Sample records for sensing zone method

  1. Femtosecond laser-ablated Fresnel zone plate fiber probe and sensing applications

    NASA Astrophysics Data System (ADS)

    Tan, Xiaoling; Geng, Youfu; Chen, Yan; Li, Shiguo; Wang, Xinzhong

    2018-02-01

    We investigate the Fresnel zone plate (FZP) inscribed on multimode fiber endface using femtosecond laser ablation and its application in sensing. The mode transmission through fiber tips with FZP is investigated both by the beam propagation method theoretically and by measuring the beam images with a charge-coupled device camera experimentally, which show a good agreement. Such devices are tested for surface-enhanced Raman scattering (SERS) using the aqueous solution of rhodamine 6G under a Raman spectroscopy. The experimental results demonstrate that the SERS signal is enhanced benefiting from focal ability of FZP, which is a promising method for the particular biochemical spectra sensing applications.

  2. Environmental application of remote sensing methods to coastal zone land use and marine resource management, Appendices A to E. [in southeastern Virginia

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Important data were compiled for use with the Richmond-Cape Henry Environmental Laboratory (RICHEL) remote sensing project in coastal zone land use and marine resources management, and include RICHEL climatological data and sources, a land use inventory, topographic and soil maps, and gaging records for RICHEL surface waters.

  3. Environmental application of remote sensing methods to coastal zone land use and marine resource management, appendices G to J. [in southeastern Virginia

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Important data were compiled for use with the Richmond-Cape Henry Environmental Laboratory (RICHEL) remote sensing project in coastal zone land use and marine resources management, and include analyses and projections of population characteristics, formulation of soil loss prediction techniques, and sources and quantity analyses of air and water effluents.

  4. COSMOS soil water sensing affected by crop biomass and water status

    USDA-ARS?s Scientific Manuscript database

    Soil water sensing methods are widely used to characterize water content in the root zone and below, but only a few are capable of sensing soil volumes larger than a few hundred liters. Scientists with the USDA-ARS Conservation & Production Research Laboratory, Bushland, Texas, evaluated: a) the Cos...

  5. The study of active tectonic based on hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.

    2017-12-01

    As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm), which different with the spectrum of the none-fault zone. It could help us welly located the fault zone. The located result correspond well to the physical prospecting method result. The above study shown that Hypersepctral remote sensing technology provide a new method for active study.

  6. Instantaneous Coastline Extraction from LIDAR Point Cloud and High Resolution Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhoing, L.; Lai, Z.; Gan, Z.

    2018-04-01

    A new method was proposed for instantaneous waterline extraction in this paper, which combines point cloud geometry features and image spectral characteristics of the coastal zone. The proposed method consists of follow steps: Mean Shift algorithm is used to segment the coastal zone of high resolution remote sensing images into small regions containing semantic information;Region features are extracted by integrating LiDAR data and the surface area of the image; initial waterlines are extracted by α-shape algorithm; a region growing algorithm with is taking into coastline refinement, with a growth rule integrating the intensity and topography of LiDAR data; moothing the coastline. Experiments are conducted to demonstrate the efficiency of the proposed method.

  7. Application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    Clapp, J. L.

    1972-01-01

    The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.

  8. [Maximum entropy model versus remote sensing-based methods for extracting Oncomelania hupensis snail habitats].

    PubMed

    Cong-Cong, Xia; Cheng-Fang, Lu; Si, Li; Tie-Jun, Zhang; Sui-Heng, Lin; Yi, Hu; Ying, Liu; Zhi-Jie, Zhang

    2016-12-02

    To explore the technique of maximum entropy model for extracting Oncomelania hupensis snail habitats in Poyang Lake zone. The information of snail habitats and related environment factors collected in Poyang Lake zone were integrated to set up the maximum entropy based species model and generate snail habitats distribution map. Two Landsat 7 ETM+ remote sensing images of both wet and drought seasons in Poyang Lake zone were obtained, where the two indices of modified normalized difference water index (MNDWI) and normalized difference vegetation index (NDVI) were applied to extract snail habitats. The ROC curve, sensitivities and specificities were applied to assess their results. Furthermore, the importance of the variables for snail habitats was analyzed by using Jackknife approach. The evaluation results showed that the area under receiver operating characteristic curve (AUC) of testing data by the remote sensing-based method was only 0.56, and the sensitivity and specificity were 0.23 and 0.89 respectively. Nevertheless, those indices above-mentioned of maximum entropy model were 0.876, 0.89 and 0.74 respectively. The main concentration of snail habitats in Poyang Lake zone covered the northeast part of Yongxiu County, northwest of Yugan County, southwest of Poyang County and middle of Xinjian County, and the elevation was the most important environment variable affecting the distribution of snails, and the next was land surface temperature (LST). The maximum entropy model is more reliable and accurate than the remote sensing-based method for the sake of extracting snail habitats, which has certain guiding significance for the relevant departments to carry out measures to prevent and control high-risk snail habitats.

  9. Variations in the kinematics of deformation along the Zagros inclined transpression zone, Iran: Implications for defining a curved inclined transpression zone

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Partabian, Abdolreza; Faghih, Ali

    2013-03-01

    The combination of inclined collision and plate boundary shape can control the nature of deformation and the sense of shear along a transpression zone. The present study investigated the effects of a boundary zone with curvilinear shape along a transpression zone on the kinematics of deformation. The kinematics of the Zagros transpression zone varies with the orientation of the zone boundary. Detailed structural and microstructural studies showed sinistral sense of shear on the southeastern part of the Zagros inclined transpression zone (Fars Arc), but dextral sense of shear on the northwestern part of the zone. It is inferred that the both senses of shear were developed coevally under a bulk general shear, regional-scale deformation along a curved inclined transpression miming the shape of the Fras Arc of the Zagros and the reentrant of the Bandar Abbas Syntaxis. The Zagros transpression zone formed by inclined continental collision between the Afro-Arabian continent and Iranian microcontinent.

  10. Monitoring land use/cover changes on the Romanian Black Sea Coast

    NASA Astrophysics Data System (ADS)

    Zoran, L. F. V.; Dida, A. I.; Zoran, M. A.

    2014-10-01

    Remotely sensed satellite data are critical to understanding the coastal zones' physical and social systems interaction, complementing ground based methods and providing accurate wide range, objective and comparable, at widely-varying scales, synoptically data. For some environmental agreements remote sensing may provide the only viable means of compliance verification because the phenomena are monitored occurs over large and inaccessible geographic areas. The main aim of this paper was the assessment of coastal zone land cover/use changes based on fusion technique of satellite remote sensing imagery. The evaluation of coastal zone landscapes was based upon different sub-functions which refer to landscape features such as water, soil, land-use, buildings, groundwater, biotope types. A newly proposed sub-pixel mapping algorithm was applied to a set of multispectral and multitemporal satellite data for Danube Delta, Constantza and Black Sea coastal zone areas in Romania. A land cover classification and subsequent environmental quality analysis for change detection was done based on Landsat TM , Landsat ETM, QuickBird satellite images over 1990 to 2013 period of time. Spectral signatures of different terrain features have been used to separate and classify surface units of coastal zone and sub-coastal zone area.The change in the position of the coastline in Constantza area was examined in relation with the urban expansion. A distinction was made between landfill/sedimentation processes on the one hand and dredging/erosion processes on the other. We considered the Romanian Black Sea coastal zone dynamics in connection with the spatio-temporal variation of physical and biogeochemical processes and their influences on the environmental state in the near-shore area.

  11. Seismicity, shear failure and modes of deformation in deep subduction zones

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul R.; Giardini, Domenico

    1992-01-01

    The joint hypocentral determination method is used to relocate deep seismicity reported in the International Seismological Center catalog for earthquakes deeper than 400 km in the Honshu, Bonin, Mariannas, Java, Banda, and South America subduction zones. Each deep seismic zone is found to display planar features of seismicity parallel to the Harvard centroid-moment tensor nodal planes, which are identified as planes of shear failure. The sense of displacement on these planes is one of resistance to deeper penetration.

  12. A change detection method for remote sensing image based on LBP and SURF feature

    NASA Astrophysics Data System (ADS)

    Hu, Lei; Yang, Hao; Li, Jin; Zhang, Yun

    2018-04-01

    Finding the change in multi-temporal remote sensing image is important in many the image application. Because of the infection of climate and illumination, the texture of the ground object is more stable relative to the gray in high-resolution remote sensing image. And the texture features of Local Binary Patterns (LBP) and Speeded Up Robust Features (SURF) are outstanding in extracting speed and illumination invariance. A method of change detection for matched remote sensing image pair is present, which compares the similarity by LBP and SURF to detect the change and unchanged of the block after blocking the image. And region growing is adopted to process the block edge zone. The experiment results show that the method can endure some illumination change and slight texture change of the ground object.

  13. Application of Thermal Infrared Remote Sensing for Quantitative Evaluation of Crop Characteristics

    NASA Technical Reports Server (NTRS)

    Shaw, J.; Luvall, J.; Rickman, D.; Mask, P.; Wersinger, J.; Sullivan, D.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Evidence suggests that thermal infrared emittance (TIR) at the field-scale is largely a function of the integrated crop/soil moisture continuum. Because soil moisture dynamics largely determine crop yields in non-irrigated farming (85 % of Alabama farms are non-irrigated), TIR may be an effective method of mapping within field crop yield variability, and possibly, absolute yields. The ability to map yield variability at juvenile growth stages can lead to improved soil fertility and pest management, as well as facilitating the development of economic forecasting. Researchers at GHCC/MSFC/NASA and Auburn University are currently investigating the role of TIR in site-specific agriculture. Site-specific agriculture (SSA), or precision farming, is a method of crop production in which zones and soils within a field are delineated and managed according to their unique properties. The goal of SSA is to improve farm profits and reduce environmental impacts through targeted agrochemical applications. The foundation of SSA depends upon the spatial and temporal characterization of soil and crop properties through the creation of management zones. Management zones can be delineated using: 1) remote sensing (RS) data, 2) conventional soil testing and soil mapping, and 3) yield mapping. Portions of this research have concentrated on using remote sensing data to map yield variability in corn (Zea mays L.) and soybean (Glycine max L.) crops. Remote sensing data have been collected for several fields in the Tennessee Valley region at various crop growth stages during the last four growing seasons. Preliminary results of this study will be presented.

  14. Methodology of remote sensing data interpretation and geological applications. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.

    1982-01-01

    Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.

  15. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.

    PubMed

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel

    2012-08-01

    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.

  16. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  17. Environmental application of remote sensing methods to coastal zone land use and marine resources management

    NASA Technical Reports Server (NTRS)

    Goodell, H. G.

    1970-01-01

    The interrelationships of biophysical environmental systems are investigated. Social decision-making affecting the environments of a coastal megapolis are examined. Remote sensing from high altitude aircraft and satellites afforded a powerful and indepensible tool for inventory and planning for urban development. Repetitive low to medium altitude photography is also used for studying environmental dynamics, and to document the cultural impact of man on his environment.

  18. Simultaneous Observations of Beach and Surf-Zone Topography from a sUAS

    NASA Astrophysics Data System (ADS)

    Slocum, R. K.; Brodie, K. L.; Spore, N.

    2016-02-01

    Beaches and surf-zones can vary rapidly in time and space, necessitating frequent, spatially extensive observations for up-to-date knowledge on their current condition. Traditional surveying methods are expensive, can be dangerous in large wave conditions, and can lack sufficient spatial density. Existing remote sensing technologies have focused on both active sensing (airborne lidar, X-band radar) or passive sensing (electro-optical or infrared imagery) to either directly measure elevations of the beach and seafloor or exploit the optical signal of refracting and breaking waves in the surf-zone. These methods, however, can be prohibitively expensive for widespread, high temporal frequency use, or lack the spatial coverage required to quantify a large stretch of beach. UAS offer an affordable and accessible alternative, but existing COTS UAS sensor suites are not optimized for generation of bathymetry and topography at the same time. Here, we present a new approach using an inexpensive, custom multi-camera sensor designed with a wide field of view for integration on either a fixed wing of multirotor UAS platform. We introduce a processing methodology and workflow to generate a topographic pointcloud and rectified imagery of the water surface using structure from motion algorithms. The topographic pointcloud data is processed to generate a DSM of the beach and extract morphologic parameters (beach slope, dune toe, etc). Rectified imagery of the water surface is used to quantify sandbar location as well as perform a celerity based bathymetric inversion. Accuracy of this methodology is calculated by comparing processed data to lidar pointclouds, as well as photo identifiable targets on the beach and jetted into the surf zone. Funded by the USACE Military Engineering POD:A&U Program and Coastal Field Data Collection Program.

  19. Knowledge-based zonal grid generation for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E.

    1988-01-01

    Automation of flow field zoning in two dimensions is an important step towards reducing the difficulty of three-dimensional grid generation in computational fluid dynamics. Using a knowledge-based approach makes sense, but problems arise which are caused by aspects of zoning involving perception, lack of expert consensus, and design processes. These obstacles are overcome by means of a simple shape and configuration language, a tunable zoning archetype, and a method of assembling plans from selected, predefined subplans. A demonstration system for knowledge-based two-dimensional flow field zoning has been successfully implemented and tested on representative aerodynamic configurations. The results show that this approach can produce flow field zonings that are acceptable to experts with differing evaluation criteria.

  20. Modelling population distribution using remote sensing imagery and location-based data

    NASA Astrophysics Data System (ADS)

    Song, J.; Prishchepov, A. V.

    2017-12-01

    Detailed spatial distribution of population density is essential for city studies such as urban planning, environmental pollution and city emergency, even estimate pressure on the environment and human exposure and risks to health. However, most of the researches used census data as the detailed dynamic population distribution are difficult to acquire, especially in microscale research. This research describes a method using remote sensing imagery and location-based data to model population distribution at the function zone level. Firstly, urban functional zones within a city were mapped by high-resolution remote sensing images and POIs. The workflow of functional zones extraction includes five parts: (1) Urban land use classification. (2) Segmenting images in built-up area. (3) Identification of functional segments by POIs. (4) Identification of functional blocks by functional segmentation and weight coefficients. (5) Assessing accuracy by validation points. The result showed as Fig.1. Secondly, we applied ordinary least square and geographically weighted regression to assess spatial nonstationary relationship between light digital number (DN) and population density of sampling points. The two methods were employed to predict the population distribution over the research area. The R²of GWR model were in the order of 0.7 and typically showed significant variations over the region than traditional OLS model. The result showed as Fig.2.Validation with sampling points of population density demonstrated that the result predicted by the GWR model correlated well with light value. The result showed as Fig.3. Results showed: (1) Population density is not linear correlated with light brightness using global model. (2) VIIRS night-time light data could estimate population density integrating functional zones at city level. (3) GWR is a robust model to map population distribution, the adjusted R2 of corresponding GWR models were higher than the optimal OLS models, confirming that GWR models demonstrate better prediction accuracy. So this method provide detailed population density information for microscale citizen studies.

  1. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.; Istvan, L. B.; Roller, N. E. G.; Sellman, A. N.; Wagner, T. W.

    1975-01-01

    The utilization of NASA earth resource survey technology as an important aid in the solution of current problems in resource management and environmental protection in Michigan is discussed. Remote sensing techniques to aid Michigan government agencies were used to achieve the following results: (1) provide data on Great Lakes beach recession rates to establish shoreline zoning ordinances; (2) supply technical justification for public acquisition of land to establish the St. John's Marshland Recreation Area; (3) establish economical and effective methods for performing a statewide wetlands survey; (4) accomplish a variety of regional resource management actions in the Upper Peninsula; and (5) demonstrate improved soil survey methods. The project disseminated information on remote sensing technology and provided advice and assistance to a number of users in Michigan.

  2. Smartphone-based point-of-care testing of salivary α-amylase for personal psychological measurement.

    PubMed

    Zhang, Lin; Yang, Wentao; Yang, Yuankui; Liu, Hong; Gu, Zhongze

    2015-11-07

    Here we report a smartphone-based potentiometric biosensor for point-of-care testing of salivary α-amylase (sAA), which is one of the most sensitive indices of autonomic nervous system activity, and therefore a promising non-invasive biomarker for mental health. The biosensing system includes a smartphone having a sAA-detection App, a potentiometric reader and a sensing chip with preloaded reagents. The saliva sample wicks into the reaction zone on the sensing chip so that the sAA reacts with the preloaded reagents, resulting in conversion of an electron mediator Fe(CN)6(3-) to Fe(CN)6(4-). The sensing chip is then pressed by fingers to push the reaction mixture into the detection zone for the potentiometric measurement. The potential measured by the smartphone-powered potentiometric reader is sent to the smartphone App via the USB port, and converted into sAA concentration based on a calibration curve. Using our method, sAA in real human sample is quantitatively analyzed within 5 min. The results are in good agreement with that obtained using a reference method, and correlated to psychological states of the subjects.

  3. [Extracting black soil border in Heilongjiang province based on spectral angle match method].

    PubMed

    Zhang, Xin-Le; Zhang, Shu-Wen; Li, Ying; Liu, Huan-Jun

    2009-04-01

    As soils are generally covered by vegetation most time of a year, the spectral reflectance collected by remote sensing technique is from the mixture of soil and vegetation, so the classification precision based on remote sensing (RS) technique is unsatisfied. Under RS and geographic information systems (GIS) environment and with the help of buffer and overlay analysis methods, land use and soil maps were used to derive regions of interest (ROI) for RS supervised classification, which plus MODIS reflectance products were chosen to extract black soil border, with methods including spectral single match. The results showed that the black soil border in Heilongjiang province can be extracted with soil remote sensing method based on MODIS reflectance products, especially in the north part of black soil zone; the classification precision of spectral angel mapping method is the highest, but the classifying accuracy of other soils can not meet the need, because of vegetation covering and similar spectral characteristics; even for the same soil, black soil, the classifying accuracy has obvious spatial heterogeneity, in the north part of black soil zone in Heilongjiang province it is higher than in the south, which is because of spectral differences; as soil uncovering period in Northeastern China is relatively longer, high temporal resolution make MODIS images get the advantage over soil remote sensing classification; with the help of GIS, extracting ROIs by making the best of auxiliary data can improve the precision of soil classification; with the help of auxiliary information, such as topography and climate, the classification accuracy was enhanced significantly. As there are five main factors determining soil classes, much data of different types, such as DEM, terrain factors, climate (temperature, precipitation, etc.), parent material, vegetation map, and remote sensing images, were introduced to classify soils, so how to choose some of the data and quantify the weights of different data layers needs further study.

  4. Shear zone junctions: Of zippers and freeways

    NASA Astrophysics Data System (ADS)

    Passchier, Cees W.; Platt, John P.

    2017-02-01

    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  5. Multispectral analysis of ocean dumped materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1977-01-01

    Experiments conducted in the Atlantic coastal zone indicated that plumes resulting from ocean dumping of acid wastes and sewage sludge have unique spectral characteristics. Remotely sensed wide area synoptic coverage provided information on these pollution features that was not readily available from other sources. Aircraft remotely sensed photographic and multispectral scanner data were interpreted by two methods. First, qualitative analyses in which pollution features were located, mapped, and identified without concurrent sea truth and, second, quantitative analyses in which concurrently collected sea truth was used to calibrate the remotely sensed data and to determine quantitative distributions of one or more parameters in a plume.

  6. Airborne Detection of Cosmic-Ray Albedo Neutrons for Regional-Scale Surveys of Root-Zone Soil Water on Earth

    NASA Astrophysics Data System (ADS)

    Schrön, M.; Bannehr, L.; Köhli, M.; Zreda, M. G.; Weimar, J.; Zacharias, S.; Oswald, S. E.; Bumberger, J.; Samaniego, L. E.; Schmidt, U.; Zieger, P.; Dietrich, P.

    2017-12-01

    While the detection of albedo neutrons from cosmic rays became a standard method in planetary space science, airborne neutron sensing has never been conceived for hydrological research on Earth. We assessed the applicability of atmospheric neutrons to sense root-zone soil moisture averaged over tens of hectares using neutron detectors on an airborne vehicle. Large-scale quantification of near-surface water content is an urgent challenge in hydrology. Information about soil and plant water is crucial to accurately assess the risks for floods and droughts, to adjust regional weather forecasts, and to calibrate and validate the corresponding models. However, there is a lack of data at scales relevant for these applications. Most conventional ground-based geophysical instruments provide root-zone soil moisture only within a few tens of m2, while electromagnetic signals from conventional remote-sensing instruments can only penetrate the first few centimeters below surface, though at larger spatial areas.In the last couple of years, stationary and roving neutron detectors have been used to sense the albedo component of cosmic-ray neutrons, which represents the average water content within 10—15 hectares and 10—50 cm depth. However, the application of these instruments is limited by inaccessible terrain and interfering local effects from roads. To overcome these limitations, we have pioneered first simulations and experiments of such sensors in the field of airborne geophysics. Theoretical investigations have shown that the footprint increases substantially with height above ground, while local effects smooth out throughout the whole area. Campaigns with neutron detectors mounted on a lightweight gyrocopter have been conducted over areas of various landuse types including agricultural fields, urban areas, forests, flood plains, and lakes. The neutron signal showed influence of soil moisture patterns in heights of up to 180 m above ground. We found correlation with ground-truthing data, using mobile cosmic-ray neutron sensors, local soil samples, TDR, and buried wireless soil moisture monitoring networks. The work opens the path towards further systematic assessment of airborne neutron sensing, which could become a valuable addition - or even an alternative - to conventional remote-sensing methods.

  7. Enhancing a Remote-Sensing Method for Soil Moisture by Accounting for Regional Soil, Vegetation, and Climatic Characteristics

    NASA Astrophysics Data System (ADS)

    Sahaar, A. S.; Niemann, J. D.

    2016-12-01

    Accurate knowledge of root-zone soil moisture is critical for understanding the perpetuation of droughts and managing agricultural water systems. A remote-sensing method based on optical and thermal satellite imagery has been previously proposed to estimate fine-resolution (30 m) root-zone soil moisture over large regions. This method uses Landsat imagery to calculate all the components of the surface energy balance and then calculates the evaporative fraction (Λ) as the ratio of the latent heat flux to the sum of the sensible and latent heat fluxes. Root-zone soil moisture (θ) is then estimated from an empirical relationship with Λ. A similar approach has also been proposed to estimate the degree of saturation. Previous testing of this method for a semiarid region of southeastern Colorado has shown that a single relationship between θ and Λ does not apply universally. The primary objective of this study is to evaluate the impact of regional soil, vegetation, and climatic conditions on the form and strength of the Λ- θ relationship. To accomplish this goal, a global sensitivity analysis is performed using the Extended Fourier Amplitude Sensitivity Test (FAST) and a physically-based model (Hydrus-1D) that simulates both the land-surface energy balance and soil moisture dynamics. The modeling results show that, within a given climatic region, soil characteristics are very important in determining the shape of the Λ-θ relationship, while vegetation characteristics have the largest effect on the strength of the relationship. The modeling results also indicate that the annual average rainfall, which helps determine the climatic region, has a strong effect on both the form and strength of the relationship. From this analysis, the constants that define the Λ-θ relationships are estimated using regional characteristics. This approach allows the remote-sensing method to be adapted to local conditions and has the potential to greatly improve its performance.

  8. Environmental application of remote sensing methods to coastal zone land use and marine resource management. Appendix F: User's guide for advection, convection prototype. [southeastern Virginia

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A user's manual is provided for the environmental computer model proposed for the Richmond-Cape Henry Environmental Laboratory (RICHEL) application project for coastal zone land use investigations and marine resources management. The model was developed around the hydrologic cycle and includes two data bases consisting of climate and land use variables. The main program is described, along with control parameters to be set and pertinent subroutines.

  9. Radar Remote Sensing of Waves and Currents in the Nearshore Zone

    DTIC Science & Technology

    2006-01-01

    and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.

  10. Structure of pseudotachylyte vein systems as a key to co-seismic rupture dynamics: the case of Gavilgarh-Tan Shear Zone, central India

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, A.; Bhattacharjee, D.; Mukherjee, S.

    2014-04-01

    The secondary fractures associated with a major pseudotachylyte-bearing fault vein in the sheared aplitic granitoid of the Proterozoic Gavilgarh-Tan Shear Zone in central India are mapped at the outcrop scale. The fracture maps help to identify at least three different types of co-seismic ruptures, e.g., X-X', T1 and T2, which characterize sinistral-sense shearing of rocks, confined between two sinistral strike-slip faults slipping at seismic rate. From the asymmetric distribution of tensile fractures around the sinistral-sense fault vein, the direction of seismic rupture propagation is predicted to have occurred from west-southwest to east-northeast, during an ancient (Ordovician?) earthquake. Calculations of approximate co-seismic displacement on the faults and seismic moment ( M 0) of the earthquake are attempted, following the methods proposed by earlier workers. These estimates broadly agree to the findings from other studied fault zones (e.g., Gole Larghe Fault zone, Italian Alps). This study supports the proposition by some researchers that important seismological information can be extracted from tectonic pseudotachylytes of all ages, provided they are not reworked by subsequent tectonic activity.

  11. Remote Sensing Data for Coastal Zone Vulnerability Assessment- the Bay of Algiers Case

    NASA Astrophysics Data System (ADS)

    Rabehi, Walid; Guerfi, Mokhtar; Mahi, Habib

    2016-08-01

    Like many of South Mediterranean coastlines, the Algerian coastal zone and Algiers' bay specifically, is one of the most vulnerable zone. Because of the natural pressures occurring in the region such as earthquake, tsunami risk, erosion / accretion, marine intrusion, etc. Combined with other anthropogenic factors as urban sprawl, pollution, loss of biodiversity and economic value etc... A high degradation of this coastline is noticeable despite all the protection measures brought to these zones, which have sometimes increased its vulnerability.The aim of this work is to generate the Coastal Vulnerability Index (CVI) map related to erosion and flooding. This index, created by Gornitz & White (1990), was particularly focused on "physical parameters of the coast" [3], Then it was improved by McLaughlin & Cooper (2010), who added a socio-economical approach by calculating parameters like demography, land use...etc. The index is obtained by integrating in a GIS, different vulnerability factors of the coastal area.. Many relevant parameters were derived from remote sensing, combined with other data; they are analyzed with a Multicriteria method after being grouped in three sub- indexes; coastal physical characteristics, coastal forcing and socioeconomic factors, in order to produce the CVI.

  12. Use of remote sensing and a geographical information system in a national helminth control programme in Chad.

    PubMed Central

    Brooker, Simon; Beasley, Michael; Ndinaromtan, Montanan; Madjiouroum, Ester Mobele; Baboguel, Marie; Djenguinabe, Elie; Hay, Simon I.; Bundy, Don A. P.

    2002-01-01

    OBJECTIVE: To design and implement a rapid and valid epidemiological assessment of helminths among schoolchildren in Chad using ecological zones defined by remote sensing satellite sensor data and to investigate the environmental limits of helminth distribution. METHODS: Remote sensing proxy environmental data were used to define seven ecological zones in Chad. These were combined with population data in a geographical information system (GIS) in order to define a sampling protocol. On this basis, 20 schools were surveyed. Multilevel analysis, by means of generalized estimating equations to account for clustering at the school level, was used to investigate the relationship between infection patterns and key environmental variables. FINDINGS: In a sample of 1023 schoolchildren, 22.5% were infected with Schistosoma haematobium and 32.7% with hookworm. None were infected with Ascaris lumbricoides or Trichuris trichiura. The prevalence of S. haematobium and hookworm showed marked geographical heterogeneity and the observed patterns showed a close association with the defined ecological zones and significant relationships with environmental variables. These results contribute towards defining the thermal limits of geohelminth species. Predictions of infection prevalence were made for each school surveyed with the aid of models previously developed for Cameroon. These models correctly predicted that A. lumbricoides and T. trichiura would not occur in Chad but the predictions for S. haematobium were less reliable at the school level. CONCLUSION: GIS and remote sensing can play an important part in the rapid planning of helminth control programmes where little information on disease burden is available. Remote sensing prediction models can indicate patterns of geohelminth infection but can only identify potential areas of high risk for S. haematobium. PMID:12471398

  13. Distribution, abundance and seasonal flux of pteropods in the Sub-Antarctic Zone

    NASA Astrophysics Data System (ADS)

    Howard, W. R.; Roberts, D.; Moy, A. D.; Lindsay, M. C. M.; Hopcroft, R. R.; Trull, T. W.; Bray, S. G.

    2011-11-01

    Pteropods were identified from epipelagic net and trawl samples in the Sub-Antarctic Zone during the 2007 mid-summer (January 17-February 20) Sub-Antarctic Zone Sensitivity to Environmental Change (SAZ-Sense) voyage, as well as in a moored sediment trap in the same region. Overall pteropod densities during SAZ-Sense were lower than those reported for higher-latitude Southern Ocean waters. The four major contributors to the Sub-Antarctic Zone pteropod community during the SAZ-Sense voyage, Clio pyramidata forma antarctica, Clio recurva, Limacina helicina antarctica and Limacina retroversa australis, accounted for 93% of all pteropods observed. The distribution of the two dominant pteropods collected in the Sub-Antarctic Zone, L. retroversa australis and C. pyramidata forma antarctica, is strongly related to latitude and depth. L. retroversa australis is typical of cold southern (50-54°S) polar waters and C. pyramidata forma antarctica is typical of shallow (top 20 m) Sub-Antarctic Zone waters. A moored sediment trap deployed to 2100 m at 47°S, 141°E in 2003/04 showed the pteropod flux in the Sub-Antarctic Zone had late-Spring and mid-summer peaks. The diversity, abundance and distribution of pteropods collected during SAZ-Sense provide a timely benchmark against which to monitor future changes in SAZ ocean pteropod communities, particularly in light of predictions of declining aragonite saturation in the Southern Ocean by the end of the century.

  14. Designing Zoning of Remote Sensing Drones for Urban Applications: a Review

    NASA Astrophysics Data System (ADS)

    Norzailawati, M. N.; Alias, A.; Akma, R. S.

    2016-06-01

    This paper discusses on-going research related to zoning regulation for the remote sensing drone in the urban applications. Timestamped maps are presented here follow a citation-based approach, where significant information is retrieved from the scientific literature. The emergence of drones in domestic air raises lots understandable issues on privacy, security and uncontrolled pervasive surveillance that require a careful and alternative solution. The effective solution is to adopt a privacy and property rights approach that create a drone zoning and clear drone legislatures. In providing a differential trend to other reviews, this paper is not limited to drones zoning and regulations, but also, discuss on trend remote sensing drones specification in designing a drone zones. Remote sensing drone will specific according to their features and performances; size and endurance, maximum airspeed and altitude level and particular references are made to the drones range. The implementation of laws zoning could lie with the urban planners whereby, a zoning for drone could become a new tactic used to specify areas, where drones could be used, will provide remedies for the harm that arise from drones, and act as a different against irresponsible behaviour. Finally, underlines the need for next regulations on guidelines and standards which can be used as a guidance for urban decision makers to control the drones' operating, thus ensuring a quality and sustainability of resilience cities simultaneously encouraging the revolution of technology.

  15. Focal-plane electric field sensing with pupil-plane holograms

    NASA Astrophysics Data System (ADS)

    Por, Emiel H.; Keller, Christoph U.

    2016-07-01

    The direct detection and spectral characterization of exoplanets requires a coronagraph to suppress the diffracted star light. Amplitude and phase aberrations in the optical train fill the dark zone of the coronagraph with quasi-static speckles that limit the achievable contrast. Focal-plane electric field sensing, such as phase diversity introduced by a deformable mirror (DM), is a powerful tool to minimize this residual star light. The residual electric field can be estimated by sequentially applying phase probes on the DM to inject star light with a well-known amplitude and phase into the dark zone and analyzing the resulting intensity images. The DM can then be used to add light with the same amplitude but opposite phase to destructively interfere with this residual star light. Using a static phase-only pupil-plane element we create holographic copies of the point spread function (PSF), each superimposed with a certain pupil-plane phase probe. We therefore obtain all intensity images simultaneously while still retaining a central, unaltered science PSF. The electric field sensing method only makes use of the holographic copies, allowing for correction of the residual electric field while retaining the central PSF for uninterrupted science data collection. In this paper we demonstrate the feasibility of this method with numerical simulations.

  16. Individual based, long term monitoring of acacia trees in hyper arid zone: Integration of a field survey and a remote sensing approach

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Blumberg, Dan G.; Ginat, Hanan; Shalmon, Benny

    2013-04-01

    Vegetation in hyper arid zones is very sparse as is. Monitoring vegetation changes in hyper arid zones is important because any reduction in the vegetation cover in these areas can lead to a considerable reduction in the carrying capacity of the ecological system. This study focuses on the impact of climate fluctuations on the acacia population in the southern Arava valley, Israel. The period of this survey includes a sequence of dry years with no flashfloods in most of the plots that ended in two years with vast floods. Arid zone acacia trees play a significant role in the desert ecosystem by moderating the extreme environmental conditions including radiation, temperature, humidity and precipitation. The trees also provide nutrients for the desert dwellers. Therefore, acacia trees in arid zones are considered to be `keystone species', because they have major influence over both plants and animal species, i.e., biodiversity. Long term monitoring of the acacia tree population in this area can provide insights into long term impacts of climate fluctuations on ecosystems in arid zones. Since 2000, a continuous yearly based survey on the three species of acacia population in seven different plots is conducted in the southern Arava (established by Shalmon, ecologist of the Israel nature and parks authority). The seven plots representing different ecosystems and hydrological regimes. A yearly based population monitoring enabled us to determine the mortality and recruitment rate of the acacia populations as well as growing rates of individual trees. This survey provides a unique database of the acacia population dynamics during a sequence of dry years that ended in a vast flood event during the winter of 2010. A lack of quantitative, nondestructive methods to estimate and monitor stress status of the acacia trees, led us to integrate remote sensing tools (ground and air-based) along with conventional field measurements in order to develop a long term monitoring of acacia trees in hyper arid zones. This study includes further work on the development of ground based remote sensing as a new tool to monitor stress indicators as part of long term ecological research. Since acacia trees are long lived, we were able to identify individual trees in satellite images from 1968 (corona) and expand our monitoring "into the past". Remote sensing expands the spatial and temporal database and is thus a powerful tool for long term monitoring in arid zones, where access is limited and long-term ground data are rare.

  17. Urban local climate zone mapping and apply in urban environment study

    NASA Astrophysics Data System (ADS)

    He, Shan; Zhang, Yunwei; Zhang, Jili

    2018-02-01

    The city’s local climate zone (LCZ) was considered to be a powerful tool for urban climate mapping. But for cities in different countries and regions, the LCZ division methods and results were different, thus targeted researches should be performed. In the current work, a LCZ mapping method was proposed, which is convenient in operation and city planning oriented. In this proposed method, the local climate zoning types were adjusted firstly, according to the characteristics of Chinese city, that more tall buildings and high density. Then the classification method proposed by WUDAPT based on remote sensing data was performed on Xi’an city, as an example, for LCZ mapping. Combined with the city road network, a reasonable expression of the dividing results was provided, to adapt to the characteristics in city planning that land parcels are usually recognized as the basic unit. The proposed method was validated against the actual land use and construction data that surveyed in Xi’an, with results indicating the feasibility of the proposed method for urban LCZ mapping in China.

  18. Earthquake Hazard Analysis Methods: A Review

    NASA Astrophysics Data System (ADS)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  19. Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone

    NASA Astrophysics Data System (ADS)

    Moura, T.; Baldock, T. E.

    2017-04-01

    A novel remote sensing methodology to determine the dominant infragravity mechanism in the inner surf and swash zone in the field is presented. Video observations of the breakpoint motion are correlated with the shoreline motion and inner surf zone water levels to determine the relationship between the time-varying breakpoint oscillations and the shoreline motion. The results of 13 field data sets collected from three different beaches indicate that, inside the surf zone, the dominance of bound wave or breakpoint forcing is strongly dependent on the surf zone width and the type of short wave breaking. Infragravity generation by bound wave release was stronger for conditions with relatively narrow surf zones and plunging waves; breakpoint forcing was dominant for wider surf zones and spilling breaker conditions.

  20. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  1. Monitoring tetracycline through a solid-state nanopore sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Yuechuan; Chen, Yanling; Fu, Yongqi; Ying, Cuifeng; Feng, Yanxiao; Huang, Qimeng; Wang, Chao; Pei, De-Sheng; Wang, Deqiang

    2016-06-01

    Antibiotics as emerging environmental contaminants, are widely used in both human and veterinary medicines. A solid-state nanopore sensing method is reported in this article to detect Tetracycline, which is based on Tet-off and Tet-on systems. rtTA (reverse tetracycline-controlled trans-activator) and TRE (Tetracycline Responsive Element) could bind each other under the action of Tetracycline to form one complex. When the complex passes through nanopores with 8 ~ 9 nanometers in diameter, we could detect the concentrations of Tet from 2 ng/mL to 2000 ng/mL. According to the Logistic model, we could define three growth zones of Tetracycline for rtTA and TRE. The slow growth zone is 0-39.5 ng/mL. The rapid growth zone is 39.5-529.7 ng/mL. The saturated zone is > 529.7 ng/mL. Compared to the previous methods, the nanopore sensor could detect and quantify these different kinds of molecule at the single-molecule level.

  2. Aerospace remote sensing of the coastal zone for water quality and biotic productivity applications

    NASA Technical Reports Server (NTRS)

    Pritchard, E. B.; Harriss, R. C.

    1981-01-01

    Remote sensing can provide the wide area synoptic coverage of surface waters which is required for studies of such phenomena as river plume mixing, phytoplankton dynamics, and pollutant transport and fate, but which is not obtainable by conventional oceanographic techniques. The application of several remote sensors (aircraftborne and spacecraftborne multispectral scanners, passive microwave radiometers, and active laser systems) to coastal zone research is discussed. Current measurement capabilities (particulates, chlorophyll a, temperature, salinity, ocean dumped materials, other pollutants, and surface winds and roughness) are defined and the results of recent remote sensing experiments conducted in the North Atlantic coastal zone are presented. The future development of remote sensing must rely on an integrated laboratory research program in optical physics. Recent results indicate the potential for separation of particulates into subsets by remote sensors.

  3. Future remote-sensing programs

    NASA Technical Reports Server (NTRS)

    Schweickart, R. L.

    1975-01-01

    User requirements and methods developed to fulfill them are discussed. Quick-look data, data storage on computer-compatible tape, and an integrated capability for production of images from the whole class of earth-viewing satellites are among the new developments briefly described. The increased capability of LANDSAT-C and Nimbus G and the needs of specialized applications such as, urban land use planning, cartography, accurate measurement of small agricultural fields, thermal mapping and coastal zone management are examined. The affect of the space shuttle on remote sensing technology through increased capability is considered.

  4. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  5. COSMOS soil water sensor compared with EM sensor network & weighing lysimeter

    USDA-ARS?s Scientific Manuscript database

    Soil water sensing methods are widely used to characterize the root zone and below, but only a few are capable of delivering water content data with accuracy for the entire soil profile such that evapotranspiration (ET) can be determined by soil water balance and irrigations can be scheduled with mi...

  6. Oblique sinistral transpression in the Arabian shield: The timing and kinematics of a Neoproterozoic suture zone

    USGS Publications Warehouse

    Johnson, P.R.; Kattan, F.

    2001-01-01

    The Hulayfah-Ad Dafinah-Ruwah fault zone is a belt of highly strained rocks that extends in a broad curve across the northeastern Arabian shield. It is a subvertical shear zone, 5-30 km wide and over 600 km long, and is interpreted as a zone of oblique sinistral transpression that forms the suture between the Afif terrane and the Asir-Jiddah-Hijaz-Hulayfah superterrane. Available data suggest that the terranes began to converge sometime after 720 Ma, were in active contact at about 680 Ma, and were in place, with suturing complete, by 630 Ma, The fault zone was affected by sinistral horizontal and local vertical shear, and simultaneous flattening and fault-zone-parallel extension. Structures include sinistral sense-of-shear indicators, L-S tectonite, and coaxial stretching lineations and fold axes. The stretching lineations switch from subhorizontal to subvertical along the fault zone indicating significant variation in finite strain consistent with an origin by oblique transpression. The sense of shear on the fault zone suggests sinistral trajectories for the converging terranes, although extrapolating the shear sense of the suture zone to infer far-field motion must be done with caution. The amalgamation model derived from the chronologic and structural data for the fault zone modifies an existing model of terrane amalgamation and clarifies the definitions of two deformational events (the Nabitah orogeny and the Najd fault system) that are widely represented in the Arabian shield. ?? 2001 Elsevier Science B.V.

  7. Status and interconnections of selected environmental issues in the global coastal zones

    USGS Publications Warehouse

    Shi, Hua; Singh, Ashbindu

    2003-01-01

    This study focuses on assessing the state of population distribution, land cover distribution, biodiversity hotspots, and protected areas in global coastal zones. The coastal zone is defined as land within 100 km of the coastline. This study attempts to answer such questions as: how crowded are the coastal zones, what is the pattern of land cover distribution in these areas, how much of these areas are designated as protected areas, what is the state of the biodiversity hotspots, and what are the interconnections between people and coastal environment. This study uses globally consistent and comprehensive geospatial datasets based on remote sensing and other sources. The application of Geographic Information System (GIS) layering methods and consistent datasets has made it possible to identify and quantify selected coastal zones environmental issues and their interconnections. It is expected that such information provide a scientific basis for global coastal zones management and assist in policy formulations at the national and international levels.

  8. Radar Remote Sensing of Ice and Sea State and Air-Sea Interaction in the Marginal Ice Zone

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Remote Sensing of Ice and Sea State and Air-Sea...Interaction in the Marginal Ice Zone Hans C. Graber RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...scattering and attenuation process of ocean waves interacting with ice . A nautical X-band radar on a vessel dedicated to science would be used to follow the

  9. Delineation of ground water potential zones using GIS and remote sensing - A case study from midland region of Vamanapuram river basin, Kerala, India

    NASA Astrophysics Data System (ADS)

    Prasad, Geena; Vinod P., G.; John, Shaleena Elizabeth

    2018-04-01

    In a highly rugged terrain, shielded by hard crystalline rocks like that of Kerala, locating potential zones of groundwater is found to be an unenviable task. Remote sensing and Geographical information system technologies have been attempted widely to delineate the potential regions in such terrain. Geographical information system tool has been used for delineation of groundwater prospect zones in midland physiographic zone (30-200m) of Vamanapuram river basin. The terrain variables are generated using satellite imageries, SRTM DEM data of 30m resolution and SOI toposheets. The groundwater prospect zones were delineated through the integration of the reclassified raster map layers of geomorphology, slope percent, geology, land use / land cover and soil texture using the weighted overlay analysis in the GIS platform. The groundwater prospects in the study area were grouped into five classes and their distribution are; `very high/high' (8.79%), `moderate' (39.08%), and `very low / low' (52.01%). The study result of the area has been validated with water level data of dug wells and bore wells of the area. The spatial distribution map of the water level of the region is overlaid on groundwater prospect map and shows a positive correlation i.e., the water level at shallow depth in higher prospect zones and at deeper depth in poor to very poor zones. The Groundwater prospect map of midland region of Vamanapuram river basin can be used as base level information which can be further investigated with geophysical methods to locate potential well sites for the execution of water supply schemes.

  10. Movement sense determination in sheared rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, C.

    1985-01-01

    Deformation within fault zones produces sheared rocks that range from cataclasites at high structural level, to mylonites and mylonitic gneiss at deeper levels. These rocks are easily recognized and mapped in the field and the strike and dip of the fault zone established. However, present-day geometry of the fault zone does not necessarily indicate relative motion - a zone dipping at 15/sup 0/ could represent a listric normal, thrust, oblique-slip or tilted strike-slip fault. Where offset stratigraphic or lithological markers are absent, the movement sense may be determined from meso- and micro-structural features within the sheared rocks. Of prime importancemore » is the orientation of mineral elongation or stretching lineations which record the finite X direction of strain in the rock; this direction approaches the bulk movement direction with increase in strain. At mesoscopic scale the most reliable shear sense indicators are shear bands and associated features. Use of fold vergence requires caution. On a micro-structural scale, shear bands, mica fish, microfolds, rotated grains, asymmetrical augen structure and fiber growth patterns all give reliable results. Thin sections should be cut parallel to lineation and perpendicular to foliation in order to view maximum rotational component. Asymmetry of crystallographic fabric patterns gives consistent results in zones of relatively simple movement history. For high confidence shear sense determination, all structural elements should be internally consistent. If inconsistency occurs this may indicate a complex, multidirectional movement history for the fault zone.« less

  11. Quantitative evaluation of water quality in the coastal zone by remote sensing

    NASA Technical Reports Server (NTRS)

    James, W. P.

    1971-01-01

    Remote sensing as a tool in a waste management program is discussed. By monitoring both the pollution sources and the environmental quality, the interaction between the components of the exturaine system was observed. The need for in situ sampling is reduced with the development of improved calibrated, multichannel sensors. Remote sensing is used for: (1) pollution source determination, (2) mapping the influence zone of the waste source on water quality parameters, and (3) estimating the magnitude of the water quality parameters. Diffusion coefficients and circulation patterns can also be determined by remote sensing, along with subtle changes in vegetative patterns and density.

  12. Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Amer, Reda; Kusky, Timothy; El Mezayen, Ahmed

    2012-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Phased Array L-band Synthetic Aperture Radar (PALSAR) images covering the Um Rus area in the Central Eastern Desert of Egypt were evaluated for mapping geologic structure, lithology, and gold-related alteration zones. The study area is covered by Pan-African basement rocks including gabbro and granodiorite intruded into a variable mixture of metavolcanics and metasediments. The first three principal component analyses (PCA1, PCA2, PCA3) in a Red-Green-Blue (RGB) of the visible through shortwave-infrared (VNIR + SWIR) ASTER bands enabled the discrimination between lithological units. The results show that ASTER band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB identifies the lithological units and discriminates the granodiorite very well from the adjacent rock units.The granodiorites are dissected by gold-bearing quartz veins surrounded by alteration zones. The microscopic examination of samples collected from the alteration zones shows sericitic and argillic alteration zones. The Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification methods were applied using the reference spectra of the USGS spectral library. The results show that these classification methods are capable of mapping the alteration zones as indicated by field verification work. The PALSAR image was enhanced for fracture mapping using the second moment co-occurrence filter. Overlying extracted faults and alteration zone classification images show that the N30E and N-S fractures represent potential zones for gold exploration. It is concluded that the proposed methods can be used as a powerful tool for ore deposit exploration.

  13. Electrical Sensing Zone Particle Analyzer for Measuring Germination of Fungal Spores in the Presence of Other Particles1

    PubMed Central

    Santoro, T.; Stotzky, G.; Rem, L. T.

    1967-01-01

    Microscopic, respirometric, and electronic sizing methods for measuring germination of fungal spores were compared. With the electronic sizing method, early stages of germination (i.e., spore swelling) were detected long before germ tube emergence or significant changes in respiratory rates were observed. This method, which is rapid, easy, sensitive, and reproducible, also permits measuring the germination of spores when similar-size particles are present in concentrations considerably in excess of the number of spores. PMID:6069161

  14. Methods for georectification and spectral scaling of remote imagery using ArcView, ArcGIS, and ENVI

    USDA-ARS?s Scientific Manuscript database

    Remote sensing images can be used to support variable-rate (VR) application of material from aircraft. Geographic coordinates must be assigned to an image (georeferenced) so that the variable-rate system can determine where in the field to apply these inputs and adjust the system when a zone has bee...

  15. Methods for Georeferencing and Spectral Scaling of Remote Imagery using ArcView, ArcGIS, and ENVI

    USDA-ARS?s Scientific Manuscript database

    Remote sensing images can be used to support variable-rate (VR) application of material from aircraft. Geographic coordinates must be assigned to an image (georeferenced) so that the variable-rate system can determine where in the field to apply these inputs and adjust the system when a zone has bee...

  16. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  17. Sensing Urban Land-Use Patterns by Integrating Google Tensorflow and Scene-Classification Models

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Liang, H.; Li, X.; Zhang, J.; He, J.

    2017-09-01

    With the rapid progress of China's urbanization, research on the automatic detection of land-use patterns in Chinese cities is of substantial importance. Deep learning is an effective method to extract image features. To take advantage of the deep-learning method in detecting urban land-use patterns, we applied a transfer-learning-based remote-sensing image approach to extract and classify features. Using the Google Tensorflow framework, a powerful convolution neural network (CNN) library was created. First, the transferred model was previously trained on ImageNet, one of the largest object-image data sets, to fully develop the model's ability to generate feature vectors of standard remote-sensing land-cover data sets (UC Merced and WHU-SIRI). Then, a random-forest-based classifier was constructed and trained on these generated vectors to classify the actual urban land-use pattern on the scale of traffic analysis zones (TAZs). To avoid the multi-scale effect of remote-sensing imagery, a large random patch (LRP) method was used. The proposed method could efficiently obtain acceptable accuracy (OA = 0.794, Kappa = 0.737) for the study area. In addition, the results show that the proposed method can effectively overcome the multi-scale effect that occurs in urban land-use classification at the irregular land-parcel level. The proposed method can help planners monitor dynamic urban land use and evaluate the impact of urban-planning schemes.

  18. Remote-sensing applications as utilized in Florida's coastal zone management program

    NASA Technical Reports Server (NTRS)

    Worley, D. R.

    1975-01-01

    Land use maps were developed from photomaps obtained by remote sensing in order to develop a comprehensive state plan for the protection, development, and zoning of coastal regions. Only photographic remote sensors have been used in support of the coastal council's planning/management methodology. Standard photointerpretation and cartographic application procedures for map compilation were used in preparing base maps.

  19. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions.

    PubMed

    Jahanshahi-Anbuhi, Sana; Chavan, Puneet; Sicard, Clémence; Leung, Vincent; Hossain, S M Zakir; Pelton, Robert; Brennan, John D; Filipe, Carlos D M

    2012-12-07

    This paper reports the development of a method to control the flow rate of fluids within paper-based microfluidic analytical devices. We demonstrate that by simply sandwiching paper channels between two flexible films, it is possible to accelerate the flow of water through paper by over 10-fold. The dynamics of this process are such that the height of the liquid is dependent on time to the power of 1/3. This dependence was validated using three different flexible films (with markedly different contact angles) and three different fluids (water and two silicon oils with different viscosities). These covered channels provide a low-cost method for controlling the flow rate of fluid in paper channels, and can be added following printing of reagents to control fluid flow in selected fluidic channels. Using this method, we redesigned a previously published bidirectional lateral flow pesticide sensor to allow more rapid detection of pesticides while eliminating the need to run the assay in two stages. The sensor is fabricated with sol-gel entrapped reagents (indoxyl acetate in a substrate zone and acetylcholinesterase, AChE, in a sensing zone) present in an uncovered "slow" flow channel, with a second, covered "fast" channel used to transport pesticide samples to the sensing region through a simple paper-flap valve. In this manner, pesticides reach the sensing region first to allow preincubation, followed by delivery of the substrate to generate a colorimetric signal. This format results in a uni-directional device that detects the presence of pesticides two times faster than the original bidirectional sensors.

  20. Application of remote sensing to reconnaissance geologic mapping and mineral exploration

    NASA Technical Reports Server (NTRS)

    Birnie, R. W.; Dykstra, J. D.

    1978-01-01

    A method of mapping geology at a reconnaissance scale and locating zones of possible hydrothermal alteration has been developed. This method is based on principal component analysis of Landsat digital data and is applied to the desert area of the Chagai Hills, Baluchistan, Pakistan. A method for airborne spectrometric detection of geobotanical anomalies associated with prophyry Cu-Mo mineralization at Heddleston, Montana has also been developed. This method is based on discriminants in the 0.67 micron and 0.79 micron region of the spectrum.

  1. A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water

    NASA Astrophysics Data System (ADS)

    Hare, Danielle K.; Briggs, Martin A.; Rosenberry, Donald O.; Boutt, David F.; Lane, John W.

    2015-11-01

    Groundwater has a predictable thermal signature that can be used to locate discrete zones of discharge to surface water. As climate warms, surface water with strong groundwater influence will provide habitat stability and refuge for thermally stressed aquatic species, and is therefore critical to locate and protect. Alternatively, these discrete seepage locations may serve as potential point sources of contaminants from polluted aquifers. This study compares two increasingly common heat tracing methods to locate discrete groundwater discharge: direct-contact measurements made with fiber-optic distributed temperature sensing (FO-DTS) and remote sensing measurements collected with thermal infrared (TIR) cameras. FO-DTS is used to make high spatial resolution (typically m) thermal measurements through time within the water column using temperature-sensitive cables. The spatial-temporal data can be analyzed with statistical measures to reveal zones of groundwater influence, however, the personnel requirements, time to install, and time to georeference the cables can be burdensome, and the control units need constant calibration. In contrast, TIR data collection, either from handheld, airborne, or satellite platforms, can quickly capture point-in-time evaluations of groundwater seepage zones across large scales. However the remote nature of TIR measurements means they can be adversely influenced by a number of environmental and physical factors, and the measurements are limited to the surface ;skin; temperature of water features. We present case studies from a range of lentic to lotic aquatic systems to identify capabilities and limitations of both technologies and highlight situations in which one or the other might be a better instrument choice for locating groundwater discharge. FO-DTS performs well in all systems across seasons, but data collection was limited spatially by practical considerations of cable installation. TIR is found to consistently locate groundwater seepage zones above and along the streambank, but submerged seepage zones are only well identified in shallow systems (e.g. <0.5 m depth) with moderate flow. Winter data collection, when groundwater is relatively warm and buoyant, increases the water surface expression of discharge zones in shallow systems.

  2. Remote sensing of the marginal ice zone during Marginal Ice Zone Experiment (MIZEX) 83

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Campbell, W. J.; Burns, B. A.; Ellingsen, E.; Farrelly, B. A.; Gloersen, P.; Grenfell, T. C.; Hollinger, J.; Horn, D.; Johannessen, J. A.

    1984-01-01

    The remote sensing techniques utilized in the Marginal Ice Zone Experiment (MIZEX) to study the physical characteristics and geophysical processes of the Fram Strait Region of the Greenland Sea are described. The studies, which utilized satellites, aircraft, helicopters, and ship and ground-based remote sensors, focused on the use of microwave remote sensors. Results indicate that remote sensors can provide marginal ice zone characteristics which include ice edge and ice boundary locations, ice types and concentration, ice deformation, ice kinematics, gravity waves and swell (in the water and the ice), location of internal wave fields, location of eddies and current boundaries, surface currents and sea surface winds.

  3. The Use of a Geographic Information System and Remote Sensing Technology for Monitoring Land Use and Soil Carbon Change in the Subtropical Dry Forest Life Zone of Puerto Rico

    NASA Technical Reports Server (NTRS)

    Velez-Rodriguez, Linda L. (Principal Investigator)

    1996-01-01

    Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.

  4. SMERGE: A multi-decadal root-zone soil moisture product for CONUS

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Dong, J.; Tobin, K. J.; Torres, R.

    2017-12-01

    Multi-decadal root-zone soil moisture products are of value for a range of water resource and climate applications. The NASA-funded root-zone soil moisture merging project (SMERGE) seeks to develop such products through the optimal merging of land surface model predictions with surface soil moisture retrievals acquired from multi-sensor remote sensing products. This presentation will describe the creation and validation of a daily, multi-decadal (1979-2015), vertically-integrated (both surface to 40 cm and surface to 100 cm), 0.125-degree root-zone product over the contiguous United States (CONUS). The modeling backbone of the system is based on hourly root-zone soil moisture simulations generated by the Noah model (v3.2) operating within the North American Land Data Assimilation System (NLDAS-2). Remotely-sensed surface soil moisture retrievals are taken from the multi-sensor European Space Agency Climate Change Initiative soil moisture data set (ESA CCI SM). In particular, the talk will detail: 1) the exponential smoothing approach used to convert surface ESA CCI SM retrievals into root-zone soil moisture estimates, 2) the averaging technique applied to merge (temporally-sporadic) remotely-sensed with (continuous) NLDAS-2 land surface model estimates of root-zone soil moisture into the unified SMERGE product, and 3) the validation of the SMERGE product using long-term, ground-based soil moisture datasets available within CONUS.

  5. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.

    PubMed

    Kobryn, H T; Lantzke, R; Bell, R; Admiraal, R

    2015-03-01

    The installation of deep drains is an engineering approach to remediate land salinised by the influence of shallow groundwater. It is a costly treatment and its economic viability is, in part, dependent on the lateral extent to which the drain increases biological productivity by lowering water tables and soil salinity (referred to as the drains' zone of benefit). Such zones may be determined by assessing the biological productivity response of adjacent vegetation over time. We tested a multi-temporal satellite remote sensing method to analyse temporal and spatial changes in vegetation condition surrounding deep drainage sites at five locations in the Western Australian wheatbelt affected by dryland salinity-Morawa, Pithara, Beacon, Narembeen and Dumbleyung. Vegetation condition as a surrogate for biological productivity was assessed by Normalised Difference Vegetation Index (NDVI) during the peak growing season. Analysis was at the site scale within a 1000 m buffer zone from the drains. There was clear evidence of NDVI increasing with elevation, slope and distance from the drain. After accounting for elevation, slope and distance from the drain, there was a significant increase in NDVI across the five locations after installation of deep drains. Changes in NDVI after drainage were broadly consistent with measured changes at each site in groundwater levels after installation of the deep drains. However, this study assessed the lateral extent of benefit for biological productivity and gave a measure of the area of benefit along the entire length of the drain. The method demonstrated the utility of spring NDVI images for rapid and relatively simple assessment of the change in site condition after implementation of drainage, but approaches for further improvement of the procedure were identified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Zoning method for environmental engineering geological patterns in underground coal mining areas.

    PubMed

    Liu, Shiliang; Li, Wenping; Wang, Qiqing

    2018-09-01

    Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. On multidisciplinary research on the application of remote sensing to water resources problems. [Wisconsin

    NASA Technical Reports Server (NTRS)

    Clapp, J. L.

    1973-01-01

    Research objectives during 1972-73 were to: (1) Ascertain the extent to which special aerial photography can be operationally used in monitoring water pollution parameters. (2) Ascertain the effectiveness of remote sensing in the investigation of nearshore mixing and coastal entrapment in large water bodies. (3) Develop an explicit relationship of the extent of the mixing zone in terms of the outfall, effluent and water body characteristics. (4) Develop and demonstrate the use of the remote sensing method as an effective legal implement through which administrative agencies and courts can not only investigate possible pollution sources but also legally prove the source of water pollution. (5) Evaluate the field potential of remote sensing techniques in monitoring algal blooms and aquatic macrophytes, and the use of these as indicators of lake eutrophication level. (6) Develop a remote sensing technique for the determination of the location and extent of hydrologically active source areas in a watershed.

  8. Clear-sky remote sensing in the vicinity of clouds: what can be learned about aerosol changes?

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Varnai, Tamas; Wen, Guoyong

    2010-05-01

    Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.

  9. Clear-sky remote sensing in the vicinity of clouds: what we learned from MODIS and CALIPSO

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Varnai, Tamas; Wen, Guoyong; Cahalan, Robert

    Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.

  10. Prediction of supratidal Zones as turtle nesting sites using remote sensing and geographic information system, a case study in Pacitan, Southern Java Sea

    NASA Astrophysics Data System (ADS)

    Darmawan, A.; Saputra, D. K.; Wiadnya, D. G. R.; Gusmida, A. M.

    2018-04-01

    Turtles, the most threatened coastal-marine fauna, are protected through both national and global regulations. However, many of their nesting sites have been degraded in the past years. Completing natal homing, adult females emerged at night to lay-down eggs in the upper intertidal and supra-tidal zone of sandy beach from where they hatched. This study explained coastal topology of beaches usually used for nesting sites, covering 117 km coastline at Pacitan Regency, Southern Java Sea. The shift in beach morphology through times was figured out based on Landsat 8 and Sentinel 2a satellite imagery and remote sensing (GIS methods). This was combined with in-situ data on current coastline features, slope, and tide variations. Results showed a typical sandy beach, called Taman Ria Beach, a long time identified as nesting site for Lepidochelys olivacea, locally named as Penyu Lekang. Also, there was approximatelly 3.49 ha of supratidal area predicted in Taman Ria Beach according this study

  11. Separation of attogram terpenes by the capillary zone electrophoresis with fluorometric detection.

    PubMed

    Kubesová, Anna; Horká, Marie; Růžička, Filip; Slais, Karel; Glatz, Zdeněk

    2010-11-12

    An original method based on capillary zone electrophoresis with fluorimetric detection has been developed for the determination of terpenic compounds. The method is based on the separation of a terpenes dynamically labeled by the non-ionogenic tenside poly(ethylene glycol) pyrenebutanoate, which was used previously for the labeling of biopolymers. The background electrolytes were composed of taurine-Tris buffer (pH 8.4). In addition to the non-ionogenic tenside aceton and poly(ethylene glycol) were used as the additives. The capillary zone electrophoresis with fluorometric detection at the excitation wavelength 335 nm and the emission wavelength 463 nm was successfully applied to the analysis of tonalid, cholesterol, vitamin A, ergosterol, estrone and farnesol at level of 10(-17) mol L(-1). Farnesol, is produced by Candida albicans as an extracellular quorum-sensing molecule that influences expression of a number of virulence factors, especially morphogenesis and biofilm formation. It enables this yeast to cause serious nosocomial infections. The sensitivity of this method was demonstrated on the separation of farnesol directly from the cultivation medium. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Method and apparatus for electrostatically sorting biological cells

    DOEpatents

    Merrill, John T.

    1982-01-01

    An improved method of sorting biological cells in a conventional cell sorter apparatus includes generating a fluid jet containing cells to be sorted, measuring the distance between the centers of adjacent droplets in a zone thereof defined at the point where the fluid jet separates into descrete droplets, setting the distance between the center of a droplet in said separation zone and the position along said fluid jet at which the cell is optically sensed for specific characteristics to be an integral multiple of said center-to-center distance, and disabling a charger from electrically charging a specific droplet if a cell is detected by the optical sensor in a position wherein it will be in the neck area between droplets during droplet formation rather than within a predetermined distance from the droplet center.

  13. Coastal zone management

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1975-01-01

    A panel of federal and state representatives concerned with coastal zone affairs discussed their problems in this area. In addition, several demonstrations of the application of remote sensing technology to coastal zone management were described. These demonstrations were performed by several agencies in a variety of geographical areas.

  14. Sensing underground coal gasification by ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kotyrba, Andrzej; Stańczyk, Krzysztof

    2017-12-01

    The paper describes the results of research on the applicability of the ground penetrating radar (GPR) method for remote sensing and monitoring of the underground coal gasification (UCG) processes. The gasification of coal in a bed entails various technological problems and poses risks to the environment. Therefore, in parallel with research on coal gasification technologies, it is necessary to develop techniques for remote sensing of the process environment. One such technique may be the radar method, which allows imaging of regions of mass loss (voids, fissures) in coal during and after carrying out a gasification process in the bed. The paper describes two research experiments. The first one was carried out on a large-scale model constructed on the surface. It simulated a coal seam in natural geological conditions. A second experiment was performed in a shallow coal deposit maintained in a disused mine and kept accessible for research purposes. Tests performed in the laboratory and in situ conditions showed that the method provides valuable data for assessing and monitoring gasification surfaces in the UCG processes. The advantage of the GPR method is its high resolution and the possibility of determining the spatial shape of various zones and forms created in the coal by the gasification process.

  15. Abstracting of suspected illegal land use in urban areas using case-based classification of remote sensing images

    NASA Astrophysics Data System (ADS)

    Chen, Fulong; Wang, Chao; Yang, Chengyun; Zhang, Hong; Wu, Fan; Lin, Wenjuan; Zhang, Bo

    2008-11-01

    This paper proposed a method that uses a case-based classification of remote sensing images and applied this method to abstract the information of suspected illegal land use in urban areas. Because of the discrete cases for imagery classification, the proposed method dealt with the oscillation of spectrum or backscatter within the same land use category, and it not only overcame the deficiency of maximum likelihood classification (the prior probability of land use could not be obtained) but also inherited the advantages of the knowledge-based classification system, such as artificial intelligence and automatic characteristics. Consequently, the proposed method could do the classifying better. Then the researchers used the object-oriented technique for shadow removal in highly dense city zones. With multi-temporal SPOT 5 images whose resolution was 2.5×2.5 meters, the researchers found that the method can abstract suspected illegal land use information in urban areas using post-classification comparison technique.

  16. Use of remote sensing techniques for geological hazard surveys in vegetated urban regions. [multispectral imagery for lithological mapping

    NASA Technical Reports Server (NTRS)

    Stow, S. H.; Price, R. C.; Hoehner, F.; Wielchowsky, C.

