Pulsed Acoustic Vortex Sensing System : Volume 1. Hardware Design
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...
Introducing the Pressure-Sensing Palatograph--The Next Frontier in Electropalatography
ERIC Educational Resources Information Center
Murdoch, Bruce; Goozee, Justine; Veidt, Martin; Scott, Dion; Meyers, Ian
2004-01-01
Primary Objective. To extend the capabilities of current electropalatography (EPG) systems by developing a pressure-sensing EPG system. An initial trial of a prototype pressure-sensing palate will be presented. Research Design. The processes involved in designing the pressure sensors are outlined, with Hall effect transistors being selected. These…
Integrated Circuit Design of 3 Electrode Sensing System Using Two-Stage Operational Amplifier
NASA Astrophysics Data System (ADS)
Rani, S.; Abdullah, W. F. H.; Zain, Z. M.; N, Aqmar N. Z.
2018-03-01
This paper presents the design of a two-stage operational amplifier(op amp) for 3-electrode sensing system readout circuits. The designs have been simulated using 0.13μm CMOS technology from Silterra (Malaysia) with Mentor graphics tools. The purpose of this projects is mainly to design a miniature interfacing circuit to detect the redox reaction in the form of current using standard analog modules. The potentiostat consists of several op amps combined together in order to analyse the signal coming from the 3-electrode sensing system. This op amp design will be used in potentiostat circuit device and to analyse the functionality for each module of the system.
NASA Astrophysics Data System (ADS)
Tan, Songxin; Narayanan, Ram M.
2004-04-01
The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.
Novel remote sensor systems: design, prototyping, and characterization
NASA Astrophysics Data System (ADS)
Kayastha, V.; Gibbons, S.; Lamb, J. E.; Giedd, R. E.
2014-06-01
We have designed and tested a prototype TRL4 radio-frequency (RF) sensing platform containing a transceiver that interrogates a passive carbon nanotube (CNT)-based sensor platform. The transceiver can be interfaced to a server technology such as a Bluetooth® or Wi-Fi device for further connectivity. The novelty of a very-low-frequency (VLF) implementation in the transceiver design will ultimately enable deep penetration into the ground or metal structures to communicate with buried sensing platforms. The sensor platform generally consists of printed electronic devices made of CNTs on flexible poly(ethylene terephthalate) (PET) and Kapton® substrates. This novel remote sensing system can be integrated with both passive and active sensing platforms. It offers unique characteristics suitable for a variety of sensing applications. The proposed sensing platforms can take on different form factors and the RF output of the sensing platforms could be modulated by humidity, temperature, pressure, strain, or vibration signals. Resonant structures were designed and constructed to operate in the very-high-frequency (VHF) and VLF ranges. In this presentation, we will report results of our continued effort to develop a commercially viable transceiver capable of interrogating the conformally mounted sensing platforms made from CNTs or silver-based nanomaterials on polyimide substrates over a broad range of frequencies. The overall performance of the sensing system with different sensing elements and at different frequency ranges will be discussed.
NASA Astrophysics Data System (ADS)
Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen
1993-07-01
A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.
Design and Test of a Soft Plantar Force Measurement System for Gait Detection
Zhang, Xuefeng; Zhao, Yulong; Duan, Zhengyong; Liu, Yan
2012-01-01
This work describes a plantar force measurement system. The MEMS pressure sensor, as the key sensing element, is designed, fabricated and embedded into a flexible silicon oil-filled bladder made of silicon rubber to constitute a single sensing unit. A conditioning circuit is designed for signal processing and data acquisition. The characteristics of the plantar force sensing unit are investigated by both static and dynamic tests. A comparison of characteristics between the proposed plantar force sensing unit and a commercial flexible force sensor is presented. A practical experiment of plantar force measurement has been carried out to validate the system. The results demonstrate that the proposed measurement system has a potential for success in the application of plantar force measurement during normal gait. PMID:23208558
NASA Technical Reports Server (NTRS)
Khorram, S.
1977-01-01
Results are presented of a study intended to develop a general location-specific remote-sensing procedure for watershed-wide estimation of water loss to the atmosphere by evaporation and transpiration. The general approach involves a stepwise sequence of required information definition (input data), appropriate sample design, mathematical modeling, and evaluation of results. More specifically, the remote sensing-aided system developed to evaluate evapotranspiration employs a basic two-stage two-phase sample of three information resolution levels. Based on the discussed design, documentation, and feasibility analysis to yield timely, relatively accurate, and cost-effective evapotranspiration estimates on a watershed or subwatershed basis, work is now proceeding to implement this remote sensing-aided system.
Development of high temperature acoustic emission sensing system using fiber Bragg grating
NASA Astrophysics Data System (ADS)
Pang, Dandan; Sui, Qingmei; Wang, Ming; Guo, Dongmei; Sai, Yaozhang
2018-03-01
In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed with a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25 ° to 200 °. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.
A Situated Cultural Festival Learning System Based on Motion Sensing
ERIC Educational Resources Information Center
Chang, Yi-Hsing; Lin, Yu-Kai; Fang, Rong-Jyue; Lu, You-Te
2017-01-01
A situated Chinese cultural festival learning system based on motion sensing is developed in this study. The primary design principle is to create a highly interactive learning environment, allowing learners to interact with Kinect through natural gestures in the designed learning situation to achieve efficient learning. The system has the…
Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.
Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang
2018-02-01
A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.
Mechanics of Multifunctional Materials & Microsystems
2012-03-09
Mechanics of Materials; Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic...Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic Systems; Multifunctional...release; distribution is unlimited. 7 VISION: EXPANDED • site specific • autonomic AUTONOMIC AEROSPACE STRUCTURES • Sensing & Precognition • Self
Shi, Peng; Liu, Zhen; Dong, Kai; Ju, Enguo; Ren, Jinsong; Du, Yingda; Li, Zhengqiang; Qu, Xiaogang
2014-10-01
Herein, we design a "sense-act-treat" system via the combination of a ratiometric pH sensor with a therapeutic gold nanocage. Our design could "sense" the tumor through two-state switching of fluorescence and further provide chemotherapy and hyperthermia for "treating" the tumor, showing the potential for future biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Reza, Syed Azer
This dissertation proposes the use of the emerging Micro-Electro-Mechanical Systems (MEMS) and agile lensing optical device technologies to design novel and powerful signal conditioning and sensing modules for advanced applications in optical communications, physical parameter sensing and RF/optical signal processing. For example, these new module designs have experimentally demonstrated exceptional features such as stable loss broadband operations and high > 60 dB optical dynamic range signal filtering capabilities. The first part of the dissertation describes the design and demonstration of digital MEMS-based signal processing modules for communication systems and sensor networks using the TI DLP (Digital Light Processing) technology. Examples of such modules include optical power splitters, narrowband and broadband variable fiber optical attenuators, spectral shapers and filters. Compared to prior works, these all-digital designs have advantages of repeatability, accuracy, and reliability that are essential for advanced communications and sensor applications. The next part of the dissertation proposes, analyzes and demonstrates the use of analog opto-fluidic agile lensing technology for sensor networks and test and measurement systems. Novel optical module designs for distance sensing, liquid level sensing, three-dimensional object shape sensing and variable photonic delay lines are presented and experimentally demonstrated. Compared to prior art module designs, the proposed analog-mode modules have exceptional performances, particularly for extreme environments (e.g., caustic liquids) where the free-space agile beam-based sensor provide remote non-contact access for physical sensing operations. The dissertation also presents novel modules involving hybrid analog-digital photonic designs that make use of the different optical device technologies to deliver the best features of both analog and digital optical device operations and controls. Digital controls are achieved through the use of the digital MEMS technology and analog controls are realized by employing opto-fluidic agile lensing technology and acousto-optic technology. For example, variable fiber-optic attenuators and spectral filters are proposed using the hybrid design. Compared to prior art module designs, these hybrid designs provide a higher module dynamic range and increased resolution that are critical in various advanced system applications. In summary, the dissertation shows the added power of hybrid optical designs using both the digital and analog photonic signal processing versus just all-digital or all-analog module designs.
A Force-Sensing System on Legs for Biomimetic Hexapod Robots Interacting with Unstructured Terrain
Wu, Rui; Li, Changle; Zang, Xizhe; Zhang, Xuehe; Jin, Hongzhe; Zhao, Jie
2017-01-01
The tiger beetle can maintain its stability by controlling the interaction force between its legs and an unstructured terrain while it runs. The biomimetic hexapod robot mimics a tiger beetle, and a comprehensive force sensing system combined with certain algorithms can provide force information that can help the robot understand the unstructured terrain that it interacts with. This study introduces a complicated leg force sensing system for a hexapod robot that is the same for all six legs. First, the layout and configuration of sensing system are designed according to the structure and sizes of legs. Second, the joint toque sensors, 3-DOF foot-end force sensor and force information processing module are designed, and the force sensor performance parameters are tested by simulations and experiments. Moreover, a force sensing system is implemented within the robot control architecture. Finally, the experimental evaluation of the leg force sensor system on the hexapod robot is discussed and the performance of the leg force sensor system is verified. PMID:28654003
Natural Resource Information System. Remote Sensing Studies.
ERIC Educational Resources Information Center
Leachtenauer, J.; And Others
A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…
Shape memory alloy wire for self-sensing servo actuation
NASA Astrophysics Data System (ADS)
Josephine Selvarani Ruth, D.; Dhanalakshmi, K.
2017-01-01
This paper reports on the development of a straightforward approach to realise self-sensing shape memory alloy (SMA) wire actuated control. A differential electrical resistance measurement circuit (the sensorless signal conditioning (SSC) circuit) is designed; this sensing signal is directly used as the feedback for control. Antagonistic SMA wire actuators designed for servo actuation is realized in self-sensing actuation (SSA) mode for direct control with the differential electrical resistance feedback. The self-sensing scheme is established on a 1-DOF manipulator with the discrete time sliding mode controls which demonstrates good control performance, whatever be the disturbance and loading conditions. The uniqueness of this work is the design of the generic electronic SSC circuit for SMA actuated system, for measurement and control. With a concern to the implementation of self-sensing technique in SMA, this scheme retains the systematic control architecture by using the sensing signal (self-sensed, electrical resistance corresponding to the system position) for feedback, without requiring any processing as that of the methods adopted and reported previously for SSA techniques of SMA.
Detecting submerged features in water: modeling, sensors, and measurements
NASA Astrophysics Data System (ADS)
Bostater, Charles R., Jr.; Bassetti, Luce
2004-11-01
It is becoming more important to understand the remote sensing systems and associated autonomous or semi-autonomous methodologies (robotic & mechatronics) that may be utilized in freshwater and marine aquatic environments. This need comes from several issues related not only to advances in our scientific understanding and technological capabilities, but also from the desire to insure that the risk associated with UXO (unexploded ordnance), related submerged mines, as well as submerged targets (such as submerged aquatic vegetation) and debris left from previous human activities are remotely sensed and identified followed by reduced risks through detection and removal. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems now being constructed within our laboratory and other laboratories, as well as future systems. New remote sensing systems - moving or fixed sensing systems, as well as autonomous or semi-autonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons. These remote sensing systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring in ambient environments.
Pulsed acoustic vortex sensing system volume III: PAVSS operation and software documentation
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...
Pulsed Acoustic Vortex Sensing System : Volume 2, Studies of Improved PAVSS Processing Techniques
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...
Pulsed acoustic vortex sensing system volume IV: PAVSS program summary and recommendations
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. : This volu...
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-03-01
The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America
Radar Attitude Sensing System (RASS)
NASA Technical Reports Server (NTRS)
1971-01-01
The initial design and fabrication efforts for a radar attitude sensing system (RASS) are covered. The design and fabrication of the RASS system is being undertaken in two phases, 1B1 and 1B2. The RASS system as configured under phase 1B1 contains the solid state transmitter and local oscillator, the antenna system, the receiving system, and the altitude electronics. RASS employs a pseudo-random coded cw signal and receiver correlation techniques to measure range. The antenna is a planar, phased array, monopulse type, whose beam is electronically steerable using diode phase shifters. The beam steering computer and attitude sensing circuitry are to be included in Phase 1B2 of the program.
NASA Astrophysics Data System (ADS)
Bearden, David A.; Duclos, Donald P.; Barrera, Mark J.; Mosher, Todd J.; Lao, Norman Y.
1997-12-01
Emerging technologies and micro-instrumentation are changing the way remote sensing spacecraft missions are developed and implemented. Government agencies responsible for procuring space systems are increasingly requesting analyses to estimate cost, performance and design impacts of advanced technology insertion for both state-of-the-art systems as well as systems to be built 5 to 10 years in the future. Numerous spacecraft technology development programs are being sponsored by Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) agencies with the goal of enhancing spacecraft performance, reducing mass, and reducing cost. However, it is often the case that technology studies, in the interest of maximizing subsystem-level performance and/or mass reduction, do not anticipate synergistic system-level effects. Furthermore, even though technical risks are often identified as one of the largest cost drivers for space systems, many cost/design processes and models ignore effects of cost risk in the interest of quick estimates. To address these issues, the Aerospace Corporation developed a concept analysis methodology and associated software tools. These tools, collectively referred to as the concept analysis and design evaluation toolkit (CADET), facilitate system architecture studies and space system conceptual designs focusing on design heritage, technology selection, and associated effects on cost, risk and performance at the system and subsystem level. CADET allows: (1) quick response to technical design and cost questions; (2) assessment of the cost and performance impacts of existing and new designs/technologies; and (3) estimation of cost uncertainties and risks. These capabilities aid mission designers in determining the configuration of remote sensing missions that meet essential requirements in a cost- effective manner. This paper discuses the development of CADET modules and their application to several remote sensing satellite mission concepts.
Homes built to meet EPA's specification can earn the WaterSense label. EPA criteria include WaterSense labeled plumbing fixtures, efficient hot water delivery systems, water-smart landscape design, and other features.
NASA Astrophysics Data System (ADS)
Lee, Seung Yup; Na, Kyounghwan; Pakela, Julia M.; Scheiman, James M.; Yoon, Euisik; Mycek, Mary-Ann
2017-02-01
We present the design, development, and bench-top verification of an innovative compact clinical system including a miniaturized handheld optoelectronic sensor. The integrated sensor was microfabricated with die-level light-emitting diodes and photodiodes and fits into a 19G hollow needle (internal diameter: 0.75 mm) for optical sensing applications in solid tissues. Bench-top studies on tissue-simulating phantoms have verified system performance relative to a fiberoptic based tissue spectroscopy system. With dramatically reduced system size and cost, the technology affords spatially configurable designs for optoelectronic light sources and detectors, thereby enabling customized sensing configurations that would be impossible to achieve with needle-based fiber-optic probes.
Distributed Sensing and Processing for Multi-Camera Networks
NASA Astrophysics Data System (ADS)
Sankaranarayanan, Aswin C.; Chellappa, Rama; Baraniuk, Richard G.
Sensor networks with large numbers of cameras are becoming increasingly prevalent in a wide range of applications, including video conferencing, motion capture, surveillance, and clinical diagnostics. In this chapter, we identify some of the fundamental challenges in designing such systems: robust statistical inference, computationally efficiency, and opportunistic and parsimonious sensing. We show that the geometric constraints induced by the imaging process are extremely useful for identifying and designing optimal estimators for object detection and tracking tasks. We also derive pipelined and parallelized implementations of popular tools used for statistical inference in non-linear systems, of which multi-camera systems are examples. Finally, we highlight the use of the emerging theory of compressive sensing in reducing the amount of data sensed and communicated by a camera network.
DOT National Transportation Integrated Search
2012-03-01
This report introduces the design and implementation of a Web-based bridge information visual analytics system. This : project integrates Internet, multiple databases, remote sensing, and other visualization technologies. The result : combines a GIS ...
NASA Technical Reports Server (NTRS)
1984-01-01
Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.
Stevens, Nicholas; Salmon, Paul
2015-01-01
Footpaths provide an integral component of our urban environments and have the potential to act as safe places for people and the focus for community life. Despite this, the approach to designing footpaths that are safe while providing this sense of place often occurs in silos. There is often very little consideration given to how designing for sense of place impacts safety and vice versa. The aim of this study was to use a systems analysis and design framework to develop a design template for an 'ideal' footpath system that embodies both safety and sense of place. This was achieved through using the first phase of the Cognitive Work Analysis framework, Work Domain Analysis, to specify a model of footpaths as safe places for pedestrians. This model was subsequently used to assess two existing footpath environments to determine the extent to which they meet the design requirements specified. The findings show instances where the existing footpaths both meet and fail to meet the design requirements specified. Through utilising a systems approach for footpaths, this paper has provided a novel design template that can inform new footpath design efforts or be used to evaluate the extent to which existing footpaths achieve their safety and sense of place requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stevens, Nicholas; Salmon, Paul
2014-11-01
Footpaths provide an integral component of our urban environments and have the potential to act as safe places for people and the focus for community life. Despite this, the approach to designing footpaths that are safe while providing this sense of place often occurs in silos. There is often very little consideration given to how designing for sense of place impacts safety and vice versa. The aim of this study was to use a systems analysis and design framework to develop a design template for an 'ideal' footpath system that embodies both safety and sense of place. This was achieved through using the first phase of the Cognitive Work Analysis framework, Work Domain Analysis, to specify a model of footpaths as safe places for pedestrians. This model was subsequently used to assess two existing footpath environments to determine the extent to which they meet the design requirements specified. The findings show instances where the existing footpaths both meet and fail to meet the design requirements specified. Through utilising a systems approach for footpaths, this paper has provided a novel design template that can inform new footpath design efforts or be used to evaluate the extent to which existing footpaths achieve their safety and sense of place requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Design of a Novel Flexible Capacitive Sensing Mattress for Monitoring Sleeping Respiratory
Chang, Wen-Ying; Huang, Chien-Chun; Chen, Chi-Chun; Chang, Chih-Cheng; Yang, Chin-Lung
2014-01-01
In this paper, an algorithm to extract respiration signals using a flexible projected capacitive sensing mattress (FPCSM) designed for personal health assessment is proposed. Unlike the interfaces of conventional measurement systems for poly-somnography (PSG) and other alternative contemporary systems, the proposed FPCSM uses projected capacitive sensing capability that is not worn or attached to the body. The FPCSM is composed of a multi-electrode sensor array that can not only observe gestures and motion behaviors, but also enables the FPCSM to function as a respiration monitor during sleep using the proposed approach. To improve long-term monitoring when body movement is possible, the FPCSM enables the selection of data from the sensing array, and the FPCSM methodology selects the electrodes with the optimal signals after the application of a channel reduction algorithm that counts the reversals in the capacitive sensing signals as a quality indicator. The simple algorithm is implemented in the time domain. The FPCSM system is used in experimental tests and is simultaneously compared with a commercial PSG system for verification. Multiple synchronous measurements are performed from different locations of body contact, and parallel data sets are collected. The experimental comparison yields a correlation coefficient of 0.88 between FPCSM and PSG, demonstrating the feasibility of the system design. PMID:25420152
Liu, Qingtao; Hu, Jinming; Whittaker, Michael R; Davis, Thomas P; Boyd, Ben J
2017-12-15
Herein we report on the development of a nitric oxide-sensing lipid-based liquid crystalline (LLC) system specifically designed to release encapsulated drugs on exposure to NO through a stimulated phase change. A series of nitric oxide (NO)-sensing lipids compatible with phytantriol and GMO cubic phases were designed and synthesized, and utilized in enabling nitric oxide-sensing LLC systems. The nitric oxide (NO)-sensing lipids react with nitric oxide, resulting in hydrolysis of these lipids and phase transition of the LLC system. Specifically, the N-3-aminopyridinyl myristylamine (NAPyM)+phytantriol mixture formed a lamellar phase in excess aqueous environment. The NAPyM+phytantriol LLC responded to the nitric oxide gas as a chemical stimulus which triggers a phase transition from lamellar phase to inverse cubic and hexagonal phase. The nitric oxide-triggered phase transition of the LLC accelerated the release of encapsulated model drug from the LLC bulk phase, resulting in a 15-fold increase in the diffusion coefficient compared to the starting lamellar structure. The nitric oxide-sensing LLC system has potential application in the development of smart medicines to treat nitric oxide implicated diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
A real-time MTFC algorithm of space remote-sensing camera based on FPGA
NASA Astrophysics Data System (ADS)
Zhao, Liting; Huang, Gang; Lin, Zhe
2018-01-01
A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.
Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio
2016-08-24
Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).
Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio
2016-01-01
Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912
Modular design of electrical power subsystem for a remote sensing satellite
NASA Astrophysics Data System (ADS)
Kosari, Ehsan; Ghazanfarinia, Sajjad; Hosseingholi, Mahboobeh; Haghshenas, Javad
2017-09-01
Power Supply is one of the most important subjects in Remote Sensing satellite. Having an appropriate and adequate power resources, A Remote Sensing satellite may utilize more complex Payloads and also make them more operable in orbit and mission timeline. This paper is deals with a design of electrical power supply subsystem (EPS) of a hypothetical satellite with remote sensing mission in Low Earth Orbits, without any restriction on the type and number of Payloads and only assuming a constraint on the total power consumption of them. EPS design is in a way that can supply the platform consumption to support Mission and Payload(s) requirements beside the power consumption of the payload(s). The design is also modular, as it can be used not only for the hypothetical system, but also for the other systems with similar architecture and even more needs on power and differences in some specifications. Therefore, a modularity scope is assumed in design of this subsystem, in order to support the satellite in the circular orbits with altitude of 500 to 700 km and inclination of 98 degrees, a sun-synchronous orbit, where one can say the design is applicable to a large range of remote sensing satellites. Design process will be started by high level and system requirements analysis, continued by choosing the best approach for design and implementation based on system specification and mission. After EPS sizing, the specifications of elements are defined to get the performance needed during operation phases; the blocks and sub-blocks are introduced and details of their design and performance analysis are presented; and the modularity is verified using calculations for the confined area based on design parameters and evaluated by STK software analysis results. All of the process is coded in MATLAB software and comprehensive graphs are generated to demonstrate the capabilities and performance. The code and graphs are developed in such a way to completely review the design procedure and system efficiency in worst case of power consumption scenario at the beginning and end of satellite life
NASA Technical Reports Server (NTRS)
Vanrooy, D. L.; Smith, R. M.; Lynn, M. S.
1974-01-01
An application development system (ADS) is examined for remotely sensed, multispectral data at the Earth Observations Division (EOD) at Johnson Space Center. Design goals are detailed, along with design objectives that an ideal system should contain. The design objectives were arranged according to the priorities of EOD's program objectives. Four systems available to EOD were then measured against the ideal ADS as defined by the design objectives and their associated priorities. This was accomplished by rating each of the systems on each of the design objectives. Utilizing the established priorities, it was determined how each system stood up as an ADS. Recommendations were made as to possible courses of action for EOD to pursue to obtain a more efficient ADS.
Macrobend optical sensing for pose measurement in soft robot arms
NASA Astrophysics Data System (ADS)
Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar
2015-12-01
This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic tracking system (NDI Aurora) for validation.
Fiber optic (flight quality) sensors for advanced aircraft propulsion
NASA Technical Reports Server (NTRS)
Poppel, Gary L.
1994-01-01
Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.
NASA Astrophysics Data System (ADS)
McKellip, Rodney; Yuan, Ding; Graham, William; Holland, Donald E.; Stone, David; Walser, William E.; Mao, Chengye
1997-06-01
The number of available spaceborne and airborne systems will dramatically increase over the next few years. A common systematic approach toward verification of these systems will become important for comparing the systems' operational performance. The Commercial Remote Sensing Program at the John C. Stennis Space Center (SSC) in Mississippi has developed design requirements for a remote sensing verification target range to provide a means to evaluate spatial, spectral, and radiometric performance of optical digital remote sensing systems. The verification target range consists of spatial, spectral, and radiometric targets painted on a 150- by 150-meter concrete pad located at SSC. The design criteria for this target range are based upon work over a smaller, prototypical target range at SSC during 1996. This paper outlines the purpose and design of the verification target range based upon an understanding of the systems to be evaluated as well as data analysis results from the prototypical target range.
NASA Technical Reports Server (NTRS)
Lin, Jenshan; Norton, David P.; Pearton, Stephen J.; Ren, Fan
2010-01-01
A low-power, wireless gas-sensing system is designed to safeguard the apparatus to which it is attached, as well as associated personnel. It also ensures the efficiency and operational integrity of the hydrogen-powered apparatus. This sensing system can be operated with lower power consumption (less than 30 nanowatts), but still has a fast response. The detecting signal can be wirelessly transmitted to remote locations, or can be posted on the Web. This system can also be operated by harvesting energy.
1998 IEEE Aerospace Conference. Proceedings.
NASA Astrophysics Data System (ADS)
The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.
An airborne remote sensing platform of the Helsinki University of Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikulainen, M.; Hallikainen, M.; Kemppinen, M.
1996-10-01
In 1994 Helsinki University of Technology acquired a Short SC7 Skyvan turboprop aircraft to be modified to carry remote sensing instruments. As the aircraft is originally designed to carry heavy and space consuming cargo, a modification program was implemented to make the aircraft feasible for remote sensing operations. The twelve-month long modification program had three design objectives: flexibility, accessibility and cost efficiency. The aircraft interior and electrical system were modified. Furthermore, the aircraft is equipped with DGPS-navigation system, multi-channel radiometer system and side looking airborne radar. Future projects include installation of local area network, attitude GPS system, imaging spectrometer andmore » 1.4 GHz radiometer. 6 refs., 5 figs., 1 tab.« less
A mobile sensing system for structural health monitoring: design and validation
NASA Astrophysics Data System (ADS)
Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie
2010-05-01
This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring.
NASA Astrophysics Data System (ADS)
Deng, Shijie; Doherty, William; McAuliffe, Michael AP; Salaj-Kosla, Urszula; Lewis, Liam; Huyet, Guillaume
2016-06-01
A low-cost and portable optical chemical sensor based ammonia sensing system that is capable of detecting dissolved ammonia up to 5 ppm is presented. In the system, an optical chemical sensor is designed and fabricated for sensing dissolved ammonia concentrations. The sensor uses eosin as the fluorescence dye which is immobilized on the glass substrate by a gas-permeable protection layer. A compact module is developed to hold the optical components, and a battery powered micro-controller system is designed to read out and process the data measured. The system operates without the requirement of laboratory instruments that makes it cost effective and highly portable. Moreover, the calculated results in the system can be transmitted to a PC wirelessly, which allows the remote and real-time monitoring of dissolved ammonia.
Distributed multifunctional sensor network for composite structural state sensing
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Wang, Yishou; Gao, Limin; Kumar, Amrita
2012-04-01
Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and strong designability. In order to take full advantages of composite materials, there is a need to develop an embeddable multifunctional sensing system to allow a structure to "feel" and "think" its structural state. In this paper, the concept of multifunctional sensor network integrated with a structure, similar to the human nervous system, has been developed. Different types of network sensors are permanently integrated within a composite structure to sense structural strain, temperature, moisture, aerodynamic pressure; monitor external impact on the structure; and detect structural damages. Utilizing this revolutionary concept, future composite structures can be designed and manufactured to provide multiple modes of information, so that the structures have the capabilities for intelligent sensing, environmental adaptation and multi-functionality. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the paper.
NASA Astrophysics Data System (ADS)
Lv, ZhuoKai; Yang, Tiejun; Zhu, Chunhua
2018-03-01
Through utilizing the technology of compressive sensing (CS), the channel estimation methods can achieve the purpose of reducing pilots and improving spectrum efficiency. The channel estimation and pilot design scheme are explored during the correspondence under the help of block-structured CS in massive MIMO systems. The block coherence property of the aggregate system matrix can be minimized so that the pilot design scheme based on stochastic search is proposed. Moreover, the block sparsity adaptive matching pursuit (BSAMP) algorithm under the common sparsity model is proposed so that the channel estimation can be caught precisely. Simulation results are to be proved the proposed design algorithm with superimposed pilots design and the BSAMP algorithm can provide better channel estimation than existing methods.
A phased array bread board for future remote sensing applications
NASA Astrophysics Data System (ADS)
Zahn, R. W.; Schmidt, E.
The next generation of SAR antennas will be of the active phased-array type. The ongoing development of a phased-array breadboard for remote sensing is described. Starting from a detailed system design, a functional representative breadboard was developed. The design and the performance of the breadboard are discussed.
Validation of a wireless modular monitoring system for structures
NASA Astrophysics Data System (ADS)
Lynch, Jerome P.; Law, Kincho H.; Kiremidjian, Anne S.; Carryer, John E.; Kenny, Thomas W.; Partridge, Aaron; Sundararajan, Arvind
2002-06-01
A wireless sensing unit for use in a Wireless Modular Monitoring System (WiMMS) has been designed and constructed. Drawing upon advanced technological developments in the areas of wireless communications, low-power microprocessors and micro-electro mechanical system (MEMS) sensing transducers, the wireless sensing unit represents a high-performance yet low-cost solution to monitoring the short-term and long-term performance of structures. A sophisticated reduced instruction set computer (RISC) microcontroller is placed at the core of the unit to accommodate on-board computations, measurement filtering and data interrogation algorithms. The functionality of the wireless sensing unit is validated through various experiments involving multiple sensing transducers interfaced to the sensing unit. In particular, MEMS-based accelerometers are used as the primary sensing transducer in this study's validation experiments. A five degree of freedom scaled test structure mounted upon a shaking table is employed for system validation.
Implications of sampling design and sample size for national carbon accounting systems.
Köhl, Michael; Lister, Andrew; Scott, Charles T; Baldauf, Thomas; Plugge, Daniel
2011-11-08
Countries willing to adopt a REDD regime need to establish a national Measurement, Reporting and Verification (MRV) system that provides information on forest carbon stocks and carbon stock changes. Due to the extensive areas covered by forests the information is generally obtained by sample based surveys. Most operational sampling approaches utilize a combination of earth-observation data and in-situ field assessments as data sources. We compared the cost-efficiency of four different sampling design alternatives (simple random sampling, regression estimators, stratified sampling, 2-phase sampling with regression estimators) that have been proposed in the scope of REDD. Three of the design alternatives provide for a combination of in-situ and earth-observation data. Under different settings of remote sensing coverage, cost per field plot, cost of remote sensing imagery, correlation between attributes quantified in remote sensing and field data, as well as population variability and the percent standard error over total survey cost was calculated. The cost-efficiency of forest carbon stock assessments is driven by the sampling design chosen. Our results indicate that the cost of remote sensing imagery is decisive for the cost-efficiency of a sampling design. The variability of the sample population impairs cost-efficiency, but does not reverse the pattern of cost-efficiency of the individual design alternatives. Our results clearly indicate that it is important to consider cost-efficiency in the development of forest carbon stock assessments and the selection of remote sensing techniques. The development of MRV-systems for REDD need to be based on a sound optimization process that compares different data sources and sampling designs with respect to their cost-efficiency. This helps to reduce the uncertainties related with the quantification of carbon stocks and to increase the financial benefits from adopting a REDD regime.
NASA Astrophysics Data System (ADS)
Fgeppert, E.
1984-09-01
Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.
Design and Functionality of the Graphical Interactive Narrative (Gin) System Version 0.2
2012-08-01
System. The purpose of the Gin system is to increase the interactivity and sense of agency for human subjects in virtual environments (VEs) used for...tractability of scenario development while providing the user with an increased sense of agency by allowing them to control their own navigation
Circuit design advances for ultra-low power sensing platforms
NASA Astrophysics Data System (ADS)
Wieckowski, Michael; Dreslinski, Ronald G.; Mudge, Trevor; Blaauw, David; Sylvester, Dennis
2010-04-01
This paper explores the recent advances in circuit structures and design methodologies that have enabled ultra-low power sensing platforms and opened up a host of new applications. Central to this theme is the development of Near Threshold Computing (NTC) as a viable design space for low power sensing platforms. In this paradigm, the system's supply voltage is approximately equal to the threshold voltage of its transistors. Operating in this "near-threshold" region provides much of the energy savings previously demonstrated for subthreshold operation while offering more favorable performance and variability characteristics. This makes NTC applicable to a broad range of power-constrained computing segments including energy constrained sensing platforms. This paper explores the barriers to the adoption of NTC and describes current work aimed at overcoming these obstacles in the circuit design space.
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Clemmons, James I., Jr.; Shelton, Kevin J.; Duncan, Walter C.
1994-01-01
An optical measurement system (OMS) has been designed and tested for a large gap magnetic suspension system (LGMSS). The LGMSS will be used to study control laws for magnetic suspension systems for vibration isolation and pointing applications. The LGMSS features six degrees of freedom and consists of a planar array of electromagnets that levitate and position a cylindrical element containing a permanent magnet core. The OMS provides information on the location and orientation of the element to the LGMSS control system to stabilize suspension. The hardware design of this optical sensing system and the tracking algorithms are presented. The results of analyses and experiments are presented that define the accuracy limits of the optical sensing system and that quantify the errors in position estimation.
Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi
2017-12-01
In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.
WinASEAN for remote sensing data analysis
NASA Astrophysics Data System (ADS)
Duong, Nguyen Dinh; Takeuchi, Shoji
The image analysis system ASEAN (Advanced System for Environmental ANalysis with Remote Sensing Data) was designed and programmed by a software development group, ImaSOFr, Department of Remote Sensing Technology and GIS, Institute for Geography, National Centre for Natural Science and Technology of Vietnam under technical cooperation with the Remote Sensing Technology Centre of Japan and financial support from the National Space Development Agency of Japan. ASEAN has been in continuous development since 1989, with different versions ranging from the simplest one for MS-DOS with standard VGA 320×200×256 colours, through versions supporting SpeedStar 1.0 and SpeedStar PRO 2.0 true colour graphics cards, up to the latest version named WinASEAN, which is designed for the Windows 3.1 operating system. The most remarkable feature of WinASEAN is the use of algorithms that speed up the image analysis process, even on PC platforms. Today WinASEAN is continuously improved in cooperation with NASDA (National Space Development Agency of Japan), RESTEC (Remote Sensing Technology Center of Japan) and released as public domain software for training, research and education through the Regional Remote Sensing Seminar on Tropical Eco-system Management which is organised by NASDA and ESCAR In this paper, the authors describe the functionality of WinASEAN, some of the relevant analysis algorithms, and discuss its possibilities of computer-assisted teaching and training of remote sensing.
Self-sensing in Bacillus subtilis quorum-sensing systems
Bareia, Tasneem; Pollak, Shaul; Eldar, Avigdor
2017-01-01
Bacterial cell-cell signaling, or quorum sensing, is characterized by the secretion and group-wide detection of small diffusible signal molecules called autoinducers. This mechanism allows cells to coordinate their behavior in a density-dependent manner. A quorum-sensing cell may directly respond to the autoinducers it produces in a cell-autonomous and quorum-independent manner, but the strength of such self-sensing effect and its impact on bacterial physiology are unclear. Here, we explored the existence and impact of self-sensing in the Bacillus subtilis ComQXP and Rap-Phr quorum-sensing systems. By comparing the quorum-sensing response of autoinducer-secreting and non-secreting cells in co-culture, we found that secreting cells consistently showed a stronger response than non-secreting cells. Combining genetic and quantitative analyses, we demonstrated this effect to be a direct result of self-sensing and ruled out an indirect regulatory effect of the autoinducer production genes on response sensitivity. In addition, self-sensing in the ComQXP system affected persistence to antibiotic treatment. Together, these findings indicate the existence of self-sensing in the two most common designs of quorum-sensing systems of Gram-positive bacteria. PMID:29038467
Biomimetric sentinel reef structures for optical sensing and communications
NASA Astrophysics Data System (ADS)
Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor
2017-05-01
Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.
DOT National Transportation Integrated Search
2009-12-01
The Integrated Remote Sensing and Visualization System (IRSV) is being designed to accommodate the needs of todays Bridge : Engineers at the state and local level from the following aspects: : Better understanding and enforcement of a complex ...
NASA Astrophysics Data System (ADS)
Liu, Q.
2011-09-01
At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-04-01
The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.
Project Copernicus: An Earth observing system
NASA Technical Reports Server (NTRS)
1991-01-01
Hunsaker Aerospace Corporation is presenting this proposal for Project Copernicus to fulfill the need for space-based remote sensing of Earth. Concentration is on data acquisition. Copernicus is designed to be a flexible system of spacecraft in a low near-polar orbit. The goal is to acquire data so that the scientists may begin to understand many Earth processes and interactions. The mission objective of Copernicus is to provide a space-based, remote-sensing measurement data acquisition and transfer system for 15 years. A description of the design project is presented.
Raymond L. Czaplewski
1989-01-01
It is difficult to design systems for national and global resource inventory and analysis that efficiently satisfy changing, and increasingly complex objectives. It is proposed that individual inventory, monitoring, modeling, and remote sensing systems be specialized to achieve portions of the objectives. These separate systems can be statistically linked to accomplish...
LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application
NASA Astrophysics Data System (ADS)
Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin
2014-11-01
The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product validation.
Transient Behavior of Lumped-Constant Systems for Sensing Gas Pressures
NASA Technical Reports Server (NTRS)
Delio, Gene J; Schwent, Glennon V; Cesaro, Richard S
1949-01-01
The development of theoretical equations describing the behavior of a lumped-constant pressure-sensing system under transient operation Is presented with experimental data that show agreement with the equations. A pressure-sensing system 'consisting of a tube terminating in a reservoir is investigated for the transient relation between a presSure disturbance at the open end of the tube and the pressure response in the reservoir. Design parameters are presented that can be adjusted to achieve a desired performance fran such a system when the system is considered as a transfer member of a control loop.
