The Use of Satellite Remote Sensing in Epidemiological Studies

    PubMed Central

    Sorek-Hamer, Meytar; Just, Allan C.; Kloog, Itai

    2016-01-01

    Purpose of review Particulate matter (PM) air pollution is a ubiquitous exposure linked with multiple adverse health outcomes for children and across the life course. The recent development of satellite based remote sensing models for air pollution enables the quantification of these risks and addresses many limitations of previous air pollution research strategies. We review the recent literature on the applications of satellite remote sensing in air quality research, with a focus on their use in epidemiological studies. Recent findings Aerosol optical depth (AOD) is a focus of this review and a significant number of studies show that ground-level PM can be estimated from columnar AOD. Satellite measurements have been found to be an important source of data for PM model-based exposure estimates, and recently have been used in health studies to increase the spatial breadth and temporal resolution of these estimates. Summary It is suggested that satellite-based models improve our understanding of the spatial characteristics of air quality. Although the adoption of satellite-based measures of air quality in health studies is in its infancy, it is rapidly growing. Nevertheless, further investigation is still needed in order to have a better understanding of the AOD contribution to these prediction models in order to use them with higher accuracy in epidemiological studies. PMID:26859287

  10. Satellite remote sensing in epidemiological studies.

    PubMed

    Sorek-Hamer, Meytar; Just, Allan C; Kloog, Itai

    2016-04-01

    Particulate matter air pollution is a ubiquitous exposure linked with multiple adverse health outcomes for children and across the life course. The recent development of satellite-based remote-sensing models for air pollution enables the quantification of these risks and addresses many limitations of previous air pollution research strategies. We review the recent literature on the applications of satellite remote sensing in air quality research, with a focus on their use in epidemiological studies. Aerosol optical depth (AOD) is a focus of this review and a significant number of studies show that ground-level particulate matter can be estimated from columnar AOD. Satellite measurements have been found to be an important source of data for particulate matter model-based exposure estimates, and recently have been used in health studies to increase the spatial breadth and temporal resolution of these estimates. It is suggested that satellite-based models improve our understanding of the spatial characteristics of air quality. Although the adoption of satellite-based measures of air quality in health studies is in its infancy, it is rapidly growing. Nevertheless, further investigation is still needed in order to have a better understanding of the AOD contribution to these prediction models in order to use them with higher accuracy in epidemiological studies.

  11. Scalable and Cost-Effective Assignment of Mobile Crowdsensing Tasks Based on Profiling Trends and Prediction: The ParticipAct Living Lab Experience

    PubMed Central

    Bellavista, Paolo; Corradi, Antonio; Foschini, Luca; Ianniello, Raffaele

    2015-01-01

    Nowadays, sensor-rich smartphones potentially enable the harvesting of huge amounts of valuable sensing data in urban environments, by opportunistically involving citizens to play the role of mobile virtual sensors to cover Smart City areas of interest. This paper proposes an in-depth study of the challenging technical issues related to the efficient assignment of Mobile Crowd Sensing (MCS) data collection tasks to volunteers in a crowdsensing campaign. In particular, the paper originally describes how to increase the effectiveness of the proposed sensing campaigns through the inclusion of several new facilities, including accurate participant selection algorithms able to profile and predict user mobility patterns, gaming techniques, and timely geo-notification. The reported results show the feasibility of exploiting profiling trends/prediction techniques from volunteers’ behavior; moreover, they quantitatively compare different MCS task assignment strategies based on large-scale and real MCS data campaigns run in the ParticipAct living lab, an ongoing MCS real-world experiment that involved more than 170 students of the University of Bologna for more than one year. PMID:26263985

  12. Functionality-Oriented Derivatization of Naphthalene Diimide: A Molecular Gel Strategy-Based Fluorescent Film for Aniline Vapor Detection.

    PubMed

    Fan, Jiayun; Chang, Xingmao; He, Meixia; Shang, Congdi; Wang, Gang; Yin, Shiwei; Peng, Haonan; Fang, Yu

    2016-07-20

    Modification of naphthalene diimide (NDI) resulted in a photochemically stable, fluorescent 3,4,5-tris(dodecyloxy)benzamide derivative of NDI (TDBNDI), and introduction of the long alkyl chains endowed the compound with good compatibility with commonly found organic solvents and in particular superior self-assembly in the solution state. Further studies revealed that TDBNDI forms gels with nine of the 18 solvents tested at a concentration of 2.0% (w/v), and the critical gelation concentrations of five of the eight gels are lower than 1.0% (w/v), indicating the high efficiency of the compound as a low-molecular mass gelator (LMMG). Transmission electron microscopy, scanning electron microscopy, and confocal laser scanning microscopy studies revealed the networked fibrillar structure of the TDBNDI/methylcyclohexane (MCH) gel. On the basis of these findings, a fluorescent film was developed via simple spin-coating of the TDBNDI/MCH gel on a glass substrate surface. Fluorescence behavior and sensing performance studies demonstrated that this film is photochemically stable, and sensitive and selective to the presence of aniline vapor. Notably, the response is instantaneous, and the sensing process is fully and quickly reversible. This case study demonstrates that derivatization of photochemically stable fluorophores into LMMGs is a good strategy for developing high-performance fluorescent sensing films.

  13. Operational concepts and implementation strategies for the design configuration management process.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trauth, Sharon Lee

    2007-05-01

    This report describes operational concepts and implementation strategies for the Design Configuration Management Process (DCMP). It presents a process-based systems engineering model for the successful configuration management of the products generated during the operation of the design organization as a business entity. The DCMP model focuses on Pro/E and associated activities and information. It can serve as the framework for interconnecting all essential aspects of the product design business. A design operation scenario offers a sense of how to do business at a time when DCMP is second nature within the design organization.

  14. Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging.

    PubMed

    Zhou, Ruixi; Huang, Wei; Yang, Yang; Chen, Xiao; Weller, Daniel S; Kramer, Christopher M; Kozerke, Sebastian; Salerno, Michael

    2018-02-01

    Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. In the phantom experiments, images reconstructed with the MC strategy had higher SSIM (p < 0.01) and lower RMSE (p < 0.01) in the presence of respiratory motion. For patient studies, the MC strategy improved k-t PCA and k-t SLR reconstruction image quality (p < 0.01). The performance of k-t SLR without motion correction demonstrated improved image quality as compared to k-t PCA in the setting of respiratory motion (p < 0.01), while with motion correction there is a trend of better performance in k-t SLR as compared with motion corrected k-t PCA. Our simple and robust rigid motion compensation strategy greatly reduces motion artifacts and improves image quality for standard k-t PCA and k-t SLR techniques in setting of respiratory motion due to imperfect breath-holding.

  15. Sense of Coherence and Gambling: Exploring the Relationship Between Sense of Coherence, Gambling Behaviour and Gambling-Related Harm.

    PubMed

    Langham, Erika; Russell, Alex M T; Hing, Nerilee; Gainsbury, Sally M

    2017-06-01

    Understanding why some people experience problems with gambling whilst others are able to restrict gambling to recreational levels is still largely unexplained. One potential explanation is through salutogenesis, which is a health promotion approach of understanding factors which move people towards health rather than disease. An important aspect of salutogenesis is sense of coherence. Individuals with stronger sense of coherence perceive their environment as comprehensible, manageable and meaningful. The present study examined the relationship of individuals' sense of coherence on their gambling behaviour and experience of gambling related harm. This exploratory study utilised an archival dataset (n = 1236) from an online, cross sectional survey of people who had experienced negative consequences from gambling. In general, a stronger sense of coherence was related to lower problem gambling severity. When gambling behaviour was controlled for, sense of coherence was significantly related to the experience of individual gambling harms. A strong sense of coherence can be seen as a protective factor against problematic gambling behaviour, and subsequent gambling related harms. These findings support the value of both primary and tertiary prevention strategies that strengthen sense of coherence as a harm minimisation strategy. The present study demonstrates the potential value of, and provides clear direction for, considering sense of coherence in order to understand gambling-related issues.

  16. Development of micronic GMR-magnetoresistive sensors for non-destructive sensing applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jaffrès, Henri; LeMaitre, Yves; Collin, Sophie; Nguyen Vandau, Frédéric; Sergeeva-Chollet, Natalia; Decitre, Jean-Marc

    2015-09-01

    We will present our last development of GMR-based magnetic sensors devoted to sensing application for non-destructive control application. In these first realizations, we have chosen a so-called shape anisotropy - exchange biased strategy to fulfill the field-sensing criteria in the μT range in devices made of micronic single elements. Our devices realized by optical lithography, and whose typical sizes range from 150 μm x 150 μm to 500 μm x 500 μm elements, are made of trilayers GMR-based technology and consist of several circuitries of GMR elements of different lengths, widths and gaps. To obtain a full sensing linearity and reversibility requiring a perpendicular magnetic arrangement between both sensitive and hard layer, the magnetization of the latter have been hardened by pinning it with an antiferromagnetic material. The specific geometry of the design have been engineered in order to optimize the magnetic response of the soft layer via the different magnetic torques exerted on it essentially played by the dipolar fields or shape anisotropy, and the external magnetic field to detect. The smaller dimensions in width and in gap are then respectively of 2 μm and 3 μm to benefit of the full shape anisotropy formatting the magnetic response.

  17. Compressive Sensing with Cross-Validation and Stop-Sampling for Sparse Polynomial Chaos Expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huan, Xun; Safta, Cosmin; Sargsyan, Khachik

    Compressive sensing is a powerful technique for recovering sparse solutions of underdetermined linear systems, which is often encountered in uncertainty quanti cation analysis of expensive and high-dimensional physical models. We perform numerical investigations employing several com- pressive sensing solvers that target the unconstrained LASSO formulation, with a focus on linear systems that arise in the construction of polynomial chaos expansions. With core solvers of l1 ls, SpaRSA, CGIST, FPC AS, and ADMM, we develop techniques to mitigate over tting through an automated selection of regularization constant based on cross-validation, and a heuristic strategy to guide the stop-sampling decision. Practical recommendationsmore » on parameter settings for these tech- niques are provided and discussed. The overall method is applied to a series of numerical examples of increasing complexity, including large eddy simulations of supersonic turbulent jet-in-cross flow involving a 24-dimensional input. Through empirical phase-transition diagrams and convergence plots, we illustrate sparse recovery performance under structures induced by polynomial chaos, accuracy and computational tradeoffs between polynomial bases of different degrees, and practi- cability of conducting compressive sensing for a realistic, high-dimensional physical application. Across test cases studied in this paper, we find ADMM to have demonstrated empirical advantages through consistent lower errors and faster computational times.« less

  18. Smartphone-Based Food Diagnostic Technologies: A Review.

    PubMed

    Rateni, Giovanni; Dario, Paolo; Cavallo, Filippo

    2017-06-20

    A new generation of mobile sensing approaches offers significant advantages over traditional platforms in terms of test speed, control, low cost, ease-of-operation, and data management, and requires minimal equipment and user involvement. The marriage of novel sensing technologies with cellphones enables the development of powerful lab-on-smartphone platforms for many important applications including medical diagnosis, environmental monitoring, and food safety analysis. This paper reviews the recent advancements and developments in the field of smartphone-based food diagnostic technologies, with an emphasis on custom modules to enhance smartphone sensing capabilities. These devices typically comprise multiple components such as detectors, sample processors, disposable chips, batteries and software, which are integrated with a commercial smartphone. One of the most important aspects of developing these systems is the integration of these components onto a compact and lightweight platform that requires minimal power. To date, researchers have demonstrated several promising approaches employing various sensing techniques and device configurations. We aim to provide a systematic classification according to the detection strategy, providing a critical discussion of strengths and weaknesses. We have also extended the analysis to the food scanning devices that are increasingly populating the Internet of Things (IoT) market, demonstrating how this field is indeed promising, as the research outputs are quickly capitalized on new start-up companies.

  19. Smartphone-Based Food Diagnostic Technologies: A Review

    PubMed Central

    Rateni, Giovanni; Dario, Paolo; Cavallo, Filippo

    2017-01-01

    A new generation of mobile sensing approaches offers significant advantages over traditional platforms in terms of test speed, control, low cost, ease-of-operation, and data management, and requires minimal equipment and user involvement. The marriage of novel sensing technologies with cellphones enables the development of powerful lab-on-smartphone platforms for many important applications including medical diagnosis, environmental monitoring, and food safety analysis. This paper reviews the recent advancements and developments in the field of smartphone-based food diagnostic technologies, with an emphasis on custom modules to enhance smartphone sensing capabilities. These devices typically comprise multiple components such as detectors, sample processors, disposable chips, batteries and software, which are integrated with a commercial smartphone. One of the most important aspects of developing these systems is the integration of these components onto a compact and lightweight platform that requires minimal power. To date, researchers have demonstrated several promising approaches employing various sensing techniques and device configurations. We aim to provide a systematic classification according to the detection strategy, providing a critical discussion of strengths and weaknesses. We have also extended the analysis to the food scanning devices that are increasingly populating the Internet of Things (IoT) market, demonstrating how this field is indeed promising, as the research outputs are quickly capitalized on new start-up companies. PMID:28632188

  20. Dynamic protein assembly by programmable DNA strand displacement.

    PubMed

    Chen, Rebecca P; Blackstock, Daniel; Sun, Qing; Chen, Wilfred

    2018-04-01

    Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.

  1. Deep neural network-based domain adaptation for classification of remote sensing images

    NASA Astrophysics Data System (ADS)

    Ma, Li; Song, Jiazhen

    2017-10-01

    We investigate the effectiveness of deep neural network for cross-domain classification of remote sensing images in this paper. In the network, class centroid alignment is utilized as a domain adaptation strategy, making the network able to transfer knowledge from the source domain to target domain on a per-class basis. Since predicted labels of target data should be used to estimate the centroid of each class, we use overall centroid alignment as a coarse domain adaptation method to improve the estimation accuracy. In addition, rectified linear unit is used as the activation function to produce sparse features, which may improve the separation capability. The proposed network can provide both aligned features and an adaptive classifier, as well as obtain label-free classification of target domain data. The experimental results using Hyperion, NCALM, and WorldView-2 remote sensing images demonstrated the effectiveness of the proposed approach.

  2. Dynamic protein assembly by programmable DNA strand displacement

    NASA Astrophysics Data System (ADS)

    Chen, Rebecca P.; Blackstock, Daniel; Sun, Qing; Chen, Wilfred

    2018-03-01

    Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.

  3. Luminescent metal-organic frameworks for chemical sensing and explosive detection.

    PubMed

    Hu, Zhichao; Deibert, Benjamin J; Li, Jing

    2014-08-21

    Metal-organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications. Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas. A very interesting and well-investigated topic is their optical emission properties and related applications. Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011. This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection. The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection.

  4. Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing.

    PubMed

    Guo, Bingyuan; Sheng, Yingying; Zhou, Ke; Liu, Quansheng; Liu, Lei; Wu, Hai-Chen

    2018-03-26

    A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex-forming molecular beacon and a stem-forming DNA component that is modified with a host-guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α-hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point-of-care diagnostics with a portable nanopore kit in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Disruptive innovations: new anti-infectives in the age of resistance.

    PubMed

    Tegos, George P; Hamblin, Michael R

    2013-10-01

    This special issue of Current Opinion in Pharmacology is concerned with new developments in antimicrobial drugs and covers innovative strategies for dealing with microbial infection in the age of multi-antibiotic resistance. Despite widespread fears that many infectious diseases may become untreatable, disruptive innovations are in the process of being discovered and developed that may go some way to leading the fight-back against the rising threat. Natural products, quorum sensing inhibitors, biofilm disruptors, gallium-based drugs, cyclodextrin inhibitors of pore-forming toxins, anti-fungals that deal with biofilms, and light based antimicrobial strategies are specifically addressed. New non-vertebrate animal models of infection may facilitate high-throughput screening (HTS) of novel anti-infectives. Copyright © 2013. Published by Elsevier Ltd.

  6. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Feng, Hao-Lin; Rao, Hua-Shang; Xu, Yang-Fan; Kuang, Dai-Bin; Su, Cheng-Yong

    2014-05-01

    The scrupulous design of nanoarchitectures and smart hybridization of specific active materials are closely related to the overall photovoltaic performance of an anode electrode. Here we present a solution-based strategy for the fabrication of well-aligned metal oxide-based nanowire-nanosheet-nanorod hyperbranched arrays on transparent conducting oxide substrates. For these hyperbranched arrays, we observe a twofold increment in dye adsorption and enhanced light trapping and scattering capability compared with the pristine titanium dioxide nanowires, and thus a power conversion efficiency of 9.09% is achieved. Our growth approach presents a strategy to broaden the photoresponse and maximize the light-harvesting efficiency of arrays architectures, and may lead to applications for energy conversion and storage, catalysis, water splitting and gas sensing.

  7. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures.

    PubMed

    Wu, Wu-Qiang; Feng, Hao-Lin; Rao, Hua-Shang; Xu, Yang-Fan; Kuang, Dai-Bin; Su, Cheng-Yong

    2014-05-29

    The scrupulous design of nanoarchitectures and smart hybridization of specific active materials are closely related to the overall photovoltaic performance of an anode electrode. Here we present a solution-based strategy for the fabrication of well-aligned metal oxide-based nanowire-nanosheet-nanorod hyperbranched arrays on transparent conducting oxide substrates. For these hyperbranched arrays, we observe a twofold increment in dye adsorption and enhanced light trapping and scattering capability compared with the pristine titanium dioxide nanowires, and thus a power conversion efficiency of 9.09% is achieved. Our growth approach presents a strategy to broaden the photoresponse and maximize the light-harvesting efficiency of arrays architectures, and may lead to applications for energy conversion and storage, catalysis, water splitting and gas sensing.

  8. Reporter-free potentiometric sensing of boronic acids and their reactions by using quaternary ammonium salt-functionalized polymeric liquid membranes.

    PubMed

    Wang, Xuewei; Yue, Dengfeng; Lv, Enguang; Wu, Lei; Qin, Wei

    2014-02-18

    The tremendous applications of boronic acids (BAs) in chemical sensing, medical chemistry, molecular assembly, and organic synthesis lead to an urgent demand for developing effective sensing methods for BAs. This paper reports a facile and sensitive potentiometric sensor scheme for heterogeneous detection of BAs based on their unexpected potential responses on quaternary ammonium salt-doped polymeric liquid membranes. (11)B NMR data reveal that a quaternary ammonium chloride can trigger the hydrolysis of an electrically neutral BA in an aprotic solvent. Using the quaternary ammonium salt as the receptor, the BA molecules can be extracted from the sample solution into the polymeric membrane phase and undergo the concomitant hydrolysis. Such salt-triggered hydrolysis generates H(+) ions, which can be coejected into the aqueous phase with the counterions (e.g., Cl(-)) owing to their high hydrophilicities. The perturbation on the ionic partition at the sample-membrane interface changes the phase boundary potential and thus enables the potentiometric sensing of BAs. In contrast to other transduction methods for BAs, for which labeled or separate reporters are exclusively required, the present heterogeneous sensing scheme allows the direct detection of BAs without using any reporter molecules. This technique shows superior detection limits for BAs (e.g., 1.0 × 10(-6) M for phenylboronic acid) as compared to previously reported methods based on colorimetry, fluorimetry, and mass spectrometry. The proposed sensing strategy has also been successfully applied to potentiometric indication of the BA reactions with hydrogen peroxide and saccharides, which allows indirect and sensitive detection of these important species.

  9. Heart failure patients' attitudes, beliefs, expectations and experiences of self-management strategies: a qualitative synthesis.

    PubMed

    Wingham, Jennifer; Harding, Geoff; Britten, Nicky; Dalal, Hayes

    2014-06-01

    To develop a model of heart failure patients' attitudes, beliefs, expectations, and experiences based on published qualitative research that could influence the development of self-management strategies. A synthesis of 19 qualitative research studies using the method of meta-ethnography. This synthesis offers a conceptual model of the attitudes, beliefs, and expectations of patients with heart failure. Patients experienced a sense of disruption before developing a mental model of heart failure. Patients' reactions included becoming a strategic avoider, a selective denier, a well-intentioned manager, or an advanced self-manager. Patients responded by forming self-management strategies and finally assimilated the strategies into everyday life seeking to feel safe. This conceptual model suggests that there are a range of interplaying factors that facilitate the process of developing self-management strategies. Interventions should take into account patients' concepts of heart failure and their subsequent reactions.

  10. A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex.

    PubMed

    Xu, Weichen; Lu, Yi

    2011-05-07

    We report a general strategy for developing a smart MRI contrast agent for the sensing of small molecules such as adenosine based on a DNA aptamer that is conjugated to a Gd compound and a protein streptavidin. The binding of adenosine to its aptamer results in the dissociation of the Gd compound from the large protein, leading to decreases in the rotational correlation time and thus change of MRI contrast. © The Royal Society of Chemistry 2011

  11. Volttron version 5.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VOLTTRON is an agent execution platform providing services to its agents that allow them to easily communicate with physical devices and other resources. VOLTTRON delivers an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions. VOLTTRON can independently manage a wide range of applications, such as HVAC systems, electric vehicles, distributed energy or entire building loads, leading to improved operational efficiency.

  12. 77 FR 57558 - Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    .... SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) will meet September 24, 2012. DATES... on long-range and short-range strategies for the licensing of commercial remote sensing satellite...

  13. A compressive sensing-based computational method for the inversion of wide-band ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Gelmini, A.; Gottardi, G.; Moriyama, T.

    2017-10-01

    This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.

  14. Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation

    PubMed Central

    Bilic, Benny; Belkin, Shimshon

    2010-01-01

    Genetically engineered microbial reporter strains are based upon the fusion of an inducible sensing element upstream of a reporting element, so that the construct emits a dose-dependent signal when exposed to the inducing compound(s) or stress factor(s). In this communication1 we described several general approaches undertaken in order to enhance the sensing performance of such promoter::reporter fusions. Significant improvements in detection sensitivity, response kinetics and signal intensity were achieved by modi fication of the length of the promoter-containing DNA fragment, by random or site-directed mutagenesis and by promoter duplication. The general nature of these genetics manipulations makes them applicable to other types of promoter::reporter fusions. PMID:21326942

  15. A qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics.

    PubMed

    Feng, Lihui; Rutherford, Steven T; Papenfort, Kai; Bagert, John D; van Kessel, Julia C; Tirrell, David A; Wingreen, Ned S; Bassler, Bonnie L

    2015-01-15

    Quorum sensing is a cell-cell communication process that bacteria use to transition between individual and social lifestyles. In vibrios, homologous small RNAs called the Qrr sRNAs function at the center of quorum-sensing pathways. The Qrr sRNAs regulate multiple mRNA targets including those encoding the quorum-sensing regulatory components luxR, luxO, luxM, and aphA. We show that a representative Qrr, Qrr3, uses four distinct mechanisms to control its particular targets: the Qrr3 sRNA represses luxR through catalytic degradation, represses luxM through coupled degradation, represses luxO through sequestration, and activates aphA by revealing the ribosome binding site while the sRNA itself is degraded. Qrr3 forms different base-pairing interactions with each mRNA target, and the particular pairing strategy determines which regulatory mechanism occurs. Combined mathematical modeling and experiments show that the specific Qrr regulatory mechanism employed governs the potency, dynamics, and competition of target mRNA regulation, which in turn, defines the overall quorum-sensing response. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Vision sensor and dual MEMS gyroscope integrated system for attitude determination on moving base

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoting; Sun, Changku; Wang, Peng; Huang, Lu

    2018-01-01

    To determine the relative attitude between the objects on a moving base and the base reference system by a MEMS (Micro-Electro-Mechanical Systems) gyroscope, the motion information of the base is redundant, which must be removed from the gyroscope. Our strategy is to add an auxiliary gyroscope attached to the reference system. The master gyroscope is to sense the total motion, and the auxiliary gyroscope is to sense the motion of the moving base. By a generalized difference method, relative attitude in a non-inertial frame can be determined by dual gyroscopes. With the vision sensor suppressing accumulative drift of the MEMS gyroscope, the vision and dual MEMS gyroscope integration system is formed. Coordinate system definitions and spatial transform are executed in order to fuse inertial and visual data from different coordinate systems together. And a nonlinear filter algorithm, Cubature Kalman filter, is used to fuse slow visual data and fast inertial data together. A practical experimental setup is built up and used to validate feasibility and effectiveness of our proposed attitude determination system in the non-inertial frame on the moving base.

  17. Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade?

    NASA Astrophysics Data System (ADS)

    Ramsey, Michael S.; Harris, Andrew J. L.

    2013-01-01

    Volcanological remote sensing spans numerous techniques, wavelength regions, data collection strategies, targets, and applications. Attempting to foresee and predict the growth vectors in this broad and rapidly developing field is therefore exceedingly difficult. However, we attempted to make such predictions at both the American Geophysical Union (AGU) meeting session entitled Volcanology 2010: How will the science and practice of volcanology change in the coming decade? held in December 2000 and the follow-up session 10 years later, Looking backward and forward: Volcanology in 2010 and 2020. In this summary paper, we assess how well we did with our predictions for specific facets of volcano remote sensing in 2000 the advances made over the most recent decade, and attempt a new look ahead to the next decade. In completing this review, we only consider the subset of the field focused on thermal infrared remote sensing of surface activity using ground-based and space-based technology and the subsequent research results. This review keeps to the original scope of both AGU presentations, and therefore does not address the entire field of volcanological remote sensing, which uses technologies in other wavelength regions (e.g., ultraviolet, radar, etc.) or the study of volcanic processes other than the those associated with surface (mostly effusive) activity. Therefore we do not consider remote sensing of ash/gas plumes, for example. In 2000, we had looked forward to a "golden age" in volcanological remote sensing, with a variety of new orbital missions both planned and recently launched. In addition, exciting field-based sensors such as hand-held thermal cameras were also becoming available and being quickly adopted by volcanologists for both monitoring and research applications. All of our predictions in 2000 came true, but at a pace far quicker than we predicted. Relative to the 2000-2010 timeframe, the coming decade will see far fewer new orbital instruments with direct applications to volcanology. However ground-based technologies and applications will continue to proliferate, and unforeseen technology promises many exciting possibilities that will advance volcano thermal monitoring and science far beyond what we can currently envision.

  18. Strategies that facilitate participation in family activities of children and adolescents with profound intellectual and multiple disabilities: parents' and personal assistants' experiences.

    PubMed

    Axelsson, Anna Karin; Imms, Christine; Wilder, Jenny

    2014-01-01

    Participation throughout one's life plays a significant role for development and emotional well-being. For this reason, there is a need to identify ways to facilitate participation in family activities for children and adolescents with profound intellectual and multiple disabilities (PIMD). The study design was qualitative and explorative, based on semi structured interviews with 11 parents and 9 personal assistants of children with PIMD. The interviews revealed participation-facilitating strategies relating to the children's/adolescent's proximal environment, such as "Availability and acceptability of the activity", "Good knowledge about the child" and a "A positive attitude of people close to the child", as well as strategies related to the children/adolescents themselves: "Sense of belonging", "Possible for the child/adolescent to understand", "Opportunities to influence" and "Feeling of being needed". Children and adolescents with PIMD are dependent on support obtained through their environment. The identified strategies, individually adapted through awareness and knowledge by the parents and the personal assistants, provide important evidence to assist our understanding in gaining understanding about how to improve participation in family activities of children and adolescents with PIMD. Participation-facilitating strategies related to the child/adolescent and his or her proximal environments are identified to improve participation in children and adolescents with profound intellectual and multiple disabilities (PIMD). Examples of strategies for the child's/adolescents' proximal environment include "good knowledge about the child/adolescent", and, for the child/adolescent, include creating "sense of belonging" and "opportunities to influence". Identifying and making these strategies explicit may assist in enhancing the participation of children and adolescents with PIMD in family activities. People in the child's/adolescent's proximal environment need to set the scene for participation.

  19. A qualitative investigation of lay perspectives of diagnosis and self-management strategies employed by people with progressive multiple sclerosis.