    1976-01-01

    The feasibility of using aerial photography for lithologic differentiation in a heavily vegetated region is investigated using multispectral imagery obtained from LANDSAT satellite and aircraft-borne photography. Delineating and mapping of localized vegetal zones can be accomplished by the use of remote sensing because a difference in morphology and physiology results in different natural reflectances or signatures. An investigation was made to show that these local plant zones are affected by altitude, topography, weathering, and gullying; but are controlled by lithology. Therefore, maps outlining local plant zones were used as a basis for lithologic map construction.

  17. A technique for the determination of Louisiana marsh salinity zone from vegetation mapped by multispectral scanner data: A comparison of satellite and aircraft data

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1977-01-01

    Vegetation in selected study areas on the Louisiana coast was mapped using low altitude aircraft and satellite (LANDSAT) multispectral scanner data. Fresh, brackish, and saline marshes were then determined from the remotely sensed presence of dominant indicator plant associations. Such vegetational classifications were achieved from data processed through a standard pattern recognition computer program. The marsh salinity zone maps from the aircraft and satellite data compared favorably within the broad salinity regimes. The salinity zone boundaries determined by remote sensing compared favorably with those interpolated from line-transect field observations from an earlier year.

  18. Preliminary study of near surface detections at geothermal field using optic and SAR imageries

    NASA Astrophysics Data System (ADS)

    Kurniawahidayati, Beta; Agoes Nugroho, Indra; Syahputra Mulyana, Reza; Saepuloh, Asep

    2017-12-01

    Current remote sensing technologies shows that surface manifestation of geothermal system could be detected with optical and SAR remote sensing, but to assess target beneath near the surface layer with the surficial method needs a further study. This study conducts a preliminary result using Optic and SAR remote sensing imagery to detect near surface geothermal manifestation at and around Mt. Papandayan, West Java, Indonesia. The data used in this study were Landsat-8 OLI/TIRS for delineating geothermal manifestation prospect area and an Advanced Land Observing Satellite(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) level 1.1 for extracting lineaments and their density. An assumption was raised that the lineaments correlated with near surface structures due to long L-band wavelength about 23.6 cm. Near surface manifestation prospect area are delineated using visual comparison between Landsat 8 RGB True Colour Composite band 4,3,2 (TCC), False Colour Composite band 5,6,7 (FCC), and lineament density map of ALOS PALSAR. Visual properties of ground object were distinguished from interaction of the electromagnetic radiation and object whether it reflect, scatter, absorb, or and emit electromagnetic radiation based on characteristic of their molecular composition and their macroscopic scale and geometry. TCC and FCC composite bands produced 6 and 7 surface manifestation zones according to its visual classification, respectively. Classified images were then compared to a Normalized Different Vegetation Index (NDVI) to obtain the influence of vegetation at the ground surface to the image. Geothermal area were classified based on vegetation index from NDVI. TCC image is more sensitive to the vegetation than FCC image. The later composite produced a better result for identifying visually geothermal manifestation showed by detail-detected zones. According to lineament density analysis high density area located on the peak of Papandayan overlaid with zone 1 and 2 of FCC. Comparing to the extracted lineament density, we interpreted that the near surface manifestation is located at zone 1 and 2 of FCC image.

  19. The recognition of ocean red tide with hyper-spectral-image based on EMD

    NASA Astrophysics Data System (ADS)

    Zhao, Wencang; Wei, Hongli; Shi, Changjiang; Ji, Guangrong

    2008-05-01

    A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East China Sea in 2002. A set of characteristic parameters that describe absorbing crest and reflecting crest of the red tide and its recognition methods are put forward based on general picture data, with which the spectral information of certain non-dominant alga species of a red tide occurrence is analyzed for establishing the foundation to estimate the species. Comparative experiments have proved that the method is effective. Meanwhile, the transitional area between red-tide zone and non-red-tide zone can be detected with the information of thickness of algae influence, with which a red tide can be forecast.

  20. Improved method and apparatus for electrostatically sorting biological cells. [DOE patent application

    DOEpatents

    Merrill, J.T.

    An improved method of sorting biological cells in a conventional cell sorter apparatus includes generating a fluid jet containing cells to be sorted, measuring the distance between the centers of adjacent droplets in a zone thereof defined at the point where the fluid jet separates into descrete droplets, setting the distance between the center of a droplet in said separation zone and the position along said fluid jet at which the cell is optically sensed for specific characteristics to be an integral multiple of said center-to-center distance, and disabling a charger from electrically charging a specific droplet if a cell is detected by the optical sensor in a position wherein it will be in the neck area between droplets during droplet formation rather than within a predetermined distance from the droplet center.

  1. Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification

    NASA Astrophysics Data System (ADS)

    Gao, Hui

    2018-04-01

    The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.

  2. Neural Network-Based Retrieval of Surface and Root Zone Soil Moisture using Multi-Frequency Remotely-Sensed Observations

    NASA Astrophysics Data System (ADS)

    Hamed Alemohammad, Seyed; Kolassa, Jana; Prigent, Catherine; Aires, Filipe; Gentine, Pierre

    2017-04-01

    Knowledge of root zone soil moisture is essential in studying plant's response to different stress conditions since plant photosynthetic activity and transpiration rate are constrained by the water available through their roots. Current global root zone soil moisture estimates are based on either outputs from physical models constrained by observations, or assimilation of remotely-sensed microwave-based surface soil moisture estimates with physical model outputs. However, quality of these estimates are limited by the accuracy of the model representations of physical processes (such as radiative transfer, infiltration, percolation, and evapotranspiration) as well as errors in the estimates of the surface parameters. Additionally, statistical approaches provide an alternative efficient platform to develop root zone soil moisture retrieval algorithms from remotely-sensed observations. In this study, we present a new neural network based retrieval algorithm to estimate surface and root zone soil moisture from passive microwave observations of SMAP satellite (L-band) and AMSR2 instrument (X-band). SMAP early morning observations are ideal for surface soil moisture retrieval. AMSR2 mid-night observations are used here as an indicator of plant hydraulic properties that are related to root zone soil moisture. The combined observations from SMAP and AMSR2 together with other ancillary observations including the Solar-Induced Fluorescence (SIF) estimates from GOME-2 instrument provide necessary information to estimate surface and root zone soil moisture. The algorithm is applied to observations from the first 18 months of SMAP mission and retrievals are validated against in-situ observations and other global datasets.

  3. Remote Sensing of Forest Cover in Boreal Zones of the Earth

    NASA Astrophysics Data System (ADS)

    Sedykh, V. N.

    2011-12-01

    Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of historically formed ecological properties of the forest. Constantly updated information will permit the regulation of human pressure on forests to ensure that there is no reduction in their role in the biosphere processes of carbon accumulation and release. Satellite monitoring within identified landscape requires initial quantitative information about forest, about other biotic components of landscapes, and about their abiotic environment determined through both ground-based measurements and remote sensing. Thus, a kind of passport should be kept for each landscape as a starting point for subsequent updating of remote sensing monitoring of forests and their habitats and the assessment of their changes. Implementation of such monitoring across the entire boreal zone of the Earth is possible on the basis of geographical and genetic typology of forest and phyto-geomorphological method of aerospace image interpretation. Both approaches are based on the use of relationships between topography and vegetation, and were successfully applied by the author to aerospace monitoring of the forest cover of West Siberian Plain.

  4. [Defining of wheat growth management zones based on remote sensing and geostatistics].

    PubMed

    Huang, Yan; Zhu, Yan; Ma, Meng-Li; Wang, Hang; Cao, Wei-Xing; Tian, Yong-Chao

    2011-02-01

    Taking the winter wheat planting areas in Rugao City and Haian County of Jiangsu Province as test objects, the clustering defining of wheat growth management zones was made, based on the spatial variability analysis and principal component extraction of the normalized difference vegetation index (NDVI) data calculated from the HJ-1A/B CCD images (30 m resolution) at different growth stages of winter wheat, and of the soil nutrient indices (total nitrogen, organic matter, available phosphorus, and available potassium). The results showed that the integration of the NDVI at heading stage with above-mentioned soil nutrient indices produced the best results of wheat growth management zone defining, with the variation coefficients of NDVI and soil nutrient indices in each defined zone ranged in 4.5% -6.1% and 3.3% -87.9%, respectively. However, the variation coefficients were much larger when the wheat growth management zones were defined individually by NDVI or by soil nutrient indices, suggesting that the newly developed defining method could reduce the variability within the defined management zones and improve the crop management precision, and thereby, contribute to the winter wheat growth management and process simulation at regional scale.

  5. Basic Investigations for Remote Sensing of Coastal Areas.

    DTIC Science & Technology

    for the delineation and analysis of bottom features in coastal areas. The focus is on the development of remote sensing techniques for delineating and classifying bottom features in the nearshore zone.

  6. Dual-hole Photonic Crystal Fiber Intermodal Interference based Refractometer

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Guo, Xuan; Zhang, Qing; Fu, Xinghu

    2017-12-01

    A refractive-index (RI) sensor and its sensing characteristics based on intermodal interference of dual-hole Polarization Maintaining Photonic Crystal Fiber (PM-PCF) are demonstrated in this letter. The sensor works from the interference between LP01 and LP11 modes of hydrofluoric acid etched PM-PCF. The influence of corrosion zone radius on the RI sensing sensitivity is also discussed. Via choosing a 2.5 cm etched PM-PCF(the etched area radius is 27.5 μm) and 650 nm laser, the sensor exhibits the RI sensitivity of 7.48 V/RIU. The simple sensor structure and inexpensive demodulation method can make this technology for online refractive index measurement in widespread areas.

  7. Mapping Glauconite Unites with Using Remote Sensing Techniques in North East of Iran

    NASA Astrophysics Data System (ADS)

    Ahmadirouhani, R.; Samiee, S.

    2014-10-01

    Glauconite is a greenish ferric-iron silicate mineral with micaceous structure, characteristically formed in shallow marine environments. Glauconite has been used as a pigmentation agent for oil paint, contaminants remover in environmental studies and a source of potassium in plant fertilizers, and other industries. Koppeh-dagh basin is extended in Iran, Afghanistan and Turkmenistan countries and Glauconite units exist in this basin. In this research for enhancing and mapping glauconitic units in Koppeh-dagh structural zone in north east of Iran, remote sensing techniques such as Spectral Angle Mapper classification (SAM), band ratio and band composition methods on SPOT, ASTER and Landsat data in 3 steps were applied.

  8. Basic Remote Sensing Investigations for Beach Reconnaissance.

    DTIC Science & Technology

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  9. Control of final moisture content of food products baked in continuous tunnel ovens

    NASA Astrophysics Data System (ADS)

    McFarlane, Ian

    2006-02-01

    There are well-known difficulties in making measurements of the moisture content of baked goods (such as bread, buns, biscuits, crackers and cake) during baking or at the oven exit; in this paper several sensing methods are discussed, but none of them are able to provide direct measurement with sufficient precision. An alternative is to use indirect inferential methods. Some of these methods involve dynamic modelling, with incorporation of thermal properties and using techniques familiar in computational fluid dynamics (CFD); a method of this class that has been used for the modelling of heat and mass transfer in one direction during baking is summarized, which may be extended to model transport of moisture within the product and also within the surrounding atmosphere. The concept of injecting heat during the baking process proportional to the calculated heat load on the oven has been implemented in a control scheme based on heat balance zone by zone through a continuous baking oven, taking advantage of the high latent heat of evaporation of water. Tests on biscuit production ovens are reported, with results that support a claim that the scheme gives more reproducible water distribution in the final product than conventional closed loop control of zone ambient temperatures, thus enabling water content to be held more closely within tolerance.

  10. Distributed Adaptive Neural Network Output Tracking of Leader-Following High-Order Stochastic Nonlinear Multiagent Systems With Unknown Dead-Zone Input.

    PubMed

    Hua, Changchun; Zhang, Liuliu; Guan, Xinping

    2017-01-01

    This paper studies the problem of distributed output tracking consensus control for a class of high-order stochastic nonlinear multiagent systems with unknown nonlinear dead-zone under a directed graph topology. The adaptive neural networks are used to approximate the unknown nonlinear functions and a new inequality is used to deal with the completely unknown dead-zone input. Then, we design the controllers based on backstepping method and the dynamic surface control technique. It is strictly proved that the resulting closed-loop system is stable in probability in the sense of semiglobally uniform ultimate boundedness and the tracking errors between the leader and the followers approach to a small residual set based on Lyapunov stability theory. Finally, two simulation examples are presented to show the effectiveness and the advantages of the proposed techniques.

  11. Global Assessment of Volcanic Debris Hazards from Space

    NASA Technical Reports Server (NTRS)

    Watters, Robert J.

    2003-01-01

    Hazard (slope stability) assessment for different sectors of volcano edifices was successfully obtained from volcanoes in North and South America. The assessment entailed Hyperion images to locate portions of the volcano that were hydrothermally altered to clay rich rocks with zones that were also rich in alunite and other minerals. The identified altered rock zones were field checked and sampled. The rock strength of these zones was calculated from the field and laboratory measurements. Volcano modeling utilizing the distinct element method and limit equilibrium technique, with the calculated strength data was used to assess stability and deformation of the edifice. Modeling results give indications of possible failure volumes, velocities and direction. The models show the crucial role hydrothermally weak rock plays in reducing the strength o the volcano edifice and the rapid identification of weak rock through remote sensing techniques. Volcanoes were assessed in the Cascade Range (USA), Mexico, and Chile (ongoing).

  12. Impacts of Climate Anomalies on the Vegetation Patterns in the Arid and Semi-Arid Zones of Uzbekistan

    NASA Astrophysics Data System (ADS)

    Dildora, Aralova; Toderich, Kristina; Dilshod, Gafurov

    2016-08-01

    Steadily rising temperature anomalies in last decades are causing changes in vegetation patterns for sensitive to climate change in arid and semi-arid dryland ecosystems. After desiccation of the Aral Sea, Uzbekistan has been left with the challenge to develop drought and heat stress monitoring system and tools (e.g., to monitor vegetation status and/crop pattern dynamics) with using remote sensing technologies in broad scale. This study examines several climate parameters, NDVI and drought indexes within geostatistical method to predict further vegetation status in arid and semi-arid zones of landscapes. This approaches aimed to extract and utilize certain variable environmental data (temperature and precipitation) for assessment and inter-linkages of vegetation cover dynamics, specifically related to predict degraded and recovered zones or desertification process in the drylands due to scarcity of water resources and high risks of climate anomalies in fragile ecosystem of Uzbekistan.

  13. [Assessment on the ecological suitability in Zhuhai City, Guangdong, China, based on minimum cumulative resistance model].

    PubMed

    Li, Jian-fei; Li, Lin; Guo, Luo; Du, Shi-hong

    2016-01-01

    Urban landscape has the characteristics of spatial heterogeneity. Because the expansion process of urban constructive or ecological land has different resistance values, the land unit stimulates and promotes the expansion of ecological land with different intensity. To compare the effect of promoting and hindering functions in the same land unit, we firstly compared the minimum cumulative resistance value of promoting and hindering functions, and then looked for the balance of two landscape processes under the same standard. According to the ecology principle of minimum limit factor, taking the minimum cumulative resistance analysis method under two expansion processes as the evaluation method of urban land ecological suitability, this research took Zhuhai City as the study area to estimate urban ecological suitability by relative evaluation method with remote sensing image, field survey, and statistics data. With the support of ArcGIS, five types of indicators on landscape types, ecological value, soil erosion sensitivity, sensitivity of geological disasters, and ecological function were selected as input parameters in the minimum cumulative resistance model to compute urban ecological suitability. The results showed that the ecological suitability of the whole Zhuhai City was divided into five levels: constructive expansion prohibited zone (10.1%), constructive expansion restricted zone (32.9%), key construction zone (36.3%), priority development zone (2.3%), and basic cropland (18.4%). Ecological suitability of the central area of Zhuhai City was divided into four levels: constructive expansion prohibited zone (11.6%), constructive expansion restricted zone (25.6%), key construction zone (52.4%), priority development zone (10.4%). Finally, we put forward the sustainable development framework of Zhuhai City according to the research conclusion. On one hand, the government should strictly control the development of the urban center area. On the other hand, the secondary urban center area such as Junchang and Doumen need improve the public infrastructure to relieve the imbalance between eastern and western development in Zhuhai City.

  14. Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology.

    PubMed

    Mogaji, Kehinde Anthony; Lim, Hwee San

    2017-07-01

    This study integrates the application of Dempster-Shafer-driven evidential belief function (DS-EBF) methodology with remote sensing and geographic information system techniques to analyze surface and subsurface data sets for the spatial prediction of groundwater potential in Perak Province, Malaysia. The study used additional data obtained from the records of the groundwater yield rate of approximately 28 bore well locations. The processed surface and subsurface data produced sets of groundwater potential conditioning factors (GPCFs) from which multiple surface hydrologic and subsurface hydrogeologic parameter thematic maps were generated. The bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training to 30% (9 wells) for model testing. Application results of the DS-EBF relationship model algorithms of the surface- and subsurface-based GPCF thematic maps and the bore well locations produced two groundwater potential prediction (GPP) maps based on surface hydrologic and subsurface hydrogeologic characteristics which established that more than 60% of the study area falling within the moderate-high groundwater potential zones and less than 35% falling within the low potential zones. The estimated uncertainty values within the range of 0 to 17% for the predicted potential zones were quantified using the uncertainty algorithm of the model. The validation results of the GPP maps using relative operating characteristic curve method yielded 80 and 68% success rates and 89 and 53% prediction rates for the subsurface hydrogeologic factor (SUHF)- and surface hydrologic factor (SHF)-based GPP maps, respectively. The study results revealed that the SUHF-based GPP map accurately delineated groundwater potential zones better than the SHF-based GPP map. However, significant information on the low degree of uncertainty of the predicted potential zones established the suitability of the two GPP maps for future development of groundwater resources in the area. The overall results proved the efficacy of the data mining model and the geospatial technology in groundwater potential mapping.

  15. Applications of ISES for coastal zone studies

    NASA Technical Reports Server (NTRS)

    Bartlett, D. S.

    1990-01-01

    In contrast to the discipline- and process-oriented topics addressed, coastal zone studies are defined geographically by the special circumstances inherent in the interface between land and water. The characteristics of coastal zones which make them worthy of separate consideration are: (1) the dynamic nature of natural and anthropogenic processes taking place; (2) the relatively restricted spatial domain of the narrow land/water interface; and (3) the large proportion of the Earth's population living within coastal zones, and the resulting extreme pressure on natural and human resources. These characteristics place special constraints and priorities on remote sensing applications, even though the applications themselves bear close relation to those addressed by other elements of this report (e.g., oceans, ice, vegetation/land use). The discussion which follows first describes the suite of remote sensing activities relevant to coastal zone studies. Potential Information Sciences Experiment System (ISES) experiments will then be addressed within two general categories: applications of real-time data transmission and applications of onboard data acquisition and processing.

  16. Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation

    NASA Astrophysics Data System (ADS)

    Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro

    2017-01-01

    Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.

  17. Monitoring wetland of Poyang Lake National Nature Reserve zone by remote sensing

    NASA Astrophysics Data System (ADS)

    Le, Xinghua; Fan, Zhewen; Fang, Yu; Yu, Yuping; Zhang, Yun

    2008-10-01

    In order to monitor the wetland of the Poyang Lake national nature reserve zone, we selected three different seasons TM image data which were achieved individually in April 23th in 1988, Nov 2nd in 1994, and Jan 1st in 2000. Based on the band 5, band 4 and band 3of TM image, we divided the land coverage of Poyang Lake national nature reserve zone into three classes--water field, meadow field and the other land use by rule of maximum likelihood. Using the outcome data to make the statistical analysis, combining with the GIS overlay function operation, the land coverage changes of the Poyang Lake national nature reserve zone can be achieved. Clipped by the Poyang Lake national nature reserve zone boundary, the land coverage changes of Poyang Lake national nature reserve zone in three different years can be attained. Compared with the different wetland coverage data in year of 1988, 1994, 2000, the Poyang Lake national nature reserve zone eco-environment can be inferred from it. After analyzing the land coverage changes data, we draw the conclusion that the effort of Poyang Lake national nature reserve administration bureaucracy has worked well in certain sense.

  18. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a netmore » groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.« less

  19. Bringing the Coastal Zone into Finer Focus

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Hooker, S. B.; Kudela, R. M.; Morrow, J. H.; Torres-Perez, J. L.; Palacios, S. L.; Negrey, K.; Dungan, J. L.

    2015-12-01

    Measurements over extents from submeter to 10s of meters are critical science requirements for the design and integration of remote sensing instruments for coastal zone research. Various coastal ocean phenomena operate at different scales (e.g. meters to kilometers). For example, river plumes and algal blooms have typical extents of 10s of meters and therefore can be resolved with satellite data, however, shallow benthic ecosystem (e.g., coral, seagrass, and kelp) biodiversity and change are best studied at resolutions of submeter to meter, below the pixel size of typical satellite products. The delineation of natural phenomena do not fit nicely into gridded pixels and the coastal zone is complicated by mixed pixels at the land-sea interface with a range of bio-optical signals from terrestrial and water components. In many standard satellite products, these coastal mixed pixels are masked out because they confound algorithms for the ocean color parameter suite. In order to obtain data at the land/sea interface, finer spatial resolution satellite data can be achieved yet spectral resolution is sacrificed. This remote sensing resolution challenge thwarts the advancement of research in the coastal zone. Further, remote sensing of benthic ecosystems and shallow sub-surface phenomena are challenged by the requirements to sense through the sea surface and through a water column with varying light conditions from the open ocean to the water's edge. For coastal waters, >80% of the remote sensing signal is scattered/absorbed due to the atmospheric constituents, sun glint from the sea surface, and water column components. In addition to in-water measurements from various platforms (e.g., ship, glider, mooring, and divers), low altitude aircraft outfitted with high quality bio-optical radiometer sensors and targeted channels matched with in-water sensors and higher altitude platform sensors for ocean color products, bridge the sea-truth measurements to the pixels acquired from satellite and high altitude platforms. We highlight a novel NASA airborne calibration, validation, and research capability for addressing the coastal remote sensing resolution challenge.

  20. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.

    PubMed

    Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi

    2015-03-15

    Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate statistical modeling techniques, demonstrated advantages for estimating the TP concentration in a large lake and had a strong potential for universal application for the TP concentration estimation in large lake waters worldwide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) data

    USGS Publications Warehouse

    Hilley, G.E.; Delong, S.; Prentice, C.; Blisniuk, K.; Arrowsmith, J.R.

    2010-01-01

    Models of fault scarp morphology have been previously used to infer the relative age of different fault scarps in a fault zone using labor-intensive ground surveying. We present a method for automatically extracting scarp morphologic ages within high-resolution digital topography. Scarp degradation is modeled as a diffusive mass transport process in the across-scarp direction. The second derivative of the modeled degraded fault scarp was normalized to yield the best-fitting (in a least-squared sense) scarp height at each point, and the signal-to-noise ratio identified those areas containing scarp-like topography. We applied this method to three areas along the San Andreas Fault and found correspondence between the mapped geometry of the fault and that extracted by our analysis. This suggests that the spatial distribution of scarp ages may be revealed by such an analysis, allowing the recent temporal development of a fault zone to be imaged along its length.

  2. Assessment of eco-environmental quality of Western Taiwan Straits Economic Zone.

    PubMed

    Ma, He; Shi, Longyu

    2016-05-01

    Regional eco-environmental quality is the key and foundation to the sustainable socio-economic development of a region. Eco-environmental quality assessment can reveal the capacity of sustainable socio-economic development in a region and the degree of coordination between social production and the living environment. As part of a new development strategy for Fujian Province, the Western Taiwan Straits Economic Zone (hereafter referred to as the Economic Zone) provides an important guarantee for the development of China's southeastern coastal area. Based on ecological and remote sensing data on the Economic Zone obtained in 2000, 2005, and 2010, this study investigated county-level administrative regions with a comprehensive index of eco-environmental indicators. An objective weighting method was used to determine the importance of each indicator. This led to the development of an indicator system to assess the eco-environmental quality of the economic zone. ArcGIS software was used to assess the eco-environmental quality of the economic zone based on each indicator. The eco-environmental quality index (EQI) of the county-level administrative regions was calculated. The overall eco-environmental quality of the Economic Zone during the period studied is described and analyzed. The results show that the overall eco-environmental quality of the Economic Zone is satisfactory, but significant intraregional differences still exist. The key to improving the overall eco-environmental quality of this area is to restore vegetation and preserve biodiversity.

  3. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    USGS Publications Warehouse

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  4. A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Gholami, Ali; Norouzi, Gholam-Hossain

    2013-03-01

    Previous studies have shown that a well-known multi-criteria decision making (MCDM) technique called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE II) to explore porphyry copper deposits can prioritize the ground-based exploratory evidential layers effectively. In this paper, the PROMETHEE II method is applied to airborne geophysical (potassium radiometry and magnetometry) data, geological layers (fault and host rock zones), and various extracted alteration layers from remote sensing images. The central Iranian volcanic-sedimentary belt is chosen for this study. A stable downward continuation method as an inverse problem in the Fourier domain using Tikhonov and edge-preserving regularizations is proposed to enhance magnetic data. Numerical analysis of synthetic models show that the reconstructed magnetic data at the ground surface exhibits significant enhancement compared to the airborne data. The reduced-to-pole (RTP) and the analytic signal filters are applied to the magnetic data to show better maps of the magnetic anomalies. Four remote sensing evidential layers including argillic, phyllic, propylitic and hydroxyl alterations are extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in order to map the altered areas associated with porphyry copper deposits. Principal component analysis (PCA) based on six Enhanced Thematic Mapper Plus (ETM+) images is implemented to map iron oxide layer. The final mineral prospectivity map based on desired geo-data set indicates adequately matching of high potential zones with previous working mines and copper deposits.

  5. Remote sensing of the Fram Strait marginal ice zone

    USGS Publications Warehouse

    Shuchman, R.A.; Burns, B.A.; Johannessen, O.M.; Josberger, E.G.; Campbell, W.J.; Manley, T.O.; Lannelongue, N.

    1987-01-01

    Sequential remote sensing images of the Fram Strait marginal ice zone played a key role in elucidating the complex interactions of the atmosphere, ocean, and sea ice. Analysis of a subset of these images covering a 1-week period provided quantitative data on the mesoscale ice morphology, including ice edge positions, ice concentrations, floe size distribution, and ice kinematics. The analysis showed that, under light to moderate wind conditions, the morphology of the marginal ice zone reflects the underlying ocean circulation. High-resolution radar observations showed the location and size of ocean eddies near the ice edge. Ice kinematics from sequential radar images revealed an ocean eddy beneath the interior pack ice that was verified by in situ oceanographic measurements.

  6. Applying vegetation indices to detect high water table zones in humid warm-temperate regions using satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Koide, Kaoru; Koike, Katsuaki

    2012-10-01

    This study developed a geobotanical remote sensing method for detecting high water table zones using differences in the conditions of forest trees induced by groundwater supply in a humid warm-temperate region. A new vegetation index (VI) termed added green band NDVI (AgbNDVI) was proposed to discriminate the differences. The AgbNDVI proved to be more sensitive to water stress on green vegetation than existing VIs, such as SAVI and EVI2, and possessed a strong linear correlation with the vegetation fraction. To validate a proposed vegetation index method, a 23 km2 study area was selected in the Tono region of Gifu prefecture, central Japan. The AgbNDVI values were calculated from atmospheric corrected SPOT HRV data. To correctly extract high VI points, the influence factors on forest tree growth were identified using the AgbNDVI values, DEM and forest type data; the study area was then divided into 555 domains chosen from a combination of the influence factors and forest types. Thresholds for extracting high VI points were defined for each domain based on histograms of AgbNDVI values. By superimposing the high VI points on topographic and geologic maps, most high VI points are clearly located on either concave or convex slopes, and are found to be proximal to geologic boundaries—particularly the boundary between the Pliocene gravel layer and the Cretaceous granite, which should act as a groundwater flow path. In addition, field investigations support the correctness of the high VI points, because they are located around groundwater seeps and in high water table zones where the growth increments and biomass of trees are greater than at low VI points.

  7. Analysis of contact zones from whole field isochromatics using reflection photoelasticity

    NASA Astrophysics Data System (ADS)

    Hariprasad, M. P.; Ramesh, K.

    2018-06-01

    This paper discusses the method for evaluating the unknown contact parameters by post processing the whole field fringe order data obtained from reflection photoelasticity in a nonlinear least squares sense. Recent developments in Twelve Fringe Photoelasticity (TFP) for fringe order evaluation from single isochromatics is utilized for the whole field fringe order evaluation. One of the issues in using TFP for reflection photoelasticity is the smudging of isochromatic data at the contact zone. This leads to error in identifying the origin of contact, which is successfully addressed by implementing a semi-automatic contact point refinement algorithm. The methodologies are initially verified for benchmark problems and demonstrated for two application problems of turbine blade and sheet pile contacting interfaces.

  8. Passive microwave remote sensing of salinity in coastal zones

    NASA Technical Reports Server (NTRS)

    Swift, Calvin T.; Blume, Hans-Juergen C.; Kendall, Bruce M.

    1987-01-01

    The theory of measuring coastal-zone salinity from airborne microwave radiometers is developed. The theory, as presented, shows that precision measurements of salinity favor the lower microwave frequencies. To this end, L- and S-Band systems were built, and the flight results have shown that accuracies of at least one part per thousand were achieved.The aircraft results focus on flights conducted over the Chesapeake Bay and the mouth of the Savanna River off the Georgia Coast. This paper presents no new work, but rather summarizes the capabilities of the remote sensing technique.

  9. Ocean color imagery: Coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.

    1975-01-01

    Investigations into the feasibility of sensing ocean color from high altitude for determination of chlorophyll and sediment distributions were carried out using sensors on NASA aircraft, coordinated with surface measurements carried out by oceanographic vessels. Spectrometer measurements in 1971 and 1972 led to development of an imaging sensor now flying on a NASA U-2 and the Coastal Zone Color Scanner to fly on Nimbus G in 1978. Results of the U-2 effort show the imaging sensor to be of great value in sensing pollutants in the ocean.

  10. Advanced Understanding of Convection Initiation and Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification over the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, V.; Behrendt, A.; Branch, O.; Schwitalla, T.

    2016-12-01

    A prerequisite for significant precipitation amounts is the presence of convergence zones. These are due to land surface heterogeneity, orography as well as mesoscale and synoptic scale circulations. Only, if these convergence zones are strong enough and interact with an upper level instability, deep convection can be initiated. For the understanding of convection initiation (CI) and optimal cloud seeding deployment, it is essential that these convergence zones are detected before clouds are developing in order to preempt the decisive microphysical processes for liquid water and ice formation. In this presentation, a new project on Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL) is introduced, which is funded by the United Arab Emirates Rain Enhancement Program (UAEREP). This project has two research components. The first component focuses on an improved detection and forecasting of convergence zones and CI by a) operation of scanning Doppler lidar and cloud radar systems during two seasonal field campaigns in orographic terrain and over the desert in the UAE, and b) advanced forecasting of convergence zones and CI with the WRF-NOAHMP model system. Nowcasting to short-range forecasting of convection will be improved by the assimilation of Doppler lidar and the UAE radar network data. For the latter, we will apply a new model forward operator developed at our institute. Forecast uncertainties will be assessed by ensemble simulations driven by ECMWF boundaries. The second research component of OCAL will study whether artificial modifications of land surface heterogeneity are possible through plantations or changes of terrain, leading to an amplification of convergence zones. This is based on our pioneering work on high-resolution modeling of the impact of plantations on weather and climate in arid regions. A specific design of the shape and location of plantations can lead to the formation of convergence zones, which can strengthen convergent flows already existing in the region of interest, thus amplifying convection and precipitation. We expect that this method can be successfully applied in regions with pre-existing land-surface heterogeneity and orography such as coastal areas with land-sea breezes and the Al Hajar Mountain range.

  11. Determination of pumper truck intervention ratios in zones with high fire potential by using geographical information system

    NASA Astrophysics Data System (ADS)

    Aricak, Burak; Kucuk, Omer; Enez, Korhan

    2014-01-01

    Fighting forest fires not only depends on the forest type, topography, and weather conditions, but is also closely related to the technical properties of fire-fighting equipment. Firefighting is an important part of fire management planning. However, because of the complex nature of forests, creating thematic layers to generate potential fire risk maps is difficult. The use of remote sensing data has become an efficient method for the discrete classification of potential fire risks. The study was located in the Central District of the Kastamonu Regional Forest Directorate, covering an area of 24,320 ha, 15,685 ha of which is forested. On the basis of stand age, crown closure, and tree species, the sizes and distributions of potential fire risk zones within the study area were determined using high-resolution GeoEye satellite imagery and geographical information system data. The status of pumper truck intervention in zones with high fire risk and the sufficiency of existing forest roads within an existing forest network were discussed based on combustible matter characteristics. Pumper truck intervention was 83% for high-risk zones, 79% for medium-risk zones, and 78% for low-risk zones. A pumper truck intervention area map along existing roads was also created.

  12. Exploration for gold mineralization in the Arabo Nubian Shield: Using remote sensing Approach

    NASA Astrophysics Data System (ADS)

    Ramadan, Talaat

    2013-04-01

    In the southern part of the Eastern Desert of Egypt, Landsat Thematic Mapper (ETM+) data and fieldwork was combined with mineralogical and geochemical investigations in order to detect and characterize alteration zones within Pan-African rocks. The processing of Landsat ETM+ data using ratioing (bands 5/7,5/1,4/3 in Red, Green, Blue) showed two different types of alteration zones (type l and 2). Type 1 is close to the ophiolitic ultramafic rocks and type 2 is located within island-arc related metavolcanic rocks at the study areas. Both of these alteration zones are concordant with the main NW-SE structural trend. Mineralogical studies indicate that the alteration zones of type 1 consist mainly of calcite, ankerite, magnesite, dolomite and quartz. Chromian spinel, pyrite, and Ni-bearing sulphides (gersdorffite, pentlandite and polydymite) are the main ore minerals within this zone. Alteration zones of type 2 are strongly potassium-enriched and pyrophyllite, kaolinite, illite, gypsum and quartz occur. The brecciated quartz-veins associated with theses alteration zones consist of quartz, Fe-hydroxides, hematite and native gold. The gold content reaches up to 5 g/t in the alteration zone, while it extends up to 50 g/t in the quartz veins. This study presents a mineralogical characterization of such zones and demonstrates the utility of orbital remote sensing for finding unknown alteration zones in the Eastern Desert and other arid areas with similar host rock lithologies.

  13. Study on the extraction method of tidal flat area in northern Jiangsu Province based on remote sensing waterlines

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanyuan; Gao, Zhiqiang; Liu, Xiangyang; Xu, Ning; Liu, Chaoshun; Gao, Wei

    2016-09-01

    Reclamation caused a significant dynamic change in the coastal zone, the tidal flat zone is an unstable reserve land resource, it has important significance for its research. In order to realize the efficient extraction of the tidal flat area information, this paper takes Rudong County in Jiangsu Province as the research area, using the HJ1A/1B images as the data source, on the basis of previous research experience and literature review, the paper chooses the method of object-oriented classification as a semi-automatic extraction method to generate waterlines. Then waterlines are analyzed by DSAS software to obtain tide points, automatic extraction of outer boundary points are followed under the use of Python to determine the extent of tidal flats in 2014 of Rudong County, the extraction area was 55182hm2, the confusion matrix is used to verify the accuracy and the result shows that the kappa coefficient is 0.945. The method could improve deficiencies of previous studies and its available free nature on the Internet makes a generalization.

  14. Applicability of Channel flow as an extrusion mechanism of the Higher Himalayan Shear Zone from Sutlej, Zanskar, Dhauliganga and Goriganga Sections, Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumyajit

    2010-05-01

    Applicability of Channel flow as an extrusion mechanism of the Higher Himalayan Shear Zone from Sutlej, Zanskar, Dhauliganga and Goriganga Sections, Indian Himalaya Soumyajit Mukherjee Department of Earth Sciences, Indian Institute of Technology Bombay Powai, Mumbai- 400076, INDIA, e-mail: soumyajitm@gmail.com Mukherjee & Koyi (1,2) evaluated the applicability of channel flow extrusion of the Higher Himalayan Shear Zone (HHSZ) in the Zanskar and the Sutlej sections based on field- and micro-structural studies, analytical- and analog models. Further work on the Dhauliganga and the Goriganga sections of the HHSZ reveal complicated structural geology that is untenable to explain simply in terms of channel flow. For example, in the former section, flexure slip folds exist in a zone spatially separated from the upper strand of the South Tibetan Detachment System (STDSU). On the other hand, in the later section, an STDSU- in the sense of Mukherjee and Koyi (1)- is absent. Instead, a steep extensional shear zone with northeasterly dipping shear plane cuts the pre-existing shear fabrics throughout the HHSZ. However, the following common structural features in the HHSZ were observed in these sections. (1) S-C fabrics are the most ubiquitous ductile shear sense indicators in field. (2) Brittle shearing along the preexisting ductile primary shear planes in a top-to-SW sense. (3) Less ubiquitous ductile compressional shearing in the upper part of the shear zone including the STDSU. (4) A phase of local brittle-ductile extension throughout the shear zone as revealed by boudins of various morphologies. (5) The shear zone is divisible into a southern non-migmatitic and a northern migmatitic zone. No special structural dissimilarity is observed across this lithological boundary. Keywords: Channel flow, Extrusion, Higher Himalaya, Structural Geology, Shear zone, Deformation References 1. Mukherjee S, Koyi HA (in press) Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. International Journal of Earth Sciences. 2. Mukherjee S, Koyi HA (in press) Higher Himalayan Shear Zone, Zanskar Indian Himalaya: microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. International Journal of Earth Sciences.

  15. Geographic Information System Software to Remodel Population Data Using Dasymetric Mapping Methods

    USGS Publications Warehouse

    Sleeter, Rachel; Gould, Michael

    2007-01-01

    The U.S. Census Bureau provides decadal demographic data collected at the household level and aggregated to larger enumeration units for anonymity purposes. Although this system is appropriate for the dissemination of large amounts of national demographic data, often the boundaries of the enumeration units do not reflect the distribution of the underlying statistical phenomena. Conventional mapping methods such as choropleth mapping, are primarily employed due to their ease of use. However, the analytical drawbacks of choropleth methods are well known ranging from (1) the artificial transition of population at the boundaries of mapping units to (2) the assumption that the phenomena is evenly distributed across the enumeration unit (when in actuality there can be significant variation). Many methods to map population distribution have been practiced in geographic information systems (GIS) and remote sensing fields. Many cartographers prefer dasymetric mapping to map population because of its ability to more accurately distribute data over geographic space. Similar to ?choropleth maps?, a dasymetric map utilizes standardized data (for example, census data). However, rather than using arbitrary enumeration zones to symbolize population distribution, a dasymetric approach introduces ancillary information to redistribute the standardized data into zones relative to land use and land cover (LULC), taking into consideration actual changing densities within the boundaries of the enumeration unit. Thus, new zones are created that correlate to the function of the map, capturing spatial variations in population density. The transfer of data from census enumeration units to ancillary-driven homogenous zones is performed by a process called areal interpolation.

  16. A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator); Liggett, M. L.; Childs, J. F.

    1973-01-01

    There are no author-identified significant results in this report. Research progress in applications of ERTS-1 MSS imagery in study of Basin-Range tectonics is summarized. Field reconnaissance of ERTS-1 image anomalies has resulted in recognition of previously unreported fault zones and regional structural control of volcanic and plutonic activity. NIMBUS, Apollo 9, X-15, U-2, and SLAR imagery are discussed with specific applications, and methods of image enhancement and analysis employed in the research are summarized. Areas studied and methods employed in geologic field work are outlined.

  17. A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Liggett, M. A.; Childs, J. F.

    1973-01-01

    The author has identified the following significant results. Research progress in applications of ERTS-1 MSS imagery to study of Basin-Range tectonics is summarized. Field reconnaissance of ERTS-1 image anomalies has resulted in recognition of previously unreported fault zones and regional structural control of volcanic and plutonic activity. Nimbus, Apollo 9, X-15, U-2, and SIAR imagery are discussed with specific applications, and methods of image enhancement and analysis employed in the research are summarized. Field areas studied and methods employed in geologic field work are outlined.

  18. [Application of hyperspectral remote sensing in research on ecological boundary in north farming-pasturing transition in China].

    PubMed

    Wang, Hong-Mei; Wang, Kun; Xie, Ying-Zhong

    2009-06-01

    Studies of ecological boundaries are important and have become a rapidly evolving part of contemporary ecology. The ecotones are dynamic and play several functional roles in ecosystem dynamics, and the changes in their locations can be used as an indicator of environment changes, and for these reasons, ecotones have recently become a focus of investigation of landscape ecology and global climate change. As the interest in ecotone increases, there is an increased need for formal techniques to detect it. Hence, to better study and understand the functional roles and dynamics of ecotones in ecosystem, we need quantitative methods to characterize them. In the semi-arid region of northern China, there exists a farming-pasturing transition resulting from grassland reclamation and deforestation. With the fragmentation of grassland landscape, the structure and function of the grassland ecosystem are changing. Given this perspective; new-image processing approaches are needed to focus on transition themselves. Hyperspectral remote sensing data, compared with wide-band remote sensing data, has the advantage of high spectral resolution. Hyperspectral remote sensing can be used to visualize transitional zones and to detect ecotone based on surface properties (e. g. vegetation, soil type, and soil moisture etc). In this paper, the methods of hyperspectral remote sensing information processing, spectral analysis and its application in detecting the vegetation classifications, vegetation growth state, estimating the canopy biochemical characteristics, soil moisture, soil organic matter etc are reviewed in detail. Finally the paper involves further application of hyperspectral remote sensing information in research on local climate in ecological boundary in north farming-pasturing transition in China.

  19. Distribution of chlorophyll and harmful algal blooms (HABs): A review on space based studies in the coastal environments of Chinese marginal seas

    NASA Astrophysics Data System (ADS)

    Wei, Guifeng; Tang, Danling; Wang, Sufen

    Monitoring of spatial and temporal distribution of chlorophyll (Chl-a) concentrations in the aquatic milieu is always challenging and often interesting. However, the recent advancements in satellite digital data play a significant role in providing outstanding results for the marine environmental investigations. The present paper is aimed to review ‘remote sensing research in Chinese seas’ within the period of 24 years from 1978 to 2002. Owing to generalized distributional pattern, the Chl-a concentrations are recognized high towards northern Chinese seas than the southern. Moreover, the coastal waters, estuaries, and upwelling zones always exhibit relatively high Chl-a concentrations compared with offshore waters. On the basis of marine Chl-a estimates obtained from satellite and other field measured environmental parameters, we have further discussed on the applications of satellite remote sensing in the fields of harmful algal blooms (HABs), primary production and physical oceanographic currents of the regional seas. Concerned with studies of HABs, satellite remote sensing proved more advantageous than any other conventional methods for large-scale applications. Probably, it may be the only source of authentic information responsible for the evaluation of new research methodologies to detect HABs. At present, studies using remote sensing methods are mostly confined to observe algal bloom occurrences, hence, it is essential to coordinate the mechanism of marine ecological and oceanographic dynamic processes of HABs using satellite remote sensing data with in situ measurements of marine environmental parameters. The satellite remote sensing on marine environment and HABs is believed to have a great improvement with popular application of technology.

  20. Organelle sedimentation in gravitropic roots of Limnobium is restricted to the elongation zone

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Kim, D.; Stein, B.

    1994-01-01

    Roots of the aquatic angiosperm Limnobium spongia (Bosc) Steud. were evaluated by light and electron microscopy to determine the distribution of organelle sedimentation towards gravity. Roots of Limnobium are strongly gravitropic. The rootcap consists of only two layers of cells. Although small amyloplasts are present in the central cap cells, no sedimentation of any organelle, including amyloplasts, was found. In contrast, both amyloplasts and nuclei sediment consistently and completely in cells of the elongation zone. Sedimentation occurs in one cell layer of the cortex just outside the endodermis. Sedimentation of both amyloplasts and nuclei begins in cells that are in their initial stages of elongation and persists at least to the level of the root where root hairs emerge. This is the first modern report of the presence of sedimentation away from, but not in, the rootcap. It shows that sedimentation in the rootcap is not necessary for gravitropic sensing in at least one angiosperm. If amyloplast sedimentation is responsible for gravitropic sensing, then the site of sensing in Limnobium roots is the elongation zone and not the rootcap. These data do not necessarily conflict with the hypothesis that sensing occurs in the cap in other roots, since Limnobium roots are exceptional in rootcap origin and structure, as well as in the distribution of organelle sedimentation. Similarly, if nuclear sedimentation is involved in gravitropic sensing, then nuclear mass would function in addition to, not instead of, that of amyloplasts.

  1. Environmental factors governing population dynamics of rangeland grasshoppers: The first application of GIS and remote sensing to acridology in Russia

    NASA Astrophysics Data System (ADS)

    Latchininsky, Alexandre Vsevolodovich

    Grasshoppers (Orthoptera: Acrididae) are pests of rangeland and crops in temperate Eurasia (Siberia) where landscapes are dominated by short-grass vegetation and have many common features with the prairies of the Great Plains of North America. The zone of economic importance of grasshoppers in Siberia is localized in its southern part between 50° and 55°N and 68° and 132°E. In particular, grasshopper infestations are concentrated in close proximity to Lake Baikal, the world's deepest lake, holding one-fifth of the Earth's total fresh water supply. From a biodiversity perspective, Lake Baikal is unparalleled because >80% of its 1,085 plant and 1,550 animal species are endemic. Broad-scale pesticide applications in the zone close to the Baikal ecosystem can seriously aggravate the hazards of environmental pollution, with potentially catastrophic consequences on a vast scale. Specific composition and density of grasshopper communities were studied over a variety of habitats. Of about 50 local grasshopper species, two gomphocerines, Aeropus sibiricus and Chorthippus albomarginatus, dominated grasshopper communities in dry and mesic habitats, respectively. These species accounted for the most of the crop damage during recent outbreaks in the 1990s requiring large-scale insecticidal control. Annual fluctuations of grasshopper infestations appeared to track changes in air temperature and summer precipitation, but only a synthetic "Aridity index" was statistically significant. Spatial distribution of historic grasshopper infestations was studied using GIS (ERDAS IMAGINERTM) and remote sensing (Landsat TM satellite imagery) and was found to be significantly clumped. The highest grasshopper densities were associated with dry grasslands in transitional zones between foothills and valleys characterized by a particular elevation (600--650 m), soil type (sod-forest, or pararendzina), amount of April--October precipitation (250 mm) and degree of grazing (moderate). Identification of such zones allows for the efficient concentration of management resources and optimization of spatial structuring of grasshopper survey. Development of GIS and remote sensing techniques in applied acridology will contribute to progress towards more rational, economically sound and environmentally viable methods of grasshopper pest management.

  2. The Zoning of Forest Fire Potential of Gulestan Province Forests Using Granular Computing and MODIS Images

    NASA Astrophysics Data System (ADS)

    Jalilzadeh Shadlouei, A.; Delavar, M. R.

    2013-09-01

    There are many vegetation in Iran. This is because of extent of Iran and its width. One of these vegetation is forest vegetation most prevalent in Northern provinces named Guilan, Mazandaran, Gulestan, Ardebil as well as East Azerbaijan. These forests are always threatened by natural forest fires so much so that there have been reports of tens of fires in recent years. Forest fires are one of the major environmental as well as economic, social and security concerns in the world causing much damages. According to climatology, forest fires are one of the important factors in the formation and dispersion of vegetation. Also, regarding the environment, forest fires cause the emission of considerable amounts of greenhouse gases, smoke and dust into the atmosphere which in turn causes the earth temperature to rise up and are unhealthy to humans, animals and vegetation. In agriculture droughts are the usual side effects of these fires. The causes of forest fires could be categorized as either Human or Natural Causes. Naturally, it is impossible to completely contain forest fires; however, areas with high potentials of fire could be designated and analysed to decrease the risk of fires. The zoning of forest fire potential is a multi-criteria problem always accompanied by inherent uncertainty like other multi-criteria problems. So far, various methods and algorithm for zoning hazardous areas via Remote Sensing (RS) and Geospatial Information System (GIS) have been offered. This paper aims at zoning forest fire potential of Gulestan Province of Iran forests utilizing Remote Sensing, Geospatial Information System, meteorological data, MODIS images and granular computing method. Granular computing is part of granular mathematical and one way of solving multi-criteria problems such forest fire potential zoning supervised by one expert or some experts , and it offers rules for classification with the least inconsistencies. On the basis of the experts' opinion, 6 determinative criterias contributing to forest fires have been designated as follows: vegetation (NDVI), slope, aspect, temperature, humidity and proximity to roadways. By applying these variables on several tentatively selected areas and formation information tables and producing granular decision tree and extraction of rules, the zoning rules (for the areas in question) were extracted. According to them the zoning of the entire area has been conducted. The zoned areas have been classified into 5 categories: high hazard, medium hazard (high), medium hazard (low), low hazard (high), low hazard (low). According to the map, the zoning of most of the areas fall into the low hazard (high) class while the least number of areas have been classified as low hazard (low). Comparing the forest fires in these regions in 2010 with the MODIS data base for forest fires, it is concluded that areas with high hazards of forest fire have been classified with a 64 percent precision. In other word 64 percent of pixels that are in high hazard classification are classified according to MODIS data base. Using this method we obtain a good range of Perception. Manager will reduce forest fire concern using precautionary proceeding on hazardous area.

  3. Remote sensing in the mixing zone. [water pollution in Wisconsin

    NASA Technical Reports Server (NTRS)

    Villemonte, J. R.; Hoopes, J. A.; Wu, D. S.; Lillesand, T. M.

    1973-01-01

    Characteristics of dispersion and diffusion as the mechanisms by which pollutants are transported in natural river courses were studied with the view of providing additional data for the establishment of water quality guidelines and effluent outfall design protocols. Work has been divided into four basic categories which are directed at the basic goal of developing relationships which will permit the estimation of the nature and extent of the mixing zone as a function of those variables which characterize the outfall structure, the effluent, and the river, as well as climatological conditions. The four basic categories of effort are: (1) the development of mathematical models; (2) laboratory studies of physical models; (3) field surveys involving ground and aerial sensing; and (4) correlation between aerial photographic imagery and mixing zone characteristics.

  4. An electrochemical albumin-sensing system utilizing microfluidic technology

    NASA Astrophysics Data System (ADS)

    Huang, Chao-June; Lu, Chiu-Chun; Lin, Thong-Yueh; Chou, Tse-Chuan; Lee, Gwo-Bin

    2007-04-01

    This paper reports an integrated microfluidic chip capable of detecting the concentration of albumin in urine by using an electrochemical method in an automatic format. The integrated microfluidic chip was fabricated by using microelectromechanical system techniques. The albumin detection was conducted by using the electrochemical sensing method, in which the albumin in urine was detected by measuring the difference of peak currents between a bare reference electrode and an albumin-adsorption electrode. To perform the detection of the albumin in an automatic format, pneumatic microvalves and micropumps were integrated onto the microfluidic chip. The albumin sample and interference mixture solutions such as homovanillic acid, dopamine, norepinephrine and epinephrine were first stored in one of the three reservoirs. Then the solution comprising the albumin sample and interference solutions was transported to pass through the detection zone utilizing the pneumatic micropump. Experimental data showed that the developed system can successfully detect the concentration of the albumin in the existence of interference materials. When compared with the traditional albumin-sensing method, smaller amounts of samples were required to perform faster detection by using the integrated microfluidic chip. Additionally, the microfluidic chip integrated with pneumatic micropumps and microvalves facilitates the transportation of the samples in an automatic mode with lesser human intervention. The development of the integrated microfluidic albumin-sensing system may be promising for biomedical applications. Preliminary results of the current paper were presented at the 2nd International Meeting on Microsensors and Microsystems 2006 (National Cheng Kung University, Tainan, Taiwan, 15-18 January).

  5. Spacecraft particulate sizing spectrometer

    NASA Technical Reports Server (NTRS)

    Miranda, Henry A., Jr.

    1992-01-01

    An evaluation prototype device is described, together with conclusions and several recommendations for follow-on flight hardware. The device detects individual particles crossing an external sensing zone, and produces a histogram displaying the size distribution of particles sensed, over the nominal range of 5 to 50 microns. The output is totally independent of the particle refractive index, and is also largely unaffected by particle shape. The reported diameters are in terms of the equivalent sphere, as judged by the scattered light intercepted by the receiving channels, which develop signals whenever a particle crosses the beam of illumination in the sensing zone. Supporting evidence for the latter assertion is discussed on the basis of experimental test data for non-spherical particulates. Also included is a technical appendix which presents theoretical arguments that provide a firm foundation for this assertion.

  6. The potential of volunteered geographic information to investigate peri-urbanization in the conservation zone of Mexico City.

    PubMed

    Heider, Katharina; Lopez, Juan Miguel Rodriguez; Scheffran, Jürgen

    2018-03-14

    Due to the availability of Web 2.0 technologies, volunteered geographic information (VGI) is on the rise. This new type of data is available on many topics and on different scales. Thus, it has become interesting for research. This article deals with the collective potential of VGI and remote sensing to detect peri-urbanization in the conservation zone of Mexico City. On the one hand, remote sensing identifies horizontal urban expansion, and on the other hand, VGI of ecological complaints provides data about informal settlements. This enables the combination of top-down approaches (remote sensing) and bottom-up approaches (ecological complaints). Within the analysis, we identify areas of high urbanization as well as complaint densities and bring them together in a multi-scale analysis using Geographic Information Systems (GIS). Furthermore, we investigate the influence of settlement patterns and main roads on the peri-urbanization process in Mexico City using OpenStreetMap. Peri-urbanization is detected especially in the transition zone between the urban and rural (conservation) area and near main roads as well as settlements.

  7. CRESTA : consortium on remote sensing of freight flows in congested border crossings and work zones.

    DOT National Transportation Integrated Search

    2011-03-01

    "The objectives of this project were to develop and demonstrate the use of remote sensing and : geospatial information technologies to provide useful information for applications related to : the times trucks incur in various activities (activity...

  8. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  9. Evaluating nitrogen removal by vegetation uptake using satellite image time series in riparian catchments.

    PubMed

    Wang, Xuelei; Wang, Qiao; Yang, Shengtian; Zheng, Donghai; Wu, Chuanqing; Mannaerts, C M

    2011-06-01

    Nitrogen (N) removal by vegetation uptake is one of the most important functions of riparian buffer zones in preventing non-point source pollution (NSP), and many studies about N uptake at the river reach scale have proven the effectiveness of plants in controlling nutrient pollution. However, at the watershed level, the riparian zones form dendritic networks and, as such, may be the predominant spatially structured feature in catchments and landscapes. Thus, assessing the functions of riparian system at the basin scale is important. In this study, a new method coupling remote sensing and ecological models was used to assess the N removal by riparian vegetation on a large spatial scale. The study site is located around the Guanting reservoir in Beijing, China, which was abandoned as the source water system for Beijing due to serious NSP in 1997. SPOT 5 data was used to map the land cover, and Landsat-5 TM time series images were used to retrieve land surface parameters. A modified forest nutrient cycling and biomass model (ForNBM) was used to simulate N removal, and the modified net primary productivity (NPP) module was driven by remote sensing image time series. Besides the remote sensing data, the necessary database included meteorological data, soil chemical and physical data and plant nutrient data. Pot and plot experiments were used to calibrate and validate the simulations. Our study has proven that, by coupling remote sensing data and parameters retrieval techniques to plant growth process models, catchment scale estimations of nitrogen uptake rates can be improved by spatial pixel-based modelling. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust

    NASA Astrophysics Data System (ADS)

    Kirst, Frederik; Leiss, Bernd

    2017-01-01

    Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.

  11. Comparison of in-situ and optical current-meter estimates of rip-current circulation

    NASA Astrophysics Data System (ADS)

    Moulton, M.; Chickadel, C. C.; Elgar, S.; Raubenheimer, B.

    2016-12-01

    Rip currents are fast, narrow, seaward flows that transport material from the shoreline to the shelf. Spatially and temporally complex rip current circulation patterns are difficult to resolve with in-situ instrument arrays. Here, high spatial-resolution estimates of rip current circulation from remotely sensed optical images of the sea surface are compared with in-situ estimates of currents in and near channels ( 1- to 2-m deep and 30-m wide) dredged across the surf zone. Alongshore flows are estimated using the optical current-meter method, and cross-shore flows are derived with the assumption of continuity. The observations span a range of wave conditions, tidal elevations, and flow patterns, including meandering alongshore currents near and in the channel, and 0.5 m/s alongshore flows converging at a 0.8 m/s rip jet in the channel. In addition, the remotely sensed velocities are used to investigate features of the spatially complex flow patterns not resolved by the spatially sparse in-situ sensors, including the spatial extent of feeder current zones and the width, alongshore position, and cross-shore extent of rip current jets. Funded by ASD(R&E) and NSF.

  12. [Classification of Priority Area for Soil Environmental Protection Around Water Sources: Method Proposed and Case Demonstration].

    PubMed

    Li, Lei; Wang, Tie-yu; Wang, Xiaojun; Xiao, Rong-bo; Li, Qi-feng; Peng, Chi; Han, Cun-liang

    2016-04-15

    Based on comprehensive consideration of soil environmental quality, pollution status of river, environmental vulnerability and the stress of pollution sources, a technical method was established for classification of priority area of soil environmental protection around the river-style water sources. Shunde channel as an important drinking water sources of Foshan City, Guangdong province, was studied as a case, of which the classification evaluation system was set up. In detail, several evaluation factors were selected according to the local conditions of nature, society and economy, including the pollution degree of heavy metals in soil and sediment, soil characteristics, groundwater sensitivity, vegetation coverage, the type and location of pollution sources. Data information was mainly obtained by means of field survey, sampling analysis, and remote sensing interpretation. Afterwards, Analytical Hierarchy Process (AHP) was adopted to decide the weight of each factor. The basic spatial data layers were set up respectively and overlaid based on the weighted summation assessment model in Geographical Information System (GIS), resulting in a classification map of soil environmental protection level in priority area of Shunde channel. Accordingly, the area was classified to three levels named as polluted zone, risky zone and safe zone, which respectively accounted for 6.37%, 60.90% and 32.73% of the whole study area. Polluted zone and risky zone were mainly distributed in Lecong, Longjiang and Leliu towns, with pollutants mainly resulted from the long-term development of aquaculture and the industries containing furniture, plastic constructional materials and textile and clothing. In accordance with the main pollution sources of soil, targeted and differentiated strategies were put forward. The newly established evaluation method could be referenced for the protection and sustainable utilization of soil environment around the water sources.

  13. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    DTIC Science & Technology

    2011-09-30

    measurements from the Surf Zone Optics (SZO) experiment in September, 2011. Since optical reflectance saturates for surf zone bubble depths greater than...Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents...pilot experiment at Duck, NC during the Surf Zone Optics DRI Experiment in September, 2010 and participated in planning of the upcoming RIVET DRI

  14. Preliminary determination of geothermal working area based on Thermal Infrared and Synthetic Aperture Radar (SAR) remote sensing

    NASA Astrophysics Data System (ADS)

    Agoes Nugroho, Indra; Kurniawahidayati, Beta; Syahputra Mulyana, Reza; Saepuloh, Asep

    2017-12-01

    Remote sensing is one of the methods for geothermal exploration. This method can be used to map the geological structures, manifestations, and predict the geothermal potential area. The results from remote sensing were used as guidance for the next step exploration. Analysis of target in remote sensing is an efficient method to delineate geothermal surface manifestation without direct contact to the object. The study took a place in District Merangin, Jambi Province, Indonesia. The area was selected due to existing of Merangin volcanic complex composed by Mounts Sumbing and Hulunilo with surface geothermal manifestations presented by hot springs and hot pools. The location of surface manifestations could be related with local and regional structures of Great Sumatra Fault. The methods used in this study were included identification of volcanic products, lineament extraction, and lineament density quantification. The objective of this study is to delineate the potential zones for sitting the geothermal working site based on Thermal Infrared and Synthetic Aperture Radar (SAR) sensors. The lineament-related to geological structures, was aimed for high lineament density, is using ALOS - PALSAR (Advanced Land Observing Satellite - The Phased Array type L-band Synthetic Aperture Radar) level 1.1. The Normalized Difference Vegetation Index (NDVI) analysis was used to predict the vegetation condition using Landsat 8 OLI-TIRS (The Operational Land Imager - Thermal Infrared Sensor). The brightness temperature was extracted from TIR band to estimate the surface temperature. Geothermal working area identified based on index overlay method from extracted parameter of remote sensing data was located at the western part of study area (Graho Nyabu area). This location was identified because of the existence of high surface temperature about 30°C, high lineament density about 4 - 4.5 km/km2 and low NDVI values less than 0.3.

  15. The hydrocarbon accumulations mapping in crystalline rocks by mobile geophysical methods

    NASA Astrophysics Data System (ADS)

    Nesterenko, A.

    2013-05-01

    Sedimentary-migration origin theory of hydrocarbons dominates nowadays. However, a significant amount of hydrocarbon deposits were discovered in the crystalline rocks, which corroborates the theory of non-organic origin of hydrocarbons. During the solving of problems of oil and gas exploration in crystalline rocks and arrays so-called "direct" methods can be used. These methods include geoelectric methods of forming short-pulsed electromagnetic field (FSPEF) and vertical electric-resonance sounding (VERS) (FSPEF-VERS express-technology). Use of remote Earth sounding (RES) methods is also actual. These mobile technologies are extensively used during the exploration of hydrocarbon accumulations in crystalline rocks, including those within the Ukrainian crystalline shield. The results of explorations Four anomalous geoelectric zones of "gas condensate reservoir" type were quickly revealed as a result of reconnaissance prospecting works (Fig. 1). DTA "Obukhovychi". Anomaly was traced over a distance of 4 km. Approximate area is 12.0 km2. DTA"Korolevskaya". Preliminary established size of anomalous zone is 10.0 km2. The anomalous polarized layers of gas and gas-condensate type were determined. DTA "Olizarovskaya". Approximate size of anomaly is about 56.0 km2. This anomaly is the largest and the most intense. DTA "Druzhba". Preliminary estimated size of anomaly is 16.0 km2. Conclusions Long experience of a successful application of non-classical geoelectric methods for the solving of variety of practical tasks allow one to state their contribution to the development of a new paradigm of geophysical researches. Simultaneous usage of the remote sensing data processing and interpretation method and FSPEF and VERS technologies can essentially optimize and speed up geophysical work. References 1. S.P. Levashov. Detection and mapping of anomalies of "hydrocarbon deposit" type in the fault zones of crystalline arrays by geoelectric methods. / S.P. Levashov, N.A. Yakymchuk, I.N. Korchagin, V.V. Prilukov, J.N. Yakymchuk / / Oil. Gas. Novations. - 2011/4. - P. 10-17. Introduction. (in Russian); Fig. 1. The map of "gas condensate reservoir" type anomalous geoelectric zones on the area of human settlements Malin: 1 - a scale of the intensity of anomalous response, 2 - the zones of tectonic disturbances.

  16. Remote sensing for control of tsetse flies

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.

    1976-01-01

    Remotely sensed information is discussed which has potential for aiding in the control or eradication of tsetse flies. Data are available from earth resources meteorological, and manned satellites, from airborne sensors, and possibly from data collection platforms. A new zone discrimination technique, based on data from meteorological satellites may also allow the identification of zones hospitable to one or another species of tsetse. For background, a review is presented of the vegetation of Tanzania and Zanzibar, and illustrations presented of automatic processing of data from these areas. In addition, a review is presented of the applicability of temperature data to tsetse areas.

  17. Norwegian remote sensing experiment in a marginal ice zone

    USGS Publications Warehouse

    Farrelly, B.; Johannessen, J.A.; Svendsen, E.; Kloster, K.; Horjen, I.; Matzler, C.; Crawford, J.; Harrington, R.; Jones, L.; Swift, C.; Delnore, V.E.; Cavalieri, D.; Gloersen, P.; Hsiao, S.V.; Shemdin, O.H.; Thompson, T.W.; Ramseier, R.O.; Johannessen, O.M.; Campbell, W.J.

    1983-01-01

    The Norwegian Remote Sensing Experiment in the marginal ice zone north of Svalbard took place in fall 1979. Coordinated passive and active microwave measurements were obtained from shipborne, airborne, and satellite instruments together with in situ observations. The obtained spectra of emissivity (frequency range, 5 to 100 gigahertz) should improve identification of ice types and estimates of ice concentration. Mesoscale features along the ice edge were revealed by a 1.215-gigahertz synthetic aperture radar. Ice edge location by the Nimbus 7 scanning multichannel microwave radiometer was shown to be accurate to within 10 kilometers.

  18. Image masking using polygon fills and morphological transformations

    NASA Technical Reports Server (NTRS)

    Simpson, James J.