Mirrors design, analysis and manufacturing of the 550mm Korsch telescope experimental model
NASA Astrophysics Data System (ADS)
Huang, Po-Hsuan; Huang, Yi-Kai; Ling, Jer
2017-08-01
In 2015, NSPO (National Space Organization) began to develop the sub-meter resolution optical remote sensing instrument of the next generation optical remote sensing satellite which follow-on to FORMOSAT-5. Upgraded from the Ritchey-Chrétien Cassegrain telescope optical system of FORMOSAT-5, the experimental optical system of the advanced optical remote sensing instrument was enhanced to an off-axis Korsch telescope optical system which consists of five mirrors. It contains: (1) M1: 550mm diameter aperture primary mirror, (2) M2: secondary mirror, (3) M3: off-axis tertiary mirror, (4) FM1 and FM2: two folding flat mirrors, for purpose of limiting the overall volume, reducing the mass, and providing a long focal length and excellent optical performance. By the end of 2015, we implemented several important techniques including optical system design, opto-mechanical design, FEM and multi-physics analysis and optimization system in order to do a preliminary study and begin to develop and design these large-size lightweight aspheric mirrors and flat mirrors. The lightweight mirror design and opto-mechanical interface design were completed in August 2016. We then manufactured and polished these experimental model mirrors in Taiwan; all five mirrors ware completed as spherical surfaces by the end of 2016. Aspheric figuring, assembling tests and optical alignment verification of these mirrors will be done with a Korsch telescope experimental structure model in 2018.
Harsh environment sensor development for advanced energy systems
NASA Astrophysics Data System (ADS)
Romanosky, Robert R.; Maley, Susan M.
2013-05-01
Highly efficient, low emission power systems have extreme conditions of high temperature, high pressure, and corrosivity that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. To achieve the goals and demands of clean energy, the conditions under which fossil fuels are converted into heat and power are harsh compared to traditional combustion/steam cycles. Temperatures can extend as high as 1600 Celsius (°C) in certain systems and pressures can reach as high as 5000 pounds per square inch (psi)/340 atmospheres (atm). The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Two major considerations in the development of harsh environments sensors are the materials used for sensing and the design of the sensing device. This paper will highlight the U.S. Department of Energy's, Office of Fossil Energy and National Energy Technology Laboratory's Program in advanced sensing concepts that are aimed at addressing the technology needs and drivers through the development of new sensor materials and designs capable of withstanding harsh environment conditions. Recent developments with harsh environment sensors will be highlighted and future directions towards in advanced sensing will be introduced.
Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery.
He, Chao; Wang, Shuxin; Sang, Hongqiang; Li, Jinhua; Zhang, Linan
2014-09-01
Force sensing for robotic surgery is limited by the size of the instrument, friction and sterilization requirements. This paper presents a force-sensing instrument to avoid these restrictions. Operating forces were calculated according to cable tension. Mathematical models of the force-sensing system were established. A force-sensing instrument was designed and fabricated. A signal collection and processing system was constructed. The presented approach can avoid the constraints of space limits, sterilization requirements and friction introduced by the transmission parts behind the instrument wrist. Test results showed that the developed instrument has a 0.03 N signal noise, a 0.05 N drift, a 0.04 N resolution and a maximum error of 0.4 N. The validation experiment indicated that the operating and grasping forces can be effectively sensed. The developed force-sensing system can be used in minimally invasive robotic surgery to construct a force-feedback system. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Selker, J. S.; Roques, C.; Higgins, C. W.; Good, S. P.; Hut, R.; Selker, A.
2015-12-01
The confluence of 3-Dimensional printing, low-cost solid-state-sensors, low-cost, low-power digital controllers (e.g., Arduinos); and open-source publishing (e.g., Github) is poised to transform environmental sensing. The Open-Source Published Environmental Sensing (OPENS) laboratory has launched and is available for all to use. OPENS combines cutting edge technologies and makes them available to the global environmental sensing community. OPENS includes a Maker lab space where people may collaborate in person or virtually via on-line forum for the publication and discussion of environmental sensing technology (Corvallis, Oregon, USA, please feel free to request a free reservation for space and equipment use). The physical lab houses a test-bed for sensors, as well as a complete classical machine shop, 3-D printers, electronics development benches, and workstations for code development. OPENS will provide a web-based formal publishing framework wherein global students and scientists can peer-review publish (with DOI) novel and evolutionary advancements in environmental sensor systems. This curated and peer-reviewed digital collection will include complete sets of "printable" parts and operating computer code for sensing systems. The physical lab will include all of the machines required to produce these sensing systems. These tools can be addressed in person or virtually, creating a truly global venue for advancement in monitoring earth's environment and agricultural systems. In this talk we will present an example of the process of design and publication the design and data from the OPENS-Permeameter. The publication includes 3-D printing code, Arduino (or other control/logging platform) operational code; sample data sets, and a full discussion of the design set in the scientific context of previous related devices. Editors for the peer-review process are currently sought - contact John.Selker@Oregonstate.edu or Clement.Roques@Oregonstate.edu.
A Microfluidic Device for Continuous Sensing of Systemic Acute Toxicants in Drinking Water
Zhao, Xinyan; Dong, Tao
2013-01-01
A bioluminescent-cell-based microfluidic device for sensing toxicants in drinking water was designed and fabricated. The system employed Vibrio fischeri cells as broad-spectrum sensors to monitor potential systemic cell toxicants in water, such as heavy metal ions and phenol. Specifically, the chip was designed for continuous detection. The chip design included two counter-flow micromixers, a T-junction droplet generator and six spiral microchannels. The cell suspension and water sample were introduced into the micromixers and dispersed into droplets in the air flow. This guaranteed sufficient oxygen supply for the cell sensors. Copper (Cu2+), zinc (Zn2+), potassium dichromate and 3,5-dichlorophenol were selected as typical toxicants to validate the sensing system. Preliminary tests verified that the system was an effective screening tool for acute toxicants although it could not recognize or quantify specific toxicants. A distinct non-linear relationship was observed between the zinc ion concentration and the Relative Luminescence Units (RLU) obtained during testing. Thus, the concentration of simple toxic chemicals in water can be roughly estimated by this system. The proposed device shows great promise for an early warning system for water safety. PMID:24300075
The integrated design and archive of space-borne signal processing and compression coding
NASA Astrophysics Data System (ADS)
He, Qiang-min; Su, Hao-hang; Wu, Wen-bo
2017-10-01
With the increasing demand of users for the extraction of remote sensing image information, it is very urgent to significantly enhance the whole system's imaging quality and imaging ability by using the integrated design to achieve its compact structure, light quality and higher attitude maneuver ability. At this present stage, the remote sensing camera's video signal processing unit and image compression and coding unit are distributed in different devices. The volume, weight and consumption of these two units is relatively large, which unable to meet the requirements of the high mobility remote sensing camera. This paper according to the high mobility remote sensing camera's technical requirements, designs a kind of space-borne integrated signal processing and compression circuit by researching a variety of technologies, such as the high speed and high density analog-digital mixed PCB design, the embedded DSP technology and the image compression technology based on the special-purpose chips. This circuit lays a solid foundation for the research of the high mobility remote sensing camera.
NASA Technical Reports Server (NTRS)
Hwang, James; Campbell, Perry; Ross, Mike; Price, Charles R.; Barron, Don
1989-01-01
An integrated operating environment was designed to incorporate three general purpose robots, sensors, and end effectors, including Force/Torque Sensors, Tactile Array sensors, Tactile force sensors, and Force-sensing grippers. The design and implementation of: (1) the teleoperation of a general purpose PUMA robot; (2) an integrated sensor hardware/software system; (3) the force-sensing gripper control; (4) the host computer system for dual Robotic Research arms; and (5) the Ethernet integration are described.
40 CFR 86.1803-01 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... prior to procurement. Auxiliary Emission Control Device (AECD) means any element of design which senses... components are those components which are designed primarily for emission control, or whose failure may... of design means any control system (i.e., computer software, electronic control system, emission...
4D light-field sensing system for people counting
NASA Astrophysics Data System (ADS)
Hou, Guangqi; Zhang, Chi; Wang, Yunlong; Sun, Zhenan
2016-03-01
Counting the number of people is still an important task in social security applications, and a few methods based on video surveillance have been proposed in recent years. In this paper, we design a novel optical sensing system to directly acquire the depth map of the scene from one light-field camera. The light-field sensing system can count the number of people crossing the passageway, and record the direction and intensity of rays at a snapshot without any assistant light devices. Depth maps are extracted from the raw light-ray sensing data. Our smart sensing system is equipped with a passive imaging sensor, which is able to naturally discern the depth difference between the head and shoulders for each person. Then a human model is built. Through detecting the human model from light-field images, the number of people passing the scene can be counted rapidly. We verify the feasibility of the sensing system as well as the accuracy by capturing real-world scenes passing single and multiple people under natural illumination.
Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system
NASA Astrophysics Data System (ADS)
Kaźmierczak, Andrzej; Dortu, Fabian; Schrevens, Olivier; Giannone, Domenico; Bouville, David; Cassan, Eric; Gylfason, Kristinn B.; Sohlström, Hans; Sanchez, Benito; Griol, Amadeu; Hill, Daniel
2009-01-01
We present an efficient and highly alignment-tolerant light coupling and distribution system for a multichannel Si3N4/SiO2 single-mode photonics sensing chip. The design of the input and output couplers and the distribution splitters is discussed. Examples of multichannel data obtained with the system are given.
NASA Astrophysics Data System (ADS)
Wang, Yubao; Zhu, Zhaohui; Wang, Lu; Bai, Jian
2016-05-01
A novel GPON-oriented sensing data digitalization system is proposed to achieve remote monitoring of fiber grating sensing networks utilizing existing optical communication networks in some harsh environments. In which, Quick digitalization of sensing information obtained from the reflected lightwaves by fiber Bragg grating (FBG) sensor is realized, and a novel frame format of sensor signal is designed to suit for public transport so as to facilitate sensor monitoring center to receive and analyze the sensor data. The delay effect, identification method of the sensor data, and various interference factors which influence the sensor data to be correctly received are analyzed. The system simulation is carried out with OptiSystem/Matlab co-simulation approach. The theoretical analysis and simulation results verify the feasibility of the integration of the sensor network and communication network.
Fiber optic sensing for telecommunication satellites
NASA Astrophysics Data System (ADS)
Reutlinger, Arnd; Glier, Markus; Zuknik, Karl-Heinz; Hoffmann, Lars; Müller, Mathias; Rapp, Stephan; Kurvin, Charles; Ernst, Thomas; McKenzie, Iain; Karafolas, Nikos
2017-11-01
Modern telecommunication satellites can benefit from the features of fiber optic sensing wrt to mass savings, improved performance and lower costs. Within the course of a technology study, launched by the European Space Agency, a fiber optic sensing system has been designed and is to be tested on representative mockups of satellite sectors and environment.
Fiber optic medical pressure-sensing system employing intelligent self-calibration
NASA Astrophysics Data System (ADS)
He, Gang
1996-01-01
In this article, we describe a fiber-optic catheter-type pressure-sensing system that has been successfully introduced for medical diagnostic applications. We present overall sensors and optoelectronics designs, and highlight product development efforts that lead to a reliable and accurate disposable pressure-sensing system. In particular, the incorporation of an intelligent on-site self-calibration approach allows limited sensor reuses for reducing end-user costs and for system adaptation to wide sensor variabilities associated with low-cost manufacturing processes. We demonstrate that fiber-optic sensors can be cost-effectively produced to satisfy needs of certain medical market segments.
Remote sensing and the Mississippi high accuracy reference network
NASA Technical Reports Server (NTRS)
Mick, Mark; Alexander, Timothy M.; Woolley, Stan
1994-01-01
Since 1986, NASA's Commercial Remote Sensing Program (CRSP) at Stennis Space Center has supported commercial remote sensing partnerships with industry. CRSP's mission is to maximize U.S. market exploitation of remote sensing and related space-based technologies and to develop advanced technical solutions for spatial information requirements. Observation, geolocation, and communications technologies are converging and their integration is critical to realize the economic potential for spatial informational needs. Global positioning system (GPS) technology enables a virtual revolution in geopositionally accurate remote sensing of the earth. A majority of states are creating GPS-based reference networks, or high accuracy reference networks (HARN). A HARN can be defined for a variety of local applications and tied to aerial or satellite observations to provide an important contribution to geographic information systems (GIS). This paper details CRSP's experience in the design and implementation of a HARN in Mississippi and the design and support of future applications of integrated earth observations, geolocation, and communications technology.
Design of an imaging spectrometer for earth observation using freeform mirrors
NASA Astrophysics Data System (ADS)
Peschel, T.; Damm, C.; Beier, M.; Gebhardt, A.; Risse, S.; Walter, I.; Sebastian, I.; Krutz, D.
2017-09-01
In 2017 the new hyperspectral DLR Earth Sensing Imaging Spectrometer (DESIS) will be integrated in the Multi-User-System for Earth Sensing (MUSES) platform [1] installed on the International Space Station (ISS).
Advanced technologies and devices for inhalational anesthetic drug dosing.
Meyer, J-U; Kullik, G; Wruck, N; Kück, K; Manigel, J
2008-01-01
Technological advances in micromechanics, optical sensing, and computing have led to innovative and reliable concepts of precise dosing and sensing of modern volatile anesthetics. Mixing of saturated desflurane flow with fresh gas flow (FGF) requires differential pressure sensing between the two circuits for precise delivery. The medical gas xenon is administered most economically in a closed circuit breathing system. Sensing of xenon in the breathing system is achieved with miniaturized and unique gas detector systems. Innovative sensing principles such as thermal conductivity and sound velocity are applied. The combination of direct injection of volatile anesthetics and low-flow in a closed circuit system requires simultaneous sensing of the inhaled and exhaled gas concentrations. When anesthetic conserving devices are used for sedation with volatile anesthetics, regular gas concentration monitoring is advised. High minimal alveolar concentration (MAC) of some anesthetics and low-flow conditions bear the risk of hypoxic gas delivery. Oxygen sensing based on paramagnetic thermal transduction has become the choice when long lifetime and one-time calibration are required. Compact design of beam splitters, infrared filters, and detectors have led to multiple spectra detector systems that fit in thimble-sized housings. Response times of less than 500 ms allow systems to distinguish inhaled from exhaled gas concentrations. The compact gas detector systems are a prerequisite to provide "quantitative anesthesia" in closed circuit feedback-controlled breathing systems. Advanced anesthesia devices in closed circuit mode employ multiple feedback systems. Multiple feedbacks include controls of volume, concentrations of anesthetics, and concentration of oxygen with a corresponding safety system. In the ideal case, the feedback system delivers precisely what the patient is consuming. In this chapter, we introduce advanced technologies and device concepts for delivering inhalational anesthetic drugs. First, modern vaporizers are described with special attention to the particularities of delivering desflurane. Delivery of xenon is presented, followed by a discussion of direct injection of volatile anesthetics and of a device designed to conserve anesthetic drugs. Next, innovative sensing technologies are presented for reliable control and precise metering of the delivered volatile anesthetics. Finally, we discuss the technical challenges of automatic control in low-flow and closed circuit breathing systems in anesthesia.
Software to Facilitate Remote Sensing Data Access for Disease Early Warning Systems
Liu, Yi; Hu, Jiameng; Snell-Feikema, Isaiah; VanBemmel, Michael S.; Lamsal, Aashis; Wimberly, Michael C.
2015-01-01
Satellite remote sensing produces an abundance of environmental data that can be used in the study of human health. To support the development of early warning systems for mosquito-borne diseases, we developed an open-source, client based software application to enable the Epidemiological Applications of Spatial Technologies (EASTWeb). Two major design decisions were full automation of the discovery, retrieval and processing of remote sensing data from multiple sources, and making the system easily modifiable in response to changes in data availability and user needs. Key innovations that helped to achieve these goals were the implementation of a software framework for data downloading and the design of a scheduler that tracks the complex dependencies among multiple data processing tasks and makes the system resilient to external errors. EASTWeb has been successfully applied to support forecasting of West Nile virus outbreaks in the United States and malaria epidemics in the Ethiopian highlands. PMID:26644779
A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil
Aslam, Muhammad Zubair; Tang, Tong Boon
2014-01-01
This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design. PMID:24967606
A high resolution capacitive sensing system for the measurement of water content in crude oil.
Zubair, Muhammad; Tang, Tong Boon
2014-06-25
This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ± 50 ppm of water content in crude oil was achieved by the proposed design.
A 32 kb 9T near-threshold SRAM with enhanced read ability at ultra-low voltage operation
NASA Astrophysics Data System (ADS)
Kim, Tony Tae-Hyoung; Lee, Zhao Chuan; Do, Anh Tuan
2018-01-01
Ultra-low voltage SRAMs are highly sought-after in energy-limited systems such as battery-powered and self-harvested SoCs. However, ultra-low voltage operation diminishes SRAM read bitline (RBL) sensing margin significantly. This paper tackles this issue by presenting a novel 9T cell with data-independent RBL leakage in combination with an RBL boosting technique for enhancing the sensing margin. The proposed technique automatically tracks process, temperature and voltage (PVT) variations for robust sensing margin enhancement. A test chip fabricated in 65 nm CMOS technology shows that the proposed scheme significantly enlarges the sensing margin compared to the conventional bitline sensing scheme. It also achieves the minimum operating voltage of 0.18 V and the minimum energy consumption of 0.92 J/access at 0.4 V. He received 2016 International Low Power Design Contest Award from ISLPED, a best paper award at 2014 and 2011 ISOCC, 2008 AMD/CICC Student Scholarship Award, 2008 Departmental Research Fellowship from Univ. of Minnesota, 2008 DAC/ISSCC Student Design Contest Award, 2008, 2001, and 1999 Samsung Humantec Thesis Award and, 2005 ETRI Journal Paper of the Year Award. He is an author/co-author of +100 journal and conference papers and has 17 US and Korean patents registered. His current research interests include low power and high performance digital, mixed- mode, and memory circuit design, ultra-low voltage circuits and systems design, variation and aging tolerant circuits and systems, and circuit techniques for 3D ICs. He serves as an associate editor of IEEE Transactions on VLSI Systems. He is an IEEE senior member and the Chair of IEEE Solid-State Circuits Society Singapore Chapter. He has served numerous conferences as a committee member.
USDA-ARS?s Scientific Manuscript database
This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...
DOT National Transportation Integrated Search
2009-12-01
The Integrated Remote Sensing and Visualization System (IRSV) is being designed to accommodate the needs of todays Bridge Engineers at the : state and local level from several aspects that were documented in Volume One, Summary Report. The followi...
Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.
Zheng, Enhao; Manca, Silvia; Yan, Tingfang; Parri, Andrea; Vitiello, Nicola; Wang, Qining
2017-10-01
This paper presents a novel strategy aiming to acquire an accurate and walking-speed-adaptive estimation of the gait phase through noncontact capacitive sensing and adaptive oscillators (AOs). The capacitive sensing system is designed with two sensing cuffs that can measure the leg muscle shape changes during walking. The system can be dressed above the clothes and free human skin from contacting to electrodes. In order to track the capacitance signals, the gait phase estimator is designed based on the AO dynamic system due to its ability of synchronizing with quasi-periodic signals. After the implementation of the whole system, we first evaluated the offline estimation performance by experiments with 12 healthy subjects walking on a treadmill with changing speeds. The strategy achieved an accurate and consistent gait phase estimation with only one channel of capacitance signal. The average root-mean-square errors in one stride were 0.19 rad (3.0% of one gait cycle) for constant walking speeds and 0.31 rad (4.9% of one gait cycle) for speed transitions even after the subjects rewore the sensing cuffs. We then validated our strategy in a real-time gait phase estimation task with three subjects walking with changing speeds. Our study indicates that the strategy based on capacitive sensing and AOs is a promising alternative for the control of exoskeleton/orthosis.
40 CFR 86.1803-01 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... procurement. Auxiliary Emission Control Device (AECD) means any element of design which senses temperature... components are those components which are designed primarily for emission control, or whose failure may... system as a means of providing electrical energy. Element of design means any control system (i.e...
Design and Calibration of the X-33 Flush Airdata Sensing (FADS) System
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Cobleigh, Brent R.; Haering, Edward A.
1998-01-01
This paper presents the design of the X-33 Flush Airdata Sensing (FADS) system. The X-33 FADS uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters. The system is designed with dual-redundant measurement hardware, which produces two independent measurement paths. Airdata parameters that correspond to the measurement path with the minimum fit error are selected as the output values. This method enables a single sensor failure to occur with minimal degrading of the system performance. The paper shows the X-33 FADS architecture, derives the estimating algorithms, and demonstrates a mathematical analysis of the FADS system stability. Preliminary aerodynamic calibrations are also presented here. The calibration parameters, the position error coefficient (epsilon), and flow correction terms for the angle of attack (delta alpha), and angle of sideslip (delta beta) are derived from wind tunnel data. Statistical accuracy of' the calibration is evaluated by comparing the wind tunnel reference conditions to the airdata parameters estimated. This comparison is accomplished by applying the calibrated FADS algorithm to the sensed wind tunnel pressures. When the resulting accuracy estimates are compared to accuracy requirements for the X-33 airdata, the FADS system meets these requirements.
Manipulation based on sensor-directed control: An integrated end effector and touch sensing system
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
A hand/touch sensing system is described that, when mounted on a position-controlled manipulator, greatly expands the kinds of automated manipulation tasks that can be undertaken. Because of the variety of coordinate conversions, control equations, and completion criteria, control is necessarily dependent upon a small digital computer. The sensing system is designed both to be rugged and to sense the necessary touch and force information required to execute a wide range of manipulation tasks. The system consists of a six-axis wrist sensor, external touch sensors, and a pair of matrix jaw sensors. Details of the construction of the particular sensors, the integration of the end effector into the sensor system, and the control algorithms for using the sensor outputs to perform manipulation tasks automatically are discussed.
Experimental Sea Slicks in the Marsen (Maritime Remote Sensing) Exercise.
1980-10-30
Experimental slicks with various surface properties were generated in the North Sea as part of the MARSEN (Maritime Remote Sensing ) exercise. The one...with remote sensing instrumentation. Because of the numerous effects of surface films on air-sea interfacial processes, these experiments were designed...information was obtained on the influence of sea surface films on the interpretation of signals received by remote sensing systems. Criteria for the
Im, Jisun; Sterner, Elizabeth S.; Swager, Timothy M.
2016-01-01
An integrated cellulose polymer concentrator/single-walled carbon nanotube (SWCNT) sensing system is demonstrated to detect benzene, toluene, and xylenes (BTX) vapors. The sensing system consists of functionalized cellulose as a selective concentrator disposed directly on top of a conductive SWCNT sensing layer. Functionalized cellulose concentrator (top layer) selectively adsorbs the target analyte and delivers the concentrated analyte as near as possible to the SWCNT sensing layer (bottom layer), which enables the simultaneous concentrating and sensing within a few seconds. The selectivity can be achieved by functionalizing cellulose acetate with a pentafluorophenylacetyl selector that interacts strongly with the target BTX analytes. A new design of the integrated cellulose concentrator/SWCNT sensing system allows high sensitivity with limits of detection for benzene, toluene, and m-xylene vapors of 55 ppm, 19 ppm, and 14 ppm, respectively, selectivity, and fast responses (<10 s to reach equilibrium), exhibiting the potential ability for on-site, real-time sensing applications. The sensing mechanism involves the selective adsorption of analytes in the concentrator film, which in turn mediates changes in the electronic potentials at the polymer-SWCNT interface and potentially changes in the tunneling barriers between nanotubes. PMID:26848660
Development of multi-mission satellite data systems at the German Remote Sensing Data Centre
NASA Astrophysics Data System (ADS)
Lotz-Iwen, H. J.; Markwitz, W.; Schreier, G.
1998-11-01
This paper focuses on conceptual aspects of the access to multi-mission remote sensing data by online catalogue and information systems. The system ISIS of the German Remote Sensing Data Centre is described as an example of a user interface to earth observation data. ISIS has been designed to support international scientific research as well as operational applications by offering online access to the database via public networks. It provides catalogue retrieval, visualisation and transfer of image data, and is integrated in international activities dedicated to catalogue and archive interoperability. Finally, an outlook is given on international projects dealing with access to remote sensing data in distributed archives.
An overview of wireless structural health monitoring for civil structures.
Lynch, Jerome Peter
2007-02-15
Wireless monitoring has emerged in recent years as a promising technology that could greatly impact the field of structural monitoring and infrastructure asset management. This paper is a summary of research efforts that have resulted in the design of numerous wireless sensing unit prototypes explicitly intended for implementation in civil structures. Wireless sensing units integrate wireless communications and mobile computing with sensors to deliver a relatively inexpensive sensor platform. A key design feature of wireless sensing units is the collocation of computational power and sensors; the tight integration of computing with a wireless sensing unit provides sensors with the opportunity to self-interrogate measurement data. In particular, there is strong interest in using wireless sensing units to build structural health monitoring systems that interrogate structural data for signs of damage. After the hardware and the software designs of wireless sensing units are completed, the Alamosa Canyon Bridge in New Mexico is utilized to validate their accuracy and reliability. To improve the ability of low-cost wireless sensing units to detect the onset of structural damage, the wireless sensing unit paradigm is extended to include the capability to command actuators and active sensors.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-07-09
In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.
The Importance of Information Requirements in Designing Acquisition to Information Systems
NASA Technical Reports Server (NTRS)
Davis, Bruce A.; Hill, Chuck; Maughan, Paul M.
1998-01-01
The partnership model used by NASA's Commercial Remote Sensing Program has been successful in better defining remote sensing functional requirements and translation to technical specifications to address environmental needs of the 21st century.
Applying the miniaturization technologies for biosensor design.
Derkus, Burak
2016-05-15
Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars, which makes them promising candidates for mass-production. Besides electron beam lithography, stencil lithography, nano-imprint lithography or dip pen lithography, basic photolithography is the technique which is extensively used for the design of microengineered sensing systems. This technique has some advantages such as easy-to-manufacture, do not require expensive instrumentation, and allow creation of lower micron-sized patterns. In this review, it has been focused on three different type of microengineered sensing devices which are developed using micro/nano-patterning techniques, microfluidic technology, and microelectromechanics system based technology. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mailloux, Shay; Zavalov, Oleksandr; Guz, Nataliia
2014-01-01
The major challenge for application of autonomous medical sensing systems is the noise produced by non-zero physiological concentrations of the sensed target. If the level of noise is high, then a real signal indicating abnormal changes in the physiological levels of the analytes might be hindered. Inevitably, this could lead to wrong diagnostics and treatment, and would have a negative impact on human health. Here, we report the realization of a filter system implemented to improve both the fidelity of sensing and accuracy of consequent drug release. A new filtering method was tested in the sensing system for the diagnosismore » of liver injury. This sensing system used the enzymes alanine transaminase (ALT) and aspartate transaminase (AST) as the inputs. Furthermore, the output of the sensing system was designed to trigger drug release, and therefore, the role of the filter in drug release was also investigated. The drug release system consists of beads with an iron - cross-linked alginate core coated with different numbers of layers of poly-L-lysine. Dissolution of the beads by the output signals of the sensing system in the presence and absence of the filter was monitored by release of encapsulated in the beads rhodamine - 6G dye mimicking release of a real drug. The obtained results offer a new view on the problem of noise reduction for systems intended to be part of sense and treat medical devices.« less
A magneto-sensitive skin for robots in space
NASA Technical Reports Server (NTRS)
Chauhan, D. S.; Dehoff, P. H.
1991-01-01
The development of a robot arm proximity sensing skin that can sense intruding objects is described. The purpose of the sensor would be to prevent the robot from colliding with objects in space including human beings. Eventually a tri-mode system in envisioned including proximity, tactile, and thermal. To date the primary emphasis was on the proximity sensor which evolved from one based on magneto-inductive principles to the current design which is based on a capacitive-reflector system. The capacitive sensing element, backed by a reflector driven at the same voltage and in phase with the sensor, is used to reflect field lines away from the grounded robot toward the intruding object. This results in an increased sensing range of up to 12 in. with the reflector on compared with only 1 in. with it off. It is believed that this design advances the state-of-the-art in capacitive sensor performance.
NASA Astrophysics Data System (ADS)
Sun, Yi; Cai, Haoyuan; Wang, Xiaoping
2017-12-01
A metamaterial-gold multilayer sensing structure designed using the particle swarm optimization (PSO) algorithm with an auxiliary grating is proposed for using in a surface plasmon resonance (SPR) sensor system based on the polarization control method. After numerical calculations and simulation analysis, it was found that the metamaterial sensing structure significantly improves the sensitivity of the SPR signal with intensity singularity. The metamaterial sensing structure also increases the penetration depth of evanescent wave, making it possible to detect low-molecular-weight biomolecules and larger cells such as bacteria. The auxiliary grating structure was designed to identify the refractive index of the sensing region on both sides of intensity singularity. The stability of recognition and the electric field intensity of the visible light band were also studied.
Ball, David A; Lux, Matthew W; Graef, Russell R; Peterson, Matthew W; Valenti, Jane D; Dileo, John; Peccoud, Jean
2010-01-01
The concept of co-design is common in engineering, where it is necessary, for example, to determine the optimal partitioning between hardware and software of the implementation of a system features. Here we propose to adapt co-design methodologies for synthetic biology. As a test case, we have designed an environmental sensing device that detects the presence of three chemicals, and returns an output only if at least two of the three chemicals are present. We show that the logical operations can be implemented in three different design domains: (1) the transcriptional domain using synthetically designed hybrid promoters, (2) the protein domain using bi-molecular fluorescence complementation, and (3) the fluorescence domain using spectral unmixing and relying on electronic processing. We discuss how these heterogeneous design strategies could be formalized to develop co-design algorithms capable of identifying optimal designs meeting user specifications.
Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review
Bocan, Kara N.; Sejdić, Ervin
2016-01-01
Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver. PMID:26999154
Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
Bocan, Kara N; Sejdić, Ervin
2016-03-18
Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver.
Design of an Ultra-High Efficiency GaN High-Power Amplifier for SAR Remote Sensing
NASA Technical Reports Server (NTRS)
Thrivikraman, Tushar; Hoffman, James
2013-01-01
This work describes the development of a high-power amplifier for use with a remote sensing SAR system. The amplifier is intended to meet the requirements for the Sweep-SAR technique for use in the proposed DESDynI SAR instrument. In order to optimize the amplifier design, active load-pull technique is employed to provide harmonic tuning to provide efficiency improvements. In addition, some of the techniques to overcome the challenges of load-pulling high power devices are presented. The design amplifier was measured to have 49 dBm of output power with 75% PAE, which is suitable to meet the proposed system requirements.
Fiber optic temperature sensor gives rise to thermal analysis in complex product design
NASA Astrophysics Data System (ADS)
Cheng, Andrew Y. S.; Pau, Michael C. Y.
1996-09-01
A computer-adapted fiber-optic temperature sensing system has been developed which aims to study both the theoretical aspect of fiber temperature sensing and the experimental aspect of such system. The system consists of a laser source, a fiber sensing element, an electronic fringes counting device, and an on-line personal computer. The temperature measurement is achieved by the conventional double beam fringe counting method with optical path length changes in the sensing beam due to the fiber expansion. The system can automatically measure the temperature changes in a sensing fiber arm which provides an insight of the heat generation and dissipation of the measured system. Unlike the conventional measuring devices such as thermocouples or solid state temperature sensors, the fiber sensor can easily be wrapped and shaped to fit the surface of the measuring object or even inside a molded plastic parts such as a computer case, which gives much more flexibility and applicability to the analysis of heat generation and dissipation in the operation of these machine parts. The reference beam is being set up on a temperature controlled optical bench to facilitate high sensitivity and high temperature resolution. The measuring beam has a motorized beam selection device for multiple fiber beam measurement. The project has been demonstrated in the laboratory and the system sensitivity and resolution are found to be as high as 0.01 degree Celsius. It is expected the system will find its application in many design studies which require thermal budgeting.
Laser And Nonlinear Optical Materials For Laser Remote Sensing
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
2005-01-01
NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.
14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It must...
14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It must...
14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It must...
14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It must...
14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It must...
Lowe, Benjamin M; Sun, Kai; Zeimpekis, Ioannis; Skylaris, Chris-Kriton; Green, Nicolas G
2017-11-06
Field-Effect Transistor sensors (FET-sensors) have been receiving increasing attention for biomolecular sensing over the last two decades due to their potential for ultra-high sensitivity sensing, label-free operation, cost reduction and miniaturisation. Whilst the commercial application of FET-sensors in pH sensing has been realised, their commercial application in biomolecular sensing (termed BioFETs) is hindered by poor understanding of how to optimise device design for highly reproducible operation and high sensitivity. In part, these problems stem from the highly interdisciplinary nature of the problems encountered in this field, in which knowledge of biomolecular-binding kinetics, surface chemistry, electrical double layer physics and electrical engineering is required. In this work, a quantitative analysis and critical review has been performed comparing literature FET-sensor data for pH-sensing with data for sensing of biomolecular streptavidin binding to surface-bound biotin systems. The aim is to provide the first systematic, quantitative comparison of BioFET results for a single biomolecular analyte, specifically streptavidin, which is the most commonly used model protein in biosensing experiments, and often used as an initial proof-of-concept for new biosensor designs. This novel quantitative and comparative analysis of the surface potential behaviour of a range of devices demonstrated a strong contrast between the trends observed in pH-sensing and those in biomolecule-sensing. Potential explanations are discussed in detail and surface-chemistry optimisation is shown to be a vital component in sensitivity-enhancement. Factors which can influence the response, yet which have not always been fully appreciated, are explored and practical suggestions are provided on how to improve experimental design.
This Neural Implant is designed to be implanted in the Human Central and Nervous System
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A new class of neural implants being developed at the Livermore Lab are the first clinical quality devices capable of two-way conversations with the human nervous systems. Unlike existing interfaces that only sense or only stimulate, these devices are capable of stimulating and sensing using both electric and chemical signals.
This Neural Implant is designed to be implanted in the Human Central and Nervous System
None
2018-06-12
A new class of neural implants being developed at the Livermore Lab are the first clinical quality devices capable of two-way conversations with the human nervous systems. Unlike existing interfaces that only sense or only stimulate, these devices are capable of stimulating and sensing using both electric and chemical signals.
New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Börner, Anko; Lehmann, Frank
2007-10-01
The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.
NASA Astrophysics Data System (ADS)
McNamara, Laura A.; Berg, Leif; Butler, Karin; Klein, Laura
2017-05-01
Even as remote sensing technology has advanced in leaps and bounds over the past decade, the remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.
Kyriazi, Maria-Eleni; Giust, Davide; El-Sagheer, Afaf H; Lackie, Peter M; Muskens, Otto L; Brown, Tom; Kanaras, Antonios G
2018-04-24
The design of nanoparticulate systems which can perform multiple synergistic functions in cells with high specificity and selectivity is of great importance in applications. Here we combine recent advances in DNA-gold nanoparticle self-assembly and sensing to develop gold nanoparticle dimers that are able to perform multiplexed synergistic functions within a cellular environment. These dimers can sense two mRNA targets and simultaneously or independently deliver one or two DNA-intercalating anticancer drugs (doxorubicin and mitoxantrone) in live cells. Our study focuses on the design of sophisticated nanoparticle assemblies with multiple and synergistic functions that have the potential to advance sensing and drug delivery in cells.
A self-sensing magnetorheological damper with power generation
NASA Astrophysics Data System (ADS)
Chen, Chao; Liao, Wei-Hsin
2012-02-01
Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.
Methods and approaches of utilizing ionic liquids as gas sensing materials
Rehman, Abdul
2017-01-01
Gas monitoring is of increasing significance for a broad range of applications in the fields of environmental and civil infrastructures, climate and energy, health and safety, industry and commerce. Even though there are many gas detection devices and systems available, the increasing needs for better detection technologies that not only satisfy the high analytical standards but also meet additional device requirements (e.g., being robust to survive under field conditions, low cost, small, smart, more mobile), demand continuous efforts in developing new methods and approaches for gas detection. Ionic Liquids (ILs) have attracted a tremendous interest as potential sensing materials for the gas sensor development. Being composed entirely of ions and with a broad structural and functional diversity, i.e., bifunctional (organic/inorganic), biphasic (solid/liquid) and dual-property (solvent/electrolyte), they have the complementing attributes and the required variability to allow a systematic design process across many sensing components to enhance sensing capability especially for miniaturized sensor system implementation. The emphasis of this review is to describe molecular design and control of IL interface materials to provide selective and reproducible response and to synergistically integrate IL sensing materials with low cost and low power electrochemical, piezoelectric/QCM and optical transducers to address many gas detection challenges (e.g., sensitivity, selectivity, reproducibility, speed, stability, cost, sensor miniaturization, and robustness). We further show examples to justify the importance of understanding the mechanisms and principles of physicochemical and electrochemical reactions in ILs and then link those concepts to developing new sensing methods and approaches. By doing this, we hope to stimulate further research towards the fundamental understanding of the sensing mechanisms and new sensor system development and integration, using simple sensing designs and flexible sensor structures both in terms of scientific operation and user interface that can be miniaturized and interfaced with modern wireless monitoring technologies to achieve specifications heretofore unavailable on current markets for the next generation of gas sensor applications. PMID:29142738
Design of a novel telerehabilitation system with a force-sensing mechanism.
Zhang, Songyuan; Guo, Shuxiang; Gao, Baofeng; Hirata, Hideyuki; Ishihara, Hidenori
2015-05-19
Many stroke patients are expected to rehabilitate at home, which limits their access to proper rehabilitation equipment, treatment, or assessment by therapists. We have developed a novel telerehabilitation system that incorporates a human-upper-limb-like device and an exoskeleton device. The system is designed to provide the feeling of real therapist-patient contact via telerehabilitation. We applied the principle of a series elastic actuator to both the master and slave devices. On the master side, the therapist can operate the device in a rehabilitation center. When performing passive training, the master device can detect the therapist's motion while controlling the deflection of elastic elements to near-zero, and the patient can receive the motion via the exoskeleton device. When performing active training, the design of the force-sensing mechanism in the master device can detect the assisting force added by the therapist. The force-sensing mechanism also allows force detection with an angle sensor. Patients' safety is guaranteed by monitoring the motor's current from the exoskeleton device. To compensate for any possible time delay or data loss, a torque-limiter mechanism was also designed in the exoskeleton device for patients' safety. Finally, we successfully performed a system performance test for passive training with transmission control protocol/internet protocol communication.
