Bioanalytical methods for food contaminant analysis.
Van Emon, Jeanette M
2010-01-01
Foods are complex mixtures of lipids, carbohydrates, proteins, vitamins, organic compounds, and other naturally occurring substances. Sometimes added to this mixture are residues of pesticides, veterinary and human drugs, microbial toxins, preservatives, contaminants from food processing and packaging, and other residues. This milieu of compounds can pose difficulties in the analysis of food contaminants. There is an expanding need for rapid and cost-effective residue methods for difficult food matrixes to safeguard our food supply. Bioanalytical methods are established for many food contaminants such as mycotoxins and are the method of choice for many food allergens. Bioanalytical methods are often more cost-effective and sensitive than instrumental procedures. Recent developments in bioanalytical methods may provide more applications for their use in food analysis.
Smeraglia, John; Silva, John-Paul; Jones, Kieran
2017-08-01
In order to evaluate placental transfer of certolizumab pegol (CZP), a more sensitive and selective bioanalytical assay was required to accurately measure low CZP concentrations in infant and umbilical cord blood. Results & methodology: A new electrochemiluminescence immunoassay was developed to measure CZP levels in human plasma. Validation experiments demonstrated improved selectivity (no matrix interference observed) and a detection range of 0.032-5.0 μg/ml. Accuracy and precision met acceptance criteria (mean total error ≤20.8%). Dilution linearity and sample stability were acceptable and sufficient to support the method. The electrochemiluminescence immunoassay was validated for measuring low CZP concentrations in human plasma. The method demonstrated a more than tenfold increase in sensitivity compared with previous assays, and improved selectivity for intact CZP.
Khurana, Rajneet Kaur; Rao, Satish; Beg, Sarwar; Katare, O.P.; Singh, Bhupinder
2016-01-01
The present work aims at the systematic development of a simple, rapid and highly sensitive densitometry-based thin-layer chromatographic method for the quantification of mangiferin in bioanalytical samples. Initially, the quality target method profile was defined and critical analytical attributes (CAAs) earmarked, namely, retardation factor (Rf), peak height, capacity factor, theoretical plates and separation number. Face-centered cubic design was selected for optimization of volume loaded and plate dimensions as the critical method parameters selected from screening studies employing D-optimal and Plackett–Burman design studies, followed by evaluating their effect on the CAAs. The mobile phase containing a mixture of ethyl acetate : acetic acid : formic acid : water in a 7 : 1 : 1 : 1 (v/v/v/v) ratio was finally selected as the optimized solvent for apt chromatographic separation of mangiferin at 262 nm with Rf 0.68 ± 0.02 and all other parameters within the acceptance limits. Method validation studies revealed high linearity in the concentration range of 50–800 ng/band for mangiferin. The developed method showed high accuracy, precision, ruggedness, robustness, specificity, sensitivity, selectivity and recovery. In a nutshell, the bioanalytical method for analysis of mangiferin in plasma revealed the presence of well-resolved peaks and high recovery of mangiferin. PMID:26912808
Bioanalytical procedures for monitoring in utero drug exposure
Gray, Teresa
2009-01-01
Drug use by pregnant women has been extensively associated with adverse mental, physical, and psychological outcomes in their exposed children. This manuscript reviews bioanalytical methods for in utero drug exposure monitoring for common drugs of abuse in urine, hair, oral fluid, blood, sweat, meconium, amniotic fluid, umbilical cord tissue, nails, and vernix caseosa; neonatal matrices are particularly emphasized. Advantages and limitations of testing different maternal and neonatal biological specimens including ease and invasiveness of collection, and detection time frames, sensitivities, and specificities are described, and specific references for available analytical methods included. Future research involves identifying metabolites unique to fetal drug metabolism to improve detection rates of in utero drug exposure and determining relationships between the amount, frequency, and timing of drug exposure and drug concentrations in infant biological fluids and tissues. Accurate bioanalytical procedures are vital to defining the scope of and resolving this important public health problem. PMID:17370066
Khurana, Rajneet Kaur; Rao, Satish; Beg, Sarwar; Katare, O P; Singh, Bhupinder
2016-01-01
The present work aims at the systematic development of a simple, rapid and highly sensitive densitometry-based thin-layer chromatographic method for the quantification of mangiferin in bioanalytical samples. Initially, the quality target method profile was defined and critical analytical attributes (CAAs) earmarked, namely, retardation factor (Rf), peak height, capacity factor, theoretical plates and separation number. Face-centered cubic design was selected for optimization of volume loaded and plate dimensions as the critical method parameters selected from screening studies employing D-optimal and Plackett-Burman design studies, followed by evaluating their effect on the CAAs. The mobile phase containing a mixture of ethyl acetate : acetic acid : formic acid : water in a 7 : 1 : 1 : 1 (v/v/v/v) ratio was finally selected as the optimized solvent for apt chromatographic separation of mangiferin at 262 nm withRf 0.68 ± 0.02 and all other parameters within the acceptance limits. Method validation studies revealed high linearity in the concentration range of 50-800 ng/band for mangiferin. The developed method showed high accuracy, precision, ruggedness, robustness, specificity, sensitivity, selectivity and recovery. In a nutshell, the bioanalytical method for analysis of mangiferin in plasma revealed the presence of well-resolved peaks and high recovery of mangiferin. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
History and perspectives of bioanalytical methods for chemical warfare agent detection.
Black, Robin M
2010-05-15
This paper provides a short historical overview of the development of bioanalytical methods for chemical warfare (CW) agents and their biological markers of exposure, with a more detailed overview of methods for organophosphorus nerve agents. Bioanalytical methods for unchanged CW agents are used primarily for toxicokinetic/toxicodynamic studies. An important aspect of nerve agent toxicokinetics is the different biological activity and detoxification pathways for enantiomers. CW agents have a relatively short lifetime in the human body, and are hydrolysed, metabolised, or adducted to nucleophilic sites on macromolecules such as proteins and DNA. These provide biological markers of exposure. In the past two decades, metabolites, protein adducts of nerve agents, vesicants and phosgene, and DNA adducts of sulfur and nitrogen mustards, have been identified and characterized. Sensitive analytical methods have been developed for their detection, based mainly on mass spectrometry combined with gas or liquid chromatography. Biological markers for sarin, VX and sulfur mustard have been validated in cases of accidental and deliberate human exposures. The concern for terrorist use of CW agents has stimulated the development of higher throughput analytical methods in support of homeland security. Copyright (c) 2010. Published by Elsevier B.V.
Comparative assessment of bioanalytical method validation guidelines for pharmaceutical industry.
Kadian, Naveen; Raju, Kanumuri Siva Rama; Rashid, Mamunur; Malik, Mohd Yaseen; Taneja, Isha; Wahajuddin, Muhammad
2016-07-15
The concepts, importance, and application of bioanalytical method validation have been discussed for a long time and validation of bioanalytical methods is widely accepted as pivotal before they are taken into routine use. United States Food and Drug Administration (USFDA) guidelines issued in 2001 have been referred for every guideline released ever since; may it be European Medical Agency (EMA) Europe, National Health Surveillance Agency (ANVISA) Brazil, Ministry of Health and Labour Welfare (MHLW) Japan or any other guideline in reference to bioanalytical method validation. After 12 years, USFDA released its new draft guideline for comments in 2013, which covers the latest parameters or topics encountered in bioanalytical method validation and approached towards the harmonization of bioanalytical method validation across the globe. Even though the regulatory agencies have general agreement, significant variations exist in acceptance criteria and methodology. The present review highlights the variations, similarities and comparison between bioanalytical method validation guidelines issued by major regulatory authorities worldwide. Additionally, other evaluation parameters such as matrix effect, incurred sample reanalysis including other stability aspects have been discussed to provide an ease of access for designing a bioanalytical method and its validation complying with the majority of drug authority guidelines. Copyright © 2016. Published by Elsevier B.V.
Beg, Sarwar; Chaudhary, Vandna; Sharma, Gajanand; Garg, Babita; Panda, Sagar Suman; Singh, Bhupinder
2016-06-01
The present studies describe the systematic quality by design (QbD)-oriented development and validation of a simple, rapid, sensitive and cost-effective reversed-phase HPLC bioanalytical method for nevirapine in rat plasma. Chromatographic separation was carried out on a C18 column using isocratic 68:9:23% v/v elution of methanol, acetonitrile and water (pH 3, adjusted by orthophosphoric acid) at a flow rate of 1.0 mL/min using UV detection at 230 nm. A Box-Behnken design was applied for chromatographic method optimization taking mobile phase ratio, pH and flow rate as the critical method parameters (CMPs) from screening studies. Peak area, retention time, theoretical plates and peak tailing were measured as the critical analytical attributes (CAAs). Further, the bioanalytical liquid-liquid extraction process was optimized using an optimal design by selecting extraction time, centrifugation speed and temperature as the CMPs for percentage recovery of nevirapine as the CAA. The search for an optimum chromatographic solution was conducted through numerical desirability function. Validation studies performed as per the US Food and Drug Administration requirements revealed results within the acceptance limit. In a nutshell, the studies successfully demonstrate the utility of analytical QbD approach for the rational development of a bioanalytical method with enhanced chromatographic separation and recovery of nevirapine in rat plasma. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
78 FR 56718 - Draft Guidance for Industry on Bioanalytical Method Validation; Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
...] Draft Guidance for Industry on Bioanalytical Method Validation; Availability AGENCY: Food and Drug... availability of a draft guidance for industry entitled ``Bioanalytical Method Validation.'' The draft guidance is intended to provide recommendations regarding analytical method development and validation for the...
Nonclinical dose formulation analysis method validation and sample analysis.
Whitmire, Monica Lee; Bryan, Peter; Henry, Teresa R; Holbrook, John; Lehmann, Paul; Mollitor, Thomas; Ohorodnik, Susan; Reed, David; Wietgrefe, Holly D
2010-12-01
Nonclinical dose formulation analysis methods are used to confirm test article concentration and homogeneity in formulations and determine formulation stability in support of regulated nonclinical studies. There is currently no regulatory guidance for nonclinical dose formulation analysis method validation or sample analysis. Regulatory guidance for the validation of analytical procedures has been developed for drug product/formulation testing; however, verification of the formulation concentrations falls under the framework of GLP regulations (not GMP). The only current related regulatory guidance is the bioanalytical guidance for method validation. The fundamental parameters for bioanalysis and formulation analysis validations that overlap include: recovery, accuracy, precision, specificity, selectivity, carryover, sensitivity, and stability. Divergence in bioanalytical and drug product validations typically center around the acceptance criteria used. As the dose formulation samples are not true "unknowns", the concept of quality control samples that cover the entire range of the standard curve serving as the indication for the confidence in the data generated from the "unknown" study samples may not always be necessary. Also, the standard bioanalytical acceptance criteria may not be directly applicable, especially when the determined concentration does not match the target concentration. This paper attempts to reconcile the different practices being performed in the community and to provide recommendations of best practices and proposed acceptance criteria for nonclinical dose formulation method validation and sample analysis.
Bower, Joseph; Fast, Douglas; Garofolo, Fabio; Gouty, Dominique; Hayes, Roger; Lowes, Steve; Nicholson, Robert; LeLacheur, Richard; Bravo, Jennifer; Shoup, Ronald; Dumont, Isabelle; Carbone, Mary; Zimmer, Jennifer; Ortuno, Jordi; Caturla, Maria Cruz; Datin, Jim; Lansing, Tim; Fatmi, Saadya; Struwe, Petra; Sheldon, Curtis; Islam, Rafiqul; Yu, Mathilde; Hulse, Jim; Kamerud, John; Lin, John; Doughty, John; Kurylak, Kai; Tang, Daniel; Buonarati, Mike; Blanchette, Alexandre; Levesque, Ann; Gagnon-Carignan, Sofi; Lin, Jenny; Ray, Gene; Liu, Yanseng; Khan, Masood; Xu, Allan; El-Sulayman, Gibran; DiMarco, Chantal; Bouhajib, Mohammed; Tacey, Dick; Jenkins, Rand; der Strate, Barry van; Briscoe, Chad; Karnik, Shane; Rhyne, Paul; Garofolo, Wei; Schultz, Gary; Roberts, Andrew; Redrup, Mike; DuBey, Ira; Conliffe, Phyllis; Pekol, Teri; Hantash, Jamil; Cojocaru, Laura; Allen, Mike; Reuschel, Scott; Watson, Andrea; Farrell, Colin; Groeber, Elizabeth; Malone, Michele; Nowatzke, William; Fang, Xinping
2014-01-01
The 8th GCC Closed Forum for Bioanalysis was held in Baltimore, MD, USA on 5 December 2013, immediately following the 2013 AAPS Workshop (Crystal City V): Quantitative Bioanalytical Methods Validation and Implementation--The 2013 Revised FDA Guidance. This GCC meeting was organized to discuss the contents of the draft revised FDA Guidance on bioanalytical method validation that was published in September 2013 and consolidate the feedback of the GCC members. In attendance were 63 senior-level participants, from seven countries, representing 46 bioanalytical CRO companies/sites. This event represented a unique opportunity for CRO bioanalytical experts to share their opinions and concerns regarding the draft FDA Guidance, and to build unified comments to be provided to the FDA.
Ma, Mark; Balasubramanian, Nanda; Dodge, Robert; Zhang, Yan
2017-09-01
Gene and nucleic acid therapies have demonstrated patient benefits to address unmet medical needs. Beside considerations regarding the biological nature of the gene therapy, the quality of bioanalytical methods plays an important role in ensuring the success of these novel therapies. Inconsistent approaches among bioanalytical labs during preclinical and clinical phases have been observed. There are many underlying reasons for this inconsistency. Various platforms and reagents used in quantitative methods, lacking of detailed regulatory guidance on method validation and uncertainty of immunogenicity strategy in supporting gene therapy may all be influential. This review summarizes recent practices and considerations in bioanalytical support of pharmacokinetics/pharmacodynamics and immunogenicity evaluations in gene therapy development with insight into method design, development and validations.
Kale, Prashant; Shukla, Manoj; Soni, Gunjan; Patel, Ronak; Gupta, Shailendra
2014-01-01
Prashant Kale has 22 years of immense experience in the analytical and bioanalytical domain. He is Senior Vice President, Bioequivalence Operations of Lambda Therapeutic Research, India which includes Bioanalytical, Clinics, Clinical data management, Pharmacokinetics and Biostatistics, Protocol writing, Clinical lab and Quality Assurance departments. He has been with Lambda for over 14 years. By qualification he is a M.Sc. and an MBA. Mr. Kale is responsible for the management, technical and administrative functions of the BE unit located at Ahmedabad and Mumbai, India. He is also responsible for leading the process of integration between bioanalytical laboratories and services offered by Lambda at global locations (India and Canada). Mr. Kale has faced several regulatory audits and inspections from leading regulatory bodies including but not limited to DCGI, USFDA, ANVISA, Health Canada, UK MHRA, Turkey MoH, WHO. There are many challenges involved in the application of bioanalytical method on different populations. This includes difference in equipment, material and environment across laboratories, variations in the matrix characteristics in different populations, differences in techniques between analysts such as sample processing and handling and others. Additionally, there is variability in the PK of a drug in different populations. This article shows the effect of different populations on validated bioanalytical method and on the PK of a drug. Hence, the bioanalytical method developed and validated for a specific population may need required modification when applied to another population. Critical consideration of all such aspects is the key to successful implementation of a validated method on different populations.
Fachi, Mariana Millan; Leonart, Letícia Paula; Cerqueira, Letícia Bonancio; Pontes, Flavia Lada Degaut; de Campos, Michel Leandro; Pontarolo, Roberto
2017-06-15
A systematic and critical review was conducted on bioanalytical methods validated to quantify combinations of antidiabetic agents in human blood. The aim of this article was to verify how the validation process of bioanalytical methods is performed and the quality of the published records. The validation assays were evaluated according to international guidelines. The main problems in the validation process are pointed out and discussed to help researchers to choose methods that are truly reliable and can be successfully applied for their intended use. The combination of oral antidiabetic agents was chosen as these are some of the most studied drugs and several methods are present in the literature. Moreover, this article may be applied to the validation process of all bioanalytical. Copyright © 2017 Elsevier B.V. All rights reserved.
Lin, Jennifer S.; Albrecht, Jennifer Coyne; Meagher, Robert J.; Wang, Xiaoxiao; Barron, Annelise E.
2011-01-01
Protein-based polymers are increasingly being used in biomaterial applications due to their ease of customization and potential monodispersity. These advantages make protein polymers excellent candidates for bioanalytical applications. Here we describe improved methods for producing drag-tags for Free-Solution Conjugate Electrophoresis (FSCE). FSCE utilizes a pure, monodisperse recombinant protein, tethered end-on to a ssDNA molecule, to enable DNA size separation in aqueous buffer. FSCE also provides a highly sensitive method to evaluate the polydispersity of a protein drag-tag and thus its suitability for bioanalytical uses. This method is able to detect slight differences in drag-tag charge or mass. We have devised an improved cloning, expression, and purification strategy that enables us to generate, for the first time, a truly monodisperse 20 kDa protein polymer and a nearly monodisperse 38 kDa protein. These newly produced proteins can be used as drag-tags to enable longer read DNA sequencing by free-solution microchannel electrophoresis. PMID:21553840
Myzithras, Maria; Li, Hua; Bigwarfe, Tammy; Waltz, Erica; Gupta, Priyanka; Low, Sarah; Hayes, David B; MacDonnell, Scott; Ahlberg, Jennifer; Franti, Michael; Roberts, Simon
2016-03-01
Four bioanalytical platforms were evaluated to optimize sensitivity and enable detection of recombinant human GDF11 in biological matrices; ELISA, Meso Scale Discovery, Gyrolab xP Workstation and Simoa HD-1. Results & methodology: After completion of custom assay development, the single-molecule ELISA (Simoa) achieved the greatest sensitivity with a lower limit of quantitation of 0.1 ng/ml, an improvement of 100-fold over the next sensitive platform (MSD). This improvement was essential to enable detection of GDF11 in biological samples, and without the technology the sensitivity achieved on the other platforms would not have been sufficient. Other factors such as ease of use, cost, assay time and automation capability can also be considered when developing custom immunoassays, based on the requirements of the bioanalyst.
John Lin, Zhongping; Zhang, Tianyi; Pasas-Farmer, Stephanie; Brooks, Stephen D; Moyer, Michael; Connolly, Ron
2014-05-01
With the globalization of drug development, there is an increasing need for global bioanalytical support. Bioanalysis provides pivotal data for toxicokinetic, pharmacokinetic, bioavailability and bioequivalence studies used for regional or global regulatory submission. There are many known complications in building a truly global bioanalytical operation, ranging from lack of global regulatory guidelines and global standard operating procedures to barriers in regional requirements on sample shipping, importation and exportation. The primary objective of this article is to discuss common experiences and challenges facing the biopharmaceutical industry when providing bioanalytical support in a global setting. The key components of global bioanalytical services include the supporting infrastructure, spanning project management, IT support of data management, best practices in bioanalytical method transfer and sample analysis, and comprehensive knowledge of the requirements of bioanalysis guidelines and differences in these guidelines. A case study will highlight best practices for successful management of a global project.
NASA Astrophysics Data System (ADS)
Rana, Md. Muhit
DNA nanotechnology has shown great promise in molecular diagnostic, bioanalytical and biomedical applications. The great challenge of detecting target analytes, biomarkers and small molecules, in molecular diagnostics is low yield sensitivity. To address this challenge, different nanomaterials have been used for a long time and to date there is no such cost-effective bioanalytical technique which can detect these target biomarkers (DNA, RNA, circulating DNA/miRNA) or environmental heavy metal ions (Hg2+ and Ag+) in a cost-effective and efficient manner. Herein, we initially discuss two possible bioanalytical detection methods- a) colorimetric and b) fluorometric assays which are very popular nowadays due to their distinctive spectroscopic properties. Finally, we report the promising colorimetric assay using a novel DNA based amplification strategy know as hybridization chain reaction (HCR) for potential application in the visual detection of low copies of biomarkers (miRNAs as little as 20 femtomole in an RNA pool and cell extracts in seven different combinations and Ebola virus DNA as low as 400 attomoles in liquid biopsy mimics in sixteen different combinations), environmental and biological heavy metal ions (mercury and silver concentrations as low as 10 pM in water, soil and urine samples) and also successfully applied to a molecular logic gate operation to distinguish OR and AND logic gates. No results showed any false-positive or false-negative information. On the other hand, we also discuss the future possibilities of HCR amplification technology, which is very promising for fluorometric bioanalysis. The HCR based nanoprobe technology has numerous remarkable advantages over other methods. It is re-programmable, simple, inexpensive, easy to assemble and operate and can be performed with visual and spectroscopic read-outs upon recognition of the target analytes. This rapid, specific and sensitive approach for biomarkers and heavy metal ion detection generates an on-site signal while eliminating the use of sophisticated high-maintenance instrumentation. We demonstrate that this state-of-the-art technology and methodology can potentially serve as an alternative approach to detect novel disease biomarkers, small molecules and inorganic compounds. This approach can be combined with the current existing methods for real-time point-of-care molecular diagnostics and is significant for preclinical or clinical studies.