    1992-01-01

    Polygon-fill operations and morphological transformations are effective computational tools for the land-masking and coastline-correction preprocessing operations often applied to AVHRR data prior to oceanographic applications. These masking operations, in conjunction with cloud-screening techniques, can be used on such other oceanographically significant remote-sensing data as those of the Coastal Zone Color Scanner, GOES, and Landsat. The sensitivity of the methods to regional variations in atmospheric conditions and land-ocean temperature gradients is assessed for tropical, midlatitude, and high latitude regions.

  19. High resolution remote sensing information identification for characterizing uranium mineralization setting in Namibia

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-Lin; Wang, Jun-hu; Zhou, Mi; Huang, Yan-ju; Xuan, Yan-xiu; Wu, Ding

    2011-11-01

    The modern Earth Observation System (EOS) technology takes important role in the uranium geological exploration, and high resolution remote sensing as one of key parts of EOS is vital to characterize spectral and spatial information of uranium mineralization factors. Utilizing satellite high spatial resolution and hyperspectral remote sensing data (QuickBird, Radarsat2, ASTER), field spectral measurement (ASD data) and geological survey, this paper established the spectral identification characteristics of uranium mineralization factors including six different types of alaskite, lower and upper marble of Rössing formation, dolerite, alkali metasomatism, hematization and chloritization in the central zone of Damara Orogen, Namibia. Moreover, adopted the texture information identification technology, the geographical distribution zones of ore-controlling faults and boundaries between the different strata were delineated. Based on above approaches, the remote sensing geological anomaly information and image interpretation signs of uranium mineralization factors were extracted, the metallogenic conditions were evaluated, and the prospective areas have been predicted.

  20. Management Zone Delineation for Winegrape Selective Harvesting Based on Fluorescence-Sensor Mapping of Grape Skin Anthocyanins.

    PubMed

    Agati, Giovanni; Soudani, Kamel; Tuccio, Lorenza; Fierini, Elisa; Ben Ghozlen, Naïma; Fadaili, El Mostafa; Romani, Annalisa; Cerovic, Zoran G

    2018-06-13

    We analyzed the potential of non-destructive optical sensing of grape skin anthocyanins for selective harvesting in precision viticulture. We measured anthocyanins by a hand-held fluorescence optical sensor on a 7 ha Sangiovese vineyard plot in central Italy. Optical indices obtained by the sensor were calibrated for the transformation in units of anthocyanins per berry mass, i.e., milligrams per gram of berry fresh weight. A full protocol for optimal data filtration, interpolation, and homogeneous zone delineation based on a very large number of optical measurements is proposed. Both the single signal-based fluorescence index (ANTH R ) and the two signal ratio-based index (ANTH RG ) can be used for Sangiovese grapes. Significant separations of grape-quality batches were obtained by several methods of data classification and zone delineations. Basic statistical criteria were as efficient as the K-means clustering. The best separations were obtained for three classes of grape skin anthocyanin.

  1. Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau, Mark William

    Processes of controlling submerged combustion melters, and systems for carrying out the methods. One process includes feeding vitrifiable material into a melter vessel, the melter vessel including a fluid-cooled refractory panel in its floor, ceiling, and/or sidewall, and heating the vitrifiable material with a burner directing combustion products into the melting zone under a level of the molten material in the zone. Burners impart turbulence to the molten material in the melting zone. The fluid-cooled refractory panel is cooled, forming a modified panel having a frozen or highly viscous material layer on a surface of the panel facing the moltenmore » material, and a sensor senses temperature of the modified panel using a protected thermocouple positioned in the modified panel shielded from direct contact with turbulent molten material. Processes include controlling the melter using the temperature of the modified panel. Other processes and systems are presented.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Satiprasad; Dhar, Anirban, E-mail: anirban.dhar@gmail.com; Kar, Amlanjyoti

    Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, windmore » speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology. - Highlights: • Environmental vulnerability zone identification based on Grey Analytic Hierarchy Process (AHP) • The effectiveness evaluation by means of a grey clustering method with support from AHP • Use of grey approach eliminates the excessive dependency on the experience of experts.« less

  3. A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Norouzi, Gholam-Hossain

    2016-04-01

    This work presents the promising application of three variants of TOPSIS method (namely the conventional, adjusted and modified versions) as a straightforward knowledge-driven technique in multi criteria decision making processes for data fusion of a broad exploratory geo-dataset in mineral potential/prospectivity mapping. The method is implemented to airborne geophysical data (e.g. potassium radiometry, aeromagnetic and frequency domain electromagnetic data), surface geological layers (fault and host rock zones), extracted alteration layers from remote sensing satellite imagery data, and five evidential attributes from stream sediment geochemical data. The central Iranian volcanic-sedimentary belt in Kerman province at the SE of Iran that is embedded in the Urumieh-Dokhtar Magmatic Assemblage arc (UDMA) is chosen to integrate broad evidential layers in the region of prospect. The studied area has high potential of ore mineral occurrences especially porphyry copper/molybdenum and the generated mineral potential maps aim to outline new prospect zones for further investigation in future. Two evidential layers of the downward continued aeromagnetic data and its analytic signal filter are prepared to be incorporated in fusion process as geophysical plausible footprints of the porphyry type mineralization. The low values of the apparent resistivity layer calculated from the airborne frequency domain electromagnetic data are also used as an electrical criterion in this investigation. Four remote sensing evidential layers of argillic, phyllic, propylitic and hydroxyl alterations were extracted from ASTER images in order to map the altered areas associated with porphyry type deposits, whilst the ETM+ satellite imagery data were used as well to map iron oxide layer. Since potassium alteration is generally the mainstay of porphyry ore mineralization, the airborne potassium radiometry data was used. The geochemical layers of Cu/B/Pb/Zn elements and the first component of PCA analysis were considered as powerful traces to prepare final maps. The conventional, adjusted and modified variants of the TOPSIS method produced three mineral potential maps, in which the outputs indicate adequately matching of high potential zones with previous working and active mines in the region.

  4. Development of a solid surface fluorescence-based sensing system for aluminium monitoring in drinking water.

    PubMed

    Reyes, J F García; Barrales, P Ortega; Díaz, A Molina

    2005-03-15

    A novel, single and robust solid surface fluorescence-based sensing device assembled in a continuous flow system has been developed for the determination of trace amounts of aluminium in water samples. The proposed method is based on the transient immobilization of the target species on an appropriate active solid sensing zone (C(18) silica gel). The target species was the fluorogenic chelate, formed as a result of the on-line complexation of Al(III) with chromotropic acid (CA) at pH 4.1. The fluorescence of the complex is continuously monitored at an emission wavelength of 390nm upon excitation at 361nm. The instrumental, chemical and flow-injection variables affecting the fluorescence signal were carefully investigated and optimized. After selecting the most suitable conditions, the sensing system was calibrated in the range 10-500mugl(-1), obtaining a detection limit of 2.6mugl(-1), and a R.S.D. of 2.2%, with a sampling frequency of 24h(-1). In addition, the selectivity of the proposed methodology was evaluated by performing interference studies with different cations and anions which could affect the analytical response. Finally, the proposed method, which meets the EU regulations regarding the aluminium content in drinking waters, was satisfactorily applied to different water samples, with recoveries between 97 and 105%. The simplicity, low cost and easy operation are the main advantages of the present procedure.

  5. LANDSAT's role in state coastal management programs. [New Jersey and Texas

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The framework for state programs found in the Coastal Zone Management Act and examples of state opportunities to use LANDSAT are presented. Present activities suggest that LANDSAT remote sensing can be an efficient, effective tool for land use planning and coastal zone management.

  6. A thermal-based remote sensing modeling system for estimating daily evapotranspiration from field to global scales

    USDA-ARS?s Scientific Manuscript database

    Thermal-infrared (TIR) remote sensing of land surface temperature (LST) provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition as well as providing useful information for constraining prognostic land surface models. This presentation d...

  7. Moving forward on remote sensing of soil salinity at regional scale

    USDA-ARS?s Scientific Manuscript database

    Soil salinity undermines global agriculture by reducing crop yield and soil quality. Irrigation management can help control salinity levels within the root-zone. To best allocate water resources, accurate regional-scale inventories are needed. Two remote sensing approaches are currently used to moni...

  8. A fractal concentration area method for assigning a color palette for image representation

    NASA Astrophysics Data System (ADS)

    Cheng, Qiuming; Li, Qingmou

    2002-05-01

    Displaying the remotely sensed image with a proper color palette is the first task in any kind of image processing and pattern recognition in GIS and image processing environments. The purpose of displaying the image should be not only to provide a visual representation of the variance of the image, although this has been the primary objective of most conventional methods, but also the color palette should reflect real-world features on the ground which must be the primary objective of employing remotely sensed data. Although most conventional methods focus only on the first purpose of image representation, the concentration-area ( C- A plot) fractal method proposed in this paper aims to meet both purposes on the basis of pixel values and pixel value frequency distribution as well as spatial and geometrical properties of image patterns. The C- A method can be used to establish power-law relationships between the area A(⩾ s) with the pixel values greater than s and the pixel value s itself after plotting these values on log-log paper. A number of straight-line segments can be manually or automatically fitted to the points on the log-log paper, each representing a power-law relationship between the area A and the cutoff pixel value for s in a particular range. These straight-line segments can yield a group of cutoff values on the basis of which the image can be classified into discrete classes or zones. These zones usually correspond to the real-world features on the ground. A Windows program has been prepared in ActiveX format for implementing the C- A method and integrating it into other GIS and image processing systems. A case study of Landsat TM band 5 has been used to demonstrate the application of the method and the flexibility of the computer program.

  9. Quantifying Wave Breaking Shape and Type in the Surf-Zone Using LiDAR

    NASA Astrophysics Data System (ADS)

    Albright, A.; Brodie, K. L.; Hartzell, P. J.; Glennie, C. L.

    2017-12-01

    Waves change shape as they shoal and break across the surf-zone, ultimately dissipating and transferring their energy into turbulence by either spilling or plunging. This injection of turbulence and changes in wave shape can affect the direction of sediment transport at the seafloor, and ultimately lead to morphological evolution. Typical methods for collecting wave data in the surf-zone include in-situ pressure gauges, velocimeters, ultrasonic sensors, and video imagery. Drawbacks to these data collection methods are low spatial resolution of point measurements, reliance on linear theory to calculate sea-surface elevations, and intensive computations required to extract wave properties from stereo 2D imagery. As a result, few field measurements of the shapes of plunging and/or spilling breakers exist, and existing knowledge is confined to results of laboratory studies. We therefore examine the use of a multi-beam scanning Light Detection and Ranging (LiDAR) remote sensing instrument with the goal of classifying the breaking type of propagating waves in the surf-zone and quantitatively determining wave morphometric properties. Data were collected with a Velodyne HDL-32E LiDAR scanner (360° vertical field of view) mounted on an arm of the Coastal Research Amphibious Buggy (CRAB) at the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. Processed laser scan data are used to visualize the lifecycle of a wave (shoaling, breaking, broken) and identify wave types (spilling, plunging, non-breaking) as they pass beneath the scanner. For each rotation of the LiDAR scanner, the point cloud data are filtered, smoothed, and detrended in order to identify individual waves and measure their properties, such as speed, height, period, upward/downward slope, asymmetry, and skewness. The 3D nature of point cloud data is advantageous for research, because it enables viewing from any angle. In our analysis, plan views are used to separate individual waves, and cross-shore profiles are used to extract wave properties. Combined with accurate georeferencing information, LiDAR has the potential to be a powerful remote sensing tool for coastal monitoring systems and the study of nearshore processes.

  10. A Study of Applying Pulsed Remote Field Eddy Current in Ferromagnetic Pipes Testing

    PubMed Central

    Luo, Qingwang; Shi, Yibing; Wang, Zhigang; Zhang, Wei; Li, Yanjun

    2017-01-01

    Pulsed Remote Field Eddy Current Testing (PRFECT) attracts the attention in the testing of ferromagnetic pipes because of its continuous spectrum. This paper simulated the practical PRFECT of pipes by using ANSYS software and employed Least Squares Support Vector Regression (LSSVR) to extract the zero-crossing time to analyze the pipe thickness. As a result, a secondary peak is found in zero-crossing time when transmitter passed by a defect. The secondary peak will lead to wrong quantification and the localization of defects, especially when defects are found only at the transmitter location. Aiming to eliminate the secondary peaks, double sensing coils are set in the transition zone and Wiener deconvolution filter is applied. In the proposed method, position dependent response of the differential signals from the double sensing coils is calibrated by employing zero-mean normalization. The methods proposed in this paper are validated by analyzing the simulation signals and can improve the practicality of PRFECT of ferromagnetic pipes. PMID:28475141

  11. A Study of Applying Pulsed Remote Field Eddy Current in Ferromagnetic Pipes Testing.

    PubMed

    Luo, Qingwang; Shi, Yibing; Wang, Zhigang; Zhang, Wei; Li, Yanjun

    2017-05-05

    Pulsed Remote Field Eddy Current Testing (PRFECT) attracts the attention in the testing of ferromagnetic pipes because of its continuous spectrum. This paper simulated the practical PRFECT of pipes by using ANSYS software and employed Least Squares Support Vector Regression (LSSVR) to extract the zero-crossing time to analyze the pipe thickness. As a result, a secondary peak is found in zero-crossing time when transmitter passed by a defect. The secondary peak will lead to wrong quantification and the localization of defects, especially when defects are found only at the transmitter location. Aiming to eliminate the secondary peaks, double sensing coils are set in the transition zone and Wiener deconvolution filter is applied. In the proposed method, position dependent response of the differential signals from the double sensing coils is calibrated by employing zero-mean normalization. The methods proposed in this paper are validated by analyzing the simulation signals and can improve the practicality of PRFECT of ferromagnetic pipes.

  12. A thermal-based remote sensing modeling system for estimating evapotranspiration from field to global scales

    USDA-ARS?s Scientific Manuscript database

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. This paper describes a robust but relatively simple thermal-based energy balance model that parameterizes the key soil/s...

  13. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    NASA Astrophysics Data System (ADS)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally, Bornim sunflower parameters were transferred to Schaefertal catchment for further evaluation. This study proves GANS potential to close the measurement gap between point scale and remote sensing scale; however, its calibration needs to be adapted for vegetation in cropped fields.

  14. Estimation of crop water requirements using remote sensing for operational water resources management

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  15. The study of hydrothermal alteration zones in Kahang exploration area (north eastern of Isfahan, central of Iran) using microscopy studies and TM and Aster satellite data

    NASA Astrophysics Data System (ADS)

    Zahra Afshooni, Seyedeh; Esmaeily, Dariush

    2010-05-01

    Kahang ore deposit located in 73 km to the northeast of Isfahan city and 10 km to the east of Zefreh town, covering an area about 18.6 km2. This ore deposit is a part of Uromieh-Dokhtar volcanopolotonic belt. The rocks of the area included Andesite, Porphyritic Andesite, Dacite, Porphyritic, Rhyodacite, Diorite, Quartz Monzonite and Porphyry Micro Granite. In plutons, there is a trend from basic to acid features along with decreasing of age from margin to center of massive. Kahang region is an alteration and breccia zone. The occurrence of alteration zones and iron oxides were confirmed by satellite images processing. Generally, more than 90% of rocks of this region have been affected by hydrothermal fluids. Remote sensing refers to detection and measurement from a distance. For the first time, this exploration area was studied using satellite images processing (TM) and primary results showed that is suitable place for resources of Copper (Cu) and Molybdenum (Mo). Hydrothermal alteration commonly occurs in geothermal areas in association with ore deposits producing alteration assemblages typically dominated by silicates, sulfides, sulfates and carbonates. In the alteration zones studies the subject discussed is the study of existing minerals in such zones and study of chemical specifications of altering fluids. Four alteration zones Based on observations derived from the study of thin sections, XRD analysis and deep remote sensing using TM and Aster satellite images studies could be identified in this area: propylitic alteration zone with chlorite, epidot, calcite; argillic alteration zone with clay minerals; phyllic (qartz-sericite) alteration zone with quartz, sericite and pyrite and silicic alteration zone with abundant quartz.

  16. Remote sensing of chlorophyll concentrations in the northern Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Trees, Charles C.; El-Sayed, Sayed Z.

    1986-01-01

    During a 17 month period (November 1978 - March 1980), phytoplankton pigment concentrations were remotely sensed in the northern Gulf of Mexico using the Coastal Zone Color Scanner (CZCS). A total of 29 CZCS orbits were processed into pigment (chlorophyll a + phaeopigments) images and then geometrically warped to a Mercator projection. A correction factor of 1.67 was applied to the pigment concentrations to correct for the tendency of the standard fluorometric method to underestimate chlorophyll a concentrations. The spatial and temporal distributions of pigment fronts were quite variable during this time series. Constant features observed throughout the pigment imagery were the entrainment of coastal waters offshore. The most extensive entrainments occurred during intrusions of the Loop Current. For the 17 month survey, the mean HPLC-corrected pigment concentration was 3.30 + or - 1.45 mg/cu m.

  17. Strip malls, city trees, and community values

    Treesearch

    Kathleen L. Wolf

    2009-01-01

    Strip malls (also known as mini-malls) are a common urban land use, historically promoted by U.S. zoning practices that concentrate retail and commercial development in a narrow band along arterials and major streets. More recently, communities are redeveloping mini-mall zones, expanding landscape plantings as biotechnology, and attempting to create a sense of place....

  18. Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS

    USDA-ARS?s Scientific Manuscript database

    his study applied the exponential filter to produce an estimate of root-zone soil moisture (RZSM). Four types of microwave-based, surface satellite soil moisture were used. The core remotely sensed data for this study came from NASA’s long lasting AMSR-E mission. Additionally three other products we...

  19. User Requirements for the Application of Remote Sensing in the Planning and Management of Water Resource Systems

    NASA Technical Reports Server (NTRS)

    Burgy, R. H.

    1972-01-01

    Data relating to hydrologic and water resource systems and subsystems management are reported. Systems models, user application, and remote sensing technology are covered. Parameters governing water resources include evaportranspiration, vegetation, precipitation, streams and estuaries, reservoirs and lakes, and unsaturate and saturated soil zones.

  20. Soil water sensing for climate change studies; Applicability of COSMOS and local sensor networks

    USDA-ARS?s Scientific Manuscript database

    Soil water sensors are used to characterize water content in the near-surface, the root zone and below for agricultural and ecosystem management, but only a few are capable of sensing soil volumes larger than a few hundred liters. Scientists with the USDA-ARS Conservation & Production Research Labor...

  1. A thermal-based remote sensing modelling system for estimating crop water use and stress from field to regional scales

    USDA-ARS?s Scientific Manuscript database

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. A thermal-based scheme, called the Two-Source Energy Balance (TSEB) model, solves for the soil/substrate and canopy temp...

  2. Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis–Endocytosis Coupling

    PubMed Central

    Lou, Xuelin

    2018-01-01

    The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time and space during SV recycling, and this process is essential for synaptic function and structural stability. Research in the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and endocytosis; however, the mechanisms that timely connect these two fundamental events are poorly understood at central synapses. Here we discuss recent progress in SV recycling and summarize several emerging mechanisms by which synapses can “sense” the occurrence of exocytosis and timely initiate compensatory endocytosis. They include Ca2+ sensing, SV proteins sensing, and local membrane stress sensing. In addition, the spatial organization of endocytic zones adjacent to active zones provides a structural basis for efficient coupling between SV exocytosis and endocytosis. Through linking different endocytosis pathways with SV fusion, these mechanisms ensure necessary plasticity and robustness of nerve terminals to meet diverse physiological needs. PMID:29593500

  3. Safety and accuracy of a new long-term subconjunctival glucose sensor.

    PubMed

    Hasslacher, Christoph; Auffarth, Gerd; Platten, Isabell; Rabsilber, Tanja; Smith, Beate; Kulozik, Felix; Knuth, Monika; Nikolaus, Katharina; Müller, Achim

    2012-09-01

    A new biosensor has been developed by EyeSense (Großostheim, Germany) that is placed into the conjunctiva of one eye to measure the glucose concentration of the surrounding tissue in a non-invasive manner. In the present study we investigated the correlation between glucose concentrations measured by the EyeSense implant and those determined by finger prick testing, as well as the tolerability and safety of the implant over a 16-week period. The study was performed in 28 diabetic patients. The biosensor was inserted under local anesthesia and sterile conditions. Correlations between capillary glucose measured by laboratory methods and interstitial glucose determined by the biosensor were investigated by inducing increases and decreases in glucose values between 60 and 300 mg/dL. Most patients experienced a mild subconjunctival hemorrhage postoperatively. Except for the minor sensation of the presence of foreign body, the implants were well tolerated. Three patients lost the ocular mini insert spontaneously, whereas there was a function failure of the insert in four patients. Error grid analysis showed that the percentage of data pairs in the acceptable ranges (zone A and B) was very high (>96%). However, there was a shift from zone A to zone B during observation. This was due primarily to an increase in the lag time between capillary and interstitial measured glucose. he present study demonstrates good tolerability and measurement performance of the biosensor. The reasons for an increase in the lag time are still unknown; local reactions may be involved. © 2012 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  4. Methodology for classification of geographical features with remote sensing images: Application to tidal flats

    NASA Astrophysics Data System (ADS)

    Revollo Sarmiento, G. N.; Cipolletti, M. P.; Perillo, M. M.; Delrieux, C. A.; Perillo, Gerardo M. E.

    2016-03-01

    Tidal flats generally exhibit ponds of diverse size, shape, orientation and origin. Studying the genesis, evolution, stability and erosive mechanisms of these geographic features is critical to understand the dynamics of coastal wetlands. However, monitoring these locations through direct access is hard and expensive, not always feasible, and environmentally damaging. Processing remote sensing images is a natural alternative for the extraction of qualitative and quantitative data due to their non-invasive nature. In this work, a robust methodology for automatic classification of ponds and tidal creeks in tidal flats using Google Earth images is proposed. The applicability of our method is tested in nine zones with different morphological settings. Each zone is processed by a segmentation stage, where ponds and tidal creeks are identified. Next, each geographical feature is measured and a set of shape descriptors is calculated. This dataset, together with a-priori classification of each geographical feature, is used to define a regression model, which allows an extensive automatic classification of large volumes of data discriminating ponds and tidal creeks against other various geographical features. In all cases, we identified and automatically classified different geographic features with an average accuracy over 90% (89.7% in the worst case, and 99.4% in the best case). These results show the feasibility of using freely available Google Earth imagery for the automatic identification and classification of complex geographical features. Also, the presented methodology may be easily applied in other wetlands of the world and perhaps employing other remote sensing imagery.

  5. Floods, floodplains, delta plains — A satellite imaging approach

    NASA Astrophysics Data System (ADS)

    Syvitski, James P. M.; Overeem, Irina; Brakenridge, G. Robert; Hannon, Mark

    2012-08-01

    Thirty-three lowland floodplains and their associated delta plains are characterized with data from three remote sensing systems (AMSR-E, SRTM and MODIS). These data provide new quantitative information to characterize Late Quaternary floodplain landscapes and their penchant for flooding over the last decade. Daily proxy records for discharge since 2002 and for each of the 33 river systems can be derived with novel Advanced Microwave Scanning Radiometer (AMSR-E) methods. A descriptive framework based on analysis of Shuttle Radar Topography Mission (SRTM) data is used to capture the major landscape-scale floodplain elements or zones: 1) container valleys with their long and narrow pathways of largely sediment transit and bypass, 2) floodplain depressions that act as loci for frequent flooding and sediment storage, 3) zones of nodal avulsions common to many continental scale rivers, and often located seaward of container valleys, and 4) coastal floodplains and delta plains that offer both sediment bypass and storage but under the influence of marine processes. The SRTM data allow mapping of smaller-scale architectural elements in unprecedented systematic manner. Floodplain depressions were found to play a major role, which may largely be overlooked in conceptual floodplain models. Lastly, MODIS data (independently and combined with AMSR-E) allows the tracking of flood hydrographs and pathways and sedimentation patterns on a near-daily timescale worldwide. These remote-sensing data show that 85% of the studied major river systems experienced extensive flooding in the last decade. A new quantitative paradigm of floodplain processes, honoring the frequency and extent of floods, can be develop by careful analysis of these new remotely sensed data.

  6. Linking Satellite Remote Sensing Based Environmental Predictors to Disease: AN Application to the Spatiotemporal Modelling of Schistosomiasis in Ghana

    NASA Astrophysics Data System (ADS)

    Wrable, M.; Liss, A.; Kulinkina, A.; Koch, M.; Biritwum, N. K.; Ofosu, A.; Kosinski, K. C.; Gute, D. M.; Naumova, E. N.

    2016-06-01

    90% of the worldwide schistosomiasis burden falls on sub-Saharan Africa. Control efforts are often based on infrequent, small-scale health surveys, which are expensive and logistically difficult to conduct. Use of satellite imagery to predictively model infectious disease transmission has great potential for public health applications. Transmission of schistosomiasis requires specific environmental conditions to sustain freshwater snails, however has unknown seasonality, and is difficult to study due to a long lag between infection and clinical symptoms. To overcome this, we employed a comprehensive 8-year time-series built from remote sensing feeds. The purely environmental predictor variables: accumulated precipitation, land surface temperature, vegetative growth indices, and climate zones created from a novel climate regionalization technique, were regressed against 8 years of national surveillance data in Ghana. All data were aggregated temporally into monthly observations, and spatially at the level of administrative districts. The result of an initial mixed effects model had 41% explained variance overall. Stratification by climate zone brought the R2 as high as 50% for major zones and as high as 59% for minor zones. This can lead to a predictive risk model used to develop a decision support framework to design treatment schemes and direct scarce resources to areas with the highest risk of infection. This framework can be applied to diseases sensitive to climate or to locations where remote sensing would be better suited than health surveys.

  7. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing

    NASA Astrophysics Data System (ADS)

    Singh, Minerva; Malhi, Yadvinder; Bhagwat, Shonil

    2014-01-01

    The focus of this study is to assess the efficacy of using optical remote sensing (RS) in evaluating disparities in forest composition and aboveground biomass (AGB). The research was carried out in the East Sabah region, Malaysia, which constitutes a disturbance gradient ranging from pristine old growth forests to forests that have experienced varying levels of disturbances. Additionally, a significant proportion of the area consists of oil palm plantations. In accordance with local laws, riparian forest (RF) zones have been retained within oil palm plantations and other forest types. The RS imagery was used to assess forest stand structure and AGB. Band reflectance, vegetation indicators, and gray-level co-occurrence matrix (GLCM) consistency features were used as predictor variables in regression analysis. Results indicate that the spectral variables were limited in their effectiveness in differentiating between forest types and in calculating biomass. However, GLCM based variables illustrated strong correlations with the forest stand structures as well as with the biomass of the various forest types in the study area. The present study provides new insights into the efficacy of texture examination methods in differentiating between various land-use types (including small, isolated forest zones such as RFs) as well as their AGB stocks.

  8. A study of the Tyrone-Mount Union lineament by remote sensing techniques and field methods

    NASA Technical Reports Server (NTRS)

    Gold, D. P. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. This study has shown that subtle variations in fold axes, fold form, and stratigraphic thickness can be delineated. Many of the conclusions were based on extrapolation in similitude to different scales. A conceptual model was derived for the Tyrone-Mount Union lineament. In this model, the lineament the morphological expression of a zone of fracture concentrations which penetrated basement rocks and may have acted as a curtain to regional stresses or as a domain boundary between uncoupled adjacent crustal blocks.

  9. Application of Remote-Sensing Observations for Detecting Patterns of Localization of PGM Mineralization of Western Bushveld

    NASA Astrophysics Data System (ADS)

    Milovsky, G. A.; Ishmukhametova, V. T.; Orlyankin, V. N.; Shemyakina, E. M.

    2017-12-01

    The differentiated Bushveld complex is studied by remote-space and gravimagnetic methods. The syncline of Western Bushveld is recognized in the southwestern part of the complex, which is characterized by a radial and ring structure of the higher order. The structures, which control the localization of Pt mineralization, are revealed and the possible use of the Landsat 7 ETM+ multizonal space survey is shown for recognizing the rocks of the Basal, Critical, Main, and Upper zones of the norite complex of Western Bushveld.

  10. Proceedings of the Meeting of the Coastal Engineering Research Board (44th) Held at Sausalito, California on 4-6 November 1985.

    DTIC Science & Technology

    1986-04-01

    realism here, and I * need to have it from the Board. Federal basic research and development is *simply not a winner. That doesn’t mean we cannot find ways...CERC. The wave height across the surf zone was measured by a cinematic remote sensing technique developed in Japan (Hotta and 82 ....󈨌...8217’" ,’ 1. Mizuguchi, 1980). The cinematic wave measurement method is under study for in.•.. adaptation at CERC where it is called the "photo

  11. Cooling effect of rivers on metropolitan Taipei using remote sensing.

    PubMed

    Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen

    2014-01-23

    This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature.

  12. Cooling Effect of Rivers on Metropolitan Taipei Using Remote Sensing

    PubMed Central

    Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen

    2014-01-01

    This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature. PMID:24464232

  13. Late Vendian Complexes in the Structure of Metamorphic Basement of the Fore Range Zone, Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Kamzolkin, V. A.; Latyshev, A. V.; Vidyapin, Yu. P.; Somin, M. L.; Smul'skaya, A. I.; Ivanov, S. D.

    2018-05-01

    The paper presents new data on the composition, age, and relationships (with host and overlying deposits) of intrusive rocks in the basement of the Fore Range zone (Greater Caucasus), in the Malaya Laba River Basin. The evolutionary features of intrusive units located within the Blyb metamorphic complex are described. It is shown for the first time that the lower levels of this complex are, in a structural sense, outcrops of the Late Vendian basement. The basement is composed of the Balkan Formation and a massif of quartz metadiorites that intrudes it; for the rocks of this massif, ages ranging from 549 ± 7.4 to 574.1 ± 6.7 Ma are obtained for three U-Pb datings by the SHRIMP-II method. The Herzyinan magmatic event is represented by a group of granodiorite intrusions penetrating the Blyb complex on a series of faults extending along its boundary with the Main Range zone. The obtained estimate for the U-Pb age of one of the intrusions (319 ± 3.8 Ma) corresponds to the end of the Serpukhovian stage of the Early Carboniferous.

  14. Geologic framework, evolution, and sediment resources for restoration of the Louisiana Coastal Zone

    USGS Publications Warehouse

    Kulp, Mark; Penland, Shea; Williams, S. Jeffress; Jenkins, Chris; Flocks, Jim; Kindinger, Jack

    2005-01-01

    The Louisiana Coastal Zone along the north-central Gulf of Mexico represents one of America's most important coastal ecosystems in terms of natural resources, human infrastructure, and cultural heritage. This zone also has the highest rates of coastal erosion and wetland loss in the nation because of a complex combination of natural processes and anthropogenic activities during the past century. In response to the dramatic land loss, regional-scale restoration plans are being developed through a partnership of federal and state agencies. One objective is to maintain the barrier island and tidal inlet systems, thereby reducing the impact of storm surge and interior wetland loss. Proposed shore line restoration work relies primarily upon the use of large volumes of sand-rich sediment for shoreline stabilization and the implementation of the shoreline projects. Although sand-rich sediment is required for the Louisiana restoration projects, it is of limited availability within the generally clay to silt-rich, shallow strata of the Louisiana Coastal Zone. Locating volumetrically significant quantities of sand-rich sediment presents a challenge and requires detailed field investigations using direct sampling and geophysical sensing methods. Consequently, there is a fundamental need to thoroughly understand and map the distribution and textural character {e.g., sandiness) of sediment resources within the Coastal Zone for the most cost-effective design and completion of restoration projects.

  15. Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques

    NASA Astrophysics Data System (ADS)

    Bhatia, Sonik; Verma, Neha; Bedi, R. K.

    Nowadays, applications of nanosized materials have been an important issue in basic and applied sciences. In this investigation, Zinc Oxide (ZnO) nanoparticles were prepared by two different techniques (simple heat treatment, thermal evaporation-two zone furnaces). In order to control shape and size - ZnO nanoparticles prepared from heat treatment were used as a source for thermal evaporation method by using two zone split furnace by varying zone temperature (Zone 1-800 °C and Zone 2-400 °C). For both techniques 0.17 M of Zn acetate dihydrate is used as main precursor and film is deposited on glass substrate. Synthesized ZnO were characterized for XRD, FESEM, FTIR and UV-Vis spectrophotometer and LCR meter. XRD revealed hexagonal wurtzite structure with preferential orientation along (1 0 1) plane. FESEM observed that grain size in the range of range of ∼50 ± 5 nm. FTIR spectra showed that the peaks between 400 and 500 cm-1 for ZnO stretching modes. Optical properties has been studied and found that the observed band gap lies in the range of 3.32-3.36 eV. The higher value of capacitance is observed at lower frequency. Gas sensing properties showed the higher response in case of thermal evaporation as compared to simple heat treatment at an operating temperature of 250 °C.

  16. A comparison between evapotranspiration estimates based on remotely sensed surface energy balance and ground-based soil water balance analyses

    USDA-ARS?s Scientific Manuscript database

    Remotely sensed and in-situ data were used to investigate dynamics of root zone soil moisture and evapotranspiration (ET) at four Mesonet stations in north-central Oklahoma over an 11-year period (2000-2010). Two moisture deficit indicators based on soil matric potential had spatial and temporal pat...

  17. Remote sensing and today's forestry issues

    NASA Technical Reports Server (NTRS)

    Sayn-Wittgenstein, L.

    1977-01-01

    The actual and the desirable roles of remote sensing in dealing with current forestry issues, such as national forest policy, supply and demand for forest products and competing demands for forest land are discussed. Topics covered include wood shortage, regional timber inventories, forests in tropical and temperate zones, Skylab photography, forest management and protection, available biomass studies, and monitoring.

  18. Second Eastern Regional Remote Sensing Applications Conference

    NASA Technical Reports Server (NTRS)

    Imhoff, M. L. (Editor); Witt, R. G. (Editor); Kugelmann, D. (Editor)

    1981-01-01

    Participants from state and local governments share experiences in remote sensing applications with one another and with users in the Federal government, universities, and the private sector during technical sessions and forums covering agriculture and forestry; land cover analysis and planning; surface mining and energy; data processing; water quality and the coastal zone; geographic information systems; and user development programs.

  19. Sensing water from subsurface drip irrigation laterals: In situ sensors, weighing lysimeters and COSMOS under vegetated and bare conditions

    USDA-ARS?s Scientific Manuscript database

    Characterization of soil water dynamics in the root zone under subsurface drip irrigated (SDI) is complicated by the three dimensional nature of water fluxes from drip emitters plus the fluxes, if any, of water from precipitation. In addition, soil water sensing systems may differ in their operating...

  20. Fractography of glass at the nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilloteau, E.; Arribart, H.; Creuzet, F.

    1996-12-01

    The authors present a nanometer scale description of the fracture surface of soda-lime glass. This is achieved by the use of Atomic Force Microscopy. The mirror zone is shown to be built with elementary entities, the density of which increases continuously while the mist and hackle zones are approached. Moreover, the overall picture leads to some kind of self-similarity, in the sense that small regions of the hackle zone exhibit the full set of mirror, mist and hackle areas.

  1. A data mining based approach to predict spatiotemporal changes in satellite images

    NASA Astrophysics Data System (ADS)

    Boulila, W.; Farah, I. R.; Ettabaa, K. Saheb; Solaiman, B.; Ghézala, H. Ben

    2011-06-01

    The interpretation of remotely sensed images in a spatiotemporal context is becoming a valuable research topic. However, the constant growth of data volume in remote sensing imaging makes reaching conclusions based on collected data a challenging task. Recently, data mining appears to be a promising research field leading to several interesting discoveries in various areas such as marketing, surveillance, fraud detection and scientific discovery. By integrating data mining and image interpretation techniques, accurate and relevant information (i.e. functional relation between observed parcels and a set of informational contents) can be automatically elicited. This study presents a new approach to predict spatiotemporal changes in satellite image databases. The proposed method exploits fuzzy sets and data mining concepts to build predictions and decisions for several remote sensing fields. It takes into account imperfections related to the spatiotemporal mining process in order to provide more accurate and reliable information about land cover changes in satellite images. The proposed approach is validated using SPOT images representing the Saint-Denis region, capital of Reunion Island. Results show good performances of the proposed framework in predicting change for the urban zone.

  2. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    NASA Astrophysics Data System (ADS)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  3. Human and remote sensing data to investigate the frontiers of urbanization in the south of Mexico City.

    PubMed

    Rodriguez Lopez, Juan Miguel; Heider, Katharina; Scheffran, Jürgen

    2017-04-01

    The data presented here were originally collected for the article "Frontiers of Urbanization: Identifying and Explaining Urbanization Hot Spots in the South of Mexico City Using Human and Remote Sensing" (Rodriguez et al. 2017) [4]. They were divided into three databases (remote sensing, human sensing, and census information), using a multi-method approach with the goal of analyzing the impact of urbanization on protected areas in southern Mexico City. The remote sensing database was prepared as a result of a semi-automatic classification, dividing the land cover data into urban and non-urban classes. The second data set details an alternative view of the phenomena of urbanization by concentrating on illegal settlements in the conservation zone. It was based on voluntary complaints about environmental and land use offences filed at the Procuraduria Ambiental y del Ordenamiento Territorial del Distrito Federal (PAOT), which is a governmental entity responsible for reviewing and processing grievances on five basic topics: illegal land use, deterioration of green areas, waste, noise/vibrations, and animals. Anyone can file a PAOT complaint by phone, electronically, or in person. The complaint ends with a resolution, act of conciliation, or recommendation for action by other actors, such as the police or health office. The third data about unemployment was extracted from Mexico׳s National Census 2010 database available via public access.

  4. Using Remote Sensing Data to Constrain Models of Fault Interactions and Plate Boundary Deformation

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Donnellan, A.; Lyzenga, G. A.; Parker, J. W.; Milliner, C. W. D.

    2016-12-01

    Determining the distribution of slip and behavior of fault interactions at plate boundaries is a complex problem. Field and remotely sensed data often lack the necessary coverage to fully resolve fault behavior. However, realistic physical models may be used to more accurately characterize the complex behavior of faults constrained with observed data, such as GPS, InSAR, and SfM. These results will improve the utility of using combined models and data to estimate earthquake potential and characterize plate boundary behavior. Plate boundary faults exhibit complex behavior, with partitioned slip and distributed deformation. To investigate what fraction of slip becomes distributed deformation off major faults, we examine a model fault embedded within a damage zone of reduced elastic rigidity that narrows with depth and forward model the slip and resulting surface deformation. The fault segments and slip distributions are modeled using the JPL GeoFEST software. GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for modeling solid stress and strain in geophysical and other continuum domain applications [Lyzenga, et al., 2000; Glasscoe, et al., 2004; Parker, et al., 2008, 2010]. New methods to advance geohazards research using computer simulations and remotely sensed observations for model validation are required to understand fault slip, the complex nature of fault interaction and plate boundary deformation. These models help enhance our understanding of the underlying processes, such as transient deformation and fault creep, and can aid in developing observation strategies for sUAV, airborne, and upcoming satellite missions seeking to determine how faults behave and interact and assess their associated hazard. Models will also help to characterize this behavior, which will enable improvements in hazard estimation. Validating the model results against remotely sensed observations will allow us to better constrain fault zone rheology and physical properties, having implications for the overall understanding of earthquake physics, fault interactions, plate boundary deformation and earthquake hazard, preparedness and risk reduction.

  5. Integration of Remote Sensing and Geophysical Applications for Delineation of Geological Structures: Implication for Water Resources in Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, L.; Farag, A. Z. A.

    2017-12-01

    North African countries struggle with insufficient, polluted, oversubscribed, and increasingly expensive water. This natural water shortage, in addition to the lack of a comprehensive scheme for the identification of new water resources challenge the political settings in north Africa. Groundwater is one of the main water resources and its occurrence is controlled by the structural elements which are still poorly understood. Integration of remote sensing images and geophysical tools enable us to delineate the surface and subsurface structures (i.e. faults, joints and shear zones), identify the role of these structures on groundwater flow and then to define the proper locations for groundwater wells. This approach were applied to three different areas in Egypt; southern Sinai, north eastern Sinai and the Eastern Desert using remote sensing, geophysical and hydrogeological datasets as follows: (1) identification of the spatial and temporal rainfall events using meteorological station data and Tropical Rainfall Measuring Mission data; (2) delineation of major faults and shear zones using ALOS Palsar, Landsat 8 and ASTER images, geological maps and field investigation; (3) generation of a normalized difference ratio image using Envisat radar images before and after the rain events to identify preferential water-channeling discontinuities in the crystalline terrain; (4) analysis of well data and derivations of hydrological parameters; (5) validation of the water-channeling discontinuities using Very Low Frequency, testing the structural elements (pre-delineated by remote sensing data) and their depth using gravity, magnetic and Vertical Electrical Sounding methods; (6) generation of regional groundwater flow and isotopic (18O and 2H) distribution maps for the sedimentary aquifer and an approximation flow map for the crystalline aquifer. The outputs include: (1) a conceptual/physical model for the groundwater flow in fractured crystalline and sedimentary aquifers; (2) locations of suggested new wells in light of the findings.

  6. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    PubMed

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and weightages, eventually groundwater potential zones were demarcated. The study indicates that groundwater potential is good to high in 22 villages and moderate in 13 villages. The good to high potential zone occupies an area of 128 km2 and moderate potential zone occupies an area of 77 km2. Groundwater occurrence is poor in five villages which need artificial recharge to augment groundwater.

  7. Prioritization of malaria endemic zones using self-organizing maps in the Manipur state of India.

    PubMed

    Murty, Upadhyayula Suryanarayana; Srinivasa Rao, Mutheneni; Misra, Sunil

    2008-09-01

    Due to the availability of a huge amount of epidemiological and public health data that require analysis and interpretation by using appropriate mathematical tools to support the existing method to control the mosquito and mosquito-borne diseases in a more effective way, data-mining tools are used to make sense from the chaos. Using data-mining tools, one can develop predictive models, patterns, association rules, and clusters of diseases, which can help the decision-makers in controlling the diseases. This paper mainly focuses on the applications of data-mining tools that have been used for the first time to prioritize the malaria endemic regions in Manipur state by using Self Organizing Maps (SOM). The SOM results (in two-dimensional images called Kohonen maps) clearly show the visual classification of malaria endemic zones into high, medium and low in the different districts of Manipur, and will be discussed in the paper.

  8. Geoinformation modeling system for analysis of atmosphere pollution impact on vegetable biosystems using space images

    NASA Astrophysics Data System (ADS)

    Polichtchouk, Yuri; Ryukhko, Viatcheslav; Tokareva, Olga; Alexeeva, Mary

    2002-02-01

    Geoinformation modeling system structure for assessment of the environmental impact of atmospheric pollution on forest- swamp ecosystems of West Siberia is considered. Complex approach to the assessment of man-caused impact based on the combination of sanitary-hygienic and landscape-geochemical approaches is reported. Methodical problems of analysis of atmosphere pollution impact on vegetable biosystems using geoinformation systems and remote sensing data are developed. Landscape structure of oil production territories in southern part of West Siberia are determined on base of processing of space images from spaceborn Resource-O. Particularities of atmosphere pollution zones modeling caused by gas burning in torches in territories of oil fields are considered. For instance, a pollution zones were revealed modeling of contaminants dispersal in atmosphere by standard model. Polluted landscapes areas are calculated depending on oil production volume. It is shown calculated data is well approximated by polynomial models.

  9. Urban Change Detection of Pingtan City based on Bi-temporal Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Degang, JIANG; Jinyan, XU; Yikang, GAO

    2017-02-01

    In this paper, a pair of SPOT 5-6 images with the resolution of 0.5m is selected. An object-oriented classification method is used to the two images and five classes of ground features were identified as man-made objects, farmland, forest, waterbody and unutilized land. An auxiliary ASTER GDEM was used to improve the classification accuracy. And the change detection based on the classification results was performed. Accuracy assessment was carried out finally. Consequently, satisfactory results were obtained. The results show that great changes of the Pingtan city have been detected as the expansion of the city area and the intensity increase of man-made buildings, roads and other infrastructures with the establishment of Pingtan comprehensive experimental zone. Wide range of open sea area along the island coast zones has been reclaimed for port and CBDs construction.

  10. Mojave Compliant Zone Structure and Properties: Constraints from InSAR and Mechanical Models

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.; Fialko, Y.; Finzi, Y.

    2007-12-01

    Long-lived zones with significantly lower elastic strength than their surroundings are associated with active Mojave faults (e.g., Li et al., 1999; Fialko et al., 2002, 2004). In an earthquake these weak features concentrate strain, causing them to show up as anomalous, short length-scale features in SAR interferograms (Fialko et al., 2002). Fault-zone trapped wave studies indicate that the 1999 Hector Mine earthquake caused a small reduction in P- and S-wave velocities in a compliant zone along the Landers earthquake rupture (Vidale and Li, 2003). This suggests that coseismic strain concentration, and the resulting damage, in the compliant zone caused a further reduction in its elastic strength. Even a small coseismic strength drop should make a compliant zone (CZ) deform, in response to the total (not just the coseismic) stress. The strain should be in the sense which is compatible with the orientations and values of the region's principal stresses. However, as indicated by Fialko and co-workers (2002, 2004), the sense of coseismic strain of Mojave compliant zones was consistent with coseismic stress change, not the regional (background) stress. Here we use finite-element models to investigate how InSAR measurements of Mojave compliant zone coseismic strain places limits on their dimensions and on upper crustal stresses. We find that unless the CZ is shallow, narrow, and has a high Poisson's ratio (e.g., 0.4), CZ contraction under lithostatic stress overshadows deformation due to deviatoric background stress or coseismic stress change. We present ranges of CZ dimensions which are compatible with the observed surface deformation and address how these dimensions compare with new results from damage-controlled fault evolution models.

  11. Remote sensing of snow and ice

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1979-01-01

    This paper reviews remote sensing of snow and ice, techniques for improved monitoring, and incorporation of the new data into forecasting and management systems. The snowcover interpretation of visible and infrared data from satellites, automated digital methods, radiative transfer modeling to calculate the solar reflectance of snow, and models using snowcover input data and elevation zones for calculating snowmelt are discussed. The use of visible and near infrared techniques for inferring snow properties, microwave monitoring of snowpack characteristics, use of Landsat images for collecting glacier data, monitoring of river ice with visible imagery from NOAA satellites, use of sequential imagery for tracking ice flow movement, and microwave studies of sea ice are described. Applications of snow and ice research to commercial use are examined, and it is concluded that a major problem to be solved is characterization of snow and ice in nature, since assigning of the correct properties to a real system to be modeled has been difficult.

  12. Fractal Dimension Change Point Model for Hydrothermal Alteration Anomalies in Silk Road Economic Belt, the Beishan Area, Gansu, China

    NASA Astrophysics Data System (ADS)

    Han, H. H.; Wang, Y. L.; Ren, G. L.; LI, J. Q.; Gao, T.; Yang, M.; Yang, J. L.

    2016-11-01

    Remote sensing plays an important role in mineral exploration of “One Belt One Road” plan. One of its applications is extracting and locating hydrothermal alteration zones that are related to mines. At present, the extracting method for alteration anomalies from principal component image mainly relies on the data's normal distribution, without considering the nonlinear characteristics of geological anomaly. In this study, a Fractal Dimension Change Point Model (FDCPM), calculated by the self-similarity and mutability of alteration anomalies, is employed to quantitatively acquire the critical threshold of alteration anomalies. The realization theory and access mechanism of the model are elaborated by an experiment with ASTER data in Beishan mineralization belt, also the results are compared with traditional method (De-Interfered Anomalous Principal Component Thresholding Technique, DIAPCTT). The results show that the findings produced by FDCPM are agree with well with a mounting body of evidence from different perspectives, with the extracting accuracy over 80%, indicating that FDCPM is an effective extracting method for remote sensing alteration anomalies, and could be used as an useful tool for mineral exploration in similar areas in Silk Road Economic Belt.

  13. Spectral characteristics and feature selection of satellite remote sensing data for climate and anthropogenic changes assessment in Bucharest area

    NASA Astrophysics Data System (ADS)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan; Tautan, Marina; Miclos, Sorin; Cristescu, Luminita; Carstea, Elfrida; Baschir, Laurentiu

    2010-05-01

    Urban systems play a vital role in social and economic development in all countries. Their environmental changes can be investigated on different spatial and temporal scales. Urban and peri-urban environment dynamics is of great interest for future planning and decision making as well as in frame of local and regional changes. Changes in urban land cover include changes in biotic diversity, actual and potential primary productivity, soil quality, runoff, and sedimentation rates, and cannot be well understood without the knowledge of land use change that drives them. The study focuses on the assessment of environmental features changes for Bucharest metropolitan area, Romania by satellite remote sensing and in-situ monitoring data. Rational feature selection from the varieties of spectral channels in the optical wavelengths of electromagnetic spectrum (VIS and NIR) is very important for effective analysis and information extraction of remote sensing data. Based on comprehensively analyses of the spectral characteristics of remote sensing data is possibly to derive environmental changes in urban areas. The information quantity contained in a band is an important parameter in evaluating the band. The deviation and entropy are often used to show information amount. Feature selection is one of the most important steps in recognition and classification of remote sensing images. Therefore, it is necessary to select features before classification. The optimal features are those that can be used to distinguish objects easily and correctly. Three factors—the information quantity of bands, the correlation between bands and the spectral characteristic (e.g. absorption specialty) of classified objects in test area Bucharest have been considered in our study. As, the spectral characteristic of an object is influenced by many factors, being difficult to define optimal feature parameters to distinguish all the objects in a whole area, a method of multi-level feature selection was suggested. On the basis of analyzing the information quantity of bands, correlation between different bands, spectral absorption characteristics of objects and object separability in bands, a fundamental method of optimum band selection and feature extraction from remote sensing data was discussed. Spectral signatures of different terrain features have been used to extract structural patterns aiming to separate surface units and to classify the general categories. The synergetic analysis and interpretation of the different satellite images (LANDSAT: TM, ETM; MODIS, IKONOS) acquired over a period of more than 20 years reveals significant aspects regarding impacts of climate and anthropogenic changes on urban/periurban environment. It was delimited residential zones of industrial zones which are very often a source of pollution. An important role has urban green cover assessment. Have been emphasized the particularities of the functional zones from different points of view: architectural, streets and urban surface traffic, some components of urban infrastructure as well as habitat quality. The growth of Bucharest urban area in Romania has been a result of a rapid process of industrialization, and also of the increase of urban population. Information on the spatial pattern and temporal dynamics of land cover and land use of urban areas is critical to address a wide range of practical problems relating to urban regeneration, urban sustainability and rational planning policy.

  14. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques.

    PubMed

    Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng

    2017-08-15

    Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content. Three classification models, Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) were developed and validated in different scenarios with overall accuracy over 90% for all. SVM model had the highest value, but it required the longest training time. All models had accuracy over 85% in all scenarios, and more stable performance was observed in RF model. Simplified SVM model developed by the top five most contributing traits had the largest accuracy reduction as 29.5%, while simplified RF and NN model still maintained approximately 80%. For real case application, factors such as operation cost, precision requirement, and system reaction time should be synthetically considered in model selection. Our work shows it is promising to discriminate plant root zone water status by implementing phenotyping and machine learning techniques for precision irrigation management.

  15. Low-altitude remote sensing dataset of DEM and RGB mosaic for AB corridor on July 13 2013 and L2 corridor on July 21 2013

    DOE Data Explorer

    Baptiste Dafflon

    2015-04-07

    Low-altitude remote sensing dataset including DEM and RGB mosaic for AB (July 13 2013) and L2 corridor (July 21 2013).Processing flowchart for each corridor:Ground control points (GCP, 20.3 cm square white targets, every 20 m) surveyed with RTK GPS. Acquisition of RGB pictures using a Kite-based platform. Structure from Motion based reconstruction using hundreds of pictures and GCP coordinates. Export of DEM and RGB mosaic in geotiff format (NAD 83, 2012 geoid, UTM zone 4 north) with pixel resolution of about 2 cm, and x,y,z accuracy in centimeter range (less than 10 cm). High-accuracy and high-resolution inside GCPs zone for L2 corridor (500x20m), AB corridor (500x40) DEM will be updated once all GCPs will be measured. Only zones between GCPs are accurate although all the mosaic is provided.

  16. Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierwirth, P.N.; Lee, T.J.; Burne, R.V.

    1993-03-01

    A major problem for mapping shallow water zones by the analysis of remotely sensed data is that contrast effects due to water depth obscure and distort the special nature of the substrate. This paper outlines a new method which unmixes the exponential influence of depth in each pixel by employing a mathematical constraint. This leaves a multispectral residual which represents relative substrate reflectance. Input to the process are the raw multispectral data and water attenuation coefficients derived by the co-analysis of known bathymetry and remotely sensed data. Outputs are substrate-reflectance images corresponding to the input bands and a greyscale depthmore » image. The method has been applied in the analysis of Landsat TM data at Hamelin Pool in Shark Bay, Western Australia. Algorithm derived substrate reflectance images for Landsat TM bands 1, 2, and 3 combined in color represent the optimum enhancement for mapping or classifying substrate types. As a result, this color image successfully delineated features, which were obscured in the raw data, such as the distributions of sea-grasses, microbial mats, and sandy area. 19 refs.« less

  17. At-sea detection of marine debris: overview of technologies, processes, issues, and options.

    PubMed

    Mace, Thomas H

    2012-01-01

    At-sea detection of marine debris presents a difficult problem, as the debris items are often relatively small and partially submerged. However, they may accumulate in water parcel boundaries or eddy lines. The application of models, satellite radar and multispectral data, and airborne remote sensing (particularly radar) to focus the search on eddies and convergence zones in the open ocean appear to be a productive avenue of investigation. A multistage modeling and remote sensing approach is proposed for the identification of areas of the open ocean where debris items are more likely to congregate. A path forward may best be achieved through the refinement of the Ghost Net procedures with the addition of a final search stage using airborne radar from an UAS simulator aircraft to detect zones of potential accumulation for direct search. Sampling strategies, direct versus indirect measurements, remote sensing resolution, sensor/platform considerations, and future state are addressed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Towards a Cognitive Radar: Canada's Third-Generation High Frequency Surface Wave Radar (HFSWR) for Surveillance of the 200 Nautical Mile Exclusive Economic Zone.

    PubMed

    Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek

    2017-07-07

    Canada's third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data.

  19. Towards a Cognitive Radar: Canada’s Third-Generation High Frequency Surface Wave Radar (HFSWR) for Surveillance of the 200 Nautical Mile Exclusive Economic Zone

    PubMed Central

    Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek

    2017-01-01

    Canada’s third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data. PMID:28686198

  20. Comfort Zone.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2003-01-01

    Discusses the benefits of smaller schools, asserting that students get the personal attention and sense of belonging that discourages them from falling through the cracks and stirring up trouble. (EV)

  1. A field comparison of multiple techniques to quantify groundwater - surface-water interactions

    USGS Publications Warehouse

    González-Pinzón, Ricardo; Ward, Adam S; Hatch, Christine E; Wlostowski, Adam N; Singha, Kamini; Gooseff, Michael N.; Haggerty, Roy; Harvey, Judson; Cirpka, Olaf A; Brock, James T

    2015-01-01

    Groundwater–surface-water (GW-SW) interactions in streams are difficult to quantify because of heterogeneity in hydraulic and reactive processes across a range of spatial and temporal scales. The challenge of quantifying these interactions has led to the development of several techniques, from centimeter-scale probes to whole-system tracers, including chemical, thermal, and electrical methods. We co-applied conservative and smart reactive solute-tracer tests, measurement of hydraulic heads, distributed temperature sensing, vertical profiles of solute tracer and temperature in the stream bed, and electrical resistivity imaging in a 450-m reach of a 3rd-order stream. GW-SW interactions were not spatially expansive, but were high in flux through a shallow hyporheic zone surrounding the reach. NaCl and resazurin tracers suggested different surface–subsurface exchange patterns in the upper ⅔ and lower ⅓ of the reach. Subsurface sampling of tracers and vertical thermal profiles quantified relatively high fluxes through a 10- to 20-cm deep hyporheic zone with chemical reactivity of the resazurin tracer indicated at 3-, 6-, and 9-cm sampling depths. Monitoring of hydraulic gradients along transects with MINIPOINT streambed samplers starting ∼40 m from the stream indicated that groundwater discharge prevented development of a larger hyporheic zone, which progressively decreased from the stream thalweg toward the banks. Distributed temperature sensing did not detect extensive inflow of ground water to the stream, and electrical resistivity imaging showed limited large-scale hyporheic exchange. We recommend choosing technique(s) based on: 1) clear definition of the questions to be addressed (physical, biological, or chemical processes), 2) explicit identification of the spatial and temporal scales to be covered and those required to provide an appropriate context for interpretation, and 3) maximizing generation of mechanistic understanding and reducing costs of implementing multiple techniques through collaborative research.

  2. Application of remote sensing analysis and MT method for identification geothermal prospect zone in Mt. Endut

    NASA Astrophysics Data System (ADS)

    Akbar, A. M.; Permadi, A. N.; Wildan, D.; Sobirin, R.; Supriyanto

    2017-07-01

    Mount Endut is located at Banten Province, 40 km southward Rangkasbitung City, with geographic UTM position between 9261000-9274000 N and 639000-652000 E. Preliminary survey at Mt. Endut was geological and geochemical survey in 2006, resistivity survey and MT survey in 2007 with 27 measurement point. All survey conducted by Pusat Sumber Daya Geologi (PSDG). According to result of premilinary survey, Mt. Endut is dominated by quartenary volcanic rock produced by Mt. Endut, which breakthrough tertiary sediment layer. NE to SW normal fault produced surface manifestation, namely Cikawah (CKW) hot spring and Handeleum (HDL) hot spring. According to SiO2 and NaK geothermometer, subsurface temperature of Mt Endut is ranging from 162 to 180 °C. Apparent resistivity maps show that thermal manifestation areas coincide with pronounced high anomaly due to resistive intrusion bodies contrast to conductive sedimentary basements. In order to delineate permeability zone, fracture fault density (FFD) analysis from remote sensing image is carry out. FFD analysis from lansdat 7 image shows the area on westward flank of Mt. Endut have high fracture fault density (162-276 m/km2), higher than it's surrounding area and can be assume that area is weak zone and have high permeability. That's structure density anomaly coincide with low resistivity from Magnetotelluric data. Resistivity structure from Magnetotelluric data shows western flank have low permeability layer (14-27 Ohmm) with average thickness 250 m. Below this layer there is layer with higher resistivity (37-100 Ohmm) with ±1000 m depth and interpreted as shallow reservoir. Massive resistif intrusive bodies act controlled the surface manifestation, and act as boundary and bounded the geothermal system in western part of Mt. Endut.

  3. Spatial Analysis of Land Subsidence and Flood Pattern Based on DInSAR Method in Sentinel Sar Imagery and Weighting Method in Geo-Hazard Parameters Combination in North Jakarta Region

    NASA Astrophysics Data System (ADS)

    Prasetyo, Y.; Yuwono, B. D.; Ramadhanis, Z.

    2018-02-01

    The reclamation program carried out in most cities in North Jakarta is directly adjacent to the Jakarta Bay. Beside this program, the density of population and development center in North Jakarta office has increased the need for underground water excessively. As a result of these things, land subsidence in North Jakarta area is relatively high and so intense. The research methodology was developed based on the method of remote sensing and geographic information systems, expected to describe the spatial correlation between the land subsidence and flood phenomenon in North Jakarta. The DInSAR (Differential Interferometric Synthetic Aperture Radar) method with satellite image data Radar (SAR Sentinel 1A) for the years 2015 to 2016 acquisitions was used in this research. It is intended to obtain a pattern of land subsidence in North Jakarta and then combined with flood patterns. For the preparation of flood threat zoning pattern, this research has been modeling in spatial technique based on a weighted parameter of rainfall, elevation, flood zones and land use. In the final result, we have obtained a flood hazard zonation models then do the overlap against DInSAR processing results. As a result of the research, Geo-hazard modelling has a variety results as: 81% of flood threat zones consist of rural area, 12% consists of un-built areas and 7% consists of water areas. Furthermore, the correlation of land subsidence to flood risk zone is divided into three levels of suitability with 74% in high class, 22% in medium class and 4% in low class. For the result of spatial correlation area between land subsidence and flood risk zone are 77% detected in rural area, 17% detected in un-built area and 6% detected in a water area. Whereas the research product is the geo-hazard maps in North Jakarta as the basis of the spatial correlation analysis between the land subsidence and flooding phenomena.double point.

  4. On the Use of Nonlinear Regularization in Inverse Methods for the Solar Tachocline Profile Determination

    NASA Astrophysics Data System (ADS)

    Corbard, T.; Berthomieu, G.; Provost, J.; Blanc-Feraud, L.

    Inferring the solar rotation from observed frequency splittings represents an ill-posed problem in the sense of Hadamard and the traditional approach used to override this difficulty consists in regularizing the problem by adding some a priori information on the global smoothness of the solution defined as the norm of its first or second derivative. Nevertheless, inversions of rotational splittings (e.g. Corbard et al., 1998; Schou et al., 1998) have shown that the surface layers and the so-called solar tachocline (Spiegel & Zahn 1992) at the base of the convection zone are regions in which high radial gradients of the rotation rate occur. %there exist high gradients in the solar rotation profile near %the surface and at the base of the convection zone (e.g. Corbard et al. 1998) %in the so-called solar tachocline (Spiegel & Zahn 1992). Therefore, the global smoothness a-priori which tends to smooth out every high gradient in the solution may not be appropriate for the study of a zone like the tachocline which is of particular interest for the study of solar dynamics (e.g. Elliot 1997). In order to infer the fine structure of such regions with high gradients by inverting helioseismic data, we have to find a way to preserve these zones in the inversion process. Setting a more adapted constraint on the solution leads to non-linear regularization methods that are in current use for edge-preserving regularization in computed imaging (e.g. Blanc-Feraud et al. 1995). In this work, we investigate their use in the helioseismic context of rotational inversions.

  5. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques

    NASA Astrophysics Data System (ADS)

    Jha, Madan K.; Chowdary, V. M.; Chowdhury, Alivia

    2010-11-01

    An approach is presented for the evaluation of groundwater potential using remote sensing, geographic information system, geoelectrical, and multi-criteria decision analysis techniques. The approach divides the available hydrologic and hydrogeologic data into two groups, exogenous (hydrologic) and endogenous (subsurface). A case study in Salboni Block, West Bengal (India), uses six thematic layers of exogenous parameters and four thematic layers of endogenous parameters. These thematic layers and their features were assigned suitable weights which were normalized by analytic hierarchy process and eigenvector techniques. The layers were then integrated using ArcGIS software to generate two groundwater potential maps. The hydrologic parameters-based groundwater potential zone map indicated that the `good' groundwater potential zone covers 27.14% of the area, the `moderate' zone 45.33%, and the `poor' zone 27.53%. A comparison of this map with the groundwater potential map based on subsurface parameters revealed that the hydrologic parameters-based map accurately delineates groundwater potential zones in about 59% of the area, and hence it is dependable to a certain extent. More than 80% of the study area has moderate-to-poor groundwater potential, which necessitates efficient groundwater management for long-term water security. Overall, the integrated technique is useful for the assessment of groundwater resources at a basin or sub-basin scale.

  6. Inter-Annual Variability of Soil Moisture Stress Function in the Wheat Field

    NASA Astrophysics Data System (ADS)

    Akuraju, V. R.; Ryu, D.; George, B.; Ryu, Y.; Dassanayake, K. B.

    2014-12-01

    Root-zone soil moisture content is a key variable that controls the exchange of water and energy fluxes between land and atmosphere. In the soil-vegetation-atmosphere transfer (SVAT) schemes, the influence of root-zone soil moisture on evapotranspiration (ET) is parameterized by the soil moisture stress function (SSF). Dependence of actual ET: potential ET (fPET) or evaporative fraction to the root-zone soil moisture via SSF can also be used inversely to estimate root-zone soil moisture when fPET is estimated by remotely sensed land surface states. In this work we present fPET versus available soil water (ASW) in the root zone observed in the experimental farm sites in Victoria, Australia in 2012-2013. In the wheat field site, fPET vs ASW exhibited distinct features for different soil depth, net radiation, and crop growth stages. Interestingly, SSF in the wheat field presented contrasting shapes for two cropping years of 2012 and 2013. We argue that different temporal patterns of rainfall (and resulting soil moisture) during the growing seasons in 2012 and 2013 are responsible for the distinctive SSFs. SSF of the wheat field was simulated by the Agricultural Production Systems sIMulator (APSIM). The APSIM was able to reproduce the observed fPET vs. ASW. We discuss implications of our findings for existing modeling and (inverse) remote sensing approaches relying on SSF and alternative growth-stage-dependent SSFs.

  7. Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra wildlife sanctuary, India.