    PubMed

    Frost, Julia; Grose, Jane; Britten, Nicky

    2017-05-01

    This article explores how people with progressive multiple sclerosis give meaning to their experiences. It builds upon the self-management literature, which has captured the tension between the desire for retaining normalcy and the increasing burden of self-management associated with chronic disease progression. This repeat interview study is empirically grounded in 28 interviews with 14 people with progressive multiple sclerosis. We identified gender differences in diagnosis-seeking which impacted subsequent sense-making. Male respondents found a diagnosis of multiple sclerosis difficult to come to terms with, and an enduring sense of loss or anger could inhibit further sense-making. A diagnosis of multiple sclerosis was more difficult to obtain for women respondents, and any sense of certainty that diagnosis provided framed their subsequent sense-making strategies. The complex sequelae of multiple sclerosis require that self-management strategies are both contextual and timely, although even the most accomplished self-managers can lose their sense of self with neurodegeneration. Disease progression can be associated with suicidal ideation, suggesting the need for greater dialogue to ensure that people with multiple sclerosis are adequately supported to fulfil their quality of life at all stages of neurodegeneration. These lay perspectives emphasise the articulation of affect rather than the rendering of a medical diagnosis, although diagnosis may provide a degree of certainty in the short term. The ethos of self-management ensures people attempt to retain their sense of 'normality' and existent social roles for as long as possible, but this ethos can negate both one's ability to self-manage and the management of self.

  20. Optimal directional view angles for remote-sensing missions

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Holben, B. N.; Tucker, C. J.; Newcomb, W. W.

    1984-01-01

    The present investigation is concerned with the directional, off-nadir viewing of terrestrial scenes using remote-sensing systems from aircraft and satellite platforms, taking into account advantages of such an approach over strictly nadir viewing systems. Directional reflectance data collected for bare soil and several different vegetation canopies in NOAA-7 AVHRR bands 1 and 2 were analyzed. Optimum view angles were recommended for two strategies. The first strategy views the utility of off-nadir measurements as extending spatial and temporal coverage of the target area. The second strategy views the utility of off-nadir measurements as providing additional information about the physical characteristics of the target. Conclusions regarding the two strategies are discussed.

  1. The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE)

    PubMed Central

    Tian, Xin; Li, Zengyuan; Chen, Erxue; Liu, Qinhuo; Yan, Guangjian; Wang, Jindi; Niu, Zheng; Zhao, Shaojie; Li, Xin; Pang, Yong; Su, Zhongbo; van der Tol, Christiaan; Liu, Qingwang; Wu, Chaoyang; Xiao, Qing; Yang, Le; Mu, Xihan; Bo, Yanchen; Qu, Yonghua; Zhou, Hongmin; Gao, Shuai; Chai, Linna; Huang, Huaguo; Fan, Wenjie; Li, Shihua; Bai, Junhua; Jiang, Lingmei; Zhou, Ji

    2015-01-01

    The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques. PMID:26332035

  2. Fighting On All Fronts: A Critical Review Of The US Strategy Against ISIL

    DTIC Science & Technology

    2016-05-26

    developing a base sense of the sheer complexity. The Shia led Iraqi government has exacerbated tensions with the Sunnis through its heavy-handedness...only a part. In effect, only the symptom of a problem is being addressed instead of the getting at the core of the problem . Looking at ISIL through ...13 Solving the Right Problem : Framing ISIL Through Complexity Science

  3. Islamic Education on Formation of Environmental Awareness in Pondok Pesantren Indonesia

    NASA Astrophysics Data System (ADS)

    La Fua, Jumardin; Umi Nurlila, Ratna; Gunawan, Fahmi; Suardi Wekke, Ismail

    2018-05-01

    This study aimed at exploring Islamic education strategy in shaping environmental awareness in Islamic Boarding School Gontor Putra, Southeast Sulawesi, Indonesia. This is a model for actualizing environmental education through environmental hygiene management based on the values of the Qur’an and the Hadisth. This research was qualitative descriptive study examining the Islamic community by using an ethnographic approach. The results showed that those educational strategies were (1) conducting participatory activities, such as cleaning Friday, arrangement of garden and surrounding environment, creation of green open space, and (2) building collective awareness about the importance of environmental management through daily activities. The strategy can ultimately create students who have a sense of eco-spirituality in interacting with nature.

  4. Experiments in advanced control concepts for space robotics - An overview of the Stanford Aerospace Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Hollars, M. G.; Cannon, R. H., Jr.; Alexander, H. L.; Morse, D. F.

    1987-01-01

    The Stanford University Aerospace Robotics Laboratory is actively developing and experimentally testing advanced robot control strategies for space robotic applications. Early experiments focused on control of very lightweight one-link manipulators and other flexible structures. The results are being extended to position and force control of mini-manipulators attached to flexible manipulators and multilink manipulators with flexible drive trains. Experimental results show that end-point sensing and careful dynamic modeling or adaptive control are key to the success of these control strategies. Free-flying space robot simulators that operate on an air cushion table have been built to test control strategies in which the dynamics of the base of the robot and the payload are important.

  5. Experimental philosophy leading to a small scale digital data base of the conterminous United States for designing experiments with remotely sensed data

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Masuoka, E. J.; Broderick, P. W.; Garman, T. R.; Ludwig, R. W.; Beltran, G. N.; Heyman, P. J.; Hooker, L. K.

    1983-01-01

    Research using satellite remotely sensed data, even within any single scientific discipline, often lacked a unifying principle or strategy with which to plan or integrate studies conducted over an area so large that exhaustive examination is infeasible, e.g., the U.S.A. However, such a series of studies would seem to be at the heart of what makes satellite remote sensing unique, that is the ability to select for study from among remotely sensed data sets distributed widely over the U.S., over time, where the resources do not exist to examine all of them. Using this philosophical underpinning and the concept of a unifying principle, an operational procedure for developing a sampling strategy and formal testable hypotheses was constructed. The procedure is applicable across disciplines, when the investigator restates the research question in symbolic form, i.e., quantifies it. The procedure is set within the statistical framework of general linear models. The dependent variable is any arbitrary function of remotely sensed data and the independent variables are values or levels of factors which represent regional climatic conditions and/or properties of the Earth's surface. These factors are operationally defined as maps from the U.S. National Atlas (U.S.G.S., 1970). Eighty-five maps from the National Atlas, representing climatic and surface attributes, were automated by point counting at an effective resolution of one observation every 17.6 km (11 miles) yielding 22,505 observations per map. The maps were registered to one another in a two step procedure producing a coarse, then fine scale registration. After registration, the maps were iteratively checked for errors using manual and automated procedures. The error free maps were annotated with identification and legend information and then stored as card images, one map to a file. A sampling design will be accomplished through a regionalization analysis of the National Atlas data base (presently being conducted). From this analysis a map of homogeneous regions of the U.S.A. will be created and samples (LANDSAT scenes) assigned by region.

  6. Managing motherhood: strategies used by new mothers to maintain perceptions of wellness.

    PubMed

    Currie, Janet

    2009-07-01

    The first year or so of motherhood can represent a transitional lifestyle change; however, experiences are not well understood from the mother's own perspective. In a series of interviews, nine mothers related their beliefs and ideas about strategies utilized to maintain a perceived sense of wellness. The mothers used three main strategies: (a) obtaining help, (b) having a plan, and (c) taking time-out. Discovery of a successful strategy lead to a mother feeling greater confidence in the efficacy of her selected method, calmer, and in greater control. In order to achieve a true sense of increasing control over her own health, however, it is recommended a mother prioritize strategies to meet her own personal needs in addition to meeting the needs of others.

  7. Evaluation of Hydrologic Simulations Developed Using Multi-Model Synthesis and Remotely-Sensed Data within a Portfolio of Calibration Strategies

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Markstrom, S. L.

    2016-12-01

    The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. Hydrologic models for 1,576 gaged watersheds across the CONUS were developed to test the feasibility of improving streamflow simulations linking physically-based hydrologic models with remotely-sensed data products (i.e. snow water equivalent). Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison across multiple calibration strategy tests. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve hydrologic simulations for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of modeled and measured information for hydrologic model development and calibration. In addition, these calibration strategies have been developed to be flexible so that new data products can be assimilated. This analysis provides a foundation to understand how well models work when sufficient streamflow data are not available and could be used to further inform hydrologic model parameter development for ungaged areas.

  8. Patient safety education to change medical students' attitudes and sense of responsibility.

    PubMed

    Roh, Hyerin; Park, Seok Ju; Kim, Taekjoong

    2015-01-01

    This study examined changes in the perceptions and attitudes as well as the sense of individual and collective responsibility in medical students after they received patient safety education. A three-day patient safety curriculum was implemented for third-year medical students shortly before entering their clerkship. Before and after training, we administered a questionnaire, which was analysed quantitatively. Additionally, we asked students to answer questions about their expected behaviours in response to two case vignettes. Their answers were analysed qualitatively. There was improvement in students' concepts of patient safety after training. Before training, they showed good comprehension of the inevitability of error, but most students blamed individuals for errors and expressed a strong sense of individual responsibility. After training, students increasingly attributed errors to system dysfunction and reported more self-confidence in speaking up about colleagues' errors. However, due to the hierarchical culture, students still described difficulties communicating with senior doctors. Patient safety education effectively shifted students' attitudes towards systems-based thinking and increased their sense of collective responsibility. Strategies for improving superior-subordinate communication within a hierarchical culture should be added to the patient safety curriculum.

  9. Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment.

    PubMed

    Ulapane, Nalika; Alempijevic, Alen; Vidal Calleja, Teresa; Valls Miro, Jaime

    2017-09-26

    Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor's behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application.

  10. Masking agent-free and channel-switch-mode simultaneous sensing of Fe(3+) and Hg(2+) using dual-excitation graphene quantum dots.

    PubMed

    Xu, Fengzhou; Shi, Hui; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Yan, Lv'an; Ye, Xiaosheng; Tang, Jinlu; Shangguan, Jingfang; Luo, Lan

    2015-06-21

    A novel channel-switch-mode strategy for simultaneous sensing of Fe(3+) and Hg(2+) is developed with dual-excitation single-emission graphene quantum dots (GQDs). By utilizing the dual-channel fluorescence response performance of GQDs, this strategy achieved a facile, low-cost, masking agent-free, quantitative and selective dual-ion assay even in mixed ion samples and practical water samples.

  11. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems

    PubMed Central

    Torres, Carlos; Vázquez, Luis; Reglero, Guillermo; Fornari, Tiziana

    2017-01-01

    Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays. However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons, mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive supplements for cancer treatment based on the improvement of their bioavailability goes through this association. PMID:28555156

  12. A fast and fully automatic registration approach based on point features for multi-source remote-sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Le; Zhang, Dengrong; Holden, Eun-Jung

    2008-07-01

    Automatic registration of multi-source remote-sensing images is a difficult task as it must deal with the varying illuminations and resolutions of the images, different perspectives and the local deformations within the images. This paper proposes a fully automatic and fast non-rigid image registration technique that addresses those issues. The proposed technique performs a pre-registration process that coarsely aligns the input image to the reference image by automatically detecting their matching points by using the scale invariant feature transform (SIFT) method and an affine transformation model. Once the coarse registration is completed, it performs a fine-scale registration process based on a piecewise linear transformation technique using feature points that are detected by the Harris corner detector. The registration process firstly finds in succession, tie point pairs between the input and the reference image by detecting Harris corners and applying a cross-matching strategy based on a wavelet pyramid for a fast search speed. Tie point pairs with large errors are pruned by an error-checking step. The input image is then rectified by using triangulated irregular networks (TINs) to deal with irregular local deformations caused by the fluctuation of the terrain. For each triangular facet of the TIN, affine transformations are estimated and applied for rectification. Experiments with Quickbird, SPOT5, SPOT4, TM remote-sensing images of the Hangzhou area in China demonstrate the efficiency and the accuracy of the proposed technique for multi-source remote-sensing image registration.

  13. Detection of single-nucleotide polymorphisms using an ON-OFF switching of regenerated biosensor based on a locked nucleic acid-integrated and toehold-mediated strand displacement reaction.

    PubMed

    Gao, Zhong Feng; Ling, Yu; Lu, Lu; Chen, Ning Yu; Luo, Hong Qun; Li, Nian Bing

    2014-03-04

    Although various strategies have been reported for single-nucleotide polymorphisms (SNPs) detection, development of a time-saving, specific, and regenerated electrochemical sensing platform still remains a realistic goal. In this study, an ON-OFF switching of a regenerated biosensor based on a locked nucleic acid (LNA)-integrated and toehold-mediated strand displacement reaction technique is constructed for detection of SNPs. The LNA-integrated and methylene blue-labeled capture probe with an external toehold is designed to switch on the sensing system. The mutant-type DNA probe completes complementary with the capture probe to trigger the strand displacement reaction, which switches off the sensing system. However, when the single-base mismatched wild-type DNA probe is presented, the strand displacement reaction cannot be achieved; therefore, the sensing system still keeps the ON state. This DNA sensor is stable over five reuses. We further testify that the LNA-integrated sequence has better recognition ability for SNPs detection compared to the DNA-integrated sequence. Moreover, this DNA senor exhibits a remarkable discrimination capability of SNPs among abundant wild-type targets and 6000-fold (m/m) excess of genomic DNA. In addition, it is selective enough in complex and contaminant-ridden samples, such as human urine, soil, saliva, and beer. Overall, these results demonstrate that this reliable DNA sensor is easy to be fabricated, simple to operate, and stable enough to be readily regenerated.

  14. Adaptive compressive learning for prediction of protein-protein interactions from primary sequence.

    PubMed

    Zhang, Ya-Nan; Pan, Xiao-Yong; Huang, Yan; Shen, Hong-Bin

    2011-08-21

    Protein-protein interactions (PPIs) play an important role in biological processes. Although much effort has been devoted to the identification of novel PPIs by integrating experimental biological knowledge, there are still many difficulties because of lacking enough protein structural and functional information. It is highly desired to develop methods based only on amino acid sequences for predicting PPIs. However, sequence-based predictors are often struggling with the high-dimensionality causing over-fitting and high computational complexity problems, as well as the redundancy of sequential feature vectors. In this paper, a novel computational approach based on compressed sensing theory is proposed to predict yeast Saccharomyces cerevisiae PPIs from primary sequence and has achieved promising results. The key advantage of the proposed compressed sensing algorithm is that it can compress the original high-dimensional protein sequential feature vector into a much lower but more condensed space taking the sparsity property of the original signal into account. What makes compressed sensing much more attractive in protein sequence analysis is its compressed signal can be reconstructed from far fewer measurements than what is usually considered necessary in traditional Nyquist sampling theory. Experimental results demonstrate that proposed compressed sensing method is powerful for analyzing noisy biological data and reducing redundancy in feature vectors. The proposed method represents a new strategy of dealing with high-dimensional protein discrete model and has great potentiality to be extended to deal with many other complicated biological systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. pH-switchable electrochemical sensing platform based on chitosan-reduced graphene oxide/concanavalin a layer for assay of glucose and urea.

    PubMed

    Song, Yonghai; Liu, Hongyu; Tan, Hongliang; Xu, Fugang; Jia, Jianbo; Zhang, Lixue; Li, Zhuang; Wang, Li

    2014-02-18

    A facile and effective electrochemical sensing platform for the detection of glucose and urea in one sample without separation was developed using chitosan-reduced graphene oxide (CS-rGO)/concanavalin A (Con A) as a sensing layer. The CS-rGO/Con A with pH-dependent surface net charges exhibited pH-switchable response to negatively charged Fe(CN)6(3-). The principle for glucose and urea detection was essentially based on in situ pH-switchable enzyme-catalyzed reaction in which the oxidation of glucose catalyzed by glucose oxidase or the hydrolyzation of urea catalyzed by urease resulted in a pH change of electrolyte solution to give different electrochemical responses toward Fe(CN)6(3-). It was verified by cyclic voltammograms, differential pulse voltammograms, and electrochemical impedance spectroscopy. The resistance to charge transfer or amperometric current changed proportionally toward glucose concentration from 1.0 to 10.0 mM and urea concentration from 1.0 to 7.0 mM. On the basis of human serum experiments, the sensing platform was proved to be suitable for simultaneous assay of glucose and urea in a practical biosystem. This work not only gives a way to detect glucose and urea in one sample without separation but also provides a potential strategy for the detection of nonelectroactive species based on the enzyme-catalyzed reaction and pH-switchable biosensor.

  16. Local Learning Strategies for Wake Identification

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Alsalman, Mohamad; Kanso, Eva

    2017-11-01

    Swimming agents, biological and engineered alike, must navigate the underwater environment to survive. Tasks such as autonomous navigation, foraging, mating, and predation require the ability to extract critical cues from the hydrodynamic environment. A substantial body of evidence supports the hypothesis that biological systems leverage local sensing modalities, including flow sensing, to gain knowledge of their global surroundings. The nonlinear nature and high degree of complexity of fluid dynamics makes the development of algorithms for implementing localized sensing in bioinspired engineering systems essentially intractable for many systems of practical interest. In this work, we use techniques from machine learning for training a bioinspired swimmer to learn from its environment. We demonstrate the efficacy of this strategy by learning how to sense global characteristics of the wakes of other swimmers measured only from local sensory information. We conclude by commenting on the advantages and limitations of this data-driven, machine learning approach and its potential impact on broader applications in underwater sensing and navigation.

  17. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing.

    PubMed

    Hills, Katherine D; Oliveira, Daniela A; Cavallaro, Nicholas D; Gomes, Carmen L; McLamore, Eric S

    2018-03-26

    We demonstrate a sensing mechanism for rapid detection of Listeria monocytogenes in food samples using the actuation of chitosan-aptamer nanobrush borders. The bio-inspired soft material and sensing strategy mimic natural symbiotic systems, where low levels of bacteria are selectively captured from complex matrices. To engineer this biomimetic system, we first develop reduced graphene oxide/nanoplatinum (rGO-nPt) electrodes, and characterize the fundamental electrochemical behavior in the presence and absence of chitosan nanobrushes during actuation (pH-stimulated osmotic swelling). We then characterize the electrochemical behavior of the nanobrush when receptors (antibodies or DNA aptamers) are conjugated to the surface. Finally, we test various techniques to determine the most efficient capture strategy based on nanobrush actuation, and then apply the biosensors in a food product. Maximum cell capture occurs when aptamers conjugated to the nanobrush bind cells in the extended conformation (pH < 6), followed by impedance measurement in the collapsed nanobrush conformation (pH > 6). The aptamer-nanobrush hybrid material was more efficient than the antibody-nanobrush material, which was likely due to the relatively high adsorption capacity for aptamers. The biomimetic material was used to develop a rapid test (17 min) for selectively detecting L. monocytogenes at concentrations ranging from 9 to 107 CFU mL-1 with no pre-concentration, and in the presence of other Gram-positive cells (Listeria innocua and Staphylococcus aureus). Use of this bio-inspired material is among the most efficient for L. monocytogenes sensing to date, and does not require sample pretreatment, making nanobrush borders a promising new material for rapid pathogen detection in food.

  18. Spatial separation of electrons and holes for enhancing the gas-sensing property of a semiconductor: ZnO/ZnSnO3 nanorod arrays prepared by a hetero-epitaxial growth

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Gao, Peng; Sha, Linna; Chi, Qianqian; Yang, Lei; Zhang, Jianjiao; Chen, Yujin; Zhang, Milin

    2018-04-01

    The construction of semiconductor composites is known as a powerful method used to realize the spatial separation of electrons and the holes in them, which can result in more electrons or holes and increase the dispersion of oxygen ions ({{{{O}}}2}- and O - ) (one of the most critical factors for their gas-sensing properties) on the surface of the semiconductor gas sensor. In this work, using 1D ZnO/ZnSnO3 nanoarrays as an example, which are prepared through a hetero-epitaxial growing process to construct a chemically bonded interface, the above strategy to attain a better semiconductor gas-sensing property has been realized. Compared with single ZnSnO3 nanotubes and no-matching ZnO/ZnSnO3 nanoarrays gas sensors, it has been proven by x-ray photoelectron spectroscopy and photoluminescence spectrum examination that the as-obtained ZnO/ZnSnO3 sensor showed a greatly increased quantity of active surface electrons with exceptional responses to trace target gases and much lower optimum working temperatures (less than about 170 °C). For example, the as-obtained ZnO/ZnSnO3 sensor exhibited an obvious response and short response/recovery time (less than 10 s) towards trace H2S gas (a detection limit down to 700 ppb). The high responses and dynamic repeatability observed in these sensors reveal that the strategy based on the as-presented electron and hole separation is reliable for improving the gas-sensing properties of semiconductors.

  19. Remote sensing of the coastal ocean with standard geodetic GNSS-equipment

    NASA Astrophysics Data System (ADS)

    Löfgren, J. S.; Haas, R.; Larson, K. M.; Scherneck, H.-G.

    2012-04-01

    We use standard geodetic Global Navigation Satellite System (GNSS) equipment to perform remote sensing measurements of the coastal ocean. This is done by a so-called GNSS-based tide gauge that uses both direct GNSS-signals and GNSS-signals that are reflected off the sea surface. Our installation is located at the Onsala Space Observatory (OSO) at the west coast of Sweden and consists of a zenith-looking Right Hand Circularly Polarized (RHCP) and a nadir-looking Left Hand Circularly Polarized (LHCP) antenna. Each antenna is connected to a standard geodetic-type GNSS-receiver. We applied two different analysis strategies to our GNSS data set. The first strategy is based on a traditional geodetic differential analysis [Löfgren et al., 2011] and makes use of the data from both receivers; connected to the zenith and the nadir looking antennae. This approach results in local sea level that is automatically corrected for land motion, meaning that the GNSS-based tide gauge can provide reliable sea-level estimates even in tectonic active regions. The second strategy focuses on the Signal-to-Noise Ratio (SNR) recorded with the receiver connected to the zenith-looking antenna [Larson et al., 2011]. The SNR is affected by multipath originating from the sea surface reflections. Analysis of the SNR data allows to determine the distance between the antenna and the reflecting surface, and thus to measure sea surface height. Results from both analysis strategies are compared to independently observed sea-level data from two stilling-well gauges operated by the Swedish Meteorological and Hydrological Institute (SMHI), which lie in a distance of several km from OSO. The root-mean-square agreement between the different time series of several month's length is on the order of 5 cm and better. These results indicate the large potential for using coastal GNSS-sites for the monitoring of the coastal ocean.

  20. High-Speed Lateral Flow Strategy for a Fast Biosensing with an Improved Selectivity and Binding Affinity.

    PubMed

    Cho, Dong Guk; Yoo, Haneul; Lee, Haein; Choi, Yeol Kyo; Lee, Minju; Ahn, Dong June; Hong, Seunghun

    2018-05-10

    We report a high-speed lateral flow strategy for a fast biosensing with an improved selectivity and binding affinity even under harsh conditions. In this strategy, biosensors were fixed at a location away from the center of a round shape disk, and the disk was rotated to create the lateral flow of a target solution on the biosensors during the sensing measurements. Experimental results using the strategy showed high reaction speeds, high binding affinity, and low nonspecific adsorptions of target molecules to biosensors. Furthermore, binding affinity between target molecules and sensing molecules was enhanced even in harsh conditions such as low pH and low ionic strength conditions. These results show that the strategy can improve the performance of conventional biosensors by generating high-speed lateral flows on a biosensor surface. Therefore, our strategy can be utilized as a simple but powerful tool for versatile bio and medical applications.

  1. Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams.

    PubMed

    Yao, Mian; Ouyang, Xia; Wu, Jushuai; Zhang, A Ping; Tam, Hwa-Yaw; Wai, P K A

    2018-06-05

    Miniature optical fiber-tip sensors based on directly µ-printed polymer suspended-microbeams are presented. With an in-house optical 3D μ-printing technology, SU-8 suspended-microbeams are fabricated in situ to form Fabry⁻Pérot (FP) micro-interferometers on the end face of standard single-mode optical fiber. Optical reflection spectra of the fabricated FP micro-interferometers are measured and fast Fourier transform is applied to analyze the cavity of micro-interferometers. The applications of the optical fiber-tip sensors for refractive index (RI) sensing and pressure sensing, which showed 917.3 nm/RIU to RI change and 4.29 nm/MPa to pressure change, respectively, are demonstrated in the experiments. The sensors and their optical µ-printing method unveil a new strategy to integrate complicated microcomponents on optical fibers toward 'lab-on-fiber' devices and applications.

  2. Re-defining one's occupational self 2 years after breast cancer: a case study.

    PubMed

    Newman, Robin M

    2013-01-01

    Margaret*, a 56 year-old Caucasian Stage III breast cancer survivor, participated in a 5 week occupational therapy pilot program, called Take Action. This program was designed for breast cancer survivors who self-reported changes in cognitive function following completion of chemotherapy. The goals of the program were to improve participants' knowledge and use of strategies to enhance occupational performance and to improve satisfaction and performance of meaningful daily activities or occupations. Through a client-centered and evidence-based approach, this case study highlights the importance of incorporating the survivors' sense of self into an occupation-based intervention. Occupational therapists play an important role in facilitating exploration of sense of self in the survivorship phase of care to support occupational performance in self care, productivity, work, leisure and social participation. This case study highlights the important work of redefining oneself in the survivorship phase of care. (*denotes name change).

  3. Dual-Emitting UiO-66(Zr&Eu) Metal-Organic Framework Films for Ratiometric Temperature Sensing.

    PubMed

    Feng, Ji-Fei; Liu, Tian-Fu; Shi, Jianlin; Gao, Shui-Ying; Cao, Rong

    2018-06-20

    A novel dual-emitting metal-organic framework based on Zr and Eu, named as UiO-66(Zr&Eu), was built using a clever strategy based on secondary building units. With the use of polymers, the obtained UiO-66(Zr&Eu) was subsequently deposited as thin films that can be utilized as smart thermometers. The UiO-66(Zr&Eu) polymer films can be used for the detection of temperature changes in the range of 237-337 K due to the energy transfer between the lanthanide ions (Eu in clusters) and the luminescent ligands, and the relative sensitivity reaches 4.26% K -1 at 337 K. Moreover, the sensitivity can be improved to 19.67% K -1 by changing the film thickness. In addition, the temperature-sensing performance of the films is superior to that of the powders, and the sensor can be reused 3 times without loss of performance.

  4. A Lakatosian Conceptual Change Teaching Strategy Based on Student Ability to Build Models with Varying Degrees of Conceptual Understanding of Chemical Equilibrium

    NASA Astrophysics Data System (ADS)

    Niaz, M.

    The main objective of this study is to construct a Lakatosian teaching strategy that can facilitate conceptual change in students'' understanding of chemical equilibrium. The strategy is based on the premise that cognitive conflicts must have been engendered by the students themselves in trying to cope with different problem solving strategies. Results obtained (based on Venezuelan freshman students) show that the performance of the experimental group of students was generally better (especially on the immediate post tests) than that of the control group. It is concluded that a conceptual change teaching strategy must take into consideration the following aspects: a) core beliefs of the students in the topic (cf. ''hard core'', Lakatos 1970); b) exploration of the relationship between core beliefs and student alternative conceptions (misconceptions); c) cognitive complexity of the core belief can be broken down into a series of related and probing questions; d) students resist changes in their core beliefs by postulating ''auxiliary hypotheses'' in order to resolve their contradictions; e) students'' responses based on their alternative conceptions must be considered not as wrong, but rather as models, perhaps in the same sense as used by scientists to break the complexity of a problem; and f) students'' misconceptions be considered as alternative conceptions (theories) that compete with the present scientific theories and at times recapitulate theories scientists held in the past.

  5. A Phytochemical-Sensing Strategy Based on Mass Spectrometry Imaging and Metabolic Profiling for Understanding the Functionality of the Medicinal Herb Green Tea.

    PubMed

    Fujimura, Yoshinori; Miura, Daisuke; Tachibana, Hirofumi

    2017-09-27

    Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.