Design of a Novel Telerehabilitation System with a Force-Sensing Mechanism
Zhang, Songyuan; Guo, Shuxiang; Gao, Baofeng; Hirata, Hideyuki; Ishihara, Hidenori
2015-01-01
Many stroke patients are expected to rehabilitate at home, which limits their access to proper rehabilitation equipment, treatment, or assessment by therapists. We have developed a novel telerehabilitation system that incorporates a human-upper-limb-like device and an exoskeleton device. The system is designed to provide the feeling of real therapist–patient contact via telerehabilitation. We applied the principle of a series elastic actuator to both the master and slave devices. On the master side, the therapist can operate the device in a rehabilitation center. When performing passive training, the master device can detect the therapist’s motion while controlling the deflection of elastic elements to near-zero, and the patient can receive the motion via the exoskeleton device. When performing active training, the design of the force-sensing mechanism in the master device can detect the assisting force added by the therapist. The force-sensing mechanism also allows force detection with an angle sensor. Patients’ safety is guaranteed by monitoring the motor’s current from the exoskeleton device. To compensate for any possible time delay or data loss, a torque-limiter mechanism was also designed in the exoskeleton device for patients’ safety. Finally, we successfully performed a system performance test for passive training with transmission control protocol/internet protocol communication. PMID:25996511
Apply an Augmented Reality in a Mobile Guidance to Increase Sense of Place for Heritage Places
ERIC Educational Resources Information Center
Chang, Yu-Lien; Hou, Huei-Tse; Pan, Chao-Yang; Sung, Yao-Ting; Chang, Kuo-En
2015-01-01
Based on the sense of place theory and the design principles of guidance and interpretation, this study developed an augmented reality mobile guidance system that used a historical geo-context-embedded visiting strategy. This tool for heritage guidance and educational activities enhanced visitor sense of place. This study consisted of 3 visitor…
40 CFR 1036.801 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... control device means any element of design that senses temperature, motive speed, engine RPM, transmission.... Emission control system means any device, system, or element of design that controls or reduces the... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1036.801 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control device means any element of design that senses temperature, motive speed, engine RPM, transmission.... Emission control system means any device, system, or element of design that controls or reduces the... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria
Papenfort, Kai; Bassler, Bonnie
2016-01-01
Abstract / Preface Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host–microbial associations and antibacterial therapy. PMID:27510864
Atmospheric simulator and calibration system for remote sensing radiometers
NASA Technical Reports Server (NTRS)
Holland, J. A.
1983-01-01
A system for calibrating the MAPS (measurement of air pollution from satellites) instruments was developed. The design of the system provides a capability for simulating a broad range of radiant energy source temperatures and a broad range of atmospheric pressures, temperatures, and pollutant concentrations for a single slab atmosphere. The system design and the system operation are described.
WaterSense recognizes certification programs for irrigation professionals that meet the specification criteria. Certification programs cover three areas: irrigation system design, installation and maintenance, and system auditing.
Urine sampling and collection system
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Mangialardi, J. K.; Reinhardt, C. G.
1971-01-01
This specification defines the performance and design requirements for the urine sampling and collection system engineering model and establishes requirements for its design, development, and test. The model shall provide conceptual verification of a system applicable to manned space flight which will automatically provide for collection, volume sensing, and sampling of urine.
40 CFR 1045.801 - What definitions apply to this part?
Code of Federal Regulations, 2013 CFR
2013-07-01
... means any device, system, or element of design that someone can adjust (including those which are... emission control device means any element of design that senses temperature, motive speed, engine RPM... on a continuous mixture of those fuels. Emission control system means any device, system, or element...
NASA Technical Reports Server (NTRS)
1982-01-01
Research issues in the area of electromagnetic measurements and signal handling of remotely sensed data are identified. The following seven issues are discussed; platform/sensor system position and velocity, platform/sensor attitudes and attitude rates, optics and antennas, detectors and associated electronics, sensor calibration, signal handling, and system design.
Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems
NASA Astrophysics Data System (ADS)
Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang
2016-09-01
Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.
Real-time contaminant sensing and control in civil infrastructure systems
NASA Astrophysics Data System (ADS)
Rimer, Sara; Katopodes, Nikolaos
2014-11-01
A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.
NASA Technical Reports Server (NTRS)
Allard, R.; Mack, B.; Bayoumi, M. M.
1989-01-01
Most robot systems lack a suitable hardware and software environment for the efficient research of new control and sensing schemes. Typically, engineers and researchers need to be experts in control, sensing, programming, communication and robotics in order to implement, integrate and test new ideas in a robot system. In order to reduce this time, the Robot Controller Test Station (RCTS) has been developed. It uses a modular hardware and software architecture allowing easy physical and functional reconfiguration of a robot. This is accomplished by emphasizing four major design goals: flexibility, portability, ease of use, and ease of modification. An enhanced distributed processing version of RCTS is described. It features an expanded and more flexible communication system design. Distributed processing results in the availability of more local computing power and retains the low cost of microprocessors. A large number of possible communication, control and sensing schemes can therefore be easily introduced and tested, using the same basic software structure.
Nakano, Masayoshi
2017-01-01
Open-shell character, e. g., diradical character, is a quantum chemically well-defined quantity in ground-state molecular systems, which is not an observable but can quantify the degree of effective bond weakness in the chemical sense or electron correlation strength in the physical sense. Because this quantity also correlates to specific excited states, physicochemical properties concerned with those states are expected to strongly correlate to the open-shell character. This feature enables us to open a new path to revealing the mechanism of these properties as well as to realizing new design principles for efficient functional molecular systems. This account explains the open-shell-character-based molecular design principles and introduces their applications to the rational design of highly efficient nonlinear optical and singlet fission molecular systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Three-Dimensional Microdisplacement Sensing System Based on MEMS Bulk-Silicon Technology
Wu, Junjie; Lei, Lihua; Chen, Xin; Cai, Xiaoyu; Li, Yuan; Han, Tao
2014-01-01
For the dimensional measurement and characterization of microsized and nanosized components, a three-dimensional microdisplacement sensing system was developed using the piezoresistive effect in silicon. The sensor was fabricated using microelectromechanical system bulk-silicon technology, and it was validated using the finite element method. A precise data acquisition circuit with an accuracy of 20 μV was designed to obtain weak voltage signals. By calibration, the sensing system was shown to have a sensitivity of 17.29 mV/μm and 4.59 mV/μm in the axial and lateral directions, respectively; the nonlinearity in these directions was 0.8% and 1.0% full scale, respectively. A full range of 4.6 μm was achieved in the axial direction. Results of a resolution test indicated that the sensing system had a resolution of 5 nm in the axial direction and 10 nm in the lateral direction. PMID:25360581
NASA Astrophysics Data System (ADS)
El-Sheikh, H. M.; Yakushenkov, Y. G.
2014-08-01
Formulas for determination of the interconnection between the spatial resolution from perspective distortions and the temporal resolution of the onboard electro-optical system for remote sensing application for a variety of scene viewing modes is offered. These dependences can be compared with the user's requirements, upon the permission values of the design parameters of the modern main units of the electro-optical system is discussed.
State estimation for distributed systems with sensing delay
NASA Astrophysics Data System (ADS)
Alexander, Harold L.
1991-08-01
Control of complex systems such as remote robotic vehicles requires combining data from many sensors where the data may often be delayed by sensory processing requirements. The number and variety of sensors make it desirable to distribute the computational burden of sensing and estimation among multiple processors. Classic Kalman filters do not lend themselves to distributed implementations or delayed measurement data. The alternative Kalman filter designs presented in this paper are adapted for delays in sensor data generation and for distribution of computation for sensing and estimation over a set of networked processors.
Efficient two-dimensional compressive sensing in MIMO radar
NASA Astrophysics Data System (ADS)
Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad
2017-12-01
Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.
Cooperative remote sensing and actuation using networked unmanned vehicles
NASA Astrophysics Data System (ADS)
Chao, Haiyang
This dissertation focuses on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes in the current information-rich world. The target scenarios are environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks, etc. AggieAir, a small and low-cost unmanned aircraft system, is designed based on the remote sensing requirements from environmental monitoring missions. The state estimation problem and the advanced lateral flight controller design problem are further attacked focusing on the small unmanned aerial vehicle (UAV) platform. Then the UAV-based remote sensing problem is focused with further flight test results. Given the measurements from unmanned vehicles, the actuation algorithms are needed for missions like the diffusion control. A consensus-based central Voronoi tessellation (CVT) algorithm is proposed for better control of the diffusion process. Finally, the dissertation conclusion and some new research suggestions are presented.
Intelligent hand-portable proliferation sensing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.
1997-08-01
Argonne National Laboratory, with support from DOE`s Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantagesmore » of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system.« less
Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao
2014-10-15
Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.
WikiSensing: An Online Collaborative Approach for Sensor Data Management
Silva, Dilshan; Ghanem, Moustafa; Guo, Yike
2012-01-01
This paper presents a new methodology for collaborative sensor data management known as WikiSensing. It is a novel approach that incorporates online collaboration with sensor data management. We introduce the work on this research by describing the motivation and challenges of designing and developing an online collaborative sensor data management system. This is followed by a brief survey on popular sensor data management and online collaborative systems. We then present the architecture for WikiSensing highlighting its main components and features. Several example scenarios are described to present the functionality of the system. We evaluate the approach by investigating the performance of aggregate queries and the scalability of the system. PMID:23201997
Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications
Fernández, Román; García, Pablo; García, María; Jiménez, Yolanda; Arnau, Antonio
2017-01-01
Acoustic wave resonators have become suitable devices for a broad range of sensing applications due to their sensitivity, low cost, and integration capability, which are all factors that meet the requirements for the resonators to be used as sensing elements for portable point of care (PoC) platforms. In this work, the design, characterization, and validation of a 150 MHz high fundamental frequency quartz crystal microbalance (HFF-QCM) sensor for bio-sensing applications are introduced. Finite element method (FEM) simulations of the proposed design are in good agreement with the electrical characterization of the manufactured resonators. The sensor is also validated for bio-sensing applications. For this purpose, a specific sensor cell was designed and manufactured that addresses the critical requirements associated with this type of sensor and application. Due to the small sensing area and the sensor’s fragility, these requirements include a low-volume flow chamber in the nanoliter range, and a system approach that provides the appropriate pressure control for assuring liquid confinement while maintaining the integrity of the sensor with a good base line stability and easy sensor replacement. The sensor characteristics make it suitable for consideration as the elemental part of a sensor matrix in a multichannel platform for point of care applications. PMID:28885551
ERIC Educational Resources Information Center
Clifford, Matthew; Hansen, Ulcca Joshni; Wraight, Sara
2014-01-01
Across the country, states and districts are designing principal evaluation systems as a means of improving leadership, learning, and school performance. Principal evaluation systems hold potential for supporting leaders' learning and sense of accountability for instructional excellence and student performance. Principal evaluation also is an…
ERIC Educational Resources Information Center
Clifford, Matthew; Hansen, Ulcca Joshni; Wraight, Sara
2012-01-01
Across the country, states and districts are designing principal evaluation systems as a means of improving leadership, learning, and school performance. Principal evaluation systems hold potential for supporting leaders' learning and sense of accountability for instructional excellence and student performance. Principal evaluation is also an…
Reliable fusion of control and sensing in intelligent machines. Thesis
NASA Technical Reports Server (NTRS)
Mcinroy, John E.
1991-01-01
Although robotics research has produced a wealth of sophisticated control and sensing algorithms, very little research has been aimed at reliably combining these control and sensing strategies so that a specific task can be executed. To improve the reliability of robotic systems, analytic techniques are developed for calculating the probability that a particular combination of control and sensing algorithms will satisfy the required specifications. The probability can then be used to assess the reliability of the design. An entropy formulation is first used to quickly eliminate designs not capable of meeting the specifications. Next, a framework for analyzing reliability based on the first order second moment methods of structural engineering is proposed. To ensure performance over an interval of time, lower bounds on the reliability of meeting a set of quadratic specifications with a Gaussian discrete time invariant control system are derived. A case study analyzing visual positioning in robotic system is considered. The reliability of meeting timing and positioning specifications in the presence of camera pixel truncation, forward and inverse kinematic errors, and Gaussian joint measurement noise is determined. This information is used to select a visual sensing strategy, a kinematic algorithm, and a discrete compensator capable of accomplishing the desired task. Simulation results using PUMA 560 kinematic and dynamic characteristics are presented.
Miniaturized neural sensing and optogenetic stimulation system for behavioral studies in the rat
NASA Astrophysics Data System (ADS)
Kim, Min Hyuck; Nam, Ilho; Ryu, Youngki; Wellman, Laurie W.; Sanford, Larry D.; Yoon, Hargsoon
2015-04-01
Real time sensing of localized electrophysiological and neurochemical signals associated with spontaneous and evoked neural activity is critically important for understanding neural networks in the brain. Our goal is to enhance the functionality and flexibility of a neural sensing and stimulation system for the observation of brain activity that will enable better understanding from the level of individual cells to that of global structures. We have thus developed a miniaturized electronic system for in-vivo neurotransmitter sensing and optogenetic stimulation amenable to behavioral studies in the rat. The system contains a potentiostat, a data acquisition unit, a control unit, and a wireless data transfer unit. For the potentiostat, we applied embedded op-amps to build single potential amperometry for electrochemical sensing of dopamine. A light emitting diode is controlled by a microcontroller and pulse width modulation utilized to control optogenetic stimulation within a sub-millisecond level. In addition, this proto-typed electronic system contains a Bluetooth module for wireless data communication. In the future, an application-specific integrated circuit (ASIC) will be designed for further miniaturization of the system.
Contribution of remote sensing to understand the Bay as a system
NASA Technical Reports Server (NTRS)
Park, A. B.; Anderson, D.; Bohn, C. G.; Chen, W. T.; Johnson, R. W.
1978-01-01
The natural resource management information system concept designed specifically for use with remote sensing is discussed in terms of understanding and studying the Chesapeake Bay as a total system. The Bay is defined as a system comprising the lithosphere, the hydrosphere, and the biosphere, that is the vertical profile encompassed by the systems and a two dimensional plane defining the total watershed of the Bay from the headwaters of its tributaries to a distance in the ocean defined by ten tidal cycles. The Chesapeake Bay system is assumed to be the ecosystem in the largest sense. Ecological partitioning, a methodology resulting from studies of land systems for partitioning the land into geobotanical landscape units, is included along with a breakdown of LANDSAT investigations according to subject area.
Stellar tracking attitude reference system
NASA Technical Reports Server (NTRS)
Klestadt, B.
1974-01-01
A satellite precision attitude control system was designed, based on the use of STARS as the principal sensing system. The entire system was analyzed and simulated in detail, considering the nonideal properties of the control and sensing components and realistic spacecraft mass properties. Experimental results were used to improve the star tracker noise model. The results of the simulation indicate that STARS performs in general as predicted in a realistic application and should be a strong contender in most precision earth pointing applications.
The quantitative control and matching of an optical false color composite imaging system
NASA Astrophysics Data System (ADS)
Zhou, Chengxian; Dai, Zixin; Pan, Xizhe; Li, Yinxi
1993-10-01
Design of an imaging system for optical false color composite (OFCC) capable of high-precision density-exposure time control and color balance is presented. The system provides high quality FCC image data that can be analyzed using a quantitative calculation method. The quality requirement to each part of the image generation system is defined, and the distribution of satellite remote sensing image information is analyzed. The proposed technology makes it possible to present the remote sensing image data more effectively and accurately.
Technology needs of advanced Earth observation spacecraft
NASA Technical Reports Server (NTRS)
Herbert, J. J.; Postuchow, J. R.; Schartel, W. A.
1984-01-01
Remote sensing missions were synthesized which could contribute significantly to the understanding of global environmental parameters. Instruments capable of sensing important land and sea parameters are combined with a large antenna designed to passively quantify surface emitted radiation at several wavelengths. A conceptual design for this large deployable antenna was developed. All subsystems required to make the antenna an autonomous spacecraft were conceptually designed. The entire package, including necessary orbit transfer propulsion, is folded to package within the Space Transportation System (STS) cargo bay. After separation, the antenna, its integral feed mast, radiometer receivers, power system, and other instruments are automatically deployed and transferred to the operational orbit. The design resulted in an antenna with a major antenna dimension of 120 meters, weighing 7650 kilograms, and operating at an altitude of 700 kilometers.
Assay of fluoride by a novel organic-inorganic mesoporous nano-sized sensor.
Ma, Qianmin; Lai, Yuming; Gao, Jinwei; Wang, Qianming
2016-08-01
In this report, we prepared a novel mesoporous silica nanostructure for selective detection of fluoride through ultraviolet absorption and emission changes. In the sensing system, a silica coupling reagent (3-(triethoxysilyl)propyl isocyanate) linked 1-naphthylamine has been covalently grafted onto the mesopores of inorganic network. These specially designed nanospheres can recognize fluoride from other anions based on hydrogen bond interactions. This approach may provide new opportunities for designing related sensing systems with enhanced physical or chemical properties. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
1974-01-01
A number of problems related to the design, construction and evaluation of an autonomous roving planetary vehicle and its control and operating systems intended for an unmanned exploration of Mars are studied. Vehicle configuration, dynamics, control, systems and propulsion; systems analysis; terrain sensing and modeling and path selection; and chemical analysis of samples are included.
Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop
NASA Astrophysics Data System (ADS)
Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.
2018-04-01
The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.
The optical design of 3D ICs for smartphone and optro-electronics sensing module
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2018-03-01
Smartphone require limit space for image system, current lens, used in smartphones are refractive type, the effective focal length is limited the thickness of phone physical size. Other, such as optro-electronics sensing chips, proximity optical sensors, and UV indexer chips are integrated into smart phone with limit space. Due to the requirement of multiple lens in smartphone, proximity optical sensors, UV indexer and other optro-electronics sensing chips in a limited space of CPU board in future smart phone, optro-electronics 3D IC's integrated with optical lens or components may be a key technology for 3 C products. A design for reflective lens is fitted to CMOS, proximity optical sensors, UV indexer and other optro-electronics sensing chips based on 3-D IC. The reflective lens can be threes times of effective focal lens, and be able to resolve small object. The system will be assembled and integrated in one 3-D IC more easily.
Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios
NASA Astrophysics Data System (ADS)
Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.
2014-12-01
The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.
Design and implementation of sensor systems for control of a closed-loop life support system
NASA Technical Reports Server (NTRS)
Alnwick, Leslie; Clark, Amy; Debs, Patricia; Franczek, Chris; Good, Tom; Rodrigues, Pedro
1989-01-01
The sensing and controlling needs for a Closed-Loop Life Support System (CLLSS) were investigated. The sensing needs were identified in five particular areas and the requirements were defined for workable sensors. The specific areas of interest were atmosphere and temperature, nutrient delivery, plant health, plant propagation and support, and solids processing. The investigation of atmosphere and temperature control focused on the temperature distribution within the growth chamber as well as the possibility for sensing other parameters such as gas concentration, pressure, and humidity. The sensing needs were studied for monitoring the solution level in a porous membrane material along with the requirements for measuring the mass flow rate in the delivery system. The causes and symptoms of plant disease were examined and the various techniques for sensing these health indicators were explored. The study of sensing needs for plant propagation and support focused on monitoring seed viability and measuring seed moisture content as well as defining the requirements for drying and storing the seeds. The areas of harvesting, food processing, and resource recycling, were covered with a main focus on the sensing possibilities for regulating the recycling process.
REPORT ON AN ORBITAL MAPPING SYSTEM.
Colvocoresses, Alden P.; ,
1984-01-01
During June 1984, the International Society for Photogrammetry and Remote Sensing accepted a committee report that defines an Orbital Mapping System (OMS) to follow Landsat and other Earth-sensing systems. The OMS involves the same orbital parameters of Landsats 1, 2, and 3, three wave bands (two in the visible and one in the near infrared) and continuous stereoscopic capability. The sensors involve solid-state linear arrays and data acquisition (including stereo) designed for one-dimensional data processing. It has a resolution capability of 10-m pixels and is capable of producing 1:50,000-scale image maps with 20-m contours. In addition to mapping, the system is designed to monitor the works of man as well as nature and in a cost-effective manner.
NASA Astrophysics Data System (ADS)
Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si
2017-10-01
With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and manufacture of the scanning infrared imaging system, the infrared remote sensing system, the infrared early-warning satellite, and so on.
Recent Progress in Technologies for Tactile Sensors
Sun, Xuguang; Xue, Ning; Li, Tong; Liu, Chang
2018-01-01
Over the last two decades, considerable scientific and technological efforts have been devoted to developing tactile sensing based on a variety of transducing mechanisms, with prospective applications in many fields such as human–machine interaction, intelligent robot tactile control and feedback, and tactile sensorized minimally invasive surgery. This paper starts with an introduction of human tactile systems, followed by a presentation of the basic demands of tactile sensors. State-of-the-art tactile sensors are reviewed in terms of their diverse sensing mechanisms, design consideration, and material selection. Subsequently, typical performances of the sensors, along with their advantages and disadvantages, are compared and analyzed. Two major potential applications of tactile sensing systems are discussed in detail. Lastly, we propose prospective research directions and market trends of tactile sensing systems. PMID:29565835
Recent Progress in Technologies for Tactile Sensors.
Chi, Cheng; Sun, Xuguang; Xue, Ning; Li, Tong; Liu, Chang
2018-03-22
Over the last two decades, considerable scientific and technological efforts have been devoted to developing tactile sensing based on a variety of transducing mechanisms, with prospective applications in many fields such as human-machine interaction, intelligent robot tactile control and feedback, and tactile sensorized minimally invasive surgery. This paper starts with an introduction of human tactile systems, followed by a presentation of the basic demands of tactile sensors. State-of-the-art tactile sensors are reviewed in terms of their diverse sensing mechanisms, design consideration, and material selection. Subsequently, typical performances of the sensors, along with their advantages and disadvantages, are compared and analyzed. Two major potential applications of tactile sensing systems are discussed in detail. Lastly, we propose prospective research directions and market trends of tactile sensing systems.
Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challener, William A
2014-12-04
The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber,more » and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.« less
NASA Technical Reports Server (NTRS)
1977-01-01
Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.
An FPGA-based demodulation system for fiber Bragg grating sensing
NASA Astrophysics Data System (ADS)
Li, Yongqian; He, Haitao; Yao, Guozhen
2010-11-01
This paper introduces the principle of fiber Bragg grating (FBG) sensor, designs and realizes a compact wavelength demodulation system for FBG sensing using a Fabry-Perot (F-P) filter. FPGA is adopted as a main controller to control a D/A converter to produce a sawtooth wave for driving the F-P filter, and to design the data acquisition circuit for collecting the output signals of photoelectric detector. The collected data is processed after transmitting to PC through the data transmission circuit, and then the demodulation of FBG wavelength is completed finally. This compact FBG wavelength demodulation system is expected to have wide applications in on-line monitoring of electric power equipment and large structures.
Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs.
Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo
2016-07-22
This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy).
Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs †
Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo
2016-01-01
This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy). PMID:27455277
Design and development of the Waukesha Custom Engine Control Air/Fuel Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, D.W.
1996-12-31
The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less
Design and performance evaluation of the imaging payload for a remote sensing satellite
NASA Astrophysics Data System (ADS)
Abolghasemi, Mojtaba; Abbasi-Moghadam, Dariush
2012-11-01
In this paper an analysis method and corresponding analytical tools for design of the experimental imaging payload (IMPL) of a remote sensing satellite (SINA-1) are presented. We begin with top-level customer system performance requirements and constraints and derive the critical system and component parameters, then analyze imaging payload performance until a preliminary design that meets customer requirements. We consider system parameters and components composing the image chain for imaging payload system which includes aperture, focal length, field of view, image plane dimensions, pixel dimensions, detection quantum efficiency, and optical filter requirements. The performance analysis is accomplished by calculating the imaging payload's SNR (signal-to-noise ratio), and imaging resolution. The noise components include photon noise due to signal scene and atmospheric background, cold shield, out-of-band optical filter leakage and electronic noise. System resolution is simulated through cascaded modulation transfer functions (MTFs) and includes effects due to optics, image sampling, and system motion. Calculations results for the SINA-1 satellite are also presented.
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
40 CFR 1039.801 - What definitions apply to this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation in water. Auxiliary emission-control device means any element of design that senses temperature... suppression operations. Emission-control system means any device, system, or element of design that controls... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2012 CFR
2012-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements
DOT National Transportation Integrated Search
2017-12-01
This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2013 CFR
2013-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
Soga, Kenichi; Schooling, Jennifer
2016-08-06
Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.
Soga, Kenichi; Schooling, Jennifer
2016-01-01
Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845
Adaptive multisensor fusion for planetary exploration rovers
NASA Technical Reports Server (NTRS)
Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri
1992-01-01
The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.
NASA Astrophysics Data System (ADS)
Huang, Shieh-Kung; Loh, Kenneth J.
2015-04-01
The main goal of this study was to develop and validate the performance of a miniature and portable data acquisition (DAQ) system designed for interrogating carbon nanotube (CNT)-based thin films for real-time spatial structural sensing and damage detection. Previous research demonstrated that the electrical properties of CNT-based thin film strain sensors were linearly correlated with applied strains. When coupled with an electrical impedance tomography (EIT) algorithm, the detection and localization of damage was possible. In short, EIT required that the film or "sensing skin" be interrogated along its boundaries. Electrical current was injected across a pair of boundary electrodes, and voltage was simultaneously recorded along the remaining electrode pairs. This was performed multiple times to obtain a large dataset needed for solving the EIT spatial conductivity mapping inverse problem. However, one of the main limitations of this technique was the large amount of time required for data acquisition. In order to facilitate the adoption of this technology and for field implementation purposes, a miniature DAQ that could interrogate these CNT-based sensing skins at high sampling rates was designed and tested. The prototype DAQ featured a Howland current source that could generate stable and controlled direct current. Measurement of boundary electrode voltages and the switching of the input, output, and measurement channels were achieved using multiplexer units. The DAQ prototype was fabricated on a two-layer printed circuit board, and it was designed for integration with a prototype wireless sensing system, which is the next phase of this research.
Prefocal station mechanical design concept study for the E-ELT
NASA Astrophysics Data System (ADS)
Jolley, Paul; Brunetto, Enzo; Frank, Christoph; Lewis, Steffan; Marchetti, Enrico
2016-07-01
The Nasmyth platforms of the E-ELT will contain one Prefocal Station (PFS) each. The main PFS functional requirements are to provide a focal plane to the three Nasmyth focal stations and the Coudé focus, optical sensing supporting telescope low order optimisation and seeing limited image quality, and optical sensing supporting characterising and phasing of M1 and other telescope subsystems. The PFS user requirements are used to derive the PFS technical requirements specification that will form the basis for design, development and production of the system. This specification process includes high-level architectural decisions and technical performance budget allocations. The mechanical design concepts reported here have been developed in order to validate key system specifications and associated technical budgets.
Development of an extensible dual-core wireless sensing node for cyber-physical systems
NASA Astrophysics Data System (ADS)
Kane, Michael; Zhu, Dapeng; Hirose, Mitsuhito; Dong, Xinjun; Winter, Benjamin; Häckell, Mortiz; Lynch, Jerome P.; Wang, Yang; Swartz, A.
2014-04-01
The introduction of wireless telemetry into the design of monitoring and control systems has been shown to reduce system costs while simplifying installations. To date, wireless nodes proposed for sensing and actuation in cyberphysical systems have been designed using microcontrollers with one computational pipeline (i.e., single-core microcontrollers). While concurrent code execution can be implemented on single-core microcontrollers, concurrency is emulated by splitting the pipeline's resources to support multiple threads of code execution. For many applications, this approach to multi-threading is acceptable in terms of speed and function. However, some applications such as feedback controls demand deterministic timing of code execution and maximum computational throughput. For these applications, the adoption of multi-core processor architectures represents one effective solution. Multi-core microcontrollers have multiple computational pipelines that can execute embedded code in parallel and can be interrupted independent of one another. In this study, a new wireless platform named Martlet is introduced with a dual-core microcontroller adopted in its design. The dual-core microcontroller design allows Martlet to dedicate one core to standard wireless sensor operations while the other core is reserved for embedded data processing and real-time feedback control law execution. Another distinct feature of Martlet is a standardized hardware interface that allows specialized daughter boards (termed wing boards) to be interfaced to the Martlet baseboard. This extensibility opens opportunity to encapsulate specialized sensing and actuation functions in a wing board without altering the design of Martlet. In addition to describing the design of Martlet, a few example wings are detailed, along with experiments showing the Martlet's ability to monitor and control physical systems such as wind turbines and buildings.
Research on distributed optical fiber sensing data processing method based on LabVIEW
NASA Astrophysics Data System (ADS)
Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing
2018-01-01
The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.
Design of a versatile clinical aberrometer
NASA Astrophysics Data System (ADS)
Sheehan, Matthew; Goncharov, Alexander; Dainty, Chris
2005-09-01
We have designed an ocular aberrometer based on the Hartmann-Shack (HS) type wavefront sensor for use in optometry clinics. The optical system has enhanced versatility compared with commercial aberrometers, yet it is compact and user-friendly. The system has the capability to sense both on-axis and off-axis aberrations in the eye within an unobstructed 20 degree field. This capability is essential to collect population data for off-axis aberrations. This data will be useful in designing future adaptive optics (AO) systems to improve image quality of eccentric retinal areas, in particular, for multi-conjugate AO systems. The ability of the examiner to control the accommodation demand is a unique feature of the design that commercial instruments are capable of only after modification. The pupil alignment channel is re-combined with the sensing channel in a parallel path and imaged on a single CCD. This makes the instrument more compact, less expensive, and it helps to synchronize the pupil center with the HS spot coordinate system. Another advantage of the optical design is telecentric re-imaging of the HS spots, increasing the robustness to small longitudinal alignment errors. The optical system has been optimized with a ray-tracing program and its prototype is being constructed. Design considerations together with a description of the optical components are presented. Difficulties and future work are outlined.
A high throughput geocomputing system for remote sensing quantitative retrieval and a case study
NASA Astrophysics Data System (ADS)
Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting
2011-12-01
The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, R. Michael; Turner, David D.
A review of remote sensing technology for lower tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer—usually characterized by an inversion—and the lowermore » troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global navigation satellite system, as well as water vapor and temperature Raman lidar and water vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
2011-04-25
must adapt its planning to vehicle size, shape, wheelbase, wheel and axle configuration, the specific obstacle-crossing capabilities of the vehicle...scalability of the ANS is a consequence of making each sensing modality capable of performing reasonable perception tasks while allowing a wider...autonomous system design achieves flexibility by exploiting redundant sensing modalities where possible, and by a decision-making process that
Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yirong
The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall materialmore » property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.« less
Design and construction of a remote sensing apparatus
NASA Technical Reports Server (NTRS)
Maples, D.; Hagewood, J. F.
1973-01-01
The methods of identifying plant and soil types using remote sensing techniques are described. The equipment employed consists of a balloon system and a mobile remote sensing laboratory housing a radiometer which is mounted on a turret mechanism. The radiometer is made up of a telescope whose lenses are replaced by mirrors which channel received radiation into a monochromator. The radiation is then focused onto detectors for measurement of the intensity of the electromagnetic energy as a function of wavelength. Measurements from a wavelength of 0.2 microns to 15 microns are obtained with the system. diagrams are provided.
NASA Technical Reports Server (NTRS)
1981-01-01
The objectives, procedures, accomplishments, plans, and ultimate uses of information from current projects at the Mississippi Remote Sensing Center are discussed for the following applications: (1) land use planning; (2) strip mine inventory and reclamation; (3) biological management for white tailed deer; (4) forest habitats in potential lignite areas; (5) change discrimination in gravel operations; (6) discrimination of freshwater wetlands for inventory and monitoring; and (7) remote sensing data analysis support systems. The initiation of a conceptual design for a LANDSAT based, state wide information system is proposed.
ERIC Educational Resources Information Center
Gros, Begona; And Others
1997-01-01
Examines the relationship between instructional design (ID) and courseware development, especially for multimedia and hypermedia systems. Discusses ID models; external and internal reasons for the neglect of models; characteristics of models suitable for multimedia and hypermedia development; and models integrating those characteristics: Guided…
DOT National Transportation Integrated Search
2017-12-01
This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...
NASA Technical Reports Server (NTRS)
Shrestha, Suresh; Salins, Lyndon L E.; Mark Ensor, C.; Daunert, Sylvia
2002-01-01
Periplasmic binding proteins from E. coli undergo large conformational changes upon binding their respective ligands. By attaching a fluorescent probe at rationally selected unique sites on the protein, these conformational changes in the protein can be monitored by measuring the changes in fluorescence intensity of the probe which allow the development of reagentless sensing systems for their corresponding ligands. In this work, we evaluated several sites on bacterial periplasmic sulfate-binding protein (SBP) for attachment of a fluorescent probe and rationally designed a reagentless sensing system for sulfate. Eight different mutants of SBP were prepared by employing the polymerase chain reaction (PCR) to introduce a unique cysteine residue at a specific location on the protein. The sites Gly55, Ser90, Ser129, Ala140, Leu145, Ser171, Val181, and Gly186 were chosen for mutagenesis by studying the three-dimensional X-ray crystal structure of SBP. An environment-sensitive fluorescent probe (MDCC) was then attached site-specifically to the protein through the sulfhydryl group of the unique cysteine residue introduced. Each fluorescent probe-conjugated SBP mutant was characterized in terms of its fluorescence properties and Ser171 was determined to be the best site for the attachment of the fluorescent probe that would allow for the development of a reagentless sensing system for sulfate. Three different environment-sensitive fluorescent probes (1,5-IAEDANS, MDCC, and acylodan) were studied with the SBP171 mutant protein. A calibration curve for sulfate was constructed using the labeled protein and relating the change in the fluorescence intensity with the amount of sulfate present in the sample. The detection limit for sulfate was found to be in the submicromolar range using this system. The selectivity of the sensing system was demonstrated by evaluating its response to other anions. A fast and selective sensing system with detection limits for sulfate in the submicromolar range was developed. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 517-526, 2002.
Optimal design of an earth observation optical system with dual spectral and high resolution
NASA Astrophysics Data System (ADS)
Yan, Pei-pei; Jiang, Kai; Liu, Kai; Duan, Jing; Shan, Qiusha
2017-02-01
With the increasing demand of the high-resolution remote sensing images by military and civilians, Countries around the world are optimistic about the prospect of higher resolution remote sensing images. Moreover, design a visible/infrared integrative optic system has important value in earth observation. Because visible system can't identify camouflage and recon at night, so we should associate visible camera with infrared camera. An earth observation optical system with dual spectral and high resolution is designed. The paper mainly researches on the integrative design of visible and infrared optic system, which makes the system lighter and smaller, and achieves one satellite with two uses. The working waveband of the system covers visible, middle infrared (3-5um). Dual waveband clear imaging is achieved with dispersive RC system. The focal length of visible system is 3056mm, F/# is 10.91. And the focal length of middle infrared system is 1120mm, F/# is 4. In order to suppress the middle infrared thermal radiation and stray light, the second imaging system is achieved and the narcissus phenomenon is analyzed. The system characteristic is that the structure is simple. And the especial requirements of the Modulation Transfer Function (MTF), spot, energy concentration, and distortion etc. are all satisfied.
NASA Astrophysics Data System (ADS)
Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting
2010-11-01
An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Alyssa Y.; Baruch, Moshe; Ajo-Franklin, Caroline M.
Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. But, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. We demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new waymore » of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.« less
Zhou, Alyssa Y.; Baruch, Moshe; Ajo-Franklin, Caroline M.; ...
2017-09-15
Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. But, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. We demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new waymore » of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.« less
NASA Technical Reports Server (NTRS)
Barr, B. G.; Martinko, E. A. (Principal Investigator)
1983-01-01
The activities of the Kansas Applied Remote Sensing (KARS) Program during the period April 1, 1982 through Marsh 31, 1983 are described. The most important work revolved around the Kansas Interagency Task Force on Applied Remote Sensing and its efforts to establish an operational service oriented remote sensing program in Kansas state government. Concomitant with this work was the upgrading of KARS capabilities to process data for state agencies through the vehicle of a low cost digital data processing system. The KARS Program continued to take an active role in irrigation mapping. KARS is now integrating data acquired through analysis of LANDSAT into geographic information systems designed for evaluating groundwater resources. KARS also continues to work at the national level on the national inventory of state natural resources information systems.
Terahertz Systems Engineering: Detectors, Sources, Propagation, Phenomenology, Design and Analysis
NASA Astrophysics Data System (ADS)
Suen, Jonathan Ying-Yan
The terahertz (THz) band, from 300 GHz to 20 THz, is the last remaining frontier of the electromagnetic spectrum. Fundamentally, the frequency is too high to use current electronic technologies, yet the photon energy is too low for optical systems. However, there is a rich set of phenomenology, science, and applications, which are only available with THz radiation. In order to exploit this, the THz engineer who is designing systems must be adept at integrating components with very limited performance into a system. This requires understanding and knowledge of a wide range of fields, including microwaves, infrared optics, material science, software development, atmospheric science, and the overall analysis and design of a system. Any THz system involves the sensing of some phenomena, which can be under the direct control of the engineer, such as in a communication system, or set by the laws of physics, such as in an astronomical telescope, or some variant in between. Thus, the design of such a system is fundamentally related to sensing science. Here, we have to consider detector and source technology, the propagation of radiation, target phenomenology, and the overall design and analysis of the system. This dissertation presents research in all of these areas. Specifically, in the field of THz phenomenology, I conducted a study to show the primary contrast mechanism in reflective biomedical imaging is water concentration. For source technology, I detail the development and characterization of photoconductive switches with record-breaking optical efficiency. In a separate study I developed a model which explains the complex photocarrier dynamics in fast-trapping THz photoconductive materials and show that high-frequency THz generation (>1 THz) is caused by beaching saturation. My work in detectors shows the design of a quasi-optical radar that exploits low 1/f noise Schottky diodes for detection of slow moving objects, useful for biomedical sensing of respiration and heartbeat. In the field of THz propagation, I have located low atmospheric water vapor sites and characterized THz attenuation on a global scale with satellite remote sensing data. Finally, I show the analysis of a full system by showing 300-gigabit level THz ground to geostationary satellite links to moderately dry global locations. All of these works were published or submitted for publication. These projects inherently involved multidisciplinary research though they all were targeted towards the THz regime. The research in this dissertation exemplifies the broad knowledge and diverse fields that must be synergized to build effective THz systems and advance science in the THz domain.