Viswanathan, Sekarbabu; Verma, P R P; Ganesan, Muniyandithevar; Manivannan, Jeganathan
2017-07-15
Omega-3 fatty acids are clinically useful and the two marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are prevalent in fish and fish oils. Omega-3 fatty acid formulations should undergo a rigorous regulatory step in order to obtain United States Food and Drug Administration (USFDA) approval as prescription drug. In connection with that, despite quantifying EPA and DHA fatty acids, there is a need for quantifying the level of ethyl esters of them in biological samples. In this study, we make use of reverse phase high performance liquid chromatography coupled with mass spectrometry (RP-HPLC-MS)technique for the method development. Here, we have developed a novel multiple reaction monitoring method along with optimized parameters for quantification of EPA and DHA as ethyl esters. Additionally, we attempted to validate the bio-analytical method by conducting the sensitivity, selectivity, precision accuracy batch, carryover test and matrix stability experiments. Furthermore, we also implemented our validated method for evaluation of pharmacokinetics of omega fatty acid ethyl ester formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Srinivas, Nuggehally R
2006-05-01
The development of sound bioanalytical method(s) is of paramount importance during the process of drug discovery and development culminating in a marketing approval. Although the bioanalytical procedure(s) originally developed during the discovery stage may not necessarily be fit to support the drug development scenario, they may be suitably modified and validated, as deemed necessary. Several reviews have appeared over the years describing analytical approaches including various techniques, detection systems, automation tools that are available for an effective separation, enhanced selectivity and sensitivity for quantitation of many analytes. The intention of this review is to cover various key areas where analytical method development becomes necessary during different stages of drug discovery research and development process. The key areas covered in this article with relevant case studies include: (a) simultaneous assay for parent compound and metabolites that are purported to display pharmacological activity; (b) bioanalytical procedures for determination of multiple drugs in combating a disease; (c) analytical measurement of chirality aspects in the pharmacokinetics, metabolism and biotransformation investigations; (d) drug monitoring for therapeutic benefits and/or occupational hazard; (e) analysis of drugs from complex and/or less frequently used matrices; (f) analytical determination during in vitro experiments (metabolism and permeability related) and in situ intestinal perfusion experiments; (g) determination of a major metabolite as a surrogate for the parent molecule; (h) analytical approaches for universal determination of CYP450 probe substrates and metabolites; (i) analytical applicability to prodrug evaluations-simultaneous determination of prodrug, parent and metabolites; (j) quantitative determination of parent compound and/or phase II metabolite(s) via direct or indirect approaches; (k) applicability in analysis of multiple compounds in select disease areas and/or in clinically important drug-drug interaction studies. A tabular representation of select examples of analysis is provided covering areas of separation conditions, validation aspects and applicable conclusion. A limited discussion is provided on relevant aspects of the need for developing bioanalytical procedures for speedy drug discovery and development. Additionally, some key elements such as internal standard selection, likely issues of mass detection, matrix effect, chiral aspects etc. are provided for consideration during method development.
Nording, Malin; Denison, Michael S.; Baston, David; Persson, Ylva; Spinnel, Erik; Haglund, Peter
2010-01-01
The chemically activated luciferase expression assay, the chemically activated fluorescence expression assay, and the enzyme-linked immunosorbent assay (ELISA) are all bioanalytical methods that have been used for the detection and quantification of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). However, no comparisons of the results obtained by these three methods have been published analyzing identical replicates of purified sample extracts. Therefore, we have evaluated the performance of each of these methods for analyzing PCDD/Fs in aliquots of extracts from aged-contaminated soil samples and compared the results with those obtained by gas chromatography/high-resolution mass spectrometry (GC/HRMS). The quantitative performance was assessed and the effects of sample purification and data interpretation on the quality of the bioassay results were investigated. Results from the bioanalytical techniques were, in principle, not significantly different from each other or from the GC/HRMS data (p = 0.05). Furthermore, properly used, all of the bioanalytical techniques examined were found to be sufficiently sensitive, selective, and accurate to be used in connection with soil remediation activities when aiming at the remediation goal recommended by the U.S. Environmental Protection Agency (i.e., < 1,000 pg toxic equivalency/g). However, a site-specific correction factor should be applied with the use of the ELISA to account for differences between the toxic equivalency factors and the ELISA cross-reactivities of the various PCDD/F congeners, which otherwise might significantly underestimate the PCDD/F content. PMID:17571676
Higton, D M
2001-01-01
An improvement to the procedure for the rapid optimisation of mass spectrometry (PROMS), for the development of multiple reaction methods (MRM) for quantitative bioanalytical liquid chromatography/tandem mass spectrometry (LC/MS/MS), is presented. PROMS is an automated protocol that uses flow-injection analysis (FIA) and AppleScripts to create methods and acquire the data for optimisation. The protocol determines the optimum orifice potential, the MRM conditions for each compound, and finally creates the MRM methods needed for sample analysis. The sensitivities of the MRM methods created by PROMS approach those created manually. MRM method development using PROMS currently takes less than three minutes per compound compared to at least fifteen minutes manually. To further enhance throughput, approaches to MRM optimisation using one injection per compound, two injections per pool of five compounds and one injection per pool of five compounds have been investigated. No significant difference in the optimised instrumental parameters for MRM methods were found between the original PROMS approach and these new methods, which are up to ten times faster. The time taken for an AppleScript to determine the optimum conditions and build the MRM methods is the same with all approaches. Copyright 2001 John Wiley & Sons, Ltd.
The 10th Annual Bioassays and Bioanalytical Method Development Conference.
Ma, Mark; Tudan, Christopher; Koltchev, Dolly
2015-01-01
The 10th Annual Bioassays and Bioanalytical Method Development Conference was hosted in Boston, MA, USA on 20-22 October 2014. This meeting brought together scientists from the biopharmaceutical and life sciences industries, the regulatory agency and academia to share and discuss current trends in cell-based assays and bioanalysis, challenges and ideas for the future of the bioassays and bioanalytical method development. The experiences associated with new and innovative technologies were evaluated as well as their impact on the current bioassays methodologies and bioanalysis workflow, including quality, feasibility, outsourcing strategies and challenges, productivity and compliance. Several presentations were also provided by members of the US FDA, sharing both scientific and regulatory paradigms including a most recent update on the position of the FDA with specific aspects of the draft Bioanalytical Method Validation guidance following its review of the industry's responses. The meeting was jointly coincided with the 15th Annual Immunogenicity for Biotherapeutics meeting, allowing for attendees to also familiarize themselves with new and emerging approaches to overcome the effect of immunogenicity, in addition to investigative strategies.
Medvedovici, Andrei; Udrescu, Stefan; Albu, Florin; Tache, Florentin; David, Victor
2011-09-01
Liquid-liquid extraction of target compounds from biological matrices followed by the injection of a large volume from the organic layer into the chromatographic column operated under reversed-phase (RP) conditions would successfully combine the selectivity and the straightforward character of the procedure in order to enhance sensitivity, compared with the usual approach of involving solvent evaporation and residue re-dissolution. Large-volume injection of samples in diluents that are not miscible with the mobile phase was recently introduced in chromatographic practice. The risk of random errors produced during the manipulation of samples is also substantially reduced. A bioanalytical method designed for the bioequivalence of fenspiride containing pharmaceutical formulations was based on a sample preparation procedure involving extraction of the target analyte and the internal standard (trimetazidine) from alkalinized plasma samples in 1-octanol. A volume of 75 µl from the octanol layer was directly injected on a Zorbax SB C18 Rapid Resolution, 50 mm length × 4.6 mm internal diameter × 1.8 µm particle size column, with the RP separation being carried out under gradient elution conditions. Detection was made through positive ESI and MS/MS. Aspects related to method development and validation are discussed. The bioanalytical method was successfully applied to assess bioequivalence of a modified release pharmaceutical formulation containing 80 mg fenspiride hydrochloride during two different studies carried out as single-dose administration under fasting and fed conditions (four arms), and multiple doses administration, respectively. The quality attributes assigned to the bioanalytical method, as resulting from its application to the bioequivalence studies, are highlighted and fully demonstrate that sample preparation based on large-volume injection of immiscible diluents has an increased potential for application in bioanalysis.
Outsourcing bioanalytical services at Janssen Research and Development: the sequel anno 2017.
Dillen, Lieve; Verhaeghe, Tom
2017-08-01
The strategy of outsourcing bioanalytical services at Janssen has been evolving over the last years and an update will be given on the recent changes in our processes. In 2016, all internal GLP-related activities were phased out and this decision lead to the re-orientation of the in-house bioanalytical activities. As a consequence, in-depth experience with the validated bioanalytical assays for new drug candidates is currently gained together with the external partner, since development and validation of the assay and execution of GLP preclinical studies are now transferred to the CRO. The evolution to externalize more bioanalytical support has created opportunities to build even stronger partnerships with the CROs and to refocus internal resources. Case studies are presented illustrating challenges encountered during method development and validation at preferred partners when limited internal experience is obtained or with introduction of new technology.
Emory, Joshua F.; Seserko, Lauren A.; Marzinke, Mark A.
2014-01-01
Background Maraviroc is a CCR5 antagonist that has been utilized as a viral entry inhibitor in the management of HIV-1. Current clinical trials are pursuing maraviroc drug efficacy in both oral and topical formulations. Therefore, in order to fully understand drug pharmacokinetics, a sensitive method is required to quantify plasma drug concentrations. Methods Maraviroc-spiked plasma was combined with acetonitrile containing an isotopically-labeled internal standard, and following protein precipitation, samples were evaporated to dryness and reconstituted for liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis. Chromatographic separation was achieved on a Waters BEH C8, 50 × 2.1 mm UPLC column, with a 1.7 μm particle size and the eluent was analyzed using an API 4000 mass analyzer in selected reaction monitoring mode. The method was validated as per FDA Bioanalytical Method Validation guidelines. Results The analytical measuring range of the LC-MS/MS method is 0.5-1000 ng/ml. Calibration curves were generated using weighted 1/x2 quadratic regression. Inter-and intra-assay precision was ≤ 5.38% and ≤ 5.98%, respectively; inter-and intra-assay accuracy (%DEV) was ≤ 10.2% and ≤ 8.44%, respectively. Additional studies illustrated similar matrix effects between maraviroc and its internal standard, and that maraviroc is stable under a variety of conditions. Method comparison studies with a reference LC-MS/MS method show a slope of 0.948 with a Spearman coefficient of 0.98. Conclusions Based on the validation metrics, we have generated a sensitive and automated LC-MS/MS method for maraviroc quantification in human plasma. PMID:24561264
Burckhardt, Bjoern B.; Laeer, Stephanie
2015-01-01
In USA and Europe, medicines agencies force the development of child-appropriate medications and intend to increase the availability of information on the pediatric use. This asks for bioanalytical methods which are able to deal with small sample volumes as the trial-related blood lost is very restricted in children. Broadly used HPLC-MS/MS, being able to cope with small volumes, is susceptible to matrix effects. The latter restrains the precise drug quantification through, for example, causing signal suppression. Sophisticated sample preparation and purification utilizing solid-phase extraction was applied to reduce and control matrix effects. A scale-up from vacuum manifold to positive pressure manifold was conducted to meet the demands of high-throughput within a clinical setting. Faced challenges, advances, and experiences in solid-phase extraction are exemplarily presented on the basis of the bioanalytical method development and validation of low-volume samples (50 μL serum). Enalapril, enalaprilat, and benazepril served as sample drugs. The applied sample preparation and extraction successfully reduced the absolute and relative matrix effect to comply with international guidelines. Recoveries ranged from 77 to 104% for enalapril and from 93 to 118% for enalaprilat. The bioanalytical method comprising sample extraction by solid-phase extraction was fully validated according to FDA and EMA bioanalytical guidelines and was used in a Phase I study in 24 volunteers. PMID:25873972
Bioanalytical method transfer considerations of chromatographic-based assays.
Williard, Clark V
2016-07-01
Bioanalysis is an important part of the modern drug development process. The business practice of outsourcing and transferring bioanalytical methods from laboratory to laboratory has increasingly become a crucial strategy for successful and efficient delivery of therapies to the market. This chapter discusses important considerations when transferring various types of chromatographic-based assays in today's pharmaceutical research and development environment.
Fundamentals and applications of SERS-based bioanalytical sensing
NASA Astrophysics Data System (ADS)
Kahraman, Mehmet; Mullen, Emma R.; Korkmaz, Aysun; Wachsmann-Hogiu, Sebastian
2017-03-01
Plasmonics is an emerging field that examines the interaction between light and metallic nanostructures at the metal-dielectric interface. Surface-enhanced Raman scattering (SERS) is a powerful analytical technique that uses plasmonics to obtain detailed chemical information of molecules or molecular assemblies adsorbed or attached to nanostructured metallic surfaces. For bioanalytical applications, these surfaces are engineered to optimize for high enhancement factors and molecular specificity. In this review we focus on the fabrication of SERS substrates and their use for bioanalytical applications. We review the fundamental mechanisms of SERS and parameters governing SERS enhancement. We also discuss developments in the field of novel SERS substrates. This includes the use of different materials, sizes, shapes, and architectures to achieve high sensitivity and specificity as well as tunability or flexibility. Different fundamental approaches are discussed, such as label-free and functional assays. In addition, we highlight recent relevant advances for bioanalytical SERS applied to small molecules, proteins, DNA, and biologically relevant nanoparticles. Subsequently, we discuss the importance of data analysis and signal detection schemes to achieve smaller instruments with low cost for SERS-based point-of-care technology developments. Finally, we review the main advantages and challenges of SERS-based biosensing and provide a brief outlook.
Sensitive Bioanalytical Methods for Mustard Gas Exposure Diagnosis
2006-11-01
8217-dichlorodiethyl sulfide) is an alkylating vesicating agent . The injuries resulting from SM exposure are mainly characterized by epithelial damage of the...for SM and NM and was not seen for the other alkylating agents tested. We also found that 200 μM SM or NM degraded the integrin β4 unit of α6β4. An...similarly as nonspecific bifunctional alkylating agents , reacting with a host of compounds that are vital to living cells (Smith et al., 1998
Islam, Rafiq; Briscoe, Chad; Bower, Joseph; Cape, Stephanie; Arnold, Mark; Hayes, Roger; Warren, Mark; Karnik, Shane; Stouffer, Bruce; Xiao, Yi Qun; van der Strate, Barry; Sikkema, Daniel; Fang, Xinping; Tudoroniu, Ariana; Tayyem, Rabab; Brant, Ashley; Spriggs, Franklin; Barry, Colin; Khan, Masood; Keyhani, Anahita; Zimmer, Jennifer; Caturla, Maria Cruz; Couerbe, Philippe; Khadang, Ardeshir; Bourdage, James; Datin, Jim; Zemo, Jennifer; Hughes, Nicola; Fatmi, Saadya; Sheldon, Curtis; Fountain, Scott; Satterwhite, Christina; Colletti, Kelly; Vija, Jenifer; Yu, Mathilde; Stamatopoulos, John; Lin, Jenny; Wilfahrt, Jim; Dinan, Andrew; Ohorodnik, Susan; Hulse, James; Patel, Vimal; Garofolo, Wei; Savoie, Natasha; Brown, Michael; Papac, Damon; Buonarati, Mike; Hristopoulos, George; Beaver, Chris; Boudreau, Nadine; Williard, Clark; Liu, Yansheng; Ray, Gene; Warrino, Dominic; Xu, Allan; Green, Rachel; Hayward-Sewell, Joanne; Marcelletti, John; Sanchez, Christina; Kennedy, Michael; Charles, Jessica St; Bouhajib, Mohammed; Nehls, Corey; Tabler, Edward; Tu, Jing; Joyce, Philip; Iordachescu, Adriana; DuBey, Ira; Lindsay, John; Yamashita, Jim; Wells, Edward
2018-04-01
The 11th Global CRO Council Closed Forum was held in Universal City, CA, USA on 3 April 2017. Representatives from international CRO members offering bioanalytical services were in attendance in order to discuss scientific and regulatory issues specific to bioanalysis. The second CRO-Pharma Scientific Interchange Meeting was held on 7 April 2017, which included Pharma representatives' sharing perspectives on the topics discussed earlier in the week with the CRO members. The issues discussed at the meetings included cumulative stability evaluations, matrix stability evaluations, the 2016 US FDA Immunogenicity Guidance and recent and unexpected FDA Form 483s on immunogenicity assays, the bioanalytical laboratory's role in writing PK sample collection instructions, biosimilars, CRO perspectives on the use of chiral versus achiral methods, hybrid LBA/LCMS assays, applications of fit-for-purpose validation and, at the Global CRO Council Closed Forum only, the status and trend of current regulated bioanalytical practice in China under CFDA's new BMV policy. Conclusions from discussions of these topics at both meetings are included in this report.
Pleshakova, Tatyana O; Malsagova, Kristina A; Kaysheva, Anna L; Kopylov, Arthur T; Tatur, Vadim Yu; Ziborov, Vadim S; Kanashenko, Sergey L; Galiullin, Rafael A; Ivanov, Yuri D
2017-08-01
We report here the highly sensitive detection of protein in solution at concentrations from 10 -15 to 10 -18 m using the combination of atomic force microscopy (AFM) and mass spectrometry. Biospecific detection of biotinylated bovine serum albumin was carried out by fishing out the protein onto the surface of AFM chips with immobilized avidin, which determined the specificity of the analysis. Electrical stimulation was applied to enhance the fishing efficiency. A high sensitivity of detection was achieved by application of nanosecond electric pulses to highly oriented pyrolytic graphite placed under the AFM chip. A peristaltic pump-based flow system, which is widely used in routine bioanalytical assays, was employed throughout the analysis. These results hold promise for the development of highly sensitive protein detection methods using nanosensor devices.
Mujahid, Adnan; Mustafa, Ghulam; Dickert, Franz L
2018-06-01
Modern diagnostic tools and immunoassay protocols urges direct analyte recognition based on its intrinsic behavior without using any labeling indicator. This not only improves the detection reliability, but also reduces sample preparation time and complexity involved during labeling step. Label-free biosensor devices are capable of monitoring analyte physiochemical properties such as binding sensitivity and selectivity, affinity constants and other dynamics of molecular recognition. The interface of a typical biosensor could range from natural antibodies to synthetic receptors for example molecular imprinted polymers (MIPs). The foremost advantages of using MIPs are their high binding selectivity comparable to natural antibodies, straightforward synthesis in short time, high thermal/chemical stability and compatibility with different transducers. Quartz crystal microbalance (QCM) resonators are leading acoustic devices that are extensively used for mass-sensitive measurements. Highlight features of QCM devices include low cost fabrication, room temperature operation, and most importantly ability to monitor extremely low mass shifts, thus potentially a universal transducer. The combination of MIPs with quartz QCM has turned out as a prominent sensing system for label-free recognition of diverse bioanalytes. In this article, we shall encompass the potential applications of MIP-QCM sensors exclusively label-free recognition of bacteria and virus species as representative micro and nanosized bioanalytes.
Hummert, Pamela; Parsons, Teresa L; Ensign, Laura M; Hoang, Thuy; Marzinke, Mark A
2018-04-15
The nucleotide reverse transcriptase inhibitor tenofovir (TFV) is widely administered in a disoproxil prodrug form (tenofovir disoproxil fumarate, TDF) for HIV management and prevention. Recently, novel prodrugs tenofovir alafenamide fumarate (TAF) and hexadecyloxypropyl tenofovir (CMX157) have been pursued for HIV treatment while minimizing adverse effects associated with systemic TFV exposure. Dynamic and sensitive bioanalytical tools are required to characterize the pharmacokinetics of these prodrugs in systemic circulation. Two parallel methods have been developed, one to combinatorially quantify TAF and TFV, and a second method for CMX157 quantification, in plasma. K 2 EDTA plasma was spiked with TAF and TFV, or CMX157. Following the addition of isotopically labeled internal standards and sample extraction via solid phase extraction (TAF and TFV) or protein precipitation (CMX157), samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis. For TAF and TFV, separation occurred using a Zorbax Eclipse Plus C18 Narrow Bore RR, 2.1 × 50 mm, 3.5 μm column and analytes were detected on an API5000 mass analyzer; CMX157 was separated using a Kinetex C8, 2.1 × 50 mm, 2.6 μm column and quantified using an API4500 mass spectrometer. Methods were validated according to FDA Bioanalytical Method Validation guidelines. Analytical methods: were optimized for the multiplexed monitoring of TAF and TFV, and CMX157 in plasma. The lower limits of quantification (LLOQs) for TAF, TFV, and CMX157 were 0.03, 1.0, and 0.25 ng/mL, respectively. Calibration curves were generated via weighted linear regression of standards. Intra- and inter-assay precision and accuracy studies demonstrated %CVs ≤ 14.4% and %DEVs ≤ ± 7.95%, respectively. Stability and matrix effects studies were also performed. All results were acceptable and in accordance with the recommended guidelines for bioanalytical methods. Assays were also applied to quantify in vivo concentrations of prodrugs and TFV in a preclinical study post-rectal administration. Sensitive, specific, and dynamic LC-MS/MS assays have been developed and validated for the multiplexed quantification TAF and TFV, as well as an independent assay for CMX157 quantification, in plasma. The described methods meet sufficient throughput criteria to support large research trials. Copyright © 2018 Elsevier B.V. All rights reserved.