  6. Organic nanoparticles for photovoltaic and sensing applications

    NASA Astrophysics Data System (ADS)

    Venkatraman, B. Harihara

    2011-12-01

    Can organic semiconducting nanoparticles be used as building blocks for fabricating electronic devices? The first half of this dissertation focuses on addressing this question and the associated research challenges for attaining morphological control pertaining to organic photovoltaic devices by nanoparticle assembly. Conjugated polymer nanoparticles were synthesized using miniemulsion technique and their optical, charge transfer and charge transport properties were studied. Some degree of control in polymer chain packing within the nanoparticle was also demonstrated. The optical, charge transfer and charge transport properties of these nanoparticles were found to be similar to that of parent conjugated polymer irrespective of the surface charge. From the initial photovoltaic measurements, it is shown that these nanoparticles are potential candidates for fabricating future photovoltaic devices. The second half of this dissertation is focused on developing a novel and viable strategy for sensing aqueous based nitroaromatic compounds. Nitroaromatic compounds are commonly used as explosives and possess serious health hazards. Thiophene-based conjugated polymer nanoparticles were synthesized and were shown to effectively detect aqueous based nitroaromatic explosives.

  7. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe.

    PubMed

    Lu, Ying; Li, Xianchan; Zhang, Limin; Yu, Ping; Su, Lei; Mao, Lanqun

    2008-03-15

    This study describes a facile and general strategy for the development of aptamer-based electrochemical sensors with a high specificity toward the targets and a ready regeneration feature. Very different from the existing strategies for the development of electrochemical aptasensors with the aptamers as the probes, the strategy proposed here is essentially based on the utilization of the aptamer-complementary DNA (cDNA) oligonucleotides as the probes for electrochemical sensing. In this context, the sequences at both ends of the cDNA are tailor-made to be complementary and both the redox moiety (i.e., ferrocene in this study) and thiol group are labeled onto the cDNA. The labeled cDNA are hybridized with their respective aptamers (i.e., ATP- and thrombin-binding aptamers in this study) to form double-stranded DNA (ds-DNA) and the electrochemical aptasensors are prepared by self-assembling the labeled ds-DNA onto Au electrodes. Upon target binding, the aptamers confined onto electrode surface dissociate from their respective cDNA oligonucleotides into the solution and the single-stranded cDNA could thus tend to form a hairpin structure through the hybridization of the complementary sequences at both its ends. Such a conformational change of the cDNA resulting from the target binding-induced dissociation of the aptamers essentially leads to the change in the voltammetric signal of the redox moiety labeled onto the cDNA and thus constitutes the mechanism for the electrochemical aptasensors for specific target sensing. The aptasensors demonstrated here with the cDNA as the probe are readily regenerated and show good responses toward the targets. This study may offer a new and relatively general approach to electrochemical aptasensors with good analytical properties and potential applications.

  8. Create a Sense of Urgency to Spark Learning

    ERIC Educational Resources Information Center

    Kelleher, Joanne

    2015-01-01

    While recent state and federal education policies convey a sense of urgency in regard to the need for education reforms, there are teachers for whom this sense of urgency has long been woven into the fabric of their practice. Fortified by their high expectations for their students, these teachers utilize strategies that convey the message that the…

  9. The Relationship between Students' Perceived Sense of Connectedness to the Instructor and Satisfaction in Online Courses

    ERIC Educational Resources Information Center

    LaBarbera, Robin

    2013-01-01

    While many researchers have sought to identify pedagogical strategies to create a sense of connectedness in online courses, few have investigated e-mail correspondence between student and instructor. The current study addressed this issue and found students' sense of connectedness to be strongly correlated to feedback on assignments, instructor…

  10. WaterSense Labeled Homes Quick Reference Guide

    EPA Pesticide Factsheets

    Green building has grown from a niche market to a savvy business strategy. WaterSense labeled homes capitalize on consumer demand by offering homeowners a whole-house solution to help them save water, energy, and money.

  11. Plasmonics Enhanced Smartphone Fluorescence Microscopy.

    PubMed

    Wei, Qingshan; Acuna, Guillermo; Kim, Seungkyeum; Vietz, Carolin; Tseng, Derek; Chae, Jongjae; Shir, Daniel; Luo, Wei; Tinnefeld, Philip; Ozcan, Aydogan

    2017-05-18

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  12. [Changes of wetland landscape pattern in Dayang River Estuary based on high-resolution remote sensing image].

    PubMed

    Wu, Tao; Zhao, Dong-zhi; Zhang, Feng-shou; Wei, Bao-quan

    2011-07-01

    Based on the comprehensive consideration of the high resolution characteristics of remote sensing data and the current situation of land cover and land use in Dayang River Estuary wetland, a classification system with different resolutions of wetland landscape in the Estuary was established. The landscape pattern indices and landscape transition matrix were calculated by using the high resolution remote sensing data, and the dynamic changes of the landscape pattern from 1984 to 2008 were analyzed. In the study period, the wetland landscape components changed drastically. Wetland landscape transferred from natural wetland into artificial wetland, and wetland core regional area decreased. Natural wetland's largest patch area index descended, and the fragmentation degree ascended; while artificial wetland area expanded, its patch number decreased, polymerization degree increased, and the maximum patch area index had an obvious increasing trend. Increasing human activities, embankment construction, and reclamation for aquaculture were the main causes for the decrease of wetland area and the degradation of the ecological functions of Dayang River Estuary. To constitute long-term scientific and reasonable development plan, establish wetland nature reserves, protect riverway, draft strict inspective regimes for aquaculture reclamation, and energetically develop resource-based tourism industry would be the main strategies for the protection of the estuarine wetland.

  13. A Novel Fiber Optic Based Surveillance System for Prevention of Pipeline Integrity Threats.

    PubMed

    Tejedor, Javier; Macias-Guarasa, Javier; Martins, Hugo F; Piote, Daniel; Pastor-Graells, Juan; Martin-Lopez, Sonia; Corredera, Pedro; Gonzalez-Herraez, Miguel

    2017-02-12

    This paper presents a novel surveillance system aimed at the detection and classification of threats in the vicinity of a long gas pipeline. The sensing system is based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) technology for signal acquisition and pattern recognition strategies for threat identification. The proposal incorporates contextual information at the feature level and applies a system combination strategy for pattern classification. The contextual information at the feature level is based on the tandem approach (using feature representations produced by discriminatively-trained multi-layer perceptrons) by employing feature vectors that spread different temporal contexts. The system combination strategy is based on a posterior combination of likelihoods computed from different pattern classification processes. The system operates in two different modes: (1) machine + activity identification, which recognizes the activity being carried out by a certain machine, and (2) threat detection, aimed at detecting threats no matter what the real activity being conducted is. In comparison with a previous system based on the same rigorous experimental setup, the results show that the system combination from the contextual feature information improves the results for each individual class in both operational modes, as well as the overall classification accuracy, with statistically-significant improvements.

  14. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters.

    PubMed

    Chen, Xi; Essner, Jeremy B; Baker, Gary A

    2014-08-21

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.

  15. Perceiving fingers in single-digit arithmetic problems.

    PubMed

    Berteletti, Ilaria; Booth, James R

    2015-01-01

    In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.

  16. Perceiving fingers in single-digit arithmetic problems

    PubMed Central

    Berteletti, Ilaria; Booth, James R.

    2015-01-01

    In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense. PMID:25852582

  17. Quorum quenching is an antivirulence strategy employed by endophytic bacteria.

    PubMed

    Kusari, Parijat; Kusari, Souvik; Lamshöft, Marc; Sezgin, Selahaddin; Spiteller, Michael; Kayser, Oliver

    2014-08-01

    Bacteria predominantly use quorum sensing to regulate a plethora of physiological activities such as cell-cell crosstalk, mutualism, virulence, competence, biofilm formation, and antibiotic resistance. In this study, we investigated how certain potent endophytic bacteria harbored in Cannabis sativa L. plants use quorum quenching as an antivirulence strategy to disrupt the cell-to-cell quorum sensing signals in the biosensor strain, Chromobacterium violaceum. We used a combination of high-performance liquid chromatography high-resolution mass spectrometry (HPLC-ESI-HRMS(n)) and matrix-assisted laser desorption ionization imaging high-resolution mass spectrometry (MALDI-imaging-HRMS) to first quantify and visualize the spatial distribution of the quorum sensing molecules in the biosensor strain, C. violaceum. We then showed, both quantitatively and visually in high spatial resolution, how selected endophytic bacteria of C. sativa can selectively and differentially quench the quorum sensing molecules of C. violaceum. This study provides fundamental insights into the antivirulence strategies used by endophytes in order to survive in their ecological niches. Such defense mechanisms are evolved in order to thwart the plethora of pathogens invading associated host plants in a manner that prevents the pathogens from developing resistance against the plant/endophyte bioactive secondary metabolites. This work also provides evidence towards utilizing endophytes as tools for biological control of bacterial phytopathogens. In continuation, such insights would even afford new concepts and strategies in the future for combating drug resistant bacteria by quorum-inhibiting clinical therapies.

  18. Signal-enhancer molecules encapsulated liposome as a valuable sensing and amplification platform combining the aptasensor for ultrasensitive ECL immunoassay.

    PubMed

    Mao, Li; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying; Xiang, Yun

    2011-06-15

    An innovatory ECL immunoassay strategy was proposed to detect the newly developing heart failure biomarker N-terminal pro-brain natriuretic peptide (NT-proBNP). Firstly, this strategy used small molecules encapsulated liposome as immune label to construct a sandwich immune sensing platform for NT-proBNP. Then the ECL aptasensor was prepared to collect and detect the small molecules released from the liposome. Finally, based on the ECL signal changes caused by the small molecules, the ECL signal indirectly reflected the level of NT-proBNP antigen. In this experiment, the cocaine was chosen as the proper small molecule that can act as signal-enhancer to enhance the ECL of Ru(bpy)(3)(2+). The cocaine-encapsulated liposomes were successfully characterized by TEM. The quantificational calculation proved the ∼5.3×10(3) cocaine molecules per liposome enough to perform the assignment of signal amplification. The cocaine-binding ECL aptasensor further promoted the work aimed at amplifying signal. The performance of NT-proBNP assay by the proposed strategy exhibited high sensitivity and high specificities with a linear relationship over 0.01-500 ng mL(-1) range, and a detection limit down to 0.77 pg mL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Diode-Laser Absorption Sensor for Line-of-Sight Gas Temperature Distributions

    NASA Astrophysics Data System (ADS)

    Sanders, Scott T.; Wang, Jian; Jeffries, Jay B.; Hanson, Ronald K.

    2001-08-01

    Line-of-sight diode-laser absorption techniques have been extended to enable temperature measurements in nonuniform-property flows. The sensing strategy for such flows exploits the broad wavelength-scanning abilities ( >1.7 nm ~ 30 cm-1 ) of a vertical cavity surface-emitting laser (VCSEL) to interrogate multiple absorption transitions along a single line of sight. To demonstrate the strategy, a VCSEL-based sensor for oxygen gas temperature distributions was developed. A VCSEL beam was directed through paths containing atmospheric-pressure air with known (and relatively simple) temperature distributions in the 200 -700 K range. The VCSEL was scanned over ten transitions in the R branch of the oxygen A band near 760 nm and optionally over six transitions in the P branch. Temperature distribution information can be inferred from these scans because the line strength of each probed transition has a unique temperature dependence; the measurement accuracy and resolution depend on the details of this temperature dependence and on the total number of lines scanned. The performance of the sensing strategy can be optimized and predicted theoretically. Because the sensor exhibits a fast time response ( ~30 ms) and can be adapted to probe a variety of species over a range of temperatures and pressures, it shows promise for industrial application.

  20. Communicating remote sensing concepts in an interdisciplinary environment

    NASA Technical Reports Server (NTRS)

    Chung, R.

    1981-01-01

    Although remote sensing is currently multidisciplinary in its applications, many of its terms come from the engineering sciences, particularly from the field of pattern recognition. Scholars from fields such as the social sciences, botany, and biology, may experience initial difficulty with remote sensing terminology, even though parallel concepts exist in their own fields. Some parallel concepts and terminologies from nonengineering fields, which might enhance the understanding of remote sensing concepts in an interdisciplinary situation are identified. Feedbacks which this analogue strategy might have on remote sensing itself are explored.

  1. Rural Community Leaders’ Perceptions of Environmental Health Risks

    PubMed Central

    Larsson, Laura S.; Butterfield, Patricia; Christopher, Suzanne; Hill, Wade

    2015-01-01

    Qualitative description was used to explore how rural community leaders frame, interpret, and give meaning to environmental health issues affecting their constituents and communities. Six rural community leaders discussed growth, vulnerable families, and the action avoidance strategies they use or see used in lieu of adopting health-promoting behaviors. Findings suggest intervention strategies should be economical, use common sense, be sensitive to regional identity, and use local case studies and “inside leadership.” Occupational health nurses addressing the disparate environmental health risks in rural communities are encouraged to use agenda-neutral, scientifically based risk communication efforts and foster collaborative relationships among nurses, planners, industry, and other community leaders. PMID:16562621

  2. Photocatalysis-Based Nanoprobes Using Noble Metal-Semiconductor Heterostructure for Visible Light-Driven in Vivo Detection of Mercury.

    PubMed

    Zhi, Lihua; Zeng, Xiaofan; Wang, Hao; Hai, Jun; Yang, Xiangliang; Wang, Baodui; Zhu, Yanhong

    2017-07-18

    The development of sensitive and reliable methods to monitor the presence of mercuric ions in cells and organisms is of great importance to biological research and biomedical applications. In this work, we propose a strategy to construct a solar-driven nanoprobe using a 3D Au@MoS 2 heterostructure as a photocatalyst and rhodamine B (RB) as a fluorescent and color change reporter molecule for monitoring Hg 2+ in living cells and animals. The sensing mechanism is based on the photoinduced electron formation of gold amalgam in the 3D Au@MoS 2 heterostructure under visible light illumination. This formation is able to remarkably inhibit the photocatalytic activity of the heterostructure toward RB decomposition. As a result, "OFF-ON" fluorescence and color change are produced. Such characteristics enable this new sensing platform to sensitively and selectively detect Hg 2+ in water by fluorescence and colorimetric methods. The detection limits of the fluorescence assay and colorimetric assay are 0.22 and 0.038 nM for Hg 2+ , respectively; these values are well below the acceptable limits in drinking water standards (10 nM). For the first time, such photocatalysis-based sensing platform is successfully used to monitor Hg 2+ in live cells and mice. Our work therefore opens a promising photocatalysis-based analysis methodology for highly sensitive and selective in vivo Hg 2+ bioimaging studies.

  3. Experimental design-based strategy for the simulation of complex gaseous mixture spectra to detect drug precursors

    NASA Astrophysics Data System (ADS)

    Calderisi, Marco; Ulrici, Alessandro; Pigani, Laura; Secchi, Alberto; Seeber, Renato

    2012-09-01

    The EU FP7 project CUSTOM (Drugs and Precursor Sensing by Complementing Low Cost Multiple Techniques) aims at developing a new sensing system for the detection of drug precursors in gaseous samples, which includes an External Cavity-Quantum Cascade Laser Photo-Acoustic Sensor (EC-QCLPAS) that is in the final step of realisation. Thus, a simulation based on FT-IR literature spectra has been accomplished, where the development of a proper strategy for the design of the composition of the environment, as much as possible realistic and representative of different scenarios, is of key importance. To this aim, an approach based on the combination of signal processing and experimental design techniques has been developed. The gaseous mixtures were built by adding the considered 4 drug precursor (target) species to the gases typically found in atmosphere, taking also into account possible interfering species. These last chemicals were selected considering custom environments (20 interfering chemical species), whose concentrations have been inferred from literature data. The spectra were first denoised by means of a Fast Wavelet Transform-based algorithm; then, a procedure based on a sigmoidal transfer function was developed to multiply the pure components spectra by the respective concentration values, in a way to correctly preserve background intensity and shape, and to operate only on the absorption bands. The noise structure of the EC-QCLPAS was studied using sample spectra measured with a prototype instrument, and added to the simulated mixtures. Finally a matrix containing 5000 simulated spectra of gaseous mixtures was built up.

  4. Smoke Sense Study Supported by Citizen Scientists Fact Sheet

    EPA Pesticide Factsheets

    EPA researchers are conducting a citizen science study called Smoke Sense to determine the extent to which exposure to wildland fire smoke affects health and productivity, and develop health risk communication strategies that protect public health.

  5. Impact Crater Hydrothermal Niches for Life on Mars: Question of Scale

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.

    2000-01-01

    A major focus in the search for fossil life on Mars is on ancient hydrothermal deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of hydrothermal activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized hydrothermal deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential hydrothermal sites on Mars. Such a strategy is being developed for volcanogenic hydrothermal systems, and a similar strategy is needed for impact hydrothermal systems.

  6. The White-hat Bot: A Novel Botnet Defense Strategy

    DTIC Science & Technology

    2012-06-14

    etc. I will briefly discuss one common exploit here. One fraudulent activity 4 perpetuated by botnets involves ad services such as Google’s AdSense ...which pays website owners revenue for posting the AdSense banner on their web site (Google, 2012). The AdSense banner displays messages from...botmaster creates a bot that is programmed to visit the botmaster’s own websites to click on the advertisements displayed in the AdSense banners. Since

  7. Integrating research into clinical internship training bridging the science/practice gap in pediatric psychology.

    PubMed

    McQuaid, Elizabeth L; Spirito, Anthony

    2012-03-01

    Existing literature highlights a critical gap between science and practice in clinical psychology. The internship year is a "capstone experience"; training in methods of scientific evaluation should be integrated with the development of advanced clinical competencies. We provide a rationale for continued exposure to research during the clinical internship year, including, (a) critical examination and integration of the literature regarding evidence-based treatment and assessment, (b) participation in faculty-based and independent research, and (c) orientation to the science and strategy of grantsmanship. Participation in research provides exposure to new empirical models and can foster the development of applied research questions. Orientation to grantsmanship can yield an initial sense of the "business of science." Internship provides an important opportunity to examine the challenges to integrating the clinical evidence base into professional practice; for that reason, providing research exposure on internship is an important strategy in training the next generation of pediatric psychologists.

  8. Variable density randomized stack of spirals (VDR-SoS) for compressive sensing MRI.

    PubMed

    Valvano, Giuseppe; Martini, Nicola; Landini, Luigi; Santarelli, Maria Filomena

    2016-07-01

    To develop a 3D sampling strategy based on a stack of variable density spirals for compressive sensing MRI. A random sampling pattern was obtained by rotating each spiral by a random angle and by delaying for few time steps the gradient waveforms of the different interleaves. A three-dimensional (3D) variable sampling density was obtained by designing different variable density spirals for each slice encoding. The proposed approach was tested with phantom simulations up to a five-fold undersampling factor. Fully sampled 3D dataset of a human knee, and of a human brain, were obtained from a healthy volunteer. The proposed approach was tested with off-line reconstructions of the knee dataset up to a four-fold acceleration and compared with other noncoherent trajectories. The proposed approach outperformed the standard stack of spirals for various undersampling factors. The level of coherence and the reconstruction quality of the proposed approach were similar to those of other trajectories that, however, require 3D gridding for the reconstruction. The variable density randomized stack of spirals (VDR-SoS) is an easily implementable trajectory that could represent a valid sampling strategy for 3D compressive sensing MRI. It guarantees low levels of coherence without requiring 3D gridding. Magn Reson Med 76:59-69, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. Hybrid region merging method for segmentation of high-resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Xiao, Pengfeng; Feng, Xuezhi; Wang, Jiangeng; Wang, Zuo

    2014-12-01

    Image segmentation remains a challenging problem for object-based image analysis. In this paper, a hybrid region merging (HRM) method is proposed to segment high-resolution remote sensing images. HRM integrates the advantages of global-oriented and local-oriented region merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region, which provides an elegant way to avoid the problem of starting point assignment and to enhance the optimization ability for local-oriented region merging. During the region growing procedure, the merging iterations are constrained within the local vicinity, so that the segmentation is accelerated and can reflect the local context, as compared with the global-oriented method. A set of high-resolution remote sensing images is used to test the effectiveness of the HRM method, and three region-based remote sensing image segmentation methods are adopted for comparison, including the hierarchical stepwise optimization (HSWO) method, the local-mutual best region merging (LMM) method, and the multiresolution segmentation (MRS) method embedded in eCognition Developer software. Both the supervised evaluation and visual assessment show that HRM performs better than HSWO and LMM by combining both their advantages. The segmentation results of HRM and MRS are visually comparable, but HRM can describe objects as single regions better than MRS, and the supervised and unsupervised evaluation results further prove the superiority of HRM.

  10. Conceptualizing belonging.

    PubMed

    Mahar, Alyson L; Cobigo, Virginie; Stuart, Heather

    2013-06-01

    To develop a transdisciplinary conceptualization of social belonging that could be used to guide measurement approaches aimed at evaluating the effectiveness of community-based programs for people with disabilities. We conducted a narrative, scoping review of peer reviewed English language literature published between 1990 and July 2011 using multiple databases, with "sense of belonging" as a key search term. The search engine ranked articles for relevance to the search strategy. Articles were searched in order until theoretical saturation was reached. We augmented this search strategy by reviewing reference lists of relevant papers. Theoretical saturation was reached after 40 articles; 22 of which were qualitative accounts. We identified five intersecting themes: subjectivity; groundedness to an external referent; reciprocity; dynamism and self-determination. We define a sense of belonging as a subjective feeling of value and respect derived from a reciprocal relationship to an external referent that is built on a foundation of shared experiences, beliefs or personal characteristics. These feelings of external connectedness are grounded to the context or referent group, to whom one chooses, wants and feels permission to belong. This dynamic phenomenon may be either hindered or promoted by complex interactions between environmental and personal factors.

  11. Optimized quantum sensing with a single electron spin using real-time adaptive measurements.

    PubMed

    Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  12. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    NASA Astrophysics Data System (ADS)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  13. Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application.

    PubMed

    Yang, Tingting; Wang, Wen; Zhang, Hongze; Li, Xinming; Shi, Jidong; He, Yijia; Zheng, Quan-shui; Li, Zhihong; Zhu, Hongwei

    2015-11-24

    Nanomaterials serve as promising candidates for strain sensing due to unique electromechanical properties by appropriately assembling and tailoring their configurations. Through the crisscross interlacing of graphene microribbons in an over-and-under fashion, the obtained graphene woven fabric (GWF) indicates a good trade-off between sensitivity and stretchability compared with those in previous studies. In this work, the function of woven fabrics for highly sensitive strain sensing is investigated, although network configuration is always a strategy to retain resistance stability. The experimental and simulation results indicate that the ultrahigh mechanosensitivity with gauge factors of 500 under 2% strain is attributed to the macro-woven-fabric geometrical conformation of graphene, which induces a large interfacial resistance between the interlaced ribbons and the formation of microscale-controllable, locally oriented zigzag cracks near the crossover location, both of which have a synergistic effect on improving sensitivity. Meanwhile, the stretchability of the GWF could be tailored to as high as over 40% strain by adjusting graphene growth parameters and adopting oblique angle direction stretching simultaneously. We also demonstrate that sensors based on GWFs are applicable to human motion detection, sound signal acquisition, and spatially resolved monitoring of external stress distribution.

  14. Adaptive behaviors in multi-agent source localization using passive sensing.

    PubMed

    Shaukat, Mansoor; Chitre, Mandar

    2016-12-01

    In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent's adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent's sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal.

  15. Fuzzy Nonlinear Proximal Support Vector Machine for Land Extraction Based on Remote Sensing Image

    PubMed Central

    Zhong, Xiaomei; Li, Jianping; Dou, Huacheng; Deng, Shijun; Wang, Guofei; Jiang, Yu; Wang, Yongjie; Zhou, Zebing; Wang, Li; Yan, Fei

    2013-01-01

    Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da’an in northern China. Two multi-category strategies, namely “one-against-one” and “one-against-rest” for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments. PMID:23936016

  16. Surveillance system for air pollutants by combination of the decision support system COMPAS and optical remote sensing systems

    NASA Astrophysics Data System (ADS)

    Flassak, Thomas; de Witt, Helmut; Hahnfeld, Peter; Knaup, Andreas; Kramer, Lothar

    1995-09-01

    COMPAS is a decision support system designed to assist in the assessment of the consequences of accidental releases of toxic and flammable substances. One of the key elements of COMPAS is a feedback algorithm which allows us to calculate the source term with the aid of concentration measurements. Up to now the feedback technique is applied to concentration measurements done with test tubes or conventional point sensors. In this paper the extension of the actual method is presented which is the combination of COMPAS and an optical remote sensing system like the KAYSER-THREDE K300 FTIR system. Active remote sensing methods based on FTIR are, among other applications, ideal for the so-called fence line monitoring of the diffuse emissions and accidental releases from industrial facilities, since from the FTIR spectra averaged concentration levels along the measurement path can be achieved. The line-averaged concentrations are ideally suited as on-line input for COMPAS' feedback technique. Uncertainties in the assessment of the source term related with both shortcomings of the dispersion model itself and also problems of a feedback strategy based on point measurements are reduced.

  17. The multi-sensory approach as a geoeducational strategy

    NASA Astrophysics Data System (ADS)

    Musacchio, Gemma; Piangiamore, Giovanna Lucia; Pino, Nicola Alessandro

    2014-05-01

    Geoscience knowledge has a strong impact in modern society as it relates to natural hazards, sustainability and environmental issues. The general public has a demanding attitude towards the understanding of crucial geo-scientific topics that is only partly satisfied by science communication strategies and/or by outreach or school programs. A proper knowledge of the phenomena might help trigger crucial inquiries when approaching mitigation of geo-hazards and geo-resources, while providing the right tool for the understanding of news and ideas floating from the web or other media, and, in other words, help communication to be more efficient. Nonetheless available educational resources seem to be inadequate in meeting the goal, while research institutions are facing the challenge to experience new communication strategies and non-conventional way of learning capable to allow the understanding of crucial scientific contents. We suggest the use of multi-sensory approach as a successful non-conventional way of learning for children and as a different perspective of learning for older students and adults. Sense organs stimulation are perceived and processed to build the knowledge of the surrounding, including all sorts of hazards. Powerfully relying in the sense of sight, Humans have somehow lost most of their ability for a deep perception of the environment enriched by all the other senses. Since hazards involve emotions we argue that new ways to approach the learning might go exactly through emotions that one might stress with a tactile experience, a hearing or smell stimulation. To test and support our idea we are building a package of learning activities and exhibits based on a multi-sensory experience where the sight is not allowed.

  18. Ultrasensitive, Real-time and Discriminative Detection of Improvised Explosives by Chemiresistive Thin-film Sensory Array of Mn2+ Tailored Hierarchical ZnS

    NASA Astrophysics Data System (ADS)

    Zhou, Chaoyu; Wu, Zhaofeng; Guo, Yanan; Li, Yushu; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2016-05-01

    A simple method combing Mn2+ doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn2+ doping. The responses of the sensors based on ZnS HNs towards 8 explosives generally increase firstly and then decrease with the increase of the doped Mn2+ concentration, reaching the climate at 5% Mn2+. Furthermore, the sensory array based on ZnS HNs with different doping levels achieved the sensitive and discriminative detection of 6 analytes relevant to IEDs and 2 military explosives in less than 5 s at room temperature. Importantly, the superior sensing performances make ZnS HNs material interesting in the field of chemiresistive sensors, and this simple method could be a very promising strategy to put the sensors based on thin-films of one-dimensional (1D) nanostructures into practical IEDs detection.

  19. Ultrasensitive, Real-time and Discriminative Detection of Improvised Explosives by Chemiresistive Thin-film Sensory Array of Mn2+ Tailored Hierarchical ZnS

    PubMed Central

    Zhou, Chaoyu; Wu, Zhaofeng; Guo, Yanan; Li, Yushu; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2016-01-01

    A simple method combing Mn2+ doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn2+ doping. The responses of the sensors based on ZnS HNs towards 8 explosives generally increase firstly and then decrease with the increase of the doped Mn2+ concentration, reaching the climate at 5% Mn2+. Furthermore, the sensory array based on ZnS HNs with different doping levels achieved the sensitive and discriminative detection of 6 analytes relevant to IEDs and 2 military explosives in less than 5 s at room temperature. Importantly, the superior sensing performances make ZnS HNs material interesting in the field of chemiresistive sensors, and this simple method could be a very promising strategy to put the sensors based on thin-films of one-dimensional (1D) nanostructures into practical IEDs detection. PMID:27161193

  20. Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel.

    PubMed

    Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua

    2016-08-19

    This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov's linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy.