Sensors and actuators inherent in biological species
NASA Astrophysics Data System (ADS)
Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce
2007-04-01
This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.
Designing collective behavior in a termite-inspired robot construction team.
Werfel, Justin; Petersen, Kirstin; Nagpal, Radhika
2014-02-14
Complex systems are characterized by many independent components whose low-level actions produce collective high-level results. Predicting high-level results given low-level rules is a key open challenge; the inverse problem, finding low-level rules that give specific outcomes, is in general still less understood. We present a multi-agent construction system inspired by mound-building termites, solving such an inverse problem. A user specifies a desired structure, and the system automatically generates low-level rules for independent climbing robots that guarantee production of that structure. Robots use only local sensing and coordinate their activity via the shared environment. We demonstrate the approach via a physical realization with three autonomous climbing robots limited to onboard sensing. This work advances the aim of engineering complex systems that achieve specific human-designed goals.
Rational Design of an Ultrasensitive Quorum-Sensing Switch.
Zeng, Weiqian; Du, Pei; Lou, Qiuli; Wu, Lili; Zhang, Haoqian M; Lou, Chunbo; Wang, Hongli; Ouyang, Qi
2017-08-18
One of the purposes of synthetic biology is to develop rational methods that accelerate the design of genetic circuits, saving time and effort spent on experiments and providing reliably predictable circuit performance. We applied a reverse engineering approach to design an ultrasensitive transcriptional quorum-sensing switch. We want to explore how systems biology can guide synthetic biology in the choice of specific DNA sequences and their regulatory relations to achieve a targeted function. The workflow comprises network enumeration that achieves the target function robustly, experimental restriction of the obtained candidate networks, global parameter optimization via mathematical analysis, selection and engineering of parts based on these calculations, and finally, circuit construction based on the principles of standardization and modularization. The performance of realized quorum-sensing switches was in good qualitative agreement with the computational predictions. This study provides practical principles for the rational design of genetic circuits with targeted functions.
NASA Astrophysics Data System (ADS)
Clevers, J. G. P. W.
2015-02-01
About thirty years after the previous advanced textbook on Microwave Remote Sensing by Ulaby, Moore and Fung has been published as three separate volumes, now an up-to-date new textbook has been published. The 1000-page book covers theoretical models, system design and operation, and geoscientific applications of active and passive microwave remote sensing systems. It is designed as a textbook at the postgraduate level, as well as a reference for the practicing professional. The book is caught by a thorough introduction into the physics and mathematics of electrical engineering applied to microwave radiation. Here on overview of its chapters with a short description of its focus will be given.
Current development of UAV sense and avoid system
NASA Astrophysics Data System (ADS)
Zhahir, A.; Razali, A.; Mohd Ajir, M. R.
2016-10-01
As unmanned aerial vehicles (UAVs) are now gaining high interests from civil and commercialised market, the automatic sense and avoid (SAA) system is currently one of the essential features in research spotlight of UAV. Several sensor types employed in current SAA research and technology of sensor fusion that offers a great opportunity in improving detection and tracking system are presented here. The purpose of this paper is to provide an overview of SAA system development in general, as well as the current challenges facing UAV researchers and designers.
Collision management utilizing CCD and remote sensing technology
NASA Technical Reports Server (NTRS)
Mcdaniel, Harvey E., Jr.
1995-01-01
With the threat of damage to aerospace systems (space station, shuttle, hypersonic a/c, solar power satellites, loss of life, etc.) from collision with debris (manmade/artificial), there exists an opportunity for the design of a novel system (collision avoidance) to be incorporated into the overall design. While incorporating techniques from ccd and remote sensing technologies, an integrated system utilized in the infrared/visible spectrum for detection, tracking, localization, and maneuvering from doppler shift measurements is achievable. Other analysis such as impact assessment, station keeping, chemical, and optical tracking/fire control solutions are possible through this system. Utilizing modified field programmable gated arrays (software reconfiguring the hardware) the mission and mission effectiveness can be varied. This paper outlines the theoretical operation of a prototype system as it applies to collision avoidance (to be followed up by research).
Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System
NASA Technical Reports Server (NTRS)
Penanen, Konstantin; Hahn, Inseob; Ho Eom, Byeong
2009-01-01
A new gradiometer scheme uses middle loops as sensing elements in lowfield superconducting quantum interference device (SQUID) magnetic resonance imaging (MRI). This design of a second order gradiometer increases its sensitivity and makes it more uniform, compared to the conventional side loop sensing scheme with a comparable matching SQUID. The space between the two middle loops becomes the imaging volume with the enclosing cryostat built accordingly.
Design of a compact low-power human-computer interaction equipment for hand motion
NASA Astrophysics Data System (ADS)
Wu, Xianwei; Jin, Wenguang
2017-01-01
Human-Computer Interaction (HCI) raises demand of convenience, endurance, responsiveness and naturalness. This paper describes a design of a compact wearable low-power HCI equipment applied to gesture recognition. System combines multi-mode sense signals: the vision sense signal and the motion sense signal, and the equipment is equipped with the depth camera and the motion sensor. The dimension (40 mm × 30 mm) and structure is compact and portable after tight integration. System is built on a module layered framework, which contributes to real-time collection (60 fps), process and transmission via synchronous confusion with asynchronous concurrent collection and wireless Blue 4.0 transmission. To minimize equipment's energy consumption, system makes use of low-power components, managing peripheral state dynamically, switching into idle mode intelligently, pulse-width modulation (PWM) of the NIR LEDs of the depth camera and algorithm optimization by the motion sensor. To test this equipment's function and performance, a gesture recognition algorithm is applied to system. As the result presents, general energy consumption could be as low as 0.5 W.
Optical fibre multi-parameter sensing with secure cloud based signal capture and processing
NASA Astrophysics Data System (ADS)
Newe, Thomas; O'Connell, Eoin; Meere, Damien; Yuan, Hongwei; Leen, Gabriel; O'Keeffe, Sinead; Lewis, Elfed
2016-05-01
Recent advancements in cloud computing technologies in the context of optical and optical fibre based systems are reported. The proliferation of real time and multi-channel based sensor systems represents significant growth in data volume. This coupled with a growing need for security presents many challenges and presents a huge opportunity for an evolutionary step in the widespread application of these sensing technologies. A tiered infrastructural system approach is adopted that is designed to facilitate the delivery of Optical Fibre-based "SENsing as a Service- SENaaS". Within this infrastructure, novel optical sensing platforms, deployed within different environments, are interfaced with a Cloud-based backbone infrastructure which facilitates the secure collection, storage and analysis of real-time data. Feedback systems, which harness this data to affect a change within the monitored location/environment/condition, are also discussed. The cloud based system presented here can also be used with chemical and physical sensors that require real-time data analysis, processing and feedback.
Field Data Collection: an Essential Element in Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Pettinger, L. R.
1971-01-01
Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.
A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform
Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes
2015-01-01
This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587
Development of a Flush Airdata Sensing System on a Sharp-Nosed Vehicle for Flight at Mach 3 to 8
NASA Technical Reports Server (NTRS)
Davis, Mark C.; Pahle, Joseph W.; White, John Terry; Marshall, Laurie A.; Mashburn, Michael J.; Franks, Rick
2000-01-01
NASA Dryden Flight Research Center has developed a flush airdata sensing (FADS) system on a sharp-nosed, wedge-shaped vehicle. This paper details the design and calibration of a real-time angle-of-attack estimation scheme developed to meet the onboard airdata measurement requirements for a research vehicle equipped with a supersonic-combustion ramjet engine. The FADS system has been designed to perform in flights at Mach 3-8 and at -6 deg - 12 deg angle of attack. The description of the FADS architecture includes port layout, pneumatic design, and hardware integration. Predictive models of static and dynamic performance are compared with wind-tunnel results across the Mach and angle-of-attack range. Results indicate that static angle-of-attack accuracy and pneumatic lag can be adequately characterized and incorporated into a real-time algorithm.
Development of a Flush Airdata Sensing System on a Sharp-Nosed Vehicle for Flight at Mach 3 to 8
NASA Technical Reports Server (NTRS)
Davis, Mark C.; Pahle, Joseph W.; White, John Terry; Marshall, Laurie A.; Mashburn, Michael J.; Franks, Rick
2000-01-01
NASA Dryden Flight Research Center has developed a flush airdata sensing (FADS) system on a sharp-nosed, wedge-shaped vehicle. This paper details the design and calibration of a real-time angle-of-attack estimation scheme developed to meet the onboard airdata measurement requirements for a research vehicle equipped with a supersonic-combustion ramjet engine. The FADS system has been designed to perform in flights at speeds between Mach 3 and Mach 8 and at angles of attack between -6 deg. and 12 deg. The description of the FADS architecture includes port layout, pneumatic design, and hardware integration. Predictive models of static and dynamic performance are compared with wind-tunnel results across the Mach and angle-of-attack range. Results indicate that static angle-of-attack accuracy and pneumatic lag can be adequately characterized and incorporated into a real-time algorithm.
NASA Astrophysics Data System (ADS)
Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang
2017-10-01
In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.
Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission
NASA Technical Reports Server (NTRS)
Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.
2002-01-01
We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.
A Methodology for the Design of Application-Specific Cyber-Physical Social Sensing Co-Simulators.
Sánchez, Borja Bordel; Alcarria, Ramón; Sánchez-Picot, Álvaro; Sánchez-de-Rivera, Diego
2017-09-22
Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users' needs and requirements and various additional factors such as the development team's experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal.
A Methodology for the Design of Application-Specific Cyber-Physical Social Sensing Co-Simulators
Sánchez-Picot, Álvaro
2017-01-01
Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users’ needs and requirements and various additional factors such as the development team’s experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal. PMID:28937610
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Jordan, Jennifer L.; Meredith, Roger D.; Harsh, Kevin; Pilant, Evan; Usrey, Michael W.; Beheim, Glenn M.; Hunter, Gary W.; Zorman, Christian A.
2016-01-01
In this paper, the development and characterization of a packaged pressure sensor system suitable for jet engine health monitoring is demonstrated. The sensing system operates from 97 to 117 MHz over a pressure range from 0 to 350 psi and a temperature range from 25 to 500 deg. The sensing system consists of a Clapp-type oscillator that is fabricated on an alumina substrate and is comprised of a Cree SiC MESFET, MIM capacitors, a wire-wound inductor, chip resistors and a SiCN capacitive pressure sensor. The pressure sensor is located in the LC tank circuit of the oscillator so that a change in pressure causes a change in capacitance, thus changing the resonant frequency of the sensing system. The chip resistors, wire-wound inductors and MIM capacitors have all been characterized at temperature and operational frequency, and perform with less than 5% variance in electrical performance. The measured capacitive pressure sensing system agrees very well with simulated results. The packaged pressure sensing system is specifically designed to measure the pressure on a jet turbofan engine. The packaged system can be installed by way of borescope plug adaptor fitted to a borescope port exposed to the gas path of a turbofan engine.
Structural Health Management for Future Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Allison, S. G.; Woodard, S. E.; Wincheski, R. A.; Cooper, E. G.; Price, D. C.; Hedley, M.; Prokopenko, M.; Scott, D. A.; Tessler, A.
2004-01-01
Structural Health Management (SHM) will be of critical importance to provide the safety, reliability and affordability necessary for the future long duration space missions described in America's Vision for Space Exploration. Long duration missions to the Moon, Mars and beyond cannot be accomplished with the current paradigm of periodic, ground based structural integrity inspections. As evidenced by the Columbia tragedy, this approach is also inadequate for the current Shuttle fleet, thus leading to its initial implementation of on-board SHM sensing for impact detection as part of the return to flight effort. However, future space systems, to include both vehicles as well as structures such as habitation modules, will require an integrated array of onboard in-situ sensing systems. In addition, advanced data systems architectures will be necessary to communicate, store and process massive amounts of SHM data from large numbers of diverse sensors. Further, improved structural analysis and design algorithms will be necessary to incorporate SHM sensing into the design and construction of aerospace structures, as well as to fully utilize these sensing systems to provide both diagnosis and prognosis of structural integrity. Ultimately, structural integrity information will feed into an Integrated Vehicle Health Management (IVHM) system that will provide real-time knowledge of structural, propulsion, thermal protection and other critical systems for optimal vehicle management and mission control. This paper will provide an overview of NASA research and development in the area of SHM as well as to highlight areas of technology improvement necessary to meet these future mission requirements.
AMTV headway sensor and safety design
NASA Technical Reports Server (NTRS)
Johnston, A. R.; Nelson, M.; Cassell, P.; Herridge, J. T.
1980-01-01
A headway sensing system for an automated mixed traffic vehicle (AMTV) employing an array of optical proximity sensor elements is described, and its performance is presented in terms of object detection profiles. The problem of sensing in turns is explored experimentally and requirements for future turn sensors are discussed. A recommended headway sensor configuration, employing multiple source elements in the focal plane of one lens operating together with a similar detector unit, is described. Alternative concepts including laser radar, ultrasonic sensing, imaging techniques, and radar are compared to the present proximity sensor approach. Design concepts for an AMTV body which will minimize the probability of injury to pedestrians or passengers in the event of a collision are presented.
The CORSAGE Programme: Continuous Orbital Remote Sensing of Archipelagic Geochemical Effects
NASA Technical Reports Server (NTRS)
Acker, J. G.; Brown, C. W.; Hine, A. C.
1997-01-01
Current and pending oceanographic remote sensing technology allows the conceptualization of a programme designed to investigate ocean island interactions that could induce short-term nearshore fluxes of particulate organic carbon and biogenic calcium carbonate from pelagic island archipelagoes. These events will influence the geochemistry of adjacent waters, particularly the marine carbon system. Justification and design are provided for a study that would combine oceanographic satellite remote sensing (visible and infrared radiometry, altimetry and scatterometry) with shore-based facilities. A programme incorporating the methodology outlined here would seek to identify the mechanisms that cause such events, assess their geochemical significance, and provide both analytical and predictive capabilities for observations on greater temporal and spatial scales.
NASA Astrophysics Data System (ADS)
Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.
2017-09-01
Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.
Machine intelligence and autonomy for aerospace systems
NASA Technical Reports Server (NTRS)
Heer, Ewald (Editor); Lum, Henry (Editor)
1988-01-01
The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.
NASA Astrophysics Data System (ADS)
Croce, Robert A., Jr.
Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications. The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled outer membranes. The concentration of glucose and hydrogen peroxide within the sensor geometry, the transient response and the device response time has been simulated for both systems.
Design of Intelligent Hydraulic Excavator Control System Based on PID Method
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong
Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; ...
2015-07-08
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
NASA Technical Reports Server (NTRS)
Martinko, E. A.; Merchant, J. W.
1986-01-01
The University of Kansas Applied Remote Sensing (KARS) program is engaged in a continuing long term research and development effort designed to reveal and facilitate new applications of remote sensing technology for decision makers in governmental agencies and private firms. Some objectives of the program follows. The development of new modes of analyzing multispectral scanner, aerial camera, thermal scanner, and radar data, singly or in concert in order to more effectively use these systems. Merge data derived from remote sensing with data derived from conventional sources in geographic information systems to facilitate better environmental planning. Stimulation of the application of the products of remote sensing systems to problems of resource management and environmental quality now being addressed in NASA's Global Habitability directive. The application of remote sensing techniques and analysis and geographic information systems technology to the solution of significant concerns of state and local officials and private industry. The guidance, assistance and stimulation of faculty, staff and students in the utilization of information from the Earth Resources Satellite (LANDSAT) and Aircraft Programs of NASA in research, education, and public service activities carried at the University of Kansas.
North Wind 4kW passive control system design
NASA Technical Reports Server (NTRS)
Currin, H.
1981-01-01
An overview of a mechanical rotor control design is presented. Operation at constant RPM and rapid response are obtained by using blade pitch moments for both sensing control need and blade pitch actuation. The basic concept, static or equilibrium design, and dynamic analysis are briefly presented.
Smart Pavement Monitoring System
DOT National Transportation Integrated Search
2013-05-01
This report describes the efforts undertaken to develop a novel self-powered strain sensor for continuous structural health monitoring of pavement systems under the Federal Highway Administration. Efforts focused on designing and testing a sensing sy...
NASA Technical Reports Server (NTRS)
1991-01-01
During the winter term of 1991, two design courses at the University of Michigan worked on a joint project, MEDSAT. The two design teams consisted of the Atmospheric, Oceanic, and Spacite System Design and Aerospace Engineering 483 (Aero 483) Aerospace System Design. In collaboration, they worked to produce MEDSAT, a satellite and scientific payload whose purpose was to monitor environmental conditions over Chiapas, Mexico. Information gained from the sensing, combined with regional data, would be used to determine the potential for malaria occurrence in that area. The responsibilities of AOSS 605 consisted of determining the remote sensing techniques, the data processing, and the method to translate the information into a usable output. Aero 483 developed the satellite configuration and the subsystems required for the satellite to accomplish its task. The MEDSAT project is an outgrowth of work already being accomplished by NASA's Biospheric and Disease Monitoring Program and Ames Research Center. NASA's work has been to develop remote sensing techniques to determine the abundance of disease carriers and now this project will place the techniques aboard a satellite. MEDSAT will be unique in its use of both a Synthetic Aperture Radar and visual/IR sensor to obtain comprehensive monitoring of the site. In order to create a highly feasible system, low cost was a high priority. To obtain this goal, a light satellite configuration launched by the Pegasus launch vehicle was used.
An integrated dexterous robotic testbed for space applications
NASA Technical Reports Server (NTRS)
Li, Larry C.; Nguyen, Hai; Sauer, Edward
1992-01-01
An integrated dexterous robotic system was developed as a testbed to evaluate various robotics technologies for advanced space applications. The system configuration consisted of a Utah/MIT Dexterous Hand, a PUMA 562 arm, a stereo vision system, and a multiprocessing computer control system. In addition to these major subsystems, a proximity sensing system was integrated with the Utah/MIT Hand to provide capability for non-contact sensing of a nearby object. A high-speed fiber-optic link was used to transmit digitized proximity sensor signals back to the multiprocessing control system. The hardware system was designed to satisfy the requirements for both teleoperated and autonomous operations. The software system was designed to exploit parallel processing capability, pursue functional modularity, incorporate artificial intelligence for robot control, allow high-level symbolic robot commands, maximize reusable code, minimize compilation requirements, and provide an interactive application development and debugging environment for the end users. An overview is presented of the system hardware and software configurations, and implementation is discussed of subsystem functions.
The Polyfunctionality of Design Language in the Education System of the Design-Student
ERIC Educational Resources Information Center
Lazutina, Tatiana Vladimirovna; Lazutin, Nicolay Konstantinovich
2016-01-01
This research work is devoted to the identification of functions carried out by design in life of society in general and a sense-creating role interpretation of design language in life of the individual that leads to the realization of the analysis necessity of a design role in the sphere of modern professional education. The design as the…
The spacecraft control laboratory experiment optical attitude measurement system
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.
1991-01-01
A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.
Wireless power using magnetic resonance coupling for neural sensing applications
NASA Astrophysics Data System (ADS)
Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.
2012-04-01
Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.
A linear stepping endovascular intervention robot with variable stiffness and force sensing.
He, Chengbin; Wang, Shuxin; Zuo, Siyang
2018-05-01
Robotic-assisted endovascular intervention surgery has attracted significant attention and interest in recent years. However, limited designs have focused on the variable stiffness mechanism of the catheter shaft. Flexible catheter needs to be partially switched to a rigid state that can hold its shape against external force to achieve a stable and effective insertion procedure. Furthermore, driving catheter in a similar way with manual procedures has the potential to make full use of the extensive experience from conventional catheter navigation. Besides driving method, force sensing is another significant factor for endovascular intervention. This paper presents a variable stiffness catheterization system that can provide stable and accurate endovascular intervention procedure with a linear stepping mechanism that has a similar operation mode to the conventional catheter navigation. A specially designed shape-memory polymer tube with water cooling structure is used to achieve variable stiffness of the catheter. Hence, four FBG sensors are attached to the catheter tip in order to monitor the tip contact force situation with temperature compensation. Experimental results show that the actuation unit is able to deliver linear and rotational motions. We have shown the feasibility of FBG force sensing to reduce the effect of temperature and detect the tip contact force. The designed catheter can change its stiffness partially, and the stiffness of the catheter can be remarkably increased in rigid state. Hence, in the rigid state, the catheter can hold its shape against a [Formula: see text] load. The prototype has also been validated with a vascular phantom, demonstrating the potential clinical value of the system. The proposed system provides important insights into the design of compact robotic-assisted catheter incorporating effective variable stiffness mechanism and real-time force sensing for intraoperative endovascular intervention.
High-resolution remotely sensed small target detection by imitating fly visual perception mechanism.
Huang, Fengchen; Xu, Lizhong; Li, Min; Tang, Min
2012-01-01
The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.
Sensing human physiological response using wearable carbon nanotube-based fabrics
NASA Astrophysics Data System (ADS)
Wang, Long; Loh, Kenneth J.; Koo, Helen S.
2016-04-01
Flexible and wearable sensors for human monitoring have received increased attention. Besides detecting motion and physical activity, measuring human vital signals (e.g., respiration rate and body temperature) provide rich data for assessing subjects' physiological or psychological condition. Instead of using conventional, bulky, sensing transducers, the objective of this study was to design and test a wearable, fabric-like sensing system. In particular, multi-walled carbon nanotube (MWCNT)-latex thin films of different MWCNT concentrations were first fabricated using spray coating. Freestanding MWCNT-latex films were then sandwiched between two layers of flexible fabric using iron-on adhesive to form the wearable sensor. Second, to characterize its strain sensing properties, the fabric sensors were subjected to uniaxial and cyclic tensile load tests, and they exhibited relatively stable electromechanical responses. Finally, the wearable sensors were placed on a human subject for monitoring simple motions and for validating their practical strain sensing performance. Overall, the wearable fabric sensor design exhibited advances such as flexibility, ease of fabrication, light weight, low cost, noninvasiveness, and user comfort.
A Ground Systems Template for Remote Sensing Systems
NASA Astrophysics Data System (ADS)
McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.
2002-10-01
Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.
The design of atmosphere polarimetry sensing with multi-bands
NASA Astrophysics Data System (ADS)
Dou, Chenhao; Wang, Shurong; Zhang, Zihui; Huang, Yu; Yang, Xiaohu; Li, Bo
2018-03-01
A new aerosol and cloud polarimetry sensing (ACPS) has been presented to measure four polarization components of eight specific wavelengths selected from 400 ∼ 2400 nm simultaneously. The ACPS system can provide high accurate polarized intensity components of atmospheric radiance with a simple and compact structure. The ACPS structure can be regarded as a 4- f Fourier optics system. It takes Wollaston prisms as polarimeters, uses filters and slits to select the appropriate wavelength, and locates the monochromatic polarized light images on different places of focal plane. In our approach, the visible Part 1 is designed as an example and all fields MTFs of Part 1 are larger than 0.5 at detectors' Nyquist frequency 20 lp/mm.
NASA Technical Reports Server (NTRS)
1995-01-01
Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.
Heat-activated Plasmonic Chemical Sensors for Harsh Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Michael; Oh, Sang-Hyun
2015-12-01
A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold filmmore » using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis and wavelength down selection offers a novel path towards simplification and integration of plasmonic-based sensing methods using selected wavelengths rather than a full spectral analysis. Integration efforts were designed and modeled for thermal and mass transport considerations by UTAS which led to the 3D printing of scaled models that would serve as the housing for the alternative energy harvesting plasmonic chemical sensor design developed by CNSE.« less
40 CFR 1042.901 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1042.901 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1042.901 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1042.901 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1037.801 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Auxiliary emission control device means any element of design that senses temperature, motive speed, engine... any device, system, or element of design that controls or reduces the emissions of regulated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1037.801 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Auxiliary emission control device means any element of design that senses temperature, motive speed, engine... any device, system, or element of design that controls or reduces the emissions of regulated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1042.901 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
Soft Active Materials for Actuation, Sensing, and Electronics
NASA Astrophysics Data System (ADS)
Kramer, Rebecca Krone
Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.
Spacecraft attitude control for a solar electric geosynchronous transfer mission
NASA Technical Reports Server (NTRS)
Leroy, B. E.; Regetz, J. D., Jr.
1975-01-01
A study of the Attitude Control System (ACS) is made for a solar electric propulsion geosynchronous transfer mission. The basic mission considered is spacecraft injection into a low altitude, inclined orbit followed by low thrust orbit changing to achieve geosynchronous orbit. Because of the extended thrusting time, the mission performance is a strong function of the attitude control system. Two attitude control system design options for an example mission evolve from consideration of the spacecraft configuration, the environmental disturbances, and the probable ACS modes of operation. The impact of these design options on other spacecraft subsystems is discussed. The factors which must be considered in determining the ACS actuation and sensing subsystems are discussed. The effects of the actuation and sensing subsystems on the mission performance are also considered.
Optical Fiber Networks for Remote Fiber Optic Sensors
Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel
2012-01-01
This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011
Fiber-optic Sensor Demonstrator (FSD) integration with PROBA-2
NASA Astrophysics Data System (ADS)
Reutlinger, Arnd; Glier, Markus; Zuknik, Karl-Heinz; Hoffmann, Lars; Müller, Mathias; Rapp, Stephan; Kurvin, Charles; Ernst, Thomas; McKenzie, Iain; Karafolas, Nikos
2017-11-01
Modern telecommunication satellites can benefit from the features of fiber optic sensing wrt to mass savings, improved performance and lower costs. Within the course of a technology study, launched by the European Space Agency, a fiber optic sensing system has been designed and is to be tested on representative mockups of satellite sectors and environment.
Design and Evaluation of Dedicated Smartphone Applications for Collaborative Science Education
NASA Astrophysics Data System (ADS)
Fertitta, John A., Jr.
2011-12-01
Over the past several years, the use of scientific probes is becoming more common in science classrooms. The goal of teaching with these science probes is to engage students in inquiry-based learning. However, they are often complicated and stationary, forcing experiments to remain in the classroom and limiting their use. The Internet System for Networked Sensor Experimentation (iSENSE) was created to address these limitations. iSENSE is a web-system for storing and visualizing sensor data. The project also includes a hardware package, the PINPoint, that interfaces to existing probes, and acts as a probe itself. As the mobile phone industry continues to advance, we are beginning to see smartphones that are just as powerful, if not more powerful, than many desktop computers. These devices are often equipped with advanced sensors, making them as capable as some science probes at a lower cost. With this background, this thesis explores the use of smartphones in secondary school science classrooms. By collaborating with one teacher, three custom applications were developed for four separate curriculum-based learning activities. The smartphones replaced existing traditional tools and science probes. Some data collected with the smartphones were uploaded to the iSENSE web-system for analysis. Student use of the smartphones and the subsequent scientific visualizations using the iSENSE web-system were observed. A teacher interview was conducted afterward. It was found that a collaborative design process involving the teacher resulted in the successful integration of smartphone applications into learning activities. In one case, the smartphones and use of iSENSE did not improve the students' understanding of the learning objectives. In several others, however, the smartphones out-performed traditional probeware as a data collector, and with the classroom teachers guidance, the iSENSE web-system facilitated more in-depth discussions of the data.
A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar.
Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun; Huang, Yuan-Hao
2018-04-05
Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.
Vision based flight procedure stereo display system
NASA Astrophysics Data System (ADS)
Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng
2008-03-01
A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.
TermehYousefi, Amin; Azhari, Saman; Khajeh, Amin; Hamidon, Mohd Nizar; Tanaka, Hirofumi
2017-08-01
Haptic sensors are essential devices that facilitate human-like sensing systems such as implantable medical devices and humanoid robots. The availability of conducting thin films with haptic properties could lead to the development of tactile sensing systems that stretch reversibly, sense pressure (not just touch), and integrate with collapsible. In this study, a nanocomposite based hemispherical artificial fingertip fabricated to enhance the tactile sensing systems of humanoid robots. To validate the hypothesis, proposed method was used in the robot-like finger system to classify the ripe and unripe tomato by recording the metabolic growth of the tomato as a function of resistivity change during a controlled indention force. Prior to fabrication, a finite element modeling (FEM) was investigated for tomato to obtain the stress distribution and failure point of tomato by applying different external loads. Then, the extracted computational analysis information was utilized to design and fabricate nanocomposite based artificial fingertip to examine the maturity analysis of tomato. The obtained results demonstrate that the fabricated conformable and scalable artificial fingertip shows different electrical property for ripe and unripe tomato. The artificial fingertip is compatible with the development of brain-like systems for artificial skin by obtaining periodic response during an applied load. Copyright © 2017. Published by Elsevier B.V.
Bacterial Quorum Sensing and Microbial Community Interactions
2018-01-01
ABSTRACT Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of “synthetic ecological” models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections. PMID:29789364
Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology
NASA Technical Reports Server (NTRS)
Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan
2014-01-01
Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.
Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring.
Lin, Xiaoyou; Seet, Boon-Chong
2017-04-01
This paper presents a new design of a wearable plantar pressure monitoring system in the form of a smart sock for sensing abnormal relative pressure changes. One advantage of this approach is that with a battery-free design, this system can be powered solely by radio frequency (RF) energy harvested from a radio frequency identification (RFID) reader unit hosted on a smartphone of the wearer. At the same time, this RFID reader can read foot pressure values from an embedded sensor-tag in the sock. A pressure sensing matrix made of conductive fabric and flexible piezo-resistive material is integrated into the sock during the knitting process. Sensed foot pressures are digitized and stored in the memory of a sensor-tag, thus allowing relative foot pressure values to be tracked. The control unit of the smart sock is assembled on a flexible printed circuit board (FPC) that can be strapped to the lower limb and detached easily when it is not in use. Experiments show that the system can operate reliably in both tasks of RF energy harvesting and pressure measurement.
Du, Yaran; Li, Xiqian; Lv, Xueju; Jia, Qiong
2017-09-13
Free bilirubin, a key biomarker for jaundice, was detected with a newly designed fluorescent postsynthetically modified metal organic framework (MOF) (UIO-66-PSM) sensor. UiO-66-PSM was prepared based on the aldimine condensation reaction of UiO-66-NH 2 with 2,3,4-trihydroxybenzaldehyde. The fluorescence of UIO-66-PSM could be effectively quenched by free bilirubin via a fluorescent resonant energy transfer process, thus achieving its recognition of free bilirubin. It was the first attempt to design a MOF-based fluorescent probe for sensing free bilirubin. The probe exhibited fast response time, low detection limit, wide linear range, and high selectivity toward free bilirubin. The sensing system enabled the monitor of free bilirubin in real human serum. Hence, the reported free bilirubin sensing platform has potential applications for clinical diagnosis of jaundice.
NASA Technical Reports Server (NTRS)
Seeley, John S. (Editor); Lear, John W. (Editor); Russak, Sidney L. (Editor); Monfils, Andre (Editor)
1986-01-01
Papers are presented on such topics as the development of the Imaging Spectrometer for Shuttle and space platform applications; the in-flight calibration of pushbroom remote sensing instruments for the SPOT program; buttable detector arrays for 1.55-1.7 micron imaging; the design of the Improved Stratospheric and Mesospheric Sounder on the Upper Atmosphere Research Satellite; and SAGE II design and in-orbit performance. Consideration is also given to the Shuttle Imaging Radar-B/C instruments; the Venus Radar Mapper multimode radar system design; various ISO instruments (ISOCAM, ISOPHOT, and SWS and LWS); and instrumentation for the Space Infrared Telescope Facility.
The Need and Keys for a New Generation Network Adjustment Software
NASA Astrophysics Data System (ADS)
Colomina, I.; Blázquez, M.; Navarro, J. A.; Sastre, J.
2012-07-01
Orientation and calibration of photogrammetric and remote sensing instruments is a fundamental capacity of current mapping systems and a fundamental research topic. Neither digital remote sensing acquisition systems nor direct orientation gear, like INS and GNSS technologies, made block adjustment obsolete. On the contrary, the continuous flow of new primary data acquisition systems has challenged the capacity of the legacy block adjustment systems - in general network adjustment systems - in many aspects: extensibility, genericity, portability, large data sets capacity, metadata support and many others. In this article, we concentrate on the extensibility and genericity challenges that current and future network systems shall face. For this purpose we propose a number of software design strategies with emphasis on rigorous abstract modeling that help in achieving simplicity, genericity and extensibility together with the protection of intellectual proper rights in a flexible manner. We illustrate our suggestions with the general design approach of GENA, the generic extensible network adjustment system of GeoNumerics.
The role of advanced sensing in smart cities.
Hancke, Gerhard P; Silva, Bruno de Carvalho E; Hancke, Gerhard P
2012-12-27
In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities.
The Role of Advanced Sensing in Smart Cities
Hancke, Gerhard P.; de Carvalho e Silva, Bruno; Hancke, Gerhard P.
2013-01-01
In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities. PMID:23271603
The Geoscience Laser Altimeter System Laser Transmitter
NASA Technical Reports Server (NTRS)
Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.
2000-01-01
The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.
Object-oriented structures supporting remote sensing databases
NASA Technical Reports Server (NTRS)
Wichmann, Keith; Cromp, Robert F.
1995-01-01
Object-oriented databases show promise for modeling the complex interrelationships pervasive in scientific domains. To examine the utility of this approach, we have developed an Intelligent Information Fusion System based on this technology, and applied it to the problem of managing an active repository of remotely-sensed satellite scenes. The design and implementation of the system is compared and contrasted with conventional relational database techniques, followed by a presentation of the underlying object-oriented data structures used to enable fast indexing into the data holdings.
Virtual odors to transmit emotions in virtual agents
NASA Astrophysics Data System (ADS)
Delgado-Mata, Carlos; Aylett, Ruth
2003-04-01
In this paper we describe an emotional-behvioral architecture. The emotional engine sits at a higher layer than the behavior system, and can alter behavior patterns, the engine is designed to simulate Emotionally-Intelligent Agents in a Virtual Environment, where each agent senses its own emotions, and other creature emotions through a virtual smell sensor; senses obstacles and other moving creatures in the environment and reacts to them. The architecture consists of an emotion engine, behavior synthesis system, a motor layer and a library of sensors.
NASA Astrophysics Data System (ADS)
O'Toole, Ronald Patrick
1994-01-01
In the recent advancement of piezoelectric resonator technology, there has been a large growth in the application of these devices for chemical sensing. These sensors operate by detecting changes in their environment which perturb the electrical - acoustic operation and in turn can be harnessed by means of supporting electronics and signal processing to monitor various processes. Examples include remote environmental monitoring, chemical process control, and commercial gas phase detectors. In this dissertation, the chemical sensing theory and properties of piezoelectric resonators such as the bulk-acoustic wave thin-film resonator (TFR) and the quartz crystal microbalance (QCM) are developed. This analysis concentrates on characterizing the resonance behavior of thickness mode resonators based upon the physical properties at the electrode interface which include interfacial mass density, elasticity, viscosity, and thickness of the composite device consisting of the piezoelectric material, the electrodes, and any deposited layer on the electrode surface in contact with the surrounding medium. In this work, no approximation is made as to the stress or particle displacement variation across the visco-elastic film which allows a complete study of the perturbational mechanical variations on the electrical and resonance properties of the composite resonator. The derivation and verification of equivalent circuit models based on the physical properties of the piezoelectric resonator and visco-elastic sensing film are presented. The results and models from this research will be beneficial to surface chemistry studies and also have application to fabrication techniques and electrical modeling. The use of this theory is employed in a study of a QCM coated with a commercially developed negative resist. Photo-polymerization of the resist results in induced visco-elastic structural changes which can be monitored and characterized using the full admittance theory of the composite thickness mode resonator. In order to validate the chemical sensing concept, the design and implementation of a TFR controlled chemical sensing system is demonstrated. This system employs the frequency selectivity of the chemical sensing TFR as the feedback element in integrated Colpitts oscillators which are downconverted by superheterodyne techniques. The integrated system design philosophy and performance tradeoffs are discussed. This analysis also investigates the phase noise performance and injection locking considerations of the design. The sensor system detection limit is derived which sets the lower limit of signal detection based upon measurand sensitivity and measured phase noise.
A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body
Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo
2016-01-01
Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body—because human tissues exhibit some conductivity at these frequencies—resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard. PMID:27918416
A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.
Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo
2016-12-02
Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.
Design of a microfluidic sensor for high-sensitivity Copper (II) sensing applications
NASA Astrophysics Data System (ADS)
Gibson, Ceri; Byrne, Patrick; Gray, David; MacCraith, Brian D.; Paull, Brett; Tyrrell, Eadaoin
2003-03-01
An all-plastic micro-sensor system for remote measurement of copper (II) ions in the aqueous environment has been developed. The sensing structure was designed for ease of milling and fabricated in poly (methyl methacrylate) (PMMA) using a hot-embossing technique. Issues of sealing the structure were studied extensively and an efficient protocol has been established. The detection system comprises a compact photo-multiplier tube and integrated photon counting system. This method has advantages of low sample volume, (creating a minimal volume of waste), low exposure to contaminants due to the closed system, no moving parts and employs a robust polymer material which is resistant to the environment of intended use. The sensor operates on the principle of flow injection analysis and has been tested using a chemiluminescence (FIA-CL) reaction arising from the complexation of copper with 1,10-phenanthroline and subsequent oxidation by hydrogen peroxide.