    PubMed

    Sowmya, S V; Somashekar, R K

    2010-11-01

    Fire is the most spectacular natural disturbance that affects the forest ecosystem composition and diversity. Fire has a devastating effect on the landscape and its impact is felt at every level of the ecosystem and it is possible to map forest fire risk zone and thereby minimize the frequency of fire. There is a need for supranational approaches that analyze wide scenarios of factors involved and global fire effects. Fires can be monitored and analyzed over large areas in a timely and cost effective manner by using satellite imagery. Also Geographical Information System (GIS) can be used effectively to demarcate the fire risk zone map. Bhadra wildlife Sanctuary located in Kamataka, India was selected for this study. Vegetation, slope, distance from roads, settlements parameters were derived for a study area using topographic maps and field information. The Remote Sensing (RS) and Geographical Information System (GIS)-based forest fire risk model of the study area appeared to be highly compatible with the actual fire-affected sites. The temporal satellite data from 1989 to2006 have been analyzed to map the burnt areas. These classes were weighted according to their influence on forest fire. Four categories of fire risk regions such as Low, Moderate, High and Very high fire intensity zones were identified. It is predicted that around 10.31% of the area falls undermoderate risk zone.

  8. Applications of remote sensing, volume 3

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Of the four change detection techniques (post classification comparison, delta data, spectral/temporal, and layered spectral temporal), the post classification comparison was selected for further development. This was based upon test performances of the four change detection method, straightforwardness of the procedures, and the output products desired. A standardized modified, supervised classification procedure for analyzing the Texas coastal zone data was compiled. This procedure was developed in order that all quadrangles in the study are would be classified using similar analysis techniques to allow for meaningful comparisons and evaluations of the classifications.

  9. Development, implementation and evaluation of satellite-aided agricultural monitoring systems

    NASA Technical Reports Server (NTRS)

    Cicone, R. (Principal Investigator); Crist, E.; Metzler, M.; Parris, T.

    1982-01-01

    Research supporting the use of remote sensing for inventory and assessment of agricultural commodities is summarized. Three task areas are described: (1) corn and soybean crop spectral/temporal signature characterization; (2) efficient area estimation technology development; and (3) advanced satellite and sensor system definition. Studies include an assessment of alternative green measures from MSS variables; the evaluation of alternative methods for identifying, labeling or classification targets in an automobile procedural context; a comparison of MSS, the advanced very high resolution radiometer and the coastal zone color scanner, as well as a critical assessment of thematic mapper dimensionally and spectral structure.

  10. Root Apex Transition Zone As Oscillatory Zone

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone. PMID:24106493

  11. The Freyenstein Shear Zone - Implications for exhumation of the South Bohemian Batholith (Moldanubian Superunit, Strudengau, Austria)

    NASA Astrophysics Data System (ADS)

    Griesmeier, Gerit; Iglseder, Christoph; Konstantin, Petrakakis

    2016-04-01

    The Moldanubian superunit is part of the internal zone of the Variscan Orogen in Europe and borders on the Saxothuringian and Sudetes zones in the north. In the south, it is blanketed by the Alpine foreland molasse. Tectonically it is subdivided into the Moldanubian Nappes (MN), the South Bohemian Batholith (SBB) and the Bavarian Nappes. This work describes the ~ 500 m thick Freyenstein shear zone, which is located at the southern border of the Bohemian Massif north and south of the Danube near Freyenstein (Strudengau, Lower Austria). The area is built up by granites of Weinsberg-type, which are interlayered by numerous dikes and paragneisses of the Ostrong nappe system. These dikes include medium grained granites and finegrained granites (Mauthausen-type granites), which form huge intrusions. In addition, smaller intrusions of dark, finegrained diorites und aplitic dikes are observed. These rocks are affected by the Freyenstein shear zone und ductily deformed. Highly deformed pegmatoides containing white mica crystals up to one cm cut through the deformed rocks and form the last dike generation. The Freyenstein shear zone is a NE-SW striking shear zone at the eastern edge of the SBB. The mylonitic foliation is dipping to the SE with angles around 60°. Shear-sense criteria like clast geometries, SĆ structures as well as microstructures show normal faulting top to S/SW with steep (ca. 50°) angles. The Freyenstein shear zone records a polyphase history of deformation and crystallization: In a first phase, mylonitized mineral assemblages in deformed granitoides can be observed, which consist of pre- to syntectonic muscovite-porphyroclasts and biotite as well as dynamically recrystallized potassium feldspar, plagioclase and quartz. The muscovite porphyroclasts often form mica fishes and show top to S/SW directed shear-sense. The lack of syntectonic chlorite crystals points to metamorphic conditions of lower amphibolite-facies > than 450° C. In a later stage fluid infiltration under lower greenschist-facies conditions locally lead to sericitization of feldspar and development of pseudomorphs after it. In addition, syn-mylonitic biotite has been chloritized mimetically. Chlorite growth across the mylonitic foliation occurs rarely. Brittle faulting, overprinting the shear zone features, is documented by the occurrence of numerous harnish planes. They show normal faulting to the N with angles around 30° and locally sinistral shear-sense. The Freyenstein shear zone belongs to a system of NE-SW striking shear zones and faults in the Moldanubian superunit and is located at the border between the SBB and MN ductily deforming both. Therefore, it plays an important role in exhumation processes of last stage SBB (synkinematic) intrusions during Late Variscan orogenic extension. According to cooling ages in other shear zones and (synkinematic) intrusions an age of ca. 320-290 Ma for the ductile deformation can be assumed.

  12. GIS prospectivity mapping and 3D modeling validation for potential uranium deposit targets in Shangnan district, China

    NASA Astrophysics Data System (ADS)

    Xie, Jiayu; Wang, Gongwen; Sha, Yazhou; Liu, Jiajun; Wen, Botao; Nie, Ming; Zhang, Shuai

    2017-04-01

    Integrating multi-source geoscience information (such as geology, geophysics, geochemistry, and remote sensing) using GIS mapping is one of the key topics and frontiers in quantitative geosciences for mineral exploration. GIS prospective mapping and three-dimensional (3D) modeling can be used not only to extract exploration criteria and delineate metallogenetic targets but also to provide important information for the quantitative assessment of mineral resources. This paper uses the Shangnan district of Shaanxi province (China) as a case study area. GIS mapping and potential granite-hydrothermal uranium targeting were conducted in the study area combining weights of evidence (WofE) and concentration-area (C-A) fractal methods with multi-source geoscience information. 3D deposit-scale modeling using GOCAD software was performed to validate the shapes and features of the potential targets at the subsurface. The research results show that: (1) the known deposits have potential zones at depth, and the 3D geological models can delineate surface or subsurface ore-forming features, which can be used to analyze the uncertainty of the shape and feature of prospectivity mapping at the subsurface; (2) single geochemistry anomalies or remote sensing anomalies at the surface require combining the depth exploration criteria of geophysics to identify potential targets; and (3) the single or sparse exploration criteria zone with few mineralization spots at the surface has high uncertainty in terms of the exploration target.

  13. Prototype simulates remote sensing spectral measurements on fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Hahn, Federico

    1998-09-01

    A prototype was designed to simulate spectral packinghouse measurements in order to simplify fruit and vegetable damage assessment. A computerized spectrometer is used together with lenses and an externally controlled illumination in order to have a remote sensing simulator. A laser is introduced between the spectrometer and the lenses in order to mark the zone where the measurement is being taken. This facilitates further correlation work and can assure that the physical and remote sensing measurements are taken in the same place. Tomato ripening and mango anthracnose spectral signatures are shown.

  14. Pericardium-6 Acupressure for the Prevention of Postoperative Nausea and Vomiting

    DTIC Science & Technology

    1999-10-01

    in turn desensitizes the chemoreceptor trigger zone in the brain. This desensitization would prevent PONV caused by intravenous or Pericardium-6...indirect stimulation can occur from another center, the chemoreceptor trigger zone (CTZ) (Haynes & Bailey, 1996). The CTZ is located in the area...of the brain sensing vision and taste (Langer, 1998). For example, distention of the gastrointestinal tract initiates afferent impulses that reach

  15. Use of aerial photographs for assessment of soil organic carbon and delineation of agricultural management zones.

    NASA Astrophysics Data System (ADS)

    Bartholomeus, H.; Kooistra, L.

    2012-04-01

    For quantitative estimation of soil properties by means of remote sensing, often hyperspectral data are used. But these data are scarce and expensive, which prohibits wider implementation of the developed techniques in agricultural management. For precision agriculture, observations at a high spatial resolution are required. Colour aerial photographs at this scale are widely available, and can be acquired at no of very low costs. Therefore, we investigated whether publically available aerial photographs can be used to a) automatically delineate management zones and b) estimate levels of organic carbon spatially. We selected three study areas within the Netherlands that cover a large variance in soil type (peat, sand, and clay). For the fields of interest, RGB aerial photographs with a spatial resolution of 50 cm were extracted from a publically available data provider. Further pre-processing exists of geo-referencing only. Since the images originate from different sources and are potentially acquired under unknown illumination conditions, the exact radiometric properties of the data are unknown. Therefore, we used spectral indices to emphasize the differences in reflectance and normalize for differences in radiometry. To delineate management zones we used image segmentation techniques, using the derived indices as input. Comparison with management zone maps as used by the farmers shows that there is good correspondence. Regression analysis between a number of soil properties and the derived indices shows that organic carbon is the major explanatory variable for differences in index values within the fields. However, relations do not hold for large regions, indicating that local models will have to be used, which is a problem that is also still relevant for hyperspectral remote sensing data. With this research, we show that low-cost aerial photographs can be a valuable tool for quantitative analysis of organic carbon and automatic delineation of management zones. Since a lot of data are publically available this offers great possibilities for implementing remote sensing techniques in agricultural management.

  16. Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation

    NASA Astrophysics Data System (ADS)

    Youssef, Ahmed M.; Pradhan, Biswajeet; Al-Kathery, Mohamed; Bathrellos, George D.; Skilodimou, Hariklia D.

    2015-01-01

    Rockfall is one of the major concerns along different urban areas and highways all over the world. Al-Noor Mountain is one of the areas that threaten rockfalls to the Al-Noor escarpment track road and the surrounding urban areas. Thousands of visitors and tourisms use the escarpment track road to visit Hira cave which is located at the top of Al-Noor Mountain. In addition, the surrounding urban areas of Al-Noor Mountain are continuously spreading over the recent years. The escarpment track road and the surrounding urban areas are highly vulnerable and suffers from recurrent rockfall mostly in the rainy season. The steep and highly jointed slope along the different faces of the mountain makes these zones prone to failure due to different actions such as weathering, erosion and anthropogenic effect. Therefore, an attempt has been made in this study to determine the Al-Noor cliff stability, by identifying the unstable areas, and to apply the rockfall simulations. A combination of remote sensing, field study and 2D computer simulation rockfall program were performed to assess surface characteristics of the cliff faces. Bounce height, total and translational kinetic energy, translational velocity, and number of blocks have been estimated. Different unstable zones along the Al-Noor Mountain and escarpment track road were determined using filed investigation and remote sensing based image analysis. In addition the rockfall simulation analysis indicated that rockfall in zone 1 and zone 2 of the Al-Noor Mountain may reach the urban areas, whereas rockfall in zone 3 will not reach the urban areas, and rockfalls along the Al-Noor escarpment track road will have highly impact on the tourists. Proper preventive measures are also suggested to arrest the movement of falling rocks before reaching the urban areas and the Al-Noor escarpment track road. If proper care is taken, then further uncertain rockfall hazards can be prevented.

  17. Groundwater potential index in a crystalline terrain using remote sensing data

    NASA Astrophysics Data System (ADS)

    Subba Rao, N.

    2006-08-01

    Demand for groundwater for drinking, agricultural and industrial purposes has increased due to uncertainty in the surface water supply. Agriculture is the main occupation of the rural people in Guntur district, Andhra Pradesh, India. Development of groundwater in the district is very less, indicating a lot of scope for further development of groundwater resources. However, assessment of groundwater conditions, particularly in a crystalline terrain, is a complex task because of variations in weathering and fracturing zones from place to place. Systematic studies for evaluation of groundwater potential zones have been carried out in a crystalline terrain of the district. Information on soils, geological formations and groundwater conditions is collected during the hydrogeological survey. Topographical and drainage conditions are derived from the Survey of India topographical maps. Geomorphological units and associated landform features inferred and delineated from the Indian remote sensing satellite imagery (IRS ID LISS III FCC) are moderately buried pediplain (BPM), shallow buried pediplain (BPS), valley fills (VF), structural hill (SH), residual hills (RH), lineaments and land use/land cover. A groundwater potential index (GPI) is computed for relative evaluation of groundwater potential zones in the study area by integrating all the related factors of occurrence and movement of groundwater resources. Accordingly, the landforms, BPM, BPS, VF, SH and RH, of the area are categorized as very good groundwater potential zone, good to moderate groundwater potential zone, moderate to poor groundwater potential zone, poor to very poor groundwater potential zone and very poor groundwater potential zone, respectively, for development and utilization of both groundwater and surface water resources for eliminating water scarcity. This study could help to improve the agrarian economy for better living conditions of the rural people. Taking the total weight-score of the GPI into account, a generalized classification of groundwater potential zones is evaluated for a quick assessment of the occurrence of groundwater resources on regional scale.

  18. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  19. Airborne Remote Sensing of Trafficability in the Coastal Zone

    DTIC Science & Technology

    2009-01-01

    validation instruments: Analytical Spectral Devices (ASD) full-range spectrometer; light weight deflectometer ( LWD ), which measures dynamic deflection...liquid water absorption features. The corresponding bearing strength measured by the LWD was high at the shoreline site and low at the backdune site...REVIEW REMOTE SENSING FIGURE 7 Correlation of in situ grain size, moisture, and bearing strength measurements. Scatterplot of percent moisture vs LWD

  20. Sulfate mineralogy of fumaroles in the Salton Sea Geothermal Field, Imperial County, California

    NASA Astrophysics Data System (ADS)

    Adams, Paul M.; Lynch, David K.; Buckland, Kerry N.; Johnson, Patrick D.; Tratt, David M.

    2017-11-01

    The Salton Trough lies in the transition between the San Andreas Fault and oblique spreading centers and transform faults in the Gulf of California. The Salton Sea Geothermal Field is the northernmost expression of those spreading centers. In 2007 two ammonia-emitting fumarole fields that had been submerged beneath the Salton Sea were exposed for the first time in nearly 50 years. As the sea level continued to drop these fields have developed a number of boiling pools, mud pots, gryphons and a unique suite of ammonium sulfate minerals. These have been studied over time with long-wave infrared remote sensing coupled with ground truth surveys backed by laboratory analyses of the minerals. Many vents lie at the center of concentric rings of mineralization with systematic occurrence of different minerals from center to edge. Three semi-concentric zones (fumarole, transition and evaporite) have been defined with respect to ammonia-emitting vents and bubbling pools. The scale of these zones range from several meters, localized around individual vents, to that of the fumarole fields as a whole. The fumarole zone is closest to the vents and locally contains cavernous sulfur crystals and significant deposits of gypsum, mascagnite, boussingaultite and other ammonium sulfates. The transition zone comprises a dark brown surficial band of inconspicuous sodium nitrate underlain by anhydrite/bassanite that is thought to have formed by ammonia-oxidizing microbes interacting with the ammonium sulfates of the outer fumarole zone. The evaporite zone is the outermost and contains blödite, thenardite and glauberite, which are typical of the sulfates associated with the shoreline of the Salton Sea. Remote sensing has shown that the mineral zones have remained relatively stable from 2013 to 2017, with minor variations depending on rainfall, temperature and levels of agricultural runoff.

  1. Investigation of the late summer Si-budget in the Sub-Antarctic and Polar Front Zones south of Tasmania (SAZ-SENSE)

    NASA Astrophysics Data System (ADS)

    Fripiat, F.; Leblanc, K.; Elskens, M.; Quéguiner, B.; Armand, L.; Cornet-Barthaux, V.; André, L.; Cardinal, D.

    2009-04-01

    In the surface ocean, the Si-biogeochemical budget can be estimated by the ratio between the integrated biogenic silica dissolution and production rates. However such data are scarce in the ocean mostly because of methodology limitation. This is especially true in the Sub-Antarctic Zone (SAZ) where only two profiles were measured so far, exhibiting large variation (dissolution: production ratio of 0.3 and 3.1 for spring and summer, respectively). Though, the SAZ plays a crucial role in the efficiency of the silicate pump and the fertility of the Sub-Antarctic Mode Waters which then replenish in nutrients the majority of the surface waters of the world ocean. Therefore, better constraining the dissolution: production ratios in this region will certainly improve our understanding of these processes. During the SAZ-SENSE cruise (Jan.-Feb. 2007), the Si-budget of three stations (two in the SAZ and one in the Polar Frontal Zone, PFZ, for a total of nine profiles) covering different biogeochemical properties (e.g., Fe enriched vs. depleted conditions, dominance of diatoms vs. other phytoplankton,…) was investigated. This was implemented in the framework of an exhaustive characterization of the Si-biogeochemical cycle using different parameters: PDMPO labelling, 32Si and 30Si spiked incubations, and, taxonomy. We have developed a new method for the determination of the production and dissolution rates from the 30Si isotopic dilution technique. We now measure the changes of the 30Si-abundances in particulate and liquid phases by High Resolution Sector Field Inductively Coupled Plasma Mass Spectrometer (HR-SF-ICP-MS). This method, which is faster, more sensitive and more precise than the traditional ones using an Isotope Ratio Mass Spectrometer (IRMS) or Thermal Ionization Mass Spectrometer (TIMS), will significantly aid in expanding the biogenic silica production-dissolution dataset in the ocean. The results obtained on Si budget indicate that the Si-regeneration (dissolution) dominates over Si-uptake (production) in the PFZ (1.9 ± 1.5), in contrast to SAZ where production is much larger than dissolution rate (0.08 ± 0.12). The efficiency of the Si-regeneration in late summer seems to be highly variable with significant variations at the same station on short timescale (days). These results will be compared with the other ones obtained from the unique toolbox implemented during SAZ-SENSE to study the Si cycle. They will be discussed to better assess the role of SAZ and PFZ in the global marine Si cycle.

  2. Beach erosion control study at Pass Christian. [using remote sensors and satellite observation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The methods of measuring the existence of erosion and the effects of sand stabilization control systems are described. The mechanics of sand movement, the nature of sand erosion, and the use of satellite data to measure these factors and their surrogates are discussed using the locational and control aspects of aeolian and litoral erosion zones along the sand beach of the Mississippi coast. The aeolian erosion is highlighted due to the redeposition of the sand which causes high cleanup costs, property damage, and safety and health hazards. The areas of differential erosion and the patterns of beach sand movement are illustrated and the use of remote sensing methods to identify the areas of erosion are evaluated.

  3. Efficient data assimilation algorithm for bathymetry application

    NASA Astrophysics Data System (ADS)

    Ghorbanidehno, H.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.

    2017-12-01

    Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing techniques. Data assimilation methods combine the remote sensing data and nearshore hydrodynamic models to estimate the unknown bathymetry and the corresponding uncertainties. In particular, several recent efforts have combined Kalman Filter-based techniques such as ensembled-based Kalman filters with indirect video-based observations to address the bathymetry inversion problem. However, these methods often suffer from ensemble collapse and uncertainty underestimation. Here, the Compressed State Kalman Filter (CSKF) method is used to estimate the bathymetry based on observed wave celerity. In order to demonstrate the accuracy and robustness of the CSKF method, we consider twin tests with synthetic observations of wave celerity, while the bathymetry profiles are chosen based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, NC. The first test case is a bathymetry estimation problem for a spatially smooth and temporally constant bathymetry profile. The second test case is a bathymetry estimation problem for a temporally evolving bathymetry from a smooth to a non-smooth profile. For both problems, we compare the results of CSKF with those obtained by the local ensemble transform Kalman filter (LETKF), which is a popular ensemble-based Kalman filter method.

  4. Fethiye-Burdur Fault Zone (SW Turkey): a myth?

    NASA Astrophysics Data System (ADS)

    Kaymakci, Nuretdin; Langereis, Cornelis; Özkaptan, Murat; Özacar, Arda A.; Gülyüz, Erhan; Uzel, Bora; Sözbilir, Hasan

    2017-04-01

    Fethiye Burdur Fault Zone (FBFZ) is first proposed by Dumont et al. (1979) as a sinistral strike-slip fault zone as the NE continuation of Pliny-Strabo trench in to the Anatolian Block. The fault zone supposed to accommodate at least 100 km sinistral displacement between the Menderes Massif and the Beydaǧları platform during the exhumation of the Menderes Massif, mainly during the late Miocene. Based on GPS velocities Barka and Reilinger (1997) proposed that the fault zone is still active and accommodates sinistral displacement. In order to test the presence and to unravel its kinematics we have conducted a rigorous paleomagnetic study containing more than 3000 paleomagnetic samples collected from 88 locations and 11700 fault slip data collected from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene. The obtained rotation senses and amounts indicate slight (around 20°) counter-clockwise rotations distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, the slickenside pitches and constructed paleostress configurations, along the so called FBFZ and also within the 300 km diameter of the proposed fault zone, indicated that almost all the faults, oriented parallel to subparallel to the zone, are normal in character. The fault slip measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. We have not encountered any significant strike-slip motion in the region to support presence and transcurrent nature of the FBFZ. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking faults which are transfer faults that accommodated extension and normal motion. Therefore, we claim that the sinistral Fethiye Burdur Fault (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault zone. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Fethiye Burdu Fault Zone, Paleomagnetism, paleostress inversion, normal fault, Strike-slip fault, SW Turkey

  5. Architectural and microstructural characterization of a seismogenic normal fault in dolostones (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Demurtas, Matteo; Fondriest, Michele; Clemenzi, Luca; Balsamo, Fabrizio; Storti, Fabrizio; Di Toro, Giulio

    2015-04-01

    Fault zones cutting carbonate sequences represent significant seismogenic sources worldwide (e.g. L'Aquila 2009, MW 6.1). Though seismological and geophysical techniques (double differences method, trapped waves, etc.) allow us to investigate down to the decametric scale the structure of active fault zones, further geological field surveys and microstructural studies of exhumed seismogenic fault zones are required to support interpretation of geophysical data, quantify the geometry of fault zones and identify the fault processes active during the seismic cycle. Here we describe the architecture (i.e. fault geometry and fault rock distribution) of the well-exposed footwall-block of the Campo Imperatore Fault Zone (CIFZ) by means of remote sensed analyses, field surveys, mineralogical (XRD, micro-Raman spectroscopy) and microstructural (FE-SEM, optical microscope cathodoluminescence) investigations. The CIFZ dips 58° towards N210 and its strike mimics that of the arcuate Gran Sasso Thrust Belt (Central Apennines). The CIFZ was exhumed from 2-3 km depth and accommodated a normal throw of ~2 km starting from the Early-Pleistocene. In the studied area, the CIFZ puts in contact the Holocene deposits at the hangingwall with dolomitized Jurassic carbonate platform successions (Calcare Massiccio) at the footwall. From remote sensed analyses, structural lineaments both inside and outside the CIFZ have a typical NW-SE Apenninic strike, which is parallel to the local trend of the Gran Sasso Thrust. Based on the density of the fracture/fault network and the type of fault zone rocks, we distinguished four main structural domains within the ~300 m thick CIFZ footwall-block, which include (i) a well-cemented (white in color) cataclastic zone (up to ~40 m thick) at the contact with the Holocene deposits, (ii) a well-cemented (brown to grey in color) breccia zone (up to ~15 m thick), (iii) an high strain damage zone (fracture spacing < 2-3 cm), and (iv) a low strain damage zone (fracture spacing > 10 cm). Other than by the main boundary normal fault, slip was accommodated in the cataclastic zone by minor sub-parallel synthetic and antithetic normal faults and by few tear strike-slip fault; the rest of the footwall shows progressively less pervasive damage down to the background intensity of deformation. High strain domains include (1) pervasively fragmented dolostones with radial fractures (evidence of in-situ shattering), (2) shiny (mirror-like) fault surfaces truncating dolostone clasts, (3) mm-thick ultra-cataclastic layers with lobate and cuspate boundaries, (4) mixed calcite-dolomite "foliated cataclasites". The above microstructures can be associated with seismic faulting. Fluids infiltration during deformation is attested by the occurrence of multiple generations of carbonate-filled veins, often exploited as minor faults with a mylonite-like fabric (e.g. presence of micrometer in size euhedral calcite grains). The attitude of the studied segment of the CIFZ, the thickness of the footwall block and the kinematics of the minor faults compares well with the hypocentral and focal mechanisms distribution typical of the earthquake sequences in the Apennines. In particular, the CIFZ can be considered as an exhumed analogue of the normal fault system that caused the L'Aquila 2009 seismic sequence.

  6. Remote sensing monitoring and driving force analysis to forest and greenbelt in Zhuhai

    NASA Astrophysics Data System (ADS)

    Yuliang Qiao, Pro.

    As an important city in the southern part of Chu Chiang Delta, Zhuhai is one of the four special economic zones which are opening up to the outside at the earliest in China. With pure and fresh air and trees shading the street, Zhuhai is a famous beach port city which is near the mountain and by the sea. On the basis of Garden City, the government of Zhuhai decides to build National Forest City in 2011, which firstly should understand the situation of greenbelt in Zhuhai in short term. Traditional methods of greenbelt investigation adopt the combination of field surveying and statistics, whose efficiency is low and results are not much objective because of artificial influence. With the adventure of the information technology such as remote sensing to earth observation, especially the launch of many remote sensing satellites with high resolution for the past few years, kinds of urban greenbelt information extraction can be carried out by using remote sensing technology; and dynamic monitoring to spatial pattern evolvement of forest and greenbelt in Zhuhai can be achieved by the combination of remote sensing and GIS technology. Taking Landsat5 TM data in 1995, Landsat7 ETM+ data in 2002, CCD and HR data of CBERS-02B in 2009 as main information source, this research firstly makes remote sensing monitoring to dynamic change of forest and greenbelt in Zhuhai by using the combination of vegetation coverage index and three different information extraction methods, then does a driving force analysis to the dynamic change results in 3 months. The results show: the forest area in Zhuhai shows decreasing tendency from 1995 to 2002, increasing tendency from 2002 to 2009; overall, the forest area show a small diminution tendency from 1995 to 2009. Through the comparison to natural and artificial driving force, the artificial driving force is the leading factor to the change of forest and greenbelt in Zhuhai. The research results provide a timely and reliable scientific basis for the Zhuhai Government in building National Forest City. Keywords: forest and greenbelt; remote sensing; dynamic monitoring; driving force; vegetation coverage

  7. The accuracy of home glucose meters in hypoglycemia.

    PubMed

    Sonmez, Alper; Yilmaz, Zeynep; Uckaya, Gokhan; Kilic, Selim; Tapan, Serkan; Taslipinar, Abdullah; Aydogdu, Aydogan; Yazici, Mahmut; Yilmaz, Mahmut Ilker; Serdar, Muhittin; Erbil, M Kemal; Kutlu, Mustafa

    2010-08-01

    Home glucose meters (HGMs) may not be accurate enough to sense hypoglycemia. We evaluated the accuracy and the capillary and venous comparability of five different HGMs (Optium Xceed [Abbott Diabetes Care, Alameda, CA, USA], Contour TS [Bayer Diabetes Care, Basel, Switzerland], Accu-Chek Go [Roche Ltd., Basel, Switzerland], OneTouch Select [Lifescan, Milpitas, CA, USA], and EZ Smart [Tyson Bioresearch Inc., Chu-Nan, Taiwan]) in an adult population. The insulin hypoglycemia test was performed to 59 subjects (56 males; 23.6 +/- 3.2 years old). Glucose was measured from forearm venous blood and finger capillary samples both before and after regular insulin (0.1 U/kg) was injected. Venous samples were analyzed in the reference laboratory by the hexokinase method. In vitro tests for method comparison and precision analyses were also performed by spiking the glucose-depleted venous blood. All HGMs failed to sense hypoglycemia to some extend. EZ Smart was significantly inferior in critical error Zone D, and OneTouch Select was significantly inferior in the clinically unimportant error Zone B. Accu-Chek Go, Optium Xceed, and Contour TS had similar performances and were significantly better than the other two HGMs according to error grid analysis or International Organization for Standardization criteria. The in vitro tests were consistent with the above clinical data. The capillary and venous consistencies of Accu-Chek Go and OneTouch Select were better than the other HGMs. The present results show that not all the HGMs are accurate enough in low blood glucose levels. The patients and the caregivers should be aware of these restrictions of the HGMs and give more credit to the symptoms of hypoglycemia than the values obtained by the HGMs. Finally, these results indicate that there is a need for the revision of the accuracy standards of HGMs in low blood glucose levels.

  8. Nimbus 7 Coastal Zone Color Scanner (CZCS). Level 1 data product users' guide

    NASA Technical Reports Server (NTRS)

    Williams, S. P.; Szajna, E. F.; Hovis, W. A.

    1985-01-01

    The coastal zone color scanner (CZCS) is a scanning multispectral radiometer designed specifically for the remote sensing of Ocean Color parameters from an Earth orbiting space platform. A technical manual which is intended for users of NIMBUS 7 CZCS Level 1 data products is presented. It contains information needed by investigators and data processing personnel to operate on the data using digital computers and related equipment.

  9. Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Bolten, J. D.

    2014-12-01

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.

  10. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California

    USGS Publications Warehouse

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.

    2004-01-01

    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed alternative tectonic models by evaluating (1) the cumulative effects of multiple deformational episodes that can produce complex, difficult-to-interpret fault geometries, patterns, and senses of displacement; (2) the difficult imaging of high-angle fault planes and horizontal fault separations on seismic reflection data; and (3) the effects of strain partitioning that yield coeval strike-slip faults and associated fold and thrust belts.

  11. The use of remote sensing and linear wave theory to model local wave energy around Alphonse Atoll, Seychelles

    NASA Astrophysics Data System (ADS)

    Hamylton, S.

    2011-12-01

    This paper demonstrates a practical step-wise method for modelling wave energy at the landscape scale using GIS and remote sensing techniques at Alphonse Atoll, Seychelles. Inputs are a map of the benthic surface (seabed) cover, a detailed bathymetric model derived from remotely sensed Compact Airborne Spectrographic Imager (CASI) data and information on regional wave heights. Incident energy at the reef crest around the atoll perimeter is calculated as a function of its deepwater value with wave parameters (significant wave height and period) hindcast in the offshore zone using the WaveWatch III application developed by the National Oceanographic and Atmospheric Administration. Energy modifications are calculated at constant intervals as waves transform over the forereef platform along a series of reef profile transects running into the atoll centre. Factors for shoaling, refraction and frictional attenuation are calculated at each interval for given changes in bathymetry and benthic coverage type and a nominal reduction in absolute energy is incorporated at the reef crest to account for wave breaking. Overall energy estimates are derived for a period of 5 years and related to spatial patterning of reef flat surface cover (sand and seagrass patches).

  12. Oleoresin, Chemistry and Spectral Reflectance in "Stressed" Lodgepole and White Bark Pine, Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    Hickey, James C.; Birnie, Richard W.; Zhao, Mei-Xun

    2001-01-01

    Development of methods to identify the physical and chemical character of materials on the earth's surface is one of the foci of hyperspectral remote sensing activities. Enhancing the ability to elucidate changes in foliar chemistry that relate to the health of a plant is a benefit to plant physiologists, foresters, and plant ecologists, as well as geologist and environmental scientists. Vegetation covers the landscape throughout the temperate and tropical regions of the earth. The existence of vegetation in these areas presents special problems to remote sensing systems since geologic bedrock and alteration zones are masked. At times, however, alterations in the soil/sediment geochemical environment result in foliar chemical changes that are detectable via remote sensing. Examples include monitoring of chlorophyll reflectance/fluorescence and equivalent water thickness indices as indicators of drought-induced plant stress. Another processing and interpretation approach used with hyperspectral data has been principal components analysis (PCA). Rowan et al. used PCA to identify absorption feature patterns obtained from vegetated areas with discrete bedrock geology or mineralization as the substrate. Many researchers highlight the need to advance our ability for hyperspectral imaging in vegetated areas as a near-term priority.

  13. Field_ac: a research project on ocean modelling in coastal areas. The experience in the Catalan Sea.

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Pallarès, Elena; Tolosana-Delgado, Raimon; Fernandez, Juan; Lopez, Jaime; Mosso, Cesar; Hermosilla, Fernando; Espino, Manuel; Sanchez-Arcilla, Agustín

    2013-04-01

    The EU founded Field_ac project has investigated during the last three years methods and strategies for improving operational services in coastal areas. The objective has been to generate added value for shelf and regional scale predictions from GMES Marine Core Services. In this sense the experience in the Catalan Sea site has allowed to combine high-resolution numerical modeling tools nested into regional GMES services, data from intensive field campaigns or local observational networks and remote sensing products. Multi-scale coupled models have been implemented to evaluate different temporal and spatial scales of the dominant physical processes related with waves, currents, continental/river discharges or sediment transport. In this sense the experience of the Field_ac project in the Catalan Sea has permit to "connect" GMES marine core service results to the coastal (local) anthropogenic forcing (e.g. causes of morphodynamic evolution and ecosystem degradation) and will support a knowledge-based assessment of decisions in the coastal zone. This will contribute to the implementation of EU directives (e.g., the Water Framework Directive for water quality at beaches near harbour entrances or the Risk or Flood Directives for waves and sea-level at beach/river-mouth scales).

  14. Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems

    DOEpatents

    Zhdanov,; Michael, S [Salt Lake City, UT

    2008-01-29

    Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

  15. Airborne lidar sensing of massive stony coral colonies on patch reefs in the northern Florida reef tract

    USGS Publications Warehouse

    Brock, J.C.; Wright, C.W.; Kuffner, I.B.; Hernandez, R.; Thompson, P.

    2006-01-01

    In this study we examined the ability of the NASA Experimental Advanced Airborne Research Lidar (EAARL) to discriminate cluster zones of massive stony coral colonies on northern Florida reef tract (NFRT) patch reefs based on their topographic complexity (rugosity). Spatially dense EAARL laser submarine topographic soundings acquired in August 2002 were used to create a 1-m resolution digital rugosity map for adjacent NFRT study areas characterized by patch reefs (Region A) and diverse substratums (Region B). In both regions, sites with lidar-sensed rugosities above 1.2 were imaged by an along-track underwater videography system that incorporated the acquisition of instantaneous GPS positions. Subsequent manual interpretation of videotape segments was performed to identify substratum types that caused elevated lidar-sensed rugosity. Our study determined that massive coral colony formation, modified by subsequent physical and biological processes that breakdown patch reef framework, was the primary source of topographic complexity sensed by the EAARL in the NFRT. Sites recognized by lidar scanning to be topographically complex preferentially occurred around the margins of patch reefs, constituted a minor fraction of the reef system, and usually reflected the presence of massive coral colonies in cluster zones, or their derivatives created by mortality, bioerosion, and physical breakdown.

  16. Study on Ecological Risk Assessment of Guangxi Coastal Zone Based on 3s Technology

    NASA Astrophysics Data System (ADS)

    Zhong, Z.; Luo, H.; Ling, Z. Y.; Huang, Y.; Ning, W. Y.; Tang, Y. B.; Shao, G. Z.

    2018-05-01

    This paper takes Guangxi coastal zone as the study area, following the standards of land use type, divides the coastal zone of ecological landscape into seven kinds of natural wetland landscape types such as woodland, farmland, grassland, water, urban land and wetlands. Using TM data of 2000-2015 such 15 years, with the CART decision tree algorithm, for analysis the characteristic of types of landscape's remote sensing image and build decision tree rules of landscape classification to extract information classification. Analyzing of the evolution process of the landscape pattern in Guangxi coastal zone in nearly 15 years, we may understand the distribution characteristics and change rules. Combined with the natural disaster data, we use of landscape index and the related risk interference degree and construct ecological risk evaluation model in Guangxi coastal zone for ecological risk assessment results of Guangxi coastal zone.

  17. Rapid intraplate strain accumulation in the New Madrid seismic zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L.; Zoback, M.D.; Segall, P.

    1992-09-01

    Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes greater than 8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time. 34 refs.

  18. Mapping Of Leptospirosis Environmental Risk Factors and Determining the Level of Leptospirosis Vulnerable Zone In Demak District Using Remote Sensing Image

    NASA Astrophysics Data System (ADS)

    Rahayu, Siti; Sakundarno Adi, Mateus; Saraswati, Lintang Dian

    2018-02-01

    Leptospirosis, a zoonotic disease, transmitted to human trough contact with contaminated animal urine and contaminated environment. Demak District is an endemic area where cases increased in the past 2 years. The aim of the study was to map environmental risk factor of Leptospirosis and to determine Leptospirosis vulnerable zone using cross-sectional study design. There were 42 cases mapped by GPS and overlaid using remote sensing (Quickbird image) by using ArcView program then interpreted by Spatial Feature and Spatial Analyses. Leptospirosis cases were spread out and grouped in Demak Sub District area. More cases were males (61.9%), 21-50 years old age group (59.3%) and farmers (40.4%). Spatial analyses showed that all the leptospirosis cases took place in the area with low plain <47 msl, rainfall ≥220 mm/month (64.7%), clay soil (100%), buffer river <50 m (71.4%), presence of rat (100%), wastewater disposal (100%), waste disposal facilities (97.7%), flood's profile (28.6%), tidal inundation's profile (7.1%), vegetation (59.5%). Leptospirosis high-risk zone was in 37,801.8 ha (41.32%), moderate risk zone was 43,570.23 ha (48.55%), and low-risk zone was 9,090.96 ha (10.13%). Densely populated housing, bad environment condition, and the presence of rat and puddles that were contaminated by rat's urine were risk factors of Leptospirosis cases in Demak District.

  19. Remote sensing techniques applied to multispectral recognition of the Aranjuez pilot zone

    NASA Technical Reports Server (NTRS)

    Lemos, G. L.; Salinas, J.; Rebollo, M.

    1977-01-01

    A rectangular (7 x 14 km) area 40 km S of Madrid was remote-sensed with a three-stage recognition process. Ground truth was established in the first phase, airborne sensing with a multispectral scanner and photographic cameras were used in the second phase, and Landsat satellite data were obtained in the third phase. Agronomic and hydrological photointerpretation problems are discussed. Color, black/white, and labeled areas are displayed for crop recognition in the land-use survey; turbidity, concentrations of pollutants and natural chemicals, and densitometry of the water are considered in the evaluation of water resources.

  20. Geospatial Approach on Landslide Hazard Zonation Mapping Using Multicriteria Decision Analysis: A Study on Coonoor and Ooty, Part of Kallar Watershed, The Nilgiris, Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Rahamana, S. Abdul; Aruchamy, S.; Jegankumar, R.

    2014-12-01

    Landslides are one of the critical natural phenomena that frequently lead to serious problems in hilly area, resulting to loss of human life and property, as well as causing severe damage to natural resources. The local geology with high degree of slope coupled with high intensity of rainfall along with unplanned human activities of the study area causes many landslides in this region. The present study area is more attracted by tourist throughout the year, so this area must be considered for preventive measures. Geospatial based Multicriteria decision analysis (MCDA) technique is increasingly used for landslide vulnerability and hazard zonation mapping. It enables the integration of different data layers with different levels of uncertainty. In this present study, it is used analytic hierarchy process (AHP) method to prepare landslide hazard zones of the Coonoor and Ooty, part of Kallar watershed, The Nilgiris, Tamil Nadu. The study was carried out using remote sensing data, field surveys and geographic information system (GIS) tools. The ten factors that influence landslide occurrence, such as elevation, slope aspect, slope angle, drainage density, lineament density, soil, precipitation, land use/land cover (LULC), distance from road and NDVI were considered. These factors layers were extracted from the various related spatial data's. These factors were evaluated, and then, the individual factor weight and class weight were assigned to each of the related factors. The Landslide Hazard Zone Index (LHZI) was calculated using Multicriteria decision analysis (MCDA) the technique based on the assigned weight and the rating is given by the Analytical Hierarchy Process (AHP) method. The final cumulative map of the study area was categorized into four hazard zones and classified as zone I to IV. There are 3.56% of the area comes under the hazard zone IV fallowed by 48.19% of the area comes under zone III, 43.63 % of the area in zone II and 4.61% of the area comes hazard zone I. Further resulted hazard zone map and landuse/landcover map are overlaid to check the hazard status, and existing inventory of known landslides within the present study area was compared with the resulting vulnerable and hazard zone maps. The landslide hazard zonation map is useful for landslide hazard prevention, mitigation, and improvement to society, and proper planning for land use and construction in the future.

  1. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolshov, M A; Kuritsyn, Yu A; Liger, V V

    2015-04-30

    An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. Amore » new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene – air mixture. (laser applications and other topics in quantum electronics)« less

  2. Seasonal Ice Zone Reconnaissance Surveys Coordination

    DTIC Science & Technology

    2013-09-30

    of SIZRS are covered in separate reports. Our long-term goal is to track and understand the interplay among the ice, atmosphere, and ocean...OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Seasonal Ice Zone...sensing resources include MODIS visible and IR imagery, NSIDC ice extent charts based on a composite of passive microwave products (http://nsidc.org

  3. Optical Polarization in the Nearshore

    NASA Astrophysics Data System (ADS)

    Holman, R.

    2008-12-01

    A recent addition to the suite of optical remote sensing methods that have been used to study nearshore processes is the use of imaging polarimetric cameras. Both the degree of polarization and the azimuth of polarized light contain information about the imaged surfaces from which light has been reflected or scattered. In 2007, a polarimetric Argus camera was installed atop the tower at Duck, NC. This talk will examine the various polarization signatures that can be exploited, including the potential for measuring the sea surface slope spectrum of nearshore surf zone waves, the slope of the foreshore beach, water content of foreshore sediments and bubble signatures of dissipating waves.

  4. A legislator's guide to LANDSAT

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The LANDSAT satellite is an effective tool in meeting the natural resources data requirements of state and federal legislation. The availability of data from the satellite is beginning to have an impact on state legislature activities. An overview of the history, operation, and data analysis techniques, is presented as well as a discussion of the advantages and limitations of this method of remote sensing. Applications are discussed in the areas of (1) land resource planning and management; (2) coastal zone management; (3) agriculture; (4) forestry; (5) routing and siting; (6) environmental monitoring; and (7) geological exploration. National and state sources from which information about LANDSAT technology is available are listed.

  5. [High Resolution Remote Sensing Monitoring and Assessment of Secondary Geological Disasters Triggered by the Lushan Earthquake].

    PubMed

    Wang, Fu-tao; Wang, Shi-xin; Zhou, Yi; Wang, Li-tao; Yan, Fu-li; Li, Wen-jun; Liu, Xiong-fei

    2016-01-01

    The secondary geological disasters triggered by the Lushan earthquake on April 20, 2013, such as landslides, collapses, debris flows, etc., had caused great casualties and losses. We monitored the number and spatial distribution of the secondary geological disasters in the earthquake-hit area from airborne remote sensing images, which covered areas about 3 100 km2. The results showed that Lushan County, Baoxing County and Tianquan County were most severely affected; there were 164, 126 and 71 secondary geological disasters in these regions. Moreover, we analyzed the relationship between the distribution of the secondary geological disasters, geological structure and intensity. The results indicate that there were 4 high-hazard zones in the monitored area, one focused within six kilometers from the epicenter, and others are distributed along the two main fault zones of the Longmen Mountain. More than 97% secondary geological disasters occurred in zones with a seismic intensity of VII to IX degrees, a slope between 25 A degrees and 50 A degrees, and an altitude of between 800 and 2 000 m. At last, preliminary suggestions were proposed for the rehabilitation and reconstruction planning of Lushan earthquake. According to the analysis result, airborne and space borne remote sensing can be used accurately and effectively in almost real-time to monitor and assess secondary geological disasters, providing a scientific basis and decision making support for government emergency command and post-disaster reconstruction.

  6. Remote sensing in biological oceanography

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1981-01-01

    The main attribute of remote sensing is seen as its ability to measure distributions over large areas on a synoptic basis and to repeat this coverage at required time periods. The way in which the Coastal Zone Color Scanner, by showing the distribution of chlorophyll a, can locate areas productive in both phytoplankton and fishes is described. Lidar techniques are discussed, and it is pointed out that lidar will increase the depth range for observations.

  7. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    DTIC Science & Technology

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  8. Ganges-Brahmaputra-Meghna Delta Connectivity Analysis Using New Tools for the Automatic Extraction of Channel Networks from Remotely Sensed Imagery

    NASA Astrophysics Data System (ADS)

    Jarriel, T. M.; Isikdogan, F.; Passalacqua, P.; Bovik, A.

    2017-12-01

    River deltas are one of the environmental ecosystems most threatened by climate change and anthropogenic activity. While their low elevation gradients and fertile soil have made them optimal for human inhabitation and diverse ecologic growth, it also makes them susceptible to adverse effects of sea level rise, flooding, subsidence, and manmade structures such as dams, levees, and dikes. One particularly large and threatened delta that is the focus area of this study, is the Ganges-Brahmaputra-Meghna Delta (GBMD) on the southern coast of Bangladesh/West Bengal India. In this study we analyze the GBMD channel network, identify areas of maximum change of the network, and use this information to predict how the network will respond under future scenarios. Landsat images of the delta from 1973 to 2017 are analyzed using new tools for the automatic extraction of channel networks from remotely sensed imagery [Isikdogan et al., 2017a, Isikdogan et al., 2017b]. The tools return channel width and channel centerline location at the resolution of the input imagery (30 m). Channel location variance over time is computed using the combined data from 1973 to 2017 and, based on this information, zones of highest change in the system are identified (Figure 1). Network metrics measuring characteristics of the delta's channels and islands are calculated for each year of the study and compared to the variance results in order to identify what metrics capture this change. These results provide both a method to identify zones of the GBMD that are currently experiencing the most change, as well as a means to predict what areas of the delta will experience network changes in the future. This information will be useful for informing coastal sustainability decisions about what areas of such a large and complex network should be the focus of remediation and mitigation efforts. Isikdogan, F., A. Bovik, P. Passalacqua (2017a), RivaMap: An Automated River Analysis and Mapping Engine, Remote Sensing of Environment, in press. Isikdogan, F., A. Bovik, P. Passalacqua (2017b), River Network Extraction by Deep Convolutional Neural Networks, IEEE Geoscience and Remote Sensing Letters, under review.

  9. Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: a time-series study

    PubMed Central

    2014-01-01

    Background Plasmodium falciparum transmission has decreased significantly in Zambia in the last decade. The malaria transmission is influenced by environmental variables. Incorporation of environmental variables in models of malaria transmission likely improves model fit and predicts probable trends in malaria disease. This work is based on the hypothesis that remotely-sensed environmental factors, including nocturnal dew point, are associated with malaria transmission and sustain foci of transmission during the low transmission season in the Southern Province of Zambia. Methods Thirty-eight rural health centres in Southern Province, Zambia were divided into three zones based on transmission patterns. Correlations between weekly malaria cases and remotely-sensed nocturnal dew point, nocturnal land surface temperature as well as vegetation indices and rainfall were evaluated in time-series analyses from 2012 week 19 to 2013 week 36. Zonal as well as clinic-based, multivariate, autoregressive, integrated, moving average (ARIMAX) models implementing environmental variables were developed to model transmission in 2011 week 19 to 2012 week 18 and forecast transmission in 2013 week 37 to week 41. Results During the dry, low transmission season significantly higher vegetation indices, nocturnal land surface temperature and nocturnal dew point were associated with the areas of higher transmission. Environmental variables improved ARIMAX models. Dew point and normalized differentiated vegetation index were significant predictors and improved all zonal transmission models. In the high-transmission zone, this was also seen for land surface temperature. Clinic models were improved by adding dew point and land surface temperature as well as normalized differentiated vegetation index. The mean average error of prediction for ARIMAX models ranged from 0.7 to 33.5%. Forecasts of malaria incidence were valid for three out of five rural health centres; however, with poor results at the zonal level. Conclusions In this study, the fit of ARIMAX models improves when environmental variables are included. There is a significant association of remotely-sensed nocturnal dew point with malaria transmission. Interestingly, dew point might be one of the factors sustaining malaria transmission in areas of general aridity during the dry season. PMID:24927747

  10. Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamimi, Zakaria; El-Sawy, El-Sawy K.; El-Fakharani, Abdelhamid; Matsah, Mohamed; Shujoon, Abdulrahman; El-Shafei, Mohamed K.

    2014-11-01

    The Ad-Damm Shear Zone (AdSZ) is a major NE- (to NNE-) trending fault zone separating Jiddah and Asir tectonic terranes in the Neoproterozoic Juvenile Arabian Shield (AS). AdSZ is characterized by the development of dextral transcurrent shear-sense indicators and moderately to steeply NW plunging stretching lineations. It is mainly developed under high amphibolite-to greenschist-facies conditions and extends ∼380 km, with an average width ∼2-4 km, from the conspicuous Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW-trending sinistral Najd Shear System. This assumption is, based on the noteworthy dextral shear criteria recorded within the 620 Ma mylonitic granite of No'man Complex. A total shear-zone strike length exceeding 117 km is carefully investigated during this study to reconstruct its structural evolution. Shear-sense indicators and other field observations including overprinting relations clearly demonstrate a complicated Neoproterozoic history of AdSZ, involving at least three phases of deformations (D1-D3). Both D1 and D2 phases were of contractional regime. During D1 phase a NW-SE compression led to the formation of NE-oriented low-angle thrusts and tight-overturned folds. D2 is represented by a NE-SW stress oriented that led to the development of an open folding. D3 is expressed by the NE-SW intensive dextral transcurrent brittle-ductile shearing. It is overprinting the early formed fabrics and played a significant role in the creation of AdSZ and the mega-scale related folds. Such deformation history reflects the same Neoproterozoic deformation regime recognized in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  11. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

    NASA Astrophysics Data System (ADS)

    Karssenberg, D.; Wanders, N.; de Roo, A.; de Jong, S.; Bierkens, M. F.

    2013-12-01

    Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system that is not directly linked to discharge, in particular the unsaturated zone, remains uncalibrated, or might be modified unrealistically. Soil moisture observations from satellites have the potential to fill this gap, as these provide the closest thing to a direct measurement of the state of the unsaturated zone, and thus are potentially useful in calibrating unsaturated zone model parameters. This is expected to result in a better identification of the complete hydrological system, potentially leading to improved forecasts of the hydrograph as well. Here we evaluate this added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: 1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? 2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to approaches that calibrate only with discharge, such that this leads to improved forecasts of soil moisture content and discharge as well? To answer these questions we use a dual state and parameter ensemble Kalman filter to calibrate the hydrological model LISFLOOD for the Upper Danube area. Calibration is done with discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS and ASCAT. Four scenarios are studied: no calibration (expert knowledge), calibration on discharge, calibration on remote sensing data (three satellites) and calibration on both discharge and remote sensing data. Using a split-sample approach, the model is calibrated for a period of 2 years and validated for the calibrated model parameters on a validation period of 10 years. Results show that calibration with discharge data improves the estimation of groundwater parameters (e.g., groundwater reservoir constant) and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate calibration of parameters related to land surface process (e.g., the saturated conductivity of the soil), which is not possible when calibrating on discharge alone. For the upstream area up to 40000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30 % in the RMSE for discharge simulations, compared to calibration on discharge alone. For discharge in the downstream area, the model performance due to assimilation of remotely sensed soil moisture is not increased or slightly decreased, most probably due to the longer relative importance of the routing and contribution of groundwater in downstream areas. When microwave soil moisture is used for calibration the RMSE of soil moisture simulations decreases from 0.072 m3m-3 to 0.062 m3m-3. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models leading to a better simulation of soil moisture content throughout and a better simulation of discharge in upstream areas, particularly if discharge observations are sparse.

  12. Use of remote sensing techniques for mitigation and relief action of the main disaster concerns in Syria

    NASA Astrophysics Data System (ADS)

    Dalati, M.

    The main disaster concern in Syria is the Earthquakes since that Northwest of Syria is part of one of the very active deformation belt on the Earth today This area and the western part of Syria are located along the great rift Afro-Arabian rift System Those areas are tectonically active and cause time to time a lot of seismically events This faulting zone system represent a unique structural feature in the Mediterranean Region The system formed initially as a result of the break up of the Arabian plate from the African plate since the mid-Cenozoic The other disaster concern in Syria is Landslides whom caused significant damaging in Syria during the last decades especially in the Northwestern and Southwestern regions Landslide disasters killed some people and destroyed many mud and cement houses coastal mountains and cut off some roads few years ago It is known that many of the earthquakes and landslides that ever happened on our planet are located in active faults zones So it is of most important to obtain detailed information on regional tectonic structures The main approach of active faults survey at present is to use geological and geophysical methods such as in-situ measuring drilling and analysis of gravity and magnetic fields However because of the magnitude of the work there are still many uncertainties that we cannot figure out by traditional approaches Remote sensing has been brought forward for many years and has applications in many hazard

  13. [Ecological risk assessment of human activity of rapid economic development regions in southern Jiangsu, China: a case study of Dantu District of Zhenjiang City].

    PubMed

    Fang, Guang-Ling; Xiang, Bao; Wang, Bao-Liang; Jin, Xia; Hu, Yu; Zhang, Li-Kun

    2014-04-01

    This article investigated the spatiotemporal variation of landscape ecological risk in Dantu District of Zhenjiang City with statistical method based on the ETM remote sensing data in 2000 and 2005, and the TM remote sensing data in 2010, and quantitative index of regional ecological risk assessment was established with the employment of landscape index, so as to enhance the ecosystem management, prevent and reduce the regional ecological risk in southern Jiangsu with rapid economic development. The results showed that the fragmentations, divergence, and ecological losses of natural landscape types, such as forestland, wetland, waters, etc., were deteriorated with the expansion of built-up lands from 2000 to 2010. The higher ecological risk zone took up 5.7%, 9.0%, and 10.2% of the whole region in 2000, 2005, and 2010, respectively, which mainly distributed in the plain hilly region. During the study period, the area aggravating to the higher ecological risk zone was approximately 296.2 km2, 48% of the whole region. The ecological risk rose up in most of the region. The interference of rapid economic development to landscape patterns was even more intensive, with obvious spatial differences in ecological risk distribution. The measures of exploiting resources near the port, utilizing natural wetlands, constructing industrial parks, and rapid urbanization, etc., intensified the ecological risk and accelerated the conversion rate. Prompt strategies should be established to manage the ecological risk of this region.

  14. Alteration mineral mapping using ETM+ and hyperion remote sensing data at Bau Gold Field, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Pour, A. B.; Hashim, M.

    2014-02-01

    The area under investigation is the Bau gold mining district in the State of Sarawak, East Malaysia, on the island of Borneo. It has tropical climate with limited bedrock exposures. Bau is a gold field similar to Carlin style gold deposits. Geological analyses coupled with remote sensing data were used to detect hydrothermally altered rocks associated with gold mineralization. The Landsat Enhanced Thematic Mapper+ (ETM+) and Hyperion data were used to carry out mineral mapping of mineralized zones in the study area and surrounding terrain. Directed Principal Components Analysis (DPCA) transformation of four appropriate ETM+ band ratios were applied to produce DPC images, allowing the removal of the effects of vegetation from ETM+ data and the detection of separate mineral images at a regional scale. Linear Spectral Unmixing (LSU) was used to produce image maps of hydroxyl-bearing minerals using Hyperion data at a district scale. Results derived from the visible and near infrared and shortwave infrared bands of Hyperion represented iron oxide/hydroxide and clay minerals rich zones associated with the known gold prospects in the Bau district. The results show that the known gold prospects and potentially interesting areas are recognizable by the methods used, despite limited bedrock exposure in this region and the constraints imposed by the tropical environment. The approach used in this study can be more broadly applicable to provide an opportunity for detecting potentially interesting areas of gold mineralization using the ETM+ and Hyperion data in the tropical/sub-tropical regions.

  15. Application of Remote Sensing to Assess the Impact of Short Term Climate Variability on Coastal Sedimentation

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Huh, Oscar K.; Walker, Nan

    2004-01-01

    The purpose of this joint University of Wisconsin (UW) and Louisiana State University (LSU) project has been to relate short term climate variation to response in the coastal zone of Louisiana in an attempt to better understand how the coastal zone is shaped by climate variation. Climate variation in this case largely refers to variation in surface wind conditions that affect wave action and water currents in the coastal zone. The primary region of focus was the Atchafalaya Bay and surrounding bays in the central coastal region of Louisiana. Suspended solids in the water column show response to wind systems both in quantity (through resuspension) and in the pattern of dispersement or transport. Wind systems associated with cold fronts are influenced by short term climate variation. Wind energy was used as the primary signature of climate variation in this study because winds are a significant influence on sediment transport in the micro-tidal Gilf of Mexico coastal zone. Using case studies, the project has been able to investigate the influence of short term climate variation on sediment transport. Wind energy data, collected daily for National Weather Service (NWS) stations at Lake Charles and New Orleans, LA, were used as an indicator of short term climate variation influence on seasonal time scales. A goal was to relate wind energy to coastal impact through sediment transport. This goal was partially accomplished by combining remote sensing and wind energy data. Daily high resolution remote sensing observations are needed to monitor the complex coastal zone environment, where winds, tides, and water level all interact to influence sediment transport. The NASA Earth Observing System (EOS) era brings hope for documenting and revealing response of the complex coastal transport mosaic through regular high spatial resolution observations from the Moderate resolution Imaging Spectrometer (MODIS) instrument. MODIS observations were sampled in this project for information content and should continue to be viewed as a resource for coastal zone monitoring. The project initialized the effort to transfer a suspended sediment concentration (SSC) algorithm to the MODIS platform for case 2 waters. MODIS enables monitoring of turbid coastal zones around the globe. The MODIS SSC algorithm requires refinements in the atmospheric aerosol contribution, sun glint influence, and designation of the sediment inherent optical properties (IOPs); the framework for continued development is in place with a plan to release the algorithm to the MODIS direct broadcast community.

  16. Phenytoin crystal growth rates in the presence of phosphate and chloride ions

    NASA Astrophysics Data System (ADS)

    Zipp, G. L.; Rodríguez-Hornedo, N.

    1992-09-01

    Phenytoin crystal growth kinetics have been measured as a function of supersaturation in pH 2.2 phosphoric acid and pH 2.2 hydrochloric acid solutions. Two different methods were used for the kinetic analysis. The first involved a zone-sensing device which provided an analysis of the distribution of crystals in a batch crystallizer. Crystal growth rates were calculated from the increase in the size of the distribution with time. In the second method, growth rates were evaluated from the change in size with time of individual crystals observed under an inverted microscope. The results from each method compare favorably. The use of both techniques provides an excellent opportunity to exploit the strengths of each: an average growth rate from a population of crystals from batch crystallization and insight into the effect of growth on the morphology of the crystals from the individual crystal measurements.

  17. An integrated study of earth resources in the state of California using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The effects on estimates of monthly volume runoff were determined separately for each of the following parameters: precipitation, evapotranspiration, lower zone and upper zone tension water capacity, imperviousness of the watershed, and percent of the watershed occupied by riparian vegetation, streams, and lakes. The most sensitive and critical parameters were found to be precipitation during the entire year and springtime evapotranspiration.

  18. Geoenvironmental and structural studies for developing new water resources in arid and semi-arid regions using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Amer, Reda Mohammed

    2011-12-01

    Water crises are rising with increasing world population and decreasing of freshwater resources. This problem is magnified in the arid and semi-arid regions because surface water resources are very limited and highly unreliable and therefore groundwater is the primary source of water supply in these regions. This study presents an integrated approach for the identification of groundwater occurrences using remote sensing, geological, and geophysical data, and establishing sustainable paths to groundwater management. The Central Eastern Desert (CED) of Egypt was selected as a test site for this study because its climate is arid and there is an urgent need to identify potential areas for groundwater accumulations. Field investigations indicated that the CED has three types of aquifers; shallow alluvial (SA), and fracture zone (FZ) aquifers in the valley depressions, and deep aquifers in the sedimentary succession that range in age from Late Cretaceous to Recent in the marginal extensional sub-basins (ESB) along the Red Sea coast. I developed three models: (1) a Geographic Information System (GIS) model for groundwater potential in the SA and FZ shallow aquifers; (2) a kinematic model for the development of the ESB; and (3) a groundwater budget model for the ESB aquifers. The GIS model is based on the analysis of remote sensing data of the Phased Array L-band Synthetic Aperture Radar, the Landsat Enhanced Thematic Mapper Plus, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer digital elevation model. The model was evaluated and proven successful against the existing shallow water wells, and by geophysical surveys using Ground Penetrating Radar and Geoelectric methods. The kinematic model indicated that the ESB were formed in the orthogonal rifting phase in the late Oligocene that is followed by oblique rifting phase during the early Miocene which resulted to the en-echelon pattern of the inland ESB and nucleation of the rift depression into segments separated by oblique-slip accommodation zones. The groundwater budget model shows that the ESB aquifers have considerable amounts of paleowater that can be purified and used for drinking. The renewable groundwater of SA and FZ aquifers can be used for herding, irrigation, and ore dressing in the mining zones.

  19. [Remote sensing analysis of ecological change caused by construction of the new island city: Pingtan Comprehensive Experimental Zone, Fujian Province].

    PubMed

    Wen, Xiao-le; Lin, Zheng-feng; Tang, Fei

    2015-02-01

    Pingtan Island was officially established as the 'Pingtan Comprehensive Experimental Zone of Fujian' in 2010, and it led to a surge of construction in the island city. Based on the Landsat-5 images for 2007 and the latest Landsat-8 images for 2013, this paper studied the ecological status, the temporal trends of the ecological changes and the reasons for those changes in Pingtan Comprehensive Experimental Zone at its early stage of construction, by using the remote sensing of ecological index (RSEI). The results showed that as an ecologically fragile area, Pingtan Island had a moderate level of overall ecological status. In the early construction period (from 2007 to 2013), the ecological status of the island showed a downward trend, with a 14% drop of RSEI from 0.511 in 2007 down to 0.450 in 2013, and approximately 36.5% of the area of the island faced the degradation of ecological status, which mainly occurred in the central and southwestern parts of the island. The reason for the degradation was mainly due to the large-scale construction which further damaged the scarce vegetation on the island. Therefore, in order to curb the downward trend of the ecological quality of Pingtan Comprehensive Experimental Zone, some effective ecological protection measures must be developed and implemented during the construction.

  20. Double-Sided Wedge Model For Retreating Subduction Zones: Applications to the Apenninic and Hellenic Subduction Zones (Invited)

    NASA Astrophysics Data System (ADS)

    Brandon, M. T.; Willett, S.; Rahl, J. M.; Cowan, D. S.

    2009-12-01

    We propose a new model for the evolution of accreting wedges at retreating subduction zones. Advance and retreat refer to the polarity of the velocity of the overriding plate with respect to subduction zone. Advance indicates a velocity toward the subduction zone (e.g., Andes) and retreat, away from the subduction zone (e.g. Apennines, Crete). The tectonic mode of a subduction zone, whether advancing or retreating, is a result of both the rollback of the subducting plate and the absolute motion of the overriding plate. The Hellenic and Apenninic wedges are both associated with retreating subduction zones. The Hellenic wedge has been active for about 100 Ma, whereas the Apenninic wedge has been active for about 30 Ma. Comparison of maximum metamorphic pressures for exhumed rocks in these wedges (25 and 30 km, respectively) with the maximum thickness of the wedges at present (30 and 35 km, respectively) indicates that each wedge has maintained a relatively steady size during its evolution. This conclusion is based on the constraint that both frictional and viscous wedges are subject to the constraint of a steady wedge taper, so that thickness and width are strongly correlated. Both wedges show clear evidence of steady accretion during their full evolution, with accretionary fluxes of about 60 and 200 km2 Ma-1. These wedges also both show steady drift of material from the front to the rear of the wedge, with horizontal shortening dominating in the front of the wedge, and horizontal extension within the back of the wedge. We propose that these wedges represent two back-to-back wedges, with a convergent wedge on the leading side (proside), and a divergent wedge on the trailing side (retroside). In this sense, the wedges are bound by two plates. The subducting plate is familiar. It creates a thrust-sense traction beneath the proside of the wedge. The second plate is an “educting” plate, which is creates a normal-sense traction beneath the retroside of the wedge. The educting plate underlies the Tyrrenhian Sea west of the Apennines and the Cretean Sea north of Crete. The stretched crust that overlies this plate represents highly thinned wedge material that has been removed or decreted from the wedge. This decretion process accounts for the mean motion within the wedge, from pro to retro side, and the pervasive thinning within the retroside. It also explains how these wedges are able to maintain a steady wedge size with time. An important prediction of this model is that different deformational styles, involving thickening and thinning, can occur within the same tectonics setting. This is in contrast the widely cited idea that tectonic thinning is a late- or post-orogenic process.

  1. First clinical evaluation of a new percutaneous optical fiber glucose sensor for continuous glucose monitoring in diabetes.