Plasmonic crystal based solid substrate for biomedical application of SERS
NASA Astrophysics Data System (ADS)
Morasso, Carlo F.; Mehn, Dora; Picciolini, Silvia; Vanna, Renzo; Bedoni, Marzia; Gramatica, Furio; Pellacani, Paola; Frangolho, Ana; Marchesini, Gerardo; Valsesia, Andrea
2014-02-01
Surface Enhanced Raman Spectroscopy is a powerful analytical technique that combines the excellent chemical specificity of Raman spectroscopy with the good sensitivity provided by the enhancement of the signal observed when a molecule is located on (or very close to) the surface of suitable nanostructured metallic materials. The availability of cheap, reliable and easy to use SERS substrates would pave the road to the development of bioanalytical tests that can be used in clinical practice. SERS, in fact, is expected to provide not only higher sensitivity and specificity, but also the simultaneous and markedly improved detection of several targets at the same time with higher speed compared to the conventional analytical methods. Here, we present the SERS activity of 2-D plasmonic crystals made by polymeric pillars embedded in a gold matrix obtained through the combination of soft-lithography and plasma deposition techniques on a transparent substrates. The use of a transparent support material allowed us to perform SERS detection from support side opening the possibility to use these substrates in combination with microfluidic devices. In order to demonstrate the potentialities for bioanalytical applications, we used our SERS active gold surface to detect the oxidation product of apomorphine, a well-known drug molecule used in Parkinson's disease which has been demonstrated being difficult to study by traditional HPLC based approaches.
Ahene, Ago; Calonder, Claudio; Davis, Scott; Kowalchick, Joseph; Nakamura, Takahiro; Nouri, Parya; Vostiar, Igor; Wang, Yang; Wang, Jin
2014-01-01
In recent years, the use of automated sample handling instrumentation has come to the forefront of bioanalytical analysis in order to ensure greater assay consistency and throughput. Since robotic systems are becoming part of everyday analytical procedures, the need for consistent guidance across the pharmaceutical industry has become increasingly important. Pre-existing regulations do not go into sufficient detail in regard to how to handle the use of robotic systems for use with analytical methods, especially large molecule bioanalysis. As a result, Global Bioanalytical Consortium (GBC) Group L5 has put forth specific recommendations for the validation, qualification, and use of robotic systems as part of large molecule bioanalytical analyses in the present white paper. The guidelines presented can be followed to ensure that there is a consistent, transparent methodology that will ensure that robotic systems can be effectively used and documented in a regulated bioanalytical laboratory setting. This will allow for consistent use of robotic sample handling instrumentation as part of large molecule bioanalysis across the globe.
Gorovits, Boris; Alley, Stephen C; Bilic, Sanela; Booth, Brian; Kaur, Surinder; Oldfield, Phillip; Purushothama, Shobha; Rao, Chetana; Shord, Stacy; Siguenza, Patricia
2013-05-01
Antibody-drug conjugates (ADCs) typically consist of a cytotoxic drug covalently bound to an antibody by a linker. These conjugates have the potential to substantially improve efficacy and reduce toxicity compared with cytotoxic small-molecule drugs. Since ADCs are generally complex heterogeneous mixtures of multiple species, these novel therapeutic products present unique bioanalytical challenges. The growing number of ADCs being developed across the industry suggests the need for alignment of the bioanalytical methods or approaches used to assess the multiple species and facilitate consistent interpretation of the bioanalytical data. With limited clinical data, the current strategies that can be used to provide insight into the relationship between the multiple species and the observed clinical safety and efficacy are still evolving. Considerations of the bioanalytical strategies for ADCs based on the current industry practices that take into account the complexity and heterogeneity of ADCs are discussed.
Harper, Jason C.; Carson, Bryan D.; Bachand, George D.; ...
2015-07-14
Despite significant progress in development of bioanalytical devices cost, complexity, access to reagents and lack of infrastructure have prevented use of these technologies in resource-limited regions. To provide a sustainable tool in the global effort to combat infectious diseases the diagnostic device must be low cost, simple to operate and read, robust, and have sensitivity and specificity comparable to laboratory analysis. Thus, in this mini-review we describe recent work using laser machined plastic laminates to produce diagnostic devices that are capable of a wide variety of bioanalytical measurements and show great promise towards future use in low-resource environments.
Application of nanomaterials in the bioanalytical detection of disease-related genes.
Zhu, Xiaoqian; Li, Jiao; He, Hanping; Huang, Min; Zhang, Xiuhua; Wang, Shengfu
2015-12-15
In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences. Copyright © 2015. Published by Elsevier B.V.
Abdallah, Inas A; Huang, Peng; Liu, Jing; Lee, David Y; Liu-Chen, Lee-Yuan; Hassan, Hazem E
2017-04-01
Levo-tetrahydropalmatine (l-THP) is an alkaloid isolated from Chinese medicinal herbs of the Corydalis and Stephania genera. It has been used in China for more than 40 years mainly as an analgesic with sedative/hypnotic effects. Despite its extensive use, its metabolism has not been quantitatively studied, nor there a sensitive reliable bioanalytical method for its quantification simultaneously with its metabolites. As such, the objective of this study was to develop and validate a sensitive and selective HPLC method for simultaneous quantification of l-THP and its desmethyl metabolites l-corydalmine (l-CD) and l-corypalmine (l-CP) in rat plasma and brain tissues. Rat plasma and brain samples were processed by liquid-liquid extraction using ethyl acetate. Chromatographic separation was achieved on a reversed-phase Symmetry® C 18 column (4.6 × 150 mm, 5 μm) at 25°C. The mobile phase consisted of acetonitrile-methanol-10 mm ammonium phosphate (pH 3) (10:30:60, v/v) and was used at a flow rate of 0.8 mL/min. The column eluent was monitored at excitation and emission wavelengths of 230 and 315 nm, respectively. The calibration curves were linear over the concentration range of 1-10,000 ng/mL. The intra- and interday reproducibility studies demonstrated accuracy and precision within the acceptance criteria of bioanalytical guidelines. The validated HPLC method was successfully applied to analyze samples from a pharmacokinetic study of l-THP in rats. Taken together, the developed method can be applied for bioanalysis of l-THP and its metabolites in rodents and potentially can be transferred for bioanalysis of human samples. Copyright © 2016 John Wiley & Sons, Ltd.
Gupta, Vinita; Davancaze, Teresa; Good, Jeremy; Kalia, Navdeep; Anderson, Michael; Wallin, Jeffrey J; Brady, Ann; Song, An; Xu, Wenfeng
2016-12-01
Immune-checkpoint inhibitors are presumed to break down the tolerogenic state of immune cells by activating T-lymphocytes that release cytokines and enhance effector cell function for elimination of tumors. Measurement of cytokines is being pursued for better understanding of the mechanism of action of immune-checkpoint inhibitors, as well as to identify potential predictive biomarkers. In this study, we show bioanalytical qualification of cytokine assays in plasma on a novel multi-analyte immunoassay platform, Simple Plex ™ . The qualified assays exhibited excellent sensitivity as evidenced by measurement of all samples within the quantifiable range. The accuracy and precision were 80-120% and 10%, respectively. The qualified assays will be useful in assessing mechanism of action cancer immunotherapies.
A new LC-MS/MS bioanalytical method for atenolol in human plasma and milk.
Phyo Lwin, Ei Mon; Gerber, Cobus; Song, Yunmei; Leggett, Catherine; Ritchie, Usha; Turner, Sean; Garg, Sanjay
2017-04-01
A new sensitive LC-MS/MS method for the quantification of atenolol in human plasma and milk has been developed for clinical lactation studies. Atenolol and the internal standard, phenazone, were extracted from biological matrices by protein precipitation. A Phenomenex ® C-18 column and gradient chromatographic conditions were used for separation of the analyte, followed by detection with MS. Stability of samples was confirmed for atenolol in human plasma and milk for up to 3 months. Linearity range of 1-800 ng/ml (r 2 = 0.9995), the precision within 15% CV and the recovery of the analyte (80-100% range) were achieved. A new validated analytical method for atenolol in plasma and milk was developed.
Ke, Yuyong; Li, Steve Lianghong; Chang, Linda Dongxia; Kapanadze, Theo
2015-01-26
A novel, specific and sensitive bioanalytical method has been developed for the determination of sucrose octasulfate (SOS) in dog plasma and urine using ion-pair reversed-phase ultraperformance liquid chromatography coupled with electrospray triple quadruple mass spectrometry (IPRP-UPLC ESI MS/MS). (13)C-labeled sucrose octasulfate-(13)C12 sodium salt is used as the internal standard. 200 μL of plasma or serum sample is extracted using weak anion exchange solid phase cartridge. In this method, a polar amide column is employed for the liquid chromatograph (LC) separation while the diethylamine and formic acid buffer is used as the ion-pairing reagent. The low limitation of quantitation of sucrose octasulfate is 0.20 ng on the column with a signal to noise ratio larger than 50. Parameters such as linearity, accuracy and precision have been validated in full compliance with the FDA guidelines for the bioanalytical method development and validation. A linear regression model fit the calibration curve very well with R>0.99. The bias and coefficient of variation of all levels of QCs are within the range of 15%. The selectivity, matrix effect and stabilities of analytes in solution and matrix have also been evaluated and the results met the acceptance criteria according to the guidelines. Based on these results, the method has qualified to analyze sucrose octasulfate in dog plasma for clinic research. This method has been applied to 1000 preclinical samples. Copyright © 2014 Elsevier B.V. All rights reserved.
MARS: bringing the automation of small-molecule bioanalytical sample preparations to a new frontier.
Li, Ming; Chou, Judy; Jing, Jing; Xu, Hui; Costa, Aldo; Caputo, Robin; Mikkilineni, Rajesh; Flannelly-King, Shane; Rohde, Ellen; Gan, Lawrence; Klunk, Lewis; Yang, Liyu
2012-06-01
In recent years, there has been a growing interest in automating small-molecule bioanalytical sample preparations specifically using the Hamilton MicroLab(®) STAR liquid-handling platform. In the most extensive work reported thus far, multiple small-molecule sample preparation assay types (protein precipitation extraction, SPE and liquid-liquid extraction) have been integrated into a suite that is composed of graphical user interfaces and Hamilton scripts. Using that suite, bioanalytical scientists have been able to automate various sample preparation methods to a great extent. However, there are still areas that could benefit from further automation, specifically, the full integration of analytical standard and QC sample preparation with study sample extraction in one continuous run, real-time 2D barcode scanning on the Hamilton deck and direct Laboratory Information Management System database connectivity. We developed a new small-molecule sample-preparation automation system that improves in all of the aforementioned areas. The improved system presented herein further streamlines the bioanalytical workflow, simplifies batch run design, reduces analyst intervention and eliminates sample-handling error.
Enzyme-Based Logic Gates and Networks with Output Signals Analyzed by Various Methods.
Katz, Evgeny
2017-07-05
The paper overviews various methods that are used for the analysis of output signals generated by enzyme-based logic systems. The considered methods include optical techniques (optical absorbance, fluorescence spectroscopy, surface plasmon resonance), electrochemical techniques (cyclic voltammetry, potentiometry, impedance spectroscopy, conductivity measurements, use of field effect transistor devices, pH measurements), and various mechanoelectronic methods (using atomic force microscope, quartz crystal microbalance). Although each of the methods is well known for various bioanalytical applications, their use in combination with the biomolecular logic systems is rather new and sometimes not trivial. Many of the discussed methods have been combined with the use of signal-responsive materials to transduce and amplify biomolecular signals generated by the logic operations. Interfacing of biocomputing logic systems with electronics and "smart" signal-responsive materials allows logic operations be extended to actuation functions; for example, stimulating molecular release and switchable features of bioelectronic devices, such as biofuel cells. The purpose of this review article is to emphasize the broad variability of the bioanalytical systems applied for signal transduction in biocomputing processes. All bioanalytical systems discussed in the article are exemplified with specific logic gates and multi-gate networks realized with enzyme-based biocatalytic cascades. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent development in software and automation tools for high-throughput discovery bioanalysis.
Shou, Wilson Z; Zhang, Jun
2012-05-01
Bioanalysis with LC-MS/MS has been established as the method of choice for quantitative determination of drug candidates in biological matrices in drug discovery and development. The LC-MS/MS bioanalytical support for drug discovery, especially for early discovery, often requires high-throughput (HT) analysis of large numbers of samples (hundreds to thousands per day) generated from many structurally diverse compounds (tens to hundreds per day) with a very quick turnaround time, in order to provide important activity and liability data to move discovery projects forward. Another important consideration for discovery bioanalysis is its fit-for-purpose quality requirement depending on the particular experiments being conducted at this stage, and it is usually not as stringent as those required in bioanalysis supporting drug development. These aforementioned attributes of HT discovery bioanalysis made it an ideal candidate for using software and automation tools to eliminate manual steps, remove bottlenecks, improve efficiency and reduce turnaround time while maintaining adequate quality. In this article we will review various recent developments that facilitate automation of individual bioanalytical procedures, such as sample preparation, MS/MS method development, sample analysis and data review, as well as fully integrated software tools that manage the entire bioanalytical workflow in HT discovery bioanalysis. In addition, software tools supporting the emerging high-resolution accurate MS bioanalytical approach are also discussed.
Seserko, Lauren A; Emory, Joshua F; Hendrix, Craig W; Marzinke, Mark A
2014-01-01
Background Dapivirine is a non-nucleoside reverse transcriptase inhibitor designed to prevent HIV-1 viral replication and subsequent propagation. A sensitive method is required to quantify plasma concentrations to assess drug efficacy. Results Dapivirine-spiked plasma was combined with acetonitrile containing deuterated IS and was processed for analysis. The method has an analytical measuring range from 20 to 10,000 pg/ml. For the LLOQ, low, mid and high QCs, intra- and inter-assay precision (%CV) ranged from 5.58 to 13.89% and 5.23 to 13.36%, respectively, and intra- and inter-day accuracy (% deviation) ranged from -5.61 to 0.75% and -4.30 to 6.24%, respectively. Conclusion A robust and sensitive LC–MS/MS assay for the high-throughput quantification of the antiretroviral drug dapivirine in human plasma was developed and validated following bioanalytical validation guidelines. The assay meets criteria for the analysis of samples from large research trials. PMID:24256358
Seserko, Lauren A; Emory, Joshua F; Hendrix, Craig W; Marzinke, Mark A
2013-11-01
Dapivirine is a non-nucleoside reverse transcriptase inhibitor designed to prevent HIV-1 viral replication and subsequent propagation. A sensitive method is required to quantify plasma concentrations to assess drug efficacy. Dapivirine-spiked plasma was combined with acetonitrile containing deuterated IS and was processed for analysis. The method has an analytical measuring range from 20 to 10,000 pg/ml. For the LLOQ, low, mid and high QCs, intra- and inter-assay precision (%CV) ranged from 5.58 to 13.89% and 5.23 to 13.36%, respectively, and intra- and inter-day accuracy (% deviation) ranged from -5.61 to 0.75% and -4.30 to 6.24%, respectively. A robust and sensitive LC-MS/MS assay for the high-throughput quantification of the antiretroviral drug dapivirine in human plasma was developed and validated following bioanalytical validation guidelines. The assay meets criteria for the analysis of samples from large research trials.
Wang, Jin; Patel, Vimal; Burns, Daniel; Laycock, John; Pandya, Kinnari; Tsoi, Jennifer; DeSilva, Binodh; Ma, Mark; Lee, Jean
2013-07-01
Regulated bioanalytical laboratories that run ligand-binding assays in support of biotherapeutics development face ever-increasing demand to support more projects with increased efficiency. Laboratory automation is a tool that has the potential to improve both quality and efficiency in a bioanalytical laboratory. The success of laboratory automation requires thoughtful evaluation of program needs and fit-for-purpose strategies, followed by pragmatic implementation plans and continuous user support. In this article, we present the development of fit-for-purpose automation of total walk-away and flexible modular modes. We shared the sustaining experience of vendor collaboration and team work to educate, promote and track the use of automation. The implementation of laboratory automation improves assay performance, data quality, process efficiency and method transfer to CRO in a regulated bioanalytical laboratory environment.
Talaat, Wael
2017-05-01
The present study represents a connection between basic science and clinical applied science through providing a bioanalytical method for the analysis of certain co-administered drugs used for the treatment of rheumatoid arthritis. The studied drugs are esomeprazole, leflunomide and ibuprofen. The proposed bioanalytical method is a simple reversed phase high performance liquid chromatographic method using micellar mobile phase. The method is conducted using a Shim-pack VP-ODS (150 mm × 4.6 mm ID) stainless steel column at ambient temperature with ultraviolet detection at 285 nm. The micellar mobile phase consisted of 0.1 m sodium dodecyl sulfate, 10% n-propanol, 0.3% triethylamine in 0.02 m orthophosphoric acid (pH 3.5) and is pumped at a flow rate of 1.0 mL/min. The calibration curve was rectilinear over the concentration range of 0.1-5.0, 0.5-10.0 and 1.0-20.0 μg/mL for esomeprazole, leflunomide and ibuprofen respectively. The proposed method was successfully applied to the analysis of these drugs in dosage forms. The method is extended to the in-vitro, in-vivo determination of these drugs in spiked and real human plasma samples. Copyright © 2016 John Wiley & Sons, Ltd.
Update of Standard Practices for New Method Validation in Forensic Toxicology.
Wille, Sarah M R; Coucke, Wim; De Baere, Thierry; Peters, Frank T
2017-01-01
International agreement concerning validation guidelines is important to obtain quality forensic bioanalytical research and routine applications as it all starts with the reporting of reliable analytical data. Standards for fundamental validation parameters are provided in guidelines as those from the US Food and Drug Administration (FDA), the European Medicines Agency (EMA), the German speaking Gesellschaft fur Toxikologie und Forensische Chemie (GTFCH) and the Scientific Working Group of Forensic Toxicology (SWGTOX). These validation parameters include selectivity, matrix effects, method limits, calibration, accuracy and stability, as well as other parameters such as carryover, dilution integrity and incurred sample reanalysis. It is, however, not easy for laboratories to implement these guidelines into practice as these international guidelines remain nonbinding protocols, that depend on the applied analytical technique, and that need to be updated according the analyst's method requirements and the application type. In this manuscript, a review of the current guidelines and literature concerning bioanalytical validation parameters in a forensic context is given and discussed. In addition, suggestions for the experimental set-up, the pros and cons of statistical approaches and adequate acceptance criteria for the validation of bioanalytical applications are given. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Dudal, Sherri; Staack, Roland F; Stoellner, Daniela; Fjording, Marianne Scheel; Vieser, Eva; Pascual, Marie-Hélène; Brudny-Kloeppel, Margarete; Golob, Michaela
2014-05-01
The bioanalytical scientist plays a key role in the project team for the drug development of biotherapeutics from the discovery to the marketing phase. Information from the project team members is required for assay development and sample analysis during the discovery, preclinical and clinical phases of the project and input is needed from the bioanalytical scientist to help data interpretation. The European Bioanalysis Forum target team 20 discussed many of the gaps in information and communication between the bioanalytical scientist and project team members as a base for providing a perspective on the bioanalytical scientist's role and interactions within the project team.
Research in bioanalysis and separations at the University of Nebraska - Lincoln.
Hage, David S; Dodds, Eric D; Du, Liangcheng; Powers, Robert
2011-05-01
The Chemistry Department at the University of Nebraska - Lincoln (UNL) is located in Hamilton Hall on the main campus of UNL in Lincoln, NE, USA. This department houses the primary graduate and research program in chemistry in the state of Nebraska. This program includes the traditional fields of analytical chemistry, biochemistry, inorganic chemistry, organic chemistry and physical chemistry. However, this program also contains a great deal of multidisciplinary research in fields that range from bioanalytical and biophysical chemistry to nanomaterials, energy research, catalysis and computational chemistry. Current research in bioanalytical and biophysical chemistry at UNL includes work with separation methods such as HPLC and CE, as well as with techniques such as MS and LC-MS, NMR spectroscopy, electrochemical biosensors, scanning probe microscopy and laser spectroscopy. This article will discuss several of these areas, with an emphasis being placed on research in bioanalytical separations, binding assays and related fields.