Long-range strategy for remote sensing: an integrated supersystem
NASA Astrophysics Data System (ADS)
Glackin, David L.; Dodd, Joseph K.
1995-12-01
Present large space-based remote sensing systems, and those planned for the next two decades, remain dichotomous and custom-built. An integrated architecture might reduce total cost without limiting system performance. An example of such an architecture, developed at The Aerospace Corporation, explores the feasibility of reducing overall space systems costs by forming a 'super-system' which will provide environmental, earth resources and theater surveillance information to a variety of users. The concept involves integration of programs, sharing of common spacecraft bus designs and launch vehicles, use of modular components and subsystems, integration of command and control and data capture functions, and establishment of an integrated program office. Smart functional modules that are easily tested and replaced are used wherever possible in the space segment. Data is disseminated to systems such as NASA's EOSDIS, and data processing is performed at established centers of expertise. This concept is advanced for potential application as a follow-on to currently budgeted and planned space-based remote sensing systems. We hope that this work will serve to engender discussion that may be of assistance in leading to multinational remote sensing systems with greater cost effectiveness at no loss of utility to the end user.
A Truthful Incentive Mechanism for Online Recruitment in Mobile Crowd Sensing System.
Chen, Xiao; Liu, Min; Zhou, Yaqin; Li, Zhongcheng; Chen, Shuang; He, Xiangnan
2017-01-01
We investigate emerging mobile crowd sensing (MCS) systems, in which new cloud-based platforms sequentially allocate homogenous sensing jobs to dynamically-arriving users with uncertain service qualities. Given that human beings are selfish in nature, it is crucial yet challenging to design an efficient and truthful incentive mechanism to encourage users to participate. To address the challenge, we propose a novel truthful online auction mechanism that can efficiently learn to make irreversible online decisions on winner selections for new MCS systems without requiring previous knowledge of users. Moreover, we theoretically prove that our incentive possesses truthfulness, individual rationality and computational efficiency. Extensive simulation results under both real and synthetic traces demonstrate that our incentive mechanism can reduce the payment of the platform, increase the utility of the platform and social welfare.
NASA Astrophysics Data System (ADS)
Yang, Yan; Liu, Liang; Zha, Jianhua; Yuan, Ningyi
2017-04-01
Two recyclable nitrite sensing composite samples were designed and constructed through a core-shell structure, with Fe3O4 nanoparticles as core, silica molecular sieve MCM-41 as shell and two rhodamine derivatives as chemosensors, respectively. These samples and their structure were identified with their electron microscopy images, N2 adsorption/desorption isotherms, magnetic response, IR spectra and thermogravimetric analysis. Their nitrite sensing behavior was discussed based on emission intensity quenching, their limit of detection was found as low as 1.2 μM. Further analysis suggested a static sensing mechanism between nitrite and chemosensors through an additive reaction between NO+ and chemosensors. After finishing their nitrite sensing, these composite samples and their emission could be recycled and recovered by sulphamic acid.
Development of satellite remote sensing techniques as an economic tool for forestry industry
NASA Technical Reports Server (NTRS)
Sader, Steven A.; Jadkowski, Mark A.
1989-01-01
A cooperative commercial development project designed to focus on cost-effective and practical applications of satellite remote sensing in forest management is discussed. The project, initiated in September, 1988 is being executed in three phases: (1) development of a forest resource inventory and geographic information system (GIS) updating systems; (2) testing and evaluation of remote-sensing products against forest industry specifications; and (3) integration of remote-sensing services and products in an operational setting. An advisory group represented by eleven major forest-product companies will provide direct involvement of the target market. The advisory group will focus on the following questions: Does the technology work for them? How can it be packaged to provide the needed forest-management information? Can the products and information be provided in a cost-effective manner?
Application of remote sensing to study nearshore circulation. [and the continental shelf
NASA Technical Reports Server (NTRS)
Zeigler, J.; Lobecker, R.; Stauble, D.; Welch, C.; Haas, L.; Fang, C. S.
1974-01-01
The research to use remote sensing techniques for studying the continental shelf is reported. The studies reported include: (1) nearshore circulation in the vincinity of a natural tidal inlet; (2) identification of indicators of biological activity; (3) remote navigation system for tracking free drifting buoys; (4) experimental design of an estuaring tidal circulation; and (5) Skylab support work.
Mission planning for large microwave radiometers
NASA Technical Reports Server (NTRS)
Schartel, W. A.
1984-01-01
Earth orbiting, remote sensing platforms that use microwave radiometers as sensors are susceptible to data interpretation difficulties. The capability of the large microwave radiometer (LMR) was augmented with the inclusion of auxillary sensors that expand and enhance the LMR capability. The final system configuration demonstrates a holistic approach in the design of future orbiting remote sensing platforms that use a LMR as the core instrument.
Bimaterial Microcantilevers as a Hybrid Sensing Platform
2008-01-01
cantilevers are immersed in dilute solution (milli molar) of desired organic molecule (e.g., alkanethiols) in aqueous or organic solvent (e.g., water... active layers, and some of the im- portant applications. Emphasizing the material design aspects, the review underscores the most important findings... active sensing materials in microelectromechanical systems (MEMS), soft matter-inclusive sensors bring a desir- able diversity in signal transduction
Construction of Green Tide Monitoring System and Research on its Key Techniques
NASA Astrophysics Data System (ADS)
Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.
2018-04-01
As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
40 CFR 86.1803-01 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Auxiliary Emission Control Device (AECD) means any element of design which senses temperature, vehicle speed.... Critical emission-related components are those components which are designed primarily for emission control... control system is a unique group of emission control devices, auxiliary emission control devices, engine...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
ERIC Educational Resources Information Center
Carleton, Nathaniel P.; Hoffmann, William F.
1978-01-01
Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)
Design of a cost-effective laser spot tracker
NASA Astrophysics Data System (ADS)
Artan, Göktuǧ Gencehan; Sari, Hüseyin
2017-05-01
One of the most important aspects of guided systems is detection. The most convenient detection in the sense of precision can be achieved with a laser spot tracker. This study deals with a military grade, high performance and cost-effective laser spot tracker for a guided system. The aim is to develop a high field of view system that will detect a laser spot from a distance of 3 kilometers in which the target is designated from 3 kilometers with a laser. The study basically consists of the system design, modeling, producing and the conducting performance tests of the whole system.
Design of Weft Detection System in The Stenter Machine
NASA Astrophysics Data System (ADS)
Gu, Minming; Xu, Xianju; Dai, Wenzhan
2017-12-01
In order to build an effective automatic weft-straightening system, it is important for the sensing device to detect most the possible fabric styles, designs, colours and structures, an optical sensing system that detects the angular orientation of weft threads in a moving web of a textile has been built. It contains an adjustable light source, two lens systems and photodiode sensor array. The sensor array includes 13 radial pattern of photosensitive areas that each generate an electrical signal proportional to the total intensity of the light incident on the area. The moving shadow of a weft thread passing over the area will modulate the output signal. A signal processed circuit was built to do the I/V conversion, amplifying, hardware filtering. An embed micro control system then deals with the information of these signals, calculates the angle of the weft drew. Finally, the experiments were done, the results showed that the weft detection system can deal with the fabric weft skew up to 30° and has achieved good results in the application.
Exploring User Experience of a Telehealth System for the Danish TeleCare North Trial.
Lilholt, Pernille Heyckendorff; Hæsum, Lisa Korsbakke Emtekær; Hejlesen, Ole Kristian
2015-01-01
The aim was to explore user experiences of using a telehealth system (Telekit) designed for the Danish TeleCare North trial. Telekit is designed for patients diagnosed with chronic obstructive pulmonary disease (COPD) in order to manage the disease and support patient empowerment. This article sums up COPD-participants' user experiences in terms of increased sense of freedom, of security, of control, and greater awareness of COPD symptoms. A consecutive sample of sixty participants (27 women, 33 men) were recruited from the TeleCare North trial. At home the participants completed a non-standardised questionnaire while a researcher was present. The questionnaire identified their health status, their use of specific technologies, and their user experiences with the telehealth system. Results from the questionnaire indicate that the majority of participants (88%) considered the Telekit system as easy to use. 43 (72%) participants felt increased sense of security, and 37 (62%) participants felt increased sense of control by using the system. 30 (50%) participants felt greater awareness of their COPD symptoms, but only 16 (27%) participants felt increased freedom. The study has provided a general picture of COPD participants' user experiences which is important to emphasise as it has a bearing on whether a given implementation will be successful or not.
A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members
Ozbey, Burak; Erturk, Vakur B.; Demir, Hilmi Volkan; Altintas, Ayhan; Kurc, Ozgur
2016-01-01
In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM) of reinforced concrete members by its high sensitivity and wide dynamic range. PMID:27070615
A conceptual design for an exoplanet imager
NASA Astrophysics Data System (ADS)
Hyland, David C.; Winkeller, Jon; Mosher, Robert; Momin, Anif; Iglesias, Gerardo; Donnellan, Quentin; Stanley, Jerry; Myers, Storm; Whittington, William G.; Asazuma, Taro; Slagle, Kami; Newton, Lindsay; Bourgeois, Scott; Tejeda, Donny; Young, Brian; Shaver, Nick; Cooper, Jacob; Underwood, Dennis; Perkins, James; Morea, Nathan; Goodnight, Ryan; Colunga, Aaron; Peltier, Scott; Singleton, Zane; Brashear, John; McPherson, Ronald; Guillory, Winston; Patel, Sunil; Stovall, Rachel; Meyer, Ryall; Eberle, Patrick; Morrison, Cole; Mong, Chun Yu
2007-09-01
This paper reports the results of a design study for an exoplanet imaging system. The design team consisted of the students in the "Electromagnetic Sensing for Space-Bourne Imaging" class taught by the principal author in the Spring, 2005 semester. The design challenge was to devise a space system capable of forming 10X10 pixel images of terrestrial-class planets out to 10 parsecs, observing in the 9.0 to 17.0 microns range. It was presumed that this system would operate after the Terrestrial Planet Finder had been deployed and had identified a number of planetary systems for more detailed imaging. The design team evaluated a large number of tradeoffs, starting with the use of a single monolithic telescope, versus a truss-mounted sparse aperture, versus a formation of free-flying telescopes. Having selected the free-flyer option, the team studied a variety of sensing technologies, including amplitude interferometry, intensity correlation imaging (ICI, based on the Brown-Twiss effect and phase retrieval), heterodyne interferometry and direct electric field reconstruction. Intensity correlation imaging was found to have several advantages. It does not require combiner spacecraft, nor nanometer-level control of the relative positions, nor diffraction-limited optics. Orbit design, telescope design, spacecraft structural design, thermal management and communications architecture trades were also addressed. A six spacecraft design involving non-repeating baselines was selected. By varying the overall scale of the baselines it was found possible to unambiguously characterize an entire multi-planet system, to image the parent star and, for the largest base scales, to determine 10X10 pixel images of individual planets.
NASA Technical Reports Server (NTRS)
Williams, G. M.; Fraser, J. C.
1991-01-01
The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.
IUSThrust Vector Control (TVC) servo system
NASA Technical Reports Server (NTRS)
Conner, G. E.
1979-01-01
The IUS TVC SERVO SYSTEM which consists of four electrically redundant electromechanical actuators, four potentiometer assemblies, and two controllers to provide movable nozzle control on both IUS solid rocket motors is developed. An overview of the more severe IUS TVC servo system design requirements, the system and component designs, and test data acquired on a preliminary development unit is presented. Attention is focused on the unique methods of sensing movable nozzle position and providing for redundant position locks.
AFTI/F16 Automated Maneuvering Attack System Test Reports/Special Technologies and Outlook.
1986-07-11
Multiplex Data Bus A-A Air-To-Air A-S Air-to-Surface AFTI Advanced Fighter Technology Integration SYSTEM DESIGN AGL Above-Ground-Level AMAS Automated...Maneuvering Attack System Design requirements for the AFTI/F-16 are driven AMUX Avionics Multiplex Data Bus by realistic air combat scenarios and are...the avionics subsystem IFIM and avionics systems are single-thread, much of the sensed various flight control sensors. Additionally, along with data
Development of a Relational Database for Learning Management Systems
ERIC Educational Resources Information Center
Deperlioglu, Omer; Sarpkaya, Yilmaz; Ergun, Ertugrul
2011-01-01
In today's world, Web-Based Distance Education Systems have a great importance. Web-based Distance Education Systems are usually known as Learning Management Systems (LMS). In this article, a database design, which was developed to create an educational institution as a Learning Management System, is described. In this sense, developed Learning…
Compressed sensing system considerations for ECG and EMG wireless biosensors.
Dixon, Anna M R; Allstot, Emily G; Gangopadhyay, Daibashish; Allstot, David J
2012-04-01
Compressed sensing (CS) is an emerging signal processing paradigm that enables sub-Nyquist processing of sparse signals such as electrocardiogram (ECG) and electromyogram (EMG) biosignals. Consequently, it can be applied to biosignal acquisition systems to reduce the data rate to realize ultra-low-power performance. CS is compared to conventional and adaptive sampling techniques and several system-level design considerations are presented for CS acquisition systems including sparsity and compression limits, thresholding techniques, encoder bit-precision requirements, and signal recovery algorithms. Simulation studies show that compression factors greater than 16X are achievable for ECG and EMG signals with signal-to-quantization noise ratios greater than 60 dB.
Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach
NASA Technical Reports Server (NTRS)
Henderson, Steve
2005-01-01
Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.
RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios.
Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan
2016-06-09
Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system's starting oscillation is determined, and the simulation results of the system's response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.
Hyperspectral remote sensing image retrieval system using spectral and texture features.
Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan
2017-06-01
Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.
Design and Application of a Field Sensing System for Ground Anchors in Slopes
Choi, Se Woon; Lee, Jihoon; Kim, Jong Moon; Park, Hyo Seon
2013-01-01
In a ground anchor system, cables or tendons connected to a bearing plate are used for stabilization of slopes. Then, the stability of a slope is dependent on maintaining the tension levels in the cables. So far, no research on a strain-based field sensing system for ground anchors has been reported. Therefore, in this study, a practical monitoring system for long-term sensing of tension levels in tendons for anchor-reinforced slopes is proposed. The system for anchor-reinforced slopes is composed of: (1) load cells based on vibrating wire strain gauges (VWSGs), (2) wireless sensor nodes which receive and process the signals from load cells and then transmit the result to a master node through local area communication, (3) master nodes which transmit the data sent from sensor nodes to the server through mobile communication, and (4) a server located at the base station. The system was applied to field sensing of ground anchors in the 62 m-long and 26 m-high slope at the side of the highway. Based on the long-term monitoring, the safety of the anchor-reinforced slope can be secured by the timely applications of re-tensioning processes in tendons. PMID:23507820
A frequency-sensing readout using piezoelectric sensors for sensing of physiological signals.
Buxi, Dilpreet; Redouté, Jean-Michel; Yuce, Mehmet Rasit
2014-01-01
Together with a charge or voltage amplifier, piezoelectric sensors are commonly used to pick up physiological vibrations from the body. As an alternative to chopper or auto-zero amplifiers, frequency sensing is known in literature to provide advantages of noise immunity, interfacing to digital readout systems as well as tunable range of sensing. A frequency-sensing readout circuit for sensing low voltage signals from piezoelectric sensors is successfully developed and tested in this work. The output voltage of a piezoelectric sensor is fed to a varactor, which is part of an Colpitts LC oscillator. The oscillation frequency is converted into a voltage using a phase locked loop. The circuit is compared to a reference design in terms of linearity, noise and transfer function. The readout has a input-referred noise voltage of 2.24μV/√Hz and consumes 15 mA at 5V supply. Arterial pulse wave signals and the cardiac vibrations from the chest are measured from one subject to show the proof of concept of the proposed readout. The results of this work are intended to contribute towards alternative low noise analog front end designs for piezoelectric sensors.
A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar
Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun
2018-01-01
Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256×13 real-time radar image display with a throughput of 28.2 frames per second. PMID:29621170
NASA Astrophysics Data System (ADS)
Genet, Richard P.
1995-11-01
Policy changes in the United States and Europe will bring a number of firms into the remote sensing market. More importantly, there will be a vast increase in the amount of data and potentially, the amount of information, that is available for academic, commercial and a variety of public uses. Presently many of the users of remote sensing data have some understanding of photogrammetric and remote sensing technologies. This is especially true of environmentalist users and academics. As the amount of remote sensing data increases, in order to broaden the user base, it will become increasingly important that the information user not be required to have a background in photogrammetry, remote sensing, or even in the basics of geographic information systems. The user must be able to articulate his requirements in view of existence of new sources of information. This paper provides the framework for expert systems to accomplish this interface. Specific examples of the capabilities which must be developed in order to maximize the utility of specific images and image archives are presented and discussed.
Other remote sensing systems: Retrospect and outlook
NASA Technical Reports Server (NTRS)
1982-01-01
The history of remote sensing is reviewed and the scope and versatility of the several remote sensing systems already in orbit are discussed, especially those with sensors operating in other EM spectral modes. The multisensor approach is examined by interrelating LANDSAT observations with data from other satellite systems. The basic principles and practices underlying the use of thermal infrared and radar sensors are explored and the types of observations and interpretations emanating from the Nimbus, Heat Capacity Mapping Mission, and SEASAT programs are examined. Approved or proposed Earth resources oriented missions for the 1980's previewed include LANDSAT D, Stereosat, Gravsat, the French satellite SPOT-1, and multimission modular spacecraft launched from space shuttle. The pushbroom imager, the linear array pushbroom radiometer, the multispectral linear array, and the operational LANDSAT observing system, to be designed the LANDSAT-E series are also envisioned for this decade.
Solid-State, High Energy 2-Micron Laser Development for Space-Based Remote Sensing
NASA Technical Reports Server (NTRS)
Singh, Upendra N.
2010-01-01
Lidar (light detection and ranging) remote sensing enjoys the advantages of excellent vertical and horizontal resolution; pointing capability; a signal source independent from natural light; and control and knowledge of transmitted wavelength, pulse shape, and polarization and received polarization. Lidar in space is an emerging technology now being developing to fit applications where passive sensors cannot meet current measurement requirements. Technical requirements for space lidar are more demanding than for ground-based or airborne systems. Perhaps the most distinguishing characteristics of space lidars are the environmental requirements. Space lidar systems must be specially designed to survive the mechanical vibration loads of launch and operate in the vacuum of space where exposure to ionizing radiation limits the electronic components available. Finally, space lidars must be designed to be highly reliable because they must operate without the need for repair or adjustment. Lifetime requirements tend to be important drivers of the overall system design. The maturity of the required technologies is a key to the development of any space lidar system. NASA entered a new era in the 1990 s with the approval of several space-based remote sensing missions employing laser radar (lidar) techniques. Following the steps of passive remote sensing and then active radar remote sensing, lidar sensors were a logical next step, providing independence from natural light sources, and better spatial resolution and smaller sensor size than radar sensors. The shorter electromagnetic wavelengths of laser light also allowed signal reflectance from air molecules and aerosol particles. The smaller receiver apertures allowed the concept of scanning the sensor field of view. However, technical problems with several space-based lidar missions during that decade led to concern at NASA about the risk of lidar missions. An external panel was convened to make recommendations to NASA. Their report in 2000 strongly advocated that NASA maintain in-house laser and lidar capability, and that NASA should work to lower the technology risk for all future lidar missions. A multi-Center NASA team formulated an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the Earth's atmosphere. In 2002 the NASA Earth Science Enterprise (ESE) and Office of Aerospace Technology (OAT) created the Laser Risk Reduction Program (LRRP) and directed NASA Langley Research Center (LaRC) and Goddard Space Flight Center to carry out synergistic and complementary research towards solid-state lasers/lidars developments for space-based remote sensing applications.
NASA Technical Reports Server (NTRS)
Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid
2006-01-01
The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.
NASA Astrophysics Data System (ADS)
Xia, Xiaoyuan; Zhang, Zhixiang; Li, Xinxin
2008-03-01
Second torsion-mode resonance is proposed for microcantilever biosensors for ultra-high mass-weighing sensitivity and resolution. By increasing both the resonant frequency and Q-factor, the higher mode torsional resonance is favorable for improving the mass-sensing performance. For the first time, a Latin-cross-shaped second-mode resonant cantilever is constructed and optimally designed for both signal-readout and resonance-exciting elements. The cantilever sensor is fabricated by using silicon micromachining techniques. The transverse piezoresistive sensing element and the specific-shaped resonance-exciting loop are successfully integrated in the cantilever. Alpha-fetoprotein (AFP) antibody-antigen specific binding is implemented for the sensing experiment. The proposed cantilever sensor is designed with significantly superior sensitivity to the previously reported first torsion-mode one. After analysis with an Allan variance algorithm, which can be easily embedded in the sensing system, the Latin-cross-shaped second torsion-mode resonant cantilever is evaluated with ultra-high mass resolution. Therefore, the high-performance integrated micro-sensor is promising for on-the-spot bio-molecule detection.
Maruthamuthu, Murali Kannan; Ganesh, Irisappan; Ravikumar, Sambandam; Hong, Soon Ho
2015-03-01
A ZraP-based lead sensing and removal system was constructed in E. coli. It was regulated by the ZraS/ZraR two-component system. The expression profile of the zraP gene towards extracellular lead was studied via real-time PCR. A dual-function bacterial system was also designed to express GFP and OmpC-lead binding peptide under the control of zraP for the simultaneous sensing and adsorption of environmental lead without additional manipulation. The constructed bacterial system can emit fluorescence and it adsorbed a maximum of 487 µmol lead/g cell DCW. From a study of artificial wastewater, the constructed bacteria adsorbed lead highly selectively (427 µmol lead/g cell DCW) among other metal ions. The newly-constructed dual function bacterial system can be applied for the development of an efficient process for the removal of lead from polluted wastes.
System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces.
Datta-Chaudhuri, Timir; Smela, Elisabeth; Abshire, Pamela A
2016-12-01
CMOS chips are increasingly used for direct sensing and interfacing with fluidic and biological systems. While many biosensing systems have successfully combined CMOS chips for readout and signal processing with passive sensing arrays, systems that co-locate sensing with active circuits on a single chip offer significant advantages in size and performance but increase the complexity of multi-domain design and heterogeneous integration. This emerging class of lab-on-CMOS systems also poses distinct and vexing technical challenges that arise from the disparate requirements of biosensors and integrated circuits (ICs). Modeling these systems must address not only circuit design, but also the behavior of biological components on the surface of the IC and any physical structures. Existing tools do not support the cross-domain simulation of heterogeneous lab-on-CMOS systems, so we recommend a two-step modeling approach: using circuit simulation to inform physics-based simulation, and vice versa. We review the primary lab-on-CMOS implementation challenges and discuss practical approaches to overcome them. Issues include new versions of classical challenges in system-on-chip integration, such as thermal effects, floor-planning, and signal coupling, as well as new challenges that are specifically attributable to biological and fluidic domains, such as electrochemical effects, non-standard packaging, surface treatments, sterilization, microfabrication of surface structures, and microfluidic integration. We describe these concerns as they arise in lab-on-CMOS systems and discuss solutions that have been experimentally demonstrated.
NASA Astrophysics Data System (ADS)
Pries-Heje, Jan; Baskerville, Richard L.
This paper elaborates a design science approach for management planning anchored to the concept of a management design theory. Unlike the notions of design theories arising from information systems, management design theories can appear as a system of technological rules, much as a system of hypotheses or propositions can embody scientific theories. The paper illus trates this form of management design theories with three grounded cases. These grounded cases include a software process improvement study, a user involvement study, and an organizational change study. Collectively these studies demonstrate how design theories founded on technological rules can not only improve the design of information systems, but that these concepts have great practical value for improving the framing of strategic organi zational design decisions about such systems. Each case is either grounded in an empirical sense, that is to say, actual practice, or it is grounded to practices described extensively in the practical literature. Such design theories will help managers more easily approach complex, strategic decisions.
A Low-Signal-to-Noise-Ratio Sensor Framework Incorporating Improved Nighttime Capabilities in DIRSIG
NASA Astrophysics Data System (ADS)
Rizzuto, Anthony P.
When designing new remote sensing systems, it is difficult to make apples-to-apples comparisons between designs because of the number of sensor parameters that can affect the final image. Using synthetic imagery and a computer sensor model allows for comparisons to be made between widely different sensor designs or between competing design parameters. Little work has been done in fully modeling low-SNR systems end-to-end for these types of comparisons. Currently DIRSIG has limited capability to accurately model nighttime scenes under new moon conditions or near large cities. An improved DIRSIG scene modeling capability is presented that incorporates all significant sources of nighttime radiance, including new models for urban glow and airglow, both taken from the astronomy community. A low-SNR sensor modeling tool is also presented that accounts for sensor components and noise sources to generate synthetic imagery from a DIRSIG scene. The various sensor parameters that affect SNR are discussed, and example imagery is shown with the new sensor modeling tool. New low-SNR detectors have recently been designed and marketed for remote sensing applications. A comparison of system parameters for a state-of-the-art low-SNR sensor is discussed, and a sample design trade study is presented for a hypothetical scene and sensor.
Analysis-Driven Design of Representations For Sensing-Action Systems
2017-10-01
from the Defense Technical Information Center (DTIC) (http://www.dtic.mil). AFRL-RY-WP-TR-2017-0196 HAS BEEN REVIEWED AND IS APPROVED FOR...Layered Sensing Exploitation Division This report is published in the interest of scientific and technical information exchange, and its...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
Technical design and system implementation of region-line primitive association framework
NASA Astrophysics Data System (ADS)
Wang, Min; Xing, Jinjin; Wang, Jie; Lv, Guonian
2017-08-01
Apart from regions, image edge lines are an important information source, and they deserve more attention in object-based image analysis (OBIA) than they currently receive. In the region-line primitive association framework (RLPAF), we promote straight-edge lines as line primitives to achieve powerful OBIAs. Along with regions, straight lines become basic units for subsequent extraction and analysis of OBIA features. This study develops a new software system called remote-sensing knowledge finder (RSFinder) to implement RLPAF for engineering application purposes. This paper introduces the extended technical framework, a comprehensively designed feature set, key technology, and software implementation. To our knowledge, RSFinder is the world's first OBIA system based on two types of primitives, namely, regions and lines. It is fundamentally different from other well-known region-only-based OBIA systems, such as eCogntion and ENVI feature extraction module. This paper has important reference values for the development of similarly structured OBIA systems and line-involved extraction algorithms of remote sensing information.
Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler
NASA Astrophysics Data System (ADS)
Li, Wei; Zhang, Jian
2018-06-01
A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.
Fast max-margin clustering for unsupervised word sense disambiguation in biomedical texts
Duan, Weisi; Song, Min; Yates, Alexander
2009-01-01
Background We aim to solve the problem of determining word senses for ambiguous biomedical terms with minimal human effort. Methods We build a fully automated system for Word Sense Disambiguation by designing a system that does not require manually-constructed external resources or manually-labeled training examples except for a single ambiguous word. The system uses a novel and efficient graph-based algorithm to cluster words into groups that have the same meaning. Our algorithm follows the principle of finding a maximum margin between clusters, determining a split of the data that maximizes the minimum distance between pairs of data points belonging to two different clusters. Results On a test set of 21 ambiguous keywords from PubMed abstracts, our system has an average accuracy of 78%, outperforming a state-of-the-art unsupervised system by 2% and a baseline technique by 23%. On a standard data set from the National Library of Medicine, our system outperforms the baseline by 6% and comes within 5% of the accuracy of a supervised system. Conclusion Our system is a novel, state-of-the-art technique for efficiently finding word sense clusters, and does not require training data or human effort for each new word to be disambiguated. PMID:19344480
Sensing systems using chip-based spectrometers
NASA Astrophysics Data System (ADS)
Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.
2014-06-01
Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.
A Truthful Incentive Mechanism for Online Recruitment in Mobile Crowd Sensing System
Chen, Xiao; Liu, Min; Zhou, Yaqin; Li, Zhongcheng; Chen, Shuang; He, Xiangnan
2017-01-01
We investigate emerging mobile crowd sensing (MCS) systems, in which new cloud-based platforms sequentially allocate homogenous sensing jobs to dynamically-arriving users with uncertain service qualities. Given that human beings are selfish in nature, it is crucial yet challenging to design an efficient and truthful incentive mechanism to encourage users to participate. To address the challenge, we propose a novel truthful online auction mechanism that can efficiently learn to make irreversible online decisions on winner selections for new MCS systems without requiring previous knowledge of users. Moreover, we theoretically prove that our incentive possesses truthfulness, individual rationality and computational efficiency. Extensive simulation results under both real and synthetic traces demonstrate that our incentive mechanism can reduce the payment of the platform, increase the utility of the platform and social welfare. PMID:28045441
Designing Real-Time Systems in Ada (Trademark).
1986-01-01
e a. T * .K Ada .e 6 4J (FINAL REPORT) Real - Time Systems in Ada* Abstract Real-time software differs from other kinds of software in the sense that it...1-2 1.2.2 Functional Focus ...... ................ 1-2 1.3 ROLE OF ADA IN REAL - TIME SYSTEMS DESIGN. ..... 1-3 1.4 SCOPE OF THIS...MODELS OF REAL TIME SYSTEMS 8.1 REQUIREMENTS FOR TEMPORAL BEHAVIOR ANALYSIS . 8-1 8.2 METHODS OF TEMPORAL BEHAVIOR ANALYSIS.... ....... 8-4 8.3
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
Transformer partial discharge monitoring based on optical fiber sensing
NASA Astrophysics Data System (ADS)
Wang, Kun; Tong, Xinglin; Zhu, Xiaolong
2014-06-01
The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the optical fiber sensing technology, we have done some research on fiber optics Fabry-Perot (FP) sensing which can be useful for the transformer on online partial discharge monitoring. This research aimed at improving the reliability of power system safety monitoring. We have done some work as follows: designing a set for fiber optics FP sensor preparation, according to the fabrication procedure strictly making out the sensors, building a reasonable signal demodulation system for fiber optics FP sensing, doing a preliminary analysis about online partial discharge signal monitoring, including the research on different discharge intensities with the same measuring distance and different measuring distances with the same discharge intensity, and then making a detailed analysis of the experimental results.
Application of remote sensing to monitoring and studying dispersion in ocean dumping
NASA Technical Reports Server (NTRS)
Johnson, R. W.; Ohlhorst, C. W.
1981-01-01
Remotely sensed wide area synoptic data provides information on ocean dumping that is not readily available by other means. A qualitative approach has been used to map features, such as river plumes. Results of quantitative analyses have been used to develop maps showing quantitative distributions of one or more water quality parameters, such as suspended solids or chlorophyll a. Joint NASA/NOAA experiments have been conducted at designated dump areas in the U.S. coastal zones to determine the applicability of aircraft remote sensing systems to map plumes resulting from ocean dumping of sewage sludge and industrial wastes. A second objective is related to the evaluation of previously developed quantitative analysis techniques for studying dispersion of materials in these plumes. It was found that plumes resulting from dumping of four waste materials have distinctive spectral characteristics. The development of a technology for use in a routine monitoring system, based on remote sensing techniques, is discussed.
A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish.
Liu, Guijie; Wang, Anyi; Wang, Xinbao; Liu, Peng
2016-01-01
Lateral line is a system of sense organs that can aid fishes to maneuver in a dark environment. Artificial lateral line (ALL) imitates the structure of lateral line in fishes and provides invaluable means for underwater-sensing technology and robot fish control. This paper reviews ALL, including sensor fabrication and applications to robot fish. The biophysics of lateral line are first introduced to enhance the understanding of lateral line structure and function. The design and fabrication of an ALL sensor on the basis of various sensing principles are then presented. ALL systems are collections of sensors that include carrier and control circuit. Their structure and hydrodynamic detection are reviewed. Finally, further research trends and existing problems of ALL are discussed.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1971-01-01
Investigation of problems related to control of a mobile planetary vehicle according to a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: (1) overall systems analysis; (2) vehicle configuration and dynamics; (3) toroidal wheel design and evaluation; (4) on-board navigation systems; (5) satellite-vehicle navigation systems; (6) obstacle detection systems; (7) terrain sensing, interpretation and modeling; (8) computer simulation of terrain sensor-path selection systems; and (9) chromatographic systems design concept studies. The specific tasks which have been undertaken are defined and the progress which has been achieved during the period July 1, 1971 to December 31, 1971 is summarized.
Constellation analysis of an integrated AIS/remote sensing spaceborne system for ship detection
NASA Astrophysics Data System (ADS)
Graziano, Maria Daniela; D'Errico, Marco; Razzano, Elena
2012-08-01
A future system integrating data from remote sensing and upcoming AIS satellites is analyzed through the development of a novel design method for global, discontinuous coverage constellations. It is shown that 8 AIS satellites suffice to guarantee global coverage and a ship location update of 50 min if the spaceborne AIS receiver has a swath of 2800 nm. Furthermore, synergic utilization of COSMO/SkyMed and Radarsat-C data would provide a mean revisit time of 7 h, with AIS information available within 25 min from SAR data acquisition.
Constitutional dynamic self-sensing in a zinc(II)/polyiminofluorenes system.
Giuseppone, Nicolas; Lehn, Jean-Marie
2004-09-22
The interaction of an external effector, ZnII ions, with a constitutional dynamic library of fluorescent polyiminofluorenes leads to component exchange, which generates an entity responding by a change in emission to the effector that has induced its formation. The overall coupled system displays a tuning of optical signal, resulting from two synergistic processes: adaptative constitutional reorganization and self-sensing. In broader terms, this work highlights the perspectives opened by constitutional dynamic chemistry toward the design of smart materials, capable of expressing different latent properties in response to environmental conditions.
Utilization of negative beat-frequencies for maximizing the update-rate of OFDR
NASA Astrophysics Data System (ADS)
Gabai, Haniel; Botsev, Yakov; Hahami, Meir; Eyal, Avishay
2015-07-01
In traditional OFDR systems, the backscattered profile of a sensing fiber is inefficiently duplicated to the negative band of spectrum. In this work, we present a new OFDR design and algorithm that remove this redundancy and make use of negative beat frequencies. In contrary to conventional OFDR designs, it facilitates efficient use of the available system bandwidth and enables distributed sensing with the maximum allowable interrogation update-rate for a given fiber length. To enable the reconstruction of negative beat frequencies an I/Q type receiver is used. In this receiver, both the in-phase (I) and quadrature (Q) components of the backscatter field are detected. Following detection, both components are digitally combined to produce a complex backscatter signal. Accordingly, due to its asymmetric nature, the produced spectrum will not be corrupted by the appearance of negative beat-frequencies. Here, via a comprehensive computer simulation, we show that in contrast to conventional OFDR systems, I/Q OFDR can be operated at maximum interrogation update-rate for a given fiber length. In addition, we experimentally demonstrate, for the first time, the ability of I/Q OFDR to utilize negative beat-frequencies for long-range distributed sensing.
A Novel Bioinspired PVDF Micro/Nano Hair Receptor for a Robot Sensing System
Li, Fei; Liu, Weiting; Stefanini, Cesare; Fu, Xin; Dario, Paolo
2010-01-01
This paper describes the concept and design of a novel artificial hair receptor for the sensing system of micro intelligent robots such as a cricket-like jumping mini robot. The concept is inspired from the natural hair receptor of animals, also called cilium or filiform hair by different research groups, which is usually used as a vibration receptor or a flow detector by insects, mammals and fishes. The suspended fiber model is firstly built and the influence of scaling down is analyzed theoretically. The design of this artificial hair receptor is based on aligned suspended PVDF (polyvinylidene fluoride) fibers, manufactures with a novel method called thermo-direct drawing technique, and aligned suspended submicron diameter fibers are thus successfully fabricated on a flexible Kapton. In the post process step, some key problems such as separated electrodes deposition along with the fiber drawing direction and poling of micro/nano fibers to impart them with good piezoeffective activity have been presented. The preliminary validation experiments show that the artificial hair receptor has a reliable response with good sensibility to external pressure variation and, medium flow as well as its prospects in the application on sensing system of mini/micro bio-robots. PMID:22315581
Novel design of a self powered and self sensing magneto-rheological damper
NASA Astrophysics Data System (ADS)
Meftahul Ferdaus, Mohammad; Rashid, M. M.; Bhuiyan, M. M. I.; Muthalif, Asan Gani Bin Abdul; Hasan, M. R.
2013-12-01
Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered & self sensing MR damper is theoretically calculated and evaluated in the frequency domain.
Deployable wavelength optimizer for multi-laser sensing and communication undersea
NASA Astrophysics Data System (ADS)
Neuner, Burton; Hening, Alexandru; Pascoguin, B. Melvin; Dick, Brian; Miller, Martin; Tran, Nghia; Pfetsch, Michael
2017-05-01
This effort develops and tests algorithms and a user-portable optical system designed to autonomously optimize the laser communication wavelength in open and coastal oceans. In situ optical meteorology and oceanography (METOC) data gathered and analyzed as part of the auto-selection process can be stored and forwarded. The system performs closedloop optimization of three visible-band lasers within one minute by probing the water column via passive retroreflector and polarization optics, selecting the ideal wavelength, and enabling high-speed communication. Backscattered and stray light is selectively blocked by employing polarizers and wave plates, thus increasing the signal-to-noise ratio. As an advancement in instrumentation, we present autonomy software and portable hardware, and demonstrate this new system in two environments: ocean bay seawater and outdoor test pool freshwater. The next generation design is also presented. Once fully miniaturized, the optical payload and software will be ready for deployment on manned and unmanned platforms such as buoys and vehicles. Gathering timely and accurate ocean sensing data in situ will dramatically increase the knowledge base and capabilities for environmental sensing, defense, and industrial applications. Furthermore, communicating on the optimal channel increases transfer rates, propagation range, and mission length, all while reducing power consumption in undersea platforms.