  1. Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel

    PubMed Central

    Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua

    2016-01-01

    This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov’s linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy. PMID:27548178

  2. A framework for designing and analyzing binary decision-making strategies in cellular systems†

    PubMed Central

    Porter, Joshua R.; Andrews, Burton W.; Iglesias, Pablo A.

    2015-01-01

    Cells make many binary (all-or-nothing) decisions based on noisy signals gathered from their environment and processed through noisy decision-making pathways. Reducing the effect of noise to improve the fidelity of decision-making comes at the expense of increased complexity, creating a tradeoff between performance and metabolic cost. We present a framework based on rate distortion theory, a branch of information theory, to quantify this tradeoff and design binary decision-making strategies that balance low cost and accuracy in optimal ways. With this framework, we show that several observed behaviors of binary decision-making systems, including random strategies, hysteresis, and irreversibility, are optimal in an information-theoretic sense for various situations. This framework can also be used to quantify the goals around which a decision-making system is optimized and to evaluate the optimality of cellular decision-making systems by a fundamental information-theoretic criterion. As proof of concept, we use the framework to quantify the goals of the externally triggered apoptosis pathway. PMID:22370552

  3. Event-triggered decentralized adaptive fault-tolerant control of uncertain interconnected nonlinear systems with actuator failures.

    PubMed

    Choi, Yun Ho; Yoo, Sung Jin

    2018-06-01

    This paper investigates the event-triggered decentralized adaptive tracking problem of a class of uncertain interconnected nonlinear systems with unexpected actuator failures. It is assumed that local control signals are transmitted to local actuators with time-varying faults whenever predefined conditions for triggering events are satisfied. Compared with the existing control-input-based event-triggering strategy for adaptive control of uncertain nonlinear systems, the aim of this paper is to propose a tracking-error-based event-triggering strategy in the decentralized adaptive fault-tolerant tracking framework. The proposed approach can relax drastic changes in control inputs caused by actuator faults in the existing triggering strategy. The stability of the proposed event-triggering control system is analyzed in the Lyapunov sense. Finally, simulation comparisons of the proposed and existing approaches are provided to show the effectiveness of the proposed theoretical result in the presence of actuator faults. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  4. In situ growth of gold nanoparticles on Hg2+-binding M13 phages for mercury sensing.

    PubMed

    Wang, Xiaoyan; Yang, Ting; Zhang, Xiaoxiao; Chen, Mingli; Wang, Jianhua

    2017-11-09

    Mercury poses a serious threat to human health and the ecosystem. Its pollution is still prevalent in developing areas, which calls for the development of a simple on-site method for Hg 2+ detection. Plasmonic nanosensors for mercury, especially those based on gold nanoparticles (AuNPs), have been increasingly developed due to the flourish of nanotechnology in the last decade. However, the limitation on either selectivity or stability hindered their practical applications. Herein, by taking advantage of the unique optical properties of AuNPs and the versatility of M13 phages, a novel Hg 2+ sensing strategy is proposed. AuNPs grew in situ on the surface of Hg 2+ -binding M13 phages at room temperature and the resulting AuNP-phage networks were directly used for mercury sensing. Hg 2+ was selectively captured by M13 phages indwelling in the networks and gathered around AuNPs, followed by the reduction into Hg(0) and deposition on the AuNP surfaces, wherein it resulted in a blue shift of the SPR band of AuNPs and an increase in the absorbance. An LOD of 8 × 10 -8 mol L -1 was achieved based on the quantification of the absorption ratio of AuNPs at 525 and 650 nm. As the Hg 2+ recognition was double guaranteed by the capture of Hg 2+ -binding phages as well as the unique affinity between mercury and gold, the sensing system showed a high selectivity and a superior interference tolerance capability, facilitating its practical applications in environmental water bodies without deterioration of the sensing performance.

  5. A novel reagentless sensing system for measuring glucose based on the galactose/glucose-binding protein

    NASA Technical Reports Server (NTRS)

    Salins, L. L.; Ware, R. A.; Ensor, C. M.; Daunert, S.

    2001-01-01

    The galactose/glucose-binding protein (GBP) is synthesized in the cytoplasm of Escherichia coli in a precursor form and exported into the periplasmic space upon cleavage of a 23-amino-acid leader sequence. GBP binds galactose and glucose in a highly specific manner. The ligand induces a hinge motion in GBP and the resultant protein conformational change constitutes the basis of the sensing system. The mglB gene, which codes for GBP, was isolated from the chromosome of E. coli using the polymerase chain reaction (PCR). Since wild-type GBP lacks cysteines in its structure, introducing this amino acid by site-directed mutagenesis ensures single-label attachment at specific sites with a sulfhydro-specific fluorescent probe. Site-directed mutagenesis by overlap extension PCR was performed to prepare three different mutants to introduce a single cysteine residue at positions 148, 152, and 182. Since these residues are not involved in ligand binding and since they are located at the edge of the binding cleft, they experience a significant change in environment upon binding of galactose or glucose. The sensing system strategy is based on the fluorescence changes of the probe as the protein undergoes a structural change on binding. In this work a reagentless sensing system has been rationally designed that can detect submicromolar concentrations of glucose. The calibration plots have a linear working range of three orders of magnitude. Although the system can sense galactose as well, this epimer is not a potential interfering substance since its concentration in blood is negligible. Copyright 2001 Academic Press.

  6. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules.

    PubMed

    Wang, Ying; Zhu, Yingjing; Binyam, Atsebeha; Liu, Misha; Wu, Yinan; Li, Fengting

    2016-12-15

    A label-free sensing strategy based on the enzyme-mimicking activity of MOF was demonstrated for colorimetric detection of biomolecules. Firstly obvious blue color was observed due to the high efficiency of peroxidase-like catalytic activity of Fe-MIL-88A (an ion-based MOF material) toward 3,3',5,5'-tetramethylbenzidine (TMB). Then in the presence of target biomolecule and corresponding aptamer, the mimetic activity of Fe-MIL-88A can be strongly inhibited and used directly to realize the colorimetric detection. On the basis of the interesting findings, we designed a straightforward, label-free and sensitive colorimetric method for biomolecule detection by using the enzyme mimetic property of MOF coupling with molecular recognition element. Compared with the existed publications, our work breaks the routine way by setting up an inorganic-organic MOF-aptamer hybrid platform for colorimetric determination of biomolecules, expanding the targets scope from H2O2 or glucose to biomolecules. As a proof of concept, thrombin and thrombin aptamer was used as a model analyte. The limit of detection of 10nM can be achieved with naked eyes and ultrahigh selectivity of thrombin toward numerous interfering substances with 10-fold concentration was demonstrated significantly. Of note, the method was further applied for the detection of thrombin in human serum samples, showing the results in agreement with those values obtained in an immobilization buffer by the colorimetric method. This inorganic-organic MOF-aptamer sensing strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interests. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The applicability of remote sensing to Earth biological problems. Part 2: The potential of remote sensing in pest management

    NASA Technical Reports Server (NTRS)

    Polhemus, J. T.

    1980-01-01

    Five troublesome insect pest groups were chosen for study. These represent a broad spectrum of life cycles, ecological indicators, pest management strategies, and remote sensing requirements. Background data, and field study results for each of these subjects is discussed for each insect group. Specific groups studied include tsetse flies, locusts, western rangeland grasshoppers, range caterpillars, and mosquitoes. It is concluded that remote sensing methods are aplicable to the pest management of the insect groups studied.

  8. Kramers problem in evolutionary strategies

    NASA Astrophysics Data System (ADS)

    Dunkel, J.; Ebeling, W.; Schimansky-Geier, L.; Hänggi, P.

    2003-06-01

    We calculate the escape rates of different dynamical processes for the case of a one-dimensional symmetric double-well potential. In particular, we compare the escape rates of a Smoluchowski process, i.e., a corresponding overdamped Brownian motion dynamics in a metastable potential landscape, with the escape rates obtained for a biologically motivated model known as the Fisher-Eigen process. The main difference between the two models is that the dynamics of the Smoluchowski process is determined by local quantities, whereas the Fisher-Eigen process is based on a global coupling (nonlocal interaction). If considered in the context of numerical optimization algorithms, both processes can be interpreted as archetypes of physically or biologically inspired evolutionary strategies. In this sense, the results discussed in this work are utile in order to evaluate the efficiency of such strategies with regard to the problem of surmounting various barriers. We find that a combination of both scenarios, starting with the Fisher-Eigen strategy, provides a most effective evolutionary strategy.

  9. Toward Real-Time Classification of Wake Regimes from Sensor Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Mengying; Hemati, Maziar S.

    2017-11-01

    Hydrodynamic signals can transmit information that can be used by marine swimmers to detect disturbances in the local environment. Biological swimmers are able to sense and detect these signals with their hydrodynamic receptor systems. Recently, similar flow sensing systems have been developed with an aim to improve swimming efficiency in human-engineered underwater vehicles. A key part of the sensing strategy is to first classify wake structures in the external fluid, then to execute suitable control actions accordingly. In our previous work, we showed that a variety of 2S and 2P wakes can be distinguished based on time signatures of surface sensor measurements. However, we assumed access to the full dataset. In this talk, we extend our previous findings to classify wake regimes from sensor measurements in real-time, using a recursive Fast Fourier Transform algorithm. Wakes in different dynamical regimes, which may also vary in time, can be distinguished using our approach. Our results provide insights for enhancing hydrodynamic sensory capabilities in human-engineered systems.

  10. Single plasmonic nanoparticles for ultrasensitive DNA sensing: From invisible to visible.

    PubMed

    Guo, Longhua; Chen, Lichan; Hong, Seungpyo; Kim, Dong-Hwan

    2016-05-15

    The background signal is a major factor that restricts the limit of detection of biosensors. Herein, we present a zero-background DNA-sensing approach that utilizes enzyme-guided gold nanoparticle (AuNP) enlargement. This sensing strategy is based on the finding that small nanoparticles are invisible under a darkfield optical microscope, thus completely eliminating the background signal. In the event of target binding, Ag deposition is triggered and enlarges the AuNP beyond its optical diffraction limit, thereby making the invisible AuNP visible. Because the plasmon scattering of Ag is stronger than that of Au, only a thin layer of Ag is required to greatly enhance the scattering intensity of the AuNPs. Our investigation revealed that a target DNA concentration as low as 5.0×10(-21)M can transform the darkfield image of the nanoparticle from completely dark (invisible) to a blue dot (visible). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Enhanced fluorescence of tetrasulfonated zinc phthalocyanine by graphene quantum dots and its application in molecular sensing/imaging.

    PubMed

    Wang, Jian; Zhang, Yanjun; Ye, Jiqing; Jiang, Zhou

    2017-06-01

    When excited at 435 nm, tetra-sulfonate zinc phthalocyanine (ZnPcS 4 ) emitted dual fluorescence at 495 and 702 nm. The abnormal fluorescence at 495 nm was experimentally studied and analyzed in detail for the first time. The abnormal fluorescence at 495 nm was deduced to originate from triplet-triplet (T-T) energy transfer of excited phthalocyanine ( 3 *ZnPcS 4 ). Furthermore, graphene quantum dots (GQDs) enhanced the 495 nm fluorescence quantum yield (Q) of ZnPcS 4 . The fluorescence properties of ZnPcS 4 -GQDs conjugate were retained in a cellular environment. Based on the fluorescence of ZnPcS 4 -GQDs conjugate, we designed and prepared an Apt29/thrombin/Apt15 sandwich thrombin sensor with high specificity and affinity. This cost-saving, simple operational sensing strategy can be extended to use in sensing/imaging of other biomolecules. Copyright © 2016 John Wiley & Sons, Ltd.

  12. New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications.

    PubMed

    Kong, Biao; Selomulya, Cordelia; Zheng, Gengfeng; Zhao, Dongyuan

    2015-11-21

    Prussian blue (PB), the oldest synthetic coordination compound, is a classic and fascinating transition metal coordination material. Prussian blue is based on a three-dimensional (3-D) cubic polymeric porous network consisting of alternating ferric and ferrous ions, which provides facile assembly as well as precise interaction with active sites at functional interfaces. A fundamental understanding of the assembly mechanism of PB hetero-interfaces is essential to enable the full potential applications of PB crystals, including chemical sensing, catalysis, gas storage, drug delivery and electronic displays. Developing controlled assembly methods towards functionally integrated hetero-interfaces with adjustable sizes and morphology of PB crystals is necessary. A key point in the functional interface and device integration of PB nanocrystals is the fabrication of hetero-interfaces in a well-defined and oriented fashion on given substrates. This review will bring together these key aspects of the hetero-interfaces of PB nanocrystals, ranging from structure and properties, interfacial assembly strategies, to integrated hetero-structures for diverse sensing.

  13. Synthesis of porous SnO2 nanocubes via selective leaching and enhanced gas-sensing properties

    NASA Astrophysics Data System (ADS)

    Li, Yining; Wei, Qi; Song, Peng; Wang, Qi

    2016-01-01

    Porous micro-/nanostructures are of great interest in many current and emerging areas of technology. In this paper, porous SnO2 nanocubes have been successfully fabricated via a selective leaching strategy using CoSn(OH)6 as precursor. The structure and morphology of as-prepared samples were investigated by several techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential scanning calorimeter analysis (TG⿿DSC), transmission electron microscopy (TEM) and N2 adsorption⿿desorption analyses. On the basis of those characterizations, the mechanism for the formation of porous SnO2 nanocubes has been proposed. Owing to the well-defined and uniform porous structures, porous SnO2 nanocubes possessing more adsorbent amount of analytic gas and accelerate the transmission speed so as to enhance the gas-sensing properties. Gas sensing investigation showed that the sensor based on porous SnO2 nanocubes exhibited high response, short response⿿recovery times and good selectivity to ethanol gas.

  14. Strategies for satellite-based monitoring of CO2 from distributed area and point sources

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Miller, Charles E.; Duren, Riley M.; Natraj, Vijay; Eldering, Annmarie; Gunson, Michael R.; Crisp, David

    2014-05-01

    Atmospheric CO2 budgets are controlled by the strengths, as well as the spatial and temporal variabilities of CO2 sources and sinks. Natural CO2 sources and sinks are dominated by the vast areas of the oceans and the terrestrial biosphere. In contrast, anthropogenic and geogenic CO2 sources are dominated by distributed area and point sources, which may constitute as much as 70% of anthropogenic (e.g., Duren & Miller, 2012), and over 80% of geogenic emissions (Burton et al., 2013). Comprehensive assessments of CO2 budgets necessitate robust and highly accurate satellite remote sensing strategies that address the competing and often conflicting requirements for sampling over disparate space and time scales. Spatial variability: The spatial distribution of anthropogenic sources is dominated by patterns of production, storage, transport and use. In contrast, geogenic variability is almost entirely controlled by endogenic geological processes, except where surface gas permeability is modulated by soil moisture. Satellite remote sensing solutions will thus have to vary greatly in spatial coverage and resolution to address distributed area sources and point sources alike. Temporal variability: While biogenic sources are dominated by diurnal and seasonal patterns, anthropogenic sources fluctuate over a greater variety of time scales from diurnal, weekly and seasonal cycles, driven by both economic and climatic factors. Geogenic sources typically vary in time scales of days to months (geogenic sources sensu stricto are not fossil fuels but volcanoes, hydrothermal and metamorphic sources). Current ground-based monitoring networks for anthropogenic and geogenic sources record data on minute- to weekly temporal scales. Satellite remote sensing solutions would have to capture temporal variability through revisit frequency or point-and-stare strategies. Space-based remote sensing offers the potential of global coverage by a single sensor. However, no single combination of orbit and sensor provides the full range of temporal sampling needed to characterize distributed area and point source emissions. For instance, point source emission patterns will vary with source strength, wind speed and direction. Because wind speed, direction and other environmental factors change rapidly, short term variabilities should be sampled. For detailed target selection and pointing verification, important lessons have already been learned and strategies devised during JAXA's GOSAT mission (Schwandner et al, 2013). The fact that competing spatial and temporal requirements drive satellite remote sensing sampling strategies dictates a systematic, multi-factor consideration of potential solutions. Factors to consider include vista, revisit frequency, integration times, spatial resolution, and spatial coverage. No single satellite-based remote sensing solution can address this problem for all scales. It is therefore of paramount importance for the international community to develop and maintain a constellation of atmospheric CO2 monitoring satellites that complement each other in their temporal and spatial observation capabilities: Polar sun-synchronous orbits (fixed local solar time, no diurnal information) with agile pointing allow global sampling of known distributed area and point sources like megacities, power plants and volcanoes with daily to weekly temporal revisits and moderate to high spatial resolution. Extensive targeting of distributed area and point sources comes at the expense of reduced mapping or spatial coverage, and the important contextual information that comes with large-scale contiguous spatial sampling. Polar sun-synchronous orbits with push-broom swath-mapping but limited pointing agility may allow mapping of individual source plumes and their spatial variability, but will depend on fortuitous environmental conditions during the observing period. These solutions typically have longer times between revisits, limiting their ability to resolve temporal variations. Geostationary and non-sun-synchronous low-Earth-orbits (precessing local solar time, diurnal information possible) with agile pointing have the potential to provide, comprehensive mapping of distributed area sources such as megacities with longer stare times and multiple revisits per day, at the expense of global access and spatial coverage. An ad hoc CO2 remote sensing constellation is emerging. NASA's OCO-2 satellite (launch July 2014) joins JAXA's GOSAT satellite in orbit. These will be followed by GOSAT-2 and NASA's OCO-3 on the International Space Station as early as 2017. Additional polar orbiting satellites (e.g., CarbonSat, under consideration at ESA) and geostationary platforms may also become available. However, the individual assets have been designed with independent science goals and requirements, and limited consideration of coordinated observing strategies. Every effort must be made to maximize the science return from this constellation. We discuss the opportunities to exploit the complementary spatial and temporal coverage provided by these assets as well as the crucial gaps in the capabilities of this constellation. References Burton, M.R., Sawyer, G.M., and Granieri, D. (2013). Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75: 323-354. Duren, R.M., Miller, C.E. (2012). Measuring the carbon emissions of megacities. Nature Climate Change 2, 560-562. Schwandner, F.M., Oda, T., Duren, R., Carn, S.A., Maksyutov, S., Crisp, D., Miller, C.E. (2013). Scientific Opportunities from Target-Mode Capabilities of GOSAT-2. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, White Paper, 6p., March 2013.

  15. Lanthanide-Functionalized Metal-Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing.

    PubMed

    Yan, Bing

    2017-11-21

    Metal-organic frameworks (MOFs) possess an important advantage over other candidate classes for chemosensory materials because of their exceptional structural tunability and properties. Luminescent sensing using MOFs is a simple, intuitive, and convenient method to recognize species, but the method has limitations, such as insufficient chemical selectivity and signal loss. MOFs contain versatile building blocks (linkers or ligands) with special chemical reactivity, and postsynthetic modification (PSM) provides an opportunity to exploit and expand their unique properties. The linkers in most MOFs contain aromatic subunits that can readily display luminescence after ultraviolet or visible (typically blue) excitation, and this is the main luminescent nature of most MOFs. The introduction of photoactive lanthanide ions (Ln 3+ ) into the MOF hosts may produce new luminescent signals at different positions from that of the MOF linker, but this depends on the intramolecular energy transfer (antenna effect) from the MOF (linkers) to the Ln 3+ ions. Controlling the Ln 3+ content in MOF hybrids may create multiple luminescent centers. The nature of the unique luminescent centers may cause different responses to sensing species (i.e., ratiometric sensing), which may provide a new opportunity for luminescence research with applications to chemical sensing. In this Account, recent research progress on using lanthanide-functionalized MOF hybrid materials to create multiple luminescent centers for chemical sensing is described. Here we propose a general strategy to functionalize MOF hosts with lanthanide ions, compounds, or other luminescent species (organic dyes or carbon dots) and to assemble types of photofunctional hybrid systems based on lanthanide-functionalized MOFs. Five main methods were used to functionalize the MOFs and assemble the hybrid materials: in situ composition, ionic doping, ionic exchange, covalent PSM, and coordinated PSM. Through the lanthanide functionalization, multiple (double or triple) luminescent centers were created with different luminescent bands in the visible region. Because of the different luminescent natures of the lanthanide ions, MOF linkers, and other species (organic dyes or carbon dots), they display different responses to sensing species. Currently, using these strategies, we have utilized a dual-response luminescent probe to realize chemical sensing of different types of cations (Fe 3+ /Fe 2+ , Hg 2+ , and Cd 2+ ), anions (Cr 2 O 7 2- /CrO 4 - and CO 3 2- ), molecules (volatile organic compounds and O 2 ), special air pollutants (formaldehyde), and biomarkers of food spoilage as well as pH and temperature. Additionally, we have achieved triple-luminescence-response sensing of ions (Ag + , Hg 2+ , and S 2- ) in complicated aqueous environments, which was developed using a logic operation.

  16. Differential surface stress sensor for detection of chemical and biological species

    NASA Astrophysics Data System (ADS)

    Kang, K.; Nilsen-Hamilton, M.; Shrotriya, P.

    2008-10-01

    We report a sensor consisting of two micromachined cantilevers (a sensing/reference pair) that is suitable for detection of chemical and biological species. The sensing strategy involves coating the sensing cantilever with receptors that have high affinities for the analyte. The presence of analyte is detected by determining the differential surface stress associated with its adsorption/absorption to the sensing cantilever. An interferometric technique is utilized to measure the differential bending of the sensing cantilever with respect to reference. Surface stress associated with hybridization of single stranded DNA is measured to demonstrate the unique advantages of the sensor.

  17. Smoke Sense Study: A Citizen Science Project Using a Mobile App

    EPA Pesticide Factsheets

    EPA researchers are planning a citizen science study called Smoke Sense to determine the extent to which exposure to wildland fire smoke affects health and productivity, and to develop health risk communication strategies that protect public health.

  18. Development and Validation of the Chinese Making Sense of Adversity Scale: Acculturative Stressors as an Example

    ERIC Educational Resources Information Center

    Pan, Jia-Yan; Wong, Daniel Fu Keung; Chan, Kin Sun; Chan, Cecilia Lai Wan

    2008-01-01

    Objective: The objective of this study is to develop and validate the Chinese Making Sense of Adversity Scale (CMSAS) to measure the cognitive coping strategies that Chinese people adopt to make sense of adversity. Method: A 12-item CMSAS was developed by in-depth interview and item analysis. The scale was validated with a sample of 627 Chinese…

  19. Creating a Village: The Impact of the Opportunity to Participate in Synchronous Web Conferencing on Adult Learner Sense of Community

    ERIC Educational Resources Information Center

    Gable, Karla

    2012-01-01

    Community is a place where people go to feel comfortable. It is important to develop strategies for enhancing a sense of community in the online learning environment designed for adult learners. The purpose of this study was to determine if adding a synchronous conferencing experience to an asynchronous course impacted overall sense of community,…

  20. Nanoplasmonic sensors for biointerfacial science.

    PubMed

    Jackman, Joshua A; Rahim Ferhan, Abdul; Cho, Nam-Joon

    2017-06-19

    In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.

  1. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors.

    PubMed

    Gao, Ning; Zhou, Wei; Jiang, Xiaocheng; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2015-03-11

    Transistor-based nanoelectronic sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although the short Debye screening length in high ionic strength solutions has made difficult applications relevant to physiological conditions. Here, we describe a new and general strategy to overcome this challenge for field-effect transistor (FET) sensors that involves incorporating a porous and biomolecule permeable polymer layer on the FET sensor. This polymer layer increases the effective screening length in the region immediately adjacent to the device surface and thereby enables detection of biomolecules in high ionic strength solutions in real-time. Studies of silicon nanowire field-effect transistors with additional polyethylene glycol (PEG) modification show that prostate specific antigen (PSA) can be readily detected in solutions with phosphate buffer (PB) concentrations as high as 150 mM, while similar devices without PEG modification only exhibit detectable signals for concentrations ≤10 mM. Concentration-dependent measurements exhibited real-time detection of PSA with a sensitivity of at least 10 nM in 100 mM PB with linear response up to the highest (1000 nM) PSA concentrations tested. The current work represents an important step toward general application of transistor-based nanoelectronic detectors for biochemical sensing in physiological environments and is expected to open up exciting opportunities for in vitro and in vivo biological sensing relevant to basic biology research through medicine.

  2. Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

    PubMed Central

    Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier

    2009-01-01

    The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989

  3. A simulation of air pollution model parameter estimation using data from a ground-based LIDAR remote sensor

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Suttles, J. T.

    1977-01-01

    One way to obtain estimates of the unknown parameters in a pollution dispersion model is to compare the model predictions with remotely sensed air quality data. A ground-based LIDAR sensor provides relative pollution concentration measurements as a function of space and time. The measured sensor data are compared with the dispersion model output through a numerical estimation procedure to yield parameter estimates which best fit the data. This overall process is tested in a computer simulation to study the effects of various measurement strategies. Such a simulation is useful prior to a field measurement exercise to maximize the information content in the collected data. Parametric studies of simulated data matched to a Gaussian plume dispersion model indicate the trade offs available between estimation accuracy and data acquisition strategy.

  4. Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment

    PubMed Central

    2017-01-01

    Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor’s behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application. PMID:28954392

  5. Sensory rehabilitation in the plastic brain.

    PubMed

    Collignon, Olivier; Champoux, François; Voss, Patrice; Lepore, Franco

    2011-01-01

    The purpose of this review is to consider new sensory rehabilitation avenues in the context of the brain's remarkable ability to reorganize itself following sensory deprivation. Here, deafness and blindness are taken as two illustrative models. Mainly, two promising rehabilitative strategies based on opposing theoretical principles will be considered: sensory substitution and neuroprostheses. Sensory substitution makes use of the remaining intact senses to provide blind or deaf individuals with coded information of the lost sensory system. This technique thus benefits from added neural resources in the processing of the remaining senses resulting from crossmodal plasticity, which is thought to be coupled with behavioral enhancements in the intact senses. On the other hand, neuroprostheses represent an invasive approach aimed at stimulating the deprived sensory system directly in order to restore, at least partially, its functioning. This technique therefore relies on the neuronal integrity of the brain areas normally dedicated to the deprived sense and is rather hindered by the compensatory reorganization observed in the deprived cortex. Here, we stress that our understanding of the neuroplastic changes that occur in sensory-deprived individuals may help guide the design and the implementation of such rehabilitative methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A New Strategy for Humidity Independent Oxide Chemiresistors: Dynamic Self-Refreshing of In2 O3 Sensing Surface Assisted by Layer-by-Layer Coated CeO2 Nanoclusters.

    PubMed

    Yoon, Ji-Wook; Kim, Jun-Sik; Kim, Tae-Hyung; Hong, Young Jun; Kang, Yun Chan; Lee, Jong-Heun

    2016-08-01

    The humidity dependence of the gas sensing characteristics of metal oxide semiconductors has been one of the greatest obstacles for gas sensor applications during the last five decades because ambient humidity dynamically changes with the environmental conditions. Herein, a new and novel strategy is reported to eliminate the humidity dependence of the gas sensing characteristics of oxide chemiresistors via dynamic self-refreshing of the sensing surface affected by water vapor chemisorption. The sensor resistance and gas response of pure In2 O3 hollow spheres significantly change and deteriorate in humid atmospheres. In contrast, the humidity dependence becomes negligible when an optimal concentration of CeO2 nanoclusters is uniformly loaded onto In2 O3 hollow spheres via layer-by-layer (LBL) assembly. Moreover, In2 O3 sensors LBL-coated with CeO2 nanoclusters show fast response/recovery, low detection limit (500 ppb), and high selectivity to acetone even in highly humid conditions (relative humidity 80%). The mechanism underlying the dynamic refreshing of the In2 O3 sensing surfaces regardless of humidity variation is investigated in relation to the role of CeO2 and the chemical interaction among CeO2 , In2 O3 , and water vapor. This strategy can be widely used to design high performance gas sensors including disease diagnosis via breath analysis and pollutant monitoring. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Alternative Natural Resource Monitoring Strategies in the Mexican States of Jalisco and Colima

    Treesearch

    Cele Aguirre-Bravo; Hans Schreuder

    2005-01-01

    This paper presents a strategy for inventorying and monitoring the natural resources in the Mexican states of Jalisco and Colima. The strategy emphasizes a strong linkage between remote sensing with field sampling design to produce statistical summaries and spatial estimates at multiple scales and resolution levels. Outputs derived from this strategy are expected to...