Ranasinghe, Asoka; Ramanathan, Ragu; Jemal, Mohammed; D'Arienzo, Celia J; Humphreys, W Griffith; Olah, Timothy V
2012-03-01
UHPLC coupled with orthogonal acceleration hybrid quadrupole-TOF (Q-TOF)-MS is an emerging technique offering new strategies for the efficient screening of new chemical entities and related molecules at the early discovery stage within the pharmaceutical industry. In the first part of this article, we examine the main instrumental parameters that are critical for the integration of UHPLC-Q-TOF technology to existing bioanalytical workflows, in order to provide simultaneous quantitative and qualitative bioanalysis of samples generated following in vivo studies. Three modern Q-TOF mass spectrometers, including Bruker maXis™, Agilent 6540 and Sciex TripleTOF™ 5600, all interfaced with UHPLC systems, are evaluated in the second part of the article. The scope of this work is to demonstrate the potential of Q-TOF for the analysis of typical small molecules, therapeutic peptides (molecular weight <6000 Da), and enzymatically (i.e., trypsin, chymotrypsin and pepsin) cleaved peptides from larger proteins. This work focuses mainly on full-scan TOF data obtained under ESI conditions, the major mode of TOF operation in discovery bioanalytical research, where the compounds are selected based on their pharmacokinetic/pharmacodynamic behaviors using animal models prior to selecting a few desirable candidates for further development. Finally, important emerging TOF technologies that could potentially benefit bioanalytical research in the semi-quantification of metabolites without synthesized standards are discussed. Particularly, the utility of captive spray ionization coupled with TripleTOF 5600 was evaluated for improving sensitivity and providing normalized MS response for drugs and their metabolites. The workflow proposed compromises neither the efficiency, nor the quality of pharmacokinetic data in support of early drug discovery programs.
Activity-Based Detection and Bioanalytical Confirmation of a Fatal Carfentanil Intoxication.
Cannaert, Annelies; Ambach, Lars; Blanckaert, Peter; Stove, Christophe P
2018-01-01
Carfentanil, one of the most potent opioids known, has recently been reported as a contaminant in street heroin in the United States and Europe, and is associated with an increased number of life-threatening emergency department admissions and deaths. Here, we report on the application of a novel in vitro opioid activity reporter assay and a sensitive bioanalytical assay in the context of a fatal carfentanil intoxication, revealing the highest carfentanil concentrations reported until now. A 21-year-old male was found dead at home with a note stating that he had taken carfentanil with suicidal intentions. A foil bag and plastic bag labeled "C.50" were found at the scene. These bags were similar to a sample obtained by the Belgian Early Warning System on Drugs from a German darknet shop and to those found in the context of a fatality in Norway. Blood, urine and vitreous, obtained during autopsy, were screened with a newly developed in vitro opioid activity reporter assay able to detect compounds based on their μ-opioid receptor activity rather than their chemical structure. All extracts showed strong opioid activity. Results were confirmed by a bioanalytical assay, which revealed extremely high concentrations for carfentanil and norcarfentanil. It should be noted that carfentanil concentrations are typically in pg/mL, but here they were 92 ng/mL in blood, 2.8 ng/mL in urine, and 23 ng/mL in vitreous. The blood and vitreous contained 0.532 and 0.300 ng/mL norcarfentanil, respectively. No norcarfentanil was detected in urine. This is the first report where a novel activity-based opioid screening assay was successfully deployed in a forensic case. Confirmation and quantification using a validated bioanalytical procedure revealed the, to our knowledge, highest carfentanil concentrations reported in humans so far.
Near-infrared dyes and upconverting phosphors as biomolecule labels and probes
NASA Astrophysics Data System (ADS)
Patonay, Gabor; Strekowski, Lucjan; Nguyen, Diem-Ngoc; Seok, Kim Jun
2007-02-01
Near-Infrared (NIR) absorbing chromophores have been used in analytical and bioanalytical chemistry extensively, including for determination of properties of biomolecules, DNA sequencing, immunoassays, capillary electrophoresis (CE) separations, etc. The major analytical advantages of these dyes are low background interference and high molar absorptivities. NIR dyes have additional advantages due to their sensitivity to microenvironmental changes. Spectral changes induced by the microenvironment are not desirable if the labels are used as a simple reporting group, e.g., during a biorecognition reaction. For these applications upconverting phosphors seem to be a better choice. There are several difficulties in utilizing upconverting phosphors as reporting labels. These are: large physical size, no reactive groups and insolubility in aqueous systems. This presentation will discuss how these difficulties can be overcome for bioanalytical and forensic applications. During these studies we also have investigated how to reduce physical size of the phosphor by simple grinding without losing activity and how to attach reactive moiety to the phosphor to covalently bind to the biomolecule of interest. It has to be emphasized that the described approach is not suitable for medical applications and the results of this research are not applicable in medical applications. For bioanalytical and forensic applications upconverting phosphors used as reporting labels have several advantages. They are excited with lasers that are red shifted respective to phosphorescence, resulting in no light scatter issues during detection. Also some phosphors are excited using eye safe lasers. In addition energy transfer to NIR dyes is possible, allowing detection schemes using donor-acceptor pairs. Data is presented to illustrate the feasibility of this phenomenon. If microenvironmental sensitivity is required, then specially designed NIR dyes can be used as acceptor labels. Several novel dyes have been synthesized in our laboratories for that purpose.
Bioanalytical challenge: A review of environmental and pharmaceuticals contaminants in human milk.
Lopes, Bianca Rebelo; Barreiro, Juliana Cristina; Cass, Quezia Bezerra
2016-10-25
An overview of bioanalytical methods for the determination of environmental and pharmaceutical contaminants in human milk is presented. The exposure of children to these contaminants through lactation has been widely investigated. The human milk contains diverse proteins, lipids, and carbohydrates and the concentration of these components is drastically altered during the lactation period providing a high degree of an analytical challenge. Sample collection and pretreatment are still considered the Achilles' heel. This review presents liquid chromatographic methods developed in the last 10 years for this complex matrix with focuses in the extraction and quantification steps. Green sample preparation protocols have been emphasized. Copyright © 2016 Elsevier B.V. All rights reserved.
Chemotyping the distribution of vitamin D metabolites in human serum
NASA Astrophysics Data System (ADS)
Müller, Miriam J.; Stokes, Caroline S.; Lammert, Frank; Volmer, Dietrich A.
2016-02-01
Most studies examining the relationships between vitamin D and disease or health focus on the main 25-hydroxyvitamin D3 (25(OH)D3) metabolite, thus potentially overlooking contributions and dynamic effects of other vitamin D metabolites, the crucial roles of several of which have been previously demonstrated. The ideal assay would determine all relevant high and low-abundant vitamin D species simultaneously. We describe a sensitive quantitative assay for determining the chemotypes of vitamin D metabolites from serum after derivatisation and ultra-high performance liquid chromatography-electrospray ionisation-tandem mass spectrometry (UHPLC-ESI-MS/MS). We performed a validation according to the ‘FDA Guidance for Industry Bioanalytical Method Validation’. The proof-of-concept of the method was then demonstrated by following the metabolite concentrations in patients with chronic liver diseases (CLD) during the course of a vitamin D supplementation study. The new quantitative profiling assay provided highly sensitive, precise and accurate chemotypes of the vitamin D metabolic process rather than the usually determined 25(OH)D3 concentrations.
Escher, Beate I; Neale, Peta A; Leusch, Frederic D L
2015-09-15
Cell-based bioassays are becoming increasingly popular in water quality assessment. The new generations of reporter-gene assays are very sensitive and effects are often detected in very clean water types such as drinking water and recycled water. For monitoring applications it is therefore imperative to derive trigger values that differentiate between acceptable and unacceptable effect levels. In this proof-of-concept paper, we propose a statistical method to read directly across from chemical guideline values to trigger values without the need to perform in vitro to in vivo extrapolations. The derivation is based on matching effect concentrations with existing chemical guideline values and filtering out appropriate chemicals that are responsive in the given bioassays at concentrations in the range of the guideline values. To account for the mixture effects of many chemicals acting together in a complex water sample, we propose bioanalytical equivalents that integrate the effects of groups of chemicals with the same mode of action that act in a concentration-additive manner. Statistical distribution methods are proposed to derive a specific effect-based trigger bioanalytical equivalent concentration (EBT-BEQ) for each bioassay of environmental interest that targets receptor-mediated toxicity. Even bioassays that are indicative of the same mode of action have slightly different numeric trigger values due to differences in their inherent sensitivity. The algorithm was applied to 18 cell-based bioassays and 11 provisional effect-based trigger bioanalytical equivalents were derived as an illustrative example using the 349 chemical guideline values protective for human health of the Australian Guidelines for Water Recycling. We illustrate the applicability using the example of a diverse set of water samples including recycled water. Most recycled water samples were compliant with the proposed triggers while wastewater effluent would not have been compliant with a few. The approach is readily adaptable to any water type and guideline or regulatory framework and can be expanded from the protection goal of human health to environmental protection targets. While this work constitutes a proof of principle, the applicability remains limited at present due to insufficient experimental bioassay data on individual regulated chemicals and the derived effect-based trigger values are of course only provisional. Once the experimental database is expanded and made more robust, the proposed effect-based trigger values may provide guidance in a regulatory context. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tarasov, Andrii; Rauhut, Doris; Jung, Rainer
2017-12-01
Analytical methods of haloanisoles and halophenols quantification in cork matrix are summarized in the current review. Sample-preparation and sample-treatment techniques have been compared and discussed from the perspective of their efficiency, time- and extractant-optimization, easiness of performance. Primary interest of these analyses usually addresses to 2,4,6-trichloroanisole (TCA), which is a major wine contaminant among haloanisoles. Two concepts of TCA determination are described in the review: releasable TCA and total TCA analyses. Chromatographic, bioanalytical and sensorial methods were compared according to their application in the cork industry and in scientific investigations. Finally, it was shown that modern analytical techniques are able to provide required sensitivity, selectivity and repeatability for haloanisoles and halophenols determination. Copyright © 2017 Elsevier B.V. All rights reserved.
Simões, Rodrigo Almeida; Bonato, Pierina Sueli; Mirnaghi, Fatemeh S; Bojko, Barbara; Pawliszyn, Janusz
2015-01-01
A high-throughput bioanalytical method using 96-blade thin film microextraction (TFME) and LC-MS/MS for the analysis of repaglinide (RPG) and two of its main metabolites was developed and used for an in vitro metabolism study. The target analytes were extracted from human microsomal medium by a 96-blade-TFME system employing the low-cost prototype 'SPME multi-sampler' using C18 coating. Method validation showed recoveries around 90% for all analytes and was linear over the concentration range of 2-1000 ng ml(-1) for RPG and of 2-500 ng ml(-1) for each RPG metabolite. The method was applied to an in vitro metabolism study of RPG employing human liver microsomes and proved to be very useful for this purpose.
Quantitative bioanalysis of strontium in human serum by inductively coupled plasma-mass spectrometry
Somarouthu, Srikanth; Ohh, Jayoung; Shaked, Jonathan; Cunico, Robert L; Yakatan, Gerald; Corritori, Suzana; Tami, Joe; Foehr, Erik D
2015-01-01
Aim: A bioanalytical method using inductively-coupled plasma-mass spectrometry to measure endogenous levels of strontium in human serum was developed and validated. Results & methodology: This article details the experimental procedures used for the method development and validation thus demonstrating the application of the inductively-coupled plasma-mass spectrometry method for quantification of strontium in human serum samples. The assay was validated for specificity, linearity, accuracy, precision, recovery and stability. Significant endogenous levels of strontium are present in human serum samples ranging from 19 to 96 ng/ml with a mean of 34.6 ± 15.2 ng/ml (SD). Discussion & conclusion: Calibration procedures and sample pretreatment were simplified for high throughput analysis. The validation demonstrates that the method was sensitive, selective for quantification of strontium (88Sr) and is suitable for routine clinical testing of strontium in human serum samples. PMID:28031925
Functionalized Gold Nanoparticles for the Detection of C-Reactive Protein
António, Maria
2018-01-01
C-reactive protein (CRP) is a very important biomarker of infection and inflammation for a number of diseases. Routine CRP measurements with high sensitivity and reliability are highly relevant to the assessment of states of inflammation and the efficacy of treatment intervention, and require the development of very sensitive, selective, fast, robust and reproducible assays. Gold nanoparticles (Au NPs) are distinguished for their unique electrical and optical properties and the ability to conjugate with biomolecules. Au NP-based probes have attracted considerable attention in the last decade in the analysis of biological samples due to their simplicity, high sensitivity and selectivity. Thus, this article aims to be a critical and constructive analysis of the literature of the last three years regarding the advances made in the development of bioanalytical assays based on gold nanoparticles for the in vitro detection and quantification of C-reactive protein from biological samples. Current methods for Au NP synthesis and the strategies for surface modification aiming at selectivity towards CRP are highlighted. PMID:29597295
Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy).
Hudson, Stephen D; Chumanov, George
2009-06-01
Surface-enhanced Raman scattering (SERS) is a powerful technique for analyzing biological samples as it can rapidly and nondestructively provide chemical and, in some cases, structural information about molecules in aqueous environments. In the Raman scattering process, both visible and near-infrared (NIR) wavelengths of light can be used to induce polarization of Raman-active molecules, leading to inelastic light scattering that yields specific molecular vibrational information. The development of surface enhancement has enabled Raman scattering to be an effective tool for qualitative as well as quantitative measurements with high sensitivity and specificity. Recent advances have led to many novel applications of SERS for biological analyses, resulting in new insights for biochemistry and molecular biology, the detection of biological warfare agents, and medical diagnostics for cancer, diabetes, and other diseases. This trend article highlights many of these recent investigations and provides a brief outlook in order to assess possible future directions of SERS as a bioanalytical tool.
Doherty, Brenda; Csáki, Andrea; Thiele, Matthias; Zeisberger, Matthias; Schwuchow, Anka; Kobelke, Jens; Fritzsche, Wolfgang; Schmidt, Markus A
2017-02-01
Detecting small quantities of specific target molecules is of major importance within bioanalytics for efficient disease diagnostics. One promising sensing approach relies on combining plasmonically-active waveguides with microfluidics yielding an easy-to-use sensing platform. Here we introduce suspended-core fibres containing immobilised plasmonic nanoparticles surrounding the guiding core as a concept for an entirely integrated optofluidic platform for efficient refractive index sensing. Due to the extremely small optical core and the large adjacent microfluidic channels, over two orders of magnitude of nanoparticle coverage densities have been accessed with millimetre-long sample lengths showing refractive index sensitivities of 170 nm/RIU for aqueous analytes where the fibre interior is functionalised by gold nanospheres. Our concept represents a fully integrated optofluidic sensing system demanding small sample volumes and allowing for real-time analyte monitoring, both of which are highly relevant within invasive bioanalytics, particularly within molecular disease diagnostics and environmental science.
Photoelectrochemical enzymatic biosensors.
Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan
2017-06-15
Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.
Islam, Rafiqul
2013-07-01
Today's bioanalytical CROs face increasing global competition, highly variable demand, high fixed costs, pricing pressure, and increasing demand for quality and speed. Most bioanalytical laboratories have responded to these challenges by implementing automation and by implementing process improvement methodologies (e.g., Six Sigma). These solutions have not resulted in a significant improvement in productivity and profitability since none of them are able to predict the upturn or downturn in demand. High volatility of demand causes long lead times and high costs during peak demand and poor productivity during trough demand. Most bioanalytical laboratories lack the tools to align supply efficiently to meet changing demand. In this paper, sales and operation planning (S&OP) has been investigated as a tool to balance supply and demand. The S&OP process, when executed effectively, can be the single greatest determinant of profitability for a bioanalytical business.
Pharmacokinetics of Rhodamine 110 and Its Organ Distribution in Rats.
Jiang, Shiau-Han; Cheng, Yung-Yi; Huo, Teh-Ia; Tsai, Tung-Hu
2017-09-06
Rhodamine dyes have been banned as food additives due to their potential tumorigenicity. Rhodamine 110 is illegal as a food additive, although its pharmacokinetics have not been characterized, and no accurate bioanalytical methods are available to quantify rhodamine 110. The aim of this study was to develop and validate a fast, stable, and sensitive method to quantify rhodamine 110 using high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) to assess its pharmacokinetics and organ distribution in awake rats. Rhodamine 110 exhibited linear pharmacokinetics and slow elimination after oral administration. Furthermore, its oral bioavailability was approximately 34-35%. The distribution in the liver and kidney suggests that these organs are primarily responsible for rhodamine 110 metabolism and elimination. Our investigation describes the pharmacokinetics and a quantification method for rhodamine 110, improving our understanding of the food safety of rhodamine dyes.
Thway, Theingi M; Macaraeg, Chris; Eschenberg, Michael; Ma, Mark
2015-05-01
Formulation changes at later stages of biotherapeutics development require biocomparability (BC) assessment. Using simulation, this study aims to determine the potential effect of bias difference observed between the two formulations after spiking into serum in passing or failing of a critical BC study. An ELISA method with 20% total error was used to assess any bias differences between a reference (RF) and test formulations (TF) in serum. During bioanalytical comparison of these formulations, a 9% difference in bias was observed between the two formulations in sera. To determine acceptable level of bias difference between the RF and TF bioanalytically, two in silico simulations were performed. The in silico analysis showed that the likelihood of the study meeting the BC criteria was >90% when the bias difference between RF and TF in serum was 9% and the number of subjects was ≥20 per treatment arm. An additional simulation showed that when the bias difference was increased to 13% and the number of subjects was <40, the likelihood of meeting the BC criteria decreased to 80%. The result from in silico analysis allowed the bioanalytical laboratory to proceed with sample analysis using a single calibrator and quality controls made from the reference formulation. This modeling approach can be applied to other BC studies with similar situations.
Bioanalytical outsourcing strategy at Janssen Research and Development.
Verhaeghe, Tom
2014-05-01
The times when all bioanalytical work was supported in-house are long behind us. In the modern bioanalytical laboratory, workload is divided between in-house support and outsourcing to contract research organizations. This paper outlines the outsourcing strategy of the Janssen-regulated bioanalytical group. Keeping the knowledge of the assay and the compound internally is a cornerstone of this strategy and is a driver for balancing the workload between the internal laboratory and contract laboratories. The number of contract laboratories that are being used is limited and criteria for selecting laboratories are discussed. Special attention is paid to the experience with outsourcing clinical studies to China.
Stasyuk, Nataliya Ye.; Smutok, Oleh V.; Zakalskiy, Andriy E.; Zakalska, Oksana M.; Gonchar, Mykhailo V.
2014-01-01
A novel methylamine-selective amperometric bienzyme biosensor based on recombinant primary amine oxidase isolated from the recombinant yeast strain Saccharomyces cerevisiae and commercial horseradish peroxidase is described. Two amine oxidase preparations were used: free enzyme (AMO) and covalently immobilized on the surface of gold nanoparticles (AMO-nAu). Some bioanalytical parameters (sensitivity, selectivity, and storage stability) of the developed biosensors were investigated. The sensitivity for both sensors is high: 1450 ± 113 and 700 ± 30 A−1 ·M−1 ·m−2 for AMO-nAu biosensor, respectively. The biosensors exhibit the linear range from 15 μM to 150 μM (AMO-nAu) and from 15 μM to 60 μM (AMO). The developed biosensor demonstrated a good selectivity toward methylamine (MA) (signal for dimethylamine and trimethylamine is less than 5% and for ethylamine 15% compared to MA output) and reveals a satisfactory storage stability. The constructed amperometric biosensor was used for MA assay in real samples of fish products in comparison with chemical method. The values obtained with both approaches different methods demonstrated a high correlation. PMID:25136590
Oukarroum, Abdallah
2016-06-01
Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test.
Wang, Shunhai; Bobst, Cedric E.; Kaltashov, Igor A.