A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response
NASA Astrophysics Data System (ADS)
Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping
2017-01-01
A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.
Wavefront Sensing With Switched Lenses for Defocus Diversity
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2007-01-01
In an alternative hardware design for an apparatus used in image-based wavefront sensing, defocus diversity is introduced by means of fixed lenses that are mounted in a filter wheel (see figure) so that they can be alternately switched into a position in front of the focal plane of an electronic camera recording the image formed by the optical system under test. [The terms image-based, wavefront sensing, and defocus diversity are defined in the first of the three immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] Each lens in the filter wheel is designed so that the optical effect of placing it at the assigned position is equivalent to the optical effect of translating the camera a specified defocus distance along the optical axis. Heretofore, defocus diversity has been obtained by translating the imaging camera along the optical axis to various defocus positions. Because data must be taken at multiple, accurately measured defocus positions, it is necessary to mount the camera on a precise translation stage that must be calibrated for each defocus position and/or to use an optical encoder for measurement and feedback control of the defocus positions. Additional latency is introduced into the wavefront sensing process as the camera is translated to the various defocus positions. Moreover, if the optical system under test has a large focal length, the required defocus values are large, making it necessary to use a correspondingly bulky translation stage. By eliminating the need for translation of the camera, the alternative design simplifies and accelerates the wavefront-sensing process. This design is cost-effective in that the filterwheel/lens mechanism can be built from commercial catalog components. After initial calibration of the defocus value of each lens, a selected defocus value is introduced by simply rotating the filter wheel to place the corresponding lens in front of the camera. The rotation of the wheel can be automated by use of a motor drive, and further calibration is not necessary. Because a camera-translation stage is no longer needed, the size of the overall apparatus can be correspondingly reduced.
NASA Astrophysics Data System (ADS)
Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie
2014-03-01
To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.
Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L
2018-03-13
Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.
NASA Astrophysics Data System (ADS)
Shecter, Liat; Oiknine, Yaniv; August, Isaac; Stern, Adrian
2017-09-01
Recently we presented a Compressive Sensing Miniature Ultra-spectral Imaging System (CS-MUSI)1 . This system consists of a single Liquid Crystal (LC) phase retarder as a spectral modulator and a gray scale sensor array to capture a multiplexed signal of the imaged scene. By designing the LC spectral modulator in compliance with the Compressive Sensing (CS) guidelines and applying appropriate algorithms we demonstrated reconstruction of spectral (hyper/ ultra) datacubes from an order of magnitude fewer samples than taken by conventional sensors. The LC modulator is designed to have an effective width of a few tens of micrometers, therefore it is prone to imperfections and spatial nonuniformity. In this work, we present the study of this nonuniformity and present a mathematical algorithm that allows the inference of the spectral transmission over the entire cell area from only a few calibration measurements.
Radiation Induced Chemistry of Icy Surfaces: Laboratory Simulations
NASA Technical Reports Server (NTRS)
Gudipati, Murthy S.; Lignell, Antti; Li, Irene; Yang, Rui; Jacovi, Ronen
2011-01-01
We will discuss laboratory experiments designed to enhance our understanding the chemical processes on icy solar system bodies, enable interpretation of in-situ and remote-sensing data, and help future missions to icy solar system bodies, such as comets, Europa, Ganymede, Enceladus etc.
Verification of Wind Measurement to 450-Meter Altitude with Mobile Laser Doppler System
DOT National Transportation Integrated Search
1977-12-01
The Lockheed mobile atmospheric unit is a laser Doppler velocimeter system designed for the remote sensing of winds. The capability of the laser Doppler velocimeter accurately to measure winds to 150-meter altitude has been previously demonstrated. T...
Enabling technologies for fiber optic sensing
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.
2016-04-01
In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.
On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery
Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang
2018-01-01
With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585
NASA Astrophysics Data System (ADS)
Kopsaftopoulos, Fotios; Nardari, Raphael; Li, Yu-Hung; Wang, Pengchuan; Chang, Fu-Kuo
2016-04-01
In this work, the system design, integration, and wind tunnel experimental evaluation are presented for a bioinspired self-sensing intelligent composite unmanned aerial vehicle (UAV) wing. A total of 148 micro-sensors, including piezoelectric, strain, and temperature sensors, in the form of stretchable sensor networks are embedded in the layup of a composite wing in order to enable its self-sensing capabilities. Novel stochastic system identification techniques based on time series models and statistical parameter estimation are employed in order to accurately interpret the sensing data and extract real-time information on the coupled air flow-structural dynamics. Special emphasis is given to the wind tunnel experimental assessment under various flight conditions defined by multiple airspeeds and angles of attack. A novel modeling approach based on the recently introduced Vector-dependent Functionally Pooled (VFP) model structure is employed for the stochastic identification of the "global" coupled airflow-structural dynamics of the wing and their correlation with dynamic utter and stall. The obtained results demonstrate the successful system-level integration and effectiveness of the stochastic identification approach, thus opening new perspectives for the state sensing and awareness capabilities of the next generation of "fly-by-fee" UAVs.
NASA Astrophysics Data System (ADS)
Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu
2014-03-01
With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.
On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.
Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang
2018-04-25
With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.
A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality
Kim, Mingyu; Jeon, Changyu; Kim, Jinmo
2017-01-01
This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality. PMID:28513545
A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality.
Kim, Mingyu; Jeon, Changyu; Kim, Jinmo
2017-05-17
This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality.
NASA applications project in Miami County, Indiana
NASA Technical Reports Server (NTRS)
Johannsen, Chris J.; Fernandez, R. Norberto; Lozano-Garcia, D. Fabian
1990-01-01
This project was designed to acquaint county government officials and their clientele with remote sensing and geographic information systems (GIS) products that contain information about land conditions and land use. The specific project objectives are: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements, and land use evaluation; (2) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity; (3) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (4) to evaluate the market potential of products derived from the above projects.
Waggle: A Framework for Intelligent Attentive Sensing and Actuation
NASA Astrophysics Data System (ADS)
Sankaran, R.; Jacob, R. L.; Beckman, P. H.; Catlett, C. E.; Keahey, K.
2014-12-01
Advances in sensor-driven computation and computationally steered sensing will greatly enable future research in fields including environmental and atmospheric sciences. We will present "Waggle," an open-source hardware and software infrastructure developed with two goals: (1) reducing the separation and latency between sensing and computing and (2) improving the reliability and longevity of sensing-actuation platforms in challenging and costly deployments. Inspired by "deep-space probe" systems, the Waggle platform design includes features that can support longitudinal studies, deployments with varying communication links, and remote management capabilities. Waggle lowers the barrier for scientists to incorporate real-time data from their sensors into their computations and to manipulate the sensors or provide feedback through actuators. A standardized software and hardware design allows quick addition of new sensors/actuators and associated software in the nodes and enables them to be coupled with computational codes both insitu and on external compute infrastructure. The Waggle framework currently drives the deployment of two observational systems - a portable and self-sufficient weather platform for study of small-scale effects in Chicago's urban core and an open-ended distributed instrument in Chicago that aims to support several research pursuits across a broad range of disciplines including urban planning, microbiology and computer science. Built around open-source software, hardware, and Linux OS, the Waggle system comprises two components - the Waggle field-node and Waggle cloud-computing infrastructure. Waggle field-node affords a modular, scalable, fault-tolerant, secure, and extensible platform for hosting sensors and actuators in the field. It supports insitu computation and data storage, and integration with cloud-computing infrastructure. The Waggle cloud infrastructure is designed with the goal of scaling to several hundreds of thousands of Waggle nodes. It supports aggregating data from sensors hosted by the nodes, staging computation, relaying feedback to the nodes and serving data to end-users. We will discuss the Waggle design principles and their applicability to various observational research pursuits, and demonstrate its capabilities.
Sakamoto, Hiroaki; Amano, Yoshihisa; Satomura, Takenori; Suye, Shin-Ichiro
2017-01-01
We have developed a novel, highly sensitive, biosensing system for detecting methicillin-resistant Staphylococcus aureus (MRSA). The system employs gold nanoparticles (AuNPs), magnetic nanoparticles (mNPs), and an electrochemical detection method. We have designed and synthesized ferrocene- and single-stranded DNA-conjugated nanoparticles that hybridize to MRSA DNA. Hybridized complexes are easily separated by taking advantage of mNPs. A current response could be obtained through the oxidation of ferrocene on the AuNP surface when a constant potential of +250 mV vs. Ag/AgCl is applied. The enzymatic reaction of L-proline dehydrogenase provides high signal amplification. This sensing system, using a nanoparticle-modified probe, has the ability to detect 10 pM of genomic DNA from MRSA without amplification by the polymerase chain reaction. Current responses are linearly related to the amount of genomic DNA in the range of 10-166 pM. Selectivity is confirmed by demonstrating that this sensing system could distinguish MRSA from Staphylococcus aureus (SA) DNA.
A Synergy-Based Optimally Designed Sensing Glove for Functional Grasp Recognition
Ciotti, Simone; Battaglia, Edoardo; Carbonaro, Nicola; Bicchi, Antonio; Tognetti, Alessandro; Bianchi, Matteo
2016-01-01
Achieving accurate and reliable kinematic hand pose reconstructions represents a challenging task. The main reason for this is the complexity of hand biomechanics, where several degrees of freedom are distributed along a continuous deformable structure. Wearable sensing can represent a viable solution to tackle this issue, since it enables a more natural kinematic monitoring. However, the intrinsic accuracy (as well as the number of sensing elements) of wearable hand pose reconstruction (HPR) systems can be severely limited by ergonomics and cost considerations. In this paper, we combined the theoretical foundations of the optimal design of HPR devices based on hand synergy information, i.e., the inter-joint covariation patterns, with textile goniometers based on knitted piezoresistive fabrics (KPF) technology, to develop, for the first time, an optimally-designed under-sensed glove for measuring hand kinematics. We used only five sensors optimally placed on the hand and completed hand pose reconstruction (described according to a kinematic model with 19 degrees of freedom) leveraging upon synergistic information. The reconstructions we obtained from five different subjects were used to implement an unsupervised method for the recognition of eight functional grasps, showing a high degree of accuracy and robustness. PMID:27271621
A Synergy-Based Optimally Designed Sensing Glove for Functional Grasp Recognition.
Ciotti, Simone; Battaglia, Edoardo; Carbonaro, Nicola; Bicchi, Antonio; Tognetti, Alessandro; Bianchi, Matteo
2016-06-02
Achieving accurate and reliable kinematic hand pose reconstructions represents a challenging task. The main reason for this is the complexity of hand biomechanics, where several degrees of freedom are distributed along a continuous deformable structure. Wearable sensing can represent a viable solution to tackle this issue, since it enables a more natural kinematic monitoring. However, the intrinsic accuracy (as well as the number of sensing elements) of wearable hand pose reconstruction (HPR) systems can be severely limited by ergonomics and cost considerations. In this paper, we combined the theoretical foundations of the optimal design of HPR devices based on hand synergy information, i.e., the inter-joint covariation patterns, with textile goniometers based on knitted piezoresistive fabrics (KPF) technology, to develop, for the first time, an optimally-designed under-sensed glove for measuring hand kinematics. We used only five sensors optimally placed on the hand and completed hand pose reconstruction (described according to a kinematic model with 19 degrees of freedom) leveraging upon synergistic information. The reconstructions we obtained from five different subjects were used to implement an unsupervised method for the recognition of eight functional grasps, showing a high degree of accuracy and robustness.
Spacecraft Design Thermal Control Subsystem
NASA Technical Reports Server (NTRS)
Miyake, Robert N.
2008-01-01
The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.
Natural Resource Information System. Volume 1: Overall description
NASA Technical Reports Server (NTRS)
1972-01-01
A prototype computer-based Natural Resource Information System was designed which could store, process, and display data of maximum usefulness to land management decision making. The system includes graphic input and display, the use of remote sensing as a data source, and it is useful at multiple management levels. A survey established current decision making processes and functions, information requirements, and data collection and processing procedures. The applications of remote sensing data and processing requirements were established. Processing software was constructed and a data base established using high-altitude imagery and map coverage of selected areas of SE Arizona. Finally a demonstration of system processing functions was conducted utilizing material from the data base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the opticalmore » systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology. The goals of the second six months of this project were to conduct high temperature sensing tests using the test chamber and optical sensing instrument designs developed in the first part of the project. In addition, a Phase I goal was to develop the basic processing theory and physics for the proposed first sensor experimentation and data processing. All these goals have been achieved and are described in detail. Both optical experimental design process and sensed temperature are provided. In addition, photographs of the fabricated SiC optical chips after deployment in the high temperature test chamber are shown from a material study point-of-view.« less
Leeson, Cory E; Weaver, Robert A; Bissell, Taylor; Hoyer, Rachel; McClain, Corinne; Nelson, Douglas A; Samosky, Joseph T
2012-01-01
We have enhanced a common medical device, the chest tube drainage container, with electronic sensing of fluid volume, automated detection of critical alarm conditions and the ability to automatically send alert text messages to a nurse's cell phone. The PleurAlert system provides a simple touch-screen interface and can graphically display chest tube output over time. Our design augments a device whose basic function dates back 50 years by adding technology to automate and optimize a monitoring process that can be time consuming and inconvenient for nurses. The system may also enhance detection of emergency conditions and speed response time.
Sambrook, M R; Notman, S
2013-12-21
Supramolecular chemistry presents many possible avenues for the mitigation of the effects of chemical warfare agents (CWAs), including sensing, catalysis and sequestration. To-date, efforts in this field both to study fundamental interactions between CWAs and to design and exploit host systems remain sporadic. In this tutorial review the non-covalent recognition of CWAs is considered from first principles, including taking inspiration from enzymatic systems, and gaps in fundamental knowledge are indicated. Examples of synthetic systems developed for the recognition of CWAs are discussed with a focus on the supramolecular complexation behaviour and non-covalent approaches rather than on the proposed applications.
Quantum Tomography Protocols with Positivity are Compressed Sensing Protocols (Open Access)
2015-12-08
ARTICLE OPEN Quantum tomography protocols with positivity are compressed sensing protocols Amir Kalev1, Robert L Kosut2 and Ivan H Deutsch1...Characterising complex quantum systems is a vital task in quantum information science. Quantum tomography, the standard tool used for this purpose, uses a well...designed measurement record to reconstruct quantum states and processes. It is, however, notoriously inefficient. Recently, the classical signal
Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu
2016-07-01
Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p < 0.05). The results demonstrate that the novel ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lee, Yoon Kyeung; Jang, Kyung-In; Ma, Yinji; Koh, Ahyeon; Chen, Hang; Jung, Han Na; Kim, Yerim; Kwak, Jean Won; Wang, Liang; Xue, Yeguang; Yang, Yiyuan; Tian, Wenlong; Jiang, Yu; Zhang, Yihui; Feng, Xue; Huang, Yonggang
2017-01-01
A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements. PMID:28989338
Automatic Exposure Iris Control (AEIC) for data acquisition camera
NASA Technical Reports Server (NTRS)
Mcatee, G. E., Jr.; Stoap, L. J.; Solheim, C. D.; Sharpsteen, J. T.
1975-01-01
A lens design capable of operating over a total range of f/1.4 to f/11.0 with through the lens light sensing is presented along with a system which compensates for ASA film speeds as well as shutter openings. The space shuttle camera system package is designed so that it can be assembled on the existing 16 mm DAC with a minimum of alteration to the camera.
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.
Overall design of imaging spectrometer on-board light aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhongqi, H.; Zhengkui, C.; Changhua, C.
1996-11-01
Aerial remote sensing is the earliest remote sensing technical system and has gotten rapid development in recent years. The development of aerial remote sensing was dominated by high to medium altitude platform in the past, and now it is characterized by the diversity platform including planes of high-medium-low flying altitude, helicopter, airship, remotely controlled airplane, glider, and balloon. The widely used and rapidly developed platform recently is light aircraft. Early in the close of 1970s, Beijing Research Institute of Uranium Geology began aerial photography and geophysical survey using light aircraft, and put forward the overall design scheme of light aircraftmore » imaging spectral application system (LAISAS) in 19905. LAISAS is comprised of four subsystem. They are called measuring platform, data acquiring subsystem, ground testing and data processing subsystem respectively. The principal instruments of LAISAS include measuring platform controlled by inertia gyroscope, aerial spectrometer with high spectral resolution, imaging spectrometer, 3-channel scanner, 128-channel imaging spectrometer, GPS, illuminance-meter, and devices for atmospheric parameters measuring, ground testing, data correction and processing. LAISAS has the features of integrity from data acquisition to data processing and to application; of stability which guarantees the image quality and is comprised of measuring, ground testing device, and in-door data correction system; of exemplariness of integrated the technology of GIS, GPS, and Image Processing System; of practicality which embodied LAISAS with flexibility and high ratio of performance to cost. So, it can be used in the fields of fundamental research of Remote Sensing and large-scale mapping for resource exploration, environmental monitoring, calamity prediction, and military purpose.« less
NASA Astrophysics Data System (ADS)
Missif, Lial Raja; Kadhum, Mohammad M.
2017-09-01
Wireless Sensor Network (WSN) has been widely used for monitoring where sensors are deployed to operate independently to sense abnormal phenomena. Most of the proposed environmental monitoring systems are designed based on a predetermined sensing range which does not reflect the sensor reliability, event characteristics, and the environment conditions. Measuring of the capability of a sensor node to accurately detect an event within a sensing field is of great important for monitoring applications. This paper presents an efficient mechanism for even detection based on probabilistic sensing model. Different models have been presented theoretically in this paper to examine their adaptability and applicability to the real environment applications. The numerical results of the experimental evaluation have showed that the probabilistic sensing model provides accurate observation and delectability of an event, and it can be utilized for different environment scenarios.
A 3D metrology system for the GMT
NASA Astrophysics Data System (ADS)
Rakich, A.; Dettmann, Lee; Leveque, S.; Guisard, S.
2016-08-01
The Giant Magellan Telescope (GMT)1 is a 25 m telescope composed of seven 8.4 m "unit telescopes", on a common mount. Each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and co-phased. During telescope operation, the alignment of the optical components will deflect due to variations in thermal environment and gravity induced structural flexure of the mount. The ultimate co-alignment and co-phasing of the telescope is achieved by a combination of the Acquisition Guiding and Wavefront Sensing system and two segment edge-sensing systems2. An analysis of the capture range of the wavefront sensing system indicates that it is unlikely that that system will operate efficiently or reliably with initial mirror positions provided by open-loop corrections alone3. The project is developing a Telescope Metrology System (TMS) which incorporates a large number of absolute distance measuring interferometers. The system will align optical components of the telescope to the instrument interface to (well) within the capture range of the active optics wavefront sensing systems. The advantages offered by this technological approach to a TMS, over a network of laser trackers, are discussed. Initial investigations of the Etalon Absolute Multiline Technology™ by Etalon Ag4 show that a metrology network based on this product is capable of meeting requirements. A conceptual design of the system is presented and expected performance is discussed.
Microelectromechanical Systems
NASA Technical Reports Server (NTRS)
Gabriel, Kaigham J.
1995-01-01
Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.
NASA Astrophysics Data System (ADS)
Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.
2016-03-01
In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.
Engineering responsive supramolecular biomaterials: Toward smart therapeutics.
Webber, Matthew J
2016-09-01
Engineering materials using supramolecular principles enables generalizable and modular platforms that have tunable chemical, mechanical, and biological properties. Applying this bottom-up, molecular engineering-based approach to therapeutic design affords unmatched control of emergent properties and functionalities. In preparing responsive materials for biomedical applications, the dynamic character of typical supramolecular interactions facilitates systems that can more rapidly sense and respond to specific stimuli through a fundamental change in material properties or characteristics, as compared to cases where covalent bonds must be overcome. Several supramolecular motifs have been evaluated toward the preparation of "smart" materials capable of sensing and responding to stimuli. Triggers of interest in designing materials for therapeutic use include applied external fields, environmental changes, biological actuators, applied mechanical loading, and modulation of relative binding affinities. In addition, multistimuli-responsive routes can be realized that capture combinations of triggers for increased functionality. In sum, supramolecular engineering offers a highly functional strategy to prepare responsive materials. Future development and refinement of these approaches will improve precision in material formation and responsiveness, seek dynamic reciprocity in interactions with living biological systems, and improve spatiotemporal sensing of disease for better therapeutic deployment.
A MEMS SOI-based piezoresistive fluid flow sensor
NASA Astrophysics Data System (ADS)
Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.
2018-02-01
In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.
Building Strength in Schools: Why Steel Makes Sense.
ERIC Educational Resources Information Center
Praeger, Charles E.
2002-01-01
Discusses the advantages of metal building and roofing systems, especially the use of steel. Considers such factors as installation ease and design flexibility, reliability and durability, and cost-effectiveness. (PKP)
A Search-and-Rescue Robot System for Remotely Sensing the Underground Coal Mine Environment
Gao, Junyao; Zhao, Fangzhou; Liu, Yi
2017-01-01
This paper introduces a search-and-rescue robot system used for remote sensing of the underground coal mine environment, which is composed of an operating control unit and two mobile robots with explosion-proof and waterproof function. This robot system is designed to observe and collect information of the coal mine environment through remote control. Thus, this system can be regarded as a multifunction sensor, which realizes remote sensing. When the robot system detects danger, it will send out signals to warn rescuers to keep away. The robot consists of two gas sensors, two cameras, a two-way audio, a 1 km-long fiber-optic cable for communication and a mechanical explosion-proof manipulator. Especially, the manipulator is a novel explosion-proof manipulator for cleaning obstacles, which has 3-degree-of-freedom, but is driven by two motors. Furthermore, the two robots can communicate in series for 2 km with the operating control unit. The development of the robot system may provide a reference for developing future search-and-rescue systems. PMID:29065560
Wireless and Powerless Sensing Node System Developed for Monitoring Motors.
Lee, Dasheng
2008-08-27
Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program.
Wireless and Powerless Sensing Node System Developed for Monitoring Motors
Lee, Dasheng
2008-01-01
Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program. PMID:27873798
Natural Resource Information System. Volume I. Overall Description.
ERIC Educational Resources Information Center
Boeing Computer Services, Inc., Seattle, WA.
Recognizing the need for the development of a computer based information system which would handle remote sensing as well as conventional mapping data, the Bureau of Indian Affairs and the Bureau of Land Management contracted with Boeing Computer Services for the design and construction of a prototype Natural Resource Information System. The…
Aircraft Alerting Systems Standardization Study. Phase IV. Accident Implications on Systems Design.
1982-06-01
computing and processing to assimilate and process status informa- 5 tion using...provided with capabilities in computing and processing , sensing, interfacing, and controlling and displaying. 17 o Computing and Processing - Algorithms...alerting system to perform a flight status monitor function would require additional sensinq, computing and processing , interfacing, and controlling
Autonomous navigation and control of a Mars rover
NASA Technical Reports Server (NTRS)
Miller, D. P.; Atkinson, D. J.; Wilcox, B. H.; Mishkin, A. H.
1990-01-01
A Mars rover will need to be able to navigate autonomously kilometers at a time. This paper outlines the sensing, perception, planning, and execution monitoring systems that are currently being designed for the rover. The sensing is based around stereo vision. The interpretation of the images use a registration of the depth map with a global height map provided by an orbiting spacecraft. Safe, low energy paths are then planned through the map, and expectations of what the rover's articulation sensors should sense are generated. These expectations are then used to ensure that the planned path is correctly being executed.
Optical Design of the Developmental Cryogenic Active Telescope Testbed (DCATT)
NASA Technical Reports Server (NTRS)
Davila, Pam; Wilson, Mark; Young, Eric W.; Lowman, Andrew E.; Redding, David C.
1997-01-01
In the summer of 1996, three Study teams developed conceptual designs and mission architectures for the Next Generation Space Telescope (NGST). Each group highlighted areas of technology development that need to be further advanced to meet the goals of the NGST mission. The most important areas for future study included: deployable structures, lightweight optics, cryogenic optics and mechanisms, passive cooling, and on-orbit closed loop wavefront sensing and control. NASA and industry are currently planning to develop a series of ground testbeds and validation flights to demonstrate many of these technologies. The Deployed Cryogenic Active Telescope Testbed (DCATT) is a system level testbed to be developed at Goddard Space Flight Center in three phases over an extended period of time. This testbed will combine an actively controlled telescope with the hardware and software elements of a closed loop wavefront sensing and control system to achieve diffraction limited imaging at 2 microns. We will present an overview of the system level requirements, a discussion of the optical design, and results of performance analyses for the Phase 1 ambient concept for DCATT,
Electric fish as natural models for technical sensor systems
NASA Astrophysics Data System (ADS)
von der Emde, Gerhard; Bousack, Herbert; Huck, Christina; Mayekar, Kavita; Pabst, Michael; Zhang, Yi
2009-05-01
Instead of vision, many animals use alternative senses for object detection. Weakly electric fish employ "active electrolocation", during which they discharge an electric organ emitting electrical current pulses (electric organ discharges, EOD). Local EODs are sensed by electroreceptors in the fish's skin, which respond to changes of the signal caused by nearby objects. Fish can gain information about attributes of an object, such as size, shape, distance, and complex impedance. When close to the fish, each object projects an 'electric image' onto the fish's skin. In order to get information about an object, the fish has to analyze the object's electric image by sampling its voltage distribution with the electroreceptors. We now know a great deal about the mechanisms the fish use to gain information about objects in their environment. Inspired by the remarkable capabilities of weakly electric fish in detecting and recognizing objects with their electric sense, we are designing technical sensor systems that can solve similar sensing problems. We applied the principles of active electrolocation to devices that produce electrical current pulses in water and simultaneously sense local current densities. Depending on the specific task, sensors can be designed which detect an object, localize it in space, determine its distance, and measure certain object properties such as material properties, thickness, or material faults. We present first experiments and FEM simulations on the optimal sensor arrangement regarding the sensor requirements e. g. localization of objects or distance measurements. Different methods of the sensor read-out and signal processing are compared.
Design of a 7-DOF slave robot integrated with a magneto-rheological haptic master
NASA Astrophysics Data System (ADS)
Hwang, Yong-Hoon; Cha, Seung-Woo; Kang, Seok-Rae; Choi, Seung-Bok
2017-04-01
In this study, a 7-DOF slave robot integrated with the haptic master is designed and its dynamic motion is controlled. The haptic master is made using a controllable magneto-rheological (MR) clutch and brake and it provides the surgeon with a sense of touch by using both kinetic and kinesthetic information. Due to the size constraint of the slave robot, a wire actuating is adopted to make the desired motion of the end-effector which has 3-DOF instead of a conventional direct-driven motor. Another motions of the link parts that have 4-DOF use direct-driven motor. In total system, for working as a haptic device, the haptic master need to receive the information of repulsive forces applied on the slave robot. Therefore, repulsive forces on the end-effector are sensed by using three uniaxial torque transducer inserted in the wire actuating system and another repulsive forces applied on link part are sensed by using 6-axis transducer that is able to sense forces and torques. Using another 6-axis transducer, verify the reliability of force information on final end of slave robot. Lastly, integrated with a MR haptic master, psycho-physical test is conducted by different operators who can feel the different repulsive force or torque generated from the haptic master which is equivalent to the force or torque occurred on the end-effector to demonstrate the effectiveness of the proposed system.
2002-11-27
than a liability. It stabilizes yaw and pitch by using a badminton -birdie type configuration, one like that pictured in Fig. 2. The basic principal...of metal or Kevlar that resemble the tape in a carpenter’s retractable tape measure. Fig. 2. Badminton -birdie-type spacecraft pitch-yaw stabilization...A second design uses a new passive aerodynamic pitch-yaw stabilization system. This latter system is based on the concept of a badminton birdie and
Karkokli, R; McConville, K M Valter
2006-01-01
This paper portrays the design and instrumentation of a low cost plantar pressure analysis system, suitable for clinical podiatry. The system measures plantar pressure between the foot and shoe during dynamic movement in real-time, which can be used in clinical gait analysis. It contains a pressure sensing insole which the patient can insert in his/her shoe, and user-friendly software to graph and analyze the data. Applications include occupational health and safety, research and private practice.
A miniature fuel reformer system for portable power sources
NASA Astrophysics Data System (ADS)
Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan
2014-12-01
A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.
Synthetic and Bio-Artificial Tactile Sensing: A Review
Lucarotti, Chiara; Oddo, Calogero Maria; Vitiello, Nicola; Carrozza, Maria Chiara
2013-01-01
This paper reviews the state of the art of artificial tactile sensing, with a particular focus on bio-hybrid and fully-biological approaches. To this aim, the study of physiology of the human sense of touch and of the coding mechanisms of tactile information is a significant starting point, which is briefly explored in this review. Then, the progress towards the development of an artificial sense of touch are investigated. Artificial tactile sensing is analysed with respect to the possible approaches to fabricate the outer interface layer: synthetic skin versus bio-artificial skin. With particular respect to the synthetic skin approach, a brief overview is provided on various technologies and transduction principles that can be integrated beneath the skin layer. Then, the main focus moves to approaches characterized by the use of bio-artificial skin as an outer layer of the artificial sensory system. Within this design solution for the skin, bio-hybrid and fully-biological tactile sensing systems are thoroughly presented: while significant results have been reported for the development of tissue engineered skins, the development of mechanotransduction units and their integration is a recent trend that is still lagging behind, therefore requiring research efforts and investments. In the last part of the paper, application domains and perspectives of the reviewed tactile sensing technologies are discussed. PMID:23348032
Computing an operating parameter of a unified power flow controller
Wilson, David G.; Robinett, III, Rush D.
2017-12-26
A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
Computing an operating parameter of a unified power flow controller
Wilson, David G; Robinett, III, Rush D
2015-01-06
A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish
Wang, Anyi; Wang, Xinbao; Liu, Peng
2016-01-01
Lateral line is a system of sense organs that can aid fishes to maneuver in a dark environment. Artificial lateral line (ALL) imitates the structure of lateral line in fishes and provides invaluable means for underwater-sensing technology and robot fish control. This paper reviews ALL, including sensor fabrication and applications to robot fish. The biophysics of lateral line are first introduced to enhance the understanding of lateral line structure and function. The design and fabrication of an ALL sensor on the basis of various sensing principles are then presented. ALL systems are collections of sensors that include carrier and control circuit. Their structure and hydrodynamic detection are reviewed. Finally, further research trends and existing problems of ALL are discussed. PMID:28115825
Computational and design methods for advanced imaging
NASA Astrophysics Data System (ADS)
Birch, Gabriel C.
This dissertation merges the optical design and computational aspects of imaging systems to create novel devices that solve engineering problems in optical science and attempts to expand the solution space available to the optical designer. This dissertation is divided into two parts: the first discusses a new active illumination depth sensing modality, while the second part discusses a passive illumination system called plenoptic, or lightfield, imaging. The new depth sensing modality introduced in part one is called depth through controlled aberration. This technique illuminates a target with a known, aberrated projected pattern and takes an image using a traditional, unmodified imaging system. Knowing how the added aberration in the projected pattern changes as a function of depth, we are able to quantitatively determine depth of a series of points from the camera. A major advantage this method permits is the ability for illumination and imaging axes to be coincident. Plenoptic cameras capture both spatial and angular data simultaneously. This dissertation present a new set of parameters that permit the design and comparison of plenoptic devices outside the traditionally published plenoptic 1.0 and plenoptic 2.0 configurations. Additionally, a series of engineering advancements are presented, including full system raytraces of raw plenoptic images, Zernike compression techniques of raw image files, and non-uniform lenslet arrays to compensate for plenoptic system aberrations. Finally, a new snapshot imaging spectrometer is proposed based off the plenoptic configuration.
Research and technology of the Langley Research Center
NASA Technical Reports Server (NTRS)
1980-01-01
Descriptions of the research and technology activities at the Langley Research Center are given. Topics include laser development, aircraft design, aircraft engines, aerodynamics, remote sensing, space transportation systems, and composite materials.
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.
2011-12-01
As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
Side information in coded aperture compressive spectral imaging
NASA Astrophysics Data System (ADS)
Galvis, Laura; Arguello, Henry; Lau, Daniel; Arce, Gonzalo R.
2017-02-01
Coded aperture compressive spectral imagers sense a three-dimensional cube by using two-dimensional projections of the coded and spectrally dispersed source. These imagers systems often rely on FPA detectors, SLMs, micromirror devices (DMDs), and dispersive elements. The use of the DMDs to implement the coded apertures facilitates the capture of multiple projections, each admitting a different coded aperture pattern. The DMD allows not only to collect the sufficient number of measurements for spectrally rich scenes or very detailed spatial scenes but to design the spatial structure of the coded apertures to maximize the information content on the compressive measurements. Although sparsity is the only signal characteristic usually assumed for reconstruction in compressing sensing, other forms of prior information such as side information have been included as a way to improve the quality of the reconstructions. This paper presents the coded aperture design in a compressive spectral imager with side information in the form of RGB images of the scene. The use of RGB images as side information of the compressive sensing architecture has two main advantages: the RGB is not only used to improve the reconstruction quality but to optimally design the coded apertures for the sensing process. The coded aperture design is based on the RGB scene and thus the coded aperture structure exploits key features such as scene edges. Real reconstructions of noisy compressed measurements demonstrate the benefit of the designed coded apertures in addition to the improvement in the reconstruction quality obtained by the use of side information.
Multisensor fusion with non-optimal decision rules: the challenges of open world sensing
NASA Astrophysics Data System (ADS)
Minor, Christian; Johnson, Kevin
2014-05-01
In this work, simple, generic models of chemical sensing are used to simulate sensor array data and to illustrate the impact on overall system performance that specific design choices impart. The ability of multisensor systems to perform multianalyte detection (i.e., distinguish multiple targets) is explored by examining the distinction between fundamental design-related limitations stemming from mismatching of mixture composition to fused sensor measurement spaces, and limitations that arise from measurement uncertainty. Insight on the limits and potential of sensor fusion to robustly address detection tasks in realistic field conditions can be gained through an examination of a) the underlying geometry of both the composition space of sources one hopes to elucidate and the measurement space a fused sensor system is capable of generating, and b) the informational impact of uncertainty on both of these spaces. For instance, what is the potential impact on sensor fusion in an open world scenario where unknown interferants may contaminate target signals? Under complex and dynamic backgrounds, decision rules may implicitly become non-optimal and adding sensors may increase the amount of conflicting information observed. This suggests that the manner in which a decision rule handles sensor conflict can be critical in leveraging sensor fusion for effective open world sensing, and becomes exponentially more important as more sensors are added. Results and design considerations for handling conflicting evidence in Bayes and Dempster-Shafer fusion frameworks are presented. Bayesian decision theory is used to provide an upper limit on detector performance of simulated sensor systems.
Observability-Based Guidance and Sensor Placement
NASA Astrophysics Data System (ADS)
Hinson, Brian T.
Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.
NASA Technical Reports Server (NTRS)
Parker, David H.
1987-01-01
An all digital five channel position detection system is to be installed in the Southampton University Magnetic Suspension and Balance System (SUMSBS). The system is intended to monitor a much larger range of model pitch attitudes than has been possible hitherto, up to a maximum of a 90 degree angle of attack. It is based on the use of self-scanning photodiode arrays and illuminating laser light beams, together with purpose built processing electronics. The principles behind the design of the system are discussed, together with the results of testing one channel of the system which was used to control the axial position of a magnetically suspended model in SUMSBS. The removal of optically coupled heave position information from the axial position sensing channel is described.
NASA Astrophysics Data System (ADS)
Han, Xiuzhen; Ma, Jianwen; Bao, Yuhai
2006-12-01
Currently the function of operational locust monitor system mainly focused on after-hazards monitoring and assessment, and to found the way effectively to perform early warning and prediction has more practical meaning. Through 2001, 2002 two years continuously field sample and statistics for locusts eggs hatching, nymph growth, adults 3 phases observation, sample statistics and calculation, spectral measurements as well as synchronically remote sensing data processing we raise the view point of Remote Sensing three stage monitor the locust hazards. Based on the point of view we designed remote sensing monitor in three stages: (1) during the egg hitching phase remote sensing can retrieve parameters of land surface temperature (LST) and soil moisture; (2) during nymph growth phase locust increases appetite greatly and remote sensing can calculate vegetation index, leaf area index, vegetation cover and analysis changes; (3) during adult phase the locust move and assembly towards ponds and water ditches as well as less than 75% vegetation cover areas and remote sensing combination with field data can monitor and predicts potential areas for adult locusts to assembly. In this way the priority of remote sensing technology is elaborated effectively and it also provides technique support for the locust monitor system. The idea and techniques used in the study can also be used as reference for other plant diseases and insect pests.
Du, Yi-Chen; Jiang, Hong-Xin; Huo, Yan-Fang; Han, Gui-Mei; Kong, De-Ming
2016-03-15
As an isothermal nucleic acid amplification technique, strand displacement amplification (SDA) reaction has been introduced in G-quadruplex DNAzyme-based sensing system to improve the sensing performance. To further provide useful information for the design of SDA-amplified G-quadruplex DNAzyme-based sensors, the effects of nicking site number in SDA template DNA were investigated. With the increase of the nicking site number from 1 to 2, enrichment of G-quadruplex DNAzyme by SDA is changed from a linear amplification to an exponential amplification, thus greatly increasing the amplification efficiency and subsequently improving the sensing performance of corresponding sensing system. The nicking site number cannot be further increased because more nicking sites might result in high background signals. However, we demonstrated that G-quadruplex DNAzyme enrichment efficiency could be further improved by introducing a cross-triggered SDA strategy, in which two templates each has two nicking sites are used. To validate the proposed cross-triggered SDA strategy, we used it to develop a sensing platform for the detection of uracil-DNA glycosylase (UDG) activity. The sensor enables sensitive detection of UDG activity in the range of 1 × 10(-4)-1 U/mL with a detection limit of 1 × 10(-4)U/mL. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Curtis, Christopher; Lenzo, Matthew; McClure, Matthew; Preiss, Bruce
2010-04-01
In order to anticipate the constantly changing landscape of global warfare, the United States Air Force must acquire new capabilities in the field of Intelligence, Surveillance, and Reconnaissance (ISR). To meet this challenge, the Air Force Research Laboratory (AFRL) is developing a unifying construct of "Layered Sensing" which will provide military decision-makers at all levels with the timely, actionable, and trusted information necessary for complete battlespace awareness. Layered Sensing is characterized by the appropriate combination of sensors and platforms (including those for persistent sensing), infrastructure, and exploitation capabilities to enable this synergistic awareness. To achieve the Layered Sensing vision, AFRL is pursuing a Modeling & Simulation (M&S) strategy through the Layered Sensing Operations Center (LSOC). An experimental ISR system-of-systems test-bed, the LSOC integrates DoD standard simulation tools with commercial, off-the-shelf video game technology for rapid scenario development and visualization. These tools will help facilitate sensor management performance characterization, system development, and operator behavioral analysis. Flexible and cost-effective, the LSOC will implement a non-proprietary, open-architecture framework with well-defined interfaces. This framework will incentivize the transition of current ISR performance models to service-oriented software design for maximum re-use and consistency. This paper will present the LSOC's development and implementation thus far as well as a summary of lessons learned and future plans for the LSOC.