    PubMed

    Müller, Achim Josef; Knuth, Monika; Nikolaus, Katharina Sibylle; Krivánek, Roland; Küster, Frank; Hasslacher, Christoph

    2013-01-01

    This article describes a new fiber-coupled, percutaneous fluorescent continuous glucose monitoring (CGM) system that has shown 14 days of functionality in a human clinical trial. The new optical CGM system (FiberSense) consists of a transdermal polymer optical fiber containing a biochemical glucose sensor and a small fluorescence photometer optically coupled to the fiber. The glucose-sensitive optical fiber was implanted in abdominal and upper-arm subcutaneous tissue of six diabetes patients and remained there for up to 14 days. The performance of the system was monitored during six visits to the study center during the trial. Blood glucose changes were induced by oral carbohydrate intake and insulin injections, and capillary blood glucose samples were obtained from the finger tip. The data were analyzed using linear regression and the consensus error grid analysis. The FiberSense worn at the upper arm exhibited excellent results during 14 wearing days, with an overall mean absolute relative difference (MARD) of 8.3% and 94.6% of the data in zone A of the consensus error grid. At the abdominal application site, FiberSense resulted in a MARD of 11.4 %, with 93.8% of the data in zone A. The FiberSense CGM system provided consistent, reliable measurements of subcutaneous glucose levels in human clinical trial patients with diabetes for up to 14 days. © 2013 Diabetes Technology Society.

  2. Neoproterozoic Structural Evolution of the NE-trending 620-540 Ma Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamimi, Z.; El-Sawy, E. K.; El-Fakharan, A. S.; Shujoon, A.; Matsah, M.; El-Shafei, M.

    2012-04-01

    Ad-Damm Shear Zone (ASZ) is a NE-trending fault zone separating Jeddah and Asir tectonostratigraphic terranes in the Neoproterozoic juvenile Arabian Shield. ASZ extends ~380 km, with an average width ~2-3 km, from the eye-catching Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW- trending sinistral Najd Shear System based on noteworthy dextral shear criteria recorded within the 620 Ma sheared granites of Numan Complex, as well as right-lateral offsets within quartz veins and dikes transected by the shear zone. The present study is an integrated field-based structural analysis and remote sensing. We utilized the ASTER data for lithologic discrimination and automatic structural lineament extraction and analysis of the Neoproterozoic basement lithologies encountered along and within the vicinity of ASZ. Various false color composite images were generated and evaluated for lithological mapping and structural lineaments. The obtained map was analyzed using GIS techniques to interpret the behavior of the existing lineaments and their spatial distribution. Based on the results of the ASTER data, two significant areas; around Bir Ad-Damm and to the south of Wadi Numan, are selected for detailed field investigation. Shear-sense indicators and overprinting relations clearly show a complicated Neoproterozoic history of ASZ, involving at least three deformations: (1) an early attenuated NE-SW sinistral shearing; followed by (2) a SE-directed thrusting phase resulted in the formation SE-verging thrusts and associated thrust-related folds; and (3) late NE-SW intensive dextral transcurrent shearing played a significant role in the creation of mesoscopic shear-zone related folds, particularly in the area near Bir Ad-Damm. Such deformation history demonstrates the same episode of Neoproterozoic deformation exhibited in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  3. A survey for the use of remote sensing in the Chesapeake Bay region

    NASA Technical Reports Server (NTRS)

    Ulanowicz, R. E.

    1974-01-01

    Environmental problem areas concerning the Chesapeake Bay region are reviewed along with ongoing remote sensing programs pertaining to these problems, and recommendations are presented to help fill lacunae in present research and to utilize the remote sensing capabilities of NASA to their fullest. A list of interested organizations and individuals is presented for each category. The development of technologies to monitor dissolved nutrients in bay waters, the initiation of a census of the disappearing rooted acquatic plants in the littoral zones, and the mapping of natural building constraints in the growth regions of the states of Maryland and Virginia are among the recommendations presented.

  4. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    PubMed

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  5. Variations of mesoscale and large-scale sea ice morphology in the 1984 Marginal Ice Zone Experiment as observed by microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Josberger, E. G.; Gloersen, P.; Johannessen, O. M.; Guest, P. S.

    1987-01-01

    The data acquired during the summer 1984 Marginal Ice Zone Experiment in the Fram Strait-Greenland Sea marginal ice zone, using airborne active and passive microwave sensors and the Nimbus 7 SMMR, were analyzed to compile a sequential description of the mesoscale and large-scale ice morphology variations during the period of June 6 - July 16, 1984. Throughout the experiment, the long ice edge between northwest Svalbard and central Greenland meandered; eddies were repeatedly formed, moved, and disappeared but the ice edge remained within a 100-km-wide zone. The ice pack behind this alternately diffuse and compact edge underwent rapid and pronounced variations in ice concentration over a 200-km-wide zone. The high-resolution ice concentration distributions obtained in the aircraft images agree well with the low-resolution distributions of SMMR images.

  6. Outfall siting with dye-buoy remote sensing of coastal circulation

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Welch, C. S.; Gordon, H. H.

    1978-01-01

    A dye-buoy remote sensing technique has been applied to estuarine siting problems that involve fine-scale circulation. Small hard cakes of sodium fluorescein and polyvinyl alcohol, in anchored buoys and low-windage current followers, dissolve to produce dye marks resolvable in 1:60,000 scale color and color infrared imagery. Lagrangian current vectors are determined from sequential photo coverage. Careful buoy placement reveals surface currents and submergence near fronts and convergence zones. The technique has been used in siting two sewage outfalls in Hampton Roads, Virginia: In case one, the outfall region during flood tide gathered floating materials in a convergence zone, which then acted as a secondary source during ebb; for better dispersion during ebb, the proposed outfall site was moved further offshore. In case two, flow during late flood was found to divide, with one half passing over shellfish beds; the proposed outfall site was consequently moved to keep effluent in the other half.

  7. Multi-zone cooling/warming garment

    NASA Technical Reports Server (NTRS)

    Leon, Gloria R. (Inventor); Koscheyev, Victor S. (Inventor); Dancisak, Michael J. (Inventor)

    2006-01-01

    A thermodynamically efficient garment for cooling and/or heating a human body. The thermodynamic efficiency is provided in part by targeting the heat exchange capabilities of the garment to specific areas and/or structures of the human body. The heat exchange garment includes heat exchange zones and one or more non-heat exchange zones, where the heat exchange zones are configured to correspond to one or more high density tissue areas of the human body when the garment is worn. A system including the garment can be used to exchange heat with the adjacent HD tissue areas under the control of a feedback control system. Sensed physiological parameters received by the feedback control system can be used to adjust the characteristics of heat exchange fluid moving within the heat exchange garment.

  8. Application of remote sensing in South Dakota to provide accurate inventories of agricultural crops, enhance contrast in photographic products, monitor rangeland habitat loss, map Aspen, and prepare hydrogeologic surveys

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Dalsted, K. J.; Best, R. G.; Smith, J. R.; Eidenshink, J. C.; Schmer, F. A.; Andrawis, A. S.; Rahn, P. H.

    1977-01-01

    The author has identified the following significant results. Digital analysis of LANDSAT CCT's indicated that two discrete spectral background zones occurred among the five soil zone. K-CLASS classification of corn revealed that accuracy increased when two background zones were used, compared to the classification of corn stratified by five soil zones. Selectively varying film type developer and development time produces higher contract in reprocessed imagery. Interpretation of rangeland and cropped land data from 1968 aerial photography and 1976 LANDSAT imagery indicated losses in rangeland habitat. Thermal imagery was useful in locating potential sources of sub-surface water and geothermal energy, estimating evapotranspiration, and inventorying the land.

  9. Remote Sensing of Wildland Fire-Induced Risk Assessment at the Community Level.

    PubMed

    Ahmed, M Razu; Rahaman, Khan Rubayet; Hassan, Quazi K

    2018-05-15

    Wildland fires are some of the critical natural hazards that pose a significant threat to the communities located in the vicinity of forested/vegetated areas. In this paper, our overall objective was to study the structural damages due to the 2016 Horse River Fire (HRF) that happened in Fort McMurray (Alberta, Canada) by employing primarily very high spatial resolution optical satellite data, i.e., WorldView-2. Thus, our activities included the: (i) estimation of the structural damages; and (ii) delineation of the wildland-urban interface (WUI) and its associated buffers at certain intervals, and their utilization in assessing potential risks. Our proposed method of remote sensing-based estimates of the number of structural damages was compared with the ground-based information available from the Planning and Development Recovery Committee Task Force of Regional Municipality of Wood Buffalo (RMWB); and found a strong linear relationship (i.e., r² value of 0.97 with a slope of 0.97). Upon delineating the WUI and its associated buffer zones at 10 m, 30 m, 50 m, 70 m and 100 m distances; we found existence of vegetation within the 30 m buffers from the WUI for all of the damaged structures. In addition, we noticed that the relevant authorities had removed vegetation in some areas between 30 m and 70 m buffers from the WUI, which was proven to be effective in order to protect the structures in the adjacent communities. Furthermore, we mapped the wildland fire-induced vulnerable areas upon considering the WUI and its associated buffers. Our analysis revealed that approximately 30% of the areas within the buffer zones of 10 m and 30 m were vulnerable due to the presence of vegetation; in which, approximately 7% were burned during the 2016 HRF event that led the structural damages. Consequently, we suggest to remove the existing vegetation within these critical zones and also monitor the region at a regular interval in order to reduce the wildland fire-induced risk.

  10. Modeling of extreme freshwater outflow from the north-eastern Japanese river basins to western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Troselj, Josko; Sayama, Takahiro; Varlamov, Sergey M.; Sasaki, Toshiharu; Racault, Marie-Fanny; Takara, Kaoru; Miyazawa, Yasumasa; Kuroki, Ryusuke; Yamagata, Toshio; Yamashiki, Yosuke

    2017-12-01

    This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme typhoon events provides more realistic coastal SSS and may allow a different scenario analysis with various precipitation inputs for developing a nowcasting analysis in the future.

  11. Evaluation of Crop-Water Consumption Simulation to Support Agricultural Water Resource Management using Satellite-based Water Cycle Observations

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Bolten, J. D.; Lakshmi, V.

    2016-12-01

    Water scarcity is one of the main factors limiting agricultural development. Numerical models integrated with remote sensing datasets are increasingly being used operationally as inputs for crop water balance models and agricultural forecasting due to increasing availability of high temporal and spatial resolution datasets. However, the model accuracy in simulating soil water content is affected by the accuracy of the soil hydraulic parameters used in the model, which are used in the governing equations. However, soil databases are known to have a high uncertainty across scales. Also, for agricultural sites, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally. The present study utilizes effective soil hydraulic parameters obtained using a 1-km downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E) using the genetic algorithm inverse method within the Catchment Land Surface Model (CLSM). Secondly, to provide realistic irrigation estimates for agricultural sites, an irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches the threshold, 50% with respect to the maximum available water capacity obtained from the effective soil hydraulic parameters. An additional important criterion utilized is the estimation of crop water consumption based on dynamic root growth and uptake in root zone layer. Model performance is evaluated using MODIS land surface temperature (LST) product. The soil moisture estimates for the root zone are also validated with the in situ field data, for three sites (2- irrigated and 1- rainfed) located at the University of Nebraska Agricultural Research and Development Center near Mead, NE and monitored by three AmeriFlux installations (Verma et al., 2005).

  12. An Alternative Approach of Coastal Sea-Level Observation from Remote Sensing Imageries

    NASA Astrophysics Data System (ADS)

    Peng, H. Y.; Tseng, K. H.; Chung-Yen, K.; Lin, T. H.; Liao, W. H.; Chen, C. F.

    2017-12-01

    Coastal sea level can be observed as waterline changes along a coastal digital elevation model (DEM). However, most global DEMs, such as the Shuttle Radar Topography Mission (SRTM) DEM with 30 m resolution, provide limited coverage over coastal area due to the impermeability of radar signal over water and the lack of low-tide coincidence. Therefore, we aim to extend to coverage of SRTM DEM for the determination of intertidal zone and to monitor sea-level changes along the entire coastline of Taiwan (>1200km). We firstly collect historical cloud-free images since the 1980s, including Landsat series, SPOT series and Sentinel-2, and then calculate the Modified Normalized Difference Water Index (MNDWI) to identify water pixels. After computing water appearance probability of each pixel, it is converted into actual elevation by introducing the DTU10 tide model for high tide and low tide boundaries. A coastal DEM of intertidal zone is reconstructed and the accuracy is at 50 cm level as compared with in situ DEM built by an unmanned aerial vehicle (UAV). Finally, we use this product to define the up-to-date intertidal zone and estimate sea-level changes by using remote sensing snapshots.

  13. Deciphering groundwater potential zones in hard rock terrain using geospatial technology.

    PubMed

    Dar, Imran A; Sankar, K; Dar, Mithas A

    2011-02-01

    Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m×23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.

  14. Complex physiological and molecular processes underlying root gravitropism

    NASA Technical Reports Server (NTRS)

    Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.

    2002-01-01

    Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.

  15. Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing

    NASA Astrophysics Data System (ADS)

    Duke, Edward F.

    1994-07-01

    Near infrared (NIR) spectra of Precambrian metagraywacke in the Black Hills, South Dakota, demonstrate that reflectance spectroscopy can be used to monitor progressive changes in mineral chemistry as a function of metamorphic grade. The wavelength of a combination Al-O-H absorption band in muscovite, measured using both laboratory and field-portable NIR spectrometers, shifts from 2217 nm in the biotite zone to 2199 nm in the sillimanite + K-feldspar zone. The band shift corresponds to an increase in the Alvi content of muscovite, determined by electron microprobe, and is thus a monitor of Al2Si-1(Fe,Mg)-1 (Tschermak) exchange. Spectroscopic measurements such as these are useful in the case of aluminum-deficient rocks, which lack metamorphic index minerals or appropriate assemblages for thermobarometric studies, and in low-grade rocks (subgarnet zone), which lack quantitative indicators of metamorphic grade and are too fine grained for petrographic or microprobe studies. More important, spectroscopic detection of mineral-chemical variations in metamorphic rocks provides petrologists with a tool to recover information on metamorphic reaction histories from high-spectral-resolution aircraft or satellite remote sensing data.

  16. Geospatial analysis of lake and landscape interactions within the Toolik Lake region, North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Pathak, Prasad A.

    The Arctic region of Alaska is experiencing severe impacts of climate change. The Arctic lakes ecosystems are bound to undergo alterations in its trophic structure and other chemical properties. However, landscape factors controlling the lake influxes were not studied till date. This research has examined the currently existing lake landscape interactions using Remote Sensing and GIS technology. The statistical modeling was carried out using Regression and CART methods. Remote sensing data was applied to derive the required landscape indices. Remote sensing in the Arctic Alaska faces many challenges including persistent cloud cover, low sun angle and limited snow free period. Tundra vegetation types are interspersed and intricate to classify unlike managed forest stands. Therefore, historical studies have remained underachieved with respect thematic accuracies. However, looking at vegetation communities at watershed level and the implementation of expert classification system achieved the accuracies up to 90%. The research has highlighted the probable role of interactions between vegetation root zones, nutrient availability within active zone, as well as importance of permafrost thawing. Multiple regression analyses and Classification Trees were developed to understand relationships between landscape factors with various chemical parameters as well as chlorophyll readings. Spatial properties of Shrubs and Riparian complexes such as complexity of individual patches at watershed level and within proximity of water channels were influential on Chlorophyll production of lakes. Till-age had significant impact on Total Nitrogen contents. Moreover, relatively young tills exhibited significantly positive correlation with concentration of various ions and conductivity of lakes. Similarly, density of patches of Heath complexes was found to be important with respect to Total Phosphorus contents in lakes. All the regression models developed in this study were significant at 95% confidence level. However, the classification trees could not achieve high predictabilities due to limited number of lakes sampled. Keywords: Landscape factors, Lake primary productivity, Arctic, Climate change, Regression, CART

  17. Integration of Remote Sensing and other public GIS data source to identify suitable zones for groundwater exploitation by manual drilling

    NASA Astrophysics Data System (ADS)

    Fussi, Fabio; Fava, Francesco; Di Mauro, Biagio; Bonomi, Tullia; Fumagalli, Letizia; DI Leo, Margherita; Hamidou Kane, Cheik; Faye, Gayane; Niang, Magatte; Wade, Souleye; Hamidou, Barry; Colombo, Roberto

    2015-04-01

    In several countries of the world the situation of water supply is still critical, far from the international target defined by United Nations for 2015 (Millenium Development Goals) and producing a huge impact on health and living condition of the population. Manual drilling (it means techniques to drill boreholes for water using human or animal power) is well known and practiced for centuries in many countries. In recent years, it has been considered a potential strategy to increase water access in poor countries and has raised the attention of national governments and international organizations. Manual drilling is applicable only where hydrogeological context is suitable, according to the following conditions: thick layers of unconsolidated sediments and shallow water table. Mapping of zones with suitable hydrogeological context has been carried out in several countries in Africa, but the results have evident limitations; previous methods are based on existing direct data and qualitative experience, leading to unreliable interpretation when direct data are limited. This research aims to develop a methodology to estimate shallow hydrogeological features and asses the distribution of suitable zones for manual drilling through the integration of indirect information obtained from remote sensing and other existing source of data. The research is carried out in two different study areas, in Senegal and Guinea (Western Africa), with semi-arid climate, moderate vegetation cover, unconsolidated sandy and clay deposits overlaying sedimentary and igneous rocks A set of variables have been obtained through processing of three categories of data, listed below: - geology, geomorphology, soil and land cover, obtained from existing thematic maps; - vegetation phenology, apparent thermal inertia, and soil moisture, obtained from analysis of multitemporal optical (MOD13Q1), thermal (MOD11A1), and radar (ASAR) remotely sensed data: -morphometric parameters, obtained from public digital elevation models available (ASTER GDEM and SRTM). These variables have been combined using multivariate statistical methods (e.g. regression and classification trees) in order to study their relationship with hydrogeological parameters of shallow layers (namely thickness of porous aquifer, hydraulic conductivity and depth of water table) and estimate the suitability for manual drilling. Direct hydrogeological data in selected points obtained from semiautomatic analysis of stratigraphic borehole logs have been used in the definition and validation of the model. The results obtained demonstrate the potential of the proposed methodological approach to improve the estimation of manual drilling suitability using public data, widely available worldwide. Therefore, it has considerable potential to be replicated in other countries with limited costs. Furthermore, the maps of suitable zones for manual drilling produced in this research can help the promotion of this technique in Senegal and Guinea by different national and international organizations involved in water supply programs. This research is part of a larger project financed by NERC (National Environment Research Council, UK) in the framework of the program UPGRO (Unlocking the Potential of Groundwater for the Poors), with the collaboration of different partners from Italy, Senegal and Guinea.

  18. VNIR reflectance spectroscopy of natural carbonate rocks: implication for remote sensing identification of fault damage zones

    NASA Astrophysics Data System (ADS)

    Traforti, Anna; Mari, Giovanna; Carli, Cristian; Demurtas, Matteo; Massironi, Matteo; Di Toro, Giulio

    2017-04-01

    Reflectance spectroscopy in the visible and near-infrared (VNIR) is a common technique used to study the mineral composition of Solar System bodies from remote sensed and in-situ robotic exploration. In the VNIR spectral range, both crystal field and vibrational overtone absorptions can be present with spectral characteristics (i.e. albedo, slopes, absorption band with different positions and depths) that vary depending on composition and texture (e.g. grain size, roughness) of the sensed materials. The characterization of the spectral variability related to the rock texture, especially in terms of grain size (i.e., both the size of rock components and the size of particulates), commonly allows to obtain a wide range of information about the different geological processes modifying the planetary surfaces. This work is aimed at characterizing how the grain size reduction associated to fault zone development produces reflectance variations in rock and mineral spectral signatures. To achieve this goal we present VNIR reflectance analysis of a set of fifteen rock samples collected at increasing distances from the fault core of the Vado di Corno fault zone (Campo Imperatore Fault System - Italian Central Apennines). The selected samples had similar content of calcite and dolomite but different grain size (X-Ray Powder Diffraction, optical and scanning electron microscopes analysis). Consequently, differences in the spectral signature of the fault rocks should not be ascribed to mineralogical composition. For each sample, bidirectional reflectance spectra were acquired with a Field-Pro Spectrometer mounted on a goniometer, on crushed rock slabs reduced to grain size <800, <200, <63, <10 μm and on intact fault zone rock slabs. The spectra were acquired on dry samples, at room temperature and normal atmospheric pressure. The source used was a Tungsten Halogen lamp with an illuminated spot area of ca. 0.5 cm2and incidence and emission angles of 30˚ and 0˚ respectively. The spectral analysis of the crushed and intact rock slabs in the VNIR spectral range revealed that in both cases, with increasing grain size: (i) the reflectance decreases (ii) VNIR spectrum slopes (i.e. calculated between wavelengths of 0.425 - 0.605 μm and 2.205 - 2.33 μm, respectively) and (iii) carbonate main absorption band depth (i.e. vibrational absorption band at wavelength of ˜2.3 μm) increase. In conclusion, grain size variations resulting from the fault zone evolution (e.g., cumulated slip or development of thick damage zones) produce reflectance variations in rocks and mineral spectral signatures. The remote sensing analysis in the VNIR spectral range can be applied to identify the spatial distribution and extent of fault core and damage zone domains for industrial and seismic hazard applications. Moreover, the spectral characterization of carbonate-built rocks can be of great interest for the surface investigation of inner planets (e.g. Earth and Mars) and outer bodies (e.g. Galilean icy satellites). On these surfaces, carbonate minerals at different grain sizes are common and usually related to water and carbon distribution, with direct implications for potential life outside Earth (e.g. Mars).

  19. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing.

    PubMed

    Richardson, Andrew D; Hufkens, Koen; Milliman, Tom; Frolking, Steve

    2018-04-09

    Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental monitoring and management. Here, we conduct an intercomparison analysis using phenological transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We used approximately 600 site-years of data, from 128 camera sites covering a wide range of vegetation types and climate zones. During both "greenness rising" and "greenness falling" transition phases, we found generally good agreement between PhenoCam and MODIS transition dates for agricultural, deciduous forest, and grassland sites, provided that the vegetation in the camera field of view was representative of the broader landscape. The correlation between PhenoCam and MODIS transition dates was poor for evergreen forest sites. We discuss potential reasons (including sub-pixel spatial heterogeneity, flexibility of the transition date extraction method, vegetation index sensitivity in evergreen systems, and PhenoCam geolocation uncertainty) for varying agreement between time series of vegetation indices derived from PhenoCam and MODIS imagery. This analysis increases our confidence in the ability of satellite remote sensing to accurately characterize seasonal dynamics in a range of ecosystems, and provides a basis for interpreting those dynamics in the context of tangible phenological changes occurring on the ground.

  20. Sub-100nm, Maskless Deep-UV Zone-Plate Array Lithography

    DTIC Science & Technology

    2004-05-07

    The basic idea is to use fiducial grids, fabricated using interference lithography (or a derivative thereof) to determine the placement of features...sensed, and corrections are fed back to the beam-control electronics to cancel errors in the beam’s position. The virtue of interference lithography ...Sub-100nm, Maskless Deep-UV Zone-Plate Array Lithography Project Period: March 1, 2001 – February 28, 2004 F i n a l R e p o r t Army Research

  1. Nimbus 7 Coastal Zone Color Scanner (CZCS). Level 2 data product users' guide

    NASA Technical Reports Server (NTRS)

    Williams, S. P.; Szajna, E. F.; Hovis, W. A.

    1985-01-01

    The coastal zone color scanner (CZCS) is a scanning multispectral radiometer designed for the remote sensing of ocean color parameters from an earth orbiting space platform. A Technical Manual was designed for users of NIMBUS 7 CZCS Level 2 data products. It contains information which describes how the Level 1 data was process to obtain the Level 2 (derived) product. It contains information needed to operate on the data using digital computers and related equipment.

  2. Structure of the Melajo clay near Arima, Trinidad and strike-slip motion in the El Pilar fault zone

    NASA Technical Reports Server (NTRS)

    Robertson, P.; Burke, K.; Wadge, G.

    1985-01-01

    No consensus has yet emerged on the sense, timing and amount of motion in the El Pilar fault zone. As a contribution to the study of this problem, a critical area within the zone in North Central Trinidad has been mapped. On the basis of the mapping, it is concluded that the El Pilar zone has been active in right-lateral strike-slip motion during the Pleistocene. Recognition of structural styles akin to those of the mapped area leads to the suggestion that the El Pilar zone is part of a 300 km wide plate boundary zone extending from the Orinoco delta northward to Grenada. Lateral motion of the Caribbean plate with respect to South America has been suggested to amount to 1900 km in the last 38 Ma. Part of this displacement since the Miocene can be readily accommodated within the broad zone identified here. No one fault system need account for more than a fraction of the total motion and all faults need not be active simultaneously.

  3. Optimization and Modeling of Extreme Freshwater Discharge from Japanese First-Class River Basins to Coastal Oceans

    NASA Astrophysics Data System (ADS)

    Kuroki, R.; Yamashiki, Y. A.; Varlamov, S.; Miyazawa, Y.; Gupta, H. V.; Racault, M.; Troselj, J.

    2017-12-01

    We estimated the effects of extreme fluvial outflow events from river mouths on the salinity distribution in the Japanese coastal zones. Targeted extreme event was a typhoon from 06/09/2015 to 12/09/2015, and we generated a set of hourly simulated river outflow data of all Japanese first-class rivers from these basins to the Pacific Ocean and the Sea of Japan during the period by using our model "Cell Distributed Runoff Model Version 3.1.1 (CDRMV3.1.1)". The model simulated fresh water discharges for the case of the typhoon passage over Japan. We used these data with a coupled hydrological-oceanographic model JCOPE-T, developed by Japan Agency for Marine-earth Science and Technology (JAMSTEC), for estimation of the circulation and salinity distribution in Japanese coastal zones. By using the model, the coastal oceanic circulation was reproduced adequately, which was verified by satellite remote sensing. In addition to this, we have successfully optimized 5 parameters, soil roughness coefficient, river roughness coefficient, effective porosity, saturated hydraulic conductivity, and effective rainfall by using Shuffled Complex Evolution method developed by University of Arizona (SCE-UA method), that is one of the optimization method for hydrological model. Increasing accuracy of peak discharge prediction of extreme typhoon events on river mouths is essential for continental-oceanic mutual interaction.

  4. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale hyperspectral images based on time sequence. The research results of this paper will help to break the traditional concept of remote sensing monitoring coastal wetlands by satellite and manned aerial vehicle, lead the trend of this monitoring technology, and put forward a new technical proposal for grasping the distribution of the coastal wetland and the changing trend and carrying out the protection and management of the coastal wetland.

  5. Characterization of users of remotely-sensed data in the Alabama coastal zone. [user requirements, surveys - technology utilization

    NASA Technical Reports Server (NTRS)

    Vittor, B. A. (Editor)

    1975-01-01

    Federal, State, local, universities and private companies were polled to determine their needs for remote sensing data. A total of 62 users were polled. Poll results are given in tables. A comprehensive research program was developed to satisfy user needs, and is examined for the disciplines of Geology, Water Resources, Archaeology, Geography, and Conservation. An investigation of silt plume discharge from Mobile Bay is also examined. Sample poll forms used in the surveys are shown.

  6. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    NASA Astrophysics Data System (ADS)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  7. The use of ERTS/LANDSAT imagery in relation to airborne remote sensing for terrain analysis in western Queensland, Australia

    NASA Technical Reports Server (NTRS)

    Cole, M. M.; Wen-Jones, S. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Series of linears were identified on the March imagery of Lady Annie-Mt. Gordon fault zone area. The series with a WSW-ENE orientation which is normal to the major structural units and also several linears with NNW-SSE orientation appears to be particularly important. Copper mineralization is known at several localities where these linears are intersected by faults. Automated outputs using supervised methods involving the selection of training sets selected by visual recognition of spectral signatures on the color composites obtained from combinations of MSS bands 4, 5 and 7 projected through appropriate filters, were generated.

  8. On nonstationarity and rippling of the quasiperpendicular zone of the Earth bow shock: Cluster observations

    NASA Astrophysics Data System (ADS)

    Lobzin, V. V.; Krasnoselskikh, V. V.; Musatenko, K.; Dudok de Wit, T.

    2008-09-01

    A new method for remote sensing of the quasiperpendicular part of the bow shock surface is presented. The method is based on analysis of high frequency electric field fluctuations corresponding to Langmuir, upshifted, and downshifted oscillations in the electron foreshock. Langmuir waves usually have maximum intensity at the upstream boundary of this region. All these waves are generated by energetic electrons accelerated by quasiperpendicular zone of the shock front. Nonstationary behavior of the shock, in particular due to rippling, should result in modulation of energetic electron fluxes, thereby giving rise to variations of Langmuir waves intensity. For upshifted and downshifted oscillations, the variations of both intensity and central frequency can be observed. For the present study, WHISPER measurements of electric field spectra obtained aboard Cluster spacecraft are used to choose 48 crossings of the electron foreshock boundary with dominating Langmuir waves and to perform for the first time a statistical analysis of nonstationary behavior of quasiperpendicular zone of the Earth's bow shock. Analysis of hidden periodicities in plasma wave energy reveals shock front nonstationarity in the frequency range 0.33 fBi

  9. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 9: Oceans

    NASA Technical Reports Server (NTRS)

    Lietzke, K. R.

    1974-01-01

    The impact of remote sensing upon marine activities and oceanography is presented. The present capabilities of the current Earth Resources Technology Satellite (ERTS-1), as demonstrated by the principal investigators are discussed. Cost savings benefits are quantified in the area of nautical and hygrographic mapping and charting. Benefits are found in aiding coastal zone management and in the fields of weather (marine) prediction, fishery harvesting and management, and potential uses for ocean vegetation. Difficulties in quantification are explained, the primary factor being that remotely sensed information will be of greater benefit as input to forecasting models which have not yet been constructed.

  10. Underway sensing of radiometric properties utilizing a novel sub-hull installation on R/V SONNE

    NASA Astrophysics Data System (ADS)

    Zielinski, O.; Rüssmeier, N.; Garaba, S. P.; Voss, D.

    2016-12-01

    Understanding light interaction with biogeochemical constituents in the marine environment has improved in the last few years due to small, fast, automated and affordable optical tools. Ocean color observations are dependent on ambient sunlight, wind speed influencing sea surface reflected glint, instrument self shading, sensor accuracy, sensitivity as well as spatial and spectral resolution influencing our abilities in sensing oceanic processes. In this study we present a new method useful in collecting radiometric information, namely upwelling radiance from a platform submerged in a novel hydrographic sub-hull of a research vessel. The information analyzed here was obtained during a recent field campaign in the Northwestern European shelf seas aboard the new German research vessel SONNE. A comparison of the measurements from this approach with a free falling hyperspectral profiler was conducted to determine the degree of uncertainty that results from ship shadow. We observed intensity deviations in a range of about 30% compared to profiling measurements, which can be attributed to instrument shading and environmental perturbations. A form-fitting algorithm was adapted to receive corresponding depths with identical spectral shape indicating an equivalent light path of 22 m for the sub-hull installation. Remote sensing reflectance was then calculated by normalizing the upwelling radiance with the downward solar irradiance. During an east to west transect in the North Sea we successfully applied the above method while cruising at a maximum speed up of 12 knots, resolving the mixing zone of CDOM (colored dissolved organic matter) dominant Baltic waters towards the open North Sea.

  11. Assessment of underground water potential zones using modern geomatics technologies in Jhansi district, Uttar Pradesh, India.

    NASA Astrophysics Data System (ADS)

    Pandey, N. K.; Shukla, A. K.; Shukla, S.; Pandey, M.

    2014-11-01

    Ground water is a distinguished component of the hydrologic cycle. Surface water storage and ground water withdrawal are traditional engineering approaches which will continue to be followed in the future. The uncertainty about the occurrence, distribution and quality aspect of the ground water and the energy requirement for its withdrawal impose restriction on exploitation of ground water. The main objective of the study is assessment of underground water potential zones of Jhansi city and surrounding area, by preparing underground water potential zone map using Geographical Information System (GIS), remote sensing, and validation by underground water inventory mapping using GPS field survey done along the parts of National Highway 25 and 26 and some state highway passing through the study area. Study area covers an area of 1401 km2 and its perimeter is approximate 425 km. For this study Landsat TM (0.76-0.90 um) band data were acquired from GLCF website. Sensor spatial resolution is 30 m. Satellite image has become a standard tool aiding in the study of underground water. Extraction of different thematic layers like Land Use Land Cover (LULC), settlement, etc. can be done through unsupervised classification. The modern geometics technologies viz. remote sensing and GIS are used to produce the map that classifies the groundwater potential zone to a number of qualitative zone such as very high, high, moderate, low or very low. Thematic maps are prepared by visual interpretation of Survey of India topo-sheets and linearly enhanced Landsat TM satellite image on 1 : 50,000 scale using AutoCAD, ArcGIS 10.1 and ERDAS 11 software packages.

  12. Mapping agroecosystem zone using remote sensing for food security analysis in Bantul district Daerah Istimewa Yogyakarta

    NASA Astrophysics Data System (ADS)

    Murti, Sigit Heru

    2017-10-01

    Food security is one of the most important issue for Indonesia. The huge population number and high population growing rate has made the food security a critical issue. This paper describe the application of remote sensing data to (1) map agroecosystem zones in Bantul District, Special Region of Yogyakarta, Indonesia in 2012 and (2) analyze the food security in the study area based on the resulting agro-ecosystem map. Bantul District is selected as the pilot area because this area is among the highest food crop production area in the Province. ALOS AVNIR-2 image accquired on 15 June 2010 was integrated with Indonesian Surface map (RBI map), soil types map, and slope steepness map. Population statistics data was also used to calculate the food needs. Field survey was conducted to obtain the crop field productivity information on each agro-ecosystem zone and assess the accuracy of the model. This research indicates that (1) Bantul District can be divided into three agroecosystem zones, where each zone has unique topograhic configuration and soil types composition, and (2) Bantul Distict is categorized as food secure area since the rice production in 2012 managed to cover the food needs of the people with the surplus of 33,208.6 tonnes of rice. However, when the analysis was conducted at sub-district level, there are four subdistrict with food insecurity where the food needs surpass the rice production. These sub-district are Kasihan Sub-district (-5,598.4 t), Banguntapan Sub-district (-2,483.4 t), Pajangan Sub-district (-1,039.6 t) and Dlingo Sub-district (-798.7 t).

  13. Remote Sensing Characterization of Two-dimensional Wave Forcing in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Carini, R. J.; Chickadel, C. C.; Jessup, A. T.

    2016-02-01

    In the surf zone, breaking waves drive longshore currents, transport sediment, shape bathymetry, and enhance air-sea gas and particle exchange. Furthermore, wave group forcing influences the generation and duration of rip currents. Wave breaking exhibits large gradients in space and time, making it challenging to measure in situ. Remote sensing technologies, specifically thermal infrared (IR) imagery, can provide detailed spatial and temporal measurements of wave breaking at the water surface. We construct two-dimensional maps of active wave breaking from IR imagery collected during the Surf Zone Optics Experiment in September 2010 at the US Army Corps of Engineers' Field Research Facility in Duck, NC. For each breaker identified in the camera's field of view, the crest-perpendicular length of the aerated breaking region (roller length) and wave direction are estimated and used to compute the wave energy dissipation rate. The resultant dissipation rate maps are analyzed over different time scales: peak wave period, infragravity wave period, and tidal wave period. For each time scale, spatial maps of wave breaking are used to characterize wave forcing in the surf zone for a variety of wave conditions. The following phenomena are examined: (1) wave dissipation rates over the bar (location of most intense breaking) have increased variance in infragravity wave frequencies, which are different from the peak frequency of the incoming wave field and different from the wave forcing variability at the shoreline, and (2) wave forcing has a wider spatial distribution during low tide than during high tide due to depth-limited breaking over the barred bathymetry. Future work will investigate the response of the variability in wave setup, longshore currents and rip currents, to the variability in wave forcing in the surf zone.

  14. Mapping potential Anopheles gambiae s.l. larval distribution using remotely sensed climatic and environmental variables in Baringo, Kenya.

    PubMed

    Amadi, J A; Ong'amo, G O; Olago, D O; Oriaso, S O; Nyamongo, I K; Estambale, B B A

    2018-06-21

    Anopheles gambiae s.l. (Diptera: Culicidae) is responsible for the transmission of the devastating Plasmodium falciparum (Haemosporida: Plasmodiidae) strain of malaria in Africa. This study investigated the relationship between climate and environmental conditions and An. gambiae s.l. larvae abundance and modelled the larval distribution of this species in Baringo County, Kenya. Mosquito larvae were collected using a 350-mL dipper and a pipette once per month from December 2015 to December 2016. A random forest algorithm was used to generate vegetation cover classes. A negative binomial regression was used to model the association between remotely sensed climate (rainfall and temperature) and environmental (vegetation cover, vegetation health, topographic wetness and slope) factors and An. gambiae s.l. for December 2015. Anopheles gambiae s.l. was significantly more frequent in the riverine zone (P < 0.05, r = 0.59) compared with the lowland zone. Rainfall (b = 6.22, P < 0.001), slope (b = - 4.81, P = 0.012) and vegetation health (b = - 5.60, P = 0.038) significantly influenced the distribution of An. gambiae s.l. larvae. High An. gambiae s.l. abundance was associated with cropland and wetland environments. Effective malaria control will require zone-specific interventions such as a focused dry season vector control strategy in the riverine zone. © 2018 The Royal Entomological Society.

  15. Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method

    NASA Astrophysics Data System (ADS)

    Kang, Yanyan; Ding, Xianrong; Xu, Fan; Zhang, Changkuan; Ge, Xiaoping

    2017-05-01

    Tidal flats, which are both a natural ecosystem and a type of landscape, are of significant importance to ecosystem function and land resource potential. Morphologic monitoring of tidal flats has become increasingly important with respect to achieving sustainable development targets. Remote sensing is an established technique for the measurement of topography over tidal flats; of the available methods, the waterline method is particularly effective for constructing a digital elevation model (DEM) of intertidal areas. However, application of the waterline method is more limited in large-scale, shifting tidal flats areas, where the tides are not synchronized and the waterline is not a quasi-contour line. For this study, a topographical map of the intertidal regions within the Radial Sand Ridges (RSR) along the Jiangsu Coast, China, was generated using an iterative approach on the waterline method. A series of 21 multi-temporal satellite images (18 HJ-1A/B CCD and three Landsat TM/OLI) of the RSR area collected at different water levels within a five month period (31 December 2013-28 May 2014) was used to extract waterlines based on feature extraction techniques and artificial further modification. These 'remotely-sensed waterlines' were combined with the corresponding water levels from the 'model waterlines' simulated by a hydrodynamic model with an initial generalized DEM of exposed tidal flats. Based on the 21 heighted 'remotely-sensed waterlines', a DEM was constructed using the ANUDEM interpolation method. Using this new DEM as the input data, it was re-entered into the hydrodynamic model, and a new round of water level assignment of waterlines was performed. A third and final output DEM was generated covering an area of approximately 1900 km2 of tidal flats in the RSR. The water level simulation accuracy of the hydrodynamic model was within 0.15 m based on five real-time tide stations, and the height accuracy (root mean square error) of the final DEM was 0.182 m based on six transects of measured data. This study aimed at construction of an accurate DEM for a large-scale, high-variable zone within a short timespan based on an iterative way of the waterline method.

  16. Integration of remote sensing technique and hydrologic model for monitoring tidal flat dynamics of Juiduansha in Shanghai

    NASA Astrophysics Data System (ADS)

    Zheng, Zongsheng; Zhou, Yunxuan; Jiang, Xuezhong

    2007-06-01

    Ground survey is restricted by the difficulty of access to wide-range and dynamic salt marsh. Waterline method and hydrodynamic model were investigated to construct Digital Elevation Model (DEM) at Jiudunasha Shoals. A series of waterlines were extracted from multi-temporal remotely sensing images collected over the period of 2000-2004. The assignment of an elevation to each waterline at the satellite overpass was performed according to hydrodynamic model. The corrected waterlines labeled elevations were used to construct Triangulated Irregular Networks (TINs). Then an interpolation for each grid elevation was performed in accordance with the associated triangle. This initial DEM, produced using the corrected waterline set, was then used to refine the topography in the intertidal zone, and the model was re-run to produce improved water levels and a new DEM. This procedure was iterated by comparing modeled and actual waterlines until no further improvement occurred. Three DEMs of different intervals were built by this approach and were compared to evaluate the effect of Deep Water Channel Project (DWCP) at the north of Jiuduansha Island. Waterline method combined with numerical model, is an effective tool for constructing digital elevation model of mudflats. The result can provide invaluable information for coastal land use and engineer construction.

  17. Geological evaluation and applications of ERTS-1 imagery over Georgia

    NASA Technical Reports Server (NTRS)

    Pickering, S. M.; Jones, R. C.

    1974-01-01

    ERTS-1 70mm and 9 x 9 film negatives are being used by conventional and color enhancement methods as a tool for geologic investigation. Geologic mapping and mineral exploration by conventional methods is very difficult in Georgia. Thick soil cover and heavy vegetation cause outcrops of bed rock to be small, rare and obscure. ERTS imagery, and remote sensing in general have helped delineate: (1) major tectonic boundaries; (2) lithologic contacts; (3) foliation trends; (4) topographic lineaments; and (5) faults. The ERTS-1 MSS imagery yields the greatest amount of geologic information on the Piedomont, Blue Ridge, and Valley and Ridge Provinces of Georgia where topography is strongly controlled by the bedrock geology. ERTS imagery, and general remote sensing techniques, have provided us with a powerful tool to assist geologic research; have significantly increased the mapping efficiency of our field geologists; have shown new lineaments associated with known shear and fault zones; have delineated new structural features; have provided a tool to re-evaluate our tectonic history; have helped to locate potential ground water sources and areas of aquifer recharge; have defined areas of geologic hazards; have shown areas of heavy siltation in major reservoirs; and by its close interval repetition, have aided in monitoring surface mine reclamation activities and the environmental protection of our intricate marshland system.

  18. Degree of anisotropy as an automated indicator of rip channels in high resolution bathymetric models

    NASA Astrophysics Data System (ADS)

    Trimble, S. M.; Houser, C.; Bishop, M. P.

    2017-12-01

    A rip current is a concentrated seaward flow of water that forms in the surf zone of a beach as a result of alongshore variations in wave breaking. Rips can carry swimmers swiftly into deep water, and they are responsible for hundreds of fatal drownings and thousands of rescues worldwide each year. These currents form regularly alongside hard structures like piers and jetties, and can also form along sandy coasts when there is a three dimensional bar morphology. This latter rip type tends to be variable in strength and location, making them arguably the most dangerous to swimmers and most difficult to identify. These currents form in characteristic rip channels in surf zone bathymetry, in which the primary axis of self-similarity is oriented shore-normal. This paper demonstrates a new method for automating identification of such rip channels in bathymetric digital surface models (DSMs) using bathymetric data collected by various remote sensing methods. Degree of anisotropy is used to detect rip channels and distinguishes between sandbars, rip channels, and other beach features. This has implications for coastal geomorphology theory and safety practices. As technological advances increase access and accuracy of topobathy mapping methods in the surf zone, frequent nearshore bathymetric DSMs could be more easily captured and processed, then analyzed with this method to result in localized, automated, and frequent detection of rip channels. This could ultimately reduce rip-related fatalities worldwide (i) in present mitigation, by identifying the present location of rip channels, (ii) in forecasting, by tracking the channel's evolution through multiple DSMs, and (iii) in rip education by improving local lifeguard knowledge of the rip hazard. Although this paper on applies analysis of degree of anisotropy to the identification of rip channels, this parameter can be applied to multiple facets of barrier island morphological analysis.

  19. Identification of Potential Fishing Grounds Using Geospatial Technique

    NASA Astrophysics Data System (ADS)

    Abdullah, Muhammad

    2016-07-01

    Fishery resources surveys using actual sampling and data collection methods require extensive ship time and sampling time. Informative data from satellite plays a vital role in fisheries application. Satellite Remote Sensing techniques can be used to detect fish aggregation just like visual fish identification ultimately these techniques can be used to predict the potential fishing zones by measuring the parameters which affect the distribution of fishes. Remote sensing is a time saving technique to locate fishery resources along the coast. Pakistan has a continental shelf area of 50,270 km2 and coastline length of 1,120 km. The total maritime zone of Pakistan is over 30 percent of the land area. Fishery plays an important role in the national economy. The marine fisheries sector is the main component, contributing about 57 percent in terms of production. Fishery is the most important economic activity in the villages and towns along the coast, and in most of the coastal villages and settlements it is the sole source of employment and income generation. Fishing by fishermen is done on the sole basis of repeated experiments and collection of information from other fishermen. Often they are in doubt about the location of potential fishing zones. This leads to waste of time and money, adversely affecting fishermen incomes and over or under-exploitation of fishing zones. The main purpose of this study was to map potential fishing grounds by identifying various environmental parameters which impact fish aggregation along the Pakistan coastline. The primary reason of this study is the fact that the fishing communities of Pakistan's coastal regions are extremely poor and lack knowledge of the modern tools and techniques that may be incorporated to enhance their yield and thus, improve their livelihood. Using geospatial techniques in order to accurately map the potential fishing zones based on sea surface temperature (SST) and chlorophyll -a content, in conjunction with active use of GPS navigation systems can go a long way in improving the output of the fishing community. For this study, satellite data of sea surface temperature and chlorophyll-a content product of MODIS aqua 250 meters, 8 day composite was used. Secondary field survey of Fish and Agriculture Organization (FAO) in month of October was used to assist the fish catch, SST and Chlorophyll-a concentration in Exclusive economic zone (EEZ) of Pakistan, The next step was to establish a GIS database of fish catch data along with the geographical coordinates of the catch spot. After that MODIS SST and Chlorophyll-a concentration image of October 2010 was acquired, the product was converted to tiff format and projection applied for further processing. SST and chlorophyll-a images were reclassified using reclassification technique and then SST and chlorophyll-a values were extracted which were then used to overlay on fish catch data to extract best catch. GIS techniques such as suitability analysis was performed which helped to identify the potential fishing zones in the study area. The next step was to acquire local fishermen knowledge by using questionnaires to verify the sites identified for their fish catch potential, after verification the methodology was applied on whole year (2010) comprising of 45 images of MODIS sensor. Final potential fishing grounds maps were generated using satellite and in-situ measurements. Once we accurately identify the fishing areas with a high catch potential, it may be possible to estimate the overall fishing resources of the study area. This study will be an outline for local fisherman and marine fisheries department this will help them to monitor real time mapping of fish aggregation in Pakistan EEZ. Fish is important for food industries and national economy. Thus this study can facilitate the government, investors and stakeholders to design export policies that can eventually help the country economically while not depleting the marine resources. Remotely sensed data can therefore prove to be an economical and time saving method of carrying out analysis for maritime fishing activities. Such studies, if used intelligently can help assure food security to the nation and promote Pakistan's coastal resources in world market.

  20. Reconstruction of time-varying tidal flat topography using optical remote sensing imageries

    NASA Astrophysics Data System (ADS)

    Tseng, Kuo-Hsin; Kuo, Chung-Yen; Lin, Tang-Huang; Huang, Zhi-Cheng; Lin, Yu-Ching; Liao, Wen-Hung; Chen, Chi-Farn

    2017-09-01

    Tidal flats (TFs) occupy approximately 7% of the total coastal shelf areas worldwide. However, TFs are unavailable in most global digital elevation models (DEMs) due to water-impermeable nature of existing remote sensing approaches (e.g., radar used for WorldDEM™ and Shuttle Radar Topography Mission DEM and optical stereo-pairs used for ASTER Global Digital Elevation Map Version 2). However, this problem can be circumvented using remote sensing imageries to observe land exposure at different tidal heights during each revisit. This work exploits Landsat-4/-5/-7/-8 Thematic Mapper (TM)/Enhanced TM Plus/Operational Land Imager imageries to reconstruct topography of a TF, namely, Hsiang-Shan Wetland in Taiwan, to unveil its formation and temporal changes since the 1980s. We first classify water areas by applying modified normalized difference water index to each Landsat image and normalize chances of water exposure to create an inundation probability map. This map is then scaled by tidal amplitudes extracted from DTU10 tide model to convert the probabilities into actual elevations. After building DEM at intertidal zone, a water level-area curve is established, and accuracy of DEM is validated by sea level (SL) at the timing of each Landsat snapshot. A 22-year (1992-2013) dataset composed of 227 Landsat scenes are analyzed and compared with tide gauge data. Root-mean-square differences of SL reaches 48 cm with a correlation coefficient of 0.93, indicating that the present technique is useful for constructing accurate coastal DEMs, and that products can be utilized for estimating instant SL. This study shows the possibility of exploring evolution of intertidal zones using an archive of optical remote sensing imageries. The technique developed in the present study potentially helps in quantifying SL from the start of optical remote sensing era.

  1. Remote Sensing Techniques as a Tool for Geothermal Exploration: the Case Study of Blawan Ijen, East Java

    NASA Astrophysics Data System (ADS)

    Pasqua, Claudio; Verdoya, Massimo

    2014-05-01

    The use of remote sensing techniques in the initial phase of geothermal surveys represents a very cost-effective tool, which can contribute to a successful exploration program. Remote sensing allows the analysis of large surfaces and can lead to a significant improvement of the identification of surface thermal anomalies, through the use of thermal infra red data (TIR), as well as of zones of widespread and recent faulting, which can reflect larger permeability of geological formations. Generally, the fractures analysis from remote sensing can be fundamental to clarify the structural setting of an area. In a regional volcanic framework, it can also help in defining the spatial and time evolution of the different volcanic apparatuses. This paper describes the main results of a remote sensing study, conducted in the Blawan-Ijen volcanic area (East Java), which is at present subject of geothermal exploration. This area is characterized by the presence of a 15 km wide caldera originated by a collapsed strato volcano. This event was followed by the emplacement of several peri-calderic and intra-calderic volcanoes, among which G. Raung, as testified by the frequent occurrence of shallow earthquakes and by H2S emission and sulfur deposition, and G. Kawah Ijen, occurring at the eastern rim of the caldera, are still active. The summit of G. Kawah Ijen volcano consists of two interlocking craters forming an E-W elongated depression filled up by a hyperacidic lake. Along the southern shore of the lake, a small rhyolitic dome occurs, which exhibits strong fumarolic activity with temperature of as much as 600 °C. We performed an analysis based on the combined interpretation of Landsat ETM+7, Aster and Synthetic Aperture Radar (SAR) images, focused on the identification of subsurface high permeability zones. The main trends of the linear features as derived from the fractures analysis, as well as their relation with the distribution of volcanic centres, were identified, singling out the variations of these trends as a function of the geographic location and age of volcanism. Moreover, the density of weighted linear features and nodal points were elaborated, in order to locate the zones where the effects of the fractures crossing could be more important. Two major belts of anomalously high density of linear fractures were identified: the first running E-W along the neo-volcanic axis and the second N-S in correspondence of the main structural features. The findings of this study, combined with the field observations about the position of thermal springs, allowed us to outline a zone that could be characterized by larger permeability and consequently could have hydrogeological and structural conditions suitable for the formation of an exploitable geothermal system.

  2. Strain localization on different scales and the importance of brittle precursors during deformation in the lower crust (Davenport Shear Zone, Central Australia)

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Mancktelow, Neil; Wex, Sebastian; Camacho, Alfredo; Pennacchioni, Giorgio

    2014-05-01

    High strain rocks in the Musgrave Ranges (Central Australia) provide a rather unique insight into the development of lower crustal shear zones during the 550 Ma Petermann Orogeny, allowing common models for lower crustal deformation to be critically evaluated. The observed structures in the study area are, from south to north: (1) The Mann Fault, which is poorly exposed but evident on airborne geomagnetic maps. This regional scale fault with a component of dextral shear shows a step-over resulting in the formation of a pull-apart basin. (2) The Davenport Shear Zone, accommodating the horizontal extension in a 7 km wide WNW-ESE-trending mylonitic zone developed under subeclogitic, lower crustal conditions. This high strain zone is bounded to the north by a more than 50 km long, continuous, sheared dolerite dyke. North of this dyke, the ~1200 Ma Musgravian fabric is still preserved, only slightly rotated and typically N-S trending. (3) The Woodroffe Thrust, marking the northern boundary of the Musgrave Ranges, brings these lower crustal rocks on top of amphibolite facies units, with a top-to-north sense of movement. Strain in the Davenport Shear Zone is very heterogeneously distributed, with localization and partitioning from the kilometre down to the millimetre scale. Pseudotachylyte is commonly associated with dykes, especially on the boundaries, and is often sheared. The orientation of sheared dykes and localized shear zones is typically at a high angle to either side of the shortening direction, resulting in a variable sense of shear and a major component of flattening, with a nearly horizontal extension direction. Detailed outcrop-scale mapping shows that compositional inhomogeneities, such as quartz veins, are generally not exploited, even when favourably oriented for shear reactivation. Ultramylonitic shear zones are sometimes only a few millimetres wide but extend for several metres and are generally oblique to the background foliation. Pseudotachylyte often predates or is coeval with localized shearing and fracturing clearly played a major role in the nucleation of mesoscale discrete shear zones. In order to constrain the conditions of pseudotachylyte formation, and to establish whether they developed under lower crustal subeclogitic conditions, garnet-bearing sheared pseudotachylytes were sampled for geothermobarometric analysis.

  3. From an ocean floor wrench zone origin to transpressional tectonic emplacement of the Sithonia ophiolite, eastern Vardar Suture Zone, northern Greece

    NASA Astrophysics Data System (ADS)

    Bonev, Nikolay; Filipov, Petyo

    2017-12-01

    In the Hellenides of northern Greece, the Sithonia back-arc ophiolite constitute an element of the Vardar suture zone against the Chortiatis island arc magmatic suite, the Melissochori Formation and the Serbo-Macedonian Massif further north at the Mesozoic continental margin of Eurasia. A granodiorite from the Chortiatis island arc magmatic suite crystallized at 160 Ma as derived from new U-Pb zircon geochronology and confirms the end of arc magmatic activity that started at around 173 Ma. Located southerly of the Chortiatis island arc magmatic suite, the Sithonia ophiolite had igneous life from 159 to 149 Ma, and the ophiolite interfinger with clastic-carbonate Kimmeridgian sediments. Magmatic structures (i.e., sheeted dykes) in the ophiolite witness for NE-trending rift axis, while the transform faults and fracture zones sketch NW-SE transcurrent transtension-like propagation of the rift-spreading center at Sithonia that is consistent with a dextral wrench corridor already proposed for the ophiolite origin in the eastern Vardar zone. The tectonic emplacement of the Sithonia ophiolite involved dextral ENE to SE strike-slip sense of shear and SW and NE reverse thrust sense of shear on mostly steep foliation S1, subhorizontal lineation L1 and associated variably inclined F1 fold axes. This structural grain and kinematics are shared by adjacent Chortiatis island arc magmatic suite and the Melissochori Formation. The coexistence of strike-parallel and thrust components of displacement along discrete dextral strike-slip shear zones and internal deformation of the mentioned units is interpreted to result from a bulk dextral transpressive deformation regime developed in greenschist-facies metamorphic conditions. The back-arc ocean floor previous structural architecture with faults and fracture zones where Kimmeridgian sediments deposited in troughs was used by discrete strike-slip shear zones in which these sediments involved, and the shear zones become the sites for strain partitioning of transpressional deformation. Available biostratigraphic and radiometric age constraints define latest Jurassic-earliest Cretaceous (Tithonian-Berriasian to early Valanginian) time frame for the Sithonia ophiolite northeastward tectonic emplacement accomodated by dextral transpression that led to the ophiolite accretion to the Chortiatis island arc magmatic suite and its trench-fill exposed in the Melissochori Formation and further north toward the Serbo-Macedonian margin of Eurasia.

  4. Uav-Based Detection of Unknown Radioactive Biomass Deposits in Chernobyl's Exclusion Zone

    NASA Astrophysics Data System (ADS)

    Briechle, S.; Sizov, A.; Tretyak, O.; Antropov, V.; Molitor, N.; Krzystek, P.

    2018-05-01

    Shortly after the explosion of the Chernobyl nuclear power plant (ChNPP) in 1986, radioactive fall-out and contaminated trees (socalled Red Forest) were buried in the Chernobyl Exclusion Zone (ChEZ). These days, exact locations of the buried contaminated material are needed. Moreover, 3D vegetation maps are necessary to simulate the impact of tornados and forest fire. After 30 years, some of the so-called trenches and clamps are visible. However, some of them are overgrown and have slightly settled in the centimeter and decimeter range. This paper presents a pipeline that comprises 3D vegetation mapping and machine learning methods to precisely map trenches and clamps from remote sensing data. The dataset for our experiments consists of UAV-based LiDAR data, multi-spectral data, and aerial gamma-spectrometry data. Depending on the study areas overall accuracies ranging from 95.6 % to 99.0 % were reached for the classification of radioactive deposits. Our first results demonstrate an accurate and reliable UAV-based detection of unknown radioactive biomass deposits in the ChEZ.

  5. Ocean Color Measurements from Landsat-8 OLI using SeaDAS

    NASA Technical Reports Server (NTRS)

    Franz, Bryan Alden; Bailey, Sean W.; Kuring, Norman; Werdell, P. Jeremy

    2014-01-01

    The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a.

  6. Atmospheric control on ground and space based early warning system for hazard linked to ash injection into the atmosphere

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Taisne, Benoit; Whelley, Patrick; Garces, Milton; Le Pichon, Alexis

    2014-05-01

    Violent volcanic eruptions are common in the Southeast Asia which is bordered by active subduction zones with hundreds of active volcanoes. The physical conditions at the eruptive vent are difficult to estimate, especially when there are only a few sensors distributed around the volcano. New methods are therefore required to tackle this problem. Among them, satellite imagery and infrasound may rapidly provide information on strong eruptions triggered at volcanoes which are not closely monitored by on-site instruments. The deployment of an infrasonic array located at Singapore will increase the detection capability of the existing IMS network. In addition, the location of Singapore with respect to those volcanoes makes it the perfect site to identify erupting blasts based on the wavefront characteristics of the recorded signal. There are ~750 active or potentially active volcanoes within 4000 kilometers of Singapore. They have been combined into 23 volcanic zones that have clear azimuth with respect to Singapore. Each of those zones has been assessed for probabilities of eruptive styles, from moderate (Volcanic Explosivity Index of 3) to cataclysmic (VEI 8) based on remote morphologic analysis. Ash dispersal models have been run using wind velocity profiles from 2010 to 2012 and hypothetical eruption scenarios for a range of eruption explosivities. Results can be used to estimate the likelihood of volcanic ash at any location in SE Asia. Seasonal changes in atmospheric conditions will strongly affect the potential to detect small volcanic eruptions with infrasound and clouds can hide eruption plumes from satellites. We use the average cloud cover for each zone to estimate the probability of eruption detection from space, and atmospheric models to estimate the probability of eruption detection with infrasound. Using remote sensing in conjunction with infrasound improves detection capabilities as each method is capable of detecting eruptions when the other is 'blind' or 'defened' by adverse atmospheric conditions. According to its location, each volcanic zone will be associated with a threshold value (minimum VEI detectable) depending on the seasonality of the wind velocity profile in the region and the cloud cover.

  7. Monitoring and Predicting the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Field Program

    NASA Astrophysics Data System (ADS)

    Exports Science Definition Team

    2016-04-01

    Ocean ecosystems play a critical role in the Earth's carbon cycle and its quantification on global scales remains one of the greatest challenges in global ocean biogeochemistry. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) science plan is to develop a predictive understanding of the export and fate of global ocean primary production and its implications for the Earth's carbon cycle in present and future climates. NASA's satellite ocean-color data record has revolutionized our understanding of global marine systems. EXPORTS is designed to advance the utility of NASA ocean color assets to predict how changes in ocean primary production will impact the global carbon cycle. EXPORTS will create a predictive understanding of both the export of organic carbon from the euphotic zone and its fate in the underlying "twilight zone" (depths of 500 m or more) where variable fractions of exported organic carbon are respired back to CO2. Ultimately, it is the sequestration of deep organic carbon transport that defines the impact of ocean biota on atmospheric CO2 levels and hence climate. EXPORTS will generate a new, detailed understanding of ocean carbon transport processes and pathways linking upper ocean phytoplankton processes to the export and fate of organic matter in the underlying twilight zone using a combination of field campaigns, remote sensing and numerical modeling. The overarching objective for EXPORTS is to ensure the success of future satellite missions by establishing mechanistic relationships between remotely sensed signals and carbon cycle processes. Through a process-oriented approach, EXPORTS will foster new insights on ocean carbon cycling that will maximize its societal relevance and be a key component in the U.S. investment to understand Earth as an integrated system.

  8. Sister cities and easy passage: HIV, mobility and economies of desire in a Thai/Lao border zone.

    PubMed

    Lyttleton, Chris; Amarapibal, Amorntip

    2002-02-01

    It is recognised that people movement can increase potential risk of HIV transmission. In recent years, mobile populations moving across national borders have become a focus for HIV/AIDS prevention campaigns. These programs generally target border "hot zones" that produce high levels of HIV vulnerability due to the degree of mobility and the risk behaviours fostered by these marginal environments. However, high degrees of movement and social exploitation need not be the only criteria for borders to exacerbate HIV vulnerability. The types of social interactions promoted by mobility take many forms. In this paper we consider a border zone between Thailand and Laos to show that the links between movement and HIV vulnerability are not confined to stereotypical instances of coercion and exploitation. Rather we demonstrate that HIV risk in this area is a product of both a sense of community and a sense of difference that together foster a range of interactions based on mobility back and forth across the border. As HIV/AIDS prevention programs increasingly control forms of sexual interaction, the border provides a practical and symbolic opportunity to establish new forms of sexual relationship falling outside these constraints. This tendency to move outside bounds is not limited to border areas but has implications for prevention programs everywhere.

  9. Fault-dominated deformation in an ice dam during annual filling and drainage of a marginal lake

    USGS Publications Warehouse

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Anderson, S.P.; Anderson, R. Scott; Fountain, A.G.; Malm, A.

    2005-01-01

    Ice-dammed Hidden Creek Lake, Alaska, USA, outbursts annually in about 2-3 days. As the lake fills, a wedge of water penetrates beneath the glacier, and the surface of this 'ice dam' rises; the surface then falls as the lake drains. Detailed optical surveying of the glacier near the lake allows characterization of ice-dam deformation. Surface uplift rate is close to the rate of lake-level rise within about 400 m of the lake, then decreases by 90% over about 100 m. Such a steep gradient in uplift rate cannot be explained in terms of ice-dam flexure. Moreover, survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. Evidently, the zone of steep uplift gradient is a fault zone, with the faults penetrating the entire thickness of the ice dam. Fault motion is in a reverse sense as the lake fills, but in a normal sense as the lake drains. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  10. Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures

    PubMed Central

    Yao, Huajian; Shearer, Peter M.; Gerstoft, Peter

    2013-01-01

    Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest megathrust earthquakes in the past 10 y using a compressive-sensing (sparse source recovery) technique, resolving generally low-frequency radiation closer to the trench at shallower depths and high-frequency radiation farther from the trench at greater depths. Together with coseismic slip models and early aftershock locations, our results suggest depth-varying frictional properties at the subducting plate interfaces. The shallower portion of the slab interface (above ∼15 km) is frictionally stable or conditionally stable and is the source region for tsunami earthquakes with large coseismic slip, deficient high-frequency radiation, and few early aftershocks. The slab interface at intermediate depths (∼15–35 km) is the main unstable seismogenic zone for the nucleation of megathrust quakes, typically with large coseismic slip, abundant early aftershocks, and intermediate- to high-frequency radiation. The deeper portion of the slab interface (∼35–45 km) is seismically unstable, however with small coseismic slip, dominant high-frequency radiation, and relatively fewer aftershocks.

  11. Earthquake Complex Network applied along the Chilean Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Martin, F.; Pasten, D.; Comte, D.

    2017-12-01

    In recent years the earthquake complex networks have been used as a useful tool to describe and characterize the behavior of seismicity. The earthquake complex network is built in space, dividing the three dimensional space in cubic cells. If the cubic cell contains a hypocenter, we call this cell like a node. The connections between nodes follows the time sequence of the occurrence of the seismic events. In this sense, we have a spatio-temporal configuration of a specific region using the seismicity in that zone. In this work, we are applying complex networks to characterize the subduction zone along the coast of Chile using two networks: a directed and an undirected network. The directed network takes in consideration the time-direction of the connections, that is very important for the connectivity of the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out from the node i and we add the self-connections (if two seismic events occurred successive in time in the same cubic cell, we have a self-connection). The undirected network is the result of remove the direction of the connections and the self-connections from the directed network. These two networks were building using seismic data events recorded by CSN (Chilean Seismological Center) in Chile. This analysis includes the last largest earthquakes occurred in Iquique (April 2014) and in Illapel (September 2015). The result for the directed network shows a change in the value of the critical exponent along the Chilean coast. The result for the undirected network shows a small-world behavior without important changes in the topology of the network. Therefore, the complex network analysis shows a new form to characterize the Chilean subduction zone with a simple method that could be compared with another methods to obtain more details about the behavior of the seismicity in this region.