  8. Applying risk management strategies to strengthen an IDS's investment policy.

    PubMed

    Fine, R P

    1998-11-01

    The increased financial risk that not-for-profit integrated delivery systems have assumed to function under managed care has required them to become increasingly reliant on income and gains from their investment portfolios. This reliance underscores the need for these organizations to take steps to effectively manage their investment risk. Not-for-profit IDSs should establish a systematic approach to investment risk management that is based on maintaining a sound fiduciary infrastructure and having a clear understanding of risk exposures, the most important of which are policy and market risk. Applying reasonable and common-sense risk management strategies to investment policy will enhance an IDS's overall financial and competitive strength.

  9. Modeling of vegetation canopy reflectance: Status, issues and recommended future strategy

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Editor)

    1982-01-01

    Various technical issues related to mapping of vegetative type, condition and stage of maturity, utilizing remotely sensed spectral data are reviewed. The existing knowledge base of models, especially of radiative properties of the vegetation canopy and atmosphere, is reviewed to establish the state of the art for addressing the problem of vegetation mapping. Activities to advance the state of the art are recommended. They include working on canopy reflectance and atmospheric scattering models, and field measurements of canopy reflectance as well as of canopy components. Leaf area index (LAI) and solar radiation interception (SRI) are identified as the two most important vegetation variables requiring further investigation. It is recommended that activities related to sensing them or understanding their relationships with measurable variables, should be encouraged and supported.

  10. Point target detection utilizing super-resolution strategy for infrared scanning oversampling system

    NASA Astrophysics Data System (ADS)

    Wang, Longguang; Lin, Zaiping; Deng, Xinpu; An, Wei

    2017-11-01

    To improve the resolution of remote sensing infrared images, infrared scanning oversampling system is employed with information amount quadrupled, which contributes to the target detection. Generally the image data from double-line detector of infrared scanning oversampling system is shuffled to a whole oversampled image to be post-processed, whereas the aliasing between neighboring pixels leads to image degradation with a great impact on target detection. This paper formulates a point target detection method utilizing super-resolution (SR) strategy concerning infrared scanning oversampling system, with an accelerated SR strategy proposed to realize fast de-aliasing of the oversampled image and an adaptive MRF-based regularization designed to achieve the preserving and aggregation of target energy. Extensive experiments demonstrate the superior detection performance, robustness and efficiency of the proposed method compared with other state-of-the-art approaches.

  11. Sustainable Water Management & Satellite Remote Sensing

    EPA Science Inventory

    Eutrophication assessment frameworks such as the Australian National Water Quality Management Strategy, Oslo Paris (OSPAR) Commission Common Procedure, Water Framework Directive (WFD) of the European Union, Marine Strategy Framework Directive (MSFD) from the European Commission, ...

  12. How to get the most out of your orthopaedic fellowship: thinking about practice-based learning.

    PubMed

    Templeman, David

    2012-09-01

    Practice-based learning and improvement is an important skill set to develop during an orthopaedic trauma fellowship and is 1 of the 6 core competencies stated by the ACGME. The review of clinic cases is best done using a few simple models to develop a structured approach for studying cases. Three common sense and easy-to-use strategies to improve clinical practice are as follows: performing each case three times, studying the 4 quadrants of patient outcomes, and the application of the Pareto 80/20 rule. These principles help to develop a structured approach for analyzing and thinking about practice-based experiences.

  13. Environmental Sense Box: A Strategy for Helping Elementary School Students Understand Abstract Environments through Concrete Learning Activities.

    ERIC Educational Resources Information Center

    Sesow, F. Wm.

    This paper suggests a technique for the development, collection, and organization of materials that will aid learning through the use of the senses by building an environmental sense box. England is used as an example of a place that provides many sensory experiences which can be duplicated in such a box. The box can be made from a cardboard…

  14. Disseminating technological information on remote sensing to potential users

    NASA Technical Reports Server (NTRS)

    Russell, J. D.; Lindenlaub, J. C.

    1977-01-01

    The Laboratory for Applications of Remote Sensing developed materials and programs which range from short tutorial brochures to post-doctoral research programs which may span several years. To organize both the content and the instructional techniques, a matrix of instructional materials was conceptualized. Each row in the matrix represents a subject area in remote sensing and each column in the matrix represents a different type media or instructional strategy.

  15. Optimization of Decision-Making for Spatial Sampling in the North China Plain, Based on Remote-Sensing a Priori Knowledge

    NASA Astrophysics Data System (ADS)

    Feng, J.; Bai, L.; Liu, S.; Su, X.; Hu, H.

    2012-07-01

    In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scalefitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys.

  16. Discrimination of saturated alkanes and relevant volatile compounds via the utilization of a conceptual fluorescent sensor array based on organoboron-containing polymers.

    PubMed

    Qi, Yanyu; Xu, Wenjun; Kang, Rui; Ding, Nannan; Wang, Yelei; He, Gang; Fang, Yu

    2018-02-21

    This work reports a conceptual sensor array for the highly discriminative analysis of 20 clinically and environmentally relevant volatile small organic molecules (VSOMs), including saturated alkanes and common solvents, in the air at room temperature. For the construction of the sensor array, a four coordinated, non-planar mono-boron complex and four relevant polymers are synthesized. Based on the polymers and the use of different substrates, 8 fluorescent films have been fabricated. Integration of the film-based sensors results in the sensor array, which demonstrates unprecedented discriminating capability toward the VSOMs. Moreover, for the signal molecule of lung cancer, n -pentane, the response time is less than 1 s, the experimental detection limit is lower than 3.7 ppm, and after repeating the tests over 50 times no observable degradation was observed. The superior sensing performance is partially ascribed to the tetrahedral structure of the boron centers in the polymers as it may produce molecular channels in the films, which are a necessity for fast and reversible sensing. In addition, the polarity of the micro-channels may endow the films with additional selectivity towards the analytes. The design as demonstrated provides an effective strategy to improve the sensing performance of fluorescent films to very challenging analytes, such as saturated alkanes.

  17. "I'm still me - I'm still here!" Understanding the person's sense of self in the provision of self-management support for people with progressive neurological long-term conditions.

    PubMed

    Kulnik, Stefan Tino; Hollinshead, Lucinda; Jones, Fiona

    2018-01-11

    There is increasing interest in tailoring self-management support, but little detail is available on the relevance and impact of such approaches for people with progressive neurological conditions. The aim of this study was to draw on individuals' experiences to inform the practice of self-management support for these groups. Community rehabilitation service users were purposively recruited and took part in in-depth qualitative interviews. Interviews were audio-recorded and transcribed. Data analysis was iterative and interpretative, taking a phenomenological approach. Strategies to enhance rigor were auditability, peer review, and researcher reflexivity. The sample consisted of 10 adults (age 20-79 years) who were living with a range of progressive neurological conditions. Individuals demonstrated resourcefulness in developing practice-based self-management strategies. Beyond practical strategies, interviewees' experiences were signified by reflecting on and upholding a sense of identity and a desire for purpose against the background of losses and gains over time. Linking with this overarching theme of "Sense of self" were aspects of "My body and mind", "Time", "Space", "Relationships", and "What I do". Self-management approaches for individuals with progressive neurological conditions will benefit from incorporating ways of recognizing, articulating, and supporting the person's sense of identity and purpose. Implications for rehabilitation Self-management approaches for people with progressive neurological conditions need to take account of individuals' wishes to contribute, connect with others, and be valued as a person. Person-centred self-management support can be realized through a broader approach than solely managing disease progression. The experiences and words of people with progressive neurological conditions can be used to inform meaningful evaluation of self-management support to drive service delivery by measuring what really matters. Rehabilitation practitioners need to adapt their conceptualisations of goal setting to account for how people with progressive neurological conditions themselves interpret "progress" and "improvement". Person-centred conversation that values who the person is can be an effective starting point for self-management interventions in people with progressive neurological conditions.

  18. Predicting risk of invasive species occurrence - remote-sesning strategies

    USDA-ARS?s Scientific Manuscript database

    Remote sensing is a means to describe characteristics of an area without physically sampling the area. Remote sensors can be mounted on a satellite, plane, or other airborne structure. Remotely sensed data allow for landscape perspectives on management issues. Sensors measure the electromagnetic ene...

  19. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    PubMed

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Hybrid SnO2/TiO2 Nanocomposites for Selective Detection of Ultra-Low Hydrogen Sulfide Concentrations in Complex Backgrounds

    PubMed Central

    Larin, Alexander; Womble, Phillip C.; Dobrokhotov, Vladimir

    2016-01-01

    In this paper, we present a chemiresistive metal oxide (MOX) sensor for detection of hydrogen sulfide. Compared to the previous reports, the overall sensor performance was improved in multiple characteristics, including: sensitivity, selectivity, stability, activation time, response time, recovery time, and activation temperature. The superior sensor performance was attributed to the utilization of hybrid SnO2/TiO2 oxides as interactive catalytic layers deposited using a magnetron radio frequency (RF) sputtering technique. The unique advantage of the RF sputtering for sensor fabrication is the ability to create ultra-thin films with precise control of geometry, morphology and chemical composition of the product of synthesis. Chemiresistive films down to several nanometers can be fabricated as sensing elements. The RF sputtering technique was found to be very robust for bilayer and multilayer oxide structure fabrication. The geometry, morphology, chemical composition and electronic structure of interactive layers were evaluated in relation to their gas sensing performance, using scanning electron microscopy (SEM), X-ray diffraction technique (XRD), atomic force microscopy (AFM), Energy Dispersive X-ray Spectroscopy (EDAX), UV visible spectroscopy, and Kelvin probe measurements. A sensor based on multilayer SnO2/TiO2 catalytic layer with 10% vol. content of TiO2 demonstrated the best gas sensing performance in all characteristics. Based on the pattern relating material’s characteristics to gas sensing performance, the optimization strategy for hydrogen sulfide sensor fabrication was suggested. PMID:27618900

  1. A Powerful Molecular Engineering Tool Provided Efficient Chlamydomonas Mutants as Bio-Sensing Elements for Herbicides Detection

    PubMed Central

    Lambreva, Maya D.; Giardi, Maria Teresa; Rambaldi, Irene; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Husu, Ivan; Johanningmeier, Udo; Rea, Giuseppina

    2013-01-01

    This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I50 values ranging from 6×10−8 M to 2×10−6 M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified. PMID:23613953

  2. Novel Door-opening Method for Six-legged Robots Based on Only Force Sensing

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Jun; Gao, Feng; Pan, Yang

    2017-09-01

    Current door-opening methods are mainly developed on tracked, wheeled and biped robots by applying multi-DOF manipulators and vision systems. However, door-opening methods for six-legged robots are seldom studied, especially using 0-DOF tools to operate and only force sensing to detect. A novel door-opening method for six-legged robots is developed and implemented to the six-parallel-legged robot. The kinematic model of the six-parallel-legged robot is established and the model of measuring the positional relationship between the robot and the door is proposed. The measurement model is completely based on only force sensing. The real-time trajectory planning method and the control strategy are designed. The trajectory planning method allows the maximum angle between the sagittal axis of the robot body and the normal line of the door plane to be 45º. A 0-DOF tool mounted to the robot body is applied to operate. By integrating with the body, the tool has 6 DOFs and enough workspace to operate. The loose grasp achieved by the tool helps release the inner force in the tool. Experiments are carried out to validate the method. The results show that the method is effective and robust in opening doors wider than 1 m. This paper proposes a novel door-opening method for six-legged robots, which notably uses a 0-DOF tool and only force sensing to detect and open the door.

  3. Nano/micromotors for security/defense applications. A review.

    PubMed

    Singh, Virendra V; Wang, Joseph

    2015-12-14

    The new capabilities of man-made micro/nanomotors open up considerable opportunities for diverse security and defense applications. This review highlights new micromotor-based strategies for enhanced security monitoring and detoxification of chemical and biological warfare agents (CBWA). The movement of receptor-functionalized nanomotors offers great potential for sensing and isolating target bio-threats from complex samples. New mobile reactive materials based on zeolite or activated carbon offer considerable promise for the accelerated removal of chemical warfare agents. A wide range of proof-of-concept motor-based approaches, including the detection and destruction of anthrax spores, 'on-off' nerve-agent detection or effective neutralization of chemical warfare agents have thus been demonstrated. The propulsion of micromotors and their corresponding bubble tails impart significant mixing that greatly accelerates such detoxification processes. These nanomotors will thus empower sensing and destruction where stirring large quantities of decontaminating reagents and controlled mechanical agitation are impossible or undesired. New technological breakthroughs and greater sophistication of micro/nanoscale machines will lead to rapid translation of the micromotor research activity into practical defense applications, addressing the escalating threat of CBWA.

  4. Nano/micromotors for security/defense applications. A review

    NASA Astrophysics Data System (ADS)

    Singh, Virendra V.; Wang, Joseph

    2015-11-01

    The new capabilities of man-made micro/nanomotors open up considerable opportunities for diverse security and defense applications. This review highlights new micromotor-based strategies for enhanced security monitoring and detoxification of chemical and biological warfare agents (CBWA). The movement of receptor-functionalized nanomotors offers great potential for sensing and isolating target bio-threats from complex samples. New mobile reactive materials based on zeolite or activated carbon offer considerable promise for the accelerated removal of chemical warfare agents. A wide range of proof-of-concept motor-based approaches, including the detection and destruction of anthrax spores, `on-off' nerve-agent detection or effective neutralization of chemical warfare agents have thus been demonstrated. The propulsion of micromotors and their corresponding bubble tails impart significant mixing that greatly accelerates such detoxification processes. These nanomotors will thus empower sensing and destruction where stirring large quantities of decontaminating reagents and controlled mechanical agitation are impossible or undesired. New technological breakthroughs and greater sophistication of micro/nanoscale machines will lead to rapid translation of the micromotor research activity into practical defense applications, addressing the escalating threat of CBWA.

  5. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor

    PubMed Central

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-01-01

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis. PMID:26569239

  6. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.

    PubMed

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-11-09

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.

  7. A "signal on" protection-displacement-hybridization-based electrochemical hepatitis B virus gene sequence sensor with high sensitivity and peculiar adjustable specificity.

    PubMed

    Li, Fengqin; Xu, Yanmei; Yu, Xiang; Yu, Zhigang; He, Xunjun; Ji, Hongrui; Dong, Jinghao; Song, Yongbin; Yan, Hong; Zhang, Guiling

    2016-08-15

    One "signal on" electrochemical sensing strategy was constructed for the detection of a specific hepatitis B virus (HBV) gene sequence based on the protection-displacement-hybridization-based (PDHB) signaling mechanism. This sensing system is composed of three probes, one capturing probe (CP) and one assistant probe (AP) which are co-immobilized on the Au electrode surface, and one 3-methylene blue (MB) modified signaling probe (SP) free in the detection solution. One duplex are formed between AP and SP with the target, a specific HBV gene sequence, hybridizing with CP. This structure can drive the MB labels close to the electrode surface, thereby producing a large detection current. Two electrochemical testing techniques, alternating current voltammetry (ACV) and cyclic voltammetry (CV), were used for characterizing the sensor. Under the optimized conditions, the proposed sensor exhibits a high sensitivity with the detection limit of ∼5fM for the target. When used for the discrimination of point mutation, the sensor also features an outstanding ability and its peculiar high adjustability. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    PubMed Central

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J.; Ramírez-Miquet, Evelio E.; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-01-01

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications. PMID:27187406

  9. On the Use of Piezoelectric Sensors in Structural Mechanics: Some Novel Strategies

    PubMed Central

    Irschik, Hans; Krommer, Michael; Vetyukov, Yury

    2010-01-01

    In the present paper, a review on piezoelectric sensing of mechanical deformations and vibrations of so-called smart or intelligent structures is given. After a short introduction into piezoelectric sensing and actuation of such controlled structures, we pay special emphasis on the description of some own work, which has been performed at the Institute of Technical Mechanics of the Johannes Kepler University of Linz (JKU) in the last years. Among other aspects, this work has been motivated by the fact that collocated control of smart structures requires a sensor output that is work-conjugated to the input by the actuator. This fact in turn brings into the play the more general question of how to measure mechanically meaningful structural quantities, such as displacements, slopes, or other quantities, which form the work-conjugated quantities of the actuation, by means piezoelectric sensors. At least in the range of small strains, there is confidence that distributed piezoelectric sensors or sensor patches in smart structures do measure weighted integrals over their domain. Therefore, there is a need of distributing or shaping the sensor activity in order to be able to re-interpret the sensor signals in the desired mechanical sense. We sketch a general strategy that is based on a special application of work principles, more generally on displacement virials. We also review our work in the past on bringing this concept to application in smart structures, such as beams, rods and plates. PMID:22219679

  10. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications.

    PubMed

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J; Ramírez-Miquet, Evelio E; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-05-13

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  11. Distance education: strategies for maintaining relationships.

    PubMed

    Hill, P

    2000-09-01

    Experience with Australian Aboriginal and Torres Strait Islander students in the Bachelor of Applied Health Science (BAppHSc) course suggests that one of the key elements for students is the sense of relationship built up through Problem Based Learning (PBL). Failure to retain students is more likely to be related to personal than academic concerns. The low attrition rate is largely attributed to the sense of community and support the course generates. In 1997, the Centre for Indigenous Health, Education and Research offered the BAppHSc to rural Queensland. Campuses were opened in the Torres Strait and Cairns, with 9 and 5 students respectively. The course consisted of PBL sessions, fixed resource sessions provided by local staff or guest lecturers, video-conferencing and the use of videos, or text. Face-to-face contact hours were concentrated into two blocks of one and two weeks respectively, plus one day per week. Course materials such as journal articles and texts were provided. The nine Torres students and three Cairns students completed the first semester. This paper discusses the differences between the centres and examines strategies for maintaining the sense of relationship in distance education settings. In 1999 applications from other remote areas are challenging the model further. Multiple technologies are envisaged and discussed. In addition, similar methods are being applied to post graduate courses and collaboration with other institutions in the Pacific suggested. This would allow cross crediting of such course-work into a range of courses and institutions, reducing duplication and increasing options.

  12. On the use of piezoelectric sensors in structural mechanics: some novel strategies.

    PubMed

    Irschik, Hans; Krommer, Michael; Vetyukov, Yury

    2010-01-01

    In the present paper, a review on piezoelectric sensing of mechanical deformations and vibrations of so-called smart or intelligent structures is given. After a short introduction into piezoelectric sensing and actuation of such controlled structures, we pay special emphasis on the description of some own work, which has been performed at the Institute of Technical Mechanics of the Johannes Kepler University of Linz (JKU) in the last years. Among other aspects, this work has been motivated by the fact that collocated control of smart structures requires a sensor output that is work-conjugated to the input by the actuator. This fact in turn brings into the play the more general question of how to measure mechanically meaningful structural quantities, such as displacements, slopes, or other quantities, which form the work-conjugated quantities of the actuation, by means piezoelectric sensors. At least in the range of small strains, there is confidence that distributed piezoelectric sensors or sensor patches in smart structures do measure weighted integrals over their domain. Therefore, there is a need of distributing or shaping the sensor activity in order to be able to re-interpret the sensor signals in the desired mechanical sense. We sketch a general strategy that is based on a special application of work principles, more generally on displacement virials. We also review our work in the past on bringing this concept to application in smart structures, such as beams, rods and plates.

  13. The Tetracorder user guide: version 4.4

    USGS Publications Warehouse

    Livo, Keith Eric; Clark, Roger N.

    2014-01-01

    Imaging spectroscopy mapping software assists in the identification and mapping of materials based on their chemical properties as expressed in spectral measurements of a planet including the solid or liquid surface or atmosphere. Such software can be used to analyze field, aircraft, or spacecraft data; remote sensing datasets; or laboratory spectra. Tetracorder is a set of software algorithms commanded through an expert system to identify materials based on their spectra (Clark and others, 2003). Tetracorder also can be used in traditional remote sensing analyses, because some of the algorithms are a version of a matched filter. Thus, depending on the instructions fed to the Tetracorder system, results can range from simple matched filter output, to spectral feature fitting, to full identification of surface materials (within the limits of the spectral signatures of materials over the spectral range and resolution of the imaging spectroscopy data). A basic understanding of spectroscopy by the user is required for developing an optimum mapping strategy and assessing the results.

  14. Ship-bridge collision monitoring system based on flexible quantum tunneling composite with cushioning capability

    NASA Astrophysics Data System (ADS)

    Zheng, Qiaofeng; Han, Baoguo; Ou, Jinping

    2018-07-01

    In this paper, a ship-bridge collision monitoring system based on flexible quantum tunneling composite (QTC) with cushioning capability is proposed by investigating the sensing capability and positioning capability of QTC to collisions. QTCs with different rubber matrix and thickness were fabricated, and collision tests between steel ball and QTCs sensors were designed to simulate ship-bridge collision. The results show that QTCs have a sensing range over 50 MPa with stress resolution ranging between 0.017 and 0.13 MPa, enough to achieve the full-time monitoring of ship-bridge collision. The system has instant and repeatable respond to impact load, and can accurately position the collisions. Moreover, QTC can remarkably absorb the kinetic energy during collisions, exhibiting excellent cushioning capability. These findings indicate the proposed ship-bridge collision monitoring system has great potential for application to detecting collision information such as collision occurrence and duration, impact load and collision location, as well as providing basis for citizen evacuation, post-accident damage estimation and rescue strategy.

  15. Experimental robot gripper control for handling of soft objects

    NASA Astrophysics Data System (ADS)

    Friedrich, Werner E.; Ziegler, T. H.; Lim, P.

    1996-10-01

    The challenging task of automated handling of variable objects necessitates a combination of innovative engineering and advanced information technology. This paper describes the application of a recently developed control strategy applied to overcome some limitations of robot handling, particularly when dealing with variable objects. The paper focuses on a novel approach to accommodate the need for sensing and actuation in controlling the pickup procedure. An experimental robot-based system for the handling of soft parts, ranging from artificial components to natural objects such as fruit and meat pieces was developed. The configuration comprises a modular gripper subsystem, and an industrial robot as part of a distributed control system. The gripper subsystem features manually configurable fingers with integrated sensing capabilities. The control architecture is based on a concept of decentralized control differentiating between positioning and gripping procedures. In this way, the robot and gripper systems are treated as individual handling operations. THis concept allows very short set-up times for future changes involving one or more sub-systems.

  16. Paranal maintenance and CMMS experience

    NASA Astrophysics Data System (ADS)

    Montano, Nelson

    2004-10-01

    During the last four years of operations, low technical downtime has been one of the relevant records of the Paranal Observatory. From the beginning of the Very Large Telescope (VLT) project, European Southern Observatory (ESO) has considered the implementation of a proper maintenance strategy a fundamental point in order to ensure low technical down time and preserve the Observatory's assets. The implementation of the maintenance strategy was based on the following aspects: - Strong maintenance sense during the design stage. Line Replacement Unit (LRU) concept, standardization and modularity of the Observatory equipment - Creation of a dedicated team for Maintenance - The implementation of a Computerized Maintenance Management System After four operational years, the result of these aspects has exceeded the expectations; the Observatory has been operating with high availability under a sustainable strategy. The strengths of the maintenance strategy have been based on modern maintenance concepts applied by regular production companies, where any minute of down time involves high cost. The operation of the actual Paranal Maintenance System is based mainly on proactive activities, such as regular inspections, preventive maintenance (PM) and predictive maintenance (PdM) plans. Nevertheless, it has been necessary to implement a strong plan for corrective maintenance (CM). The Spare Parts Strategy has also been an important point linked to the Maintenance Strategy and CMMS implementation. At present, almost 4,000 items related to the Observatory spare parts are loaded into the CMMS database. Currently, we are studying the implementation of a Reliability Centered Maintenance (RCM) project in one of our critical systems The following document presents the actual status of the Paranal Maintenance Strategy and which have been the motivations to implement the established strategy.

  17. Serving Up Number Sense and Problem Solving: Dinner at the Panda Palace.

    ERIC Educational Resources Information Center

    Wickett, Maryann S.

    1997-01-01

    Describes strategies for using literature to teach number sense and problem solving. Reports that the rich class discussions reflected some of the students' thinking, gave students opportunities to share their approaches and understandings, and gave the teacher additional insights into students' thinking. (JRH)

  18. CORSE-81: The 1981 Conference on Remote Sensing Education

    NASA Technical Reports Server (NTRS)

    Davis, S. M. (Compiler)

    1981-01-01

    Summaries of the presentations and tutorial workshops addressing various strategies in remote sensing education are presented. Course design from different discipline perspectives, equipment requirements for image interpretation and processing, and the role of universities, private industry, and government agencies in the education process are covered.

  19. Methods and Strategies: The Sun Is a Star?!

    ERIC Educational Resources Information Center

    Hutchison, Paul

    2013-01-01

    Children understand the natural world in ways that make sense to them before they learn any science in school. This column provides ideas and techniques to enhance science teaching. This month's issue helps students connect scientifically correct ideas to what makes sense to them.

  20. Impact of 3D Canopy Structure on Remote Sensing Vegetation Index and Solar Induced Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Berry, J. A.; Jing, L.; Qinhuo, L.

    2017-12-01

    Terrestrial ecosystem plays a critical role in removing CO2 from atmosphere by photosynthesis. Remote sensing provides a possible way to monitor the Gross Primary Production (GPP) at the global scale. Vegetation Indices (VI), e.g., NDVI and NIRv, and Solar Induced Fluorescence (SIF) have been widely used as a proxy for GPP, while the impact of 3D canopy structure on VI and SIF has not be comprehensively studied yet. In this research, firstly, a unified radiative transfer model for visible/near-infrared reflectance and solar induced chlorophyll fluorescence has been developed based on recollision probability and directional escape probability. Then, the impact of view angles, solar angles, weather conditions, leaf area index, and multi-layer leaf angle distribution (LAD) on VI and SIF has been studied. Results suggest that canopy structure plays a critical role in distorting pixel-scale remote sensing signal from leaf-scale scattering. In thin canopy, LAD affects both of the remote sensing estimated GPP and real GPP, while in dense canopy, SIF variations are mainly due to canopy structure, instead of just due to physiology. At the microscale, leaf angle reflects the plant strategy to light on the photosynthesis efficiency, and at the macroscale, a priori knowledge of leaf angle distribution for specific species can improve the global GPP estimation by remote sensing.

  1. Elderly peoples’ experiences of nursing homes in Bam city: A qualitative study

    PubMed Central

    Mohammadinia, Neda; Rezaei, Mohammad Ali; Atashzadeh-Shoorideh, Foroozan

    2017-01-01

    Background With the increasing number of elderly, especially in recent decades, transfer to nursing homes and the number of centers has also increased but experiences and problems of elders in these centers is less considered. So, the goal of this study is to explore the Elderly peoples’ experiences of nursing homes. Methods The current research was performed using a phenomenological approach in 2016. Participation in the study is comprised of the elderly residents in a nursing home in Bam city who were selected based on an objective-oriented approach. The sampling was done until data saturation. Data collection methods were observation and an unstructured and in-depth interview. Data were analyzed using seven-stage Colaizzi process. Results In total, fifteen 68 – 82 years old people participated in our study and 52 primary and conceptual codes that were eventually categorized in five main themes (sense of rejection, sense of daily routine, impaired of communications, sense of hardship and mental obsession) and ten sub-themes emerged. Conclusion Overall, most of the elders were not satisfied with the conditions. It seems that helpful, community and family education to acculturate respect for the elderly in the community, teach proper coping strategies, use the elderly’s experiences, and consultation with them could be a way to maintain a sense of usefulness, independence and to prevent them from sensing monotonous and routine rhythm of life. PMID:28979736

  2. Coping mediates the relationship between sense of coherence and mental quality of life in patients with chronic illness: a cross-sectional study.