2018-01-01
Transferrin (Tf) is an 80 kDa iron-binding protein which is viewed as a promising drug carrier to target the central nervous system due to its ability to penetrate the blood-brain barrier (BBB). Among the many challenges during the development of Tf-based therapeutics, sensitive and accurate quantitation of the administered Tf in cerebrospinal fluid (CSF) remains particularly difficult due to the presence of abundant endogenous Tf. Herein, we describe the development of a new LC-MS based method for sensitive and accurate quantitation of exogenous recombinant human Tf in rat CSF. By taking advantage of a His-tag present in recombinant Tf and applying Ni affinity purification, the exogenous hTf can be greatly enriched from rat CSF, despite the presence of the abundant endogenous protein. Additionally, we applied a newly developed O18-labeling technique that can generate internal standards at the protein level, which greatly improved the accuracy and robustness of quantitation. The developed method was investigated for linearity, accuracy, precision and lower limit of quantitation, all of which met the commonly accepted criteria for bioanalytical method validation. PMID:26307718
Eichbaum, Kathrin; Brinkmann, Markus; Buchinger, Sebastian; Reifferscheid, Georg; Hecker, Markus; Giesy, John P; Engwall, Magnus; van Bavel, Bert; Hollert, Henner
2014-07-15
Use of in vitro assays as screening tool to characterize contamination of a variety of environmental matrices has become an increasingly popular and powerful toolbox in the field of environmental toxicology. While bioassays cannot entirely substitute analytical methods such as gas chromatography-mass spectrometry (GC-MS), the increasing improvement of cell lines and standardization of bioassay procedures enhance their utility as bioanalytical pre-screening tests prior to more targeted chemical analytical investigations. Dioxin-receptor-based assays provide a holistic characterization of exposure to dioxin-like compounds (DLCs) by integrating their overall toxic potential, including potentials of unknown DLCs not detectable via e.g. GC-MS. Hence, they provide important additional information with respect to environmental risk assessment of DLCs. This review summarizes different in vitro bioassay applications for detection of DLCs and considers the comparability of bioassay and chemical analytically derived toxicity equivalents (TEQs) of different approaches and various matrices. These range from complex samples such as sediments through single reference to compound mixtures. A summary of bioassay derived detection limits (LODs) showed a number of current bioassays to be equally sensitive as chemical methodologies, but moreover revealed that most of the bioanalytical studies conducted to date did not report their LODs, which represents a limitation with regard to low potency samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Application of a Permethrin Immunosorbent Assay Method to Residential Soil and Dust Samples
A low-cost, high throughput bioanalytical screening method was developed for monitoring cis/trans-permethrin in dust and soil samples. The method consisted of a simple sample preparation procedure [sonication with dichloromethane followed by a solvent exchange into methanol:wate...
Roy, Sharmili; Wei, Sim Xiao; Ying, Jean Liew Zhi; Safavieh, Mohammadali; Ahmed, Minhaz Uddin
2016-12-15
Electrochemiluminescence (ECL) has been widely rendered for nucleic acid testing. Here, we integrate loop-mediated isothermal amplification (LAMP) with ECL technique for DNA detection and quantification. The target LAMP DNA bound electrostatically with [Ru(bpy)3](+2) on the carbon electrode surface, and an ECL reaction was triggered by tripropylamine (TPrA) to yield luminescence. We illustrated this method as a new and highly sensitive strategy for the detection of sequence-specific DNA from different meat species at picogram levels. The proposed strategy renders the signal amplification capacities of TPrA and combines LAMP with inherently high sensitivity of the ECL technique, to facilitate the detection of low quantities of DNA. By leveraging this technique, target DNA of Sus scrofa (pork) meat was detected as low as 1pg/µL (3.43×10(-1)copies/µL). In addition, the proposed technique was applied for detection of Bacillus subtilis DNA samples and detection limit of 10pg/µL (2.2×10(3)copies/µL) was achieved. The advantages of being isothermal, sensitive and robust with ability for multiplex detection of bio-analytes makes this method a facile and appealing sensing modality in hand-held devices to be used at the point-of-care (POC). Copyright © 2016 Elsevier B.V. All rights reserved.
Heinig, Katja; Miya, Kazuhiro; Kamei, Tomonori; Guerini, Elena; Fraier, Daniela; Yu, Li; Bansal, Surendra; Morcos, Peter N
2016-07-01
Alectinib is a novel anaplastic lymphoma kinase (ALK) inhibitor for treatment of patients with ALK-positive non-small-cell lung cancer who have progressed on or are intolerant to crizotinib. To support clinical development, concentrations of alectinib and metabolite M4 were determined in plasma from patients and healthy subjects. LC-MS/MS methods were developed and validated in two different laboratories: Chugai used separate assays for alectinib and M4 in a pivotal Phase I/II study while Roche established a simultaneous assay for both analytes for another pivotal study and all other studies. Cross-validation assessment revealed a bias between the two bioanalytical laboratories, which was confirmed with the clinical PK data between both pivotal studies using the different bioanalytical methods.
Kuhlmann, O; Stoldt, G; Struck, H G; Krauss, G J
1998-09-01
A sensitive and selective bioanalytical method for simultaneous determination of diclofenac and oxybuprocaine in human aqueous humor using reversed-phase HPLC and electrochemical detection is described. Chromatographic separation was achieved by using a Regis SPS 100 RP-8 column (5 microns; 150 x 4.6 mm I.D.). This support is coated with a hydrophilic polyoxyethylenepolymer. It allows protein-containing samples to be injected directly onto the column. The electrochemical detector permit a detection limit of 500 pg diclofenac per ml (daily relative standard deviation 6.3%) and 50 ng oxybuprocaine per ml (daily R.S.D. 2.6%), respectively. Results of administered and measured drug-concentrations in time dependent decrease are presented.
Supercritical fluid chromatography: a promising alternative to current bioanalytical techniques.
Dispas, Amandine; Jambo, Hugues; André, Sébastien; Tyteca, Eva; Hubert, Philippe
2018-01-01
During the last years, chemistry was involved in the worldwide effort toward environmental problems leading to the birth of green chemistry. In this context, green analytical tools were developed as modern Supercritical Fluid Chromatography in the field of separative techniques. This chromatographic technique knew resurgence a few years ago, thanks to its high efficiency, fastness and robustness of new generation equipment. These advantages and its easy hyphenation to MS fulfill the requirements of bioanalysis regarding separation capacity and high throughput. In the present paper, the technical aspects focused on bioanalysis specifications will be detailed followed by a critical review of bioanalytical supercritical fluid chromatography methods published in the literature.
IMMUNOASSAYS FOR BIOMARKERS AND NEUTRACEUTICALS/PHARMACEUTICALS
Product is an abstract for an invited oral platform presentation to be given at the Pittsburgh Conference to be held February 25 - March 2, 2007 in Chicago, Ilinois. The presentation will describe methods research for the development of bioanalytical methods to measure biomarker...
Activity-Based Detection and Bioanalytical Confirmation of a Fatal Carfentanil Intoxication
Cannaert, Annelies; Ambach, Lars; Blanckaert, Peter; Stove, Christophe P.
2018-01-01
Carfentanil, one of the most potent opioids known, has recently been reported as a contaminant in street heroin in the United States and Europe, and is associated with an increased number of life-threatening emergency department admissions and deaths. Here, we report on the application of a novel in vitro opioid activity reporter assay and a sensitive bioanalytical assay in the context of a fatal carfentanil intoxication, revealing the highest carfentanil concentrations reported until now. A 21-year-old male was found dead at home with a note stating that he had taken carfentanil with suicidal intentions. A foil bag and plastic bag labeled “C.50” were found at the scene. These bags were similar to a sample obtained by the Belgian Early Warning System on Drugs from a German darknet shop and to those found in the context of a fatality in Norway. Blood, urine and vitreous, obtained during autopsy, were screened with a newly developed in vitro opioid activity reporter assay able to detect compounds based on their μ-opioid receptor activity rather than their chemical structure. All extracts showed strong opioid activity. Results were confirmed by a bioanalytical assay, which revealed extremely high concentrations for carfentanil and norcarfentanil. It should be noted that carfentanil concentrations are typically in pg/mL, but here they were 92 ng/mL in blood, 2.8 ng/mL in urine, and 23 ng/mL in vitreous. The blood and vitreous contained 0.532 and 0.300 ng/mL norcarfentanil, respectively. No norcarfentanil was detected in urine. This is the first report where a novel activity-based opioid screening assay was successfully deployed in a forensic case. Confirmation and quantification using a validated bioanalytical procedure revealed the, to our knowledge, highest carfentanil concentrations reported in humans so far. PMID:29867491
He, Yanlong; Tian, Jianniao; Hu, Kun; Zhang, Juanni; Chen, Sheng; Jiang, Yixuan; Zhao, Yanchun; Zhao, Shulin
2013-11-13
In this work, an ultrasensitive fluorescent polarization immunoassay (FPIA) method based on the quantum dot/aptamer/antibody/gold nanoparticles ensemble has been developed for the detection of adenosine triphosphate (ATP). DNA hybridization is formed when ATP is present in the PBS solution containing the DNA-conjugated quantum dots (QDs) and antibody-AuNPs. The substantial sensitivity improvement of the antibody-AuNPs-enhanced method is mainly attributed to the slower rotation of fluorescent unit when QDs-labeled oligonucleotides hybridize with antibody modified the gold nanoparticle. As a result, the fluorescent polarization (FP) values of the system increase significantly. Under the optimal conditions, a linear response with ATP concentration is ranged from 8×10(-12) M to 2.40×10(-4) M. The detection limit reached as low as 1.8 pM. The developed work provides a sensitive and selective immunoassay protocol for ATP detection, which could be applied in more bioanalytical systems. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Advances in the analysis of biological samples using ionic liquids.
Clark, Kevin D; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-02-12
Ionic liquids are a class of solvents and materials that hold great promise in bioanalytical chemistry. Task-specific ionic liquids have recently been designed for the selective extraction, separation, and detection of proteins, peptides, nucleic acids, and other physiologically relevant analytes from complex biological samples. To facilitate rapid bioanalysis, ionic liquids have been integrated in miniaturized and automated procedures. Bioanalytical separations have also benefited from the modification of nonspecific magnetic materials with ionic liquids or the implementation of ionic liquids with inherent magnetic properties. Furthermore, the direct detection of the extracted molecules in the analytical instrument has been demonstrated with structurally tuned ionic liquids and magnetic ionic liquids, providing a significant advantage in the analysis of low-abundance analytes. This article gives an overview of these advances that involve the application of ionic liquids and derivatives in bioanalysis. Graphical abstract Ionic liquids, magnetic ionic liquids, and ionic liquid-based sorbents are increasing the speed, selectivity, and sensitivity in the analysis of biological samples.
[Present situation and development trends of asymmetrical flow field-flow fractionation].
Liang, Qihui; Wu, Di; Qiu, Bailing; Han, Nanyin
2017-09-08
Field-flow fractionation (FFF) is a kind of mature separation technologies in the field of bioanalysis, feasible of separating analytes with the differences of certain physical and chemical properties by the combination effects of two orthogonal force fields (flow field and external force field). Asymmetrical flow field-flow fractionation (AF4) is a vital subvariant of FFF, which applying a vertical flow field as the second dimension force field. The separation in AF4 opening channel is carried out by any composition carrier fluid, universally and effectively used in separation of bioparticles and biopolymers due to the non-invasivity feature. Herein, bio-analytes are held in bio-friendly environment and easily sterilized without using degrading carrier fluid which is conducive to maintain natural conformation. In this review, FFF and AF4 principles are briefly described, and some classical and emerging applications and developments in the bioanalytical fields are concisely introduced and tabled. Also, special focus is given to the hyphenation of AF4 with highly specific, sensitive detection technologies.
Ask the experts: automation: part I.
Allinson, John L; Blick, Kenneth E; Cohen, Lucinda; Higton, David; Li, Ming
2013-08-01
Bioanalysis invited a selection of leading researchers to express their views on automation in the bioanalytical laboratory. The topics discussed include the challenges that the modern bioanalyst faces when integrating automation into existing drug-development processes, the impact of automation and how they envision the modern bioanalytical laboratory changing in the near future. Their enlightening responses provide a valuable insight into the impact of automation and the future of the constantly evolving bioanalytical laboratory.
Shaw, Jiajiu; Wiegand, Richard; Wu, Jianmei; Bao, Xun; Valeriote, Frederick; Li, Jing
2015-06-01
UTL-5g is a novel small-molecule TNF-α inhibitor under investigation as both a chemoprotective and radioprotective agent. Animal studies showed that pretreatment of UTL-5g protected kidney, liver, and platelets from cisplatin-induced toxicity. In addition, UTL-5g reduced liver and lung injuries induced by radiation in vivo. Although a number of preclinical studies have been conducted, a validated bioanalytical method for UTL-5g in human plasma has not been published. In this work, a sensitive and reproducible reverse-phase liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) assay was developed and validated for the determination of UTL-5g and its metabolites, 5-methylisoxazole-3-carboxylic acid (ISOX) and 2,4-dichloroaniline (DCA), in human plasma. The method involves a simple methanol precipitation step followed by injection of the supernatant onto a Waters 2695 HPLC system coupled with a Waters Quattro Micro™ triple quadrupole mass spectrometer. Chromatographic separation was accomplished using a Waters Nova-Pak C18 column maintained at 30°C, running at gradient mode with mobile phase consisting of 0.1% formic acid in water and 0.1% formic acid in methanol at a flow rate of 0.2mL/min. The analytes were monitored under positive electrospray ionization (ESI). Quantitation of these compounds in plasma was linear from 0.05 to 10μM. The lower limit of quantitation (LLOQ) was 0.05, 0.1, and 0.2μM for UTL-5g, ISOX and DCA, respectively. The accuracy and intra-and inter-day precisions were within the generally accepted criteria for bioanalytical method (<15%). This method provides a practical tool to measure and characterize the plasma concentration-time profiles for UTL-5g and its metabolites, ISOX and DCA. Copyright © 2015 Elsevier B.V. All rights reserved.
Microfluidic Biosensing Systems Using Magnetic Nanoparticles
Giouroudi, Ioanna; Keplinger, Franz
2013-01-01
In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689
Zhao, Qi; Wang, Xijie; Wang, Shuyan; Song, Zheng; Wang, Jiaxian; Ma, Jing
2017-03-09
Cardiotoxicity remains an important concern in drug discovery. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate cardiotoxicity. However, the consistency between human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in prediction of cardiotoxicity has yet to be elucidated. Here we screened the toxicities of four representative drugs (E-4031, isoprenaline, quinidine, and haloperidol) using both hESC-CMs and hiPSC-CMs, combined with an impedance-based bioanalytical method. It showed that both hESC-CMs and hiPSC-CMs can recapitulate cardiotoxicity and identify the effects of well-characterized compounds. The combined platform of hPSC-CMs and an impedance-based bioanalytical method could improve preclinical cardiotoxicity screening, holding great potential for increasing drug development accuracy.
Mochizuki, Ayumi; Ieki, Katsunori; Kamimori, Hiroshi; Nagao, Akemi; Nakai, Keiko; Nakayama, Akira; Nanba, Eitaro
2018-04-01
The guidance and several guidelines on bioanalytical method validation, which were issued by the US FDA, EMA and Ministry of Health, Labour and Welfare, list the 'full' validation parameters; however, none of these provide any details for 'partial' validation. Japan Bioanalysis Forum approved a total of three annual discussion groups from 2012 to 2014. In the discussion groups, members from pharmaceutical companies and contract research organizations discussed the details of partial validation from a risk assessment viewpoint based on surveys focusing on bioanalysis of small molecules using LC-MS/MS in Japan. This manuscript presents perspectives and recommendations for most conceivable changes that can be made to full and partial validations by members of the discussion groups based on their experiences and discussions at the Japan Bioanalysis Forum Symposium.
In-situ investigation of protein and DNA structure using UVRRS
NASA Astrophysics Data System (ADS)
Greek, L. Shane; Schulze, H. Georg; Blades, Michael W.; Haynes, Charles A.; Turner, Robin F. B.
1997-05-01
Ultraviolet resonance Raman spectroscopy (UVRRS) has the potential to become a sensitive, specific, versatile bioanalytical and biophysical technique for routine investigations of proteins, DNA, and their monomeric components, as well as a variety smaller, physiologically important aromatic molecules. The transition of UVRRS from a complex, specialized spectroscopic method to a common laboratory assay depends upon several developments, including a robust sample introduction method permitting routine, in situ analysis in standard laboratory environments. To this end, we recently reported the first fiber-optic probes suitable for deep-UV pulsed laser UVRRS. In this paper, we extend this work by demonstrating the applicability of such probes to studies of biochemical relevance, including investigations of the resonance enhancement of phosphotyrosine, thermal denaturation of RNase T1, and specific and non-specific protein binding. The advantages and disadvantages of the probes are discussed with reference to sample conditions and probe design considerations.
Lowes, Steve; Jersey, Jim; Shoup, Ronald; Garofolo, Fabio; Needham, Shane; Couerbe, Philippe; Lansing, Tim; Bhatti, Masood; Sheldon, Curtis; Hayes, Roger; Islam, Rafiq; Lin, Zhongping; Garofolo, Wei; Moussallie, Marc; Teixeira, Leonardo de Souza; Rocha, Thais; Jardieu, Paula; Truog, James; Lin, Jenny; Lundberg, Richard; Breau, Alan; Dilger, Carmen; Bouhajib, Mohammed; Levesque, Ann; Gagnon-Carignan, Sofi; Jenkins, Rand; Nicholson, Robert; Lin, Ming Hung; Karnik, Shane; DeMaio, William; Smith, Kirk; Cojocaru, Laura; Allen, Mike; Fatmi, Saadya; Sayyarpour, Farhad; Malone, Michele; Fang, Xinping
2012-04-01
The Global CRO Council for Bioanalysis (GCC) was formed in September 2010. Since then, the representatives of the member companies come together periodically to openly discuss bioanalysis and the regulatory challenges unique to the outsourcing industry. The 4th GCC Closed Forum brought together experts from bioanalytical CROs to share and discuss recent issues in regulated bioanalysis, such as the impact of coadministered drugs on stability, some differences between European Medicines Agency and US FDA bioanalytical guidance documents and lessons learned following recent Untitled Letters. Recent 483s and agency findings, as well as issues on method carryover, were also part of the topics discussed.
Bioanalytical Methods for Food Contaminant Analysis
Foods are complex mixtures of lipids, carbohydrates, proteins, vitamins, organic compounds and other naturally occurring compounds. Sometimes added to this mixture are residues of pesticides, veterinary and human drugs, microbial toxins, preservatives, contaminants from food proc...
Bioanalytical devices: Technological leap for sweat sensing
NASA Astrophysics Data System (ADS)
Heikenfeld, Jason
2016-01-01
Sweat analysis is an ideal method for continuously tracking a person's physiological state, but developing devices for this is difficult. A wearable sweat monitor that measures several biomarkers is a breakthrough. See Letter p.509
Davanço, Marcelo Gomes; de Campos, Michel Leandro; Peccinini, Rosângela Gonçalves
2015-07-01
Benznidazole (BNZ) and nifurtimox are the only drugs available for treating Chagas disease. In this work, we validated a bioanalytical method for the quantification of BNZ in plasma aimed at improving sensitivity and time of analysis compared with the assays already published. Furthermore, we demonstrated the application of the method in a preclinical pharmacokinetic study after administration of a single oral dose of BNZ in Wistar rats. A Waters® Acquity UHPLC system equipped with a UV-vis detector was employed. The method was established using an Acquity® UHPLC HSS SB C18 protected by an Acquity® UHPLC HSS SB C18 VanGuard guard column and detection at 324 nm. The mobile phase consisted of ultrapure water-acetonitrile (65:35), and elution was isocratic. The mobile phase flow rate was 0.55 mL/min, the volume of injection was 1 μL, and the run time was just 2 min. The samples were kept at 25°C until injection and the column at 45°C for the chromatographic separation. The sample preparation was performed by a rapid protein precipitation with acetonitrile. The linear concentration range was 0.15-20 µg/mL. The pharmacokinetic parameters of BNZ in rats were determined and the method was considered sensitive, fast and suitable for application in pharmacokinetic studies. Copyright © 2014 John Wiley & Sons, Ltd.