  12. Long-Term Monitoring of Desert Land and Natural Resources and Application of Remote Sensing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; Rollins, Katherine E.

    2016-11-01

    Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000more » survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.« less

  13. Remote Sensing of Landuse Changes and Implications for Landuse Policy

    NASA Technical Reports Server (NTRS)

    Kennedy, Ken

    1996-01-01

    This final report describes grant activities under which students were to study landuse changes by comparing planning and zoning documents using remote sensed data data analyzed and interpreted in the laboratory. Students were recruited through mathematics, political science and engineering classes an clubs. Work protocols were then organized for research on the county's growth patterns over the last three decades. Students and investigators made planes to identify specific scenes in Landsat and other data which would satisfy the research parameters. Finally, statistical and imaging software was identified and some was acquired.

  14. Radar studies related to the earth resources program. [remote sensing programs

    NASA Technical Reports Server (NTRS)

    Holtzman, J.

    1972-01-01

    The radar systems research discussed is directed toward achieving successful application of radar to remote sensing problems in such areas as geology, hydrology, agriculture, geography, forestry, and oceanography. Topics discussed include imaging radar and evaluation of its modification, study of digital processing for synthetic aperture system, digital simulation of synthetic aperture system, averaging techniques studies, ultrasonic modeling of panchromatic system, panchromatic radar/radar spectrometer development, measuring octave-bandwidth response of selected targets, scatterometer system analysis, and a model Fresnel-zone processor for synthetic aperture imagery.

  15. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa

    PubMed Central

    2012-01-01

    Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling approach based on remotely sensed information is potentially useful for counter measures that are putting on at the environmental side, namely vector larvae control via larviciding and water body reforming. PMID:22443452

  16. Integral Quantification of Soil Water Content at the Intermediate Catchment Scale by Ground Albedo Neutron Sensing (GANS)

    NASA Astrophysics Data System (ADS)

    Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.

    2012-04-01

    Soil water content at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. One new measurement methodology for integral quantifications of mean areal soil water content at the intermediate catchment scale is the aboveground sensing of cosmic-ray neutrons, more precisely ground albedo neutron sensing (GANS). Ground albedo natural neutrons, are generated by collisions of secondary cosmic rays with land surface materials (soil, water, biomass, snow, etc). Neutrons measured at the air/ground interface correlate with soil moisture contained in a footprint of ca. 600 m diameter and a depth ranging down to a few decimeters. This correlation is based on the crucial role of hydrogen as neutron moderator compared to others landscape materials. The present study performed ground albedo neutron sensing in different locations in Germany under different vegetative situations (cropped and bare field) and different seasonal conditions (summer, autumn and winter). Ground albedo neutrons were measured at (i) a farmland close to Potsdam (Brandenburg, Germany) cropped with corn in 2010 and sunflowers in 2011, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains, Germany) in 2011. In order to test this method, classical soil moisture devices and meteorological data were used for comparison. Moreover, calibration approach, and transferability of calibration parameters to different times and locations are also evaluated. Our observations suggest that GANS can overcome the lack of data for hydrological processes at the intermediate scale. Soil water content from GANS compared quantitatively with mean water content values derived from a network of classical devices (RMSE = 0.02 m3/m3 and r2 = 0.98) in three calibration periods with cropped-field conditions. Then, same calibration parameters corresponded well under different field conditions. Moreover, GANS approach responded well to precipitation events in both experimental sites through summer and autumn, and soil water content estimations were affected by water stored in snow.

  17. Drought or humidity oscillations? The case of coastal zone of Lebanon

    NASA Astrophysics Data System (ADS)

    Shaban, Amin; Houhou, Rola

    2015-10-01

    There is discrepancy in classifying Lebanon according to the different climatic zones; however, it is often described as a semi-arid region. Lately, Lebanon has been witnessing climatic oscillations in the meteorological parameters. The impact of these oscillations on water sector has been reflected also on energy-food nexus. Yet, there are a number of studies obtained to identify the climate of Lebanon, and they show contradictory results; especially these studies elaborated different datasets and applied diverse methods which often modeled only on large-scale regions. Therefore, the analysis of climatic data depended on complete and long-term climatic records that can be applied to assess the existing climatic status of Lebanon, as well as to assure whether Lebanon is under drought, humidity or it is oscillating between both. This study utilized considerable datasets, from different sources including the remotely sensed systems (e.g. TRMM). These datasets were interpolated and analyzed statistically according to De Martonne Aridity Index. Aiming to affirm the climatic attribute of Lebanon; however, ten climatic stations were investigated. They are with representative geographic setting and diverse time series in the coastal zone of Lebanon were investigated. Even though, Lebanon is known as a semi-arid region, yet results in this study show that the studied zone does not evidence any drought, since around 70% of the investigated years are characterized by semi-humid to humid climate. This climatic figure is well pronounced since rainfall rate exceeds 900 mm, average temperature rate is about 19 °C, and snow remains for a couple of months annually.

  18. Shore zone land use and land cover: Central Atlantic Regional Ecological Test Site

    USGS Publications Warehouse

    Dolan, R.; Hayden, B.P.; Vincent, C.L.

    1974-01-01

    Anderson's 1972 United States Geological Survey classification in modified form was applied to the barrier-island coastline within the CARETS region. High-altitude, color-infrared photography of December, 1972, and January, 1973, served as the primary data base in this study. The CARETS shore zone studied was divided into six distinct geographical regions; area percentages for each class in the modified Anderson classification are presented. Similarities and differences between regions are discussed within the framework of man's modification of these landscapes. The results of this study are presented as a series of 19 maps of land-use categories. Recommendations are made for a remote-sensing system for monitoring the CARETS shore zone within the context of the dynamics of the landscapes studied.

  19. Radar, an optimum remote-sensing tool for detailed plate tectonic analysis and its application to hydrocarbon exploration (an example in Irian Jaya Indonesia)

    NASA Technical Reports Server (NTRS)

    Froidevaux, C. M.

    1980-01-01

    Geometric, geomorphic, and structural information derived from the examination of radar imagery and combined with geologic and geophysical evidences strongly indicates that Salawati Island was attached to the Irian Jaya mainland during the time of Miocene lower Pliocene reef development, and that it was separated in middle Pliocene to Pleistocene time, opening the Sele Strait rift zone. The island moved 17.5 km southwestward after an initial counterclockwise rotation of 13 deg. The rift zone is subsequent to the creation of the large left lateral Sorong fault zone that is part of the transitional area separating the westward-moving Pacific plate from the relatively stable Australian plate. The motion was triggered during a widespread magmatic intrusion of the Sorong fault zone, when the basalt infiltrated a right lateral fault system in the area of the present Sele Strait.

  20. Extracting Information from Folds in Rocks.

    ERIC Educational Resources Information Center

    Hudleston, Peter John

    1986-01-01

    Describes the three processes of folding in rocks: buckling, bending, and passive folding. Discusses how geometrical properties and strain distributions help to identify which processes produce natural folds, and also provides information about the mechanical properties of rocks, and the sense of shear in shear zones. (TW)

  1. Application of NASA Giovanni to Coastal Zone Remote Sensing Research

    NASA Technical Reports Server (NTRS)

    Acker, James; Leptoukh, Gregory; Kempler, Steven; Berrick, Stephen; Rui, Hualan; Shen, Suhung

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.

  2. Application of NASA Giovanni to Coastal Zone Remote Sensing Search

    NASA Technical Reports Server (NTRS)

    Acker, James; Leptoukh, Gregory; Kempler, Steven; Berrick, Stephen; Rui, Hualan; Shen, Suhung

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.

  3. Cellular polarity and interactions in plant graviperception

    NASA Technical Reports Server (NTRS)

    Sack, Fred D.

    1993-01-01

    Presented are results of studies on the mechanisms of gravitropic sensing in higher and lower plants. Gravitropic roots of the aquatic angiosperm, Limnobium, were found to have sedimented amyloplasts in their elongation zone but not in their rootcap; nuclei were found to sediment in the elongation zone as well. Another study attempted to understand how plastid sedimentation occurs in vertical Ceratodon cells and how this sedimentation is regulated. To determine whether the cytoskeleton restricts plastid sedimentation, the effects of amiprophos-methyl (APM) and cytochalasin (CD) on plastid position were qualified. Results suggest that microtubules restrict the sedimentation of plastids along the length of the cell and that microtubules are load-bearing for all the plastids in the apical cell, demonstrating the importance of the cytoskeleton in maintaining organelle position and cell organization against the force of gravity. Physcomitrella and Funaria were also studied. Results suggest that gravitropism may be relatively common in moss protonemata and reinforce the idea that amyloplast mass functions in gravitropic sensing.

  4. Detection of mesoscale zones of atmospheric instabilities using remote sensing and weather forecasting model data

    NASA Astrophysics Data System (ADS)

    Winnicki, I.; Jasinski, J.; Kroszczynski, K.; Pietrek, S.

    2009-04-01

    The paper presents elements of research conducted in the Faculty of Civil Engineering and Geodesy of the Military University of Technology, Warsaw, Poland, concerning application of mesoscale models and remote sensing data to determining meteorological conditions of aircraft flight directly related with atmospheric instabilities. The quality of meteorological support of aviation depends on prompt and effective forecasting of weather conditions changes. The paper presents a computer module for detecting and monitoring zones of cloud cover, precipitation and turbulence along the aircraft flight route. It consists of programs and scripts for managing, processing and visualizing meteorological and remote sensing databases. The application was developed in Matlab® for Windows®. The module uses products of COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) mesoscale non-hydrostatic model of the atmosphere developed by the US Naval Research Laboratory, satellite images acquisition system from the MSG-2 (Meteosat Second Generation) of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and meteorological radars data acquired from the Institute of Meteorology and Water Management (IMGW), Warsaw, Poland. The satellite images acquisition system and the COAMPS model are run operationally in the Faculty of Civil Engineering and Geodesy. The mesoscale model is run on an IA64 Feniks multiprocessor 64-bit computer cluster. The basic task of the module is to enable a complex analysis of data sets of miscellaneous information structure and to verify COAMPS results using satellite and radar data. The research is conducted using uniform cartographic projection of all elements of the database. Satellite and radar images are transformed into the Lambert Conformal projection of COAMPS. This facilitates simultaneous interpretation and supports decision making process for safe execution of flights. Forecasts are based on horizontal distributions and vertical profiles of meteorological parameters produced by the module. Verification of forecasts includes research of spatial and temporal correlations of structures generated by the model, e.g.: cloudiness, meteorological phenomena (fogs, precipitation, turbulence) and structures identified on current satellite images. The developed module determines meteorological parameters fields for vertical profiles of the atmosphere. Interpolation procedures run at user selected standard (pressure) or height levels of the model enable to determine weather conditions along any route of aircraft. Basic parameters of the procedures determining e.g. flight safety include: cloud base, visibility, cloud cover, turbulence coefficient, icing and precipitation intensity. Determining icing and turbulence characteristics is based on standard and new methods (from other mesoscale models). The research includes also investigating new generation mesoscale models, especially remote sensing data assimilation. This is required by necessity to develop and introduce objective methods of forecasting weather conditions. Current research in the Faculty of Civil Engineering and Geodesy concerns validation of the mesoscale module performance.

  5. Evidence of Vertical and Horizontal Motions on Venus: Maxwell Montes

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Vergely, P.

    1995-01-01

    Based on full-resolution Magellan radar images, the detailed structural analysis of central Ishtar Terra (Venus) provides new insight to the understanding of the Venusian tectonics. Ishtar Terra, centered on 65° N latitude and 0° E longitude includes a high plateau. Lakshmi Planum, surrounded by highlands, the most important being Maxwell Montes to the East. Structural analysis has been performed with classical remote-sensing methods. Folds and faults identified on radar images were reported on structural map. Their type and distribution allowed to define the style of the crustal deformation and the context in which these structures formed. This analysis shows that Lakshmi Planum formed under a crustal stretching associated with a volcanic activity. This area then became a relatively steady platform, throughout the formation of Maxwell Montes mountain belt. Maxwell Montes is characterized by a series of NNW-SSE trending thrust faults dipping to the East, formed during a WSW-ESE horizontal shortening. In its NW quarter, the mountain belt shows a disturbed deformation controlled by pre-existing grabens and old vertical crustal fault zone. The deformation of this area is characterized by a shortening of cover above a flat detachment zone, with a progressive accommodation to the southwest. All these tectonic structures show evidence of horizontal and vertical crustal movements on Venus, with subsidence, mountain belt raise, West regional overthrusting of this mountain belt, and regional shear zone.

  6. Recent advances in remote sensing; Proceedings of the First International Geoscience and Remote Sensing Symposium, Washington, DC, June 8-10, 1981

    NASA Technical Reports Server (NTRS)

    Mcintosh, R.

    1982-01-01

    The state of the art in remote sensing of the earth and the planets was discussed in terms of sensor performance, signal processing, and data interpretation. Particular attention was given to lidar for characterizing atmospheric particulates, the modulation of short waves by long ocean gravity waves, and runoff modeling for snow-covered areas. The use of NOAA-6 spacecraft AVHRR data to explore hydrologic land surface features, the effects of soil moisture and vegetation canopies on microwave and thermal microwave emissions, and regional scale evapotranspiration rate determination through satellite IR data are examined. A Shuttle experiment to demonstrate high accuracy global time and frequency transfer is described, along with features of the proposed Gravsat, radar image processing for rock-type discrimination, and passive microwave sensing of temperature and salinity in coastal zones.

  7. Application of remote sensing to monitoring and studying dispersion in ocean dumping

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Ohlhorst, C. W.

    1981-01-01

    Remotely sensed wide area synoptic data provides information on ocean dumping that is not readily available by other means. A qualitative approach has been used to map features, such as river plumes. Results of quantitative analyses have been used to develop maps showing quantitative distributions of one or more water quality parameters, such as suspended solids or chlorophyll a. Joint NASA/NOAA experiments have been conducted at designated dump areas in the U.S. coastal zones to determine the applicability of aircraft remote sensing systems to map plumes resulting from ocean dumping of sewage sludge and industrial wastes. A second objective is related to the evaluation of previously developed quantitative analysis techniques for studying dispersion of materials in these plumes. It was found that plumes resulting from dumping of four waste materials have distinctive spectral characteristics. The development of a technology for use in a routine monitoring system, based on remote sensing techniques, is discussed.

  8. An Integrated Approach To Offshore Wind Energy Assessment: Great Lakes 3D Wind Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelmie, R. J.; Pryor, S. C.

    This grant supported fundamental research into the characterization of flow parameters of relevance to the wind energy industry focused on offshore and the coastal zone. A major focus of the project was application of the latest generation of remote sensing instrumentation and also integration of measurements and numerical modeling to optimize characterization of time-evolving atmospheric flow parameters in 3-D. Our research developed a new data-constrained Wind Atlas for the Great Lakes, and developed new insights into flow parameters in heterogeneous environments. Four experiments were conducted during the project: At a large operating onshore wind farm in May 2012; At themore » National Renewable Energy Laboratory National Wind Technology Center (NREL NWTC) during February 2013; At the shoreline of Lake Erie in May 2013; and At the Wind Energy Institute of Canada on Prince Edward Island in May 2015. The experiment we conducted in the coastal zone of Lake Erie indicated very complex flow fields and the frequent presence of upward momentum fluxes and resulting distortion of the wind speed profile at turbine relevant heights due to swells in the Great Lakes. Additionally, our data (and modeling) indicate the frequent presence of low level jets at 600 m height over the Lake and occasions when the wind speed profile across the rotor plane may be impacted by this phenomenon. Experimental data and modeling of the fourth experiment on Prince Edward Island showed that at 10-14 m escarpment adjacent to long-overseas fetch the zone of wind speed decrease before the terrain feature and the increase at (and slightly downwind of) the escarpment is ~3–5% at turbine hub-heights. Additionally, our measurements were used to improve methods to compute the uncertainty in lidar-derived flow properties and to optimize lidar-scanning strategies. For example, on the basis of the experimental data we collected plus those from one of our research partners we advanced a new methodology to estimate a priori the uncertainty in wind speed retrievals from arc scans based on site characteristics such as wind velocity, turbulence intensity and proposed scan geometry. Insights regarding use of remote sensing technologies deriving from project experiments were used to compile a best practice document http://doi.org/10.7298/X4QV3JGF for measuring wind speeds and turbulence offshore through in-situ and remote sensing technologies. A project-specific web-site was developed and is available at: http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/spryor/DoE_AIATOWEA/index.html« less

  9. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less

  10. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen

    2018-02-20

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less

  11. Structural evidence for northeastward movement on the Chocolate Mountains thrust, southeasternmost Calfornia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-11-10

    The Late Cretaceous Chocolate Mountains thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the regionally distinctive Orocopia Schist. The Chocolate Mountains thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal (exhumation, unroofing, uplift) fault. The Chocolate Mountains thrust zone contains sparse to locally abundant mesoscopic asymmetric folds. Fabric relations indicate that these folds are an integral part of and coeval with the thrust zone. On a lower hemisphere equal-area plot representing the orientation and sensemore » of asymmetry of 80 thrust zone folds from 36 localities, spread over an area 60 by 10 km, Z folds plot northwest of and S folds plot southeast of a northeast-southwest striking vertical plane of overall monoclinic symmetry. The only sense of movement consistent with the collective asymmetry of the thrust zone folds is top to the northeast. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. The essential point is that movement of the upper plate of the Chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. Alternative tectonic models involving subduction of the Orocopia Schist eastward beneath continental southern California circumvent the suture problem but are presently not supported by any direct structural evidence.« less

  12. Can compliant fault zones be used to measure absolute stresses in the upper crust?

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.; Fialko, Y.

    2009-04-01

    Geodetic and seismic observations reveal long-lived zones with reduced elastic moduli along active crustal faults. These fault zones localize strain from nearby earthquakes, consistent with the response of a compliant, elastic layer. Fault zone trapped wave studies documented a small reduction in P and S wave velocities along the Johnson Valley Fault caused by the 1999 Hector Mine earthquake. This reduction presumably perturbed a permanent compliant structure associated with the fault. The inferred changes in the fault zone compliance may produce a measurable deformation in response to background (tectonic) stresses. This deformation should have the same sense as the background stress, rather than the coseismic stress change. Here we investigate how the observed deformation of compliant zones in the Mojave Desert can be used to constrain the fault zone structure and stresses in the upper crust. We find that gravitational contraction of the coseismically softened zones should cause centimeters of coseismic subsidence of both the compliant zones and the surrounding region, unless the compliant fault zones are shallow and narrow, or essentially incompressible. We prefer the latter interpretation because profiles of line of sight displacements across compliant zones cannot be fit by a narrow, shallow compliant zone. Strain of the Camp Rock and Pinto Mountain fault zones during the Hector Mine and Landers earthquakes suggests that background deviatoric stresses are broadly consistent with Mohr-Coulomb theory in the Mojave upper crust (with μ ≥ 0.7). Large uncertainties in Mojave compliant zone properties and geometry preclude more precise estimates of crustal stresses in this region. With improved imaging of the geometry and elastic properties of compliant zones, and with precise measurements of their strain in response to future earthquakes, the modeling approach we describe here may eventually provide robust estimates of absolute crustal stress.

  13. Remotely-sensed sea surface temperatuares (SST) of Northeaster Pacific Coastal Zones

    EPA Science Inventory

    Sea surface temperature (SST) is an important indicator of long-term trends and geographical temperature patterns; however there have been relatively few long-term records of SST in near-coastal habitats. In situ SST measurements are irregular in both space and time. Therefore, w...

  14. Improving root-zone soil moisture estimations using dynamic root growth and crop phenology

    USDA-ARS?s Scientific Manuscript database

    Water Energy Balance (WEB) Soil Vegetation Atmosphere Transfer (SVAT) modelling can be used to estimate soil moisture by forcing the model with observed data such as precipitation and solar radiation. Recently, an innovative approach that assimilates remotely sensed thermal infrared (TIR) observatio...

  15. Benchmarking a soil moisture data assimilation system for agricultural drought monitoring

    USDA-ARS?s Scientific Manuscript database

    Agricultural drought is defined as a shortage of moisture in the root zone of plants. Recently available satellite-based remote sensing data have accelerated development of drought early warning system by providing spatially continuous soil moisture information repeatedly at short-term interval. Non...

  16. Marketing Remote Sensing Data for North Pacific Fisheries Development and Management

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Fish poaching, drug trafficking, ocean dumping, and other illegal activities are important problems on the high seas and in national economic zones. The primary thrust of the EOCAP II project, "Marketing Remote Sensing Data for North Pacific Fisheries Development and Management", was to use space-based sensors to improve the effectiveness of marine monitoring, control, and surveillance (MCS). Our initial objectives were to concentrate on the development of MCS tools using Advanced Very High Resolution Radiometry (AVHRR) and Synthetic Aperture Radar (SAR) data. Although we have successfully completed development of an initial version of our SAR-based monitoring tool (OmniVision), project activity has resulted in a much broader application of space-based assets to marine applications. Based in part on work commenced within EOCAP II, a new company, Ocean and Coastal Environmental Sensing, Inc. (OCENS), has been launched and the development of several new software products outside of the MCS arena initiated. One of those products, SeaStation, is near completion with a Fall, 1995 release date. Equity investment in OCENS now totals $70,000-with an additional amount being sought in the first round of financing. One of the pre-eminent objectives of EOCAP II is to make contributions to the US economy and job growth through the expansion of commercial uses of remotely sensed data. OCENS and the software products it is introducing into marine and coastal zone markets responds to this primary object*e. EOCAP II funding leveraged the market and technical know-how of OCENS founders into smart products that benefit marine and coastal zone users. Although technical difficulties and geopolitical shifts damaged the commercial feasibility of initial project objectives, the flexibility of the EOCAP II program now permits long-term business success. This in no small part stems from the fact that the EOCAP program recognizes the realities of small and start-up businesses and does not attempt to force these conditions to fit the apparent needs of big government. Instead, EOCAP works with those who know their market best in order to produce successful products and expanding businesses.

  17. Microstructures and kinematic vorticity analysis from the mylonites along the Karakoram Shear Zone, Pangong Mountains, Karakoram

    NASA Astrophysics Data System (ADS)

    Roy, P.

    2012-04-01

    The Karakoram Shear Zone is a northwest-southeast trending dextral ductile shear zone, which has affected the granitic and granodioritic bodies of the southern Asian Plate margin in three distinct episodes. The ductile shearing of the granitic bodies at Tangste and Darbuk has resulted in the development of mylonites with mylonitic foliation and stretching lineation. More intense deformation is noted in the Tangste granite grading upto orthomylonite, as compared to the Darbuk granite. Kinematic indicators include S-C foliation, synthetic C' and C" antithetic shear bands, Type A σ-mantled porphyroclasts, oblique quartz foliation, micro-shears with bookshelf gliding, mineral fishes including Group 2 mica fishes, and Type 1 and 2a pull-apart microstructures, and exhibit strong dextral sense of ductile shearing towards southeast. The textural features of the minerals especially that of quartz and feldspar, indicate temperature of mylonitisation ranging between 300° C and 500° C in the upper greenschist facies. The mylonitic rocks of the KSZ provide an opportunity for the possible utilization of the deformational structures namely that of quartz and feldspar porphyroclast as well as, well developed shear bands for kinematic vorticity studies. Well developed quartz and feldspar porphyroclasts and synthetic and antithetic shear bands from six different mylonitic samples of the mylonitic Tangste granite has been used to estimate the bulk kinematic vorticity (Wk) involved in the overall deformation of the KSZ using the Porphyroclast Hyperbolic Distribution (PHD) method and Shear band (SB) analysis. The PHD method yields Wk values that range from Wk = 0.29 to Wk =0.43, where as the Shear bands yields values ranging from Wk = 0.45 to Wk =0.93, thus indicating distinct pure and simple shear regimes at different stages of the evolution of the KSZ.

  18. Innovative methodologies and technologies for thermal energy release measurement.

    NASA Astrophysics Data System (ADS)

    Marotta, Enrica; Peluso, Rosario; Avino, Rosario; Belviso, Pasquale; Caliro, Stefano; Carandente, Antonio; Chiodini, Giovanni; Mangiacapra, Annarita; Petrillo, Zaccaria; Sansivero, Fabio; Vilardo, Giuseppe; Marfe, Barbara

    2016-04-01

    Volcanoes exchange heat, gases and other fluids between the interrior of the Earth and its atmosphere influencing processes both at the surface and above it. This work is devoted to improve the knowledge on the parameters that control the anomalies in heat flux and chemical species emissions associated with the diffuse degassing processes of volcanic and hydrothermal zones. We are studying and developing innovative medium range remote sensing technologies to measure the variations through time of heat flux and chemical emissions in order to boost the definition of the activity state of a volcano and allowing a better assessment of the related hazard and risk mitigation. The current methodologies used to measure heat flux (i.e. CO2 flux or temperature gradient) are either poorly efficient or effective, and are unable to detect short to medium time (days to months) variation trends in the heat flux. Remote sensing of these parameters will allow for measurements faster than already accredited methods therefore it will be both more effective and efficient in case of emergency and it will be used to make quick routine monitoring. We are currently developing a method based on drone-born IR cameras to measure the ground surface temperature that, in a purely conductive regime, is directly correlated to the shallow temperature gradient. The use of flying drones will allow to quickly obtain a mapping of areas with thermal anomalies and a measure of their temperature at distance in the order of hundreds of meters. Further development of remote sensing will be done through the use, on flying drones, of multispectral and/or iperspectral sensors, UV scanners in order to be able to detect the amount of chemical species released in the athmosphere.

  19. Analysis of Urban Growth in Edwardsville Illinois Using Remote Sensing and Population Change

    NASA Astrophysics Data System (ADS)

    Onuoha, Hilda U.

    Rapid urbanization is one of the many critical, global issues. This very significant social and economic phenomenon has brought about much debate in the past twenty years and has become a very important policy issue. Understanding its dynamics and patterns is important to develop appropriate policies and make more informed planning decisions. Many dimensions to the urban land growth have been identified in related literature including drivers, relationship with other factors like population, impacts, and methods of measurement. In this study, urban growth in the Edwardsville area (composed of Edwardsville and Glen Carbon, Illinois) is analyzed spatio-temporally using remote sensing and population change from 1990 to 2015. The objectives of this study are (a) identifying the major land use changes in the Edwardsville area from 1990 to 2015, (b) analyzing the rate of urban growth and its relationship to population change in the area from 1990 to 2015, (c) identifying the general pattern and direction of urban growth in the study area. Using multi-temporal satellite images to classify and derive changes in land cover classes during the study period, results showed that the land cover classes with major changes are the urban/built-up land and agricultural/grassland, with a steady increase in the former and steady decrease in the later. Results also show the highest rate of increase in urban land was between 2000 and 2010. In comparison to population, the both show increase over the study years but urban land shows a higher rate of increase indicating dispersion. To analyze urban growth pattern in the area, the study area was divided into three zones: NE, SE, and W. The SE zone showed the highest amount of the growth and from the results, the infill type of growth was inferred.

  20. Fault Zone Resistivity Structure and Monitoring at the Taiwan Chelungpu Drilling Project from AMT data

    NASA Astrophysics Data System (ADS)

    Chiang, C.-W.; Unsworth, M. J.; Chen, C.-S.; Chen, C.-C.; Lin, A.-T.; Hsu, H.-L.

    2009-04-01

    The Chi-Chi earthquake occurred on September 21st, 1999 in the Western Foothills of central Taiwan. This Mw=7.6 earthquake produced a 90 km long surface rupture and caused severe damage across Taiwan. The coseismic displacement on the Chelungpu fault was one of the largest ever observed. The Taiwan Chelungpu drilling project (TCDP) began in 2003 and resulted in a 2,000 m well that recovered cores from the fault zone at A-hole and finished in 2005 with two boreholes (A-hole and B-hole) being completed. The Chelungpu fault that caused the Chi-Chi earthquake was observed in the core at a depth of 1,111 m (FAZ1111). Another fault zone (Sanyi Fault - FAZ1710) was observed at depths of 1,500~1,710 m. Since the electrical resistivity of rocks is sensitive to the presence of fluids, geophysical methods that remotely sense sub-surface resistivity, such as Magnetotellurics (MT), can be a powerful tool in investigating the fluid distribution in the shallow crust. The effectiveness of MT in imaging fault zones has been demonstrated by studies of the San Andreas Fault zone in California, the U.S. and elsewhere. In magnetotellurics, the depth of exploration increases as the signal frequency decreases. Thus for imaging shallow fault zone structure at the TCDP site, the higher frequency audio-magnetotelluric (AMT) method is the most suitable. In this paper, AMT data collected at the TCDP site from 2004 to 2006 are presented. Spatial and temporal variations are described and interpreted in terms of the tectonic setting. Audio-magnetotelluric (AMT) measurements were used to investigate electrical resistivity structure at the TCDP site from 2004~2006. These data show a geoelectric strike direction of N15°E to N30°E. Inversion and forward modeling of the AMT data were used to generate a 1-D resistivity model that has a prominent low resistivity zone (< 10 ohm-m) between depths of 1,100 and 1,500 m. When combined with porosity measurements, the AMT measurements imply that the ground water has a resistivity of 0.55 ohm-m at the depth of the fault zone. Time variations in the measured AMT data were observed from 2004~2005 with maximum changes of 43% in apparent resistivity and 18° in phase. The change in apparent resistivity is greatest in the 1,000~100 Hz frequency band. These frequencies are sensitive to the resistivity structure of the upper 500 m of the hanging wall of the Chelungpu Fault. The decrease in resistivity over time appears to be robust and could be caused by an increase in porosity and a re-distribution of the groundwater.

  1. Information needs: Perceived and real for state decisionmakers

    NASA Technical Reports Server (NTRS)

    Schwartz, A. R.; Spirou, C.; Kier, W.; Tetley, M.

    1975-01-01

    Remote sensing techniques provide important information for land and water use planning organizations in order to assess coastal developments and their impact on water resources, sediment transport, erosion, and marine biology. Political expediency requires pertinent data acquisition and data dissemination to local populations for coastal zone management decision making.

  2. Precipitation, irrigation and crop growth signals in COSMOS data

    USDA-ARS?s Scientific Manuscript database

    Soil water sensors are used to characterize water content in the root zone and below for water management and environmental monitoring, but only a few are capable of sensing soil volumes larger than a few hundred liters. Scientists with the USDA-ARS Conservation & Production Research Laboratory, Bus...

  3. Techniques for determining partial size distribution of particulate matter: Laser diffraction versus electrical sensing zone

    USDA-ARS?s Scientific Manuscript database

    The study of health impacts, emission estimation of particulate matter (PM), and development of new control technologies require knowledge of PM characteristics. Among these PM characteristics, the particle size distribution (PSD) is perhaps the most important physical parameter governing particle b...

  4. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    DTIC Science & Technology

    2017-03-01

    in the surf zone. The foam produced in an actively breaking crest, or wave roller, has a distinct signature in IR imagery. A retrieval algorithm is...the surface. The velocity profiles are obtained from a pulse-coherent acoustic Doppler sonar on a wave-following platform, termed a Surface Wave

  5. The Eloquence of Money

    ERIC Educational Resources Information Center

    Parini, Jay

    2009-01-01

    After more than three decades of telling students that, unlike fiction, poetry is detached from the world of commerce, floating in a zone where certain pressures, including money, do not obtain, the author has begun to rethink his stance. Although poetry yields no cash in a literal sense, poets talk metaphorically about "banking" poems, allowing…

  6. Characterizing Exterior and Interior Tropical Forest Structure Variability with Full-Waveform Airborne LIDAR Data in Lopé, Gabon

    NASA Astrophysics Data System (ADS)

    Marselis, S.; Tang, H.; Blair, J. B.; Hofton, M. A.; Armston, J.; Dubayah, R.

    2017-12-01

    Terrestrial ecotones, transition zones between ecological systems, have been identified as important regions to monitor the effects of environmental and human pressures on ecosystems. To observe such changes, the variability in vegetation horizontal and vertical structure must be characterized. The objective of this study is to quantify changes in vegetation structure in a tropical forest-savanna mosaic using airborne waveform lidar data. The study area is located in the northern part of the Lopé National Park in Gabon and is comprised of the vegetation types: savanna, colonizing forest, monodominant Okoumé forest, young Marantaceae forest and mixed Marantaceae forest. The lidar data were collected by the Land Vegetation and Ice Sensor (LVIS) in early March 2016, during the AfriSAR campaign. Metrics derived from the LVIS waveforms were then used to classify the five main vegetation types and characterize observed structural variability within types and across ecotones. Several supervised and unsupervised classification alogrithms, in combination with statistical analysis, were applied. The investigated methods are promising in their use to directly describe the structural variability within and between different vegetation types, map these vegetation types and the extent and location of their transition zones, and to characterize, among other attributes, the sharpness and width of such ecotones. These results provide important information in ecosystem studies as these methods can be used to study changes in vegetation structure, species-specific habitat, or the effects of deforestation and other human and natural pressures on the exterior and interior forest structure. These methods thus provide ample opportunity to assess the vegetation structure in degraded and second growth tropical forests to explore effects of e.g. grazing, logging or fragmentation. From this study we can conclude that lidar waveform remote sensing is highly useful in distinguishing vegetation types and their transition zones which will be increasingly important when assessing the impact of natural and human pressures on the world's tropical forests.

  7. Remote Sensing of Wildland Fire-Induced Risk Assessment at the Community Level

    PubMed Central

    Hassan, Quazi K.

    2018-01-01

    Wildland fires are some of the critical natural hazards that pose a significant threat to the communities located in the vicinity of forested/vegetated areas. In this paper, our overall objective was to study the structural damages due to the 2016 Horse River Fire (HRF) that happened in Fort McMurray (Alberta, Canada) by employing primarily very high spatial resolution optical satellite data, i.e., WorldView-2. Thus, our activities included the: (i) estimation of the structural damages; and (ii) delineation of the wildland-urban interface (WUI) and its associated buffers at certain intervals, and their utilization in assessing potential risks. Our proposed method of remote sensing-based estimates of the number of structural damages was compared with the ground-based information available from the Planning and Development Recovery Committee Task Force of Regional Municipality of Wood Buffalo (RMWB); and found a strong linear relationship (i.e., r2 value of 0.97 with a slope of 0.97). Upon delineating the WUI and its associated buffer zones at 10 m, 30 m, 50 m, 70 m and 100 m distances; we found existence of vegetation within the 30 m buffers from the WUI for all of the damaged structures. In addition, we noticed that the relevant authorities had removed vegetation in some areas between 30 m and 70 m buffers from the WUI, which was proven to be effective in order to protect the structures in the adjacent communities. Furthermore, we mapped the wildland fire-induced vulnerable areas upon considering the WUI and its associated buffers. Our analysis revealed that approximately 30% of the areas within the buffer zones of 10 m and 30 m were vulnerable due to the presence of vegetation; in which, approximately 7% were burned during the 2016 HRF event that led the structural damages. Consequently, we suggest to remove the existing vegetation within these critical zones and also monitor the region at a regular interval in order to reduce the wildland fire-induced risk. PMID:29762504

  8. Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China

    NASA Astrophysics Data System (ADS)

    Li, Q.; Zhang, B.; Lu, L.; Lin, Q.

    2014-03-01

    Remote sensing plays an important role in mineral exploration. One of its proven applications is extracting host-rock lithology and alteration zones that are related to porphyry copper deposits. An Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to map the Baogutu porphyry deposit alteration area. A circular alteration mineral zoning pattern was clearly observed in the classification result of potassic, phyllic, argillic, propylitic zones. The potassic is characterized by biotite and anhydrite with an absorption feature centered at 1.94 and 2.1um. The phyllic zone is characterized by illite and sericite that indicates an intense Al-OH absorption feature centered at 2.20um. The narrower argillic zone including kaolinite and alunite displays a secondary Al-OH absorption feature at 2.17 um. The mineral assemblages of the outer propylitic zone are epidote, chlorite and calcite that exhibit absorption features at 2.335um.The performance of Principal Component Analysis(PCA), Minimum Noise Fraction (MNF), band ratio(BR) and Constrained Energy Minimization(CEM) has been evaluated. These techniques identified new prospects of porphyry copper mineralization in the study areas. These results indicate that ASTER is a powerful tool in the initial steps of mineral exploration.

  9. MIZEX: A Program for Mesoscale Air-Ice-Ocean Interaction Experiments in Arctic Marginal Ice Zones. VIII. A Science Plan for a Winter Marginal Ice Zone Experiment in the Fram Strait/Greenland Sea: 1987/89,

    DTIC Science & Technology

    1986-04-01

    forward modeling, with the pa- be telemetered via the ARGOS system for real - rameter changes needed to bring the predictions time evaluation, and the...integrated en ’i- rtinnental measurement svs fern. quisition system to the Winter MIZEX in I-ram To control and direct the experiment, real - time Strait...to measure, under- Electromagnetic sensing via aircraft and satellites stand, and model: will be employed in real time to identify eddy " Changes in

  10. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  11. Extraction of reduced alteration information based on Aster data: a case study of the Bashibulake uranium ore district

    NASA Astrophysics Data System (ADS)

    Ye, Fa-wang; Liu, De-chang

    2008-12-01

    Practices of sandstone-type uranium exploration in recent years in China indicate that the uranium mineralization alteration information is of great importance for selecting a new uranium target or prospecting in outer area of the known uranium ore district. Taking a case study of BASHIBULAKE uranium ore district, this paper mainly presents the technical minds and methods of extracting the reduced alteration information by oil and gas in BASHIBULAKE ore district using ASTER data. First, the regional geological setting and study status in BASHIBULAKE uranium ore district are introduced in brief. Then, the spectral characteristics of altered sandstone and un-altered sandstone in BASHIBULAKE ore district are analyzed deeply. Based on the spectral analysis, two technical minds to extract the remote sensing reduced alteration information are proposed, and the un-mixing method is introduced to process ASTER data to extract the reduced alteration information in BASHIBULAKE ore district. From the enhanced images, three remote sensing anomaly zones are discovered, and their geological and prospecting significances are further made sure by taking the advantages of multi-bands in SWIR of ASTER data. Finally, the distribution and intensity of the reduced alteration information in Cretaceous system and its relationship with the genesis of uranium deposit are discussed, the specific suggestions for uranium prospecting orientation in outer of BASHIBULAKE ore district are also proposed.

  12. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  13. The Texas Remote Sensing Training Project

    NASA Technical Reports Server (NTRS)

    Wells, J. B.

    1975-01-01

    The project was designed to train federal, state and regional agency managers, scientists and engineers. A one-week seminar was designed and implemented to build vocabulary, introduce technical subject areas and give students enough training to allow them to relate remote sensing technology to operational agency projects. The seminar was designed to perform the dual function of conveying enough remote sensing information to be of value as a stand-alone and preparing students for detailed pattern recognition training. The LARSYS III portion of the training project was executed exactly as designed in the LARSYS training materials package; the LARSYS package did not contain a LANDSAT training module. Two LANDSAT training modules were developed using Texas LANDSAT data. One module contained central Texas data and the second module contained coastal zone data.

  14. Strain partitioning along the Mahanadi Shear Zone: Implications for paleo-tectonics of the Eastern Ghats Province, India

    NASA Astrophysics Data System (ADS)

    Bose, Subham; Gupta, Saibal

    2018-05-01

    During Indo-Antarctic collision at c. 1.0 Ga, Eastern Ghats Province (EGP) granulites amalgamated with the Archean Indian craton. The northern boundary of the EGP was subsequently reworked, undergoing dextral strike-slip shearing at 0.5 Ga. This study documents a phase of dextral shearing within the EGP along WNW-ESE trending shear planes in c. 0.5 Ga mylonites of the Mahanadi Shear Zone. Regional structural trends in the EGP show a swing from NE-SW to the south of the shear zone, to WNW-ESE to its north. The mylonitic shear zone foliation has a sub-horizontal lineation associated with a prominent dextral shear sense in near-horizontal sections. Electron Back Scatter Diffraction (EBSD) studies on quartz confirm that mylonitisation was associated with dextral strike-slip movement in the greenschist facies. North of the Mahanadi Shear Zone, strain was partitioned into narrow dextral strike-slip shear zones along which the older granulite fabrics were transposed parallel to later WNW-ESE trending shear planes at lower grades of metamorphism. This regional-scale shearing at ∼ 500 Ma possibly resulted in a significant dextral shift of the northern EGP with respect to the south. The shear zone was reactivated in the Permian time during deposition of Gondwana sediments in the Mahanadi basin.

  15. High-Visibility Photonic Crystal Fiber Interferometer as Multifunctional Sensor

    PubMed Central

    Cárdenas-Sevilla, G.A.; Fávero, Fernando C.; Villatoro, Joel

    2013-01-01

    A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (∼40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ∼1.6 × 10−5. PMID:23396192

  16. Is low-angle normal fault slip aided by local stress rotations?: Assessment of paleostress inversion methods

    NASA Astrophysics Data System (ADS)

    Luther, A. L.; Axen, G. J.; Selverstone, J.; Khalsa, N.

    2009-12-01

    Classical fault mechanic theory does not adequately explain slip on “weak” faults oriented at high angles to the regional maximum stress direction, such as the San Andreas Fault and low-angle normal faults. One hypothesis is that stress rotation due to fault-weakening mechanisms allows slip, which may be testable using detailed paleostress analyses of minor faults and tensile fractures. Preliminary data from the footwalls of the Whipple detachment (WD) and the West Salton detachment (WSD) suggest lateral and/or vertical stress rotations. Three inversion programs that use different fault-slip datasets are compared. 1) FaultKin (Marrett and Allmendinger ‘90; Cladouhos and Allmendinger ‘93) determines the principal strain directions using only faults with striae and known slip senses; principal stress orientations are determined assuming coaxiality. To date, FaultKin results appear to be the most reproducible, but it is difficult to find enough faults with striae and slip sense in the small outcrop areas of our study. 2) Slick.bas (Ramsey and Lisle ‘00) uses a grid search to find the best-fit stress tensor from fault and striae orientations, but does not accept slip sense. This program can yield erroneous stress fields that predict slip senses opposite those known for some faults (particularly faults at a high angle to sigma 1). 3) T-TECTO 2.0 (Zalohar and Vrabec ‘07) applies a Gaussian approach, using orientations of faults and striae, the slip senses of any faults for which it is known, plus tensile fractures. We expect that this flexibility of input data types will be best, but testing is preliminary. Paleostress analyses assume that minor faults slipped in response to constant, homogeneous stress fields. We use shear and tensile fractures and cross-cutting relationships from the upper ~25 m of both footwalls to test for spatial and temporal changes to the paleostress field. Paleostress analysis of fractures ~0.3 - 2 m below the WSD on the N limb of an antiform suggests that sigma 3 plunges moderately (~45 degrees) W, sigma 1 plunges gently S, and sigma 2 is steep, consistent with wrench-related folding about E-W trends during WSD slip. However, tensile fractures in the immediately overlying ultracataclasite yield sigma 3 with a shallow W plunge (~4 degrees). In a synformal trough, Reidel shears in the upper 1-2 m of the WSD footwall suggest a moderately (~50 degrees) E plunging sigma 1. Deeper (2-10 m) in the footwall, shear fractures have different but consistent orientations, suggesting a change in the stress field. Preliminary results from several sets of shear fractures in the WD footwall suggest that sigma 1 is steep (~75-90 degrees) in the chlorite breccia zone (implying low shear traction) but is shallower (~45 degrees) in the deeper damage zone. Prior work (Axen & Selverstone ‘94) found that sigma 1 becomes steep again at greater depths. Continued testing of paleostress analysis methods and several other datasets are in progress to confirm our results.

  17. Application of remote sensing, GIS and MCA techniques for delineating groundwater prospect zones in Kashipur block, Purulia district, West Bengal

    NASA Astrophysics Data System (ADS)

    Nag, S. K.; Kundu, Anindita

    2018-03-01

    Demand of groundwater resources has increased manifold with population expansion as well as with the advent of modern civilization. Assessment, planning and management of groundwater resource are becoming crucial and extremely urgent in recent time. The study area belongs to Kashipur block, Purulia district, West Bengal. The area is characterized with dry climate and hard rock terrain. The objective of this study is to delineate groundwater potential zone for the assessment of groundwater availability using remote sensing, GIS and MCA techniques. Different thematic layers such as hydrogeomorphology, slope and lineament density maps have been transformed to raster data in TNT mips pro2012. To assign weights and ranks to different input factor maps, multi-influencing factor (MIF) technique has been used. The weights assigned to each factor have been computed statistically. Weighted index overlay modeling technique was used to develop a groundwater potential zone map with three weighted and scored parameters. Finally, the study area has been categorized into four distinct groundwater potential zones—excellent 1.5% (6.45 sq. km), good 53% (227.9 sq. km), moderate 45% (193.5 sq. km.) and poor 0.5% (2.15 sq. km). The outcome of the present study will help local authorities, researchers, decision makers and planners in formulating proper planning and management of groundwater resources in different hydrogeological situations.

  18. Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation

    DOEpatents

    LaCount, Robert B.

    1993-01-01

    A furnace with two hot zones holds multiple analysis tubes. Each tube has a separable sample-packing section positioned in the first hot zone and a catalyst-packing section positioned in the second hot zone. A mass flow controller is connected to an inlet of each sample tube, and gas is supplied to the mass flow controller. Oxygen is supplied through a mass flow controller to each tube to either or both of an inlet of the first tube and an intermediate portion between the tube sections to intermingle with and oxidize the entrained gases evolved from the sample. Oxidation of those gases is completed in the catalyst in each second tube section. A thermocouple within a sample reduces furnace temperature when an exothermic condition is sensed within the sample. Oxidized gases flow from outlets of the tubes to individual gas cells. The cells are sequentially aligned with an infrared detector, which senses the composition and quantities of the gas components. Each elongated cell is tapered inward toward the center from cell windows at the ends. Volume is reduced from a conventional cell, while permitting maximum interaction of gas with the light beam. Reduced volume and angulation of the cell inlets provide rapid purgings of the cell, providing shorter cycles between detections. For coal and other high molecular weight samples, from 50% to 100% oxygen is introduced to the tubes.

  19. NIMBUS-7 CZCS. Coastal Zone Color Scanner Imagery for Selected Coastal Regions. North America - Europe. South America - Africa - Antarctica. Level 2 Photographic Product

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Nimbus-7 Coastal Zone Color Scanner (CZCS) is the first spacecraft instrument devoted to the measurement of ocean color. Although instruments on other satellites have sensed ocean color, their spectral bands, spatial resolution, and dynamic range were optimized for geographical or meteorological use. In the CZCS, every parameter is optimized for use over water to the exclusion of any other type of sensing. The signal-to-noise ratios in the spectral channels sensing reflected solar radiance are higher than those required in the past. These ratios need to be high because the ocean is such a poor reflecting surface that the majority of the signal seen by the reflected energy channels at spacecraft altitudes is backscattered solar radiation from the atmosphere rather than reflected solar energy from the ocean. The CZCS is a conventional multichannel scanning radiometer utilizing a rotating plane mirror at a 45 deg angle to the optic axis of a Cassegrain telescope. The mirror scans 360 deg; however, only 80 deg of data centered on the spacecraft nadir is collected for ocean color measurements. Spatial resolution at spacecraft nadir is 825x825 m with some degradation at the edges of the scan swath. The useful swath width from a spacecraft altitude of 955 km is 1600 km.

  20. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    NASA Technical Reports Server (NTRS)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  1. Proof of concept: temperature sensing waders for environmental sciences

    NASA Astrophysics Data System (ADS)

    Hut, R.; Tyler, S.; van Emmerik, T.

    2015-12-01

    A prototype temperature sensing pair of waders is introduced and tested. The water temperature at the stream-bed is interesting both for scientist studying the hyporheic zone as well as for, e.g., fishers spotting good fishing locations. A temperature sensor incorporated in waders worn by members of the public can give scientists an additional source of information on streamwater-groundwater interaction. A pair of waders was equipped with a thermistor and calibrated in the lab. Tests with both the waders and a reference thermometer in a deep polder ditch with a known localized groundwater contribution (i.e. boil) showed that the temperature sensing waders are capable of identifying the boil location. However, the temperature sensing waders showed a less pronounced response to changing water temperature compared to the reference thermometer, most likely due to the heat capacity of the person in the waders. This research showed that data from temperature sensing waders worn by the public and shared with scientists can be used by to decide where the most interesting places are to do more detailed and more expensive, research.

  2. Proof of concept: temperature-sensing waders for environmental sciences

    NASA Astrophysics Data System (ADS)

    Hut, Rolf; Tyler, Scott; van Emmerik, Tim

    2016-02-01

    A prototype temperature-sensing pair of waders is introduced and tested. The water temperature at the streambed is interesting both for scientists studying the hyporheic zone and for, e.g., fishers spotting good fishing locations. A temperature sensor incorporated into waders worn by members of the public can give scientists an additional source of information on stream-water-groundwater interaction. A pair of waders was equipped with a thermistor and calibrated in the lab. Tests with both the waders and a reference thermometer in a deep polder ditch with a known localized groundwater contribution (i.e., boil) showed that the temperature-sensing waders are capable of identifying the boil location. However, the temperature-sensing waders showed a less pronounced response to changing water temperature compared to the reference thermometer, most likely due to the heat capacity of the person in the waders. This research showed that data from temperature-sensing waders worn by the public and shared with scientists can be used to decide where the most interesting places are to do more detailed and more expensive research.

  3. Surface fault slip associated with the 2004 Parkfield, California, earthquake

    USGS Publications Warehouse

    Rymer, M.J.; Tinsley, J. C.; Treiman, J.A.; Arrowsmith, J.R.; Ciahan, K.B.; Rosinski, A.M.; Bryant, W.A.; Snyder, H.A.; Fuis, G.S.; Toke, N.A.; Bawden, G.W.

    2006-01-01

    Surface fracturing occurred along the San Andreas fault, the subparallel Southwest Fracture Zone, and six secondary faults in association with the 28 September 2004 (M 6.0) Parkfield earthquake. Fractures formed discontinuous breaks along a 32-km-long stretch of the San Andreas fault. Sense of slip was right lateral; only locally was there a minor (1-11 mm) vertical component of slip. Right-lateral slip in the first few weeks after the event, early in its afterslip period, ranged from 1 to 44 mm. Our observations in the weeks following the earthquake indicated that the highest slip values are in the Middle Mountain area, northwest of the mainshock epicenter (creepmeter measurements indicate a similar distribution of slip). Surface slip along the San Andreas fault developed soon after the mainshock; field checks in the area near Parkfield and about 5 km to the southeast indicated that surface slip developed more than 1 hr but generally less than 1 day after the event. Slip along the Southwest Fracture Zone developed coseismically and extended about 8 km. Sense of slip was right lateral; locally there was a minor to moderate (1-29 mm) vertical component of slip. Right-lateral slip ranged from 1 to 41 mm. Surface slip along secondary faults was right lateral; the right-lateral component of slip ranged from 3 to 5 mm. Surface slip in the 1966 and 2004 events occurred along both the San Andreas fault and the Southwest Fracture Zone. In 1966 the length of ground breakage along the San Andreas fault extended 5 km longer than that mapped in 2004. In contrast, the length of ground breakage along the Southwest Fracture Zone was the same in both events, yet the surface fractures were more continuous in 2004. Surface slip on secondary faults in 2004 indicated previously unmapped structural connections between the San Andreas fault and the Southwest Fracture Zone, further revealing aspects of the structural setting and fault interactions in the Parkfield area.

  4. Remote Sensing Detecting for Hydrocarbon Microseepage and Relationship with the Uranium Mineralization in Dongsheng Area, Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Liu, D.; Gao, Y.

    2005-12-01

    The Ordos Basin is located at the central area of northern China with an area of about 250,000 km2. It is well known "a basin of energy resources" of China for its large reserves of coal, oil and gas. A large-scale sandstone-type uranium metallogenic belt has been found recently in Zhiluo Formation of middle Jurassic in Dongsheng area in the northeastern part of the basin. The ore-forming mechanism remains unsolved so far. There is a hypothesis that the uranium precipitation was related to a hydrocarbon migration from the central basin. In order to explore the evidences of ever existed hydrocarbon microseepage and migration in this area, several indices such as the Iron Oxide Index, Ferrous Index, Clay Mineral Index, Mineral Composite Index, and Ferrous Transfer Percentage Index have been derived. Thorium Normalization of aeroradiometric data and fusion of aeroradiometric and TM data have been carried out as well. Therefore, the subaerial oxide and reduced area, uranium outmigrated and immigrated area, and ancient recharge and discharge of groundwater are thus delineated. As a result, two hydrocarbon microseepage belts in Dongsheng area have been extracted by combining the methods mentioned above. One is in the northern of Dongsheng along a nearly east-westward fault zone and the other one is in the southern of Dongsheng uranium mineralization belt along a nearly northwestward fault zone. The study suggests that the subaerial reduced area was related to hydrocarbon microseepage and the hydrocarbon migration along the fault and fracture zone or penetrable strata played an important role for uranium deposition in Zhiluo Formation near the northwestward fault zone.

  5. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  6. A new idea: The possibilities of offshore geothermal system in Indonesia marine volcanoes

    NASA Astrophysics Data System (ADS)

    Rahat Prabowo, Teguh; Fauziyyah, Fithriyani; Suryantini; Bronto, Sutikno

    2017-12-01

    High temperature geothermal systems in Indonesia are commonly associated with volcanic systems. It is believed that volcanoes are acting as the heat source for a geothermal system. Right now, most of the operating geothermal fields in the world are assosiating with volcanic settings which known as the conventional geothermal system. Volcanoes are created in active tectonic zone such as collision zone and MOR (mid oceanic ridge). The later is the one which formed the marine volcanoes on the sea floor. The advances of today’s technology in geothermal energy has created many ideas regarding a new kind of geothermal system, including the ideas of developing the utilization of marine volcanoes. These marine volcanoes are predicted to be hotter than the land system due to the shorter distance to the magma chamber. Seamounts like NEC, Banua Wuhu, and Kawio Barat in Indonesia Sea are good spots to be studied. Methods such as remote sensing using NOAA images, sonar, and MAPR are commonly used, eventhough these would be more accurate with more detailed techniques. This has become the challenge for all geothermal scientists to overcome for a better study result.

  7. Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems.

    PubMed

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip

    2015-05-01

    An adaptive neural network tracking control is studied for a class of multiple-input multiple-output (MIMO) nonlinear systems. The studied systems are in discrete-time form and the discretized dead-zone inputs are considered. In addition, the studied MIMO systems are composed of N subsystems, and each subsystem contains unknown functions and external disturbance. Due to the complicated framework of the discrete-time systems, the existence of the dead zone and the noncausal problem in discrete-time, it brings about difficulties for controlling such a class of systems. To overcome the noncausal problem, by defining the coordinate transformations, the studied systems are transformed into a special form, which is suitable for the backstepping design. The radial basis functions NNs are utilized to approximate the unknown functions of the systems. The adaptation laws and the controllers are designed based on the transformed systems. By using the Lyapunov method, it is proved that the closed-loop system is stable in the sense that the semiglobally uniformly ultimately bounded of all the signals and the tracking errors converge to a bounded compact set. The simulation examples and the comparisons with previous approaches are provided to illustrate the effectiveness of the proposed control algorithm.

  8. Assessment of metal pollution based on multivariate statistical modeling of 'hot spot' sediments from the Black Sea.

    PubMed

    Simeonov, V; Massart, D L; Andreev, G; Tsakovski, S

    2000-11-01

    The paper deals with application of different statistical methods like cluster and principal components analysis (PCA), partial least squares (PLSs) modeling. These approaches are an efficient tool in achieving better understanding about the contamination of two gulf regions in Black Sea. As objects of the study, a collection of marine sediment samples from Varna and Bourgas "hot spots" gulf areas are used. In the present case the use of cluster and PCA make it possible to separate three zones of the marine environment with different levels of pollution by interpretation of the sediment analysis (Bourgas gulf, Varna gulf and lake buffer zone). Further, the extraction of four latent factors offers a specific interpretation of the possible pollution sources and separates natural from anthropogenic factors, the latter originating from contamination by chemical, oil refinery and steel-work enterprises. Finally, the PLSs modeling gives a better opportunity in predicting contaminant concentration on tracer (or tracers) element as compared to the one-dimensional approach of the baseline models. The results of the study are important not only in local aspect as they allow quick response in finding solutions and decision making but also in broader sense as a useful environmetrical methodology.

  9. Unusual radar echoes from the Greenland ice sheet

    NASA Technical Reports Server (NTRS)

    Rignot, E. J.; Vanzyl, J. J.; Ostro, S. J.; Jezek, K. C.

    1993-01-01

    In June 1991, the NASA/Jet Propulsion Laboratory airborne synthetic-aperture radar (AIRSAR) instrument collected the first calibrated data set of multifrequency, polarimetric, radar observations of the Greenland ice sheet. At the time of the AIRSAR overflight, ground teams recorded the snow and firn (old snow) stratigraphy, grain size, density, and temperature at ice camps in three of the four snow zones identified by glaciologists to characterize four different degrees of summer melting of the Greenland ice sheet. The four snow zones are: (1) the dry-snow zone, at high elevation, where melting rarely occurs; (2) the percolation zone, where summer melting generates water that percolates down through the cold, porous, dry snow and then refreezes in place to form massive layers and pipes of solid ice; (3) the soaked-snow zone where melting saturates the snow with liquid water and forms standing lakes; and (4) the ablation zone, at the lowest elevations, where melting is vigorous enough to remove the seasonal snow cover and ablate the glacier ice. There is interest in mapping the spatial extent and temporal variability of these different snow zones repeatedly by using remote sensing techniques. The objectives of the 1991 experiment were to study changes in radar scattering properties across the different melting zones of the Greenland ice sheet, and relate the radar properties of the ice sheet to the snow and firn physical properties via relevant scattering mechanisms. Here, we present an analysis of the unusual radar echoes measured from the percolation zone.

  10. Monitoring structural breaks in vegetation dynamics of the nature reserve Königsbrücker Heide

    NASA Astrophysics Data System (ADS)

    Wessollek, Christine; Karrasch, Pierre

    2017-10-01

    Nowadays remote sensing is a well-established method and technique of providing data. The current development shows the availability of systems with very high geometric resolution for the monitoring of vegetation. At the same time, however, the value of temporally high-resolution data is underestimated, particularly in applications focusing on the detection of short-term changes. These can be natural processes like natural disasters as well as changes caused by anthropogenic interventions. These include economic activities such as forestry, agriculture or mining but also processes which are intended to convert previously used areas into natural or near-natural surfaces. The K¨onigsbr¨ucker Heide is a former military training site located about 30 km north of the Saxon state capitol Dresden. After the withdrawal of the Soviet forces in 1992 and after nearly 100 years of military use this site was declared as nature reserve in 1996. The management of the whole protection area is implemented in three different management zone. Based on MODIS-NDVI time series between 2000 and 2016 different developments are apparent in the nature development zone and the zone of controlled succession. Nevertheless, the analyses also show that short-term changes, so called breaks in the vegetation development cannot be described using linear trend models. The complete understanding of vegetation trends is only given if discontinuities in vegetation development are considered. Structural breaks in the NDVI time series can be found simultaneously in the whole study area. Hence it can be assumed that these breaks have a more natural character, caused for example by climatic conditions like temperature or precipitation. Otherwise, especially in the zone of controlled succession structural breaks can be detected which cannot be traced back to natural conditions. Final analyses of the spatial distribution of breakpoints as well as their frequency depending on the respective protection zone allow a detailed view to vegetation development in the K¨onigsbr¨ucker Heide.

  11. A Method to Access Absolute fIPAR fo Vegetation in Spatially Complex Ecosystems

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Nel, Elizabeth M.; Bateson, C. Ann; Asner, Gregory P.

    1998-01-01

    Arid and semi-arid lands compose a large fraction of the earth's terrestrial vegetation, and thereby contribute significantly to global atmospheric-biospheric interactions. The thorny shrubs and small trees in these semi-arid shrub lands have counterparts throughout much of the world's tropical and subtropical zones and have captured substantial areas of the world's former grasslands. The objective of our field and remotely sensed measurements in the semi-arid shrublands of Texas is to monitor interannual variability and directional change in landscape structure, ecosystem processes and atmosphere-biosphere exchanges. To understand the role ecosystems play in controlling the composition of the atmosphere, it is necessary to quantify processes such as photosynthesis and primary production, decomposition and soil carbon storage, and trace gas exchanges. Photosynthesis is the link whereby surface-atmosphere exchanges such as the radiation balance and exchange of heat, moisture, and gas can be inferred. It also describes the efficiency of carbon dioxide exchange and is directly related to the primary production of vegetation. Our efforts in this paper focus on the indirect, quantification of photosynthesis, and thereby carbon flux and net primary production, via remote sensing and direct measurements of intercepted photosynthetically active radiation (IPAR).

  12. Coupling Analysis of Heat Island Effects, Vegetation Coverage and Urban Flood in Wuhan

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, Q.; Fan, W.; Wang, G.

    2018-04-01

    In this paper, satellite image, remote sensing technique and geographic information system technique are main technical bases. Spectral and other factors comprehensive analysis and visual interpretation are main methods. We use GF-1 and Landsat8 remote sensing satellite image of Wuhan as data source, and from which we extract vegetation distribution, urban heat island relative intensity distribution map and urban flood submergence range. Based on the extracted information, through spatial analysis and regression analysis, we find correlations among heat island effect, vegetation coverage and urban flood. The results show that there is a high degree of overlap between of urban heat island and urban flood. The area of urban heat island has buildings with little vegetation cover, which may be one of the reasons for the local heavy rainstorms. Furthermore, the urban heat island has a negative correlation with vegetation coverage, and the heat island effect can be alleviated by the vegetation to a certain extent. So it is easy to understand that the new industrial zones and commercial areas which under constructions distribute in the city, these land surfaces becoming bare or have low vegetation coverage, can form new heat islands easily.

  13. Coastal wetlands: The present and future role of remote sensing

    NASA Technical Reports Server (NTRS)

    Carter, V.

    1977-01-01

    During the past decade, there has been a rapid expansion of remote sensing research and technology development related to coastal wetlands. As a result of this research, all of the 23 coastal states have ongoing or completed wetland inventories, most utilizing aerial photographs as the data source for producing a variety of map products with varying scales, formats, classification systems and intended uses. The U.S. Geological Survey is increasing emphasis on map production and revision for the coastal zone. The new U.S. Fish and Wildlife Service National Wetland Inventory is intended to provide a standardized method for comparison of wetlands on a national basis - it too will use available aerial photographs as a basic data source. At present, satellite data is not used for operational mapping of coastal wetlands because of resolution and geometric constraints. In the future, however, satellite data may provide an accurate reliable and economical source to update wetland inventories and to monitor or evaluate coastal wetlands. The technological improvements accompanying the development and launch of Landsat C and D and the space shuttle promise to make satellite digital data a more powerful tool to supply information for future management decisions for coastal wetlands.

  14. Evidence for post-1620 Ma Proterozoic regional deformation, Lucy Gray Range, southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duebendorfer, E.M.; Christensen, C.H.; Shafiqullah, M.

    1993-04-01

    Major mylonite zones in the northern Lucy Gray Range, Nevada, deform and are spatially associated with the 1,425 Ma Beer Bottle Pass pluton, Mylonitic granite yielded a K-Ar biotite date of 1,400 [+-] 30 Ma and is overlain nonconformably by the Cambrian Tapeats Sandstone, thus constraining deformation to the Proterozoic. The mylonites may therefore represent an unrecognized period of Proterozoic deformation in the Southwest. Field and microstructural studies were undertaken to evaluate between 3 possible models for the apparent spatial association of granite and mylonites: (1) deformation directly related to pluton emplacement (ballooning); (2) synkinematic pluton emplacement; or (3) post-emplacementmore » deformation. Mylonite zones up to 50 meters thick strike north to northeast, dip moderately to steeply northwest, and contain a remarkably consistent west-plunging mineral lineation. Mylonites are present locally at the granite-wall rock contact; however, less than 30% of the exposed contact is mylonitic. The authors reject a pluton-emplacement origin for the mylonites because (1) mylonite zones within wall rocks locally strike at high angles to an undeformed pluton-wall rock contact, (2) the consistent (pluton-side-down) shear sense is more compatible with a uniform-sense simple shear zone than a ballooning pluton, (3) plane strain fabrics dominate over flattening fabrics, and (4) mylonites adjacent to pluton contacts lack annealing textures predicted by the ballooning model. If so, the conventional interpretation of 1,400 Ga granitoids as anorogenic may need to be re-evaluated. The authors cannot, however, rule out the possibility that the mylonites completely postdate intrusion of the Beer Bottle Pass pluton. Future work is planned to delimit the regional extent of this previously unrecognized Proterozoic deformational event.« less

  15. UAV Deployed Sensor System for Arctic Ocean Remote Sensing

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Lawrence, D.; Weibel, D.; LoDolce, G.; Krist, S.; Crocker, I.; Maslanik, J. A.