    PubMed

    Kristofferzon, Marja-Leena; Engström, Maria; Nilsson, Annika

    2018-07-01

    The aim of the present study was to investigate relationships between sense of coherence, emotion-focused coping, problem-focused coping, coping efficiency, and mental quality of life (QoL) in patients with chronic illness. A model based on Lazarus' and Folkman's stress and coping theory tested the specific hypothesis: Sense of coherence has a direct and indirect effect on mental QoL mediated by emotion-focused coping, problem-focused coping, and coping efficiency in serial adjusted for age, gender, educational level, comorbidity, and economic status. The study used a cross-sectional and correlational design. Patients (n = 292) with chronic diseases (chronic heart failure, end-stage renal disease, multiple sclerosis, stroke, and Parkinson) completed three questionnaires and provided background data. Data were collected in 2012, and a serial multiple mediator model was tested using PROCESS macro for SPSS. The test of the conceptual model confirmed the hypothesis. There was a significant direct and indirect effect of sense of coherence on mental QoL through the three mediators. The model explained 39% of the variance in mental QoL. Self-perceived effective coping strategies are the most important mediating factors between sense of coherence and QoL in patients with chronic illness, which supports Lazarus' and Folkman's stress and coping theory.

  3. Unraveling navigational strategies in migratory insects

    PubMed Central

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M.

    2011-01-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied directional strategy relies on a time-compensated sun compass, used by diurnal insects, for which neural circuits have begun to be delineated. Yet, a growing body of evidence suggests that migratory insects may also rely on other compasses that use night sky cues or the Earth's magnetic field. Those mechanisms are ripe for exploration. PMID:22154565

  4. Improving snow density estimation for mapping SWE with Lidar snow depth: assessment of uncertainty in modeled density and field sampling strategies in NASA SnowEx

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Smyth, E.; Small, E. E.

    2017-12-01

    The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.

  5. Metabolism-independent sugar sensing in central orexin neurons.

    PubMed

    González, J Antonio; Jensen, Lise T; Fugger, Lars; Burdakov, Denis

    2008-10-01

    Glucose sensing by specialized neurons of the hypothalamus is vital for normal energy balance. In many glucose-activated neurons, glucose metabolism is considered a critical step in glucose sensing, but whether glucose-inhibited neurons follow the same strategy is unclear. Orexin/hypocretin neurons of the lateral hypothalamus are widely projecting glucose-inhibited cells essential for normal cognitive arousal and feeding behavior. Here, we used different sugars, energy metabolites, and pharmacological tools to explore the glucose-sensing strategy of orexin cells. We carried out patch-clamp recordings of the electrical activity of individual orexin neurons unambiguously identified by transgenic expression of green fluorescent protein in mouse brain slices. RESULTS- We show that 1) 2-deoxyglucose, a nonmetabolizable glucose analog, mimics the effects of glucose; 2) increasing intracellular energy fuel production with lactate does not reproduce glucose responses; 3) orexin cell glucose sensing is unaffected by glucokinase inhibitors alloxan, d-glucosamine, and N-acetyl-d-glucosamine; and 4) orexin glucosensors detect mannose, d-glucose, and 2-deoxyglucose but not galactose, l-glucose, alpha-methyl-d-glucoside, or fructose. Our new data suggest that behaviorally critical neurocircuits of the lateral hypothalamus contain glucose detectors that exhibit novel sugar selectivity and can operate independently of glucose metabolism.

  6. A DNA-based semantic fusion model for remote sensing data.

    PubMed

    Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H

    2013-01-01

    Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology.

  7. A DNA-Based Semantic Fusion Model for Remote Sensing Data

    PubMed Central

    Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H.

    2013-01-01

    Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology. PMID:24116207

  8. Selection of head and whisker coordination strategies during goal-oriented active touch.

    PubMed

    Schroeder, Joseph B; Ritt, Jason T

    2016-04-01

    In the rodent whisker system, a key model for neural processing and behavioral choices during active sensing, whisker motion is increasingly recognized as only part of a broader motor repertoire employed by rodents during active touch. In particular, recent studies suggest whisker and head motions are tightly coordinated. However, conditions governing the selection and temporal organization of such coordinated sensing strategies remain poorly understood. We videographically reconstructed head and whisker motions of freely moving mice searching for a randomly located rewarded aperture, focusing on trials in which animals appeared to rapidly "correct" their trajectory under tactile guidance. Mice orienting after unilateral contact repositioned their whiskers similarly to previously reported head-turning asymmetry. However, whisker repositioning preceded head turn onsets and was not bilaterally symmetric. Moreover, mice selectively employed a strategy we term contact maintenance, with whisking modulated to counteract head motion and facilitate repeated contacts on subsequent whisks. Significantly, contact maintenance was not observed following initial contact with an aperture boundary, when the mouse needed to make a large corrective head motion to the front of the aperture, but only following contact by the same whisker field with the opposite aperture boundary, when the mouse needed to precisely align its head with the reward spout. Together these results suggest that mice can select from a diverse range of sensing strategies incorporating both knowledge of the task and whisk-by-whisk sensory information and, moreover, suggest the existence of high level control (not solely reflexive) of sensing motions coordinated between multiple body parts. Copyright © 2016 the American Physiological Society.

  9. Selection of head and whisker coordination strategies during goal-oriented active touch

    PubMed Central

    2016-01-01

    In the rodent whisker system, a key model for neural processing and behavioral choices during active sensing, whisker motion is increasingly recognized as only part of a broader motor repertoire employed by rodents during active touch. In particular, recent studies suggest whisker and head motions are tightly coordinated. However, conditions governing the selection and temporal organization of such coordinated sensing strategies remain poorly understood. We videographically reconstructed head and whisker motions of freely moving mice searching for a randomly located rewarded aperture, focusing on trials in which animals appeared to rapidly “correct” their trajectory under tactile guidance. Mice orienting after unilateral contact repositioned their whiskers similarly to previously reported head-turning asymmetry. However, whisker repositioning preceded head turn onsets and was not bilaterally symmetric. Moreover, mice selectively employed a strategy we term contact maintenance, with whisking modulated to counteract head motion and facilitate repeated contacts on subsequent whisks. Significantly, contact maintenance was not observed following initial contact with an aperture boundary, when the mouse needed to make a large corrective head motion to the front of the aperture, but only following contact by the same whisker field with the opposite aperture boundary, when the mouse needed to precisely align its head with the reward spout. Together these results suggest that mice can select from a diverse range of sensing strategies incorporating both knowledge of the task and whisk-by-whisk sensory information and, moreover, suggest the existence of high level control (not solely reflexive) of sensing motions coordinated between multiple body parts. PMID:26792880

  10. Kullback-Leibler Divergence-Based Differential Evolution Markov Chain Filter for Global Localization of Mobile Robots.

    PubMed

    Martín, Fernando; Moreno, Luis; Garrido, Santiago; Blanco, Dolores

    2015-09-16

    One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot's pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area.

  11. Kullback-Leibler Divergence-Based Differential Evolution Markov Chain Filter for Global Localization of Mobile Robots

    PubMed Central

    Martín, Fernando; Moreno, Luis; Garrido, Santiago; Blanco, Dolores

    2015-01-01

    One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot’s pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area. PMID:26389914

  12. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.

    PubMed

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-02-18

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  13. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    PubMed Central

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  14. Multisource geological data mining and its utilization of uranium resources exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-lin

    2009-10-01

    Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.

  15. Lab-in-a-syringe using gold nanoparticles for rapid colorimetric chiral discrimination of enantiomers.

    PubMed

    Zor, Erhan; Bekar, Nisa

    2017-05-15

    Nanomaterials with different characteristics are offering many ingenious sensing approaches with interest for simple and disposable paper-based (bio)sensing applications. In this study, the colorimetric discrimination of alanine enantiomers is examined and, more importantly, AuNPs-embedded paper-based lab-in-a-syringe (LIS) device is developed as a sensing strategy. The LIS consists of two cellulose acetate membranes: the conjugate pad capturing the analyte and the detection pad signaling the presence of the captured analyte, both are sandwiched between reusable plastic filter holders connected to a disposable syringe. The principle of LIS assay is based on the enantioselective interaction occurring between the inherently chiral AuNPs and enantiomers in the first filter holder, which results in aggregation of AuNPs to give a distinct colour change from red to purple in solution and finally the aggregated AuNPs is kept on the detection pad through vertical-flow operation. AuNPs show an enantioselective recognition response toward L-Alanine and limit of detection (LOD) value is determined as 0.77mM. In addition, we demonstrate the efficiency of the LIS device for detecting L-Alanine in human serum. The proposed LIS assay has some advantages such as useful for naked-eye observation, disposable, not time-consuming, inexpensive, no need of advanced instruments, easy to prepare and easy to handle. In the field, the approach which is the first demonstration of applicability of LIS device to show simple colorimetric enantioselective sensing of chiral species with a fast readout in less than 5min is truly new and may have broad interest in enantiosensing of various chiral molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Teaching Decoding Strategies without Destroying Story.

    ERIC Educational Resources Information Center

    Kane, Sharon

    1999-01-01

    Argues that deep coding skills must and can be introduced, taught, practiced, and reinforced within contexts meaningful to students. Shows how teachers can provide these meaningful educational contexts within which decoding strategies make sense to emerging readers. (SR)

  17. Reorienting in Virtual 3D Environments: Do Adult Humans Use Principal Axes, Medial Axes or Local Geometry?

    PubMed Central

    Ambosta, Althea H.; Reichert, James F.; Kelly, Debbie M.

    2013-01-01

    Studies have shown that animals, including humans, use the geometric properties of environments to orient. It has been proposed that orientation is accomplished primarily by encoding the principal axes (i.e., global geometry) of an environment. However, recent research has shown that animals use local information such as wall length and corner angles as well as local shape parameters (i.e., medial axes) to orient. The goal of the current study was to determine whether adult humans reorient according to global geometry based on principal axes or whether reliance is on local geometry such as wall length and sense information or medial axes. Using a virtual environment task, participants were trained to select a response box located at one of two geometrically identical corners within a featureless rectangular-shaped environment. Participants were subsequently tested in a transformed L-shaped environment that allowed for a dissociation of strategies based on principal axes, medial axes and local geometry. Results showed that participants relied primarily on a medial axes strategy to reorient in the L-shaped test environment. Importantly, the search behaviour of participants could not be explained by a principal axes-based strategy. PMID:24223869

  18. Adjacency Matrix-Based Transmit Power Allocation Strategies in Wireless Sensor Networks

    PubMed Central

    Consolini, Luca; Medagliani, Paolo; Ferrari, Gianluigi

    2009-01-01

    In this paper, we present an innovative transmit power control scheme, based on optimization theory, for wireless sensor networks (WSNs) which use carrier sense multiple access (CSMA) with collision avoidance (CA) as medium access control (MAC) protocol. In particular, we focus on schemes where several remote nodes send data directly to a common access point (AP). Under the assumption of finite overall network transmit power and low traffic load, we derive the optimal transmit power allocation strategy that minimizes the packet error rate (PER) at the AP. This approach is based on modeling the CSMA/CA MAC protocol through a finite state machine and takes into account the network adjacency matrix, depending on the transmit power distribution and determining the network connectivity. It will be then shown that the transmit power allocation problem reduces to a convex constrained minimization problem. Our results show that, under the assumption of low traffic load, the power allocation strategy, which guarantees minimal delay, requires the maximization of network connectivity, which can be equivalently interpreted as the maximization of the number of non-zero entries of the adjacency matrix. The obtained theoretical results are confirmed by simulations for unslotted Zigbee WSNs. PMID:22346705

  19. A distributed model predictive control scheme for leader-follower multi-agent systems

    NASA Astrophysics Data System (ADS)

    Franzè, Giuseppe; Lucia, Walter; Tedesco, Francesco

    2018-02-01

    In this paper, we present a novel receding horizon control scheme for solving the formation problem of leader-follower configurations. The algorithm is based on set-theoretic ideas and is tuned for agents described by linear time-invariant (LTI) systems subject to input and state constraints. The novelty of the proposed framework relies on the capability to jointly use sequences of one-step controllable sets and polyhedral piecewise state-space partitions in order to online apply the 'better' control action in a distributed receding horizon fashion. Moreover, we prove that the design of both robust positively invariant sets and one-step-ahead controllable regions is achieved in a distributed sense. Simulations and numerical comparisons with respect to centralised and local-based strategies are finally performed on a group of mobile robots to demonstrate the effectiveness of the proposed control strategy.

  20. A plasmonic colorimetric strategy for visual miRNA detection based on hybridization chain reaction

    NASA Astrophysics Data System (ADS)

    Miao, Jie; Wang, Jingsheng; Guo, Jinyang; Gao, Huiguang; Han, Kun; Jiang, Chengmin; Miao, Peng

    2016-08-01

    In this work, a novel colorimetric strategy for miRNA analysis is proposed based on hybridization chain reaction (HCR)-mediated localized surface plasmon resonance (LSPR) variation of silver nanoparticles (AgNPs). miRNA in the sample to be tested is able to release HCR initiator from a solid interface to AgNPs colloid system by toehold exchange-mediated strand displacement, which then triggers the consumption of fuel strands with single-stranded tails for HCR. The final produced long nicked double-stranded DNA loses the ability to protect AgNPs from salt-induced aggregation. The stability variation of the colloid system can then be monitored by recording corresponding UV-vis spectrum and initial miRNA level is thus determined. This sensing system involves only four DNA strands which is quite simple. The practical utility is confirmed to be excellent by employing different biological samples.

  1. Analytical strategies based on quantum dots for heavy metal ions detection.

    PubMed

    Vázquez-González, Margarita; Carrillo-Carrion, Carolina

    2014-01-01

    Heavy metal contamination is one of the major concerns to human health because these substances are toxic and retained by the ecological system. Therefore, in recent years, there has been a pressing need for fast and reliable methods for the analysis of heavy metal ions in environmental and biological samples. Quantum dots (QDs) have facilitated the development of sensitive sensors over the past decade, due to their unique photophysical properties, versatile surface chemistry and ligand binding ability, and the possibility of the encapsulation in different materials or attachment to different functional materials, while retaining their native luminescence property. This paper comments on different sensing strategies with QD for the most toxic heavy metal ions (i.e., cadmium, Cd2+; mercury, Hg2+; and lead, Pb2+). Finally, the challenges and outlook for the QD-based sensors for heavy metals ions are discussed.

  2. Messing with Bacterial Quorum Sensing

    PubMed Central

    González, Juan E.; Keshavan, Neela D.

    2006-01-01

    Quorum sensing is widely recognized as an efficient mechanism to regulate expression of specific genes responsible for communal behavior in bacteria. Several bacterial phenotypes essential for the successful establishment of symbiotic, pathogenic, or commensal relationships with eukaryotic hosts, including motility, exopolysaccharide production, biofilm formation, and toxin production, are often regulated by quorum sensing. Interestingly, eukaryotes produce quorum-sensing-interfering (QSI) compounds that have a positive or negative influence on the bacterial signaling network. This eukaryotic interference could result in further fine-tuning of bacterial quorum sensing. Furthermore, recent work involving the synthesis of structural homologs to the various quorum-sensing signal molecules has resulted in the development of additional QSI compounds that could be used to control pathogenic bacteria. The creation of transgenic plants that express bacterial quorum-sensing genes is yet another strategy to interfere with bacterial behavior. Further investigation on the manipulation of quorum-sensing systems could provide us with powerful tools against harmful bacteria. PMID:17158701

  3. Common-Sense Chemistry: The Use of Assumptions and Heuristics in Problem Solving

    ERIC Educational Resources Information Center

    Maeyer, Jenine Rachel

    2013-01-01

    Students experience difficulty learning and understanding chemistry at higher levels, often because of cognitive biases stemming from common sense reasoning constraints. These constraints can be divided into two categories: assumptions (beliefs held about the world around us) and heuristics (the reasoning strategies or rules used to build…

  4. Evaluation of remote sensing to measure plant stress in Creeping Bentgrass (Agrostis stolonifera L.) fairways

    USDA-ARS?s Scientific Manuscript database

    Turfgrass irrigation strategies must be clearly defined in response to increasing concerns over quality water availability. Water conservation may be achieved with technologies such as remote sensing. The objectives of this research were to (i) correlate reflectance measurements from creeping bentgr...

  5. Update and review of accuracy assessment techniques for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Congalton, R. G.; Heinen, J. T.; Oderwald, R. G.

    1983-01-01

    Research performed in the accuracy assessment of remotely sensed data is updated and reviewed. The use of discrete multivariate analysis techniques for the assessment of error matrices, the use of computer simulation for assessing various sampling strategies, and an investigation of spatial autocorrelation techniques are examined.

  6. In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing.

    PubMed

    Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; Zettl, Alex; Carraro, Carlo; Maboudian, Roya

    2017-01-25

    A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.

  7. Integrating Gender and Group Differences into Bridging Strategy

    NASA Astrophysics Data System (ADS)

    Yılmaz, Serkan; Eryılmaz, Ali

    2010-08-01

    The main goal of this study was to integrate gender and group effect into bridging strategy in order to assess the effect of bridging analogy-based instruction on sophomore students' misconceptions in Newton's Third Law. Specifically, the authors developed and benefited from anchoring analogy diagnostic test to merge the effect of group and gender into the strategy. Newton's third law misconception test, attitude scale toward Newton's third law, and classroom observation checklists were the other measuring tools utilized throughout this quasi-experimental study. The researchers also developed or used several teaching/learning materials such as gender and group splitted concept diagrams, lesson plans, gender splitted frequency tables, make sense scales, PowerPoint slides, flash cards, and demonstrations. The convenience sample of the study chosen from the accessible population involved 308 students from two public universities. The results of multivariate analysis of covariance indicated that the bridging strategy had a significant effect on students' misconceptions in Newton's third law whereas it had no significant effect on students' attitudes toward Newton's third law.

  8. Tools of the Trade: Effective Strategies To Support the Collaboration of Educators in Rural Schools.

    ERIC Educational Resources Information Center

    Salyer, B. Keith; Thyfault, Alberta; Curran, Christina

    This paper discusses strategies with the potential to enhance student learning, teacher collaboration, building management, and joy within the rural school setting. With the goal of fostering education that makes sense to students, three general categories of strategies are considered: curriculum, classroom management, and building management.…

  9. Multi-Level Strategies in Universities: Coordination, Contestation or Creolisation?

    ERIC Educational Resources Information Center

    Stensaker, Bjørn; Fumasoli, Tatiana

    2017-01-01

    In contemporary research-intensive universities, strategies are not only found at the institutional level but also at various sub-levels in the organisation. In principle, such multi-level strategies are assumed to be a means for institutional coordination in the sense that more generic strategic objectives may give room for local adaptation…

  10. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.

    PubMed

    Hofmann, Volker; Sanguinetti-Scheck, Juan I; Künzel, Silke; Geurten, Bart; Gómez-Sena, Leonel; Engelmann, Jacob

    2013-07-01

    Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.

  11. Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals

    DOE PAGES

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.

    2018-03-20

    A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less

  12. New developments of a knowledge based system (VEG) for inferring vegetation characteristics

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Harrison, P. A.; Harrison, P. R.

    1992-01-01

    An extraction technique for inferring physical and biological surface properties of vegetation using nadir and/or directional reflectance data as input has been developed. A knowledge-based system (VEG) accepts spectral data of an unknown target as input, determines the best strategy for inferring the desired vegetation characteristic, applies the strategy to the target data, and provides a rigorous estimate of the accuracy of the inference. Progress in developing the system is presented. VEG combines methods from remote sensing and artificial intelligence, and integrates input spectral measurements with diverse knowledge bases. VEG has been developed to (1) infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; (2) test and develop new extraction techniques on an internal spectral database; (3) browse, plot, or analyze directional reflectance data in the system's spectral database; (4) discriminate between user-defined vegetation classes using spectral and directional reflectance relationships; and (5) infer unknown view angles from known view angles (known as view angle extension).

  13. Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.

    A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less

  14. Integrating Research Into Clinical Internship Training Bridging the Science/Practice Gap in Pediatric Psychology

    PubMed Central

    Spirito, Anthony

    2012-01-01

    Existing literature highlights a critical gap between science and practice in clinical psychology. The internship year is a “capstone experience”; training in methods of scientific evaluation should be integrated with the development of advanced clinical competencies. We provide a rationale for continued exposure to research during the clinical internship year, including, (a) critical examination and integration of the literature regarding evidence-based treatment and assessment, (b) participation in faculty-based and independent research, and (c) orientation to the science and strategy of grantsmanship. Participation in research provides exposure to new empirical models and can foster the development of applied research questions. Orientation to grantsmanship can yield an initial sense of the “business of science.” Internship provides an important opportunity to examine the challenges to integrating the clinical evidence base into professional practice; for that reason, providing research exposure on internship is an important strategy in training the next generation of pediatric psychologists. PMID:22286345

  15. A distributed predictive control approach for periodic flow-based networks: application to drinking water systems

    NASA Astrophysics Data System (ADS)

    Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-10-01

    This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.

  16. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Zurita-Milla, R.; de Wit, A. J. W.; Brazile, J.; Singh, R.; Schaepman, M. E.

    2007-05-01

    During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise. In this paper, we present an overview of different methods that can be used to derive biophysical and biochemical canopy state variables from optical remote sensing data in the VNIR-SWIR regions. The overview is based on an extensive literature review where both statistical-empirical and physically based methods are discussed. Subsequently, the prevailing techniques of assimilating remote sensing data into agroecosystem models are outlined. The increasing complexity of data assimilation methods and of models describing agroecosystem functioning has significantly increased computational demands. For this reason, we include a short section on the potential of parallel processing to deal with the complex and computationally intensive algorithms described in the preceding sections. The studied literature reveals that many valuable techniques have been developed both for the retrieval of canopy state variables from reflective remote sensing data as for assimilating the retrieved variables in agroecosystem models. However, for agroecosystem modeling and remote sensing data assimilation to be commonly employed on a global operational basis, emphasis will have to be put on bridging the mismatch between data availability and accuracy on one hand, and model and user requirements on the other. This could be achieved by integrating imagery with different spatial, temporal, spectral, and angular resolutions, and the fusion of optical data with data of different origin, such as LIDAR and radar/microwave.

  17. Solid-State, High Energy 2-Micron Laser Development for Space-Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    Lidar (light detection and ranging) remote sensing enjoys the advantages of excellent vertical and horizontal resolution; pointing capability; a signal source independent from natural light; and control and knowledge of transmitted wavelength, pulse shape, and polarization and received polarization. Lidar in space is an emerging technology now being developing to fit applications where passive sensors cannot meet current measurement requirements. Technical requirements for space lidar are more demanding than for ground-based or airborne systems. Perhaps the most distinguishing characteristics of space lidars are the environmental requirements. Space lidar systems must be specially designed to survive the mechanical vibration loads of launch and operate in the vacuum of space where exposure to ionizing radiation limits the electronic components available. Finally, space lidars must be designed to be highly reliable because they must operate without the need for repair or adjustment. Lifetime requirements tend to be important drivers of the overall system design. The maturity of the required technologies is a key to the development of any space lidar system. NASA entered a new era in the 1990 s with the approval of several space-based remote sensing missions employing laser radar (lidar) techniques. Following the steps of passive remote sensing and then active radar remote sensing, lidar sensors were a logical next step, providing independence from natural light sources, and better spatial resolution and smaller sensor size than radar sensors. The shorter electromagnetic wavelengths of laser light also allowed signal reflectance from air molecules and aerosol particles. The smaller receiver apertures allowed the concept of scanning the sensor field of view. However, technical problems with several space-based lidar missions during that decade led to concern at NASA about the risk of lidar missions. An external panel was convened to make recommendations to NASA. Their report in 2000 strongly advocated that NASA maintain in-house laser and lidar capability, and that NASA should work to lower the technology risk for all future lidar missions. A multi-Center NASA team formulated an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the Earth's atmosphere. In 2002 the NASA Earth Science Enterprise (ESE) and Office of Aerospace Technology (OAT) created the Laser Risk Reduction Program (LRRP) and directed NASA Langley Research Center (LaRC) and Goddard Space Flight Center to carry out synergistic and complementary research towards solid-state lasers/lidars developments for space-based remote sensing applications.

  18. Reading as Active Sensing: A Computational Model of Gaze Planning in Word Recognition

    PubMed Central

    Ferro, Marcello; Ognibene, Dimitri; Pezzulo, Giovanni; Pirrelli, Vito

    2010-01-01

    We offer a computational model of gaze planning during reading that consists of two main components: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting. PMID:20577589

  19. Reading as active sensing: a computational model of gaze planning in word recognition.

    PubMed

    Ferro, Marcello; Ognibene, Dimitri; Pezzulo, Giovanni; Pirrelli, Vito

    2010-01-01

    WE OFFER A COMPUTATIONAL MODEL OF GAZE PLANNING DURING READING THAT CONSISTS OF TWO MAIN COMPONENTS: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting.

  20. The effects of demand uncertainty on strategic gaming in the merit-order electricity pool market

    NASA Astrophysics Data System (ADS)

    Frem, Bassam

    In a merit-order electricity pool market, generating companies (Gencos) game with their offered incremental cost to meet the electricity demand and earn bigger market shares and higher profits. However when the demand is treated as a random variable instead of as a known constant, these Genco gaming strategies become more complex. After a brief introduction of electricity markets and gaming, the effects of demand uncertainty on strategic gaming are studied in two parts: (1) Demand modelled as a discrete random variable (2) Demand modelled as a continuous random variable. In the first part, we proposed an algorithm, the discrete stochastic strategy (DSS) algorithm that generates a strategic set of offers from the perspective of the Gencos' profits. The DSS offers were tested and compared to the deterministic Nash equilibrium (NE) offers based on the predicted demand. This comparison, based on the expected Genco profits, showed the DSS to be a better strategy in a probabilistic sense than the deterministic NE. In the second part, we presented three gaming strategies: (1) Deterministic NE (2) No-Risk (3) Risk-Taking. The strategies were then tested and their profit performances were compared using two assessment tools: (a) Expected value and standard deviation (b) Inverse cumulative distribution. We concluded that despite yielding higher profit performance under the right conjectures, Risk-Taking strategies are very sensitive to incorrect conjectures on the competitors' gaming decisions. As such, despite its lower profit performance, the No-Risk strategy was deemed preferable.

  1. Physician offices marketing: assessing patients' views of office visits.

    PubMed

    Emmett, Dennis; Chandra, Ashish

    2010-01-01

    Physician offices often lack the sense of incorporating appropriate strategies to make their facilities as marketer of their services. The patient experience at a physician's office not only incorporates the care they receive from the physician but also the other non-healthcare related aspects, such as the behavior of non-health professionals as well as the appearance of the facility itself. This paper is based on a primary research conducted to assess what patients assess from a physician office visit.

  2. Linking Learning Contexts: The Relationship between Students’ Civic and Political Experiences and Their Self-Regulation in School

    PubMed Central

    Malafaia, Carla; Teixeira, Pedro M.; Neves, Tiago; Menezes, Isabel

    2016-01-01

    This paper considers the relationship between self-regulation strategies and youth civic and political experiences, assuming that out-of-school learning can foster metacognition. The study is based on a sample of 732 Portuguese students from grades 8 and 11. Results show that the quality of civic and political participation experiences, together with academic self-efficacy, are significant predictors of young people’s self-regulation, particularly regarding cognitive and metacognitive strategies (elaboration and critical thinking). Such effects surpass even the weight of family cultural and school variables, such as the sense of school belonging. Therefore, we argue that the pedagogical value of non-formal civic and political experiences is related to learning in formal pedagogical contexts. This is because civic and political participation with high developmental quality can stimulate higher-order cognitive engagement and, thus, contribute to the development of learning strategies that promote academic success. PMID:27199812

  3. Linking Learning Contexts: The Relationship between Students' Civic and Political Experiences and Their Self-Regulation in School.

    PubMed

    Malafaia, Carla; Teixeira, Pedro M; Neves, Tiago; Menezes, Isabel

    2016-01-01

    This paper considers the relationship between self-regulation strategies and youth civic and political experiences, assuming that out-of-school learning can foster metacognition. The study is based on a sample of 732 Portuguese students from grades 8 and 11. Results show that the quality of civic and political participation experiences, together with academic self-efficacy, are significant predictors of young people's self-regulation, particularly regarding cognitive and metacognitive strategies (elaboration and critical thinking). Such effects surpass even the weight of family cultural and school variables, such as the sense of school belonging. Therefore, we argue that the pedagogical value of non-formal civic and political experiences is related to learning in formal pedagogical contexts. This is because civic and political participation with high developmental quality can stimulate higher-order cognitive engagement and, thus, contribute to the development of learning strategies that promote academic success.