Zhang, Hua; Bibi, Aisha; Lu, Haiyan; Han, Jing; Chen, Huanwen
2017-08-01
It is of sustainable interest to improve the sensitivity and selectivity of the ionization process, especially for direct analysis of complex samples without matrix separation. Herein, four ambient ionization methods including desorption atmospheric pressure chemical ionization (DAPCI), heat-assisted desorption atmospheric pressure chemical ionization (heat-assisted DAPCI), microwave plasma torch (MPT) and internal extractive electrospray ionization (iEESI) were employed for comparative analysis of the navel orange tissue samples by mass spectrometry. The volatile organic compounds (e.g. ethanol, vanillin, leaf alcohol and jasmine lactone) were successfully detected by non-heat-assisted DAPCI-MS, while semi-volatile organic compounds (e.g. 1-nonanol and ethyl nonanoate) together with low abundance of non-volatile organic compounds (e.g. sinensetin and nobiletin) were obtained by heat-assisted DAPCI-MS. Typical nonvolatile organic compounds [e.g. 5-(hydroxymethyl)furfural and glucosan] were sensitively detected with MPT-MS. Compounds of high polarity (e.g. amino acids, alkaloids and sugars) were easily profiled with iEESI-MS. Our data showed that more analytes could be detected when more energy was delivered for the desorption ionization purpose; however, heat-sensitive analytes would not be detected once the energy input exceeded the dissociation barriers of the analytes. For the later cases, soft ionization methods such as iEESI were recommended to sensitively profile the bioanalytes of high polarity. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Jiang, Lixiang; Luo, Jing; Dong, Wenjie; Wang, Chengmin; Jin, Wen; Xia, Yuetong; Wang, Haijing; Ding, Hua; Jiang, Long; He, Hongxuan
2015-07-01
H5N1 avian influenza has caused serious economic losses as well as posed significant threats to public health, agriculture and wildlife. It is important to develop a rapid, sensitive and specific detection platform suitable for disease surveillance and control. In this study, a highly sensitive, specific and rapid biosensor based on polydiacetylene was developed for detecting H5 influenza virus. The polydiacetylene based biosensor was produced from an optimized ratio of 10,12-pentacosadiynoic acid and 1,2-dimyristoyl-sn-glycero-3-phosphocholine, with the anti-H5 influenza antibody embedded onto the vesicle surface. The optimized polydiacetylene vesicle could detect H5 influenza virus sensitively with a detection limit of 0.53 copies/μL, showing a dramatic blue-to-red color change that can be observed directly by the naked eye and recorded by a UV-vis spectrometer. The sensitivity, specificity and accuracy of the biosensor were also evaluated. The sensor could specifically differentiate H5 influenza virus from H3 influenza virus, Newcastle disease virus and porcine reproductive and respiratory syndrome virus. Detection using tracheal swabs was in accord with virus isolation results, and comparable to the RT-PCR method. These results offer the possibility and potential of simple polydiacetylene based bio-analytical method for influenza surveillance. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Shunhai; Bobst, Cedric E; Kaltashov, Igor A
2015-01-01
Transferrin (Tf) is an 80 kDa iron-binding protein that is viewed as a promising drug carrier to target the central nervous system as a result of its ability to penetrate the blood-brain barrier. Among the many challenges during the development of Tf-based therapeutics, the sensitive and accurate quantitation of the administered Tf in cerebrospinal fluid (CSF) remains particularly difficult because of the presence of abundant endogenous Tf. Herein, we describe the development of a new liquid chromatography-mass spectrometry-based method for the sensitive and accurate quantitation of exogenous recombinant human Tf in rat CSF. By taking advantage of a His-tag present in recombinant Tf and applying Ni affinity purification, the exogenous human serum Tf can be greatly enriched from rat CSF, despite the presence of the abundant endogenous protein. Additionally, we applied a newly developed (18)O-labeling technique that can generate internal standards at the protein level, which greatly improved the accuracy and robustness of quantitation. The developed method was investigated for linearity, accuracy, precision, and lower limit of quantitation, all of which met the commonly accepted criteria for bioanalytical method validation.
Rainville, Paul D; Simeone, Jennifer L; Root, Dan S; Mallet, Claude R; Wilson, Ian D; Plumb, Robert S
2015-03-21
The emergence of micro sampling techniques holds great potential to improve pharmacokinetic data quality, reduce animal usage, and save costs in safety assessment studies. The analysis of these samples presents new challenges for bioanalytical scientists, both in terms of sample processing and analytical sensitivity. The use of two dimensional LC/MS with, at-column-dilution for the direct analysis of highly organic extracts prepared from biological fluids such as dried blood spots and plasma is demonstrated. This technique negated the need to dry down and reconstitute, or dilute samples with water/aqueous buffer solutions, prior to injection onto a reversed-phase LC system. A mixture of model drugs, including bromhexine, triprolidine, enrofloxacin, and procaine were used to test the feasibility of the method. Finally an LC/MS assay for the probe pharmaceutical rosuvastatin was developed from dried blood spots and protein-precipitated plasma. The assays showed acceptable recovery, accuracy and precision according to US FDA guidelines. The resulting analytical method showed an increase in assay sensitivity of up to forty fold as compared to conventional methods by maximizing the amount loaded onto the system and the MS response for the probe pharmaceutical rosuvastatin from small volume samples.
Validation in context of bioanalytical research papers.
Rogatsky, Eduard; Tomuta, Vlad; Stein, Daniel T
2006-11-01
We have noticed the growing amount of application papers, mainly focused on detailed description of analytical assay validation with limited discussion of method development and optimization in top-ranked chromatographic journals. We analyze the implications of this trend and suggest a re-emphasis on the intellectual component in method development.
Conducting remote bioanalytical data monitoring and review based on scientific quality objectives.
He, Ling
2011-07-01
For bioanalytical laboratories that follow GLP regulations and generate data for new drug filing, ensuring quality standards set by regulatory guidance is a fundamental expectation. Numerous guidelines and White Papers have been published by regulatory agencies, professional working groups and field experts in the past two decades, and have significantly improved the standards of good practices for bioanalysis. From a sponsor's perspective, continuous quality monitoring of the data generated by CRO laboratories, identifying adverse trends and taking corrective and preventative actions against issues encountered, are critical aspects of effective bioanalytical outsourcing management. This is especially important for clinical bioanalysis, where one validated assay is applied for analyzing a large number of samples of diverse demographics and disease states. This perspective article presents thoughts toward remote data monitoring and its merits for scientific quality oversight, and introduces a novel Bioanalytical Data Review software that was custom-developed and platform-neural, to conduct remote data monitoring on raw or processed LC-MS/MS data from CROs. Flexible, adaptive and user-customizable queries are applied for conducting project-, batch- and sample-level data review based on scientific quality performance factors commonly assessed for good bioanalytical practice.
Recommendations on incurred sample stability (ISS) by GCC.
Lowes, Steve; LeLacheur, Richard; Shoup, Ronald; Garofolo, Fabio; Dumont, Isabelle; Martinez, Suzanne; Zimmer, Jennifer; Caturla, Maria Cruz; Couerbe, Philippe; Awaiye, Kayode; Fatmi, Saadya; Farmen, Raymond; Sheldon, Curtis; Bower, Joseph; Fiscella, Michele; Fast, Douglas; Cape, Stephanie; Hulse, Jim; Kamerud, John; Zhang, Tee; Pasas-Farmer, Stephanie; Garofolo, Wei; Moussallie, Marc; Rocci, Mario; Allinson, John; Gouty, Dominique; Buonarati, Mike; Boudreau, Nadine; Pellerin, Brigitte; Lin, Jenny; Xu, Allan; Hayes, Roger; Bouhajib, Mohammed; Stipancic, Mary; Nicholson, Robert; Nehls, Corey; Warren, Mark; Karnik, Shane; Houghton, Richard; Stovold, Craig; Reuschel, Scott; Cojocaru, Laura; Marcelletti, John; Fang, Xinping; Smith, Ian; Watson, Andrea
2014-09-01
The topic of incurred sample stability (ISS) has generated considerable discussion within the bioanalytical community in recent years. The subject was an integral part of the seventh annual Workshop on Recent Issues in Bioanalysis (WRIB) held in Long Beach, CA, USA, in April 2013, and at the Global CRO Council for Bioanalysis (GCC) meeting preceding it. Discussion at both events focused on the use of incurred samples for ISS purposes in light of results from a recent GCC survey completed by member companies. This paper reports the consensus resulting from these discussions and serves as a useful reference for depicting ISS issues and concerns, summarizing the GCC survey results and providing helpful recommendations on ISS in the context of bioanalytical method development and application.
Zeng, Rong-Jie; Li, Yu; Chen, Jian-Zhong; Chou, Gui-Xin; Gao, Yu; Shao, Jing-Wei; Jia, Lee; Wu, Sheng-Dong; Wu, Shui-Sheng
2015-03-01
Boldine is a potential anti-inflammatory agent found in several different plants. Published bioanalytical methods using HPLC with ultraviolet and fluorescent detection lacked enough sensitivity and required tedious sample preparation procedures. Herein, we describe the development of a novel ultra-high performance LC with MS/MS for determination of boldine in plasma. Boldine in plasma was recovered by liquid-liquid extraction using 1 mL of methyl tert-butyl ether. Chromatographic separation was performed on a C18 column at 45°C, with a gradient elution consisting of acetonitrile and water containing 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. The detection was performed on an electrospray triple-quadrupole MS/MS by positive ion multiple reaction monitoring mode. Good linearity (r(2) > 0.9926) was achieved in a concentration range of 2.555-2555 ng/mL with a lower limit of quantification of 2.555 ng/mL for boldine. The intra- and inter-day precisions of the assay were 1.2-6.0 and 1.8-7.4% relative standard deviation with an accuracy of -6.0-8.0% relative error. This newly developed method was successfully applied to a single low-dose pharmacokinetic study in rats and was demonstrated to be simpler and more sensitive than the published methods, allowing boldine quantification in reduced plasma volume. Copyright © 2014 John Wiley & Sons, Ltd.
LC-MS/MS method for the determination of clodronate in human plasma.
Hasan, Mahmoud; Schumacher, Gitta; Seekamp, Anne; Taedken, Tobias; Siegmund, Werner; Oswald, Stefan
2014-11-01
Clodronate belongs to the class of bisphosphonates which are used for the treatment of bone disorders. Due to its high polarity it has a low and highly variable oral bioavailability which results in low plasma concentrations and requires sensitive bioanalytical methods to characterize its pharmacokinetics in human. Here, we describe for the first time the development and validation of a LC-MS/MS assay for the quantification of clodronate in human plasma. The bisphosphonate was isolated from the biological matrix by protein precipitation using perchloric acid (10%), and derivatized with trimethylorthoacetate prior sample clean-up with liquid-liquid extraction using methyl tert-butyl ether. The chromatography was performed using an isocratic elution with ammonium acetate 5mM (85% v/v, pH 3.8) and acetonitrile (15% v/v) as mobile phase with a flow rate of 300μl/min on a reversed-phase column (Supelco Ascentis(®), C18) temporized at 50°C. The mass spectrometric detection was done using the API4000 triple quadruple mass spectrometer monitoring the mass/charge transitions 301.0/145 for clodronate and 305.2/137.1 for the internal standard etidronate. The analytical range was set to 5-800ng/ml, allowing an evaluation of the plasma concentration-time profiles of clodronate for approximately 7-8 half-life (∼24h). The method was validated according to current FDA/EMA guidelines on bioanalytical method validation with respect to specificity, linearity, intra- and inter-day accuracy and precision, matrix effect, recovery as well as stability. The precision of the assay was 0.6-6.9% and 0.6-8.1% for the intra-day and inter-day variability, respectively. The intra-day and inter-day accuracy (error) was 0.6-8.8% and 2.2-4.5%. The recovery of the analyte was low (2-3%) but reproducible over the entire validation range and sufficient to monitor the target concentrations in human plasma. The drug was shown to be stable in plasma at room temperature for at least 3h (96.0±6%) and for at least 24h when stored in the cooled autosampler at 4°C (102.4±4.5%). Clodronate can also undergo up to three freeze-thaw cycles without impaired stability. Thus, the method was shown to possess sufficient specificity, sensitivity, accuracy, precision and stability to measure plasma concentrations of clodronate. Finally, the developed method was successfully applied to study the clodronate serum levels in a pharmacokinetic study in healthy volunteers. Copyright © 2014 Elsevier B.V. All rights reserved.
Patel, Harilal; Giri, Poonam; Ghoghari, Ashok; Delvadia, Prashant; Syed, Muzeeb; Srinivas, Nuggehally R
2017-01-01
Methotrexate is an old drug that has found use in several therapeutic areas, such as cancer to treat various malignancies, rheumatoid arthtritis and inflammatory bowel disease. Owing to its structural properties of possessing two carboxylic acid groups and having low native fluorescence, it has provided technical challenges for development of bioanalytical methods. Also, in vivo metabolism leading to circulatory metabolites such as 7-hydroxymethotrexate and 2,4-diamino N 10 -methylpteroic acid, as well as the formation of polyglutamate metabolites intracellularly have added further complexity for the assays in terms of the analytes that need to be quantified in addition to methotrexate. The present review is aimed at providing a concise tabular summary of chromatographic assays with respect to method nuances including assay/chromatographic conditions, key validation parameters and applicable remarks. Several case studies are reviewed under various subheadings to provide the challenges involved in the method development for methotrexate and metabolites. Finally, a discussion section is devoted to overall perspectives obtained from this review. Copyright © 2016 John Wiley & Sons, Ltd.
Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide.
Ren, Hui; Kulkarni, Dhaval D; Kodiyath, Rajesh; Xu, Weinan; Choi, Ikjun; Tsukruk, Vladimir V
2014-02-26
Competitive adsorption-desorption behavior of popular fluorescent labeling and bioanalyte molecules, Rhodamine 6G (R6G) and dopamine (DA), on a chemically heterogeneous graphene oxide (GO) surface is discussed in this study. Individually, R6G and DA compounds were found to adsorb rapidly on the surface of graphene oxide as they followed the traditional Langmuir adsorption behavior. FTIR analysis suggested that both R6G and DA molecules predominantly adsorb on the hydrophilic oxidized regions of the GO surface. Thus, when R6G and DA compounds were adsorbed from mixed solution, competitive adsorption was observed around the oxygen-containing groups of GO sheets, which resulted in partial desorption of R6G molecules from the surface of GO into the solution. The desorbed R6G molecules can be monitored by fluorescence change in solution and was dependent on the DA concentration. We suggest that the efficient competitive adsorption of different strongly bound bioanalytes onto GO-dye complex can be used for the development of sensitive and selective colorimetric biosensors.
Strategies for the design of bright upconversion nanoparticles for bioanalytical applications
NASA Astrophysics Data System (ADS)
Wiesholler, Lisa M.; Hirsch, Thomas
2018-06-01
In recent years upconversion nanoparticles (UCNPs) received great attention because of their outstanding optical properties. Especially in bioanalytical applications this class of materials can overcome limitations of common probes like high background fluorescence or blinking. Nevertheless, the requirements for UCNPs to be applicable in biological samples, e.g. small size, water-dispersibility, excitation at low power density are in contradiction with the demand of high brightness. Therefore, a lot of attention is payed to the enhancement of the upconversion luminescence. This review discuss the recent trends and strategies to boost the brightness of UCNPs, classified in three main directions: a) improving the efficiency of energy absorption by the sensitizer via coupling to plasmonic or photonic structures or via attachment of ligands for light harvesting; b) minimizing non-radiative deactivation by variations in the architecture of UCNPs; and c) changing the excitation wavelength to get bright particles at low excitation power density for applications in aqueous systems. These strategies are critically reviewed including current limitations as well as future perspectives for the design of efficient UCNPs especially for sensing application in biological samples or cells.
Karahashi, Minako; Fukuhara, Hiroto; Hoshina, Miki; Sakamoto, Takeshi; Yamazaki, Tohru; Mitsumoto, Atsushi; Kawashima, Yoichi; Kudo, Naomi
2014-01-01
Fibrates are used in biochemical and pharmacological studies as bioactive tools. Nevertheless, most studies have lacked information concerning the concentrations of fibric acids working inside tissues because a simple and sensitive method is not available for their quantitation. This study aimed to develop a simple and sensitive bioanalytical method for the quantitation of clofibric, bezafibric and fenofibric acids in samples of very small portions of tissues. Fibric acids were extracted into n-hexane-ethyl acetate from tissue homogenates (10 mg of liver, kidney or muscle) or serum (100 µL) and were derivatized with 4-bromomethyl-6,7-dimethoxycoumarin, followed by HPLC with fluorescence detection. These compounds were separated isocratically on a reversed phase with acetonitrile-water. Standard analytical curves were linear over the concentration range of 0.2-20 nmol/10 mg of liver. Precision and accuracy were within acceptable limits. Recovery from liver homogenates ranged from 93.03 to 112.29%. This method enabled the quantitation of fibric acids in 10 mg of liver from rats treated with clofibric acid, bezafibric acid or fenofibrate. From these analytical data, it became clear that there was no large difference in ratio of acyl-CoA oxidase 1 (Acox1) mRNA level to fibric acid content in the liver among the three fibric acids, suggesting that these three fibric acids have similar potency to increase expression of the Acox1 gene, which is a target of peroxisome proliferator-activated receptor α. Thus, the proposed method is a simple, sensitive and reliable tool for the quantitation of fibric acids working in vivo inside livers.
Vanol, Pravin G; Sanyal, Mallika; Shah, Priyanka A; Shrivastav, Pranav S
2018-03-23
A highly sensitive, selective and rugged method has been described for the quantification of metronidazole (MTZ) in human plasma by liquid chromatography-tandem mass spectrometry using metronidazole-d4 as the internal standard (IS). The analyte and the IS were extracted from 100 μL plasma by liquid-liquid extraction. The clear samples obtained were chromatographed on an ACE C 18 (100 × 4.6 mm, 5 μm) column using acetonitrile and 10.0 mm ammonium formate in water, pH 4.00 (80:20, v/v) as the mobile phase. A triple quadrupole mass spectrometer system equipped with turbo ion spray source and operated in multiple reaction monitoring mode was used for the detection and quantification of MTZ. The calibration range was established from 0.01 to 10.0 μg/mL. The results of validation testing for precision and accuracy, selectivity, matrix effects, recovery and stability complied with current bioanalytical guidelines. A run time of 3.0 min permitted analysis of more than 300 samples in a day. The method was applied to a bioequivalence study with 250 mg MTZ tablet formulation in 24 healthy Indian males. Copyright © 2018 John Wiley & Sons, Ltd.
Vidal, Juan C; Bertolín, Juan R; Bonel, Laura; Asturias, Laura; Arcos-Martínez, M Julia; Castillo, Juan R
2016-06-05
Cocaine is one of the most worldwide used illicit drugs. We report a magnetic particles-based enzyme-linked immunoassay (mpEIA) method for the rapid and sensitive determination of cocaine (COC) in saliva, urine and serum samples. Under optimized conditions, the limits of detections were 0.09ngmL(-1) (urine), 0.15ngmL(-1) (saliva), and 0.06ngmL(-1) COC (human serum). Sensitivities were in the range EC50=0.6-2.5ngmL(-1) COC. The cross-reactivity with the principal metabolite benzoylecgonine (BZE) was only 1.6%. Recovering percentages of doped samples (0, 10, 50, and 100ngmL(-1) of COC) ranged from about 86-111%. Some advantages of the developed mpEIA over conventional ELISA kits are faster incubations, improved reproducibility, and consumption of lower amounts of antibody and enzyme conjugates due to the use of magnetic beads. The reported method was validated following the guidelines on bioanalytical methods of the European Medicines Agency (2011). Unmetabolized COC detection has a great interest in pharmacological, pharmacokinetics, and toxicokinetics studies, and can be used to detect a very recent COC use (1-6h). Copyright © 2016 Elsevier B.V. All rights reserved.
Romański, Michał; Teżyk, Artur; Zaba, Czesław; Główka, Franciszek K
2014-09-01
For the first time a high performance liquid chromatography method with tandem mass spectrometry detection (HPLC-MS/MS) was developed for simultaneous determination of a pro-drug treosulfan (TREO) and its active monoepoxide (S,S-EBDM) in biological matrices. Small volumes of rat plasma (50 μL) and the brain homogenate supernatant (100 μL), equivalent to 0.02 g of brain tissue, were required for the analysis. Protein-free TREO, S,S-EBDM and acetaminophen, internal standard (IS), were isolated from the samples by ultrafiltration. Complete resolution of the analytes and the IS was accomplished on Zorbax Eclipse column using an isocratic elution with a mobile phase composed of ammonium formate - formic acid buffer pH 4.0 and acetonitrile. Detection was performed on a triple-quadrupole MS via multiple-reaction-monitoring following electrospray ionization. The developed method was fully validated according to the current guidelines of the European Medicines Agency. Calibration curves were linear in ranges: TREO 0.2-5720 μM and S,S-EBDM 0.9-175 μM for plasma, and TREO 0.2-29 μM and S,S-EBDM 0.4-44 μM for the brain homogenate supernatant. The limits of quantitation of TREO and S,S-EBDM in the studied matrices were much lower in comparison to the previously used bioanalytical methods. The HPLC-MS/MS method was adequately precise (coefficient of variation≤12.2%), accurate (relative error≤8.6%), and provided no carry-over, acceptable matrix effect as well as dilution integrity. The analytes were stable in acidified plasma and the brain homogenate supernatant samples for 4 h at room temperature, for 4 months at-80°C as well as within two cycles of freezing and thawing, and demonstrated 18-24h autosampler stability. The validated method enabled determination of low concentrations of TREO and S,S-EBDM in incurred brain samples of the rats treated with TREO, which constitutes a novel bioanalytical application. Copyright © 2014 Elsevier B.V. All rights reserved.
Methods for nanoparticle labeling of ricin and effect on toxicity
NASA Astrophysics Data System (ADS)
Wark, Alastair W.; Yu, Jun; Lindsay, Christopher D.; Nativo, Paola; Graham, Duncan
2009-09-01
The unique optical properties associated with nanostructured materials that support the excitation of surface plasmons offer many new opportunities for the enhanced optical investigation of biological materials that pose a security threat. In particular, ricin is considered a significant bioterrorism risk due to its high toxicity combined with its ready availability as a byproduct in castor oil production. Therefore, the development of optical techniques capable of rapid on-site toxin detection with high molecular specificity and sensitivity continues to be of significant importance. Furthermore, understanding of the ricin cell entry and intracellular pathways remains poor due to a lack of suitable bioanalytical techniques. Initial work aimed at simultaneously tackling both these issues is described where different approaches for the nanoparticle labeling of ricin are investigated along with changes in ricin toxicity associated with the labeling process.
Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C.