University of Virginia suborbital infrared sensing experiment
NASA Astrophysics Data System (ADS)
Holland, Stephen; Nunnally, Clayton; Armstrong, Sarah; Laufer, Gabriel
2002-03-01
An Orion sounding rocket launched from Wallops Flight Facility carried a University of Virginia payload to an altitude of 47 km and returned infrared measurements of the Earth's upper atmosphere and video images of the ocean. The payload launch was the result of a three-year undergraduate design project by a multi-disciplinary student group from the University of Virginia and James Madison University. As part of a new multi-year design course, undergraduate students designed, built, tested, and participated in the launch of a suborbital platform from which atmospheric remote sensors and other scientific experiments could operate. The first launch included a simplified atmospheric measurement system intended to demonstrate full system operation and remote sensing capabilities during suborbital flight. A thermoelectrically cooled HgCdTe infrared detector, with peak sensitivity at 10 micrometers , measured upwelling radiation and a small camera and VCR system, aligned with the infrared sensor, provided a ground reference. Additionally, a simple orientation sensor, consisting of three photodiodes, equipped with red, green, and blue light with dichroic filters, was tested. Temperature measurements of the upper atmosphere were successfully obtained during the flight. Video images were successfully recorded on-board the payload and proved a valuable tool in the data analysis process. The photodiode system, intended as a replacement for the camera and VCR system, functioned well, despite low signal amplification. This fully integrated and flight tested payload will serve as a platform for future atmospheric sensing experiments. It is currently being modified for a second suborbital flight that will incorporate a gas filter correlation radiometry (GFCR) instrument to measure the distribution of stratospheric methane and imaging capabilities to record the chlorophyll distribution in the Metompkin Bay as an indicator of pollution runoff.
Automated biowaste sampling system urine subsystem operating model, part 1
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Mangialardi, J. K.; Rosen, F.
1973-01-01
The urine subsystem automatically provides for the collection, volume sensing, and sampling of urine from six subjects during space flight. Verification of the subsystem design was a primary objective of the current effort which was accomplished thru the detail design, fabrication, and verification testing of an operating model of the subsystem.
Compressed sensing approach for wrist vein biometrics.
Lantsov, Aleksey; Ryabko, Maxim; Shchekin, Aleksey
2018-04-01
The work describes features of the compressed sensing (CS) approach utilized for development of a wearable system for wrist vein recognition with single-pixel detection; we consider this system useful for biometrics authentication purposes. The CS approach implies use of a spatial light modulation (SLM) which, in our case, can be performed differently-with a liquid crystal display or diffusely scattering medium. We show that compressed sensing combined with above-mentioned means of SLM allows us to avoid using an optical system-a limiting factor for wearable devices. The trade-off between the 2 different SLM approaches regarding issues of practical implementation of CS approach for wrist vein recognition purposes is discussed. A possible solution of a misalignment problem-a typical issue for imaging systems based upon 2D arrays of photodiodes-is also proposed. Proposed design of the wearable device for wrist vein recognition is based upon single-pixel detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Applications of a High-Altitude Powered Platform (HAPP)
NASA Technical Reports Server (NTRS)
Kuhner, M. B.; Earhart, R. W.; Madigan, J. A.; Ruck, G. T.
1977-01-01
A list of potential uses for the (HAPP) and conceptual system designs for a small subset of the most promising applications were investigated. The method was to postulate a scenario for each application specifying a user, a set of system requirements and the most likely competitor among conventional aircraft and satellite systems. As part of the study of remote sensing applications, a parametric cost comparison was done between aircraft and HAPPS. For most remote sensing applications, aircraft can supply the same data as HAPPs at substantially lower cost. The critical parameters in determining the relative costs of the two systems are the sensor field of view and the required frequency of the observations being made. The HAPP is only competitive with an airplane when sensors having a very wide field of view are appropriate and when the phenomenon being observed must be viewed at least once per day. This eliminates the majority of remote sensing applications from any further consideration.
A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications
Yang, Jie
2013-01-01
In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189
Interferometer design and controls for pulse stacking in high power fiber lasers
NASA Astrophysics Data System (ADS)
Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul
2017-03-01
In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.
Underwater lidar system: design challenges and application in pollution detection
NASA Astrophysics Data System (ADS)
Gupta, Pradip; Sankolli, Swati; Chakraborty, A.
2016-05-01
The present remote sensing techniques have imposed limitations in the applications of LIDAR Technology. The fundamental sampling inadequacy of the remote sensing data obtained from satellites is that they cannot resolve in the third spatial dimension, the vertical. This limits our possibilities of measuring any vertical variability in the water column. Also the interaction between the physical and biological process in the oceans and their effects at subsequent depths cannot be modeled with present techniques. The idea behind this paper is to introduce underwater LIDAR measurement system by using a LIDAR mounted on an Autonomous Underwater Vehicle (AUV). The paper introduces working principles and design parameters for the LIDAR mounted AUV (AUV-LIDAR). Among several applications the papers discusses the possible use and advantages of AUV-LIDAR in water pollution detection through profiling of Dissolved Organic Matter (DOM) in water bodies.
Advanced Wavefront Sensing and Control Testbed (AWCT)
NASA Technical Reports Server (NTRS)
Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell
2010-01-01
The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.
Probe-pin device for optical neurotransmitter sensing in the brain
NASA Astrophysics Data System (ADS)
Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Park, Yeonjoon; Choi, Sang H.; Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In; Lee, Uhn
2015-04-01
Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.
NASA Technical Reports Server (NTRS)
Firby, R. James
1990-01-01
High-level robot control research must confront the limitations imposed by real sensors if robots are to be controlled effectively in the real world. In particular, sensor limitations make it impossible to maintain a complete, detailed world model of the situation surrounding the robot. To address the problems involved in planning with the resulting incomplete and uncertain world models, traditional robot control architectures must be altered significantly. Task-directed sensing and control is suggested as a way of coping with world model limitations by focusing sensing and analysis resources on only those parts of the world relevant to the robot's active goals. The RAP adaptive execution system is used as an example of a control architecture designed to deploy sensing resources in this way to accomplish both action and knowledge goals.
Large-area sheet task advanced dendritic web growth development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.
1982-01-01
The thermal stress model was used to generate the design of a low stress lid and shield configuration, which was fabricated and tested experimentally. In preliminary tests, the New Experimental Web Growth Facility performed as designed, producing web on the first run. These experiments suggested desirable design modifications in the melt level sensing system to improve further its performance, and these are being implemented.
An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing
NASA Astrophysics Data System (ADS)
Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.
2015-07-01
Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.
Procurement specification color graphic camera system
NASA Technical Reports Server (NTRS)
Prow, G. E.
1980-01-01
The performance and design requirements for a Color Graphic Camera System are presented. The system is a functional part of the Earth Observation Department Laboratory System (EODLS) and will be interfaced with Image Analysis Stations. It will convert the output of a raster scan computer color terminal into permanent, high resolution photographic prints and transparencies. Images usually displayed will be remotely sensed LANDSAT imager scenes.
Research study on IPS digital controller design
NASA Technical Reports Server (NTRS)
Kuo, B. C.; Folkerts, C.
1976-01-01
The performance is investigated of the simplified continuous-data model of the Instrument Pointing System (IPS). Although the ultimate objective is to study the digital model of the system, knowledge on the performance of the continuous-data model is important in the sense that the characteristics of the digital system should approach those of the continuous-data system as the sampling period approaches zero.
Chemical sensing system for classification of minelike objects by explosives detection
NASA Astrophysics Data System (ADS)
Chambers, William B.; Rodacy, Philip J.; Jones, Edwin E.; Gomez, Bernard J.; Woodfin, Ronald L.
1998-09-01
Sandia National Laboratories has conducted research in chemical sensing and analysis of explosives for many years. Recently, that experience has been directed towards detecting mines and unexploded ordnance (UXO) by sensing the low-level explosive signatures associated with these objects. Our focus has been on the classification of UXO in shallow water and anti-personnel/anti tank mines on land. The objective of this work is to develop a field portable chemical sensing system which can be used to examine mine-like objects (MLO) to determine whether there are explosive molecules associated with the MLO. Two sampling subsystems have been designed, one for water collection and one for soil/vapor sampling. The water sampler utilizes a flow-through chemical adsorbent canister to extract and concentrate the explosive molecules. Explosive molecules are thermally desorbed from the concentrator and trapped in a focusing stage for rapid desorption into an ion-mobility spectrometer (IMS). We will describe a prototype system which consists of a sampler, concentrator-focuser, and detector. The soil sampler employs a light-weight probe for extracting and concentrating explosive vapor from the soil in the vicinity of an MLO. The chemical sensing system is capable of sub-part-per-billion detection of TNT and related explosive munition compounds. We will present the results of field and laboratory tests on buried landmines, which demonstrate our ability to detect the explosive signatures associated with these objects.
NASA Astrophysics Data System (ADS)
Romanosky, Robert R.
2017-05-01
he National Energy Technology Laboratory (NETL) under the Department of Energy (DOE) Fossil Energy (FE) Program is leading the effort to not only develop near zero emission power generation systems, but to increaser the efficiency and availability of current power systems. The overarching goal of the program is to provide clean affordable power using domestic resources. Highly efficient, low emission power systems can have extreme conditions of high temperatures up to 1600 oC, high pressures up to 600 psi, high particulate loadings, and corrosive atmospheres that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Advancements in sensing using optical fibers are key efforts within NETL's sensor development program as these approaches offer the potential to survive and provide critical information about these processes. An overview of the sensor development supported by the National Energy Technology Laboratory (NETL) will be given, including research in the areas of sensor materials, designs, and measurement types. New approaches to intelligent sensing, sensor placement and process control using networked sensors will be discussed as will novel approaches to fiber device design concurrent with materials development research and development in modified and coated silica and sapphire fiber based sensors. The use of these sensors for both single point and distributed measurements of temperature, pressure, strain, and a select suite of gases will be addressed. Additional areas of research includes novel control architecture and communication frameworks, device integration for distributed sensing, and imaging and other novel approaches to monitoring and controlling advanced processes. The close coupling of the sensor program with process modeling and control will be discussed for the overarching goal of clean power production.
Performance assessment of MEMS adaptive optics in tactical airborne systems
NASA Astrophysics Data System (ADS)
Tyson, Robert K.
1999-09-01
Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.
Field calibration and validation of remote-sensing surveys
Pe'eri, Shachak; McLeod, Andy; Lavoie, Paul; Ackerman, Seth D.; Gardner, James; Parrish, Christopher
2013-01-01
The Optical Collection Suite (OCS) is a ground-truth sampling system designed to perform in situ measurements that help calibrate and validate optical remote-sensing and swath-sonar surveys for mapping and monitoring coastal ecosystems and ocean planning. The OCS system enables researchers to collect underwater imagery with real-time feedback, measure the spectral response, and quantify the water clarity with simple and relatively inexpensive instruments that can be hand-deployed from a small vessel. This article reviews the design and performance of the system, based on operational and logistical considerations, as well as the data requirements to support a number of coastal science and management projects. The OCS system has been operational since 2009 and has been used in several ground-truth missions that overlapped with airborne lidar bathymetry (ALB), hyperspectral imagery (HSI), and swath-sonar bathymetric surveys in the Gulf of Maine, southwest Alaska, and the US Virgin Islands (USVI). Research projects that have used the system include a comparison of backscatter intensity derived from acoustic (multibeam/interferometric sonars) versus active optical (ALB) sensors, ALB bottom detection, and seafloor characterization using HSI and ALB.
Nurzaman, Surya G.
2016-01-01
Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception. PMID:27499843
NASA Astrophysics Data System (ADS)
Dalphond, James M.
In modern classrooms, scientific probes are often used in science labs to engage students in inquiry-based learning. Many of these probes will never leave the classroom, closing the door on real world experimentation that may engage students. Also, these tools do not encourage students to share data across classrooms or schools. To address these limitations, we have developed a web-based system for collecting, storing, and visualizing sensor data, as well as a hardware package to interface existing classroom probes. This system, The Internet System for Networked Sensor Experimentation (iSENSE), was created to address these limitations. Development of the system began in 2007 and has proceeded through four phases: proof-of-concept prototype, technology demonstration, initial classroom deployment, and classroom testing. User testing and feedback during these phases guided development of the system. This thesis includes lessons learned during development and evaluation of the system in the hands of teachers and students. We developed three evaluations of this practical use. The first evaluation involved working closely with teachers to encourage them to integrate activities using the iSENSE system into their existing curriculum. We were looking for strengths of the approach and ease of integration. Second, we developed three "Activity Labs," which teachers used as embedded assessments. In these activities, students were asked to answer questions based on experiments or visualizations already entered into the iSENSE website. Lastly, teachers were interviewed after using the system to determine what they found valuable. This thesis makes contributions in two areas. It shows how an iterative design process was used to develop a system used in a science classroom, and it presents an analysis of the educational impact of the system on teachers and students.
NASA Technical Reports Server (NTRS)
Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.
2014-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.
Testing and Evaluation of the EOSDIS Core System: An ECS Science Advisor Proposal
NASA Technical Reports Server (NTRS)
Welch, Ronald M.; Christopher, Sundar A.
1997-01-01
The major goal of this project was to: 1) perform hands on testing of the evaluation packages, 2) provide feedback in the design of the EOSDIS Core System, and 3) test the effectiveness of the DAAC's by acquiring and testing remote sensing data sets.
Embodied Perspective Taking in Learning about Complex Systems
ERIC Educational Resources Information Center
Soylu, Firat; Holbert, Nathan; Brady, Corey; Wilensky, Uri
2017-01-01
In this paper we present a learning design approach that leverages perspective-taking to help students learn about complex systems. We define perspective-taking as projecting one's identity onto external entities (both animate and inanimate) in an effort to predict and anticipate events based on ecological cues, to automatically sense the…
Performance of the GLAS Laser Transmitter in Space
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Afzal, Robert S.; Dallas, Joseph L.; Melak, Anthony; Mamakos, William
2006-01-01
The Geoscience Laser Altimeter System (GLAS), launched in January 2003, is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results and in-flight performance for this space-based remote sensing instrument is summarized and presented.
Improving Approximate Number Sense Abilities in Preschoolers: PLUS Games
ERIC Educational Resources Information Center
Van Herwegen, Jo; Costa, Hiwet Mariam; Passolunghi, Maria Chiara
2017-01-01
Previous studies in both typically and atypically developing children have shown that approximate number system (ANS) abilities predict formal mathematical knowledge later on in life. The current study investigated whether playing specially designed training games that targets the ANS system using nonsymbolic stimuli only would improve preschool…
Designing sensory-substitution devices: Principles, pitfalls and potential1
Kristjánsson, Árni; Moldoveanu, Alin; Jóhannesson, Ómar I.; Balan, Oana; Spagnol, Simone; Valgeirsdóttir, Vigdís Vala; Unnthorsson, Rúnar
2016-01-01
An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object. PMID:27567755
Designing sensory-substitution devices: Principles, pitfalls and potential1.
Kristjánsson, Árni; Moldoveanu, Alin; Jóhannesson, Ómar I; Balan, Oana; Spagnol, Simone; Valgeirsdóttir, Vigdís Vala; Unnthorsson, Rúnar
2016-09-21
An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object.
The design and implementation of a windowing interface pinch force measurement system
NASA Astrophysics Data System (ADS)
Ho, Tze-Yee; Chen, Yuanu-Joan; Chung, Chin-Teng; Hsiao, Ming-Heng
2010-02-01
This paper presents a novel windowing interface pinch force measurement system that is basically based on an USB (Universal Series Bus) microcontroller which mainly processes the sensing data from the force sensing resistance sensors mounted on five digits. It possesses several friendly functions, such as the value and curve trace of the applied force by a hand injured patient displayed in real time on a monitoring screen, consequently, not only the physician can easily evaluate the effect of hand injury rehabilitation, but also the patients get more progressive during the hand physical therapy by interacting with the screen of pinch force measurement. In order to facilitate the pinch force measurement system and make it friendly, the detail hardware design and software programming flowchart are described in this paper. Through a series of carefully and detailed experimental tests, first of all, the relationship between the applying force and the FSR sensors are measured and verified. Later, the different type of pinch force measurements are verified by the oscilloscope and compared with the corresponding values and waveform traces in the window interface display panel to obtain the consistency. Finally, a windowing interface pinch force measurement system based on the USB microcontroller is implemented and demonstrated. The experimental results show the verification and feasibility of the designed system.
NASA Technical Reports Server (NTRS)
1998-01-01
Positive Systems has worked in conjunction with Stennis Space Center to design the ADAR System 5500. This is a four-band airborne digital imaging system used to capture multispectral imagery similar to that available from satellite platforms such as Landsat, SPOT and the new generation of high resolution satellites. Positive Systems has provided remote sensing services for the development of digital aerial camera systems and software for commercial aerial imaging applications.
Space shuttle visual simulation system design study
NASA Technical Reports Server (NTRS)
1973-01-01
The current and near-future state-of-the-art in visual simulation equipment technology is related to the requirements of the space shuttle visual system. Image source, image sensing, and displays are analyzed on a subsystem basis, and the principal conclusions are used in the formulation of a recommended baseline visual system. Perceptibility and visibility are also analyzed.
The Geoscience Laser Altimeter System (GLAS) Laser Transmitter
NASA Technical Reports Server (NTRS)
Afzal, Robert S.; Yu, Anthony W.; Dallas, Joseph L.; Melak, Anthony; Lukemir, Alan; Ramos-Izqueirdo, L.; Mamakos, William
2007-01-01
The Geoscience Laser Altimeter System (GLAS), launched in January 2003, is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. GLAS accommodates three, sequentially operated, diode-pumped, solid-state, Nd:YAG laser transmitters. The laser transmitter requirements, design and qualification test results for this space-based remote sensing instrument is summarized and presented
NASA Technical Reports Server (NTRS)
Tokars, Roger; Adamovsky, Grigory; Anderson, Robert; Hirt, Stefanie; Huang, John; Floyd, Bertram
2012-01-01
A 15- by 15-cm supersonic wind tunnel application of a one-dimensional laser beam scanning approach to shock sensing is presented. The measurement system design allowed easy switching between a focused beam and a laser sheet mode for comparison purposes. The scanning results were compared to images from the tunnel Schlieren imaging system. The tests revealed detectable changes in the laser beam in the presence of shocks. The results lend support to the use of the one-dimensional scanning beam approach for detecting and locating shocks in a flow, but some issues must be addressed in regards to noise and other limitations of the system.
NASA Astrophysics Data System (ADS)
Qi, Yanwen; Zhang, Siyao; Feng, Shengfei; Wang, Xinke; Sun, Wenfeng; Ye, Jiasheng; Han, Peng; Zhang, Yan
2018-01-01
A sensitive, real-time seven core optical fiber based Mach-Zehnder interferometer (MZI) sensor for liquid refractive index detection is proposed, fabricated and characterized. A trapezoid body with an inverted wedge shape groove in the center is used to design the MZI. The two ends of the trapezoid body play the roles of micro-prisms, and the middle parts of the trapezoid body and the groove play the roles of reference and sensing arms. A series of performance tests were carried out by immersing the sensor in different kinds of solutions to verify the universal applicability of the sensor. The MZI sensor is as small as only 43 μm × 8 μm, and at the same time with sensitivity of 1616 nm/RIU. Nominally, we realized a completely integrated optical sensing system. And, this system actually could be the building block of more powerful integrated chemical sensing chip for health, security and industry application.
NASA Technical Reports Server (NTRS)
Gisser, D. G.; Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. Y.
1975-01-01
Problems related to an unmanned exploration of the planet Mars by means of an autonomous roving planetary vehicle are investigated. These problems include: design, construction and evaluation of the vehicle itself and its control and operating systems. More specifically, vehicle configuration, dynamics, control, propulsion, hazard detection systems, terrain sensing and modelling, obstacle detection concepts, path selection, decision-making systems, and chemical analyses of samples are studied. Emphasis is placed on development of a vehicle capable of gathering specimens and data for an Augmented Viking Mission or to provide the basis for a Sample Return Mission.
NASA Astrophysics Data System (ADS)
Makarczuk, Teresa; Matin, Tina R.; Karman, Salmah B.; Diah, S. Zaleha M.; Davaji, Benyamin; Macqueen, Mark O.; Mueller, Jeanette; Schmid, Ulrich; Gebeshuber, Ille C.
2011-06-01
The human senses are of extraordinary value but we cannot change them even if this proves to be a disadvantage in modern times. However, we can assist, enhance and expand these senses via MEMS. Current MEMS cover the range of the human sensory system, and additionally provide data about signals that are too weak for the human sensory system (in terms of signal strength) and signal types that are not covered by the human sensory system. Biomimetics deals with knowledge transfer from biology to technology. In our interdisciplinary approach existing MEMS sensor designs shall be modified and adapted (to keep costs at bay), via biomimetic knowledge transfer of outstanding sensory perception in 'best practice' organisms (e.g. thermoreception, UV sensing, electromagnetic sense). The MEMS shall then be linked to the human body (mainly ex corpore to avoid ethics conflicts), to assist, enhance and expand human sensory perception. This paper gives an overview of senses in humans and animals, respective MEMS sensors that are already on the market and gives a list of possible applications of such devices including sensors that vibrate when a blind person approaches a kerb stone edge and devices that allow divers better orientation under water (echolocation, ultrasound).
NASA Astrophysics Data System (ADS)
Plokhikh, A.; Vazhenin, N.; Soganova, G.
Wide application of electric propulsions (EP) as attitude control and orbit correction thrusters for a numerous class of satellites (remote sensing and communications satellites including) imposes new problems before the developers in meeting the electromagnetic compatibility requirements on board these satellites. This is connected with the fact that any EP is a source of interference broad-band emission reaching, as a rule, frequency ranges used by on-board radio systems designed for remote sensing and communications. In this case, reliable joint operation should be secured for the highly sensitive on -board radio receiving systems and sensors of remote sensing systems on one hand and EP on the other. In view of this, analysis is rather actual for the influence of EP interference emission upon the parameters and characteristics of modern remote sensing and communications systems. Procedures and results of typical operating characteristics calculation for the radio systems with the presence of operating EP on board are discussed in the paper on the basis of systematic approach with the following characteristics being among them: signal-to-noise ratio, range, data transmission rate, error probability, etc. EP effect is taken into account by the statistical analysis for the results of joint influence of valid signal and interference produced by EP upon the quality indices of communication systems and paths of the sensors being the parts of remote sensing systems. Test data for the measured EP interference characteristics were used for qualitative assessments. All necessary measurements were made by authors on the basis of the test procedure developed by them for assessing self- em ission of EP under ground conditions that may be used as a base for the certification of such measurements. Analysis was made on the basis of test data obtained and calculation procedures developed by authors for the EP influence upon the qualitative characteristics of remote sensing and communications radio systems that revealed the presence of destructive effect resulting in substantial decrease in maximum range and data transmission rate, as well as reduction of sensitivity for the sensors of remote sensing systems. Recommendations are given on the basis of analysis made for the optimization of radio systems and calibration of their sensors at a presence of electric propulsions on board the satellites.
Khairi, Ahmad; Thaokar, Chandrajit; Fedder, Gary; Paramesh, Jeyanandh; Rabin, Yoed
2014-09-01
In effort to improve thermal control in minimally invasive cryosurgery, the concept of a miniature, wireless, implantable sensing unit has been developed recently. The sensing unit integrates a wireless power delivery mechanism, wireless communication means, and a sensing core-the subject matter of the current study. The current study presents a CMOS ultra-miniature PTAT temperature sensing core and focuses on design principles, fabrication of a proof-of-concept, and characterization in a cryogenic environment. For this purpose, a 100 μm × 400 μm sensing core prototype has been fabricated using a 130 nm CMOS process. The senor has shown to operate between -180°C and room temperature, to consume power of less than 1 μW, and to have an uncertainty range of 1.4°C and non-linearity of 1.1%. Results of this study suggest that the sensing core is ready to be integrated in the sensing unit, where system integration is the subject matter of a parallel effort. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Design of smart sensing components for volcano monitoring
Xu, M.; Song, W.-Z.; Huang, R.; Peng, Y.; Shirazi, B.; LaHusen, R.; Kiely, A.; Peterson, N.; Ma, A.; Anusuya-Rangappa, L.; Miceli, M.; McBride, D.
2009-01-01
In a volcano monitoring application, various geophysical and geochemical sensors generate continuous high-fidelity data, and there is a compelling need for real-time raw data for volcano eruption prediction research. It requires the network to support network synchronized sampling, online configurable sensing and situation awareness, which pose significant challenges on sensing component design. Ideally, the resource usages shall be driven by the environment and node situations, and the data quality is optimized under resource constraints. In this paper, we present our smart sensing component design, including hybrid time synchronization, configurable sensing, and situation awareness. Both design details and evaluation results are presented to show their efficiency. Although the presented design is for a volcano monitoring application, its design philosophy and framework can also apply to other similar applications and platforms. ?? 2009 Elsevier B.V.
High temperature superconducting infrared imaging satellite
NASA Technical Reports Server (NTRS)
Angus, B.; Covelli, J.; Davinic, N.; Hailey, J.; Jones, E.; Ortiz, V.; Racine, J.; Satterwhite, D.; Spriesterbach, T.; Sorensen, D.
1992-01-01
A low earth orbiting platform for an infrared (IR) sensor payload is examined based on the requirements of a Naval Research Laboratory statement of work. The experiment payload is a 1.5-meter square by 0.5-meter high cubic structure equipped with the imaging system, radiators, and spacecraft mounting interface. The orbit is circular at 509 km (275 nmi) altitude and 70 deg. inclination. The spacecraft is three-axis stabilized with pointing accuracy of plus or minus 0.5 deg. in each axis. The experiment payload requires two 15-minute sensing periods over two contiguous orbit periods for 30 minutes of sensing time per day. The spacecraft design is presented for launch via a Delta 2 rocket. Subsystem designs include attitude control, propulsion, electric power, telemetry, tracking and command, thermal design, structure, and cost analysis.
I3Mote: An Open Development Platform for the Intelligent Industrial Internet
Martinez, Borja; Vilajosana, Xavier; Kim, Il Han; Zhou, Jianwei; Tuset-Peiró, Pere; Xhafa, Ariton; Poissonnier, Dominique; Lu, Xiaolin
2017-01-01
In this article we present the Intelligent Industrial Internet (I3) Mote, an open hardware platform targeting industrial connectivity and sensing deployments. The I3Mote features the most advanced low-power components to tackle sensing, on-board computing and wireless/wired connectivity for demanding industrial applications. The platform has been designed to fill the gap in the industrial prototyping and early deployment market with a compact form factor, low-cost and robust industrial design. I3Mote is an advanced and compact prototyping system integrating the required components to be deployed as a product, leveraging the need for adopting industries to build their own tailored solution. This article describes the platform design, firmware and software ecosystem and characterizes its performance in terms of energy consumption. PMID:28452945
Automatic Dependent Surveillance Broadcast ADS-B Sense-and-Avoid System
NASA Technical Reports Server (NTRS)
Arteaga, Ricardo
2016-01-01
This presentation provides valuable results, benefits and compliance to the FAA mandate in order to have clear guidelines to show aircraft designers how to integrate ADS-B technology into future UAS vehicles.
Design of a Tool Integrating Force Sensing With Automated Insertion in Cochlear Implantation
Schurzig, Daniel; Labadie, Robert F.; Hussong, Andreas; Rau, Thomas S.; Webster, Robert J.
2012-01-01
The quality of hearing restored to a deaf patient by a cochlear implant in hearing preservation cochlear implant surgery (and possibly also in routine cochlear implant surgery) is believed to depend on preserving delicate cochlear membranes while accurately inserting an electrode array deep into the spiral cochlea. Membrane rupture forces, and possibly, other indicators of suboptimal placement, are below the threshold detectable by human hands, motivating a force sensing insertion tool. Furthermore, recent studies have shown significant variability in manual insertion forces and velocities that may explain some instances of imperfect placement. Toward addressing this, an automated insertion tool was recently developed by Hussong et al. By following the same insertion tool concept, in this paper, we present mechanical enhancements that improve the surgeon’s interface with the device and make it smaller and lighter. We also present electomechanical design of new components enabling integrated force sensing. The tool is designed to be sufficiently compact and light that it can be mounted to a microstereotactic frame for accurate image-guided preinsertion positioning. The new integrated force sensing system is capable of resolving forces as small as 0.005 N, and we provide experimental illustration of using forces to detect errors in electrode insertion. PMID:23482414
Development of Ion Chemosensors Based on Porphyrin Analogues.
Ding, Yubin; Zhu, Wei-Hong; Xie, Yongshu
2017-02-22
Sensing of metal ions and anions is of great importance because of their widespread distribution in environmental systems and biological processes. Colorimetric and fluorescent chemosensors based on organic molecular species have been demonstrated to be effective for the detection of various ions and possess the significant advantages of low cost, high sensitivity, and convenient implementation. Of the available classes of organic molecules, porphyrin analogues possess inherently many advantageous features, making them suitable for the design of ion chemosensors, with the targeted sensing behavior achieved and easily modulated based on their following characteristics: (1) NH moieties properly disposed for binding of anions through cooperative hydrogen-bonding interactions; (2) multiple pyrrolic N atoms or other heteroatoms for selectively chelating metal ions; (3) variability of macrocycle size and peripheral substitution for modulation of ion selectivity and sensitivity; and (4) tunable near-infrared emission and good biocompatibility. In this Review, design strategies, sensing mechanisms, and sensing performance of ion chemosensors based on porphyrin analogues are described by use of extensive examples. Ion chemosensors based on normal porphyrins and linear oligopyrroles are also briefly described. This Review provides valuable information for researchers of related areas and thus may inspire the development of more practical and effective approaches for designing high-performance ion chemosensors based on porphyrin analogues and other relevant compounds.
Design optimization of piezoresistive cantilevers for force sensing in air and water
Doll, Joseph C.; Park, Sung-Jin; Pruitt, Beth L.
2009-01-01
Piezoresistive cantilevers fabricated from doped silicon or metal films are commonly used for force, topography, and chemical sensing at the micro- and macroscales. Proper design is required to optimize the achievable resolution by maximizing sensitivity while simultaneously minimizing the integrated noise over the bandwidth of interest. Existing analytical design methods are insufficient for modeling complex dopant profiles, design constraints, and nonlinear phenomena such as damping in fluid. Here we present an optimization method based on an analytical piezoresistive cantilever model. We use an existing iterative optimizer to minimimize a performance goal, such as minimum detectable force. The design tool is available as open source software. Optimal cantilever design and performance are found to strongly depend on the measurement bandwidth and the constraints applied. We discuss results for silicon piezoresistors fabricated by epitaxy and diffusion, but the method can be applied to any dopant profile or material which can be modeled in a similar fashion or extended to other microelectromechanical systems. PMID:19865512
NASA Astrophysics Data System (ADS)
Rinaldi-Montes, Natalia; Rowberry, Matt; Frontera, Carlos; BaroÅ, Ivo; Garcés, Javier; Blahůt, Jan; Pérez-López, Raúl; Pennos, Christos; Martí, Xavi
2017-07-01
In this paper, a contactless positioning system is presented which has been designed to monitor the kinematic behavior of mechanical discontinuities in three dimensions. The positioning system comprises a neodymium magnet, fixed on one side of a discontinuity, and a magnetoresistive sensing array, fixed on the opposing side. Each of the anisotropic magnetoresistive sensors in the sensing array records the magnetic field along three orthogonal directions. The positioning system intrinsically generates compact data packages which are transmitted effectively using a range of standard wireless telecommunication technologies. These data are then modeled using a global least squares fitting procedure in which the adjustable parameters are represented by the position and orientation of the neodymium magnet. The instrumental resolution of the positioning system can be tuned depending on the strength of the magnetic field generated by the neodymium magnet and the distance between the neodymium magnet and the magnetoresistive sensing array. For a typical installation, the displacement resolution is shown to be circa 10 μm while the rotation resolution is circa 0.1°. The first permanently deployed positioning system was established in June 2016 to monitor the behavior of an N-S trending fault located at the contact between the eastern Alps and the Vienna Basin. The robust design of the positioning system is demonstrated by the fact that no interruptions in the broadcasted data streams have occurred since its installation. It has a range of potential applications in many areas of basic and applied research including geology, geotechnical engineering, and structural health monitoring.
Basic Remote Sensing Investigations for Beach Reconnaissance.
Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in
Huedo, Pol; Coves, Xavier; Daura, Xavier; Gibert, Isidre; Yero, Daniel
2018-01-01
Stenotrophomonas maltophilia is an opportunistic Gram-negative pathogen with increasing incidence in clinical settings. The most critical aspect of S. maltophilia is its frequent resistance to a majority of the antibiotics of clinical use. Quorum Sensing (QS) systems coordinate bacterial populations and act as major regulatory mechanisms of pathogenesis in both pure cultures and poly-microbial communities. Disruption of QS systems, a phenomenon known as Quorum Quenching (QQ), represents a new promising paradigm for the design of novel antimicrobial strategies. In this context, we review the main advances in the field of QS in S. maltophilia by paying special attention to Diffusible Signal Factor (DSF) signaling, Acyl Homoserine Lactone (AHL) responses and the controversial Ax21 system. Advances in the DSF system include regulatory aspects of DSF synthesis and perception by both rpf-1 and rpf-2 variant systems, as well as their reciprocal communication. Interaction via DSF of S. maltophilia with unrelated organisms including bacteria, yeast and plants is also considered. Finally, an overview of the different QQ mechanisms involving S. maltophilia as quencher and as object of quenching is presented, revealing the potential of this species for use in QQ applications. This review provides a comprehensive snapshot of the interconnected QS network that S. maltophilia uses to sense and respond to its surrounding biotic or abiotic environment. Understanding such cooperative and competitive communication mechanisms is essential for the design of effective anti QS strategies. PMID:29740543
Xia, Jun; Tashpolat, Tiyip; Zhang, Fei; Ji, Hong-jiang
2011-07-01
The characteristic of object spectrum is not only the base of the quantification analysis of remote sensing, but also the main content of the basic research of remote sensing. The typical surface object spectral database in arid areas oasis is of great significance for applied research on remote sensing in soil salinization. In the present paper, the authors took the Ugan-Kuqa River Delta Oasis as an example, unified .NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develop the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the derivative spectral data and its drawings. In addition, the system initially possessed a simple spectral data mining and analysis capabilities, and this advantage provided an efficient, reliable and convenient data management and application platform for the Ugan-Kuqa River Delta Oasis's follow-up study in soil salinization. Finally, It's easy to maintain, convinient for secondary development and practically operating in good condition.
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.; Yurchak, Boris; Turi, Johan Mathis; Mathiesen, Svein D.; Aissi-Wespi, Rita L.
2004-01-01
As scientists and policy-makers from both indigenous and non-indigenous communities begin to build closer partnerships to address common sustainability issues such as the health impacts of climate change and anthropogenic activities, it becomes increasingly important to create shared information management systems which integrate all relevant factors for optimal information sharing and decision-making. This paper describes a new GIs-based system being designed to bring local and indigenous traditional knowledge together with scientific data and information, remote sensing, and information technologies to address health-related environment, weather, climate, pollution and land use change issues for improved decision/policy-making for reindeer husbandry. The system is building an easily-accessible archive of relevant current and historical, traditional, local and remotely-sensed and other data and observations for shared analysis, measuring, and monitoring parameters of interest. Protection of indigenous culturally sensitive information will be respected through appropriate data protocols. A mechanism which enables easy information sharing among all participants, which is real time and geo-referenced and which allows interconnectivity with remote sites is also being designed into the system for maximum communication among partners. A preliminary version of our system will be described for a Russian reindeer test site, which will include a combination of indigenous knowledge about local conditions and issues, remote sensing and ground-based data on such parameters as the vegetation state and distribution, snow cover, temperature, ice condition, and infrastructure.
Application of remote sensing for prediction and detection of thermal pollution
NASA Technical Reports Server (NTRS)
Veziroglu, T. N.; Lee, S. S.
1974-01-01
The first phase is described of a three year project for the development of a mathematical model for predicting thermal pollution by use of remote sensing measurements. A rigid-lid model was developed, and results were obtained for different wind conditions at Biscayne Bay in South Florida. The design of the measurement system was completed, and instruments needed for the first stage of experiment were acquired, tested, and calibrated. A preliminary research flight was conducted.