    2012-12-01

    The Marginal Ice Zone Observations and Processes Experiment (MIZOPEX), is an Arctic field project scheduled for summer 2013. The goals of the project are to understand how warming of the marginal ice zone affects sea ice melt and if this warming has been over or underestimated by satellite measurements. To achieve these goals calibrated physical measurements, both remote and in-situ, of the marginal ice zone over scales of square kilometers with a resolution of square meters is required. This will be accomplished with a suite of unmanned aerial vehicles (UAVs) equipped with both remote sensing and in-situ instruments, air deployed microbuoys, and ship deployed buoys. In this talk we will present details about the air-deployed micro-buoy (ADMB) and self-deployed surface-sonde (SDSS) components of the MIZOPEX project, developed at the University of Colorado. These systems were designed to explore the potential of low-cost, on-demand access to high-latitude areas of important scientific interest. Both the ADMB and SDSS share a common measurement suite with the capability to measure water temperature at three distinct depths and provide position information via GPS. The ADMBs are dropped from the InSitu ScanEagle UAV and expected to operate and log ocean temperatures for 14 days. The SDSS are micro UAVs that are designed to fly one-way to a region of interest and land at specified coordinates, thereafter becoming a surface sensor similar to the ADMB. A ScanEagle will periodically return to the deployment zone to gather ADMB/SDSS data via low power radio links. Design decisions based upon operational constraints and the current status of the ADMB and SDSS will be presented.

  16. A Wrench fault system and nappe emplacement in Southern Kenya and Northern Tanzania.- A key area for Pan-African continental collision in East Africa?

    NASA Astrophysics Data System (ADS)

    Bauernhofer, A.; Wallbrecher, E.; Hauzenberger, C.; Fritz, H.; Loizenbauer, J.; Hoinkes, G.; Muhongo, S.; Mathu, E.

    2003-04-01

    In the Voi Area of Southern Kenya, the granulite facies rocks of the Taita Hills and the Tsavo East National Park (Galana River) can be divided into three structural domains: The Galana-East unit consists of an intercalation of flat lying metapelites and marbles of continental margin origin. These metasediments can be traced further east to the Umba Steppe (Between Mombasa and Tanga). Galana-West consists of a N-S oriented wrench fault zone with vertical foliation planes and horizontal stretching lineation. Numerous shear sense indicators always show sinistral shear sense. Amphibolites of MORB affinity are involved in this wrench fault zone. To the west, this zone is bordered by calc-alkaline metatonalites of the Sagala Hills. The westernmost unit consists of the Taita Hills. They form an imbricated pile of southwestward thrusted nappe sheets containing metapelites, marbles, and ultramafics. The Taita Hills may be explained as part of an accretionary wedge. Southwestward nappe thrusting is also the prominent structure in the Pare and Usambara Mountains of Northern Tanzania. The following model may may explain these observations: The Southern Kenya -- Northern Tanzania section of the Mozambique Belt is the result of continental collision tectonics. Remnants of an island arc and of an accretionary wedge that occur at least in the Voi area may be part of a former subduction zone. An oceanic domain between an eastern passive continental margin and a western terrane, now represented by the Tanzanian granulite belt has been closed incorporating island arc and accretionary wedge material. Oblique convergence of two continental blocks is suggested from wrench tectonics. The age of convergent tectonics is 530 -- 580 Ma, dated by Sm-Nd garnet-whole rock analysis. This is interpreted as the age of peak metamorphism.

  17. Holocene earthquakes and right-lateral slip on the left-lateral Darrington-Devils Mountain fault zone, northern Puget Sound, Washington

    USGS Publications Warehouse

    Personius, Stephen F.; Briggs, Richard W.; Nelson, Alan R.; Schermer, Elizabeth R; Maharrey, J. Zebulon; Sherrod, Brian; Spaulding, Sarah A.; Bradley, Lee-Ann

    2014-01-01

    Sources of seismic hazard in the Puget Sound region of northwestern Washington include deep earthquakes associated with the Cascadia subduction zone, and shallow earthquakes associated with some of the numerous crustal (upper-plate) faults that crisscross the region. Our paleoseismic investigations on one of the more prominent crustal faults, the Darrington–Devils Mountain fault zone, included trenching of fault scarps developed on latest Pleistocene glacial sediments and analysis of cores from an adjacent wetland near Lake Creek, 14 km southeast of Mount Vernon, Washington. Trench excavations revealed evidence of a single earthquake, radiocarbon dated to ca. 2 ka, but extensive burrowing and root mixing of sediments within 50–100 cm of the ground surface may have destroyed evidence of other earthquakes. Cores in a small wetland adjacent to our trench site provided stratigraphic evidence (formation of a laterally extensive, prograding wedge of hillslope colluvium) of an earthquake ca. 2 ka, which we interpret to be the same earthquake documented in the trenches. A similar colluvial wedge lower in the wetland section provides possible evidence for a second earthquake dated to ca. 8 ka. Three-dimensional trenching techniques revealed evidence for 2.2 ± 1.1 m of right-lateral offset of a glacial outwash channel margin, and 45–70 cm of north-side-up vertical separation across the fault zone. These offsets indicate a net slip vector of 2.3 ± 1.1 m, plunging 14° west on a 286°-striking, 90°-dipping fault plane. The dominant right-lateral sense of slip is supported by the presence of numerous Riedel R shears preserved in two of our trenches, and probable right-lateral offset of a distinctive bedrock fault zone in a third trench. Holocene north-side-up, right-lateral oblique slip is opposite the south-side-up, left-lateral oblique sense of slip inferred from geologic mapping of Eocene and older rocks along the fault zone. The cause of this slip reversal is unknown but may be related to clockwise rotation of the Darrington–Devils Mountain fault zone into a position more favorable to right-lateral slip in the modern N-S compressional stress field.

  18. Soil Water Sensing-Focus on Variable Rate Irrigation

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling using soil water sensors is an exercise in maintaining the water content of the crop root zone soil above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation. The management allow...

  19. Comparative Sensor Fusion between Hyperspectral and Multispectral Remote Sensing Data for Monitoring Microcystin Distribution in Lake Erie

    EPA Science Inventory

    Urban growth and agricultural production have caused an influx of nutrients into Lake Erie, leading to eutrophic zones. These conditions result in the formation of algal blooms, some of which are toxic due to the presence of Microcystis (a cyanobacteria), which produces the hepat...

  20. Identification of erosional and inundation hazard zones in Ken-Betwa river linking area, India, using remote sensing and GIS.

    PubMed

    Avtar, Ram; Singh, Chander Kumar; Shashtri, Satayanarayan; Mukherjee, Saumitra

    2011-11-01

    Ken-Betwa river link is one of the pilot projects of the Inter Linking of Rivers program of Government of India in Bundelkhand Region. It will connect the Ken and Betwa rivers through a system of dams, reservoirs, and canals to provide storage for excess rainfall during the monsoon season and avoid floods. The main objective of this study is to identify erosional and inundation prone zones of Ken-Betwa river linking site in India using remote sensing and geographic information system tools. In this study, Landsat Thematic Mapper data of year 2005, digital elevation model from the Shuttle Radar Topographic Mission, and other ancillary data were analyzed to create various thematic maps viz. geomorphology, land use/land cover, NDVI, geology, soil, drainage density, elevation, slope, and rainfall. The integrated thematic maps were used for hazard zonation. This is based on categorizing the different hydrological and geomorphological processes influencing the inundation and erosion intensity. Result shows that the southern part of the study area which lies in Panna district of Madhya Pradesh, India, is more vulnerable than the other areas.

  1. Developing hydrological model for water quality in Iraq marshes zone using Landsat-TM

    NASA Astrophysics Data System (ADS)

    Marghany, Maged; Hasab, Hashim Ali; Mansor, Shattri; Shariff, Abdul Rashid Bin Mohamed

    2016-06-01

    The Mesopotamia marshlands constitute the largest wetland ecosystem in the Middle East and Western Eurasia. These wetlands are located at the confluence of the Tigris and Euphrates Rivers in southern Iraq. However, there are series reductions in the wetland zones because of neighbor countries, i.e. Turkey, Syria built dams upstream of Tigris and Euphrates Rivers. In addition, the first Gulf war of the 1980s had damaged majority of the marches resources. In fact,the marshes had been reduced in size to less than 7% since 1973 and had deteriorated in water quality parameters. The study integrates Hydrological Model of RMA-2 with Geographic Information System, and remote sensing techniques to map the water quality in the marshlands south of Iraq. This study shows that RMA-2 shows the two dimensional water flow pattern and water quality quantities in the marshlands. It can be said that the integration between Hydrological Model of RMA-2, Geographic Information System, and remote sensing techniques can be used to monitor water quality in the marshlands south of Iraq.

  2. Mechanical versus kinematical shortening reconstructions of the Zagros High Folded Zone (Kurdistan region of Iraq)

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Reif, Daniel; Grasemann, Bernhard

    2012-06-01

    This paper compares kinematical and mechanical techniques for the palinspastic reconstruction of folded cross sections in collision orogens. The studied area and the reconstructed NE-SW trending, 55.5 km long cross section is located in the High Folded Zone of the Zagros fold-and-thrust belt in the Kurdistan region of Iraq. The present-day geometry of the cross section has been constructed from field as well as remote sensing data. In a first step, the structures and the stratigraphy are simplified and summarized in eight units trying to identify the main geometric and mechanical parameters. In a second step, the shortening is kinematically estimated using the dip domain method to 11%-15%. Then the same cross section is used in a numerical finite element model to perform dynamical unfolding simulations taking various rheological parameters into account. The main factor allowing for an efficient dynamic unfolding is the presence of interfacial slip conditions between the mechanically strong units. Other factors, such as Newtonian versus power law viscous rheology or the presence of a basement, affect the numerical simulations much less strongly. If interfacial slip is accounted for, fold amplitudes are reduced efficiently during the dynamical unfolding simulations, while welded layer interfaces lead to unrealistic shortening estimates. It is suggested that interfacial slip and decoupling of the deformation along detachment horizons is an important mechanical parameter that controlled the folding processes in the Zagros High Folded Zone.

  3. Mechanical versus kinematical shortening reconstructions of the Zagros High Folded Zone (Kurdistan Region of Iraq)

    NASA Astrophysics Data System (ADS)

    Frehner, M.; Reif, D.; Grasemann, B.

    2012-04-01

    Our study compares kinematical and mechanical techniques for the palinspastic reconstruction of folded cross-sections in collision orogens. The studied area and the reconstructed NE-SW-trending, 55.5 km long cross-section is located in the High Folded Zone of the Zagros fold-and-thrust belt in the Kurdistan Region of Iraq. The present-day geometry of the cross-section has been constructed from field, as well as remote sensing data. In a first step, the structures and the stratigraphy are simplified and summarized in eight units trying to identify the main geometric and mechanical parameters. In a second step, the shortening is kinematically estimated using the dip-domain method to 11%-15%. Then the same cross-section is used in a numerical finite-element model to perform dynamical unfolding simulations taking various rheological parameters into account. The main factor allowing for an efficient dynamic unfolding is the presence of interfacial slip conditions between the mechanically strong units. Other factors, such as Newtonian vs. power-law viscous rheology or the presence of a basement affect the numerical simulations much less strongly. If interfacial slip is accounted for, fold amplitudes are reduced efficiently during the dynamical unfolding simulations, while welded layer interfaces lead to unrealistic shortening estimates. It is suggested that interfacial slip and decoupling of the deformation along detachment horizons is an important mechanical parameter that controlled the folding processes in the Zagros High Folded Zone.

  4. Primary analysis of the ocean color remote sensing data of the HY-1B/COCTS

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Bai, Yan; Pan, Delu; Zhu, Qiankun; Gong, Fang

    2009-01-01

    China had successfully launched her second ocean color satellite HY-1B on 11 Apr., 2007, which was the successor of the HY-1A satellite launched on 15 May, 2002. There were two sensors onboard HY-1B, named the Chinese Ocean Color and Temperature Scanner (COCTS) and the Coastal Zone Imager (CZI) respectively, and COCTS was the main sensor. COCTS had not only eight visible and near-infrared wave bands similar to the SeaWiFS, but also two more thermal infrared wave bands to measure the sea surface temperature. Therefore, COCTS had broad application potentiality, such as fishery resource protection and development, coastal monitoring and management and marine pollution monitoring. In this paper, the main characteristics of COCTS were described firstly. Then, using the crosscalibration method, the vicarious calibration of COCTS was carried out by the synchronous remote sensing data of SeaWiFS, and the results showed that COCTS had well linear responses for the visible light bands with the correlation coefficients more than 0.98, however, the performances of the near infrared wavelength bands were not good as visible light bands. Using the vicarious calibration result, the operational atmospheric correction (AC) algorithm of COCTS was developed based on the exact Rayleigh scattering look-up table (LUT), aerosol scattering LUT and atmosphere diffuse transmission LUT generated by the coupled ocean-atmospheric vector radiative transfer numerical model named PCOART. The AC algorithm had been validated by the simulated radiance data at the top-of-atmosphere, and the results showed the errors of the water-leaving reflectance retrieved by the AC algorithm were less than 0.0005, which met the requirement of the exactly atmospheric correction of ocean color remote sensing. Finally, the AC algorithm was applied to the HY-1B/COCTS remote sensing data, and the corresponding ocean color remote sensing products have been generated.

  5. Investigation of Arctic mixed-phase clouds by combining airborne remote sensing and in situ observations during VERDI, RACEPAC and ACLOUD

    NASA Astrophysics Data System (ADS)

    Ehrlich, André; Bierwirth, Eike; Borrmann, Stephan; Crewell, Susanne; Herber, Andreas; Hoor, Peter; Jourdan, Olivier; Krämer, Martina; Lüpkes, Christof; Mertes, Stephan; Neuber, Roland; Petzold, Andreas; Schnaiter, Martin; Schneider, Johannes; Weigel, Ralf; Weinzierl, Bernadett; Wendisch, Manfred

    2016-04-01

    To improve our understanding of Arctic mixed-phase clouds a series of airborne research campaigns has been initiated by a collaboration of German research institutes. Clouds in areas dominated by a close sea-ice cover were observed during the research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) and the Radiation-Aerosol-Cloud Experiment in the Arctic Circle (RACEPAC, April/May 2014) which both were based in Inuvik, Canada. The aircraft (Polar 5 & 6, Basler BT-67) operated by the Alfred Wegener Institute for Polar and Marine Research, Germany did cover a wide area above the Canadian Beaufort with in total 149 flight hours (62h during VERDI, 87h during RACEPAC). For May/June 2017 a third campaign ACLOUD (Arctic Clouds - Characterization of Ice, aerosol Particles and Energy fluxes) with base in Svalbard is planned within the Transregional Collaborative Research Centre TR 172 ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3 to investigate Arctic clouds in the transition zone between open ocean and sea ice. The aim of all campaigns is to combine remote sensing and in-situ cloud, aerosol and trace gas measurements to investigate interactions between radiation, cloud and aerosol particles. While during VERDI remote sensing and in-situ measurements were performed by one aircraft subsequently, for RACEPAC and ACLOUD two identical aircraft are coordinated at different altitudes to horizontally collocate both remote sensing and in-situ measurements. The campaign showed that in this way radiative and microphysical processes in the clouds can by studied more reliably and remote sensing methods can be validated efficiently. Here we will illustrate the scientific strategy of the projects including the progress in instrumentation. Differences in the general synoptic and sea ice situation and related changes in cloud properties at the different locations and seasons will be addressed to illustrate the broad spectrum of the observations. Exemplary results will be highlighted.

  6. 3D sensitivity encoded ellipsoidal MR spectroscopic imaging of gliomas at 3T☆

    PubMed Central

    Ozturk-Isik, Esin; Chen, Albert P.; Crane, Jason C.; Bian, Wei; Xu, Duan; Han, Eric T.; Chang, Susan M.; Vigneron, Daniel B.; Nelson, Sarah J.

    2010-01-01

    Purpose The goal of this study was to implement time efficient data acquisition and reconstruction methods for 3D magnetic resonance spectroscopic imaging (MRSI) of gliomas at a field strength of 3T using parallel imaging techniques. Methods The point spread functions, signal to noise ratio (SNR), spatial resolution, metabolite intensity distributions and Cho:NAA ratio of 3D ellipsoidal, 3D sensitivity encoding (SENSE) and 3D combined ellipsoidal and SENSE (e-SENSE) k-space sampling schemes were compared with conventional k-space data acquisition methods. Results The 3D SENSE and e-SENSE methods resulted in similar spectral patterns as the conventional MRSI methods. The Cho:NAA ratios were highly correlated (P<.05 for SENSE and P<.001 for e-SENSE) with the ellipsoidal method and all methods exhibited significantly different spectral patterns in tumor regions compared to normal appearing white matter. The geometry factors ranged between 1.2 and 1.3 for both the SENSE and e-SENSE spectra. When corrected for these factors and for differences in data acquisition times, the empirical SNRs were similar to values expected based upon theoretical grounds. The effective spatial resolution of the SENSE spectra was estimated to be same as the corresponding fully sampled k-space data, while the spectra acquired with ellipsoidal and e-SENSE k-space samplings were estimated to have a 2.36–2.47-fold loss in spatial resolution due to the differences in their point spread functions. Conclusion The 3D SENSE method retained the same spatial resolution as full k-space sampling but with a 4-fold reduction in scan time and an acquisition time of 9.28 min. The 3D e-SENSE method had a similar spatial resolution as the corresponding ellipsoidal sampling with a scan time of 4:36 min. Both parallel imaging methods provided clinically interpretable spectra with volumetric coverage and adequate SNR for evaluating Cho, Cr and NAA. PMID:19766422

  7. Surface patterning of multilayer graphene by ultraviolet laser irradiation in biomolecule sensing devices

    NASA Astrophysics Data System (ADS)

    Chang, Tien-Li; Chen, Zhao-Chi

    2015-12-01

    The study presents a direct process for surface patterning of multilayer graphene on the glass substrate as a biosensing device. In contrast to lithography with etching, the proposed process provides simultaneous surface patterning of multilayer graphene through nanosecond laser irradiation. In this study, the multilayer graphene was prepared by a screen printing process. Additionally, the wavelength of the laser beam was 355 nm. To perform the effective laser process with the small heat affected zone, the surface patterns on the sensing devices could be directly fabricated using the laser with optimal control of the pulse overlap at a fluence threshold of 0.63 J/cm2. The unique patterning of the laser-ablated surface exhibits their electrical and hydrophilic characteristics. The hydrophilic surface of graphene-based sensing devices was achieved in the process with the pulse overlap of 90%. Furthermore, the sensing devices for controlling the electrical response of glucose by using glucose oxidase can be used in sensors in commercial medical applications.

  8. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept.

    PubMed

    Xu, Junkai; Bao, Tian; Lee, Ung Hee; Kinnaird, Catherine; Carender, Wendy; Huang, Yangjian; Sienko, Kathleen H; Shull, Peter B

    2017-10-11

    Postural balance and gait training is important for treating persons with functional impairments, however current systems are generally not portable and are unable to train different types of movements. This paper describes a proof-of-concept design of a configurable, wearable sensing and feedback system for real-time postural balance and gait training targeted for home-based treatments and other portable usage. Sensing and vibrotactile feedback are performed via eight distributed, wireless nodes or "Dots" (size: 22.5 × 20.5 × 15.0 mm, weight: 12.0 g) that can each be configured for sensing and/or feedback according to movement training requirements. In the first experiment, four healthy older adults were trained to reduce medial-lateral (M/L) trunk tilt while performing balance exercises. When trunk tilt deviated too far from vertical (estimated via a sensing Dot on the lower spine), vibrotactile feedback (via feedback Dots placed on the left and right sides of the lower torso) cued participants to move away from the vibration and back toward the vertical no feedback zone to correct their posture. A second experiment was conducted with the same wearable system to train six healthy older adults to alter their foot progression angle in real-time by internally or externally rotating their feet while walking. Foot progression angle was estimated via a sensing Dot adhered to the dorsal side of the foot, and vibrotactile feedback was provided via feedback Dots placed on the medial and lateral sides of the mid-shank cued participants to internally or externally rotate their foot away from vibration. In the first experiment, the wearable system enabled participants to significantly reduce trunk tilt and increase the amount of time inside the no feedback zone. In the second experiment, all participants were able to adopt new gait patterns of internal and external foot rotation within two minutes of real-time training with the wearable system. These results suggest that the configurable, wearable sensing and feedback system is portable and effective for different types of real-time human movement training and thus may be suitable for home-based or clinic-based rehabilitation applications.

  9. Characterization of a high-transmissivity zone by well test analysis: Steady state case

    USGS Publications Warehouse

    Tiedeman, Claire; Hsieh, Paul A.; Christian, Sarah B.

    1995-01-01

    A method is developed to analyze steady horizontal flow to a well pumped from a confined aquifer composed of two homogeneous zones with contrasting transmissivities. Zone 1 is laterally unbounded and encloses zone 2, which is elliptical in shape and is several orders of magnitude more transmissive than zone 1. The solution for head is obtained by the boundary integral equation method. Nonlinear least squares regression is used to estimate the model parameters, which include the transmissivity of zone 1, and the location, size, and orientation of zone 2. The method is applied to a hypothetical aquifer where zone 2 is a long and narrow zone of vertical fractures. Synthetic data are generated from three different well patterns, representing different areal coverage and proximity to the fracture zone. When zone 1 of the hypothetical aquifer is homogeneous, the method correctly estimates all model parameters. When zone 1 is a randomly heterogeneous transmissivity field, some parameter estimates, especially the length of zone 2, become highly uncertain. To reduce uncertainty, the pumped well should be close to the fracture zone, and surrounding observation wells should cover an area similar in dimension to the length of the fracture zone. Some prior knowledge of the fracture zone, such as that gained from a surface geophysical survey, would greatly aid in designing the well test.

  10. Learning Methods of Remote Sensing In the 2013 Curriculum of Secondary School

    NASA Astrophysics Data System (ADS)

    Lili Somantri, Nandi

    2016-11-01

    The new remote sensing material included in the subjects of geography in the curriculum of 1994. For geography teachers generation of 90s and over who in college do not get the material remote sensing, for teaching is a tough matter. Most teachers only give a theoretical matter, and do not carry out practical reasons in the lack of facilities and infrastructure of computer laboratories. Therefore, in this paper studies the importance about the method or manner of teaching remote sensing material in schools. The purpose of this paper is 1) to explain the position of remote sensing material in the study of geography, 2) analyze the Geography Curriculum 2013 Subjects related to remote sensing material, 3) describes a method of teaching remote sensing material in schools. The method used in this paper is a descriptive analytical study supported by the literature. The conclusion of this paper that the position of remote sensing in the study of geography is a method or a way to obtain spatial data earth's surface. In the 2013 curriculum remote sensing material has been applied to the study of land use and transportation. Remote sensing methods of teaching must go through a practicum, which starts from the introduction of the theory of remote sensing, data extraction phase of remote sensing imagery to produce maps, both visually and digitally, field surveys, interpretation of test accuracy, and improved maps.

  11. Conservation of the plastid sedimentation zone in all moss genera with known gravitropic protonemata

    NASA Technical Reports Server (NTRS)

    Schwuchow, J. M.; Kern, V. D.; White, N. J.; Sack, F. D.

    2002-01-01

    Moss protonemata from several species are known to be gravitropic. The characterization of additional gravitropic species would be valuable to identify conserved traits that may relate to the mechanism of gravitropism. In this study, four new species were found to have gravitropic protonemata, Fissidens adianthoides, Fissidens cristatus, Physcomitrium pyriforme, and Barbula unguiculata. Comparison of upright and inverted apical cells of P. pyriforme and Fissidens species showed clear axial sedimentation. This sedimentation is highly regulated and not solely dependent on amyloplast size. Additionally, the protonemal tip cells of these species contained broad subapical zones that displayed lateral amyloplast sedimentation. The conservation of a zone of lateral sedimentation in a total of nine gravitropic moss species from five different orders supports the idea that this sedimentation serves a specialized and conserved function in gravitropism, probably in gravity sensing.

  12. Geo-environmental zoning using physiographic compartmentalization: a proposal for supporting sustainable decision-making.

    PubMed

    Corrêa, Claudia V S; Reis, Fábio A G V; Giordano, Lucilia C; Bressane, Adriano; Chaves, Camila J; Amaral, Ana Maria C DO; Brito, Hermes D; Medeiros, Gerson A DE

    2017-01-01

    The geo-environmental zoning represents an important strategy in the territorial management. However, it requires a logical and structured procedure. Therefore, an approach using physiographic compartmentalization is proposed and applied as case study in a region covered by the topographic maps of São José dos Campos and Jacareí, Brazil. This region has great geological and geomorphological peculiarities, beyond being a place with large human interventions because of its quickly economic growth. The methodology is based on photointerpretation techniques and remote sensing in GIS environment. As a result, seven geo-environmental zones were obtained from a weighted integration by multicriteria analysis of physiographic units with land-use classes. In conclusion, taking into account potentialities and limitations, the proposed approach can be considered able to support sustainable decision-making, being applicable in other regions.

  13. Mapping of chlorophyll a distributions in coastal zones

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1978-01-01

    It is pointed out that chlorophyll a is an important environmental parameter for monitoring water quality, nutrient loads, and pollution effects in coastal zones. High chlorophyll a concentrations occur in areas which have high nutrient inflows from sources such as sewage treatment plants and industrial wastes. Low chlorophyll a concentrations may be due to the addition of toxic substances from industrial wastes or other sources. Remote sensing provides an opportunity to assess distributions of water quality parameters, such as chlorophyll a. A description is presented of the chlorophyll a analysis and a quantitative mapping of the James River, Virginia. An approach considered by Johnson (1977) was used in the analysis. An application of the multiple regression analysis technique to a data set collected over the New York Bight, an environmentally different area of the coastal zone, is also discussed.

  14. Implications of SHRIMP and microstructural data on the age and kinematics of shearing in the Asir terrane, southern Arabian Shield, Saudi Arabia

    USGS Publications Warehouse

    Johnson, P.R.; Kattan, F.H.; Wooden, J.L.

    2001-01-01

    The Asir terrane consists of north-trending belts of variably metamorphosed volcanic, sedimentary, and plutonic rocks that are cut by numerous shear zones (Fig. 1). Previous workers interpreted the shear zones as sutures, structures that modify earlier sutures, or structures that define the margins of tectonic belts across which there are significant lithologic differences and along which there may have been major transposition (Frisch and Al-Shanti, 1977; Greenwood et al., 1982; Brown et al., 1989). SHRIMP data from zircons (Table 1) and sense-of-shear data recently acquired from selected shear zones in the terrane help to constrain the minimum ages and kinematics of these shearing events and lead to an overall model of terrane assembly that is more complex than previously proposed. 

  15. Integrating remote sensing and spatially explicit epidemiological modeling

    NASA Astrophysics Data System (ADS)

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rinaldo, Andrea

    2015-04-01

    Spatially explicit epidemiological models are a crucial tool for the prediction of epidemiological patterns in time and space as well as for the allocation of health care resources. In addition they can provide valuable information about epidemiological processes and allow for the identification of environmental drivers of the disease spread. Most epidemiological models rely on environmental data as inputs. They can either be measured in the field by the means of conventional instruments or using remote sensing techniques to measure suitable proxies of the variables of interest. The later benefit from several advantages over conventional methods, including data availability, which can be an issue especially in developing, and spatial as well as temporal resolution of the data, which is particularly crucial for spatially explicit models. Here we present the case study of a spatially explicit, semi-mechanistic model applied to recurring cholera outbreaks in the Lake Kivu area (Democratic Republic of the Congo). The model describes the cholera incidence in eight health zones on the shore of the lake. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers. Human mobility and its effect on the disease spread is also taken into account. Several model configurations are tested on a data set of reported cases. The best models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via cross validation. The best performing model accounts for seasonality, El Niño Southern Oscillation, precipitation and human mobility.

  16. 1982 International Geoscience and Remote Sensing Symposium, Munich, West Germany, June 1-4, 1982, Digest. Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Theoretical and experimental data which have defined and/or extended the effectiveness of remote sensing operations are explored, with consideration given to both scientific and commercial activities. The remote sensing of soil moisture, the sea surface, and oil slicks is discussed, as are programs using satellites for studying geodynamics and geodesy, currents and waves, and coastal zones. NASA, Canadian, and Japanese radar and microwave passive and active systems are described, together with algorithms and techniques for image processing and classification. The SAR-580 project is outlined, and attention is devoted to satellite applications in investigations of the structure of the atmosphere, agriculturemore » and land use, and geology. Design and performance features of various optical scanner, radar, and multispectral data processing systems and procedures are detailed.« less

  17. Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.

    2017-12-01

    In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.

  18. Monitoring CO2 Intrusion in shallow aquifer using complex electrical methods and a novel CO2 sensitive Lidar-based sensor

    NASA Astrophysics Data System (ADS)

    Leger, E.; Dafflon, B.; Thorpe, M.; Kreitinger, A.; Laura, D.; Haivala, J.; Peterson, J.; Spangler, L.; Hubbard, S. S.

    2016-12-01

    While subsurface storage of CO2 in geological formations offers significant potential to mitigate atmospheric greenhouse gasses, approaches are needed to monitor the efficacy of the strategy as well as possible negative consequences, such as leakage of CO2 or brine into groundwater or release of fugitive gaseous CO2. Groundwater leakages can cause subsequent reactions that may also be deleterious. For example, a release of dissolved CO2 into shallow groundwatersystems can decrease groundwater pH which can potentiallymobilize naturally occurring trace metals and ions. In this perspective, detecting and assessing potential leak requires development of novel monitoring techniques.We present the results of using surface electrical resistivity tomography (ERT) and a novel CO2 sensitive Lidar-based sensor to monitor a controlled CO2 release at the ZeroEmission Research and Technology Center (Bozeman, Montana). Soil temperature and moisture sensors, wellbore water quality measurements as well as chamber-based CO2 flux measurements were used in addition to the ERT and a novel Lidar-based sensor to detect and assess potential leakage into groundwater, vadose zone and atmosphere. The three-week release wascarried out in the vadose and the saturated zones. Well sampling of pH and conductivity and surface CO2 fluxes and concentrations measurements were acquired during the release and are compared with complex electricalresistivity time-lapse measurements. The novel Lidar-based image of the CO2 plume were compared to chamber-based CO2 flux and concentration measurements. While a continuous increase in subsurface ERT and above ground CO2 was documented, joint analysis of the above and below ground data revealed distinct transport behavior in the vadose and saturated zones. Two type of transport were observed, one in the vadoze zone, monitored by CO2 flux chamber and ERT, and the other one in the saturated zone, were ERT and wellsampling were carried. The experiment suggests how a range of geophysical, remote sensing, hydrological and geochemical measurement approaches can be optimally configured to detect the distribution and explore behavior of possible CO2 leakages in distinct compartments, including groundwater, vadose zone, and atmosphere.

  19. HydroCube mission concept: P-Band signals of opportunity for remote sensing of snow and root zone soil moisture

    NASA Astrophysics Data System (ADS)

    Yueh, Simon; Shah, Rashmi; Xu, Xiaolan; Elder, Kelly; Chae, Chun Sik; Margulis, Steve; Liston, Glen; Durand, Michael; Derksen, Chris

    2017-09-01

    We have developed the HydroCube mission concept with a constellation of small satellites to remotely sense Snow Water Equivalent (SWE) and Root Zone Soil Moisture (RZSM). The HydroCube satellites would operate at sun-synchronous 3- day repeat polar orbits with a spatial resolution of about 1-3 Km. The mission goals would be to improve the estimation of terrestrial water storage and weather forecasts. Root-zone soil moisture and snow water storage in land are critical parameters of the water cycle. The HydroCube Signals of Opportunity (SoOp) concept utilizes passive receivers to detect the reflection of strong existing P-band radio signals from geostationary Mobile Use Objective System (MUOS) communication satellites. The SWE remote sensing measurement principle using the P-band SoOp is based on the propagation delay (or phase change) of radio signals through the snowpack. The time delay of the reflected signal due to the snowpack with respect to snow-free conditions is directly proportional to the snowpack SWE. To address the ionospheric delay at P-band frequencies, the signals from both MUOS bands (360-380 MHz and 250-270 MHz) would be used. We have conducted an analysis to trade off the spatial resolution for a space-based sensor and measurement accuracy. Through modeling analysis, we find that the dual-band MUOS signals would allow estimation of soil moisture and surface roughness together. From the two MUOS frequencies at 260 MHz and 370 MHz, we can retrieve the soil moisture from the reflectivity ratio scaled by wavenumbers using the two P-band frequencies for MUOS. A modeling analysis using layered stratified model has been completed to determine the sensitivity requirements of HydroCube measurements. For mission concept demonstration, a field campaign has been conducted at the Fraser Experimental Forest in Colorado since February 2016. The data acquired has provided support to the HydroCube concept.

  20. Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting: New geochronology of Gianbul dome, northwestern India

    USGS Publications Warehouse

    Horton, Forrest; Lee, Jeffrey; Hacker, Bradley; Bowman-Kamaha'o, Meilani; Cosca, Michael A.

    2015-01-01

    A general lack of consensus about the origin of Himalayan gneiss domes hinders accurate thermomechanical modeling of the orogen. To test whether doming resulted from tectonic contraction (e.g., thrust duplex formation, antiformal bending above a thrust ramp, etc.), channel flow, or via the buoyant rise of anatectic melts, this study investigates the depth and timing of doming processes for Gianbul dome in the western Himalaya. The dome is composed of Greater Himalayan Sequence migmatite, Paleozoic orthogneiss, and metasedimentary rock cut by multiple generations of leucogranite dikes. These rocks record a major penetrative D2 deformational event characterized by a domed foliation and associated NE-SW–trending stretching lineation, and they are flanked by the top-down-to-the-SW (normal-sense) Khanjar shear zone and the top-down-to-the-NE (normal sense) Zanskar shear zone (the western equivalent of the South Tibetan detachment system). Monazite U/Th-Pb geochronology records (1) Paleozoic emplacement of the Kade orthogneiss and associated granite dikes; (2) prograde Barrovian metamorphism from 37 to 33 Ma; (3) doming driven by upper-crustal extension and positive buoyancy of decompression melts between 26 and 22 Ma; and (4) the injection of anatectic melts into the upper levels of the dome—neutralizing the effects of melt buoyancy and potentially adding strength to the host rock—by ca. 22.6 Ma on the southwestern flank and ca. 21 Ma on the northeastern flank. As shown by a northeastward decrease in 40Ar/39Ar muscovite dates from 22.4 to 20.2 Ma, ductile normal-sense displacement within the Zanskar shear zone ended by ca. 22 Ma, after which the Gianbul dome was exhumed as part of a rigid footwall block below the brittle Zanskar normal fault, tilting an estimated 5°–10°SW into its present orientation.

  1. Characterization of soil spatial variability for site-specific management using soil electrical conductivity and other remotely sensed data

    NASA Astrophysics Data System (ADS)

    Bang, Jisu

    Field-scale characterization of soil spatial variability using remote sensing technology has potential for achieving the successful implementation of site-specific management (SSM). The objectives of this study were to: (i) examine the spatial relationships between apparent soil electrical conductivity (EC a) and soil chemical and physical properties to determine if EC a could be useful to characterize soil properties related to crop productivity in the Coastal Plain and Piedmont of North Carolina; (ii) evaluate the effects of in-situ soil moisture variation on ECa mapping as a basis for characterization of soil spatial variability and as a data layer in cluster analysis as a means of delineating sampling zones; (iii) evaluate clustering approaches using different variable sets for management zone delineation to characterize spatial variability in soil nutrient levels and crop yields. Studies were conducted in two fields in the Piedmont and three fields in the Coastal Plain of North Carolina. Spatial measurements of ECa via electromagnetic induction (EMI) were compared with soil chemical parameters (extractable P, K, and micronutrients; pH, cation exchange capacity [CEC], humic matter or soil organic matter; and physical parameters (percentage sand, silt, and clay; and plant-available water [PAW] content; bulk density; cone index; saturated hydraulic conductivity [Ksat] in one of the coastal plain fields) using correlation analysis across fields. We also collected ECa measurements in one coastal plain field on four days with significantly different naturally occurring soil moisture conditions measured in five increments to 0.75 m using profiling time-domain reflectometry probes to evaluate the temporal variability of ECa associated with changes in in-situ soil moisture content. Nonhierarchical k-means cluster analysis using sensor-based field attributes including vertical ECa, near-infrared (NIR) radiance of bare-soil from an aerial color infrared (CIR) image, elevation, slope, and their combinations was performed to delineate management zones. The strengths and signs of the correlations between ECa and measured soil properties varied among fields. Few strong direct correlations were found between ECa and the soil chemical and physical properties studied (r2 < 0.50), but correlations improved considerably when zone mean ECa and zone means of selected soil properties among ECa zones were compared. The results suggested that field-scale ECa survey is not able to directly predict soil nutrient levels at any specific location, but could delimit distinct zones of soil condition among which soil nutrient levels differ, providing an effective basis for soil sampling on a zone basis. (Abstract shortened by UMI.)

  2. Quantifying the Variation in Shear Zone Character with Depth: a Case Study from the Simplon Shear Zone, Central Alps

    NASA Astrophysics Data System (ADS)

    Cawood, T. K.; Platt, J. P.

    2017-12-01

    A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle deformation of feldspar; and finally, a zone of generally brittle deformation. These zones represent deformation in progressively narrower regions at shallower depths, under lower temperatures and higher stresses.

  3. GMES Initial Operations - Network for Earth Observation Research Training (GIONET)

    NASA Astrophysics Data System (ADS)

    Nicolas-Perea, V.; Balzter, H.

    2012-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: -Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). -Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centers and market leaders in the private sector. -Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. The training program through supervised research focuses on 14 research topics (each carried out by an Early Stage Researchers based in one of the partner organization) divided in 5 main areas: Forest monitoring: Global biomass information systems Forest Monitoring of the Congo Basin using Synthetic Aperture radar (SAR) Multi-concept Earth Observation Capabilities for Biomass Mapping and Change Detection: Synergy of Multi-temporal and Multi-frequency Interferometric Radar and Optical Satellite Data Land cover and change: Multi-scale Remote Sensing Synergy for Land Process Studies: from field Spectrometry to Airborne Hyperspectral and Lidar Campaigns to Radar-Optical Satellite Data Multi-temporal, multi-frequency SAR for landscape dynamics Coastal zone and freshwater monitoring: Optical and SAR-based EO in support of Integrated Coastal Zone Management Dynamics and conservation ecology of emergent and submerged macrophytes in Lake Balaton using airborne remote sensing Satellite remote sensing of water quality (chlorophyll and suspended sediment) using MODIS and ship-mounted LIDAR Geohazards and emergency response: Methods for detection and monitoring of small scale land surface feature changes in complex crisis situations Monitoring landslide displacements with Radar Interferometry DINSAR/PSI hybrid methodologies for ground-motion monitoring Climate adaptation and emergency response: Earth Observation based analysis of regional impact of climate change induced water stress patterns fuelling human crisis and conflict situations in semi dry climate regimes Satellite Derived Information for Drought Detection and Estimation of the Water Balance GIONET will also cover methodologies including (i) modelling fundamental radiative processes determining the satellite signal, (ii) atmospheric correction and calibration, (iii) processing higher-order data products, (iii) developing information products from satellite data to meet user requirements, and (iv) statistical methods for assessing the quality and accuracy of data products.

  4. Remote sensing applied to geological mapping; comparative geomorphology and identification of mineral zones of zinc and lead in the region of Vazante, MG. [Brazil

    NASA Technical Reports Server (NTRS)

    Nascimento, F. S. D. (Principal Investigator); Nascimento, M. A. L. S. D.

    1977-01-01

    The author has identified the following significant results. Results showed that the black and white aerial photographs and the color infrared transparencies were efficient for mapping of three lithological units of the Paraopeba formation and for mineralized zones identification, respectively. Multispectral transparencies of I2S made it easier to separate dolomites, which were the rocks conditioning zinc and lead mineralization. Statistical analysis of morphometric indexes obtained from black and white photographs and topographic charts showed significant difference among three lithological units of Paraopeba formation which can be defined as Crest, Hilly, and Karstic reliefs.

  5. Satellite hydrology; Proceedings of the Fifth Annual William T. Pecora Memorial Symposium on Remote Sensing, Sioux Falls, SD, June 10-15, 1979

    NASA Technical Reports Server (NTRS)

    Deutsch, M. (Editor); Wiesnet, D. R.; Rango, A.

    1981-01-01

    Philosophical and technical backgrounds for the application of remote sensing by earth scientists are presented. Interests and activities of participating agencies of the United States and Canadian governments, universities, and the private sector in implementing satellite technology in a diverse array of water-related programs are described. Consideration is then given to applications of satellite data to the various aspects of the hydrologic cycle and man's impact on it: meteorology, snow and ice, surface water, soil moisture, ground water, wetlands, coastal zone, water quality and environment, and water use and management.

  6. Remote sensing applications to resource problems in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Best, R. G.; Dalsted, K. J.; Devries, M. E.; Eidenshink, J. C.; Fowler, R.; Heilman, J.; Schmer, F. A.

    1980-01-01

    Cooperative projects between RSI and numerous South Dakota agencies have provided a means of incorporating remote sensing techniques into operational programs. Eight projects discussed in detail are: (1) detection of high moisture zones near interstate 90; (2) thermal infrared census of Canada geese in South Dakota; (3) dutch elm disease detection in urban environment; (4) a feasibility study for monitoring effective precipitation in South Dakota using TIROS-N; (5) open and abandoned dump sites in Spink county; (6) the influence of soil reflectance on LANDSAT signatures of crops; (7) A model implementation program for Lake Herman watershed; and (8) the Six-Mile Creek investigation follow-on.

  7. Agricultural adaptation to water scarcity in the Sri Lankan dry zone: A comparison of two water managment regimes

    NASA Astrophysics Data System (ADS)

    Burchfield, E. K.

    2014-12-01

    The island nation of Sri Lanka is divided into two agro-climatic zones: the southwestern wet zone and the northeastern dry zone. The dry zone is exposed to drought-like conditions for several months each year. Due to the sporadic nature of rainfall, dry zone livelihoods depend on the successful storage, capture, and distribution of water. Traditionally, water has been captured in rain-fed tanks and distributed through a system of dug canals. Recently, the Sri Lankan government has diverted the waters of the nation's largest river through a system of centrally managed reservoirs and canals and resettled farmers to cultivate this newly irrigated land. This study uses remotely sensed MODIS and LANDSAT imagery to compare vegetation health and cropping patterns in these distinct water management regimes under different conditions of water scarcity. Of particular interest are the socioeconomic, infrastructural, and institutional factors that affect cropping patterns, including field position, water storage capacity, and control of water resources. Results suggest that under known conditions of water scarcity, farmers cultivate other field crops in lieu of paddy. Cultivation changes depend to a large extent on the institutional distance between water users and water managers as well as the fragmentation of water resources within the system.

  8. Impact of tropical cyclone Matmo on mixed zone of the Yellow and Bohai seas

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Ji, Diansheng; Hou, Chawei; Guo, Kai; Ji, Ling

    2017-12-01

    The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits (mixed zone). Its off shore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacifi c tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, signifi cant wave height, and salinity (SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass (NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct infl uence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the infl uence of tropical cyclones on the NYSCWM.

  9. Mapping Geohazards in the Churia Region of Nepal: An Application of Remote Sensing and Geographic Information Systems

    NASA Astrophysics Data System (ADS)

    Bannister, Terri

    The Churia region of Nepal is experiencing serious environmental degradation due to landslides, monsoon flooding, land use changes, and gravel excavation. The objectives of this study were to quantify the temporal change of landslides as related to changes in land use/deforestation/urbanization, to quantify the temporal change and extent of river inundation in the Terai, to quantify the extent to which stone quarrying exacerbates the degradation process, and to generate a landslide hazard risk map. Gravel extraction and precipitation data, along with field work and geospatial methods, were used to map degradation by focusing on the centrally located districts of Bara, Rautahat, and Makwanpur. Landsat land use classifications were conducted on imagery from 1976, 1988, 1999, and 2015. A modified Normalized Difference Mid-Infrared (NDMIDIR) algorithm was created by incorporating slope, elevation, and land use types to identify landslide scars. A GIS model using weighted landslide variables derived from remote sensing and GIS methods to predict landslide susceptibility was created. These variables include hydrology, settlement, lithology, geology, precipitation, infrastructure, elevation, slope, aspect, land use, and previous landslides. Gravel excavation in 2007/2008 was nearly 700% higher than in 2001/2002. The Normalized Difference Vegetation Index (NDVI) results showed that the study area is losing 1.03% forest cover annually; in 1977, there was 70% forest cover, but only 32% forest cover remained in 2016. The accuracy assessment of the 2015 Landsat 8 land use classification was 79%. NDMIDIR results showed that from 1988 to 2016, the total area representing landslide scars increased from 7.26km2 to 8.73 km2. The weighted variable GIS model output map indicated that 70% of the Siwalik zone and southern Lesser Himalayan zone in the three study districts have significant risk of landslides. Landslides and flooding from heavy monsoon rain, deforestation to develop agriculture and urbanization, and gravel extraction have caused rapid and ongoing environmental degradation in the Churia region of Nepal. Results provide information for disaster management and assist policy planners in landslide prone areas decrease loss of lives and property.

  10. Retrieval of land cover information under thin fog in Landsat TM image

    NASA Astrophysics Data System (ADS)

    Wei, Yuchun

    2008-04-01

    Thin fog, which often appears in remote sensing image of subtropical climate region, has resulted in the low image quantity and bad image mapping. Therefore, it is necessary to develop the image processing method to retrieve land cover information under thin fog. In this paper, the Landsat TM image near the Taihu Lake that is in the subtropical climate zone of China was used as an example, and the workflow and method used to retrieve the land cover information under thin fog have been built based on ENVI software and a single TM image. The basic step covers three parts: 1) isolating the thin fog area in image according to the spectral difference of different bands; 2) retrieving the visible band information of different land cover types under thin fog from the near-infrared bands according to the relationships between near-infrared bands and visible bands of different land cover types in the area without fog; 3) image post-process. The result showed that the method in the paper is easy and suitable, and can be used to improve the quantity of TM image mapping more effectively.

  11. A new perspective on the significance of the Ranotsara shear zone in Madagascar

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido; Giese, Jörg; Berger, Alfons; Gnos, Edwin

    2010-12-01

    The Ranotsara shear zone in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear zone of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear zone has been correlated with shear zones in southern India and eastern Africa in Gondwana reconstructions. Our assessment using remote sensing data and field-based investigations, however, reveals that what previously has been interpreted as the Ranotsara shear zone is in fact a composite structure with a ductile deflection zone confined to its central segment and prominent NW-SE trending brittle faulting along most of its length. We therefore prefer the more neutral term “Ranotsara Zone”. Lithologies, tectonic foliations, and axial trace trajectories of major folds can be followed from south to north across most of the Ranotsara Zone and show only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East African Orogeny (c. 550-520 Ma). The Ranotsara Zone shows significant NW-SE striking brittle faulting that reactivates part of the NW-SE striking ductile structures in the flexure zone, but also extends along strike toward the NW and toward the SE. Brittle reactivation of ductile structures along the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone is not a megascale intracrustal strike-slip shear zone that crosscuts the entire basement of southern Madagascar. It can therefore not be used as a piercing point in Gondwana reconstructions.

  12. A reconnaissance space sensing investigation of the crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau: April 1971

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator); Liggett, M. A.

    1972-01-01

    The author has identified the following significant results. An area of anomalous linear topographic grain and color expressions was recognized in Apollo 9 and ERTS-1 imagery along the Colorado River of northwestern Arizona and southern Nevada. Field reconnaissance and analysis of U-2 photography has shown the anomaly to be a zone of north to north-northwest trending dike swarms and associated granitic plutons. The dikes vary in composition from rhyolite to diabase, with an average composition nearer rhyolite. Shearing and displacement of host rocks along dikes suggest dike emplacement along active fault zones. Post-dike deformation has resulted in shearing and complex normal faulting along a similar north-south trend. The epizonal plutonism and volcanism of this north-south belt appears to represent a structurally controlled volcanogenic province which ends abruptly in the vicinity of Lake Mead at a probable eastern extension of the Las Vegas Shear Zone. The magnitude and chronology of extensional faulting and plutonism recognized in the north-south zone, support the hypothesis that the Las Vegas Shear Zone is a transform fault separating two areas of crustal spreading.

  13. Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Thode, Andrea E.; van Wagtendonk, Jan W.; Miller, Jay D.; Quinn, James F.

    2011-01-01

    This paper quantifies current fire severity distributions for 19 different fire-regime types in Yosemite National Park, California, USA. Landsat Thematic Mapper remote sensing data are used to map burn severity for 99 fires (cumulatively over 97 000 ha) that burned in Yosemite over a 20-year period. These maps are used to quantify the frequency distributions of fire severity by fire-regime type. A classification is created for the resultant distributions and they are discussed within the context of four vegetation zones: the foothill shrub and woodland zone; the lower montane forest zone; the upper montane forest zone and the subalpine forest zone. The severity distributions can form a building block from which to discuss current fire regimes across the Sierra Nevada in California. This work establishes a framework for comparing the effects of current fires on our landscapes with our notions of how fires historically burned, and how current fire severity distributions differ from our desired future conditions. As this process is refined, a new set of information will be available to researchers and land managers to help understand how fire regimes have changed from the past and how we might attempt to manage them in the future.

  14. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions

    PubMed Central

    Chang, Chung-Liang; Huang, Yi-Ming; Hong, Guo-Fong

    2015-01-01

    The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications. PMID:26569264

  15. Annual report to W-2188 multi-state research project "Characterizing Mass and Energy Transport at Different Vadose Zone Scales"

    USDA-ARS?s Scientific Manuscript database

    Results of our studies on soil water sensors were conveyed to manufacturers, including Acclima, Inc. and Decagon, Inc. Four invited presentations on soil water sensing for irrigation management were made to irrigation conferences in the Central and Southern High Plains (Nebraska and Texas). Eleven i...

  16. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  17. Escape Geography--Developing Middle-School Students' Sense of Place.

    ERIC Educational Resources Information Center

    Allen, Rodney F.; Molina, Laurie E. S.

    1992-01-01

    Suggests a social studies unit on escaping geography. Examines escape from dangerous places including an airliner, hotel fire, or war zone or from a social situation such as a boring speech or party. Describes historic escapes such as the Underground Railroad and the Berlin Wall. Lists learning strategies such as awareness of space and cognitive…

  18. The Way of the S/Word: Storytelling as Emerging Liminal

    ERIC Educational Resources Information Center

    Josephs, Caroline

    2008-01-01

    The paper focuses on oral storytelling and transformation through the significance of the liminal zone as thresholding. Involving the reader-listener in an experiential and performative approach, the article draws on all of the senses, using a wide range of data such as dreams, drawing, writing, as well as the act of (sacred) oral storytelling and…

  19. Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2017-07-01

    Identification of high potential risk and susceptible zones for natural hazards of geological origin is one of the most important applications of advanced remote sensing technology. Yearly, several landslides occur during heavy monsoon rainfall in Kelantan River basin, Peninsular Malaysia. Flooding and subsequent landslide occurrences generated significant damage to livestock, agricultural produce, homes and businesses in the Kelantan River basin. In this study, remote sensing data from the recently launched Landsat-8 and Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on board the Advanced Land Observing Satellite-2 (ALOS-2) were used to map geologic structural and topographical features in the Kelantan River basin for identification of high potential risk and susceptible zones for landslides and flooding areas. The data were processed for a comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. The analytical hierarchy process (AHP) approach was used for landslide susceptibility mapping. Several factors such as slope, aspect, soil, lithology, normalized difference vegetation index (NDVI), land cover, distance to drainage, precipitation, distance to fault and distance to the road were extracted from remote sensing satellite data and fieldwork to apply the AHP approach. Directional convolution filters were applied to ALOS-2 data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. The combination of different polarization channels produced image maps that contain important information related to water bodies, wetlands and lithological units. The N-S, NE-SW and NNE-SSW lineament trends and dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan River basin. The analysis of field investigation data indicates that many of flooded areas were associated with high potential risk zones for hydrogeological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topographic regions. Numerous landslide points were located in a rectangular drainage system that is associated with a topographic slope of metamorphic and quaternary rock units. Consequently, structural and topographical geology maps were produced for Kelantan River basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping and identification of high potential risk zone for hydrogeological hazards. Geohazard mitigation programs could be conducted in the landslide recurrence regions and flooded areas to reduce natural catastrophes leading to loss of life and financial investments in the Kelantan River basin. In this investigation, Landsat-8 and ALOS-2 have proven to successfully provide advanced Earth observation satellite data for disaster monitoring in tropical environments.

  20. Optical methods and systems for detecting a constituent in a gas containing oxygen in harsh environments

    DOEpatents

    Carpenter, Michael A [Scotia, NY; Sirinakis, George [Bronx, NY

    2011-01-04

    A method for detecting a gas phase constituent such as carbon monoxide, nitrogen dioxide, hydrogen, or hydrocarbons in a gas comprising oxygen such as air, includes providing a sensing material or film having a metal embedded in a catalytically active matrix such as gold embedded in a yttria stabilized zirconia (YSZ) matrix. The method may include annealing the sensing material at about 900.degree. C., exposing the sensing material and gas to a temperature above 400.degree. C., projecting light onto the sensing material, and detecting a change in the absorption spectrum of the sensing material due to the exposure of the sensing material to the gas in air at the temperature which causes a chemical reaction in the sensing material compared to the absorption spectrum of the sensing material in the absence of the gas. Systems employing such a method are also disclosed.

  1. Nanocontainer-based corrosion sensing coating.

    PubMed

    Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L

    2013-10-18

    The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer.The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings.

  2. GeoInformation studies of soil and vegetation patterns along Climatic Gradients: A Review

    NASA Astrophysics Data System (ADS)

    Shoshany, M.

    2009-04-01

    Global evidence regarding magnitudes of desertification processes and recognition in their societal, ecological and climatological consequences had lead the international community to establish the United Nations Convention to Combat Desertification (UNCCD). Within the framework of this convention it is perceived that Desertification is a complex poorly understood phenomena which is " first and foremost, the result of resource management failures". Scientific research within this context have three primary roles: monitoring the situation, developing the understanding of relationships between factors promoting desertification and finally providing the international community with efficient recommendations regarding actions which may slow down these processes. Study of desertification processes in regions of sharp climatic gradients is of special importance within this framework since they represent areas where the processes are most intensive and where most deserts actually expand. The detection of threshold zones coupling sever land degradation with loss of resilience in their eco-geomophic systems is fundamental for the efficient combating of global desertification. Application of geoinformation tools and techniques is instrumental for this purpose: mapping biological, chemical and physical surface properties using remote sensing techniques, mapping historical patch-pattern changes using air-photographs, analysis of spatio-temporal variations in pattern properties and analysis of informational relationships between these surface properties and patterns with climatoloical, topographic, lithological and human factors. Numerous Remote Sensing studies had been undertaken during the last four decades in monitoring desertification through the provision of maps describing spatial distributions of biophysical surface parameters at resolutions between few meters to few kilometers and temporal resolutions between hours and weeks. These studies utilized radar backscattering , spectral reflectance at the visible, NIR and SWIR ranges and emissions in the thermal spectrum. However, despite the magnitude of these projects very few of the methods were proved to be operational yet. The main shortcomings of exiting methods are: - They are highly dependent on accurate calibration which for large region is impractical. - Most of the methods are semi-empirical: case dependent rather than representing robust physical indicators. - There is no one imagery source which is good for all mapping purposes, most of the methods use single imagery source and there is relatively little synergy (fusion) between imagery sources. - Data continuity for long time periods exits mainly for low resolution sources which are limited in supporting modeling of processes. - Difficulties in scaling-up results and methods from the local to the broad-regional scales Within the scope of interest here the most important shortcoming concern the fact that relatively little work treated explicitly regions of high climatic gradient partly due to their high spatio-temporal heterogeneity. Three areas of recent advancements in studying explicitly transition zones between humid and arid regions : - Mapping bio-physical properties of vegetation forms (herbaceous, dwarf-shrubs and shrubs): cover proportions, biomass, primary productivity using synergy between optical (phonologies) and SAR imagery. - Mapping chemical and physical soil properties and estimating their erodibility using hyper and multi spectral methods, and SAR backscattering. - Mapping soil and vegetation patch patterns and their changes within the last decades using historical air-photographs. These advancement s lead to the detection of threshold zones between regions along these gradients according to following indicators: - Life-forms compositions, biomass and primary productivity. Analysis of relationships between biomass and rainfall allow differentiation between cases were vegetation compositions and properties which follow 'expected' successional sequences and those which represent harsh land degradation with productivity significantly less than would be expected according to their average annual precipitation. - Soil chemical compositions referring mainly to organic carbon, inorganic carbon and ferrum. These mapping allowed the detection of 'tipping points' in the high transition zones. Analysis of historical patch-patterns ' evolution modes using air-photographs and GIS techniques allowed insight into soil and vegetation pattern dynamics. Recent results had revealed that in some areas of low biomass there is maintained similar pattern fragmentation as in areas of higher rainfall. This signifies the functioning of self-organization and consequently the potential resilience of some areas of relatively low primary productivity located at desert margins. In conclusion, current geoinformation tools and techniques on one hand had shown their potential contribution to the modeling and understanding of desertification processes in general and the formation of thresholds through the functioning of 'tipping' mechanisms and 'catastrophic shifts'. However, these tools and techniques are not yet operational at the wide regional scale. Better synergy of remote sensing sources and availability of longer time series of surface properties will facilitate the combat of desertification with both better understanding of the processes and predictions of expected spatial change in different warming and human disturbance scenarios.

  3. Cretaceous oblique detachment tectonics in the Fosdick Mountains, Marie Byrd Land, Antarctica

    USGS Publications Warehouse

    McFadden, R.; Siddoway, C.S.; Teyssier, C.; Fanning, C.M.; Kruckenberg, S.C.

    2007-01-01

    The Fosdick Mountains form an E-W trending migmatite dome in the northern Ford Ranges of Marie Byrd Land, Antarctica. Pervasively folded migmatites derived from lower Paleozoic greywacke and middle Paleozoic plutonic rocks constitute the dome. New field research documents a transition from melt-present to solid-state deformation across the south flank of the dome, and a mylonitic shear zone mapped for 30 km between Mt. Iphigene and Mt Richardson. Kinematic shear sense is dextral normal oblique, with top-to-the-SW and -WSW transport. A U-Pb age of 107 Ma, from a leucosome-filled extensional shear band, provides a meltpresent deformation age, and a U-Pb age of 96 Ma, from a crosscutting granitic dike, gives a lower age limit for deformation. The shear zone, here named the South Fosdick detachment zone, forms the south flank of the migmatite dome and was in part responsible for the exhumation of mid-crustal rocks.

  4. Remote sensing experiment in West Africa. [drought effects on desert agriculture and vegetation in Niger

    NASA Technical Reports Server (NTRS)

    Macleod, N. H.

    1974-01-01

    There are substantial needs of the Sahelien Zone to detail the state of regional agricultural resources in the face of a sixth year of serious drought conditions. While most of the work has been done in the Republic of Niger, the principles which have emerged from the analysis seem to be applicable to much of the Sahel. The discussion relates to quite specific rehabilitation and development initiations under consideration in Niger which are based in part upon direct analysis of ERTS imagery of the country, in part on field surveys and on discussions with Nigerian officials and technicians. Again, because the entire Sahelien Zone (including Niger) has large zones of similar ecologic characteristics, modificiations of the approaches suggested for Niger are applicable to the solution of rehabilitation of the desert, the savannah and the woodlands of West Africa in general.

  5. Interpretation of multispectral and infrared thermal surveys of the Suez Canal Zone, Egypt

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Hady, M. A. A. H.; Hafez, M. A. A.; Salman, A. B.; Morsy, M. A.; Elrakaiby, M. M.; Alaassy, I. E. E.; Kamel, A. F.

    1977-01-01

    Remote sensing airborne surveys were conducted, as part of the plan of rehabilitation, of the Suez Canal Zone using I2S multispectral camera and Bendix LN-3 infrared passive scanner. The multispectral camera gives four separate photographs for the same scene in the blue, green, red, and near infrared bands. The scanner was operated in the microwave bands of 8 to 14 microns and the thermal surveying was carried out both at night and in the day time. The surveys, coupled with intensive ground investigations, were utilized in the construction of new geological, structural lineation and drainage maps for the Suez Canal Zone on a scale of approximately 1:20,000, which are superior to the maps made by normal aerial photography. A considerable number of anomalies belonging to various types were revealed through the interpretation of the executed multispectral and infrared thermal surveys.

  6. Nanodevices for generating power from molecules and batteryless sensing

    DOEpatents

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2017-01-03

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  7. Nanodevices for generating power from molecules and batteryless sensing

    DOEpatents

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2015-06-09

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  8. The response of a laminar boundary layer in supersonic flow to small amplitude progressive waves

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1989-01-01

    The effect of a small amplitude progressive wave on the laminar boundary layer on a semi-infinite flat plate, due to a uniform supersonic freestream flow, is considered. The perturbation to the flow divides into two streamwise zones. In the first, relatively close to the leading edge of the plate, on a transverse scale comparable to the boundary layer thickness, the perturbation flow is described by a form of the unsteady linearized compressible boundary layer equations. In the freestream, this component of flow is governed by the wave equation, the solution of which provides the outer velocity conditions for the boundary layer. This system is solved numerically, and also the asymptotic structure in the far downstream limit is studied. This reveals a breakdown and a subsequent second streamwise zone, where the flow disturbance is predominantly inviscid. The two zones are shown to match in a proper asymptotic sense.

  9. Nanodevices for generating power from molecules and batteryless sensing

    DOEpatents

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2014-07-15

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  10. Evaluation of Growing Season Milestones, Using Eddy Covariance Time-Series of Net Ecosystem Exchange

    NASA Astrophysics Data System (ADS)

    Pastorello, G.; Faybishenko, B.; Poindexter, C.; Menzer, O.; Agarwal, D.; Papale, D.; Baldocchi, D. D.

    2014-12-01

    Common methods for determining timing of plants' developmental events, such as direct observation and remote sensing of NDVI, usually produce data of temporal resolution on the order of one week or more. This limitation can make observing subtle trends across years difficult. The goal of this presentation is to demonstrate a conceptual approach and a computational technique to quantify seasonal, annual and long-term phenological indices and patterns, based on continuous eddy covariance measurements of net ecosystem exchange (NEE) measured at eddy covariance towers in the AmeriFlux network. Using a comprehensive time series analysis of NEE fluxes in different climatic zones, we determined multiple characteristics (and their confidence intervals) of the growing season including: the initiation day—the day when canopy photosynthesis development starts, the photosynthesis stabilization day - the day when the development process of canopy photosynthesis starts to slow down and gradually moves toward stabilization, and the growing season effective termination day. We also determined the spring photosynthetic development velocity and the fall photosynthetic development velocity. The results of calculations using NEE were compared with those from temperature and precipitation data measured at the same AmeriFlux tower stations, as well as with the in-situ directly observed phenological records. The results of calculations of phenological indices from the NEE time-series collected at AmeriFlux sites can be used to constrain the application of other time- and labor-intensive sensing methods and to reduce the uncertainty in identifying trends in the timing of phenological indices.

  11. Use of geostationary satellite imagery in optical and thermal bands for the estimation of soil moisture status and land evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F.