  4. Predictive Coding Strategies for Developmental Neurorobotics

    PubMed Central

    Park, Jun-Cheol; Lim, Jae Hyun; Choi, Hansol; Kim, Dae-Shik

    2012-01-01

    In recent years, predictive coding strategies have been proposed as a possible means by which the brain might make sense of the truly overwhelming amount of sensory data available to the brain at any given moment of time. Instead of the raw data, the brain is hypothesized to guide its actions by assigning causal beliefs to the observed error between what it expects to happen and what actually happens. In this paper, we present a variety of developmental neurorobotics experiments in which minimalist prediction error-based encoding strategies are utilize to elucidate the emergence of infant-like behavior in humanoid robotic platforms. Our approaches will be first naively Piagian, then move onto more Vygotskian ideas. More specifically, we will investigate how simple forms of infant learning, such as motor sequence generation, object permanence, and imitation learning may arise if minimizing prediction errors are used as objective functions. PMID:22586416

  5. Energy and remote sensing applications

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1978-01-01

    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  6. Remote Sensing Assessment of Lunar Resources: We Know Where to Go to Find What We Need

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Taylor, G. J.; Lucey, P. G.

    2004-01-01

    The utilization of space resources is necessary to not only foster the growth of human activities in space, but is essential to the President s vision of a "sustained and affordable human and robotic program to explore the solar system and beyond." The distribution of resources will shape planning permanent settlements by affecting decisions about where to locate a settlement. Mapping the location of such resources, however, is not the limiting factor in selecting a site for a lunar base. It is indecision about which resources to use that leaves the location uncertain. A wealth of remotely sensed data exists that can be used to identify targets for future detailed exploration. Thus, the future of space resource utilization pre-dominantly rests upon developing a strategy for resource exploration and efficient methods of extraction.

  7. A strategy to study regional hydrology and terrestrial ecosystem processes using satellite remote sensing, ground-based data and computer modeling

    NASA Technical Reports Server (NTRS)

    Vorosmarty, C.; Grace, A.; Moore, B.; Choudhury, B.; Willmott, C. J.

    1990-01-01

    A strategy is presented for integrating scanning multichannel microwave radiometer data from the Nimbus-7 satellite with meteorological station records and computer simulations of land surface hydrology, terrestrial nutrient cycling, and trace gas emission. Analysis of the observations together with radiative transfer analysis shows that in the tropics the temporal and spatial variations of the polarization difference are determined primarily by the structure and phenology of vegetation and seasonal inundations of major rivers and wetlands. It is concluded that the proposed surface hydrology model, along with climatological records, and, potentially, 37-GHz data for phenology, will provide inputs to a terrestrial ecosystem model that predicts regional net primary production and CO2 gas exchange.

  8. pH-Controlled Assembly of DNA Tiles

    DOE PAGES

    Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo; ...

    2016-09-15

    We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less

  9. Liquid crystals from mesogens containing gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lewandowski, Wiktor; Gorecka, Ewa

    Long-range ordered structures made of nanoparticles are perspective materials for future optical, electronic and sensing technologies. Conspicuous physicochemical features of nanoparticle aggregates originate from distant-dependent collective interactions, therefore lately a lot of attention was put to the development of assembly strategies allowing control over nanoparticle spatial distribution. In this chapter we will focus on the assembly process based on using thermotropic liquid-crystalline molecules as surface nanoparticle ligands. First, we discuss architectural parameters that inuence structure and thermal properties of the aggregates. Then, we show that this approach enables formation of assemblies with metamaterial characteristic, gives access to dynamic materials with light-, magneto- and thermo-responsive behavior and allows formation of aggregates with unique structures, which all make this strategy an attractive object of research.

  10. pH-Controlled Assembly of DNA Tiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo

    We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less

  11. Remote sensing image denoising application by generalized morphological component analysis

    NASA Astrophysics Data System (ADS)

    Yu, Chong; Chen, Xiong

    2014-12-01

    In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.

  12. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    PubMed

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Succinic acid functionalized silver nanoparticles (Suc-Ag NPs) for colorimetric sensing of melamine

    NASA Astrophysics Data System (ADS)

    Rajar, Kausar; Sirajuddin; Balouch, Aamna; Bhanger, M. I.; Shah, Muhammad Tariq; Shaikh, Tayyaba; Siddiqui, Samia

    2018-03-01

    In this study, a quantitative colorimetric sensing strategy is developed for the rapid, sensitive and selective determination of melamine. The sensing system relies on the application of succinic acid as a selective recognition probe functionalized over Ag NPs. The synthesized Ag NPs were modified with cysteamine to induce positively charged atmosphere which allowed easy and favorable functionalization of succinic acid. The di-carboxyl nature of succinic acid enabled its binding to both cysteamine and melamine. The strong and favorable linkage between succinic acids carbonyl and amine moieties of melamine triggered aggregation of silver NPs producing a significant shift in the measured absorption excitation. This change in the excitation along with the colorimetric response was found linearly proportional to the melamine concentration in the range of 0.1-1.2 μM. The developed sensor system is simple and unlike electrostatic attraction based sensor system utilize selective linkage for the recognition of melamine. In addition to this, the developed optical probe can efficiently be used for the determination of melamine in milk samples.

  14. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform.

    PubMed

    Kempahanumakkagari, Sureshkumar; Kumar, Vanish; Samaddar, Pallabi; Kumar, Pawan; Ramakrishnappa, Thippeswamy; Kim, Ki-Hyun

    Technological advancements combined with materials research have led to the generation of enormous types of novel substrates and materials for use in various biological/medical, energy, and environmental applications. Lately, the embedding of biomolecules in novel and/or advanced materials (e.g., metal-organic frameworks (MOFs), nanoparticles, hydrogels, graphene, and their hybrid composites) has become a vital research area in the construction of an innovative platform for various applications including sensors (or biosensors), biofuel cells, and bioelectronic devices. Due to the intriguing properties of MOFs (e.g., framework architecture, topology, and optical properties), they have contributed considerably to recent progresses in enzymatic catalysis, antibody-antigen interactions, or many other related approaches. Here, we aim to describe the different strategies for the design and synthesis of diverse biomolecule-embedded MOFs for various sensing (e.g., optical, electrochemical, biological, and miscellaneous) techniques. Additionally, the benefits and future prospective of MOFs-based biomolecular immobilization as an innovative sensing platform are discussed along with the evaluation on their performance to seek for further development in this emerging research area. Copyright © 2018. Published by Elsevier Inc.

  15. Engineering responsive supramolecular biomaterials: Toward smart therapeutics.

    PubMed

    Webber, Matthew J

    2016-09-01

    Engineering materials using supramolecular principles enables generalizable and modular platforms that have tunable chemical, mechanical, and biological properties. Applying this bottom-up, molecular engineering-based approach to therapeutic design affords unmatched control of emergent properties and functionalities. In preparing responsive materials for biomedical applications, the dynamic character of typical supramolecular interactions facilitates systems that can more rapidly sense and respond to specific stimuli through a fundamental change in material properties or characteristics, as compared to cases where covalent bonds must be overcome. Several supramolecular motifs have been evaluated toward the preparation of "smart" materials capable of sensing and responding to stimuli. Triggers of interest in designing materials for therapeutic use include applied external fields, environmental changes, biological actuators, applied mechanical loading, and modulation of relative binding affinities. In addition, multistimuli-responsive routes can be realized that capture combinations of triggers for increased functionality. In sum, supramolecular engineering offers a highly functional strategy to prepare responsive materials. Future development and refinement of these approaches will improve precision in material formation and responsiveness, seek dynamic reciprocity in interactions with living biological systems, and improve spatiotemporal sensing of disease for better therapeutic deployment.

  16. Studying the influence of stem composition in pH-sensitive molecular beacons onto their sensing properties.

    PubMed

    Dembska, Anna; Kierzek, Elzbieta; Juskowiak, Bernard

    2017-10-16

    Intracellular sensing using fluorescent molecular beacons is a potentially useful strategy for real-time, in vivo monitoring of important cellular events. This work is focused on evaluation of pyrene excimer signaling molecular beacons (MBs) for the monitoring of pH changes in vitro as well as inside living cells. The recognition element in our MB called pHSO (pH-sensitive oligonucleotide) is the loop enclosing cytosine-rich fragment that is able to form i-motif structure in a specific pH range. However, alteration of a sequence of the 6 base pairs containing stem of MB allowed the design of pHSO probes that exhibited different dynamic pH range and possessed slightly different transition midpoint between i-motif and open loop configuration. Moreover, this conformational transition was accompanied by spectral changes showing developed probes different pyrene excimer-monomer emission ratio triggered by pH changes. The potential of these MBs for intracellular pH sensing is demonstrated on the example of HeLa cells line. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine

    NASA Astrophysics Data System (ADS)

    Bai, Shouli; Liu, Chengyao; Luo, Ruixian; Chen, Aifan

    2018-04-01

    The SnO2/NiO composites were synthesized by hydrothermal followed by calcination using metal-organic framework (MOF) consisting of the ligand of p-benzene-dicarboxylic acid (PTA) and the Sn and Ni center ions as sacrificial templates. The structure and morphology of Sn/Ni-based MOF and SnO2/NiO composites were characterized by XRD, SEM, TEM, FT-IR, TG, XPS and Brunauer-Emmett-Teller analysis. Sensing experiments reveal that the SnO2/NiO composite with the molar ratio of 9:1 not only exhibits the highest response of 14.03 that is 3 times higher than pristine SnO2 to triethylamine at 70 °C, but also shows good selectivity. Such excellent performance is attributed to the MOF-driven strategy and the formation of p-n heterojunctions, because the metal ions can be highly dispersed and separated in the MOFs and can prevent the metal ions aggregation during the MOF decomposition process. The work is a novel route for synthesis of gas sensing material.

  18. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-03-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  19. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-05-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  20. Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model

    PubMed Central

    Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong

    2014-01-01

    Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005

  1. Energy Harvesting for Structural Health Monitoring Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, G.; Farrar, C. R.; Todd, M. D.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portionmore » of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.« less

  2. Precision Sensing by Two Opposing Gradient Sensors: How Does Escherichia coli Find its Preferred pH Level?

    PubMed Central

    Hu, Bo; Tu, Yuhai

    2013-01-01

    It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional chemotactic strategy. Remarkably, Escherichia coli cells can perform such a precision sensing task in pH taxis by using the same chemotaxis machinery, but with opposite pH responses from two different chemoreceptors (Tar and Tsr). To understand bacterial pH sensing, we developed an Ising-type model for a mixed cluster of opposing receptors based on the push-pull mechanism. Our model can quantitatively explain experimental observations in pH taxis for various mutants and wild-type cells. We show how the preferred pH level depends on the relative abundance of the competing sensors and how the sensory activity regulates the behavioral response. Our model allows us to make quantitative predictions on signal integration of pH and chemoattractant stimuli. Our study reveals two general conditions and a robust push-pull scheme for precision sensing, which should be applicable in other adaptive sensory systems with opposing gradient sensors. PMID:23823247

  3. Highly Enhanced H2 Sensing Performance of Few-Layer MoS2/SiO2/Si Heterojunctions by Surface Decoration of Pd Nanoparticles.

    PubMed

    Hao, Lanzhong; Liu, Yunjie; Du, Yongjun; Chen, Zhaoyang; Han, Zhide; Xu, Zhijie; Zhu, Jun

    2017-10-17

    A novel few-layer MoS 2 /SiO 2 /Si heterojunction is fabricated via DC magnetron sputtering technique, and Pd nanoparticles are further synthesized on the device surface. The results demonstrate that the fabricated sensor exhibits highly enhanced responses to H 2 at room temperature due to the decoration of Pd nanoparticles. For example, the Pd-decorated MoS 2 /SiO 2 /Si heterojunction shows an excellent response of 9.2 × 10 3 % to H 2 , which is much higher than the values for the Pd/SiO 2 /Si and MoS 2 /SiO 2 /Si heterojunctions. In addition, the H 2 sensing properties of the fabricated heterojunction are dependent largely on the thickness of the Pd-nanoparticle layer and there is an optimized Pd thickness for the device to achieve the best sensing characteristics. Based on the microstructure characterization and electrical measurements, the sensing mechanisms of the Pd-decorated MoS 2 /SiO 2 /Si heterojunction are proposed. These results indicate that the Pd decoration of few-layer MoS 2 /SiO 2 /Si heterojunctions presents an effective strategy for the scalable fabrication of high-performance H 2 sensors.

  4. Thriving and Adapting: Resilience, Sense of Community, and Syndemics among Young Black Gay and Bisexual Men.

    PubMed

    Reed, Sarah J; Miller, Robin Lin

    2016-03-01

    We examined resilience associated with the avoidance of psychosocial health conditions (i.e., syndemics) that increase vulnerability for HIV among young Black gay and bisexual men. We used analytic induction to compare a sample of 23 men who showed no evidence of syndemic conditions to a sample of 23 men who experienced syndemic conditions. The men who avoided syndemics reported supportive relationships with people who helped them to develop a strong sense of identity, provided them with opportunities to give back to their communities, and promoted positive norms about health. In contrast, the men experiencing syndemic conditions described numerous instances of trauma and oppression that infringed upon their desire to form positive relationships. Among these men, experiences of oppression were associated with shame, identity incongruence, social isolation, relational disconnection, mistrust of men, and expectations of further marginalization. We examined participants' experiences through the framework of the psychosocial sense of community. Results of this study provide evidence for using strength-based intervention strategies to prevent syndemic conditions. Findings suggest that to attenuate socio-structural barriers to health and comorbid psychosocial health concerns, interventions must address young men's social isolation and promote positive identity and sense of community. © Society for Community Research and Action 2016.

  5. Unraveling navigational strategies in migratory insects.

    PubMed

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M

    2012-04-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied directional strategy relies on a time-compensated sun compass, used by diurnal insects, for which neural circuits have begun to be delineated. Yet, a growing body of evidence suggests that migratory insects may also rely on other compasses that use night sky cues or the Earth's magnetic field. Those mechanisms are ripe for exploration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Automobile gross emitter screening with remote sensing data using objective-oriented neural network.

    PubMed

    Chen, Ho-Wen; Yang, Hsi-Hsien; Wang, Yu-Sheng

    2009-11-01

    One of the costs of Taiwan's massive economic development has been severe air pollution problems in many parts of the island. Since vehicle emissions are the major source of air pollution in most of Taiwan's urban areas, Taiwan's government has implemented policies to rectify the degrading air quality, especially in areas with high population density. To reduce vehicle pollution emissions an on-road remote sensing and monitoring system is used to check the exhaust emissions from gasoline engine automobiles. By identifying individual vehicles with excessive emissions for follow-up inspection and testing, air quality in the urban environment is expected to improve greatly. Because remote sensing is capable of measuring a large number of moving vehicles in a short period, it has been considered as an assessment technique in place of the stationary emission-sampling techniques. However, inherent measurement uncertainty of remote sensing instrumentation, compounded by the indeterminacy of monitoring site selection, plus the vagaries of weather, causes large errors in pollution discrimination and limits the application of the remote sensing. Many governments are still waiting for a novel data analysis methodology to clamp down on heavily emitting vehicles by using remote sensing data. This paper proposes an artificial neural network (ANN), with vehicle attributes embedded, that can be trained by genetic algorithm (GA) based on different strategies to predict vehicle emission violation. Results show that the accuracy of predicting emission violation is as high as 92%. False determinations tend to occur for vehicles aged 7-13 years, peaking at 10 years of age.

  7. Should Animals Navigating Over Short Distances Switch to a Magnetic Compass Sense?

    PubMed Central

    Wyeth, Russell C.

    2010-01-01

    Magnetoreception can play a substantial role in long distance navigation by animals. I hypothesize that locomotion guided by a magnetic compass sense could also play a role in short distance navigation. Animals identify mates, prey, or other short distance navigational goals using different sensory modalities (olfaction, vision, audition, etc.) to detect sensory cues associated with those goals. In conditions where these cues become unreliable for navigation (due to flow changes, obstructions, noise interference, etc.), switching to a magnetic compass sense to guide locomotion toward the navigational goals could be beneficial. Using simulations based on known locomotory and flow parameters, I show this strategy has strong theoretical benefits for the nudibranch mollusk Tritonia diomedea navigating toward odor sources in variable flow. A number of other animals may garner similar benefits, particularly slow-moving species in environments with rapidly changing cues relevant for navigation. Faster animals might also benefit from switching to a magnetic compass sense, provided the initial cues used for navigation (acoustic signals, odors, etc.) are intermittent or change rapidly enough that the entire navigation behavior cannot be guided by a continuously detectable cue. Examination of the relative durations of navigational tasks, the persistence of navigational cues, and the stability of both navigators and navigational targets will identify candidates with the appropriate combination of unreliable initial cues and relatively immobile navigational goals for which this hypothetical behavior could be beneficial. Magnetic manipulations can then test whether a switch to a magnetic compass sense occurs. This hypothesis thus provides an alternative when considering the behavioral significance of a magnetic compass sense in animals. PMID:20740070

  8. Forest climate change Vulnerability and Adaptation Assessment in Himalayas

    NASA Astrophysics Data System (ADS)

    Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; Murthy, M. S. R.

    2014-11-01

    Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to choose a particular adaptation strategy. We present here how such complexities could be addressed and adaptation decisions could be either directly supported by open source remote sensing based forestry products or geospatial analysis and modelled products. The forest vulnerability assessment under climate change scenario coupled with increasing forest social dependence was studied using IPCC Landscape scale Vulnerability framework in Chitwan-Annapurna Landscape (CHAL) situated in Nepal. Around twenty layers of geospatial information on climate, forest biophysical and forest social dependence data was used to assess forest vulnerability and associated adaptation needs using self-learning decision tree based approaches. The increase in forest fires, evapotranspiration and reduction in productivity over changing climate scenario was observed. The adaptation measures on enhancing productivity, improving resilience, reducing or avoiding pressure with spatial specificity are identified to support suitable decision making. The study provides spatial analytical framework to evaluate multitude of parameters to understand vulnerabilities and assess scope for alternative adaptation strategies with spatial explicitness.

  9. An Improved Forwarding of Diverse Events with Mobile Sinks in Underwater Wireless Sensor Networks.

    PubMed

    Raza, Waseem; Arshad, Farzana; Ahmed, Imran; Abdul, Wadood; Ghouzali, Sanaa; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-11-04

    In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.

  10. Efficacy Beliefs of Beginning Hispanic Teachers and the Organizational Health of Schools in a South Texas School District

    ERIC Educational Resources Information Center

    Saenz, Gisela S.

    2013-01-01

    This quantitative study examined the relationship between teachers' sense of efficacy and school organizational health. Teachers' sense of efficacy was measured using three dimensions of teacher efficacy: efficacy in student engagement, efficacy in instructional strategies, and efficacy in classroom management. Organizational health was measured…

  11. Lidar: shedding new light on habitat characterization and modeling.

    Treesearch

    Kerri T. Vierling; Lee A. Vierling; William A. Gould; Sebastian Martinuzzi; Rick M. Clawges

    2008-01-01

    Ecologists need data on animal–habitat associations in terrestrial and aquatic environments to design and implement effective conservation strategies. Habitat characteristics used in models typically incorporate (1) field data of limited spatial extent and/or (2) remote sensing data that do not characterize the vertical habitat structure. Remote sensing tools that...

  12. Connecting Research to Teaching: Lenses for Examining Students' Mathematical Thinking

    ERIC Educational Resources Information Center

    Linsenmeier, Katherine A.; Sherin, Miriam; Walkoe, Janet; Mulligan, Martha

    2014-01-01

    The authors present three strategies for making sense of students' mathematical thinking. These lenses make the abstract idea of "making sense of student thinking" more manageable and concrete. We start by taking an initial look at a student's idea, going deeper, and finally looking across several ideas.

  13. Teacher Strategies and Interventions for Maltreated Children.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara

    2001-01-01

    Suggests that teachers use classroom strategies (structure and routine, reasonable rules and limits, using appropriate methods of discipline, other positive behavior management techniques) and socio-emotional interventions (development of friendships, appropriate expressions of emotions, anger control, conflict management, and internal sense of…

  14. Breaking the Cycle of Drug Abuse. 1993 Interim National Drug Control Strategy.

    ERIC Educational Resources Information Center

    Office of National Drug Control Policy, Washington, DC.

    This Interim Drug Strategy is intended to give a new sense of direction and to reinvigorate the nation's efforts against drug trafficking and abuse. The preface to the report lists eight new strategies that the Administration will implement: (1) make drug policy a cornerstone of domestic and social policy; (2) target pregnant women, children, and…

  15. Strategy Ranges: Describing Change in Prospective Elementary Teachers' Approaches to Mental Computation of Sums and Differences

    ERIC Educational Resources Information Center

    Whitacre, Ian

    2015-01-01

    This study investigated the sets of mental computation strategies used by prospective elementary teachers to compute sums and differences of whole numbers. In the context of an intervention designed to improve the number sense of prospective elementary teachers, participants were interviewed pre/post, and their mental computation strategies were…

  16. [Sense of coherence and ways of coping in the relationship with brother or sister in healthy siblings of mentally ill persons].

    PubMed

    Osuchowska-Kościjańska, Anna; Charzyńska, Katarzyna; Chadzyńska, Małgorzata; Drozdzyńska, Anna; Kasperek-Zimowska, Beata; Bednarek, Agata; Sawicka, Maryla

    2014-01-01

    The aim of the present study was to investigate sense of coherence in healthy siblings of persons suffering from schizophrenia as well as their ways of coping in the relationship with ill brother or sister. 40 healthy brothers and sisters of persons with ICD- 10 diagnosis of F20 to F29 participated in the present study. Orientation to Life Scale (SOC- 29) was used to assess sense of coherence and Ways of Coping with Stress questionnaire (SRSS) was used to examine stress coping strategies. Mean global score of siblings of persons with schizophrenia was 111 points. Subjects used coping strategies focused on problem significantly more often than those focused on emotions. Therapeutic work with healthy siblings should focus on strengthening sense of personal competence, development of personal resources and different ways of coping with stress, investigation of emotions that healthy siblings experience in the relationship with ill brother or sister as well as supporting the process of accepting changes in the relationship with the ill sibling.

  17. Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah

    USGS Publications Warehouse

    Zimmermann, N.E.; Edwards, T.C.; Moisen, Gretchen G.; Frescino, T.S.; Blackard, J.A.

    2007-01-01

    1. Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. 2. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. 3. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. 4. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. 5. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. ?? 2007 The Authors.

  18. Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah

    PubMed Central

    ZIMMERMANN, N E; EDWARDS, T C; MOISEN, G G; FRESCINO, T S; BLACKARD, J A

    2007-01-01

    Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. PMID:18642470

  19. Automatic Ship Detection in Remote Sensing Images from Google Earth of Complex Scenes Based on Multiscale Rotation Dense Feature Pyramid Networks

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Sun, Hao; Fu, Kun; Yang, Jirui; Sun, Xian; Yan, Menglong; Guo, Zhi

    2018-01-01

    Ship detection has been playing a significant role in the field of remote sensing for a long time but it is still full of challenges. The main limitations of traditional ship detection methods usually lie in the complexity of application scenarios, the difficulty of intensive object detection and the redundancy of detection region. In order to solve such problems above, we propose a framework called Rotation Dense Feature Pyramid Networks (R-DFPN) which can effectively detect ship in different scenes including ocean and port. Specifically, we put forward the Dense Feature Pyramid Network (DFPN), which is aimed at solving the problem resulted from the narrow width of the ship. Compared with previous multi-scale detectors such as Feature Pyramid Network (FPN), DFPN builds the high-level semantic feature-maps for all scales by means of dense connections, through which enhances the feature propagation and encourages the feature reuse. Additionally, in the case of ship rotation and dense arrangement, we design a rotation anchor strategy to predict the minimum circumscribed rectangle of the object so as to reduce the redundant detection region and improve the recall. Furthermore, we also propose multi-scale ROI Align for the purpose of maintaining the completeness of semantic and spatial information. Experiments based on remote sensing images from Google Earth for ship detection show that our detection method based on R-DFPN representation has a state-of-the-art performance.

  20. Direct Detection of Nucleic Acid with Minimizing Background and Improving Sensitivity Based on a Conformation-Discriminating Indicator.

    PubMed

    Zhu, Lixuan; Qing, Zhihe; Hou, Lina; Yang, Sheng; Zou, Zhen; Cao, Zhong; Yang, Ronghua

    2017-08-25

    As is well-known, the nucleic acid indicator-based strategy is one of the major approaches to monitor the nucleic acid hybridization-mediated recognition events in biochemical analysis, displaying obvious advantages including simplicity, low cost, convenience, and generality. However, conventional indicators either hold strong self-fluorescence or can be lighted by both ssDNA and dsDNA, lacking absolute selectivity for a certain conformation, always with high background interference and low sensitivity in sensing; and additional processing (e.g., nanomaterial-mediated background suppression, and enzyme-catalyzed signal amplification) is generally required to improve the detection performance. In this work, a carbazole derivative, EBCB, has been synthesized and screened as a dsDNA-specific fluorescent indicator. Compared with conventional indicators under the same conditions, EBCB displayed a much higher selective coefficient for dsDNA, with little self-fluorescence and negligible effect from ssDNA. Based on its superior capability in DNA conformation-discrimination, high sensitivity with minimizing background interference was demonstrated for direct detection of nucleic acid, and monitoring nucleic acid-based circuitry with good reversibity, resulting in low detection limit and high capability for discriminating base-mismatching. Thus, we expect that this highly specific DNA conformation-discriminating indicator will hold good potential for application in biochemical sensing and molecular logic switching.

  1. A Fresh Look at Spatio-Temporal Remote Sensing Data: Data Formats, Processing Flow, and Visualization

    NASA Astrophysics Data System (ADS)

    Gens, R.

    2017-12-01

    With increasing number of experimental and operational satellites in orbit, remote sensing based mapping and monitoring of the dynamic Earth has entered into the realm of `big data'. Just the Landsat series of satellites provide a near continuous archive of 45 years of data. The availability of such spatio-temporal datasets has created opportunities for long-term monitoring diverse features and processes operating on the Earth's terrestrial and aquatic systems. Processes such as erosion, deposition, subsidence, uplift, evapotranspiration, urbanization, land-cover regime shifts can not only be monitored and change can be quantified using time-series data analysis. This unique opportunity comes with new challenges in management, analysis, and visualization of spatio-temporal datasets. Data need to be stored in a user-friendly format, and relevant metadata needs to be recorded, to allow maximum flexibility for data exchange and use. Specific data processing workflows need to be defined to support time-series analysis for specific applications. Value-added data products need to be generated keeping in mind the needs of the end-users, and using best practices in complex data visualization. This presentation systematically highlights the various steps for preparing spatio-temporal remote sensing data for time series analysis. It showcases a prototype workflow for remote sensing based change detection that can be generically applied while preserving the application-specific fidelity of the datasets. The prototype includes strategies for visualizing change over time. This has been exemplified using a time-series of optical and SAR images for visualizing the changing glacial, coastal, and wetland landscapes in parts of Alaska.

  2. Innovative urban forestry governance in Melbourne?: Investigating "green placemaking" as a nature-based solution.

    PubMed

    Gulsrud, Natalie Marie; Hertzog, Kelly; Shears, Ian

    2018-02-01

    A nature-based approach to climate resilience aims to challenge and re-frame conventional environmental management methods by refocusing solutions from technological strategies to socio-ecological principles such as human well-being and community-based governance models, thereby improving and legitimizing the delivery of ecosystem services (ES). There are, however, many challenges to applying a socio-ecological agenda to urban climate resilience and thereby re-framing ES delivery as community and people focused, a knowledge gap extensively outlined in the environmental governance literature. In this paper, we aim to contribute to this re-assesment of urban environmental governance by examining the City of Melbourne's approach to urban re-naturing governance from a place-based perspective. Here we focus on the city's internationally-acclaimed urban forest strategy (UFS), investigating how and to which extent the governance arrangements embedded within the UFS draw strength from diverse perspectives and allow for institutional arrangements that support "situated" reflexive decision making and co-creation. We find that Melbourne's UFS governance process fosters green placemaking by re-focusing climate adaptation solutions from technological strategies to situated socio-ecological principles such as human well-being and community-based decision making. In this sense, this case provides valuable insight for the broader UGI governance field regarding the opportunities and challenges associated with a socio-cultural approach to urban re-naturing and ES delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Diketopyrrolopyrrole Amphiphile-Based Micelle-Like Fluorescent Nanoparticles for Selective and Sensitive Detection of Mercury(II) Ions in Water.