2015-01-01
Amino acid analysis is a powerful bioanalytical technique for many biomedical research endeavors, including cancer, emergency medicine, nutrition and neuroscience research. In the present study, we present a three minute analytical method for underivatized amino acid analysis that employs ultra-high performance liquid chromatography and high resolution quadrupole orbitrap mass spectrometry. This method has demonstrated linearity (mM to nM range), reproducibility (intra-day<5%, inter-day<20%), sensitivity (low fmol) and selectivity. Here, we illustrate the rapidity and accuracy of the method through comparison with conventional liquid chromatography-mass spectrometry methods. We further demonstrate the robustness and sensitivity of this method on a diverse range of biological matrices. Using this method we were able to selectively discriminate murine pancreatic cancer cells with and without knocked down expression of Hypoxia Inducible Factor 1α; plasma, lymph and bronchioalveolar lavage fluid samples from control versus hemorrhaged rats; and muscle tissue samples harvested from rats subjected to both low fat and high fat diets. Furthermore, we were able to exploit the sensitivity of the method to detect and quantify the release of glutamate from sparsely isolated murine taste buds. Spiked in light or heavy standards (13C6-arginine, 13C6-lysine, 13C515N2-glutamine) or xenometabolites were used to determine coefficient of variations, confirm linearity of relative quantitation in four different matrices, and overcome matrix effects for absolute quantitation. The presented method enables high-throughput analysis of low abundance samples requiring only one percent of the material extracted from 100,000 cells, 10 μl of biological fluid, or 2 mg of muscle tissue. PMID:26058356
Song, Yan; Dhodda, Raj; Zhang, Jun; Sydor, Jens
2014-05-01
In the recent past, we have seen an increase in the outsourcing of bioanalysis in pharmaceutical companies in support of their drug development pipeline. This trend is largely driven by the effort to reduce internal cost, especially in support of late-stage pipeline assets where established bioanalytical assays are used to analyze a large volume of samples. This article will highlight our perspective of how bioanalytical laboratories within pharmaceutical companies can be developed into the best partner in the advancement of drug development pipelines with high-quality support at competitive cost.
Weng, Naidong
2012-11-01
In the pharmaceutical industry, bioanalysis is very dynamic and is probably one of the few fields of research covering the entire drug discovery, development and post-marketing process. Important decisions on drug safety can partially rely on bioanalytical data, which therefore can be subject to regulatory scrutiny. Bioanalytical scientists have historically contributed significant numbers of scientific manuscripts in many peer-reviewed analytical journals. All of these journals provide some high-level instructions, but they also leave sufficient flexibility for reviewers to perform independent critique and offer recommendations for each submitted manuscript. Reviewers play a pivotal role in the process of bioanalytical publication to ensure the publication of high-quality manuscripts in a timely fashion. Their efforts usually lead to improved manuscripts. However, it has to be a joint effort among authors, reviewers and editors to promote scientifically sound and ethically fair bioanalytical publications. Most of the submitted manuscripts were well written with only minor or moderate revisions required for further improvement. Nevertheless, there were small numbers of submitted manuscripts that did not meet the requirements for publications because of scientific or ethical deficiencies, which are discussed in this Letter to the Editor. Copyright © 2012 John Wiley & Sons, Ltd.
Regulatory observations in bioanalytical determinations.
Viswanathan, C T
2010-07-01
The concept of measuring analytes in biological media is a long-established area of the quantitative sciences that is employed in many sectors. While academic research and R&D units of private firms have been in the forefront of developing complex methodologies, it is the regulatory environment that has brought the focus and rigor to the quality control of the quantitative determination of drug concentration in biological samples. In this article, the author examines the regulatory findings discovered during the course of several years of auditing bioanalytical work. The outcomes of these findings underscore the importance of quality method validation to ensure the reliability of the data generated. The failure to ensure the reliability of these data can lead to potential risks in the health management of millions of people in the USA.
Lefor Bradford, Julia
2015-01-01
This perspective article discusses key points to address in the establishment of sound partnerships between sponsors and bioanalytical CROs to assure the timeliness, quality and consistency of bioanalysis throughout biological therapeutic development. The performance of ligand-binding assays can be greatly impacted by low-grade reagents, lot-to-lot variability and lack of stability of the analyte in matrix, impacting both timelines and cost. Thorough characterization of the biologic of interest and its assay-enabling critical reagents will lend itself well to conservation of materials and continuity of assay performance. When unplanned events occur, such as performance declines or premature depletion of material, structured procedures are paramount to supplement the current loosely defined regulatory guidance on critical reagent characterization and method bridging.
Singh, Sheelendra Pratap; Dwivedi, Nistha; Raju, Kanumuri Siva Rama; Taneja, Isha; Wahajuddin, Mohammad
2016-01-01
United States Environmental Protection Agency has recommended estimating pyrethroids’ risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography–tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8–2,000 ng/mL with correlation coefficients of ≥0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC–MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity. PMID:26801239
Konda, Ravi Kumar; Chandu, Babu Rao; Challa, B.R.; Kothapalli, Chandrasekhar B.
2012-01-01
The most suitable bio-analytical method based on liquid–liquid extraction has been developed and validated for quantification of Rasagiline in human plasma. Rasagiline-13C3 mesylate was used as an internal standard for Rasagiline. Zorbax Eclipse Plus C18 (2.1 mm×50 mm, 3.5 μm) column provided chromatographic separation of analyte followed by detection with mass spectrometry. The method involved simple isocratic chromatographic condition and mass spectrometric detection in the positive ionization mode using an API-4000 system. The total run time was 3.0 min. The proposed method has been validated with the linear range of 5–12000 pg/mL for Rasagiline. The intra-run and inter-run precision values were within 1.3%–2.9% and 1.6%–2.2% respectively for Rasagiline. The overall recovery for Rasagiline and Rasagiline-13C3 mesylate analog was 96.9% and 96.7% respectively. This validated method was successfully applied to the bioequivalence and pharmacokinetic study of human volunteers under fasting condition. PMID:29403764
DOE Office of Scientific and Technical Information (OSTI.GOV)
P Yu
Unlike traditional 'wet' analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-basedmore » food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.« less
Clinical diagnostic of pleural effusions using a high-speed viscosity measurement method
NASA Astrophysics Data System (ADS)
Hurth, Cedric; Klein, Katherine; van Nimwegen, Lena; Korn, Ronald; Vijayaraghavan, Krishnaswami; Zenhausern, Frederic
2011-08-01
We present a novel bio-analytical method to discriminate between transudative and exudative pleural effusions based on a high-speed video analysis of a solid glass sphere impacting a liquid. Since the result depends on the solution viscosity, it can ultimately replace the battery of biochemical assays currently used. We present results obtained on a series of 7 pleural effusions obtained from consenting patients by analyzing both the splash observed after the glass impactor hits the liquid surface, and in a configuration reminiscent of the drop ball viscometer with added sensitivity and throughput provided by the high-speed camera. The results demonstrate distinction between the pleural effusions and good correlation with the fluid chemistry analysis to accurately differentiate exudates and transudates for clinical purpose. The exudative effusions display a viscosity around 1.39 ± 0.08 cP whereas the transudative effusion was measured at 0.89 ± 0.09 cP, in good agreement with previous reports.
An integrated bioanalytical method development and validation approach: case studies.
Xue, Y-J; Melo, Brian; Vallejo, Martha; Zhao, Yuwen; Tang, Lina; Chen, Yuan-Shek; Keller, Karin M
2012-10-01
We proposed an integrated bioanalytical method development and validation approach: (1) method screening based on analyte's physicochemical properties and metabolism information to determine the most appropriate extraction/analysis conditions; (2) preliminary stability evaluation using both quality control and incurred samples to establish sample collection, storage and processing conditions; (3) mock validation to examine method accuracy and precision and incurred sample reproducibility; and (4) method validation to confirm the results obtained during method development. This integrated approach was applied to the determination of compound I in rat plasma and compound II in rat and dog plasma. The effectiveness of the approach was demonstrated by the superior quality of three method validations: (1) a zero run failure rate; (2) >93% of quality control results within 10% of nominal values; and (3) 99% incurred sample within 9.2% of the original values. In addition, rat and dog plasma methods for compound II were successfully applied to analyze more than 900 plasma samples obtained from Investigational New Drug (IND) toxicology studies in rats and dogs with near perfect results: (1) a zero run failure rate; (2) excellent accuracy and precision for standards and quality controls; and (3) 98% incurred samples within 15% of the original values. Copyright © 2011 John Wiley & Sons, Ltd.
Workshop Report: Crystal City VI-Bioanalytical Method Validation for Biomarkers.
Arnold, Mark E; Booth, Brian; King, Lindsay; Ray, Chad
2016-11-01
With the growing focus on translational research and the use of biomarkers to drive drug development and approvals, biomarkers have become a significant area of research within the pharmaceutical industry. However, until the US Food and Drug Administration's (FDA) 2013 draft guidance on bioanalytical method validation included consideration of biomarker assays using LC-MS and LBA, those assays were created, validated, and used without standards of performance. This lack of expectations resulted in the FDA receiving data from assays of varying quality in support of efficacy and safety claims. The AAPS Crystal City VI (CC VI) Workshop in 2015 was held as the first forum for industry-FDA discussion around the general issues of biomarker measurements (e.g., endogenous levels) and specific technology strengths and weaknesses. The 2-day workshop served to develop a common understanding among the industrial scientific community of the issues around biomarkers, informed the FDA of the current state of the science, and will serve as a basis for further dialogue as experience with biomarkers expands with both groups.
Electrokinetic transport phenomena: Mobility measurement and electrokinetic instability
NASA Astrophysics Data System (ADS)
Oddy, Michael Huson
Miniaturization and integration of traditional bioassay procedures into microfabricated on-chip assay systems, commonly referred to as "Micro Total Analysis" (muTAS) systems, may have a significant impact on the fields of genomics, proteomics, and clinical analysis. These bioanalytical microsystems leverage electroosmosis and electrophoresis for sample transport, mixing, manipulation, and separation. This dissertation addresses the following three topics relevant to such systems: a new diagnostic for measuring the electrophoretic mobility of sub-micron, fluorescently-labeled particles and the electroosmotic mobility of a microchannel; a novel method and device for rapidly stirring micro- and nanoliter volume solutions for microfluidic bioanalytical applications; and a multiple-species electrokinetic instability model. Accurate measurement of the electrophoretic particle mobility and the electroosmotic mobility of microchannel surfaces is crucial to understanding the stability of colloidal suspensions, obtaining particle tracking-based velocimetry measurements of electroosmotic flow fields, and the quantification of electrokinetic bioanalytical device performance. A method for determining these mobilities from alternating and direct current electrokinetic particle tracking measurements is presented. The ability to rapidly mix fluids at low Reynolds numbers is important to the functionality of many bioanalytical, microfluidic devices. We present an electrokinetic process for rapidly stirring microflow streams by initiating an electrokinetic flow instability. The design, fabrication and performance analysis of two micromixing devices capable of rapidly stirring two low Reynolds number fluid streams are presented. Electroosmotic and electrophoretic transport in the presence of conductivity mismatches between reagent streams and the background electrolytes, can lead to an unstable flow field generating significant sample dispersion. In the multiple-species electrokinetic instability model, we consider a high aspect ratio microchannel geometry, a conductivity gradient orthogonal to the applied electric field, and a four-species chemistry model. A linear stability analysis of the depth-averaged governing equations shows unstable eigenmodes for conductivity ratios as close to unity as 1.01. Experiments and full nonlinear simulations of the governing equations were conducted for a conductivity ratio of 1.05. Images of the disturbance dye field from the nonlinear simulations show good qualitative and quantitative agreement with experiment. Species electromigration is shown to a have significant influence on the development of the conductivity field and instability dynamics in multi-ion configurations.
An overview of the China Bioanalytical Forum: interview with Daniel Tang.
Tang, Daniel
2017-02-01
Daniel Tang talks to Sankeetha Nadarajah, Commissioning Editor (Bioanalysis), regarding the China Bioanalysis Forum (CBF), in which Daniel was one of the co-founders and remains as its co-chair. Daniel is currently the CEO of UP Pharma, a biologics focused bioanalytical CRO in China.
Hair testing for cocaine and metabolites by GC/MS: criteria to quantitatively assess cocaine use.
López-Guarnido, O; Álvarez, I; Gil, F; Rodrigo, L; Cataño, H C; Bermejo, A M; Tabernero, M J; Pla, A; Hernández, A F
2013-08-01
A simple, rapid and sensitive method has been developed and validated for the determination of cocaine and its main metabolites (benzoylecgonine and cocaethylene) in human hair. The method involved solid-phase extraction with an Oasis HLB extraction cartridge and subsequent analysis by GC/MS. The limit of detection was 0.01 ng mg(-1) for cocaine, 0.04 for benzoylecgonine and 0.03 for cocaethylene. The method validation included linearity (with a correlation coefficient >0.99 over the range 0.2-50 ng mg(-1) ), intra- and inter-day precision (always lower than 12%) and accuracy (mean relative error always below 17%) to meet the bioanalytical acceptance criteria. The procedure was further applied to 40 hair samples from self-reported cocaine users arrested by the police who provided a positive urine-analysis for cocaine, and was demonstrated to be suitable for its application in forensic toxicology. New approaches were raised to detect false-negative results that allow a better interpretation of hair testing results. Copyright © 2012 John Wiley & Sons, Ltd.
Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Lee, Jinhee; Wright, Michael E.
2016-01-01
Aberrant androgen receptor (AR)-dependent transcription is a hallmark of human prostate cancers. At the molecular level, ligand-mediated AR activation is coordinated through spatial and temporal protein-protein interactions involving AR-interacting proteins, which we designate the “AR-interactome.” Despite many years of research, the ligand-sensitive protein complexes involved in ligand-mediated AR activation in prostate tumor cells have not been clearly defined. Here, we describe the development, characterization, and utilization of a novel human LNCaP prostate tumor cell line, N-AR, which stably expresses wild-type AR tagged at its N terminus with the streptavidin-binding peptide epitope (streptavidin-binding peptide-tagged wild-type androgen receptor; SBP-AR). A bioanalytical workflow involving streptavidin chromatography and label-free quantitative mass spectrometry was used to identify SBP-AR and associated ligand-sensitive cytosolic proteins/protein complexes linked to AR activation in prostate tumor cells. Functional studies verified that ligand-sensitive proteins identified in the proteomic screen encoded modulators of AR-mediated transcription, suggesting that these novel proteins were putative SBP-AR-interacting proteins in N-AR cells. This was supported by biochemical associations between recombinant SBP-AR and the ligand-sensitive coatomer protein complex I (COPI) retrograde trafficking complex in vitro. Extensive biochemical and molecular experiments showed that the COPI retrograde complex regulates ligand-mediated AR transcriptional activation, which correlated with the mobilization of the Golgi-localized ARA160 coactivator to the nuclear compartment of prostate tumor cells. Collectively, this study provides a bioanalytical strategy to validate the AR-interactome and define novel AR-interacting proteins involved in ligand-mediated AR activation in prostate tumor cells. Moreover, we describe a cellular system to study how compartment-specific AR-interacting proteins influence AR activation and contribute to aberrant AR-dependent transcription that underlies the majority of human prostate cancers. PMID:27365400
3D-printed Bioanalytical Devices
Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F
2016-01-01
While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897
Yuan, Long; Ji, Qin C
2018-06-05
Metabolite interferences represent a major risk of inaccurate quantification when using LC-MS/MS bioanalytical assays. During LC-MS/MS bioanalysis of BMS-919194, a phosphate ester prodrug, in plasma samples from rat and monkey GLP toxicology studies, an unknown peak was detected in the MRM channel of the prodrug. This peak was not observed in previous discovery toxicology studies, in which a fast gradient LC-MS/MS method was used. We found out that this unknown peak would co-elute with the prodrug peak when the discovery method was used, therefore, causing significant overestimation of the exposure of the prodrug in the discovery toxicology studies. To understand the nature of this interfering peak and its impact to bioanalytical assay, we further investigated its formation and identification. The interfering compound and the prodrug were found to be isobaric and to have the same major product ions in electrospray ionization positive mode, thus, could not be differentiated using a triple quadrupole mass spectrometer. By using high-resolution mass spectrometry (HRMS), the interfering metabolite was successfully identified to be an isobaric sulfate metabolite of BMS-919194. To the best of our knowledge, this is the first report that a phosphate prodrug was metabolized in vivo to an isobaric sulfate metabolite, and this metabolite caused significant interference to the analysis of the prodrug. This work demonstrated the presence of the interference risk from isobaric sulfate metabolites to the bioanalysis of phosphate prodrugs in real samples. It is critical to evaluate and mitigate potential metabolite interferences during method development, therefore, minimize the related bioanalytical risks and ensure assay quality. Our work also showed the unique advantages of HRMS in identifying potential metabolite interference during LC-MS/MS bioanalysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Protein Quantification by Elemental Mass Spectrometry: An Experiment for Graduate Students
ERIC Educational Resources Information Center
Schwarz, Gunnar; Ickert, Stefanie; Wegner, Nina; Nehring, Andreas; Beck, Sebastian; Tiemann, Ruediger; Linscheid, Michael W.
2014-01-01
A multiday laboratory experiment was designed to integrate inductively coupled plasma-mass spectrometry (ICP-MS) in the context of protein quantification into an advanced practical course in analytical and environmental chemistry. Graduate students were familiar with the analytical methods employed, whereas the combination of bioanalytical assays…
Reitzle, Lukas; Maier, Barbara; Stojanov, Silvia; Teupser, Daniel; Muntau, Ania C; Vogeser, Michael; Gersting, Søren W
2015-08-01
Mevalonate kinase deficiency, a rare autosomal recessive autoinflammatory disease, is caused by mutations in the MVK gene encoding mevalonate kinase (MK). MK catalyzes the phosphorylation of mevalonic acid to mevalonate-5-phosphate (MVAP) in the pathway of isoprenoid and sterol synthesis. The disease phenotype correlates with residual activity ranging from <0.5% for mevalonic aciduria to 1-7% for the milder hyperimmunoglobulinemia D and periodic fever syndrome (HIDS). Hence, assessment of loss-of-function requires high accuracy measurements. We describe a method using isotope dilution UPLC-MS/MS for precise and sensitive determination of MK activity. Wild-type MK and the variant V261A, which is associated with HIDS, were recombinantly expressed in Escherichia coli. Enzyme activity was determined by formation of MVAP over time quantified by isotope dilution UPLC-MS/MS. The method was validated according to the FDA Guidance for Bioanalytical Method Validation. Sensitivity for detection of MAVP by UPLC-MS/MS was improved by derivatization with butanol-HCl (LLOQ, 5.0 fmol) and the method was linear from 0.5 to 250 μmol/L (R(2) > 0.99) with a precision of ≥ 89% and an accuracy of ± 2.7%. The imprecision of the activity assay, including the enzymatic reaction and the UPLC-MS/MS quantification, was 8.3%. The variant V261A showed a significantly decreased activity of 53.1%. Accurate determination of MK activity was enabled by sensitive and reproducible detection of MVAP using UPLC-MS/MS. The novel method may improve molecular characterization of MVK mutations, provide robust genotype-phenotype correlations, and accelerate compound screening for drug candidates restoring variant MK activity. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Zhang, Xuewei; Yu, Peiqiang
2014-07-02
Non-invasive techniques are a key to study nutrition and structure interaction. Fourier transform infrared microspectroscopy coupled with a synchrotron radiation source (SR-IMS) is a rapid, non-invasive, and non-destructive bioanalytical technique. To understand internal structure changes in relation to nutrient availability in oil seed processing is vital to find optimal processing conditions. The objective of this study was to use a synchrotron-based bioanalytical technique SR-IMS as a non-invasive and non-destructive tool to study the effects of heat-processing methods and oil seed canola type on modeled protein structure based on spectral data within intact tissue that were randomly selected and quantify the relationship between the modeled protein structure and protein nutrient supply to ruminants. The results showed that the moisture heat-related processing significantly changed (p<0.05) modeled protein structures compared to the raw canola (control) and those processing by dry heating. The moisture heating increased (p<0.05) spectral intensities of amide I, amide II, α-helices, and β-sheets but decreased (p<0.05) the ratio of modeled α-helices to β-sheet spectral intensity. There was no difference (p>0.05) in the protein spectral profile between the raw and dry-heated canola tissue and between yellow- and brown-type canola tissue. The results indicated that different heat processing methods have different impacts on the protein inherent structure. The protein intrinsic structure in canola seed tissue was more sensitive and more response to the moisture heating in comparison to the dry heating. These changes are expected to be related to the nutritive value. However, the current study is based on limited samples, and more large-scale studies are needed to confirm our findings.