    2009-04-01

    For water and agricultural management, there is an increasing demand to monitor the soil water status and the land evapotranspiration. In the framework of the LSA-SAF project (http://landsaf.meteo.pt), we are developing an energy balance model forced by remote sensing products, i.e. radiation components and vegetation parameters, to monitor in quasi real-time the evapotranspiration rate over land (Gellens-Meulenberghs et al, 2007; Ghilain et al, 2008). The model is applied over the full MSG disk, i.e. including Europe and Africa. Meteorological forcing, as well as the soil moisture status, is provided by the forecasts of the ECMWF model. Since soil moisture is computed by a forecast model not dedicated to the monitoring of the soil water status, inadequate soil moisture input can occur, and can cause large effects on evapotranspiration rates, especially over semi-arid or arid regions. In these regions, a remotely sensed-based method for the soil moisture retrieval can therefore be preferable, to avoid too strong dependency in ECMWF model estimates. Among different strategies, remote sensing offers the advantage of monitoring large areas. Empirical methods of soil moisture assessment exist using remotely sensed derived variables either from the microwave bands or from the thermal bands. Mainly polar orbiters are used for this purpose, and little attention has been paid to the new possibilities offered by geosynchronous satellites. In this contribution, images of the SEVIRI instrument on board of MSG geosynchronous satellites are used. Dedicated operational algorithms were developed for the LSA-SAF project and now deliver images of land surface temperature (LST) every 15-minutes (Trigo et al, 2008) and vegetations indices (leaf area index, LAI; fraction of vegetation cover, FVC; fraction of absorbed photosynthetically active radiation, FAPAR) every day (Garcia-Haro et al, 2005) over Africa and Europe. One advantage of using products derived from geostationary satellites is the close monitoring of the diurnal variation of the land surface temperature. This feature reinforced the statistical strength of empirical methods. An empirical method linking land surface morning heating rates and the fraction of the vegetation cover, also known as a ‘Triangle method' (Gillies et al, 1997) is examined. This method is expected to provide an estimation of a root-zone soil moisture index. The sensitivity of the method to wind speed, soil type, vegetation type and climatic region is explored. Moreover, the impact of the uncertainty of LST and FVC on the resulting soil moisture estimates is assessed. A first impact study of using remotely sensed soil moisture index in the energy balance model is shown and its potential benefits for operational monitoring of evapotranspiration are outlined. References García-Haro, F.J., F. Camacho-de Coca, J. Meliá, B. Martínez (2005) Operational derivation of vegetation products in the framework of the LSA SAF project. Proceedings of the EUMETSAT Meteorological Satellite Conference Dubrovnik (Croatia) 19-23 Septembre. Gellens-Meulenberghs, F., Arboleda, A., Ghilain, N. (2007) Towards a continuous monitoring of evapotranspiration based on MSG data. Proceedings of the symposium on Remote Sensing for Environmental Monitoring and Change Detection. IAHS series. IUGG, Perugia, Italy, July 2007, 7 pp. Ghilain, N., Arboleda, A. and Gellens-Meulenberghs, F., (2008) Improvement of a surface energy balance model by the use of MSG-SEVIRI derived vegetation parameters. Proceedings of the 2008 EUMETSAT meteorological satellite data user's conference, Darmstadt, Germany, 8th-12th September, 7 pp. Gillies R.R., Carlson T.N., Cui J., Kustas W.P. and Humes K. (1997), Verification of the triangle method for obtaining surface soil water content and energy fluxes from remote measurements of Normalized Difference Vegetation Index (NDVI) and surface radiant temperature, International Journal of Remote Sensing, 18, pp. 3145-3166. Trigo, I.F., Monteiro I.T., Olesen F. and Kabsch E. (2008) An assessment of remotely sensed land surface temperature. Journal of Geophysical Research, 113, D17108, doi:10.1029/2008JD010035.

  12. Seismogenic zones and attenuation laws for probabilistic seismic hazard assessment in low deformation area =

    NASA Astrophysics Data System (ADS)

    Le Goff, Boris

    Seismic Hazard Analysis (PSHA), rather than the subjective methodologies that are currently used. This study focuses particularly in the definition of the seismic sources, through the seismotectonic zoning, and the determination of historical earthquake location. An important step in the Probabilistic Seismic Hazard Analysis consists in defining the seismic source model. Such a model expresses the association of the seismicity characteristics with the tectonically-active geological structures evidenced by seismotectonic studies. Given that most of the faults, in low seismic regions, are not characterized well enough, the source models are generally defined as areal zones, delimited with finite boundary polygons, within which the seismicity and the geological features are deemed homogeneous (e.g., focal depth, seismicity rate). Besides the lack of data (short period of instrumental seismicity), such a method generates different problems for regions with low seismic activity: 1) a large sensitivity of resulting hazard maps to the location of zone boundaries, while these boundaries are set by expert decisions; 2) the zoning cannot represent any variability or structural complexity in seismic parameters; 3) the seismicity rate is distributed throughout the zone and the location of the determinant information used for its calculation is lost. We investigate an alternative approach to model the seismotectonic zoning, with three main objectives: 1) obtaining a reproducible method that 2) preserves the information on the sources and extent of the uncertainties, so as to allow to propagate them (through Ground Motion Prediction Equations on to the hazard maps), and that 3) redefines the seismic source concept to debrief our knowledge on the seismogenic structures and the clustering. To do so, the Bayesian methods are favored. First, a generative model with two zones, differentiated by two different surface activity rates, was developed, creating synthetic catalogs drawn from a Poisson distribution as occurrence model, a truncated Gutenberg-Richter law as magnitudefrequency relationship and a uniform spatial distribution. The inference of this model permits to assess the minimum number of data, nmin, required in an earthquake catalog to recover the activity rates of both zones and the limit between them, with some level of accuracy. In this Bayesian model, the earthquake locations are essential. Consequently, these data have to be obtained with the best accuracy possible. The main difficulty is to reduce the location uncertainty of historical earthquakes. We propose to use the method of Bakun and Wentworth (1997) to reestimate the epicentral region of these events. This method uses directly the intensity data points rather than the isoseismal lines, set up by experts. The significant advantage in directly using individual intensity observations is that the procedures are explicit and hence the results are reproducible. The results of such a method provide an estimation of the epicentral region with levels of confidence appropriated for the number of intensity data points used. As example, we applied this methodology to the 1909 Benavente event, because of its controversial location and the particularly shape of its isoseismal lines. A new location of the 1909 Benavente event is presented in this study and the epicentral region of this event is expressed with confidence levels related to the number of intensity data points. This epicentral region is improved by the development of a new intensity-distance attenuation law, appropriate for the Portugal mainland. This law is the first one in Portugal mainland developed as a function of the magnitude (M) rather than the subjective epicentral intensity. From the logarithmic regression of each event, we define the equation form of the attenuation law. We obtained the following attenuation law: I= -1.9438 ln(D)+4.1Mw-9.5763 for 4.4 ≤ Mw ≤ 6.2 Using these attenuation laws, we reached to a magnitude estimation of the 1909 Benavente event that is in good agreement with the instrumental one. The epicentral region estimation was also improved with a tightening of the confidence level contours and a minimum of rms[MI] coming closer to the epicenter estimation of Karnik (1969). Finally, this two zone model will be a reference in the comparison with other models, which will incorporate other available data. Nevertheless, future improvements are needed to obtain a seismotectonic zoning. We emphasize that such an approach is reproducible once priors and data sets are chosen. Indeed, the objective is to incorporate expert opinions as priors, and avoid using expert decisions. Instead, the products will be directly the result of the inference, when only one model is considered, or the result of a combination of models in the Bayesian sense.

  13. Heating hydrocarbon containing formations in a spiral startup staged sequence

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; Miller, David Scott [Katy, TX

    2009-12-15

    Methods for treating a hydrocarbon containing formation are described herein. Methods may include treating a first zone of the formation. Treatment of a plurality of zones of the formation may be begun at selected times after the treatment of the first zone begins. The treatment of at least two successively treated zones may begin at a selected time after treatment of the previous zone begins. At least two of the successively treated zones may be adjacent to the zone treated previously. The successive treatment of the zones proceeds in an outward, substantially spiral sequence from the first zone so that the treatment of the zones may move substantially spirally outwards towards a boundary of the treatment area.

  14. Potential for Remotely Sensed Soil Moisture Data in Hydrologic Modeling

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1997-01-01

    Many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture and portray the spatial heterogeneity of hydrologic processes and properties that one encounters in drainage basins. The hydrologic processes that may be detected include ground water recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential ET, and information about the hydrologic properties of soils and heterogeneity of hydrologic parameters. Microwave remote sensing has the potential to detect these signatures within a basin in the form of volumetric soil moisture measurements in the top few cm. These signatures should provide information on how and where to apply soil physical parameters in distributed and lumped parameter models and how to subdivide drainage basins into hydrologically similar sub-basins.

  15. Improving tsunami warning systems with remote sensing and geographical information system input.

    PubMed

    Wang, Jin-Feng; Li, Lian-Fa

    2008-12-01

    An optimal and integrative tsunami warning system is introduced that takes full advantage of remote sensing and geographical information systems (GIS) in monitoring, forecasting, detection, loss evaluation, and relief management for tsunamis. Using the primary impact zone in Banda Aceh, Indonesia as the pilot area, we conducted three simulations that showed that while the December 26, 2004 Indian Ocean tsunami claimed about 300,000 lives because there was no tsunami warning system at all, it is possible that only about 15,000 lives could have been lost if the area had used a tsunami warning system like that currently in use in the Pacific Ocean. The simulations further calculated that the death toll could have been about 3,000 deaths if there had been a disaster system further optimized with full use of remote sensing and GIS, although the number of badly damaged or destroyed houses (29,545) could have likely remained unchanged.

  16. The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2006-01-01

    Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.

  17. NORSEX 1979 microwave remote sensing data report

    NASA Technical Reports Server (NTRS)

    Hennigar, H. F.; Schaffner, S. K.

    1982-01-01

    Airborne microwave remote sensing measurements obtained by NASA Langley Research Center in support of the 1979 Norwegian Remote Sensing Experiment (NORSEX) are summarized. The objectives of NORSEX were to investigate the capabilities of an active/passive microwave system to measure ice concentration and type in the vicinity of the marginal ice zone near Svalbard, Norway and to apply microwave techniques to the investigation of a thermal oceanic front near Bear Island, Norway. The instruments used during NORSEX include the stepped frequency microwave radiometer, airborne microwave scatterometer, precision radiation thermometer and metric aerial photography. The data are inventoried, summarized, and presented in a user-friendly format. Data summaries are presented as time-history plots which indicate when and where data were obtained as well as the sensor configuration. All data are available on nine-track computer tapes in card-image format upon request to the NASA Langley Technical Library.

  18. Passive microwave measurements of temperature and salinity in coastal zones

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Kendall, B. M.

    1982-01-01

    Experimental methods and results from the maritime remote sensing (MARSEN) experiments using dual frequency microwave radiometer detecting systems on board aircraft are described. The radiometers were operated at 1.43 and 2.65 GHz and flown above U.S. Atlantic coastal areas, Chesapeake Bay, around Puerto Rico, and over the German Bight. The advanced switched radiometers used were configured to be independent of gain variations and errors originating from front-end losses and determined the absolute brightness temperatures to within a few tenths Kelvin. Corrections to the observed brightness temperature of the ocean are analytically defined, including accounts made for roughness, the cosmic background radiation, and the solar radio source. The coastal flight data for salinity gradients and surface temperatures were compared with sea truth measured from ships and found to be accurate to within 1 C and 1 pph.

  19. DETERMINATION OF ELASTIC WAVE VELOCITY AND RELATIVE HYPOCENTER LOCATIONS USING REFRACTED WAVES. II. APPLICATION TO THE HAICHENG, CHINA, AFTERSHOCK SEQUENCE.

    USGS Publications Warehouse

    Shedlock, Kaye M.; Jones, Lucile M.; Ma, Xiufang

    1985-01-01

    The authors located the aftershocks of the February 4, 1975 Haicheng, China, aftershock sequence using an arrival time difference (ATD) simultaneous inversion method for determining the near-source (in situ) velocity and the location of the aftershocks with respect to a master event. The aftershocks define a diffuse zone, 70 km multiplied by 25 km, trending west-northwest, perpendicular to the major structural trend of the region. The main shock and most of the large aftershocks have strike-slip fault plane solutions. The preferred fault plane strikes west-northwest, and the inferred sense of motion is left-lateral. The entire Haicheng earthauake sequence appears to have been the response of an intensely faulted range boundary to a primarily east-west crustal compression and/or north-south extension.

  20. Numerical modelling of bifurcation and localisation in cohesive-frictional materials

    NASA Astrophysics Data System (ADS)

    de Borst, René

    1991-12-01

    Methods are reviewed for analysing highly localised failure and bifurcation modes in discretised mechanical systems as typically arise in numerical simulations of failure in soils, rocks, metals and concrete. By the example of a plane-strain biaxial test it is shown that strain softening and lack of normality in elasto-plastic constitutive equations and the ensuing loss of ellipticity of the governing field equations cause a pathological mesh dependence of numerical solutions for such problems, thus rendering the results effectively meaningless. The need for introduction of higher-order continuum models is emphasised to remedy this shortcoming of the conventional approach. For one such a continuum model, namely the unconstrained Cosserat continuum, it is demonstrated that meaningful and convergent solutions (in the sense that a finite width of the localisation zone is computed upon mesh refinement) can be obtained.

  1. High Resolution Mapping of Soils and Landforms for the Desert Renewable Energy Conservation Plan (DRECP)

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.; Li, Shuang

    2014-01-01

    The Desert Renewable Energy Conservation Plan (DRECP), a major component of California's renewable energy planning efforts, is intended to provide effective protection and conservation of desert ecosystems, while allowing for the sensible development of renewable energy projects. This NASA mapping report was developed to support the DRECP and the Bureau of Land Management (BLM). We outline in this document remote sensing image processing methods to deliver new maps of biological soils crusts, sand dune movements, desert pavements, and sub-surface water sources across the DRECP area. We focused data processing first on the largely unmapped areas most likely to be used for energy developments, such as those within Renewable Energy Study Areas (RESA) and Solar Energy Zones (SEZs). We used imagery (multispectral and radar) mainly from the years 2009-2011.

  2. Passive and Active Stabilization of Liquid Bridges in Low Gravity

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Thiessen, David B.; Marr-Lyon, Mark J.; Wei, Wei; Niederhaus, Charles E.; Truong, Duc K.

    2001-01-01

    Tests are planned in the low gravity environment of the International Space Station (ISS) of new methods for the suppression of the capillary instability of liquid bridges. Our suppression methods are unusual in that they are not limited to liquid bridges having very special properties and may impact a variety of low-gravity and earth-based technologies. There are two main approaches to be investigated: (1) Passive Acoustic Stabilization (PAS); and (2) Active Electrostatic Stabilization (AES). In PAS, the suppression of the mode growth is accomplished by placing the bridge in an acoustic field having the appropriate properties such that the acoustic radiation pressure automatically pulls outward on the thinnest portion of the bridge. In AES, the bridge deformation is sensed optically and counteracted by actively adjusting the electrostatic Maxwell stresses via two ring electrodes concentric with the slightly conducting bridge to offset the growth of the unstable mode. While the present work emphasizes cylindrical bridges, the methods need not be restricted to that case. The methods to be explored are relevant to the suppression of capillary instabilities in floating zone crystal growth, breakup of liquid jets and columns, bubbles, and annular films as well as the management of coolants or propellants in low-gravity.

  3. Zone plate method for electronic holographic display using resolution redistribution technique.

    PubMed

    Takaki, Yasuhiro; Nakamura, Junya

    2011-07-18

    The resolution redistribution (RR) technique can increase the horizontal viewing-zone angle and screen size of electronic holographic display. The present study developed a zone plate method that would reduce hologram calculation time for the RR technique. This method enables calculation of an image displayed on a spatial light modulator by performing additions of the zone plates, while the previous calculation method required performing the Fourier transform twice. The derivation and modeling of the zone plate are shown. In addition, the look-up table approach was introduced for further reduction in computation time. Experimental verification using a holographic display module based on the RR technique is presented.

  4. Effectiveness of Circadian countermeasures in simulated transmeridian flight schedules

    NASA Technical Reports Server (NTRS)

    Moline, Margaret L.; Monk, Timothy H.

    1989-01-01

    The symptoms of jet-lag commonly afflict travelers who cross time zones. Insomnia during the new night, daytime fatigue, malaise, sleepiness, and gastrointestinal disturbances can occur for as long as 3 weeks after jet travel across even a few time zones. These symptoms are largely due to the slow rate of adjustment of the internal circadian timing system to the new time zone. Since business (or pleasure) can be seriously interrupted by such symptoms, it is important to determine ways to speed up the adjustment process to ameliorate the symptoms. Airline pilots have reported that they frequently nap to counter jet lag symptoms, and that they view this as a useful technique. Napping as a countermeasure would be attractive since it is practical and would take advantage of a naturally occurring phase of sleepiness after lunch. Napping also makes sense since insomnia is a common jet lag symptom. Thus, a laboratory simulation of jet lag was designed to test the ability of napping to increase the rate of adjustment following a time zone shift in a population of middle-aged men.

  5. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    NASA Astrophysics Data System (ADS)

    Huang, Ni; Gu, Lianhong; Black, T. Andrew; Wang, Li; Niu, Zheng

    2015-11-01

    Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual Rs estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zone soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites. In addition, a multicollinearity problem among LST-night, root-zone soil moisture, and plant photosynthesis factor was effectively avoided by selecting the LST-night-driven model. Cross validation showed that temporal variation in Rs was captured by the LST-night-driven model with a mean absolute error below 1 µmol CO2 m-2 s-1 at both forest sites. An obvious overestimation that occurred in 2005 and 2007 at the Missouri Ozark site reduced the evaluation accuracy of cross validation because of summer drought. However, no significant difference was found between the Arrhenius-type function driven by LST-night and the function considering LST-night and root-zone soil moisture. This finding indicated that the contribution of soil moisture to Rs was relatively small at our multiyear data set. To predict intersite Rs, maximum leaf area index (LAImax) was used as an upscaling factor to calibrate the site-specific reference respiration rates. Independent validation demonstrated that the model incorporating LST-night and LAImax efficiently predicted the spatial and temporal variabilities of Rs. Based on the Arrhenius-type function using LST-night as an input parameter, the rates of annual C release from Rs were 894-1027 g C m-2 yr-1 at the BC-Campbell River 1949 Douglas-fir site and 818-943 g C m-2 yr-1 at the Missouri Ozark site. The ratio between annual Rs estimates based on remotely sensed data and the total annual ecosystem respiration from eddy covariance measurements fell within the range reported in previous studies. Our results demonstrated that estimating annual Rs based on remote sensing data products was possible at deciduous and evergreen forest sites.

  6. Satellite observation of bio-optical indicators related to North-Western Black Sea coastal zone changes

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    Satellite remote sensing provides a means for locating, identifying and mapping certain coastal zone features and assessing of spatio-temporal changes.The Romanian coastal zone of the Black Sea is a mosaic of complex, interacting ecosystems, exposed to dramatic changes due to natural and anthropogenic causes (increase in the nutrient and pollutant load of rivers input, industrial and municipal wastewater pollution along the coast, and dumping on the open sea). This study focuses on the assessment of coastal zone land cover changes based on the fusion of satellite remote sensing data.The evaluation of coastal zone landscapes is based upon different sub-functions which refer to landscape features such as water, soil, land-use, buildings, groundwater, biotope types. Mixed pixels result when the sensor's instantaneous field-of-view includes more than one land cover class on the ground. Based on different satellite data (Landsat TM, ETM, SAR ERS, IKONOS, Quickbird, and MODIS) was performed object recognition for North-Western Black Sea coastal zone. Preliminary results show significant coastline position changes of North Western Black Sea during the period of 1987-2007 and urban growth of Constantza town. Also the change in the position of the coastline is examined and linked to the urban expansion in order to determine if the changes are natural or anthropogenic. A distinction is made between landfill/sedimentation processes on the one hand and dredging/erosion processes on the other. Waves play an important role for shoreline configuration. Wave pattern could induce erosion and sedimentation. A quasi-linear model was used to model the rate of shoreline change. The vectors of shoreline were used to compare with wave spectra model in order to examine the accuracy of the coastal erosion model. The shoreline rate modeled from vectors data of SAR ERS-1 has a good correlation with a quasi-linear model. Wave refraction patterns are a good index for shoreline erosion. A coast-parallel wind drives the surface layer of water almost directly offshore. Removing the surface layer causes deeper water, with different characteristics (e.g. colder and with higher salinity), to upwell along the coast. The upwelling signal is strong influenced by the seasonal cycle, the upwelling effects have strong influence on the marine ecosystems, which are all localized in the first 100-200 m.

  7. Work zone simulator analysis : driver performance and acceptance of alternate merge sign configurations.

    DOT National Transportation Integrated Search

    2016-06-01

    Improving work zone road safety is an issue of great interest due to the high number of crashes observed in work : zones. Departments of Transportation (DOTs) use a variety of methods to inform drivers of upcoming work zones. One method : used by DOT...

  8. Assessment of the dynamics of urbanized areas by remote sensing

    NASA Astrophysics Data System (ADS)

    Yeprintsev, S. A.; Klevtsova, M. A.; Lepeshkina, L. A.; Shekoyan, S. V.; Voronin, A. A.

    2018-01-01

    This research looks at the results of a study of spatial ecological zoning of urban territories using the NDVI-analysis of actual multi-channel satellite images from Landsat-7 and Landsat-8 in the Voronezh region for the period 2001 to 2016. The results obtained in the course of interpretation of space images and processing of statistical information compiled in the GIS environment “Ecology of cities Voronezh region” on the basis of which carried out a comprehensive ecological zoning of the studied urbanized areas. The obtained data on the spatial classification of urban and suburban areas, the peculiarities of the dynamics of weakly and strongly anthropogenically territories, hydrological features and vegetation.

  9. The Regulation of Growth in the Distal Elongation Zone of Maize Roots

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1998-01-01

    The major goals of the proposed research were 1. To develop specialized software for automated whole surface root expansion analysis and to develop technology for controlled placement of surface electrodes for analysis of relationships between root growth and root pH and electrophysiological properties. 2. To measure surface pH patterns and determine the possible role of proton flux in gravitropic sensing or response, and 3. To determine the role of auxin transport in establishment of patterns of proton flux and electrical gradients during the gravitropic response of roots with special emphasis on the role of the distal elongation zone in the early phases of the gravitropic response.

  10. System and method for treatment of a medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Surinder Prabhjot; Acharya, Harish Radhakrishna; Perry, Robert James

    2017-05-23

    A system and method for treatment of a medium is disclosed. The system includes a plurality of separator zones and a plurality of heat transfer zones. Each of the separator zone and the heat transfer zone among the plurality of separator zones and heat transfer zones respectively, are disposed alternatively in a flow duct. Further, each separator zone includes an injector device for injecting a sorbent into the corresponding separator zone. Within the corresponding separator zone, the injected sorbent is reacted with a gaseous medium flowing in the flow duct, so as to generate a reacted gaseous medium and amore » reacted sorbent. Further, each heat transfer zone exchanges heat between the reacted gaseous medium fed from the corresponding separator zone and a heat transfer medium.« less

  11. DNA sensing via the Stimulator of Interferon Genes (STING) adaptor in myeloid dendritic cells induces potent tolerogenic responses1

    PubMed Central

    Huang, Lei; Li, Lingqian; Lemos, Henrique; Chandler, Phillip R.; Pacholczyk, Gabriela; Baban, Babak; Barber, Glen N.; Hayakawa, Yoshihiro; McGaha, Tracy L.; Ravishankar, Buvana; Munn, David H.; Mellor, Andrew L.

    2013-01-01

    Cytosolic DNA sensing via the STING adaptor incites autoimmunity by inducing type I IFN (IFNαβ). Here we show that DNA is also sensed via STING to suppress immunity by inducing indoleamine 2,3 dioxygenase (IDO). STING gene ablation abolished IFNαβ and IDO induction by dendritic cells (DCs) after DNA nanoparticle (DNP) treatment. Marginal zone macrophages, some DCs and myeloid cells ingested DNPs but CD11b+ DCs were the only cells to express IFNβ, while CD11b+ non-DCs were major IL-1β producers. STING ablation also abolished DNP-induced regulatory responses by DCs and regulatory T cells (Tregs), and hallmark regulatory responses to apoptotic cells were also abrogated. Moreover, systemic cyclic diguanylate monophosphate (c-diGMP) treatment to activate STING induced selective IFNβ expression by CD11b+ DCs and suppressed Th1 responses to immunization. Thus, previously unrecognized functional diversity amongst physiologic innate immune cells regarding DNA sensing via STING is pivotal in driving immune responses to DNA. PMID:23986532

  12. Using remote sensing and machine learning for the spatial modelling of a bluetongue virus vector

    NASA Astrophysics Data System (ADS)

    Van doninck, J.; Peters, J.; De Baets, B.; Ducheyne, E.; Verhoest, N. E. C.

    2012-04-01

    Bluetongue is a viral vector-borne disease transmitted between hosts, mostly cattle and small ruminants, by some species of Culicoides midges. Within the Mediterranean basin, C. imicola is the main vector of the bluetongue virus. The spatial distribution of this species is limited by a number of environmental factors, including temperature, soil properties and land cover. The identification of zones at risk of bluetongue outbreaks thus requires detailed information on these environmental factors, as well as appropriate epidemiological modelling techniques. We here give an overview of the environmental factors assumed to be constraining the spatial distribution of C. imicola, as identified in different studies. Subsequently, remote sensing products that can be used as proxies for these environmental constraints are presented. Remote sensing data are then used together with species occurrence data from the Spanish Bluetongue National Surveillance Programme to calibrate a supervised learning model, based on Random Forests, to model the probability of occurrence of the C. imicola midge. The model will then be applied for a pixel-based prediction over the Iberian peninsula using remote sensing products for habitat characterization.

  13. The exploration and prevention of mine water invasion in Feicheng area based on RS

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Guo; Wang, Ping; Ting, He

    2004-10-01

    Recently, when the ninth and tenth were mined in Feiching city mining area, several mine wells occurred on water invasion. Based on systematic interpretation of TMimages in Fei Cheng mining area, authors find that there are five zones of NS trending lineaments, which nearly distribute in radial in TM images. Image processing can be divided into three types, they are spectrum enhancement, spatial filtering and data fusion, the useful methods in this area are auto-adaptive enhancement, density slicing and K-L transform. With ninth and tenth seam coals mined, three mines of east area have broken out serious accidents of water. Statistical materials and the test of water quality drawing off five limestone indicates water-yielding zone near NS, NNE, and NW trending faults, or near intersection point of its and others. In order to solve the problem, using remote sensing and other techniques, we try to find some influential factors on mine flow. Further analyses, such as, the exploration of geology on earth, and microcosmic from rock slice, the authors find that there are some reasons which lead to water invasion such as geological structure, karsts, index and so on, in which the main reason might be north-south deep fracture which is the pathway of well water's distribution, migration and recharge of mine water. There being more complicate geologic structure in the west of mine area, at last, with RS authors point out important zone of mine water invasion which the prevention-control of hazards from mine water and some measures to avoid water blast in future.

  14. 76 FR 13549 - Reducing Regulatory Burden; Retrospective Review Under E.O. 13563

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ....S.C. 1431 et seq.; Coastal Zone Management Act, 16 U.S.C. 1415, et seq.; and Land Remote Sensing... that NOAA can use to assure that its regulations promote and achieve its mission in ways that are... consideration to the responses, and may use them as appropriate during the retrospective review, but we do not...

  15. Earth resources requirements Skylab missions SL-1/SL-2, SL-3, and SL-4. Appendix B: Mission requirements

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Earth resources requirements to be investigated by Skylab missions 1 through 4 are presented tabularly. Areas to be investigated include: (1) agriculture, range, and forestry; (2) geology; (3) continental water resources; (4) ocean investigations; (5) atmospheric investigations; (6) coastal zones, shoals, and bays; (7) remote sensing techniques; and (8) cartography.

  16. Remote sensing of WUI fuel treatment effectiveness following the 2007 wildfires in central Idaho

    Treesearch

    Andrew T. Hudak; Theresa B. Jain; Penelope Morgan; Jess T. Clark

    2011-01-01

    The 2007 East Zone and Cascade wildfires in central Idaho burned through fuel treatments in the wildland-urban interface (WUI) surrounding two local communities: Secesh Meadows and Warm Lake. The WUI fuel treatments funded by the National Fire Plan were designed to increase fire fighter safety, protect people and property, and mitigate severe fire effects on natural...

  17. Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LIDAR

    Treesearch

    Jim McKean; Dave Nagel; Daniele Tonina; Philip Bailey; Charles Wayne Wright; Carolyn Bohn; Amar Nayegandhi

    2009-01-01

    The high-resolution Experimental Advanced Airborne Research LIDAR (EAARL) is a new technology for cross-environment surveys of channels and floodplains. EAARL measurements of basic channel geometry, such as wetted cross-sectional area, are within a few percent of those from control field surveys. The largest channel mapping errors are along stream banks. The LIDAR data...

  18. Multispectral Thermal Infrared Mapping of Sulfur Dioxide Plumes: A Case Study from the East Rift Zone of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Realmuto, V. J.; Sutton, A. J.; Elias, T.

    1996-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well-suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS).

  19. Making Sense of the ZPD: An Organising Framework for Mathematics Education Research

    ERIC Educational Resources Information Center

    Stott, Debbie

    2016-01-01

    The zone of proximal development (ZPD) is a well-known and frequently used notion in both educational research and practice with a wide and diverse range of interpretations. My aim in writing this theoretical article is not to provide a critical examination or an extensive literature review of the ZPD, but rather to highlight some significant…

  20. Revising the Seed Zones for Southern Pines

    Treesearch

    Ronald C. Schmidtling

    1999-01-01

    Early foresters had a sense that using local seed sources was the best for afforestation, although this was often based more on intuition than experience. Non-local planting stock has often been used in-the past. In the reforestation carried out by the Civilian Conservation Corps in the 1930's, for instance, an effort was made to use native seed sources, but...

  1. Differences in quantitative assessment of myocardial scar and gray zone by LGE-CMR imaging using established gray zone protocols.

    PubMed

    Mesubi, Olurotimi; Ego-Osuala, Kelechi; Jeudy, Jean; Purtilo, James; Synowski, Stephen; Abutaleb, Ameer; Niekoop, Michelle; Abdulghani, Mohammed; Asoglu, Ramazan; See, Vincent; Saliaris, Anastasios; Shorofsky, Stephen; Dickfeld, Timm

    2015-02-01

    Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging is the gold standard for myocardial scar evaluation. Heterogeneous areas of scar ('gray zone'), may serve as arrhythmogenic substrate. Various gray zone protocols have been correlated to clinical outcomes and ventricular tachycardia channels. This study assessed the quantitative differences in gray zone and scar core sizes as defined by previously validated signal intensity (SI) threshold algorithms. High quality LGE-CMR images performed in 41 cardiomyopathy patients [ischemic (33) or non-ischemic (8)] were analyzed using previously validated SI threshold methods [Full Width at Half Maximum (FWHM), n-standard deviation (NSD) and modified-FWHM]. Myocardial scar was defined as scar core and gray zone using SI thresholds based on these methods. Scar core, gray zone and total scar sizes were then computed and compared among these models. The median gray zone mass was 2-3 times larger with FWHM (15 g, IQR: 8-26 g) compared to NSD or modified-FWHM (5 g, IQR: 3-9 g; and 8 g. IQR: 6-12 g respectively, p < 0.001). Conversely, infarct core mass was 2.3 times larger with NSD (30 g, IQR: 17-53 g) versus FWHM and modified-FWHM (13 g, IQR: 7-23 g, p < 0.001). The gray zone extent (percentage of total scar that was gray zone) also varied significantly among the three methods, 51 % (IQR: 42-61 %), 17 % (IQR: 11-21 %) versus 38 % (IQR: 33-43 %) for FWHM, NSD and modified-FWHM respectively (p < 0.001). Considerable variability exists among the current methods for MRI defined gray zone and scar core. Infarct core and total myocardial scar mass also differ using these methods. Further evaluation of the most accurate quantification method is needed.

  2. Assessment and mapping of water pollution indices in zone-III of municipal corporation of hyderabad using remote sensing and geographic information system.

    PubMed

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2005-01-01

    A preliminary survey of area under Zone-III of MCH was undertaken to assess the ground water quality, demonstrate its spatial distribution and correlate with the land use patterns using advance techniques of remote sensing and geographical information system (GIS). Twenty-seven ground water samples were collected and their chemical analysis was done to form the attribute database. Water quality index was calculated from the measured parameters, based on which the study area was classified into five groups with respect to suitability of water for drinking purpose. Thematic maps viz., base map, road network, drainage and land use/land cover were prepared from IRS ID PAN + LISS III merged satellite imagery forming the spatial database. Attribute database was integrated with spatial sampling locations map in Arc/Info and maps showing spatial distribution of water quality parameters were prepared in Arc View. Results indicated that high concentrations of total dissolved solids (TDS), nitrates, fluorides and total hardness were observed in few industrial and densely populated areas indicating deteriorated water quality while the other areas exhibited moderate to good water quality.

  3. A Multi-D-Shaped Optical Fiber for Refractive Index Sensing

    PubMed Central

    Chen, Chien-Hsing; Tsao, Tzu-Chein; Tang, Jaw-Luen; Wu, Wei-Te

    2010-01-01

    A novel class of multi-D-shaped optical fiber suited for refractive index measurements is presented. The multi-D-shaped optical fiber was constructed by forming several D-sections in a multimode optical fiber at localized regions with femtosecond laser pulses. The total number of D-shaped zones fabricated could range from three to seven. Each D-shaped zone covered a sensor volume of 100 μm depth, 250 μm width, and 1 mm length. The mean roughness of the core surface obtained by the AFM images was 231.7 nm, which is relatively smooth. Results of the tensile test indicated that the fibers have sufficient mechanical strength to resist damage from further processing. The multi-D-shaped optical fiber as a high sensitive refractive-index sensor to detect changes in the surrounding refractive index was studied. The results for different concentrations of sucrose solution show that a resolution of 1.27 × 10−3–3.13 × 10−4 RIU is achieved for refractive indices in the range of 1.333 to 1.403, suggesting that the multi-D-shaped fibers are attractive for chemical, biological, and biochemical sensing with aqueous solutions. PMID:22399908

  4. Hyperspectral remote sensing applied to mineral exploration in southern Peru: A multiple data integration approach in the Chapi Chiara gold prospect

    NASA Astrophysics Data System (ADS)

    Carrino, Thais Andressa; Crósta, Alvaro Penteado; Toledo, Catarina Labouré Bemfica; Silva, Adalene Moreira

    2018-02-01

    Remote sensing is a strategic key tool for mineral exploration, due to its capacity of detecting hydrothermal alteration minerals or alteration mineral zones associated with different types of mineralization systems. A case study of an epithermal system located in southern Peru is presented, aimed at the characterization of mineral assemblies for discriminating potential high sulfidation epithermal targets, using hyperspectral imagery integrated with petrography, XRD and magnetic data. HyMap images were processed using the Mixture Tuned Matched Filtering (MTMF) technique for producing alteration map in the Chapi Chiara epithermal gold prospect. Extensive areas marked by advanced argillic alteration (alunite-kaolinite-dickite ± topaz) were mapped in detail, as well as limited argillic (illite-smectite) and propylitic (chlorite spectral domain) alteration. The magmatic-hydrothermal processes responsible for the formation of hypogene minerals were also related to the destruction of ferrimagnetic minerals (e.g., magnetite) of host rocks such as andesite, and the remobilization/formation of paramagnetic Fe-Ti oxides (e.g., rutile, anatase). The large alteration zones of advanced argillic alteration are controlled by structures related to a regional NW-SE trend, and also by local NE-SW and ENE-WSW ones.

  5. Be together, not the same: Spatiotemporal organization of different cilia types generates distinct transport functions

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Guo, Hanliang; Ruby, Edward; Dabiri, John; McFall-Ngai, Margaret; Kanso, Eva

    2016-11-01

    Motile cilia are microscopic, hair-like structures on the cell surface that can sense and propel the extracellular fluid environment. Cilia are often thought to be limited to stereotypic morphologies, beat kinematics and non-discriminatory clearance functions, but we find that the spatiotemporal organization of different cilia types and beat behaviors can generate complex flow patterns and transport functions. Here, we present a case study in the Hawaiian bobtail squid where collective ciliary activity and resulting flow fields help recruit symbiont bacteria to the animal host. In particular, we demonstrate empirically and computationally how the squid's internal cilia act like a microfluidic device that actively filters the water for potential bacterial candidates and also provides a sheltered zone allowing for accumulation of mucus and bacteria into a biofilm. Moreover, in this sheltered zone, different cilia-driven flows enhance diffusion of biochemical signals, which could accelerate specific bacteria-host recognition. These results suggest that studying cilia activity on the population level might reveal a diverse range of biological transport and sensing functions. Moreover, understanding cilia as functional building blocks could inspire the design of ciliated robots and devices.

  6. Shallow observatory installations unravel earthquake processes in the Nankai accretionary complex (IODP Expedition 365)

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Saffer, D. M.; Toczko, S.

    2016-12-01

    NanTroSEIZE is a multi-expedition IODP project to investigate fault mechanics and seismogenesis along the Nankai Trough subduction zone through direct sampling, in situ measurements, and long-term monitoring. Recent Expedition 365 had three primary objectives at a major splay thrust fault (termed the "megasplay") in the forearc: (1) retrieval of a temporary observatory (termed a GeniusPlug) that has been monitoring temperature and pore pressure within the fault zone at 400 meters below seafloor for since 2010; (2) deployment of a complex long-term borehole monitoring system (LTBMS) across the same fault; and (3) coring of key sections of the hanging wall, deformation zone and footwall of the shallow megasplay. Expedition 365 achieved its primary monitoring objectives, including recovery of the GeniusPlug with a >5-year record of pressure and temperature conditions, geochemical samples, and its in situ microbial colonization experiment; and installation of the LTBMS. The pressure records from the GeniusPlug include high-quality records of formation and seafloor responses to multiple fault slip events, including the 2011 M9 Tohoku and the 1 April Mie-ken Nanto-oki M6 earthquakes. The geochemical sampling coils yielded in situ pore fluids from the fault zone, and microbes were successfully cultivated from the colonization unit. The LTBMS incorporates multi-level pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. This multi-level hole completion was meanwhile connected to the DONET seafloor cabled network for tsunami early warning and earthquake monitoring. Coring the shallow megasplay site in the Nankai forearc recovered ca. 100m of material across the fault zone, which contained indurated silty clay with occasional ash layers and sedimentary breccias in the hangingwall and siltstones in the footwall of the megasplay. The mudstones show different degrees of deformation spanning from occasional fractures to intensely fractured scaly claystones of up to >10 cm thickness. Sparse faulting with low displacement (usually <2cm) is seen with both normal and reverse sense of slip. Post-cruise rock deformation experiments will relate physical properties to the earthquake response monitored by the observatory array.

  7. Focused seismicity triggered by flank instability on Kīlauea's Southwest Rift Zone

    NASA Astrophysics Data System (ADS)

    Judson, Josiah; Thelen, Weston A.; Greenfield, Tim; White, Robert S.

    2018-03-01

    Swarms of earthquakes at the head of the Southwest Rift Zone on Kīlauea Volcano, Hawai´i, reveal an interaction of normal and strike-slip faulting associated with movement of Kīlauea's south flank. A relocated subset of earthquakes between January 2012 and August 2014 are highly focused in space and time at depths that are coincident with the south caldera magma reservoir beneath the southern margin of Kīlauea Caldera. Newly calculated focal mechanisms are dominantly dextral shear with a north-south preferred fault orientation. Two earthquakes within this focused area of seismicity have normal faulting mechanisms, indicating two mechanisms of failure in very close proximity (10's of meters to 100 m). We suggest a model where opening along the Southwest Rift Zone caused by seaward motion of the south flank permits injection of magma and subsequent freezing of a plug, which then fails in a right-lateral strike-slip sense, consistent with the direction of movement of the south flank. The seismicity is concentrated in an area where a constriction occurs between a normal fault and the deeper magma transport system into the Southwest Rift Zone. Although in many ways the Southwest Rift Zone appears analogous to the more active East Rift Zone, the localization of the largest seismicity (>M2.5) within the swarms to a small volume necessitates a different model than has been proposed to explain the lineament outlined by earthquakes along the East Rift Zone.

  8. Analysis of zone of vulnurability and impact of forest fires in forest ecosystems in north algeria by susing remote sensing

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2010-05-01

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), witch leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region named TLEMCEN in the north west of Algeria. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. We identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a GIS according to a very determined logic allowed classifying the zones in degree of risk of fire in semi arid zone witch forest zone not encouraging the regeneration but permitting the installation of cash of steppe which encourages the desertification.

  9. Volcanic geothermal system in the Main Ethiopian Rift: insights from 3D MT finite-element inversion and other exploration methods

    NASA Astrophysics Data System (ADS)

    Samrock, F.; Grayver, A.; Eysteinsson, H.; Saar, M. O.

    2017-12-01

    In search for geothermal resources, especially in exploration for high-enthalpy systems found in regions with active volcanism, the magnetotelluric (MT) method has proven to be an efficient tool. Electrical conductivity of the subsurface, imaged by MT, is used for detecting layers of electrically highly conductive clays which form around the surrounding strata of hot circulating fluids and for delineating magmatic heat sources such as zones with partial melting. We present a case study using a novel 3-D inverse solver, based on adaptive local mesh refinement techniques, applied to decoupled forward and inverse mesh parameterizations. The flexible meshing allows accurate representation of surface topography, while keeping computational costs at a reasonable level. The MT data set we analyze was measured at 112 sites, covering an area of 18 by 11 km at a geothermal prospect in the Main Ethiopian Rift. For inverse modelling, we tested a series of different settings to ensure that the recovered structures are supported by the data. Specifically, we tested different starting models, regularization functionals, sets of transfer functions, with and without inclusion of topography. Several robust subsurface structures were revealed. These are prominent features of a high-enthalpy geothermal system: A highly conductive shallow clay cap occurs in an area with high fumarolic activity, and is underlain by a more resistive zone, which is commonly interpreted as a propylitic reservoir and is the main geothermal target for drilling. An interesting discovery is the existence of a channel-like conductor connecting the geothermal field at the surface with an off-rift conductive zone, whose existence was proposed earlier as being related to an off-rift volcanic belt along the western shoulder of the Main Ethiopian Rift. The electrical conductivity model is interpreted together with results from other geoscientific studies and outcomes from satellite remote sensing techniques.

  10. Survey of remote sensing applications

    USGS Publications Warehouse

    Deutsch, Morris

    1974-01-01

    Data from the first earth resources technology satellite (ERTS) as well as from NASA and other aircraft, contain much of the information indicative of the distribution of groundwater and the extent of its utilization. Thermal infrared imagery from aircraft is particularly valuable in studying groundwater discharge to the sea and other surface water bodies. Color infrared photography from aircraft and space is also used to locate areas of potential groundwater development. Anomalies in vegetation, soils, moisture, and their pattern of distribution may be indicative of underlying groundwater conditions. Remote sensing may be used directly or indirectly to identify stream reaches for test holes or production wells. Similarly, location of submarine springs increase effectiveness of groundwater exploration in the coastal zone.

  11. Mobile Monitoring and Embedded Control System for Factory Environment

    PubMed Central

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  12. Mobile monitoring and embedded control system for factory environment.

    PubMed

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-12-17

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.

  13. Validation of potential fishing zone forecast using experimental fishing method in Tolo Bay, Central Sulawesi Province

    NASA Astrophysics Data System (ADS)

    Rintaka, W. E.; Susilo, E.

    2018-04-01

    The national scale of Indonesian Potential Fishing Zone (PFZ) forecast system has been established since 2000. Recent times this system use Single Image Edge Detection algorithm to automatically identify thermal front from remote sensing images. Its generate two fishing ground/FG criteria: FG (high probability) and potential fishing ground/PFG (medium/low probability). To quantify the accuracy of this algorithm, an experimental fishing/EF was carried out in Tolo Bay, Central Sulawesi Province at September 2016 the late southeast monsoon period by using a pole and line fishing vessel. Four fishing activities (P1, P2, P3, and P4) were conducted during this study at a different location nearby the PFZ forecast position, two of them had good results. Based on distance measurement, these locations P1 and P4 were associated with PFZ forecast position. They were associated with PFG and FG criteria. The distance between EF to P1 and P4 were 9.7 and 6.69 nautical miles. The amount of catch for each location was 850 and 900 kg, respectively. The other locations P2 and P3 were also associated with PFG criteria, but there was no catch. We conclude that the number of the catch is influenced by the distance from PFZ forecast position and criteria.

  14. The Estimation of Surface Latent Heat Flux over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.; Demoz, Belay B.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data, and microwave scatterometer data acquired onboard the NASA P-313 research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from scatterometers and lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via a bulk aerodynamic formula. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased low by about 15 W/sq m. In addition, the Marine Atmospheric Boundary Layer (MABL) height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone depth, MABL height and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.39, 0.43 and 0.71, respectively.

  15. The Estimation of Surface Latent Heat Flux Over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Miller, David O.; Schwemmer, Geary

    2000-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method uses aerosol lidar backscatter data, multi-channel infrared radiometer data and microwave scatterometer data acquired onboard the NASA P-3B research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from the scatterometers and the lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via bulk aerodynamic formulae. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement with an rms error and bias of about 50 and 25 W per square meters, respectively. In addition, the MABL height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone top, bottom and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.62, 0.67 and 0.61, respectively.

  16. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    USGS Publications Warehouse

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  17. Investigation of the dynamics of ephemeral gully erosion on arable land of the forest-steppe and steppe zone of the East of the Russian Plain from remote sensing data

    NASA Astrophysics Data System (ADS)

    Platoncheva, E. V.

    2018-01-01

    Spatio-temporal estimation of the erosion of arable soils is still an urgent task, in spite of the numerous methods of such assessments. Development of information technologies, the emergence of high and ultra-high resolution images allows reliable identification of linear forms of erosion to determine its dynamics on arable land. The study drew attention to the dynamics of the most active erosion unit - an ephemeral gully. The estimation of the dynamics was carried out on the basis of different space images for the maximum possible period (from 1986 to 2016). The cartographic method was used as the main research method. Identification of a belt of ephemeral gully erosion based on materials of multi-zone space surveys and GIS-technology of their processing was carried out. In the course of work with satellite imagery and subsequent verification of the received data on the ground, the main signs of deciphering the ephemeral gully network were determined. A methodology for geoinformation mapping of the dynamics of ephemeral gully erosion belt was developed and a system of indicators quantitatively characterizing its development on arable slopes was proposed. The evaluation of the current ephemeral gully network based on the interpretation of space images includes the definition of such indicators of ephemeral gully erosion as the density of the ephemeral gully net, the density of the ephemeral gullies, the area and linear dynamics of the ephemeral gully network. Preliminary results of the assessment of the dynamics of the belt erosion showed an increase in all quantitative indicators of ephemeral gully erosion for the observed period.

  18. Oil Slick Characterization with UAVSAR

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Holt, B.

    2017-12-01

    Although radar has long been used for mapping the spatial extent of oil slicks, its capability for characterizing oil, e.g., to discriminate thicker from thinner oil or mineral slicks from look-alikes, is far less well defined. In fact, the capability of SAR to quantify the oil-to-water ratio of emulsions within slicks on the open water was first demonstrated using UAVSAR data acquired over the 2010 Deepwater Horizon spill in the Gulf of Mexico [Minchew et al., 2012]. UAVSAR's capability was made possible by the airborne instrument's high signal-to-noise ratio, which enabled it to measure low backscatter signals from oil-smoothed water that are often near or below the noise floor of satellite SAR instruments. Since 2010, UAVSAR has been used to study oil slicks through experiments in Norway (2015) and the Gulf of Mexico. In November 2016, UAVSAR took part in a NOAA-led experiment to study remote sensing of oil slicks, which took place at the site of a persistent seep in the Gulf of Mexico. The goal was to use remote sensing to identify zones of thicker oil, which is the type of information that could direct emergency responders for more effective clean-up. The objectives of the experiment were to validate and compare different remote sensing methods' capabilities for measuring the thickness of oil within a slick on open water under environmental conditions typical of oil spills. In this presentation, we show the results from UAVSAR for determining oil thickness within a slick, and relate them to the standard method of oil slick classification, the Bonn Agreement oil appearance code used by trained observers in the field. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the California Dept. of Water Resources and with the National Aeronautics and Space Administration.

  19. Validation of Body Volume Acquisition by Using Elliptical Zone Method.

    PubMed

    Chiu, C-Y; Pease, D L; Fawkner, S; Sanders, R H

    2016-12-01

    The elliptical zone method (E-Zone) can be used to obtain reliable body volume data including total body volume and segmental volumes with inexpensive and portable equipment. The purpose of this research was to assess the accuracy of body volume data obtained from E-Zone by comparing them with those acquired from the 3D photonic scanning method (3DPS). 17 male participants with diverse somatotypes were recruited. Each participant was scanned twice on the same day by a 3D whole-body scanner and photographed twice for the E-Zone analysis. The body volume data acquired from 3DPS was regarded as the reference against which the accuracy of the E-Zone was assessed. The relative technical error of measurement (TEM) of total body volume estimations was around 3% for E-Zone. E-Zone can estimate the segmental volumes of upper torso, lower torso, thigh, shank, upper arm and lower arm accurately (relative TEM<10%) but the accuracy for small segments including the neck, hand and foot were poor. In summary, E-Zone provides a reliable, inexpensive, portable, and simple method to obtain reasonable estimates of total body volume and to indicate segmental volume distribution. © Georg Thieme Verlag KG Stuttgart · New York.

  20. [Research progress on remote sensing of ecological and environmental changes in the Three Gorges Reservoir area, China].

    PubMed

    Teng, Ming-jun; Zeng, Li-xiong; Xiao, Wen-fa; Zhou, Zhi-xiang; Huang, Zhi-lin; Wang, Peng-cheng; Dian, Yuan-yong

    2014-12-01

    The Three Gorges Reservoir area (TGR area) , one of the most sensitive ecological zones in China, has dramatically changes in ecosystem configurations and services driven by the Three Gorges Engineering Project and its related human activities. Thus, understanding the dynamics of ecosystem configurations, ecological processes and ecosystem services is an attractive and critical issue to promote regional ecological security of the TGR area. The remote sensing of environment is a promising approach to the target and is thus increasingly applied to and ecosystem dynamics of the TGR area on mid- and macro-scales. However, current researches often showed controversial results in ecological and environmental changes in the TGR area due to the differences in remote sensing data, scale, and land-use/cover classification. Due to the complexity of ecological configurations and human activities, challenges still exist in the remote-sensing based research of ecological and environmental changes in the TGR area. The purpose of this review was to summarize the research advances in remote sensing of ecological and environmental changes in the TGR area. The status, challenges and trends of ecological and environmental remote-sensing in the TGR area were further discussed and concluded in the aspect of land-use/land-cover, vegetation dynamics, soil and water security, ecosystem services, ecosystem health and its management. The further researches on the remote sensing of ecological and environmental changes were proposed to improve the ecosystem management of the TGR area.

  1. A new climatic classification of afforestation in Three-North regions of China with multi-source remote sensing data

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao; Zhu, Jiaojun

    2017-01-01

    Afforestation and reforestation activities achieve high attention at the policy agenda as measures for carbon sequestration in order to mitigate climate change. The Three-North Shelter Forest Program, the largest ecological afforestation program worldwide, was launched in 1978 and will last until 2050 in the Three-North regions (accounting for 42.4 % of China's territory). Shelter forests of the Three-North Shelter Forest Program have exhibited severe decline after planting in 1978 due to lack of detailed climatic classification. Besides, a comprehensive assessment of climate adaptation for the current shelter forests was lacking. In this study, the aridity index determined by precipitation and reference evapotranspiration was employed to classify climatic zones for the afforestation program. The precipitation and reference evapotranspiration with 1-km resolution were estimated based on data from the tropical rainfall measuring mission and moderate resolution imaging spectroradiometer, respectively. Then, the detailed climatic classification for the afforestation program was obtained based on the relationship between the different vegetation types and the aridity index. The shelter forests in 2008 were derived from Landsat TM in the Three-North regions. In addition, climatic zones and shelter forests were corrected by comparing with natural vegetation map and field surveys. By overlaying the shelter forests on the climatic zones, we found that 16.30 % coniferous forests, 8.21 % broadleaved forests, 2.03 % mixed conifer-broadleaved forests, and 10.86 % shrubs were not in strict accordance with the climate conditions. These results open new perspectives for potential use of remote sensing techniques for afforestation management.

  2. Evaluating the Utility of Remotely-Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Crow, Wade T.; Zhan, Xiwu; Jackson, Thomas J.; Reynolds,Curt

    2010-01-01

    Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.

  3. Method for producing metallic nanoparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  4. Discrete model of gas-free spin combustion of a powder mixture

    NASA Astrophysics Data System (ADS)

    Klimenok, Kirill L.; Rashkovskiy, Sergey A.

    2015-01-01

    We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.

  5. Discrete model of gas-free spin combustion of a powder mixture.

    PubMed

    Klimenok, Kirill L; Rashkovskiy, Sergey A

    2015-01-01

    We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.

  6. Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Gilroy, Simon

    2003-01-01

    Plants must sense and respond to diverse stimuli to optimize the architecture of their root system for water and nutrient scavenging and anchorage. We have therefore analyzed how information from two of these stimuli, touch and gravity, are integrated to direct root growth. In Arabidopsis thaliana, touch stimulation provided by a glass barrier placed across the direction of growth caused the root to form a step-like growth habit with bends forming in the central and later the distal elongation zones. This response led to the main root axis growing parallel to, but not touching the obstacle, whilst the root cap maintained contact with the barrier. Removal of the graviperceptive columella cells of the root cap using laser ablation reduced the bending response of the distal elongation zone. Similarly, although the roots of the gravisensing impaired pgm1-1 mutant grew along the barrier at the same average angle as wild-type, this angle became more variable with time. These observations imply a constant gravitropic re-setting of the root tip response to touch stimulation from the barrier. In wild-type plants, transient touch stimulation of root cap cells, but not other regions of the root, inhibited both subsequent gravitropic growth and amyloplast sedimentation in the columella. Taken together, these results suggest that the cells of the root cap sense touch stimuli and their subsequent signaling acts on the columella cells to modulate their graviresponse. This interaction of touch and gravity signaling would then direct root growth to avoid obstacles in the soil while generally maintaining downward growth.

  7. Integrationof Remote Sensing and Geographic information system in Ground Water Quality Assessment and Management

    NASA Astrophysics Data System (ADS)

    Shakak, N.

    2015-04-01

    Spatial variations in ground water quality in the Khartoum state, Sudan, have been studied using geographic information system (GIS) and remote sensing technique. Gegraphical informtion system a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground water quality information. Khartoum landsat mosac image aquired in 2013was used, Arc/Gis software applied to extract the boundary of the study area, the image was classified to create land use/land cover map. The land use map,geological and soil map are used for correlation between land use , geological formations, and soil types to understand the source of natural pollution that can lower the ground water quality. For this study, the global positioning system (GPS), used in the field to identify the borehole location in a three dimentional coordinate (Latitude, longitude, and altitude), water samples were collected from 156 borehole wells, and analyzed for physico-chemical parameters like electrical conductivity, Total dissolved solid,Chloride, Nitrate, Sodium, Magnisium, Calcium,and Flouride, using standard techniques in the laboratory and compared with the standards.The ground water quality maps of the entire study area have been prepared using spatial interpolation technique for all the above parameters.then the created maps used to visualize, analyze, and understand the relationship among the measured points. Mapping was coded for potable zones, non-potable zones in the study area, in terms of water quality sutability for drinking water and sutability for irrigation. In general satellite remote sensing in conjunction with geographical information system (GIS) offers great potential for water resource development and management.

  8. Analysis of X-band radar images for the detection of the reflected and diffracted waves in coastal zones

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco

    2014-05-01

    The observation of nearshore waves and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean wave parameters such as significant height, period, direction and wavelength of the dominant wave is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the wave motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean waves from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed wave elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main waves contributing to the wave motion. Of course, in coastal zones a number of diffraction and reflection phenomena can be observed, due to sea-waves impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-waves offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no.2, pp. 231-235, April 2010. [2] Senet, C. M., Seemann, J., Flampouris, S., and Ziemer, F. (2008). Determination of bathymetric and current maps by the method DiSC based on the analysis of nautical X-Band radar image sequences of the sea surface (November 2007). IEEE Trans. on Geoscience and Remote Sensing, 46(8), 2267-2279. [3] F. Ziemer, and W. Rosenthal, "Directional spectra from shipboard navigation radar during LEWEX". Directional Ocean Wave Spectra: Measuring, Modeling, Predicting, and Applying, 1991 R. C. Beal, Ed., The Johns Hopkins University Press, pp. 125-127. [4] Weimin Huang ; Gill, E.," Surface Current Measurement Under Low Sea State Using Dual Polarized X-Band Nautical Radar", Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, vol. 5, no.6, page 186-1873, 2012.

  9. Tools and Methods for the Registration and Fusion of Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Goshtasby, Arthur Ardeshir; LeMoigne, Jacqueline

    2010-01-01

    Tools and methods for image registration were reviewed. Methods for the registration of remotely sensed data at NASA were discussed. Image fusion techniques were reviewed. Challenges in registration of remotely sensed data were discussed. Examples of image registration and image fusion were given.

  10. Distributed Temperature Sensing - a Useful Tool for Investigation of Surface Water - Groundwater Interaction

    NASA Astrophysics Data System (ADS)

    Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.

    2009-04-01

    In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007). From the travel time and attenuation of the diurnal time signal, we estimated the apparent velocity and diffusivity of temperature propagation, which then can be used to quantify infiltration rates. A particular strength of the new measuring technique lies in the high spatial and temporal resolution, enabling us to detect non-uniformity and temporal changes in vertical water fluxes. In the side-channels, we have laterally laid out optical fibers to detect zones of groundwater discharge. As groundwater temperatures differ from river temperatures, local exfiltration of groundwater leads to a local change of the temperature at the river bottom. A limitation of lateral DTS data is that exchange rates cannot directly be quantified. Therefore, we used DTS for streambed temperature mapping. Then certain exfiltration zones undergo further investigation using time series of streambed temperature profiles obtained in piezometers. J. Keery, A. Binley, N. Crook and J.W.N. Smith (2007) Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series, Journal of Hydrology, 336, 1-16.

  11. Conflict resolution in the zoning of eco-protected areas in fast-growing regions based on game theory.

    PubMed

    Lin, Jinyao; Li, Xia

    2016-04-01

    Zoning eco-protected areas is important for ecological conservation and environmental management. Rapid and continuous urban expansion, however, may exert negative effects on the performance of practical zoning designs. Various methods have been developed for protected area zoning, but most of them failed to consider the conflicts between urban development (for the benefit of land developers) and ecological protection (local government). Some real-world zoning schemes even have to be modified occasionally after the lengthy negotiations between the government and land developers. Therefore, our study has presented a game theory-based method to deal with this problem. Future urban expansion in the study area will be predicted by a logistic regression cellular automaton, while eco-protected areas will be delimitated using multi-objective optimization algorithm. Then, two types of conflicts between them can be resolved based on game theory, a theory of decision-making. We established a two-person dynamic game for each conflict zone. The ecological compensation mechanism was taken into account by simulating the negotiation processes between the government and land developers. A final zoning scheme can be obtained when the two sides reach agreements. The proposed method is applied to the eco-protected area zoning in Guangzhou, a fast-growing city in China. The experiments indicate that the conflicts between eco-protection and urban development will inevitably arise when using only traditional zoning methods. Based on game theory, our method can effectively resolve those conflicts, and can provide a relatively reasonable zoning scheme. This method is expected to support policy-making in environmental management and urban planning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Production and distribution of dilute species in semiconducting materials

    DOEpatents

    James, Ralph B.; Camarda, Giuseppe; Bolotnikov, Aleksey E.; Hossain, Anwar; Yang, Ge; Kim, Kihyun

    2016-09-06

    Technologies are described effective to implement systems and methods of producing a material. The methods comprise receiving a tertiary semiconductor sample with a dilute species. The sample has two ends. The first end of the sample includes a first concentration of the dilute species lower than a second concentration of the dilute species in the second end of the sample. The method further comprises heating the sample in a chamber. The chamber has a first zone and a second zone. The first zone having a first temperature higher than a second temperature in the second zone. The sample is orientated such that the first end is in the first zone and the second end is in the second zone.

  13. Method for coating ultrafine particles, system for coating ultrafine particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Liu, Yung

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particlesmore » with a coating moiety.« less

  14. Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones.

    PubMed

    Mishina, T; Okano, F; Yuyama, I

    1999-06-10

    The single-sideband method of holography, as is well known, cuts off beams that come from conjugate images for holograms produced in the Fraunhofer region and from objects with no phase components. The single-sideband method with half-zone-plate processing is also effective in the Fresnel region for beams from an object that has phase components. However, this method restricts the viewing zone to a narrow range. We propose a method to improve this restriction by time-alternating switching of hologram patterns and a spatial filter set on the focal plane of a reconstruction lens.

  15. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    DOEpatents

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  16. A method to assess the situation of air combat based on the missile attack zone

    NASA Astrophysics Data System (ADS)

    Shi, Zhenqing; Liang, Xiao Long; Zhang, Jiaqiang; Liu, Liu

    2018-04-01

    Aiming at the question that we rarely consider the impact of target's attack zone in traditional situation assessment so that the assessment result is not comprehensive enough, a method that takes target's attack zone into account is presented. This paper has obtained the attack zone and the non-escape zone as the basis for quantitative analysis using the rapid simulation method and the air-to-air missile mathematical model. The situation of air combat is assessed by the ratio of the advantage function values of both sides, and the advantage function is constructed based on some influential factors such as height, speed, distance and angle. The simulation results have shown the effectiveness of this method.

  17. International Models and Methods of Remote Sensing Education and Training.

    ERIC Educational Resources Information Center

    Anderson, Paul S.

    A classification of remote sensing courses throughout the world, the world-wide need for sensing instruction, and alternative instructional methods for meeting those needs are discussed. Remote sensing involves aerial photointerpretation or the use of satellite and other non-photographic imagery; its focus is to interpret what is in the photograph…

  18. Amplitude versus offset analysis to marine seismic data acquired in Nankai Trough, offshore Japan where methane hydrate exists

    NASA Astrophysics Data System (ADS)

    Hato, M.; Inamori, T.; Matsuoka, T.; Shimizu, S.

    2003-04-01

    Occurrence of methane hydrates in the Nankai Trough, located off the south-eastern coast of Japan, was confirmed by the exploratory test well drilling conducted by Japan’s Ministry of International Trade and Industry in 1999. Confirmation of methane hydrate has given so big impact to the Japan's future energy strategy and scientific and technological interest was derived from the information of the coring and logging results at the well. Following the above results, Japan National Oil Corporation (JNOC) launched the national project, named as MH21, for establishing the technology of methane hydrate exploration and related technologies such as production and development. As one of the research project for evaluating the total amount of the methane hydrate, Amplitude versus Offset (AVO) was applied to the seismic data acquired in the Nankai Trough area. The main purpose of the AVO application is to evaluate the validity of delineation of methane hydrate-bearing zones. Since methane hydrate is thought to accompany with free-gas in general just below the methane hydrate-bearing zones, the AVO has a possibility of describing the presence of free-gas. The free-gas is thought to be located just below the base of methane hydrate stability zone which is characterized by the Bottom Simulating Reflectors (BSRs) on the seismic section. In this sense, AVO technology, which was developed as gas delineation tools, can be utilized for methane hydrate exploration. The result of AVO analysis clearly shows gas-related anomaly below the BSRs. Appearance of the AVO anomaly has so wide variety. Some of the anomalies might not correspond to the free-gas existence, however, some of them may show free-gas. We are now going to develop methodology to clearly discriminate free-gas from non-gas zone by integrating various types of seismic methods such as seismic inversion and seismic attribute analysis.

  19. Participatory Mapping for Flood Disaster Zoning based on World View-2 Data in Long Beluah, North Kalimantan Province

    NASA Astrophysics Data System (ADS)

    Sudaryatno; Awanda, Disyacitta; Eka Pratiwi, Sufiyana

    2017-12-01

    Flood is one of the most frequent disasters in Indonesia. These conditions cause the necessary efforts to reduce the impact of these hazards. To reduce the impact of these hazards is to understand spatially the impact of previous disasters. Participatory mapping is one of the solutions to be able to assist in reducing the impact of flood disaster by conducting flood zoning so it can be known the range of the flood. The community plays an important role in participatory mapping because the experiences and mental maps of the community are the main sources of information used. North Kalimantan Province has a very large watershed area that is in Kayan watershed, there are several villages, one of them is Long Beluah Village. Kayan watershed has a flood problem annually that affects most of the areas including the Long Beluah Village. This study aims to map the zoning of floods in the village of Long Beluah in a participatory manner using remote sensing World View-2 data within community, so that people also understand the conditions they face. The method for achieving that goal is participatory mapping which means community involvement as well as the ability of community mental maps that will make an important contribution in this research. The results of this study show that flood zoning can be mapped based on experience and community mental maps that the greatest floods in February 2015 inundated most of the community settlements in Long Beluah Village. There are few places from the uninhabited areas of settlements and serve as refugee camps. The participatory zonation map of the participatory floods is quite appropriate with the situation at the time of the greatest flood that hit the village of Long Beluah, so that through the map can be drawn up plans to reduce the impact of such disasters such as evacuation routes and a more strategic refuge point.

  20. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan [Santa Fe, NM; Mendoza, Daniel [Santa Fe, NM; Chen, Chun-Ku [Albuquerque, NM

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

Top