    PubMed

    Nie, Kaixuan; Dong, Bo; Shi, Huanhuan; Liu, Zhengchun; Liang, Bo

    2017-03-07

    A technique for encapsulating fluorescent organic probes in a micelle system offers an important alternative method to manufacture water-soluble organic nanoparticles (ONPs) for use in sensing Hg 2+ . This article reports on a study of a surfactant-free micelle-like ONPs based on a 3,6-di(2-thienyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TDPP) amphiphile, (2-(2-(2-methoxyethoxy)ethyl)-3,6-di(2-thiophyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (NDPP) fabricated to monitor Hg 2+ in water. NDPP was synthesized through a simple one-step modification of a commercially available dye TDPP with a flexible and hydrophilic alkoxy. This study reports, for the first time, that TDPP dyes can respond reversibly, sensitively, and selectively to Hg 2+ through TDPP-Hg-TDPP complexation, similar to the well-known thymine(T)-Hg-thymine(T) model and the accompanying molecular aggregation. Interestingly, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed that, in water, NDPP forms loose micelle-like fluorescent ONPs with a hydrohobic TDPP portion encapsulated inside. These micelle-like nanoparticles offer an ideal location for TDPP-Hg complexation with a modest molecular aggregation, thereby providing both clear visual and spectroscopic signals for Hg 2+ sensing. An estimated detection limit of 11 nM for Hg 2+ sensing with this NDPP nanoparticle was obtained. In addition, NDPP ONPs show good water solubility and high selectivity to Hg 2+ in neutral or alkalescent water. It was superior to most micelle-based nanosensors, which require a complicated process in the selection or synthesis of suitable surfactants. The determinations in real samples (river water) were made and satisfactory results were achieved. This study provides a low-cost strategy for fabricating small molecule-based fluorescent nanomaterials for use in sensing Hg 2+ . Moreover, the NDPP nanoparticles show potential ability in Hg 2+ ion adsorption and recognization of cysteine using NDPP-Hg composite particle.

  4. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.

    PubMed

    Lightcap, Ian V; Kamat, Prashant V

    2013-10-15

    Graphene not only possesses interesting electrochemical behavior but also has a remarkable surface area and mechanical strength and is naturally abundant, all advantageous properties for the design of tailored composite materials. Graphene-semiconductor or -metal nanoparticle composites have the potential to function as efficient, multifunctional materials for energy conversion and storage. These next-generation composite systems could possess the capability to integrate conversion and storage of solar energy, detection, and selective destruction of trace environmental contaminants or achieve single-substrate, multistep heterogeneous catalysis. These advanced materials may soon become a reality, based on encouraging results in the key areas of energy conversion and sensing using graphene oxide as a support structure. Through recent advances, chemists can now integrate such processes on a single substrate while using synthetic designs that combine simplicity with a high degree of structural and composition selectivity. This progress represents the beginning of a transformative movement leveraging the advancements of single-purpose chemistry toward the creation of composites designed to address whole-process applications. The promising field of graphene nanocomposites for sensing and energy applications is based on fundamental studies that explain the electronic interactions between semiconductor or metal nanoparticles and graphene. In particular, reduced graphene oxide is a suitable composite substrate because of its two-dimensional structure, outstanding surface area, and electrical conductivity. In this Account, we describe common assembly methods for graphene composite materials and examine key studies that characterize its excited state interactions. We also discuss strategies to develop graphene composites and control electron capture and transport through the 2D carbon network. In addition, we provide a brief overview of advances in sensing, energy conversion, and storage applications that incorporate graphene-based composites. With these results in mind, we can envision a new class of semiconductor- or metal-graphene composites sensibly tailored to address the pressing need for advanced energy conversion and storage devices.

  5. Liquid conservation in orangutans (Pongo pygmaeus) and humans (Homo sapiens): individual differences and perceptual strategies.

    PubMed

    Call, J; Rochat, P

    1996-09-01

    Four orangutans (1 juvenile, 2 subadults, and 1 adult) and ten 6-8-year-old children were tested in 4 liquid conservation tasks of increasing levels of difficulty. Task difficulty depended on the type of transformation (continuous vs. discontinuous quantities) and the relative contrast between the shapes of the containers. Results indicate that orangutans did not display conservation in the strict sense; instead they showed "partial" conservation (intermediate reactions according to J. Piaget & B. Inhelder, 1941). In contrast, some of the children provided evidence of conservation in all 4 tasks, showing "true" or logically necessary conservation in the original sense proposed by J. Piaget and B. Inhelder (1941). Although orangutans did not show conservation in the strict sense, as J. Piaget (1955) and others have generally agreed it should be defined, orangutans behaved as individual and creative problem solvers, adopting different perceptual strategies depending on the task.

  6. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features.

    PubMed

    Li, Fu-An; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-03-12

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In₂O₃ composite, is designed to differentiate NO₂, NH₃, C₃H₆, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In₂O₃, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

  7. The research of single intersection sensor signal control based on section data

    NASA Astrophysics Data System (ADS)

    Liu, Yunxiang; Huang, Yue; Wang, Hao

    2016-12-01

    Propose a sensing signal intersection control design electronic license based on the design by setting the intersection readers to interact with active electronic tags equipped vehicles, vehicle information obtained on the road section. In the vehicle detection sensor may control the green density as evaluation criteria are extended when the vehicle is higher than the threshold, the green density continuity, whereas the switching phases. Induction showed improved control strategy can achieve real-time traffic signal control effectively in high saturation intersection, to overcome the traditional sensor control failure at high saturation drawbacks and improve the utilization of urban Intersection comparative analysis by simulation.

  8. Response analysis of holography-based modal wavefront sensor.

    PubMed

    Dong, Shihao; Haist, Tobias; Osten, Wolfgang; Ruppel, Thomas; Sawodny, Oliver

    2012-03-20

    The crosstalk problem of holography-based modal wavefront sensing (HMWS) becomes more severe with increasing aberration. In this paper, crosstalk effects on the sensor response are analyzed statistically for typical aberrations due to atmospheric turbulence. For specific turbulence strength, we optimized the sensor by adjusting the detector radius and the encoded phase bias for each Zernike mode. Calibrated response curves of low-order Zernike modes were further utilized to improve the sensor accuracy. The simulation results validated our strategy. The number of iterations for obtaining a residual RMS wavefront error of 0.1λ is reduced from 18 to 3. © 2012 Optical Society of America

  9. Security of a sessional blind signature based on quantum cryptograph

    NASA Astrophysics Data System (ADS)

    Wang, Tian-Yin; Cai, Xiao-Qiu; Zhang, Rui-Ling

    2014-08-01

    We analyze the security of a sessional blind signature protocol based on quantum cryptograph and show that there are two security leaks in this protocol. One is that the legal user Alice can change the signed message after she gets a valid blind signature from the signatory Bob, and the other is that an external opponent Eve also can forge a valid blind message by a special attack, which are not permitted for blind signature. Therefore, this protocol is not secure in the sense that it does not satisfy the non-forgeability of blind signatures. We also discuss the methods to prevent the attack strategies in the end.

  10. Evaluation of a dimension-reduction-based statistical technique for Temperature, Water Vapour and Ozone retrievals from IASI radiances

    NASA Astrophysics Data System (ADS)

    Amato, Umberto; Antoniadis, Anestis; De Feis, Italia; Masiello, Guido; Matricardi, Marco; Serio, Carmine

    2009-03-01

    Remote sensing of atmosphere is changing rapidly thanks to the development of high spectral resolution infrared space-borne sensors. The aim is to provide more and more accurate information on the lower atmosphere, as requested by the World Meteorological Organization (WMO), to improve reliability and time span of weather forecasts plus Earth's monitoring. In this paper we show the results we have obtained on a set of Infrared Atmospheric Sounding Interferometer (IASI) observations using a new statistical strategy based on dimension reduction. Retrievals have been compared to time-space colocated ECMWF analysis for temperature, water vapor and ozone.

  11. A novel polydopamine-based chemiluminescence resonance energy transfer method for microRNA detection coupling duplex-specific nuclease-aided target recycling strategy.

    PubMed

    Wang, Qian; Yin, Bin-Cheng; Ye, Bang-Ce

    2016-06-15

    MicroRNAs (miRNAs), functioning as oncogenes or tumor suppressors, play significant regulatory roles in regulating gene expression and become as biomarkers for disease diagnostics and therapeutics. In this work, we have coupled a polydopamine (PDA) nanosphere-assisted chemiluminescence resonance energy transfer (CRET) platform and a duplex-specific nuclease (DSN)-assisted signal amplification strategy to develop a novel method for specific miRNA detection. With the assistance of hemin, luminol, and H2O2, the horseradish peroxidase (HRP)-mimicking G-rich sequence in the sensing probe produces chemiluminescence, which is quickly quenched by the CRET effect between PDA as energy acceptor and excited luminol as energy donor. The target miRNA triggers DSN to partially degrade the sensing probe in the DNA-miRNA heteroduplex to repeatedly release G-quadruplex formed by G-rich sequence from PDA for the production of chemiluminescence. The method allows quantitative detection of target miRNA in the range of 80 pM-50 nM with a detection limit of 49.6 pM. The method also shows excellent specificity to discriminate single-base differences, and can accurately quantify miRNA in biological samples, with good agreement with the result from a commercial miRNA detection kit. The procedure requires no organic dyes or labels, and is a simple and cost-effective method for miRNA detection for early clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Applying active learning to supervised word sense disambiguation in MEDLINE.

    PubMed

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models.

  13. Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme

    PubMed Central

    de Silva, Chamaree; Walter, Nils G.

    2009-01-01

    Engineered “aptazymes” fuse in vitro selected aptamers with ribozymes to create allosteric enzymes as biosensing components and artificial gene regulatory switches through ligand-induced conformational rearrangement and activation. By contrast, activating ligand is employed as an enzymatic cofactor in the only known natural aptazyme, the glmS ribozyme, which is devoid of any detectable conformational rearrangements. To better understand this difference in biosensing strategy, we monitored by single molecule fluorescence resonance energy transfer (FRET) and 2-aminopurine (AP) fluorescence the global conformational dynamics and local base (un)stacking, respectively, of a prototypical drug-sensing aptazyme, built from a theophylline aptamer and the hammerhead ribozyme. Single molecule FRET reveals that a catalytically active state with distal Stems I and III of the hammerhead ribozyme is accessed both in the theophylline-bound and, if less frequently, in the ligand-free state. The resultant residual activity (leakage) in the absence of theophylline contributes to a limited dynamic range of the aptazyme. In addition, site-specific AP labeling shows that rapid local theophylline binding to the aptamer domain leads to only slow allosteric signal transduction into the ribozyme core. Our findings allow us to rationalize the suboptimal biosensing performance of the engineered compared to the natural aptazyme and to suggest improvement strategies. Our single molecule FRET approach also monitors in real time the previously elusive equilibrium docking dynamics of the hammerhead ribozyme between several inactive conformations and the active, long-lived, Y-shaped conformer. PMID:19029309

  14. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    PubMed Central

    Tang, Yunwei; Jing, Linhai; Ding, Haifeng

    2017-01-01

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods. PMID:29064416

  15. Applying active learning to supervised word sense disambiguation in MEDLINE

    PubMed Central

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    Objectives This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. Methods We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Results Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. Conclusions This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models. PMID:23364851

  16. Photoactive and self-sensing P3HT-based thin films for strain and corrosion monitoring

    NASA Astrophysics Data System (ADS)

    Ryu, Donghyeon; Loh, Kenneth J.

    2014-03-01

    Structural systems deteriorate due to excessive deformation and corrosive environments. If damage is left undetected, they can propagate to cause sudden collapse. However, one of the main difficulties of monitoring damage progression is that, for example, excessive/plastic deformation and corrosion are drastically different physical processes. Strain is a mechanical phenomenon, whereas corrosion is a complex electrochemical process. The current strategy for structural health monitoring (SHM) is to use either different types of sensors or to employ system identification for quantifying overall changes to the structure. In this study, an alternative SHM paradigm is proposed in that a single, multifunctional material would be able to selectively sense different but simultaneously occurring structural damage. In particular, a photoactive and self-sensing thin film was developed for monitoring strain and corrosion. Another unique aspect was that the films were self-sensing and did not depend on external electrical energy for operations. First, the thin films were fabricated using photoactive poly(3-hexylthiophene) (P3HT) and other functional polymers using spin-coating and layerby- layer assembly. Second, the fabricated thin films were interrogated using an ultraviolet-visible (UV-Vis) spectrophotometer for quantifying their optical response to applied external stimuli, such as strain and exposure to pH buffer solutions. Lastly, the multifunctional thin films were tested and validated for strain and pH sensing. Interrogation of these separate responses was achieved by illuminating the thin films different wavelengths of light and then measuring the corresponding electrical current generated.

  17. Remote sensing-based characterization of rainfall during atmospheric rivers over the central United States

    NASA Astrophysics Data System (ADS)

    Nayak, Munir A.; Villarini, Gabriele

    2018-01-01

    Atmospheric rivers (ARs) play a central role in the hydrology and hydroclimatology of the central United States. More than 25% of the annual rainfall is associated with ARs over much of this region, with many large flood events tied to their occurrence. Despite the relevance of these storms for flood hydrology and water budget, the characteristics of rainfall associated with ARs over the central United has not been investigated thus far. This study fills this major scientific gap by describing the rainfall during ARs over the central United States using five remote sensing-based precipitation products over a 12-year study period. The products we consider are: Stage IV, Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH). As part of the study, we evaluate these products against a rain gauge-based dataset using both graphical- and metrics-based diagnostics. Based on our analyses, Stage IV is found to better reproduce the reference data. Hence, we use it for the characterization of rainfall in ARs. Most of the AR-rainfall is located in a narrow region within ∼150 km on both sides of the AR major axis. In this region, rainfall has a pronounced positive relationship with the magnitude of the water vapor transport. Moreover, we have also identified a consistent increase in rainfall intensity with duration (or persistence) of AR conditions. However, there is not a strong indication of diurnal variability in AR rainfall. These results can be directly used in developing flood protection strategies during ARs. Further, weather prediction agencies can benefit from the results of this study to achieve higher skill of resolving precipitation processes in their models.

  18. Digital spatial soil and land information for agriculture development

    NASA Astrophysics Data System (ADS)

    Sharma, R. K.; Laghathe, Pankaj; Meena, Ranglal; Barman, Alok Kumar; Das, Satyendra Nath

    2006-12-01

    Natural resource management calls for study of natural system prevailing in the country. In India floods and droughts visit regularly, causing extensive damages of natural wealth including agriculture that are crucial for sustenance of economic growth. The Indian Sub-continent drained by many major rivers and their tributaries where watershed, the hydrological unit forms a natural system that allows management and development of land resources following natural harmony. Acquisition of various kinds and levels of soil and land characteristics using both conventional and remote sensing techniques and subsequent development of digital spatial data base are essential to evolve strategy for planning watershed development programmes, their monitoring and impact evaluation. The multi-temporal capability of remote sensing sensors helps to update the existing data base which are of dynamic in nature. The paper outlines the concept of spatial data base development, generation using remote sensing techniques, designing of data structure, standardization and integration with watershed layers and various non spatial attribute data for various applications covering watershed development planning, alternate land use planning, soil and water conservation, diversified agriculture practices, generation of soil health card, soil and land reclamation, etc. The soil and land characteristics are vital to derive various interpretative groupings or master table that helps to generate the desired level of information of various clients using the GIS platform. The digital spatial data base on soils and watersheds generated by All India Soil and Land Use Survey will act as a sub-server of the main GIS based Web Server being hoisted by the planning commission for application of spatial data for planning purposes under G2G domain. It will facilitate e-governance for natural resource management using modern technology.

  19. Nonlinearity characterization of temperature sensing systems for integrated circuit testing by intermodulation products monitoring.

    PubMed

    Altet, J; Mateo, D; Perpiñà, X; Grauby, S; Dilhaire, S; Jordà, X

    2011-09-01

    This work presents an alternative characterization strategy to quantify the nonlinear behavior of temperature sensing systems. The proposed approach relies on measuring the temperature under thermal sinusoidal steady state and observing the intermodulation products that are generated within the sensing system itself due to its nonlinear temperature-output voltage characteristics. From such intermodulation products, second-order interception points can be calculated as a figure of merit of the measuring system nonlinear behavior. In this scenario, the present work first shows a theoretical analysis. Second, it reports the experimental results obtained with three thermal sensing techniques used in integrated circuits. © 2011 American Institute of Physics

  20. Remote Sensing Data Fusion to Detect Illicit Crops and Unauthorized Airstrips

    NASA Astrophysics Data System (ADS)

    Pena, J. A.; Yumin, T.; Liu, H.; Zhao, B.; Garcia, J. A.; Pinto, J.

    2018-04-01

    Remote sensing data fusion has been playing a more and more important role in crop planting area monitoring, especially for crop area information acquisition. Multi-temporal data and multi-spectral time series are two major aspects for improving crop identification accuracy. Remote sensing fusion provides high quality multi-spectral and panchromatic images in terms of spectral and spatial information, respectively. In this paper, we take one step further and prove the application of remote sensing data fusion in detecting illicit crop through LSMM, GOBIA, and MCE analyzing of strategic information. This methodology emerges as a complementary and effective strategy to control and eradicate illicit crops.

  1. [Psychological femininity and masculinity, self-appeal, attachment styles, coping styles and strategies of self-presentation among women with suicide attempts].

    PubMed

    Mandal, Eugenia; Zalewska, Karolina

    2010-01-01

    The aim of this study was to diagnose particular personality characteristics of women with suicide attempts: psychological femininity and masculinity, self-appeal, attachment styles, self-presentation strategies and coping styles. A group of 35 adult women who attempted suicide and the control group (35 women) were submitted to a research. The following measures were used: Inventory of Gender Identity (IPP), Strategies of Self-presentation Questionnaire (KSA), Attachment Style Test, Sense of Self-Appeal Scale (SPWA), Coping Inventory of Stressful Situations (CISS). Female suicide-attempters had a lower index of psychological masculinity and a lower sense of self-appeal than women in the control group. They were characterised by an avoidant attachment style, used a strategy of self-depreciation in self-presentation and an emotion-oriented style of coping. The predictors of risk of suicide behaviours that mainly showed: avoidant-attachment style and strategy of self-depreciation in self-presentation. Parasuicides were characterised by lower self-esteem and weak interpersonal skills, which reduced their ways of coping in difficult situations.

  2. Retention at Departments of Physics

    NASA Astrophysics Data System (ADS)

    Muller, Rafael; Rosa, Luis

    2013-03-01

    A thriving physics department is the end result of many actions, taken over time, that results in the development of a sense of community between the faculty and the students. As part of this sense of community, gifted students must receive special attention and innovative ideas must be incorporated to successfully accommodate the needs of these students. We have found that the best retention strategy for gifted undergraduates is the total involvement of them in undergraduate research projects and also the development of leadership in extracurricular activities within the department. A careful employment strategy is needed to secure a faculty committed to the goals of the community.

  3. Is terror gender-blind? Gender differences in reaction to terror events.

    PubMed

    Solomon, Zahava; Gelkopf, Marc; Bleich, Avraham

    2005-12-01

    This study examines gender differences in posttraumatic vulnerability in the face of the terror attacks that occurred during the Al-Aqsa Intifada. In addition, the contribution of level of exposure, sense of safety, self-efficacy, and coping strategies is assessed. Participants were 250 men and 262 women, who constitute a representative sample of Israel's adult population. Data were collected via a structured questionnaire consisting of 51 items that were drawn from several questionnaires widely used in the study of trauma. The findings indicate that women endorsed posttraumatic and depressive symptoms more than men and that, generally, their odds of developing posttraumatic stress symptoms are six times higher than those of men. Results also revealed that women's sense of safety and self-efficacy are lower than men's and that there are gender differences in coping strategies in the face of terror. Gender differences in vulnerability to terror may be attributable to a number of factors, among these are women's higher sense of threat and lower self-efficacy, as well as their tendency to use less effective coping strategies than men. Level of exposure to terror was ruled out as a possible explanation for the gender differences in vulnerability.

  4. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Guthier, C.; Aschenbrenner, K. P.; Buergy, D.; Ehmann, M.; Wenz, F.; Hesser, J. W.

    2015-03-01

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  5. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning.

    PubMed

    Guthier, C; Aschenbrenner, K P; Buergy, D; Ehmann, M; Wenz, F; Hesser, J W

    2015-03-21

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  6. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges.

    PubMed

    Qing, Taiping; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Wen, Li; Shangguan, Jingfang; Mao, Zhengui; Lei, Yanli

    2016-04-01

    Owing to their highly efficient catalytic effects and substrate specificity, the nucleic acid tool enzymes are applied as 'nano-tools' for manipulating different nucleic acid substrates both in the test-tube and in living organisms. In addition to the function as molecular scissors and molecular glue in genetic engineering, the application of nucleic acid tool enzymes in biochemical analysis has also been extensively developed in the past few decades. Used as amplifying labels for biorecognition events, the nucleic acid tool enzymes are mainly applied in nucleic acids amplification sensing, as well as the amplification sensing of biorelated variations of nucleic acids. With the introduction of aptamers, which can bind different target molecules, the nucleic acid tool enzymes-aided signal amplification strategies can also be used to sense non-nucleic targets (e.g., ions, small molecules, proteins, and cells). This review describes and discusses the amplification strategies of nucleic acid tool enzymes-aided biosensors for biochemical analysis applications. Various analytes, including nucleic acids, ions, small molecules, proteins, and cells, are reviewed briefly. This work also addresses the future trends and outlooks for signal amplification in nucleic acid tool enzymes-aided biosensors.

  7. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    NASA Technical Reports Server (NTRS)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data for the NASA Johnson Space Center into a NASA-Wide GIS Institutional Portal.

  8. The Effects of Using the Kinect Motion-Sensing Interactive System to Enhance English Learning for Elementary Students

    ERIC Educational Resources Information Center

    Pan, Wen Fu

    2017-01-01

    The objective of this study was to test whether the Kinect motion-sensing interactive system (KMIS) enhanced students' English vocabulary learning, while also comparing the system's effectiveness against a traditional computer-mouse interface. Both interfaces utilized an interactive game with a questioning strategy. One-hundred and twenty…

  9. University Students' Sense of Belonging to the Home Town: The Role of Residential Mobility

    ERIC Educational Resources Information Center

    Cicognani, Elvira; Menezes, Isabel; Nata, Gil

    2011-01-01

    In the study of young people's relationships with residential contexts, it is important to consider the role of developmental tasks (e.g. identity construction, academic and professional choices, etc.) in influencing Place Identity and Sense of Community. Residential mobility may represent an adaptive strategy for modifying some aspects of one's…

  10. Wavefront detection method of a single-sensor based adaptive optics system.

    PubMed

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS.

  11. Decentralized asset management for collaborative sensing

    NASA Astrophysics Data System (ADS)

    Malhotra, Raj P.; Pribilski, Michael J.; Toole, Patrick A.; Agate, Craig

    2017-05-01

    There has been increased impetus to leverage Small Unmanned Aerial Systems (SUAS) for collaborative sensing applications in which many platforms work together to provide critical situation awareness in dynamic environments. Such applications require critical sensor observations to be made at the right place and time to facilitate the detection, tracking, and classification of ground-based objects. This further requires rapid response to real-world events and the balancing of multiple, competing mission objectives. In this context, human operators become overwhelmed with management of many platforms. Further, current automated planning paradigms tend to be centralized and don't scale up well to many collaborating platforms. We introduce a decentralized approach based upon information-theory and distributed fusion which enable us to scale up to large numbers of collaborating Small Unmanned Aerial Systems (SUAS) platforms. This is exercised against a military application involving the autonomous detection, tracking, and classification of critical mobile targets. We further show that, based upon monte-carlo simulation results, our decentralized approach out-performs more static management strategies employed by human operators and achieves similar results to a centralized approach while being scalable and robust to degradation of communication. Finally, we describe the limitations of our approach and future directions for our research.

  12. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas

    PubMed Central

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832

  13. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.

  14. Schools for Strategy: Teaching Strategy for 21st Century Conflict

    DTIC Science & Technology

    2009-11-01

    To illustrate, if for now your army cannot win decisive success by fighting (tactically), you are obliged to adopt a long-haul strategy guided by a...sense,” but also who could fight their commands successfully in battle through the competent exercise of real- and near-real- time leadership.27 In...should always be recognition that ultimately it must be a practical, not a scholarly, pursuit. Education in strategy for potentially designated

  15. Strategies Used in Coping With a Cancer Diagnosis Predict Meaning in Life for Survivors

    PubMed Central

    Jim, Heather S.; Richardson, Susan A.; Golden-Kreutz, Deanna M.; Andersen, Barbara L.

    2007-01-01

    The search for meaning in life is part of the human experience. A negative life event may threaten perceptions about meaning in life, such as the benevolence of the world and one’s sense of harmony and peace. The authors examined the longitudinal relationship between women’s coping with a diagnosis of breast cancer and their self-reported meaning in life 2 years later. Multiple regression analyses revealed that positive strategies for coping predicted significant variance in the sense of meaning in life—feelings of inner peace, satisfaction with one’s current life and the future, and spirituality and faith—and the absence of such strategies predicted reports of loss of meaning and confusion (ps < .01). The importance and process of finding meaning in the context of a life stressor are discussed. PMID:17100503

  16. Remote Sensing of Water Quality in Multipurpose Reservoirs: Case Study Applications in Indonesia, Mexico, and Uruguay

    NASA Astrophysics Data System (ADS)

    Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.

    2017-12-01

    This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops for water resources students, applied scientists, practitioners, reservoir and water quality managers, and other interested stakeholders.

  17. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria

    PubMed Central

    Polkade, Ashish V.; Mantri, Shailesh S.; Patwekar, Umera J.; Jangid, Kamlesh

    2016-01-01

    Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit. PMID:26904007

  18. Strategies to introduce resistance to viroids (Book Chapter)

    USDA-ARS?s Scientific Manuscript database

    Little or no naturally occurring durable resistance to viroids has been found in most viroid host species; therefore efforts to engineer viroid resistance in these plant hosts have been made. These efforts include strategies that incorporate viroid-specific antisense RNAs, sense and antisense viroid...

  19. Lay Psychology Books as an Aid to Counseling

    ERIC Educational Resources Information Center

    Atkinson, Donald R.

    1974-01-01

    Counseling strategies employed by practitioners have, by necessity, often been the result of subjective observation and intuition. This article discusses a "common sense" technique--the use of lay psychology books--and proposes guidelines for use of the procedure as a viable counseling strategy. (Author)

  20. A strategy for detecting derelict fishing gear at sea.

    PubMed

    McElwee, Kris; Donohue, Mary J; Courtney, Catherine A; Morishige, Carey; Rivera-Vicente, Ariel

    2012-01-01

    Derelict fishing gear (DFG) is a highly persistent form of marine pollution known to cause environmental and economic damage. At-sea detection of DFG would support pelagic removal of this gear to prevent and minimize impacts on marine environments and species. In 2008, experts in marine debris, oceanography, remote sensing, and marine policy outlined a strategy to develop the capability to detect and ultimately remove DFG from the open ocean. The strategy includes three interrelated components: understanding the characteristics of the targeted DFG, indirectly detecting DFG by modeling likely locations, and directly detecting pelagic DFG using remote sensing. Together, these components aim to refine the search area, increase the likelihood of detection, and decrease mitigation response time, thereby providing guidance for removal operations. Here, we present this at-sea detection strategy, relate it to relevant extant research and technology, and identify gaps that currently prevent successful at-sea detection and removal of DFG. Copyright © 2011 Elsevier Ltd. All rights reserved.

Top