Huggy Pajama: A Remote Interactive Touch and Hugging System
NASA Astrophysics Data System (ADS)
Cheok, Adrian David
Huggy Pajama is a novel wearable system aimed at promoting physical interaction in remote communication between parent and child. This system enables parents and children to hug one another through a hugging interface device and a wearable, hug reproducing pajama connected through the Internet. The hug input device is a small, mobile doll with an embedded pressure sensing circuit that is able to accurately sense varying levels of pressure along the range of human touch produced from natural touch. This device sends hug signals to a haptic jacket that simulates the feeling of being hugged to the wearer. It features air pocket actuators that reproduce hug sensations, heating elements to produce warmth that accompanies hugs, and a color changing pattern and accessory to indicate distance of separation and communicate expressions. In this chapter, we present the system design of Huggy Pajama. We also show results from quantitative and qualitative user studies which show the effectiveness of the system simulating an actual human touch. Results also indicate an increased sense of presence between parents and children when used as an added component to instant messaging and video chat communication.
Impact of end effector technology on telemanipulation performance
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Szakaly, Z.; Ohm, T.
1990-01-01
Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system.
Hybrid wavefront sensor for the fast detection of wavefront disturbances.
Dong, Shihao; Haist, Tobias; Osten, Wolfgang
2012-09-01
Strongly aberrated wavefronts lead to inaccuracies and nonlinearities in holography-based modal wavefront sensing (HMWS). In this contribution, a low-resolution Shack-Hartmann sensor (LRSHS) is incorporated into HMWS via a compact holographic design to extend the dynamic range of HMWS. A static binary-phase computer-generated hologram is employed to generate the desired patterns for Shack-Hartmann sensing and HMWS. The low-order aberration modes dominating the wavefront error are first sensed with the LRSHS and corrected by the wavefront modulator. The system then switches to HMWS to obtain better sensor sensitivity and accuracy. Simulated as well as experimental results are shown for validating the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the second six months of the Phase 2 of this project were to conduct first time experimental studies using optical designs and some initial hardware developed in the first 6 months of Phase 2. One focus is to modify the SiC chip optical properties to enable gas species sensing with a specific gas species under high temperature and pressure. The goal was to acquire sensing test data using two example inert and safe gases and show gas discrimination abilities. A high pressure gas mixing chamber was to be designed and assembled to achieve the mentioned gas sensingmore » needs. Another goal was to initiate high temperature probe design by developing and testing a probe design that leads to accurately measuring the thickness of the deployed SiC sensor chip to enable accurate overall sensor system design. The third goal of this phase of the project was to test the SiC chip under high pressure conditions using the earlier designed calibration cell to enable it to act as a pressure sensor when doing gas detection. In this case, experiments using a controlled pressure system were to deliver repeatable pressure measurement data. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs or schematics of the fabricated hardware are provided. Experimental data from the three optical sensor systems (i.e., Thickness, pressure, and gas species) is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.« less
Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen
2015-11-15
We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10(-6) RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10(-5) RIU), but also superior than current reported plasmonic sensors.
Robust Sensing of Approaching Vehicles Relying on Acoustic Cues
Mizumachi, Mitsunori; Kaminuma, Atsunobu; Ono, Nobutaka; Ando, Shigeru
2014-01-01
The latest developments in automobile design have allowed them to be equipped with various sensing devices. Multiple sensors such as cameras and radar systems can be simultaneously used for active safety systems in order to overcome blind spots of individual sensors. This paper proposes a novel sensing technique for catching up and tracking an approaching vehicle relying on an acoustic cue. First, it is necessary to extract a robust spatial feature from noisy acoustical observations. In this paper, the spatio-temporal gradient method is employed for the feature extraction. Then, the spatial feature is filtered out through sequential state estimation. A particle filter is employed to cope with a highly non-linear problem. Feasibility of the proposed method has been confirmed with real acoustical observations, which are obtained by microphones outside a cruising vehicle. PMID:24887038
Review of power requirements for satellite remote sensing systems
NASA Technical Reports Server (NTRS)
Morain, Stanley A.
1988-01-01
The space environment offers a multitude of attributes and opportunities to be used to enhance human life styles and qualities of life for all future generations, worldwide. Among the prospects having immense social as well as economic benefits are earth-observing systems capable of providing near real-time data in such areas as food and fiber production, marine fisheries, ecosystem monitoring, disaster assessment, and global environmental exchanges. The era of Space Station, the Shuttle program, the planned unmanned satellites in both high and low Earth orbit will transfer to operational status what, until now, has been largely research and development proof of concept for remotely sensing Earth's natural and cultural resources. An important aspect of this operational status focuses on the orbital designs and power requirements needed to optimally sense any of these important areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
Theoretical and experimental data which have defined and/or extended the effectiveness of remote sensing operations are explored, with consideration given to both scientific and commercial activities. The remote sensing of soil moisture, the sea surface, and oil slicks is discussed, as are programs using satellites for studying geodynamics and geodesy, currents and waves, and coastal zones. NASA, Canadian, and Japanese radar and microwave passive and active systems are described, together with algorithms and techniques for image processing and classification. The SAR-580 project is outlined, and attention is devoted to satellite applications in investigations of the structure of the atmosphere, agriculturemore » and land use, and geology. Design and performance features of various optical scanner, radar, and multispectral data processing systems and procedures are detailed.« less
Ulusoy, Hasan S.; Kalkan, Erol; Fletcher, Jon Peter B.; Friberg, Paul; Leith, W. K.; Banga, Krishna
2012-01-01
This paper describes the current progress in the development of a structural health monitoring and alerting system to meet the needs of the U.S. Department of Veterans Affairs to monitor hospital buildings instrumented in high and very high seismic hazard regions in the U.S. The system, using the measured vibration data, is primarily designed for post-earthquake condition assessment of the buildings. It has two essential components – sensing and analysis. The sensing component includes all necessary firmware and sensors to measure the response of the building; while the analysis component consists of several data processing modules integrated into an open source software package which compresses a large amount of measured data into useful information to assess the building’s condition before and after an event. The information can be used for a rapid building safety assessment, and to support decisions for necessary repairs, replacements, and other maintenance and rehabilitation measures.
NASA Technical Reports Server (NTRS)
Sokoloski, Martin M. (Editor)
1989-01-01
Various papers on laser applications in meteorology and earth and atmospheric remote sensing are presented. The individual topics addressed include: solid state lasers for the mid-IR region, tunable chromium lasers, GaInAsSb/AlGaAsSb injection lasers for remote sensing applications, development and design of an airborne autonomous wavemeter for laser tuning, fabrication of lightweight Si/SiC lidar mirrors, low-cost double heterostructure and quantum-well laser array development, nonlinear optical processes for the mid-IR region, simulated space-based Doppler lidar performance in regions of backscatter inhomogeneities, design of CO2 recombination catalysts for closed-cycle CO2 lasers, density measurements with combined Raman-Rayleigh lidar, geodynamics applications of spaceborne laser ranging, use of aircraft laser ranging data for forest mensuration, remote active spectrometer, multiwavelngth and triple CO2 lidars for trace gas detection, analysis of laser diagnostics in plumes, laser atmospheric wind sounder, compact Doppler lidar system using commercial off-the-shelf components, and preliminary design for a laser atmospheric wind sounder.
Research on fiber Bragg grating heart sound sensing and wavelength demodulation method
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Chang-Yun; Gao, Hua; Gan, Jing-Meng; Li, Hong-Qiang
2010-11-01
Heart sound includes a lot of physiological and pathological information of heart and blood vessel. Heart sound detecting is an important method to gain the heart status, and has important significance to early diagnoses of cardiopathy. In order to improve sensitivity and reduce noise, a heart sound measurement method based on fiber Bragg grating was researched. By the vibration principle of plane round diaphragm, a heart sound sensor structure of fiber Bragg grating was designed and a heart sound sensing mathematical model was established. A formula of heart sound sensitivity was deduced and the theoretical sensitivity of the designed sensor is 957.11pm/KPa. Based on matched grating method, the experiment system was built, by which the excursion of reflected wavelength of the sensing grating was detected and the information of heart sound was obtained. Experiments show that the designed sensor can detect the heart sound and the reflected wavelength variety range is about 70pm. When the sampling frequency is 1 KHz, the extracted heart sound waveform by using the db4 wavelet has the same characteristics with a standard heart sound sensor.
Kara, Adnane; Rouillard, Camille; Mathault, Jessy; Boisvert, Martin; Tessier, Frédéric; Landari, Hamza; Melki, Imene; Laprise-Pelletier, Myriam; Boisselier, Elodie; Fortin, Marc-André; Boilard, Eric; Greener, Jesse; Miled, Amine
2016-05-28
In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an "intelligent" drug delivery system based on a feedback loop to monitor drug delivery.
Kara, Adnane; Rouillard, Camille; Mathault, Jessy; Boisvert, Martin; Tessier, Frédéric; Landari, Hamza; Melki, Imene; Laprise-Pelletier, Myriam; Boisselier, Elodie; Fortin, Marc-André; Boilard, Eric; Greener, Jesse; Miled, Amine
2016-01-01
In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μM was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an “intelligent” drug delivery system based on a feedback loop to monitor drug delivery. PMID:27240377
The opto-mechanical design process: from vision to reality
NASA Astrophysics Data System (ADS)
Kvamme, E. Todd; Stubbs, David M.; Jacoby, Michael S.
2017-08-01
The design process for an opto-mechanical sub-system is discussed from requirements development through test. The process begins with a proper mission understanding and the development of requirements for the system. Preliminary design activities are then discussed with iterative analysis and design work being shared between the design, thermal, and structural engineering personnel. Readiness for preliminary review and the path to a final design review are considered. The value of prototyping and risk mitigation testing is examined with a focus on when it makes sense to execute a prototype test program. System level margin is discussed in general terms, and the practice of trading margin in one area of performance to meet another area is reviewed. Requirements verification and validation is briefly considered. Testing and its relationship to requirements verification concludes the design process.
Fiberoptics technology and its application to propulsion control systems
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1983-01-01
Current work on optical sensors and optically controlled actuators for use in air-breathing engine control systems is reviewed with particular reference to the design and operation of several new fiber-optic devices. These include a tachometer, a rotary position encoder, a Fabry-Perot interferometer and a rare-earth sensor for measuring engine gas temperatures, a high-temperature photoswitch designed for the range -55 to 260 C, and optical cables and connectors. The advantages of optics over conventional wire systems used for sensing and actuator control are briefly discussed.
System For Research On Multiple-Arm Robots
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Hayati, Samad; Tso, Kam S.; Hayward, Vincent
1991-01-01
Kali system of computer programs and equipment provides environment for research on distributed programming and distributed control of coordinated-multiple-arm robots. Suitable for telerobotics research involving sensing and execution of low level tasks. Software and configuration of hardware designed flexible so system modified easily to test various concepts in control and programming of robots, including multiple-arm control, redundant-arm control, shared control, traded control, force control, force/position hybrid control, design and integration of sensors, teleoperation, task-space description and control, methods of adaptive control, control of flexible arms, and human factors.
NASA Astrophysics Data System (ADS)
Balint, Tibor S.; Pangaro, Paul
2017-05-01
For over half a century space exploration has been dominated by engineering and technology driven practices. This paradigm leaves limited room for art and design. Yet in other parts of our lives, art and design play important roles: they stimulate new ideas and connect people to their experiences and to each other at a deeper level, while affecting our worldview as we evolve our cognitive models. We develop these models through circular conversations with our environment, through perception and making sense through our sensory systems and responding back through language and interactions. Artists and designers create artifacts through conversation cycles of sense-giving and sense-making, thus increasing variety in the world in the form of evolving messages. Each message becomes information when the observer decodes it, through multiple sense-making and re-sampling cycles. The messages form triggers to the cognitive state of the observer. Having a shared key between the artist/designer and the observer-for example, in the form of language, gestures, and artistic/design styles-is fundamental to encode and decode the information, in conversations. Art, design, science, and engineering, are all creative practices. Yet, they often speak different languages, where some parts may correspond, while others address a different variety in a cybernetic sense. These specialized languages within disciplines streamline communications, but limit variety. Thus, different languages between disciplines may introduce communication blocks. Nevertheless, these differences are desired as they add variety to the interactions, and could lead to novel discourses and possibilities. We may dissolve communication blocks through the introduction of boundary objects in the intersection of multiple disciplines. Boundary objects can ground ideas and bridge language diversity across disciplines. These artifacts are created to facilitate circular cybernetic conversations, supporting convergence towards common shared languages between the actors. The shared language can also create new variety that evolves through conversations between the participants. Misunderstandings through conversations can also lead to new ideas, as they stimulate questions and may suggest novel solutions. In this paper we propose new categorizations for boundary objects, drawn from design and cybernetic approaches. We evidence these categories with a number of space-related object examples. Furthermore, we discuss how these boundary objects facilitate communications between diverse audiences, ranging from scientists, and engineers, to artists, designers, and the general public.
NASA Astrophysics Data System (ADS)
Quirin, Sean Albert
The joint application of tailored optical Point Spread Functions (PSF) and estimation methods is an important tool for designing quantitative imaging and sensing solutions. By enhancing the information transfer encoded by the optical waves into an image, matched post-processing algorithms are able to complete tasks with improved performance relative to conventional designs. In this thesis, new engineered PSF solutions with image processing algorithms are introduced and demonstrated for quantitative imaging using information-efficient signal processing tools and/or optical-efficient experimental implementations. The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as one solution for three-dimensional, super-resolution fluorescence microscopy. The DH-PSF is a tailored PSF which was engineered to have enhanced information transfer for the task of localizing point sources in three dimensions. Both an information- and optical-efficient implementation of the DH-PSF microscope are demonstrated here for the first time. This microscope is applied to image single-molecules and micro-tubules located within a biological sample. A joint imaging/axial-ranging modality is demonstrated for application to quantifying sources of extended transverse and axial extent. The proposed implementation has improved optical-efficiency relative to prior designs due to the use of serialized cycling through select engineered PSFs. This system is demonstrated for passive-ranging, extended Depth-of-Field imaging and digital refocusing of random objects under broadband illumination. Although the serialized engineered PSF solution is an improvement over prior designs for the joint imaging/passive-ranging modality, it requires the use of multiple PSFs---a potentially significant constraint. Therefore an alternative design is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and the chromatic behavior of objects under broadband illumination provides the necessary information transfer. The matched estimation algorithms are introduced along with an optically-efficient experimental system to image and passively estimate the distance to a test object. An engineered PSF solution is proposed for improving the sensitivity of optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). The performance limits of the classical SHWFS design are evaluated and the engineered PSF system design is demonstrated to enhance performance. This system is fabricated and the mechanism for additional information transfer is identified.
Cell-Free and In Vivo Characterization of Lux, Las, and Rpa Quorum Activation Systems in E. coli.
Halleran, Andrew D; Murray, Richard M
2018-02-16
Synthetic biologists have turned toward quorum systems as a path for building sophisticated microbial consortia that exhibit group decision making. Currently, however, even the most complex consortium circuits rely on only one or two quorum sensing systems, greatly restricting the available design space. High-throughput characterization of available quorum sensing systems is useful for finding compatible sets of systems that are suitable for a defined circuit architecture. Recently, cell-free systems have gained popularity as a test-bed for rapid prototyping of genetic circuitry. We take advantage of the transcription-translation cell-free system to characterize three commonly used Lux-type quorum activators, Lux, Las, and Rpa. We then compare the cell-free characterization to results obtained in vivo. We find significant genetic crosstalk in both the Las and Rpa systems and substantial signal crosstalk in Lux activation. We show that cell-free characterization predicts crosstalk observed in vivo.
NASA Technical Reports Server (NTRS)
Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.
2015-01-01
This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.
Monitoring of Concrete Structures Using Ofdr Technique
NASA Astrophysics Data System (ADS)
Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.
2011-06-01
Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.
Combining Sense and Intelligence for Smart Structures
NASA Technical Reports Server (NTRS)
2002-01-01
IFOS developed the I*Sense technology with assistance from a NASA Langley Research Center SBIR contract. NASA and IFOS collaborated to create sensing network designs that have high sensitivity, low power consumption, and significant potential for mass production. The joint- research effort led to the development of a module that is rugged, compact and light-weight, and immune to electromagnetic interference. These features make the I*Sense multisensor arrays favorable for smart structure applications, including smart buildings, bridges, highways, dams, power plants, ships, and oil tankers, as well as space vehicles, space stations, and other space structures. For instance, the system can be used as an early warning and detection device, with alarms being set to monitor the maximum allowable strain and stress values at various points of a given structure.
NASA Astrophysics Data System (ADS)
Marchetto, P. M.; Hofmeister, K.; Walter, M. T.
2015-12-01
In the age of the Internet, data is inherently portable. Given the shrinking numbers of stream gauges in the US under the banner of the USGS and the lack of collocation of sensors for environmental parameters, it is clear the only way to collect these data is with near real-time, multi-parameters sensing stations. We are designing a system that can be built and deployed for under $300 by community groups interested in learning more about the land that they are protecting, such as conservation groups, or groups interested in the basic science behind sensing and ecology, such as makerspaces. Sensing stations like these will enable a greater diversity of data collection while increasing public awareness of environmental issues and the research process.
Metal nanostructures for non-enzymatic glucose sensing.
Tee, Si Yin; Teng, Choon Peng; Ye, Enyi
2017-01-01
This review covers the recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. It highlights a variety of nanostructured materials including noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. Particularly, attention is devoted to numerous approaches that have been implemented for improving the sensors performance by tailoring size, shape, composition, effective surface area, adsorption capability and electron-transfer properties. The correlation of the metal nanostructures to the glucose sensing performance is addressed with respect to the linear concentration range, sensitivity and detection limit. In overall, this review provides important clues from the recent scientific achievements of glucose sensor nanomaterials which will be essentially useful in designing better and more effective electrocatalysts for future electrochemical sensing industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity
NASA Technical Reports Server (NTRS)
Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon
2009-01-01
This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.
Nonlinear feedback model attitude control using CCD in magnetic suspension system
NASA Technical Reports Server (NTRS)
Lin, CHIN-E.; Hou, Ann-San
1994-01-01
A model attitude control system for a CCD camera magnetic suspension system is studied in this paper. In a recent work, a position and attitude sensing method was proposed. From this result, model position and attitude of a magnetic suspension system can be detected by generating digital outputs. Based on this achievement, a control system design using nonlinear feedback techniques for magnetic suspended model attitude control is proposed.
Martínez-Guanter, Jorge; Garrido-Izard, Miguel; Valero, Constantino; Slaughter, David C.; Pérez-Ruiz, Manuel
2017-01-01
The feasibility of automated individual crop plant care in vegetable crop fields has increased, resulting in improved efficiency and economic benefits. A systems-based approach is a key feature in the engineering design of mechanization that incorporates precision sensing techniques. The objective of this study was to design new sensing capabilities to measure crop plant spacing under different test conditions (California, USA and Andalucía, Spain). For this study, three different types of optical sensors were used: an optical light-beam sensor (880 nm), a Light Detection and Ranging (LiDAR) sensor (905 nm), and an RGB camera. Field trials were conducted on newly transplanted tomato plants, using an encoder as a local reference system. Test results achieved a 98% accuracy in detection using light-beam sensors while a 96% accuracy on plant detections was achieved in the best of replications using LiDAR. These results can contribute to the decision-making regarding the use of these sensors by machinery manufacturers. This could lead to an advance in the physical or chemical weed control on row crops, allowing significant reductions or even elimination of hand-weeding tasks. PMID:28492504
ATI SAA Annex 3 Button Tensile Test Report I
NASA Technical Reports Server (NTRS)
Tang, Henry H.
2013-01-01
This report documents the results of a study carried out under Splace Act Agreement SAA-EA-10-004 between the National Aeronautics and Space Administration (NASA) and Astro Technology Incorpporated (ATI). NASA and ATI have entered into this agreement to collaborate on the development of technologies that can benefit both the US government space programs and the oil and gas industry. The report documents the results of a test done on an adnesive system for attaching new monitoring sensor devices to pipelines under Annex III of SAA-EA-10-004: "Proof-of-Concept Design and Testing of a Post Installed Sensing Device on Subsea Risers and Pipelines". The tasks of Annex III are to design and test a proof-of-concept sensing device for in-situ installation on pipelines, risers, or other structures deployed in deep water. The function of the sensor device is to measure various signals such as strain, stress and temperature. This study complements the work done, in Annex I of the SAA, on attaching a fiber optic sensing device to pipe via adhesive bonding. Both Annex I and Annex III studies were conducted in the Crew and Thermal System Division (CTSD) at the Johnson Space Center (JSC) in collaboration with ATI.
Zhang, Nan; Li, Kaiwei; Cui, Ying; Wu, Zhifang; Shum, Perry Ping; Auguste, Jean-Louis; Dinh, Xuan Quyen; Humbert, Georges; Wei, Lei
2018-02-13
All-in-fiber optofluidics is an analytical tool that provides enhanced sensing performance with simplified analyzing system design. Currently, its advance is limited either by complicated liquid manipulation and light injection configuration or by low sensitivity resulting from inadequate light-matter interaction. In this work, we design and fabricate a side-channel photonic crystal fiber (SC-PCF) and exploit its versatile sensing capabilities in in-line optofluidic configurations. The built-in microfluidic channel of the SC-PCF enables strong light-matter interaction and easy lateral access of liquid samples in these analytical systems. In addition, the sensing performance of the SC-PCF is demonstrated with methylene blue for absorptive molecular detection and with human cardiac troponin T protein by utilizing a Sagnac interferometry configuration for ultra-sensitive and specific biomolecular specimen detection. Owing to the features of great flexibility and compactness, high-sensitivity to the analyte variation, and efficient liquid manipulation/replacement, the demonstrated SC-PCF offers a generic solution to be adapted to various fiber-waveguide sensors to detect a wide range of analytes in real time, especially for applications from environmental monitoring to biological diagnosis.
Reducing Manpower for a Technologically Advanced Ship
2010-01-27
Watchstations by 84% (119 to 34) “ Autonomic ” Fire Suppression System AFSS is designed to automatically: (1) Isolate damage to firemain piping... System (IPS) Advanced VLS Autonomic Fire Suppression Hull Form Scale Models Total Ship Computing Environment (TSCE) Integrated Undersea...Warfare (IUSW) System ( AFSS ) 8 Total Ship Organization Ship C3I Engage Support Technical Director TSCEI Sense Integrated Product Teams TSSE Director
The Regis Plan for Individualization.
ERIC Educational Resources Information Center
Newton, Robert R.
The trend away from closed teaching systems and toward open learning systems between 1965 and 1975 led to the introduction of a number of isolated innovations in Regis High School, a Catholic school in New York City. To provide a sense of coherence and direction to these changes, the faculty designed a comprehensive model for program development…
ERIC Educational Resources Information Center
Wei, Chun-Wang; Hung, I-Chun; Lee, Ling; Chen, Nian-Shing
2011-01-01
This research demonstrates the design of a Joyful Classroom Learning System (JCLS) with flexible, mobile and joyful features. The theoretical foundations of this research include the experiential learning theory, constructivist learning theory and joyful learning. The developed JCLS consists of the robot learning companion (RLC), sensing input…
Collaboration on Procedural Problems May Support Conceptual Knowledge More than You May Think
ERIC Educational Resources Information Center
Olsen, Jennifer K.; Belenky, Daniel M.; Aleven, Vincent; Rummel, Nikol
2014-01-01
While collaborative Intelligent Tutoring Systems (ITSs) have been designed for older students and have been shown to support sense-making behaviors, there has not been as much work on creating systems to support collaboration between elementary school students. We have developed and tested, with 84 students, individual and collaborative versions…
ERIC Educational Resources Information Center
Sanborn, Mark
2011-01-01
Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…
Application of smart optical fiber sensors for structural load monitoring
NASA Astrophysics Data System (ADS)
Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.
2001-06-01
This paper describes a smart monitoring system, incorporating optical fiber sensing techniques, capable of providing important structural information to designers and users alike. This technology has wide industrial and commercial application in areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions. The resulting strain information can be used by engineers to improve the structural design process. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electro-magnetic interference. The capability of this system has been demonstrated within the maritime and industrial environment, but can be adapted for any application.
Detection, Identification, Location, and Remote Sensing using SAW RFID Sensor Tags
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2009-01-01
In this presentation, we will consider the problem of simultaneous detection, identification, location estimation, and remote sensing for multiple objects. In particular, we will describe the design and testing of a wireless system capable of simultaneously detecting the presence of multiple objects, identifying each object, and acquiring both a low-resolution estimate of location and a high-resolution estimate of temperature for each object based on wireless interrogation of passive surface acoustic wave (SAW) radiofrequency identification (RFID) sensor tags affixed to each object. The system is being studied for application on the lunar surface as well as for terrestrial remote sensing applications such as pre-launch monitoring and testing of spacecraft on the launch pad and monitoring of test facilities. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In the presentation, we will summarize the system design and illustrate several aspects of the operational characteristics and signal structure. We will examine the theoretical performance characteristics of the system and compare the theoretical results with results obtained from experiments in both controlled laboratory environments and in the field.
Validation Tests of Fiber Optic Strain-Based Operational Shape and Load Measurements
NASA Technical Reports Server (NTRS)
Bakalyar, John A.; Jutte, Christine
2012-01-01
Aircraft design has been progressing toward reduced structural weight to improve fuel efficiency, increase performance, and reduce cost. Lightweight aircraft structures are more flexible than conventional designs and require new design considerations. Intelligent sensing allows for enhanced control and monitoring of aircraft, which enables increased structurally efficiency. The NASA Dryden Flight Research Center (DFRC) has developed an instrumentation system and analysis techniques that combine to make distributed structural measurements practical for lightweight vehicles. Dryden's Fiber Optic Strain Sensing (FOSS) technology enables a multitude of lightweight, distributed surface strain measurements. The analysis techniques, referred to as the Displacement Transfer Functions (DTF) and Load Transfer Functions (LTF), use surface strain values to calculate structural deflections and operational loads. The combined system is useful for real-time monitoring of aeroelastic structures, along with many other applications. This paper describes how the capabilities of the measurement system were demonstrated using subscale test articles that represent simple aircraft structures. Empirical FOSS strain data were used within the DTF to calculate the displacement of the article and within the LTF to calculate bending moments due to loads acting on the article. The results of the tests, accuracy of the measurements, and a sensitivity analysis are presented.
Wavefront Sensing and Control Technology for Submillimeter and Far-Infrared Space Telescopes
NASA Technical Reports Server (NTRS)
Redding, Dave
2004-01-01
The NGST wavefront sensing and control system will be developed to TRL6 over the next few years, including testing in a cryogenic vacuum environment with traceable hardware. Doing this in the far-infrared and submillimeter is probably easier, as some aspects of the problem scale with wavelength, and the telescope is likely to have a more stable environment; however, detectors may present small complications. Since this is a new system approach, it warrants a new look. For instance, a large space telescope based on the DART membrane mirror design requires a new actuation approach. Other mirror and actuation technologies may prove useful as well.
Fuzzy control of burnout of multilayer ceramic actuators
NASA Astrophysics Data System (ADS)
Ling, Alice V.; Voss, David; Christodoulou, Leo
1996-08-01
To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.
The South Dakota cooperative land use effort: A state level remote sensing demonstration project
NASA Technical Reports Server (NTRS)
Tessar, P. A.; Hood, D. R.; Todd, W. J.
1975-01-01
Remote sensing technology can satisfy or make significant contributions toward satisfying many of the information needs of governmental natural resource planners and policy makers. Recognizing this potential, the South Dakota State Planning Bureau and the EROS Data Center together formulated the framework for an ongoing Land Use and Natural Resource Inventory and Information System Program. Statewide land use/land cover information is generated from LANDSAT digital data and high altitude photography. Many applications of the system are anticipated as it evolves and data are added from more conventional sources. The conceptualization, design, and implementation of the program are discussed.
Program on Earth Observation Data Management Systems (EODMS), appendixes
NASA Technical Reports Server (NTRS)
Eastwood, L. F., Jr.; Gohagan, J. K.; Hill, C. T.; Morgan, R. P.; Bay, S. M.; Foutch, T. K.; Hays, T. R.; Ballard, R. J.; Makin, K. P.; Power, M. A.
1976-01-01
The needs of state, regional, and local agencies involved in natural resources management in Illinois, Iowa, Minnesota, Missouri, and Wisconsin are investigated to determine the design of satellite remotely sensed derivable information products. It is concluded that an operational Earth Observation Data Management System (EODMS) will be most beneficial if it provides a full range of services - from raw data acquisition to interpretation and dissemination of final information products. Included is a cost and performance analysis of alternative processing centers, and an assessment of the impacts of policy, regulation, and government structure on implementing large scale use of remote sensing technology in this community of users.
RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios
Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan
2016-01-01
Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured. PMID:27294928
Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces.
Parameswaran, Ramya; Tian, Bozhi
2018-05-15
One of the fundamental questions guiding research in the biological sciences is how cellular systems process complex physical and environmental cues and communicate with each other across multiple length scales. Importantly, aberrant signal processing in these systems can lead to diseases that can have devastating impacts on human lives. Biophysical studies in the past several decades have demonstrated that cells can respond to not only biochemical cues but also mechanical and electrical ones. Thus, the development of new materials that can both sense and modulate all of these pathways is necessary. Semiconducting nanostructures are an emerging class of discovery platforms and tools that can push the limits of our ability to modulate and sense biological behaviors for both fundamental research and clinical applications. These materials are of particular interest for interfacing with cellular systems due to their matched dimension with subcellular components (e.g., cytoskeletal filaments), and easily tunable properties in the electrical, optical and mechanical regimes. Rational design via traditional or new approaches, such as nanocasting and mesoscale chemical lithography, can allow us to control micro- and nanoscale features in nanowires to achieve new biointerfaces. Both processes endogenous to the target cell and properties of the material surface dictate the character of these interfaces. In this Account, we focus on (1) approaches for the rational design of semiconducting nanowires that exhibit unique structures for biointerfaces, (2) recent fundamental discoveries that yield robust biointerfaces at the subcellular level, (3) intracellular electrical and mechanical sensing, and (4) modulation of cellular behaviors through material topography and remote physical stimuli. In the first section, we discuss new approaches for the synthetic control of micro- and nanoscale features of these materials. In the second section, we focus on achieving biointerfaces with these rationally designed materials either intra- or extracellularly. We last delve into the use of these materials in sensing mechanical forces and electrical signals in various cellular systems as well as in instructing cellular behaviors. Future research in this area may shift the paradigm in fundamental biophysical research and biomedical applications through (1) the design and synthesis of new semiconductor-based materials and devices that interact specifically with targeted cells, (2) the clarification of many developmental, physiological, and anatomical aspects of cellular communications, (3) an understanding of how signaling between cells regulates synaptic development (e.g., information like this would offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases), (4) and the creation of new cellular materials that have the potential to open up completely new areas of application, such as in hybrid information processing systems.
Modal sensing and control of paraboloidal shell structronic system
NASA Astrophysics Data System (ADS)
Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen
2018-02-01
Paraboloidal shells of revolution are commonly used as important components in the field of advanced aerospace structures and aviation mechanical systems. This study is to investigate the modal sensing behavior and the modal vibration control effect of distributed PVDF patches laminated on the paraboloidal shell. A paraboloidal shell sensing and control testing platform is set up first. Frequencies of lower order modes of the shell are obtained with the PVDF sensor and compared with the previous testing results to prove its accuracy. Then sensor patches are laminated on different positions (or different sides) of the shell and tested to reveal the relation between the sensing behaviors and their locations. Finally, a mathematical model of the structronic system is built by parameter identifications and the transfer function is derived. Independent and coupled modal controllers are designed based on the pole placement method and modal vibration control experiments are performed. The amplitude suppression ratio of each mode controlled by the pole placement controller is calculated and compared with the results obtained by using a PPF controller. Advantages of both methods are concluded and suggestions are given on how to choose control algorithm for different purpose.
Low-cost multispectral imaging for remote sensing of lettuce health
NASA Astrophysics Data System (ADS)
Ren, David D. W.; Tripathi, Siddhant; Li, Larry K. B.
2017-01-01
In agricultural remote sensing, unmanned aerial vehicle (UAV) platforms offer many advantages over conventional satellite and full-scale airborne platforms. One of the most important advantages is their ability to capture high spatial resolution images (1-10 cm) on-demand and at different viewing angles. However, UAV platforms typically rely on the use of multiple cameras, which can be costly and difficult to operate. We present the development of a simple low-cost imaging system for remote sensing of crop health and demonstrate it on lettuce (Lactuca sativa) grown in Hong Kong. To identify the optimal vegetation index, we recorded images of both healthy and unhealthy lettuce, and used them as input in an expectation maximization cluster analysis with a Gaussian mixture model. Results from unsupervised and supervised clustering show that, among four widely used vegetation indices, the blue wide-dynamic range vegetation index is the most accurate. This study shows that it is readily possible to design and build a remote sensing system capable of determining the health status of lettuce at a reasonably low cost (
Commercial Applications Multispectral Sensor System
NASA Technical Reports Server (NTRS)
Birk, Ronald J.; Spiering, Bruce
1993-01-01
NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information. The ATLAS system will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal infrared wavelengths, variable spatial resolution from 2-25 meters; high geometric and geo-location accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight. ATLAS is scheduled to be available in 3rd quarter 1992 for acquisition of data for applications such as environmental monitoring, facilities management, geographic information systems data base development, and mineral exploration.
Vibration-Induced Errors in MEMS Tuning Fork Gyroscopes with Imbalance.
Fang, Xiang; Dong, Linxi; Zhao, Wen-Sheng; Yan, Haixia; Teh, Kwok Siong; Wang, Gaofeng
2018-05-29
This paper discusses the vibration-induced error in non-ideal MEMS tuning fork gyroscopes (TFGs). Ideal TFGs which are thought to be immune to vibrations do not exist, and imbalance between two gyros of TFGs is an inevitable phenomenon. Three types of fabrication imperfections (i.e., stiffness imbalance, mass imbalance, and damping imbalance) are studied, considering different imbalance radios. We focus on the coupling types of two gyros of TFGs in both drive and sense directions, and the vibration sensitivities of four TFG designs with imbalance are simulated and compared. It is found that non-ideal TFGs with two gyros coupled both in drive and sense directions (type CC TFGs) are the most insensitive to vibrations with frequencies close to the TFG operating frequencies. However, sense-axis vibrations with in-phase resonant frequencies of a coupled gyros system result in severe error outputs to TFGs with two gyros coupled in the sense direction, which is mainly attributed to the sense capacitance nonlinearity. With increasing stiffness coupled ratio of the coupled gyros system, the sensitivity to vibrations with operating frequencies is cut down, yet sensitivity to vibrations with in-phase frequencies is amplified.
NASA Astrophysics Data System (ADS)
Nagel, David J.
2000-11-01
The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.
NASA Technical Reports Server (NTRS)
Cane, M. A.; Cardone, V. J.; Halem, M.; Halberstam, I.
1981-01-01
The reported investigation has the objective to assess the potential impact on numerical weather prediction (NWP) of remotely sensed surface wind data. Other investigations conducted with similar objectives have not been satisfactory in connection with a use of procedures providing an unrealistic distribution of initial errors. In the current study, care has been taken to duplicate the actual distribution of information in the conventional observing system, thus shifting the emphasis from accuracy of the data to the data coverage. It is pointed out that this is an important consideration in assessing satellite observing systems since experience with sounder data has shown that improvements in forecasts due to satellite-derived information is due less to a general error reduction than to the ability to fill data-sparse regions. The reported study concentrates on the evaluation of the observing system simulation experimental design and on the assessment of the potential of remotely sensed marine surface wind data.
Program on Earth Observation Data Management Systems (EODMS)
NASA Technical Reports Server (NTRS)
Eastwood, L. F., Jr.; Gohagan, J. K.; Hill, C. T.; Morgan, R. P.; Hays, T. R.; Ballard, R. J.; Crnkovick, G. R.; Schaeffer, M. A.
1976-01-01
An assessment was made of the needs of a group of potential users of satellite remotely sensed data (state, regional, and local agencies) involved in natural resources management in five states, and alternative data management systems to satisfy these needs are outlined. Tasks described include: (1) a comprehensive data needs analysis of state and local users; (2) the design of remote sensing-derivable information products that serve priority state and local data needs; (3) a cost and performance analysis of alternative processing centers for producing these products; (4) an assessment of the impacts of policy, regulation and government structure on implementing large-scale use of remote sensing technology in this community of users; and (5) the elaboration of alternative institutional arrangements for operational Earth Observation Data Management Systems (EODMS). It is concluded that an operational EODMS will be of most use to state, regional, and local agencies if it provides a full range of information services -- from raw data acquisition to interpretation and dissemination of final information products.
Fault Accommodation in Control of Flexible Systems
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Sparks, Dean W., Jr.; Lim, Kyong B.
1998-01-01
New synthesis techniques for the design of fault accommodating controllers for flexible systems are developed. Three robust control design strategies, static dissipative, dynamic dissipative and mu-synthesis, are used in the approach. The approach provides techniques for designing controllers that maximize, in some sense, the tolerance of the closed-loop system against faults in actuators and sensors, while guaranteeing performance robustness at a specified performance level, measured in terms of the proximity of the closed-loop poles to the imaginary axis (the degree of stability). For dissipative control designs, nonlinear programming is employed to synthesize the controllers, whereas in mu-synthesis, the traditional D-K iteration is used. To demonstrate the feasibility of the proposed techniques, they are applied to the control design of a structural model of a flexible laboratory test structure.
Automated mixed traffic vehicle design AMTV 2
NASA Technical Reports Server (NTRS)
Johnston, A. R.; Marks, R. A.; Cassell, P. L.
1982-01-01
The design of an improved and enclosed Automated Mixed Traffic Transit (AMTT) vehicle is described. AMTT is an innovative concept for low-speed tram-type transit in which suitable vehicles are equipped with sensors and controls to permit them to operate in an automated mode on existing road or walkway surfaces. The vehicle chassis and body design are presented in terms of sketches and photographs. The functional design of the sensing and control system is presented, and modifications which could be made to the baseline design for improved performance, in particular to incorporate a 20-mph capability, are also discussed. The vehicle system is described at the block-diagram-level of detail. Specifications and parameter values are given where available.