Sensing of single electrons using micro and nano technologies: a review
NASA Astrophysics Data System (ADS)
Jalil, Jubayer; Zhu, Yong; Ekanayake, Chandima; Ruan, Yong
2017-04-01
During the last three decades, the remarkable dynamic features of microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), and advances in solid-state electronics hold much potential for the fabrication of extremely sensitive charge sensors. These sensors have a broad range of applications, such as those involving the measurement of ionization radiation, detection of bio-analyte and aerosol particles, mass spectrometry, scanning tunneling microscopy, and quantum computation. Designing charge sensors (also known as charge electrometers) for electrometry is deemed significant because of the sensitivity and resolution issues in the range of micro- and nano-scales. This article reviews the development of state-of-the-art micro- and nano-charge sensors, and discusses their technological challenges for practical implementation.
Mihailov, Rossen; Stoeva, Dilyana; Pencheva, Blagovesta; Pentchev, Eugeni
2018-03-01
In a number of cases the monitoring of patients with type I diabetes mellitus requires measurement of the exogenous insulin levels. For the purpose of a clinical investigation of the efficacy of a medical device for application of exogenous insulin aspart, a verification of the method for measurement of this synthetic analogue of the hormone was needed. The information in the available medical literature for the measurement of the different exogenous insulin analogs is insufficient. Thus, verification was required to be in compliance with the active standards in Republic of Bulgaria. A manufactured method developed for ADVIA Centaur XP Immunoassay, Siemens Healthcare, was used which we verified using standard solutions and a patient serum pool by adding the appropriate quantity exogenous insulin aspart. The method was verified in accordance with the bioanalytical method verification criteria and regulatory requirements for using a standard method: CLIA chemiluminescence immunoassay ADVIA Centaur® XP. The following parameters are determined and monitored: intra-day precision and accuracy, inter-day precision and accuracy, limit of detection and lower limit of quantification, linearity, analytical recovery. The routine application of the method for measurement of immunoreactive insulin using the analyzer ADVIA Centaur® XP is directed to the measurement of endogenous insulin. The method is applicable for measuring different types of exogenous insulin, including insulin aspart.
Surface-enhanced Raman spectroscopy for the detection of pathogenic DNA and protein in foods
NASA Astrophysics Data System (ADS)
Chowdhury, Mustafa H.; Atkinson, Brad; Good, Theresa; Cote, Gerard L.
2003-07-01
Traditional Raman spectroscopy while extremely sensitive to structure and conformation, is an ineffective tool for the detection of bioanalytes at the sub milimolar level. Surface Enhanced Raman Spectroscopy (SERS) is a technique developed more recently that has been used with applaudable success to enhance the Raman cross-section of a molecule by factors of 106 to 1014. This technique can be exploited in a nanoscale biosensor for the detection of pathogenic proteins and DNA in foods by using a biorecognition molecule to bring a target analyte in close proximity to the mental surface. This is expected to produce a SERS signal of the target analyte, thus making it possible to easily discriminate between the target analyte and possible confounders. In order for the sensor to be effective, the Raman spectra of the target analyte would have to be distinct from that of the biorecognition molecule, as both would be in close proximity to the metal surface and thus be subjected to the SERS effect. In our preliminary studies we have successfully used citrate reduced silver colloidal particles to obtain unique SERS spectra of α-helical and β-sheet bovine serum albumin (BSA) that served as models of an α helical antiobiody (biorecognition element) and a β-sheet target protein (pathogenic prion). In addition, the unique SERS spectra of double stranded and single stranded DNA were also obtained where the single stranded DNA served as the model for the biorecognition element and the double stranded DNA served as themodel for the DNA probe/target hybrid. This provides a confirmation of the feasibility of the method which opens opportunities for potentially wide spread applications in the detection of food pathogens, biowarefare agents, andother bio-analytes.
Wong, Chin Lin; Lam, Ai-Leen; Smith, Maree T.; Ghassabian, Sussan
2016-01-01
The direct peptide reactivity assay (DPRA) is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate, and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium, and high concentrations) and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme, and non-sensitizers) with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF), cysteine- (Ac-RFAACAA), and lysine- (Ac-RFAAKAA) containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7%) and glass (47.3%) vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2, 4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further highlight the difficulty in adapting in vitro methods to high-throughput format for screening the skin sensitization potential of large numbers of chemicals whilst ensuring that the data produced are both accurate and reproducible. PMID:27014067
2013 White Paper on recent issues in bioanalysis: 'hybrid'--the best of LBA and LCMS.
Stevenson, Lauren; Garofolo, Fabio; DeSilva, Binodh; Dumont, Isabelle; Martinez, Suzanne; Rocci, Mario; Amaravadi, Lakshmi; Brudny-Kloeppel, Margarete; Musuku, Adrien; Booth, Brian; Dicaire, Catherine; Wright, Laura; Mayrand-Provencher, Laurence; Losauro, Mike; Gouty, Dominique; Arnold, Mark; Bansal, Surendra; Dudal, Sherri; Dufield, Dawn; Duggan, Jeff; Evans, Christopher; Fluhler, Eric; Fraser, Stephanie; Gorovits, Boris; Haidar, Sam; Hayes, Roger; Ho, Stacy; Houghton, Richard; Islam, Rafiqul; Jenkins, Rand; Katori, Noriko; Kaur, Surinder; Kelley, Marian; Knutsson, Magnus; Lee, Jean; Liu, Hanlan; Lowes, Steve; Ma, Mark; Mikulskis, Alvydas; Myler, Heather; Nicholson, Bob; Olah, Timothy; Ormsby, Eric; Patel, Shefali; Pucci, Vincenzo; Ray, Chad; Schultz, Gary; Shih, Judy; Shoup, Ronald; Simon, Craig; Song, An; Neto, João Tavares; Theobald, Valerie; Thway, Theingi; Wakelin-Smith, Jason; Wang, Jian; Wang, Laixin; Welink, Jan; Whale, Emma; Woolf, Eric; Xu, Raymond
2013-12-01
The 2013 7th Workshop on Recent Issues in Bioanalysis was held in Long Beach, California, USA, where close to 500 professionals from pharmaceutical and biopharmaceutical companies, CROs and regulatory agencies convened to discuss current topics of interest in bioanalysis. These 'hot' topics, which covered both small and large molecules, were the starting point for fruitful exchanges of knowledge, and sharing of ideas among speakers, panelists and attendees. The discussions led to specific recommendations pertinent to bioanalytical science. Such as the previous editions, this 2013 White Paper addresses important bioanalytical issues and provides practical answers to the topics presented, discussed and agreed upon by the global bioanalytical community attending the 7th Workshop on Recent Issues in Bioanalysis.
Real Time Analysis of Bioanalytes in Healthcare, Food, Zoology and Botany
Wang, Tianqi; Ramnarayanan, Ashwin
2017-01-01
The growing demand for real time analysis of bioanalytes has spurred development in the field of wearable technology to offer non-invasive data collection at a low cost. The manufacturing processes for creating these sensing systems vary significantly by the material used, the type of sensors needed and the subject of study as well. The methods predominantly involve stretchable electronic sensors to monitor targets and transmit data mainly through flexible wires or short-range wireless communication devices. Capable of conformal contact, the application of wearable technology goes beyond the healthcare to fields of food, zoology and botany. With a brief review of wearable technology and its applications to various fields, we believe this mini review would be of interest to the reader in broad fields of materials, sensor development and areas where wearable sensors can provide data that are not available elsewhere. PMID:29267256
Real Time Analysis of Bioanalytes in Healthcare, Food, Zoology and Botany.
Wang, Tianqi; Ramnarayanan, Ashwin; Cheng, Huanyu
2017-12-21
The growing demand for real time analysis of bioanalytes has spurred development in the field of wearable technology to offer non-invasive data collection at a low cost. The manufacturing processes for creating these sensing systems vary significantly by the material used, the type of sensors needed and the subject of study as well. The methods predominantly involve stretchable electronic sensors to monitor targets and transmit data mainly through flexible wires or short-range wireless communication devices. Capable of conformal contact, the application of wearable technology goes beyond the healthcare to fields of food, zoology and botany. With a brief review of wearable technology and its applications to various fields, we believe this mini review would be of interest to the reader in broad fields of materials, sensor development and areas where wearable sensors can provide data that are not available elsewhere.
Farré, Maria José; Day, Sophie; Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I
2013-09-15
Disinfection by-products (DBP) formed from natural organic matter and disinfectants like chlorine and chloramine may cause adverse health effects. Here, we evaluate how the quantity and quality of natural organic matter and other precursors influence the formation of DBPs during chlorination and chloramination using a comprehensive approach including chemical analysis of regulated and emerging DBPs, total organic halogen quantification, organic matter characterisation and bioanalytical tools. In vitro bioassays allow us to assess the hazard potential of DBPs early in the chain of cellular events, when the DBPs react with their molecular target(s) and activate stress response and defence mechanisms. Given the reactive properties of known DBPs, a suite of bioassays targeting reactive modes of toxic action including genotoxicity and sensitive early warning endpoints such as protein damage and oxidative stress were evaluated in addition to cytotoxicity. Coagulated surface water was collected from three different drinking water treatment plants, along with reverse osmosis permeate from a desalination plant, and DBP formation potential was assessed after chlorination and chloramination. While effects were low or below the limit of detection before disinfection, the observed effects and DBP levels increased after disinfection and were generally higher after chlorination than after chloramination, indicating that chlorination forms higher concentrations of DBPs or more potent DBPs in the studied waters. Bacterial cytotoxicity, assessed using the bioluminescence inhibition assay, and induction of the oxidative stress response were the most sensitive endpoints, followed by genotoxicity. Source waters with higher dissolved organic carbon levels induced increased DBP formation and caused greater effects in the endpoints related to DNA damage repair, glutathione conjugation/protein damage and the Nrf2 oxidative stress response pathway after disinfection. Fractionation studies indicated that all molecular weight fractions of organic carbon contributed to the DBP formation potential, with the humic rich fractions forming the greatest amount of DBPs, while the low molecular weight fractions formed more brominated DBPs due to the high bromide to organic carbon ratio. The presence of higher bromide concentrations also led to a higher fraction of brominated DBPs as well as proportionally higher effects. This study demonstrates how a suite of analytical and bioanalytical tools can be used to effectively characterise the precursors and formation potential of DBPs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis.
Yu, Xiaowen; Yang, Yu-Ping; Dikici, Emre; Deo, Sapna K; Daunert, Sylvia
2017-06-12
The emergence of novel binding proteins or antibody mimetics capable of binding to ligand analytes in a manner analogous to that of the antigen-antibody interaction has spurred increased interest in the biotechnology and bioanalytical communities. The goal is to produce antibody mimetics designed to outperform antibodies with regard to binding affinities, cellular and tumor penetration, large-scale production, and temperature and pH stability. The generation of antibody mimetics with tailored characteristics involves the identification of a naturally occurring protein scaffold as a template that binds to a desired ligand. This scaffold is then engineered to create a superior binder by first creating a library that is then subjected to a series of selection steps. Antibody mimetics have been successfully used in the development of binding assays for the detection of analytes in biological samples, as well as in separation methods, cancer therapy, targeted drug delivery, and in vivo imaging. This review describes recent advances in the field of antibody mimetics and their applications in bioanalytical chemistry, specifically in diagnostics and other analytical methods.
Magotra, Asmita; Sharma, Anjna; Gupta, Ajai Prakash; Wazir, Priya; Sharma, Shweta; Singh, Parvinder Pal; Tikoo, Manoj Kumar; Vishwakarma, Ram A; Singh, Gurdarshan; Nandi, Utpal
2017-08-15
In the present study, a simple, sensitive, specific and rapid liquid chromatography (LC) tandem mass spectrometry (MS/MS) method was developed and validated according to the Food and Drug Administration (FDA) guidelines for estimation of IIIM-MCD-211 (a potent oral candidate with promising action against tuberculosis) in mice plasma using carbamazepine as internal standard (IS). Bioanalytical method consisted of one step protein precipitation for sample preparation followed by quantitation in LC-MS/MS using positive electrospray ionization technique (ESI) operating in multiple reaction monitoring (MRM) mode. Elution was achieved in gradient mode on High Resolution Chromolith RP-18e column with mobile phase comprised of acetonitrile and 0.1% (v/v) formic acid in water at the flow rate of 0.4mL/min. Precursor to product ion transitions (m/z 344.5/218.4 and m/z 237.3/194.2) were used to measure analyte and IS, respectively. All validation parameters were well within the limit of acceptance criteria. The method was successfully applied to assess the pharmacokinetics of the candidate in mice following oral (10mg/kg) and intravenous (IV; 2.5mg/kg) administration. It was also effectively used to quantitate metabolic stability of the compound in mouse liver microsomes (MLM) and human liver microsomes (HLM) followed by its in-vitro-in-vivo extrapolation. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantification of a Cardiac Biomarker in Human Serum Using Extraordinary Optical Transmission (EOT)
Ding, Tao; Hong, Minghui; Richards, A. Mark; Wong, Ten It; Zhou, Xiaodong; Drum, Chester Lee
2015-01-01
Nanoimprinting lithography (NIL) is a manufacturing process that can produce macroscale surface areas with nanoscale features. In this paper, this technique is used to solve three fundamental issues for the application of localized surface plasmonic resonance (LSPR) in practical clinical measurements: assay sensitivity, chip-to-chip variance, and the ability to perform assays in human serum. Using NIL, arrays of 140 nm square features were fabricated on a sensing area of 1.5 mm x 1.5 mm with low cost. The high reproducibility of NIL allowed for the use of a one-chip, one-measurement approach with 12 individually manufactured surfaces with minimal chip-to-chip variations. To better approximate a real world setting, all chips were modified with a biocompatible, multi-component monolayer and inter-chip variability was assessed by measuring a bioanalyte standard (2.5−75 ng/ml) in the presence of a complex biofluid, human serum. In this setting, nanoimprinted LSPR chips were able to provide sufficient characteristics for a ‘low-tech’ approach to laboratory-based bioanalyte measurement, including: 1) sufficient size to interface with a common laboratory light source and detector without the need for a microscope, 2) high sensitivity in serum with a cardiac troponin limit of detection of 0.55 ng/ml, and 3) very low variability in chip manufacturing to produce a figure of merit (FOM) of 10.5. These findings drive LSPR closer to technical comparability with ELISA-based assays while preserving the unique particularities of a LSPR based sensor, suitability for multiplexing and miniaturization, and point-of-care detections. PMID:25774658
Yang, Zhen; Wang, Huanhuan; Guo, Pengfei; Ding, Yuanyuan; Lei, Chong; Luo, Yongsong
2018-06-01
Cardiac biomarkers (CBs) are substances that appear in the blood when the heart is damaged or stressed. Measurements of the level of CBs can be used in course of diagnostics or monitoring the state of the health of group risk persons. A multi-region bio-analytical system (MRBAS) based on magnetoimpedance (MI) changes was proposed for ultrasensitive simultaneous detection of CBs myoglobin (Mb) and C-reactive protein (CRP). The microfluidic device was designed and developed using standard microfabrication techniques for their usage in different regions, which were pre-modified with specific antibody for specified detection. Mb and CRP antigens labels attached to commercial Dynabeads with selected concentrations were trapped in different detection regions. The MI response of the triple sensitive element was carefully evaluated in initial state and in the presence of biomarkers. The results showed that the MI-based bio-sensing system had high selectivity and sensitivity for detection of CBs. Compared with the control region, ultrasensitive detections of CRP and Mb were accomplished with the detection limits of 1.0 pg/mL and 0.1 pg/mL, respectively. The linear detection range contained low concentration detection area and high concentration detection area, which were 1 pg/mL⁻10 ng/mL, 10⁻100 ng/mL for CRP, and 0.1 pg/mL⁻1 ng/mL, 1 n/mL⁻80 ng/mL for Mb. The measurement technique presented here provides a new methodology for multi-target biomolecules rapid testing.
Advanced bioanalytics for precision medicine.
Roda, Aldo; Michelini, Elisa; Caliceti, Cristiana; Guardigli, Massimo; Mirasoli, Mara; Simoni, Patrizia
2018-01-01
Precision medicine is a new paradigm that combines diagnostic, imaging, and analytical tools to produce accurate diagnoses and therapeutic interventions tailored to the individual patient. This approach stands in contrast to the traditional "one size fits all" concept, according to which researchers develop disease treatments and preventions for an "average" patient without considering individual differences. The "one size fits all" concept has led to many ineffective or inappropriate treatments, especially for pathologies such as Alzheimer's disease and cancer. Now, precision medicine is receiving massive funding in many countries, thanks to its social and economic potential in terms of improved disease prevention, diagnosis, and therapy. Bioanalytical chemistry is critical to precision medicine. This is because identifying an appropriate tailored therapy requires researchers to collect and analyze information on each patient's specific molecular biomarkers (e.g., proteins, nucleic acids, and metabolites). In other words, precision diagnostics is not possible without precise bioanalytical chemistry. This Trend article highlights some of the most recent advances, including massive analysis of multilayer omics, and new imaging technique applications suitable for implementing precision medicine. Graphical abstract Precision medicine combines bioanalytical chemistry, molecular diagnostics, and imaging tools for performing accurate diagnoses and selecting optimal therapies for each patient.
Talele, G. S.; Porwal, P. K.
2015-01-01
A simple, economical and robust analytical high-performance liquid chromatography-ultraviolet method was developed and validated for simultaneous chromatographic elution of two cardiovascular drugs viz. amlodipine and atorvastatin in biological fluid for the first time. Only two liquid chromatography–mass spectrometry/mass spectrometry methods are available in literature for quantitation of selected pair of analytes. The bioanalytical method was developed in rat plasma by using Thermo beta-basic C18 (100×4.6 mm, 5 μm) and mobile phase was composed of dibasic phosphate buffer (pH 3.0):acetonitrile in the ratio of 55:45 at a flow rate of 1 ml/min with ultraviolet detection monitored at 240 nm. The selected chromatographic conditions were found to effectively separate amlodipine (5.1 min) and atorvastatin (12.1 min). The parametric statistics,i.e. correlation coefficient of 0.999, was assessed for both the drugs having linearity over the tested concentration range (0.05 to 10.0 μg/ml) in rat plasma using an unweighted calibration curve. The mean recovery (%) was more than 92.8% for both the drugs using protein precipitation method. The accuracy of samples for six replicate measurements at lower limit of quantitation level was within limit. The method was validated and was successfully applied to the nonclinical pharmacokinetic study of combination tablets containing amlodipine and atorvastatin in six Sprague Dawley rats. PMID:26997703
Use of Accelerator Mass Spectrometry in Human Health and Molecular Toxicology.
Enright, Heather A; Malfatti, Michael A; Zimmermann, Maike; Ognibene, Ted; Henderson, Paul; Turteltaub, Kenneth W
2016-12-19
Accelerator mass spectrometry (AMS) has been adopted as a powerful bioanalytical method for human studies in the areas of pharmacology and toxicology. The exquisite sensitivity (10 -18 mol) of AMS has facilitated studies of toxins and drugs at environmentally and physiologically relevant concentrations in humans. Such studies include risk assessment of environmental toxicants, drug candidate selection, absolute bioavailability determination, and more recently, assessment of drug-target binding as a biomarker of response to chemotherapy. Combining AMS with complementary capabilities such as high performance liquid chromatography (HPLC) can maximize data within a single experiment and provide additional insight when assessing drugs and toxins, such as metabolic profiling. Recent advances in the AMS technology at Lawrence Livermore National Laboratory have allowed for direct coupling of AMS with complementary capabilities such as HPLC via a liquid sample moving wire interface, offering greater sensitivity compared to that of graphite-based analysis, therefore enabling the use of lower 14 C and chemical doses, which are imperative for clinical testing. The aim of this review is to highlight the recent efforts in human studies using AMS, including technological advancements and discussion of the continued promise of AMS for innovative clinical based research.
Hierarchical CuInS2-based heterostructure: Application for photocathodic bioanalysis of sarcosine.
Jiang, Xin-Yuan; Zhang, Ling; Liu, Yi-Li; Yu, Xiao-Dong; Liang, Yan-Yu; Qu, Peng; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan
2018-06-01
In this study, on the basis of hierarchical CuInS 2 -based heterostructure, a novel cathodic photoelectrochemical (PEC) enzymatic bioanalysis of the sarcosine detection was reported. Specifically, heterostructured CuInS 2 /NiO/ITO photocathode was prepared and sarcosine oxidases (SOx) were integrated for the construction of the enzymatic biosensor. In the bioanalysis, the O 2 -dependent suppression of the cathodic photocurrent can be observed due to the competition between the as-fabricated O 2 -sensitive photocathode and the SOx-catalytic event toward O 2 reduction. Based on the sarcosine-controlled O 2 concentration, a novel photocathodic enzymatic biosensor could be realized for the sensitive and specific sarcosine detection. This work manifested the great potential of CuInS 2 -based heterostructure as a novel platform for future PEC bioanalytical development and also a PEC method for sarcosine detection, which could be easily extended to numerous other enzymatic systems and to our knowledge has not been reported. This work is expected to stimulate more interest in the design and implementation of numerous CuInS 2 -based heterostructured photocathodic enzymatic sensing. Copyright © 2018 Elsevier B.V. All rights reserved.
The Use of Accelerator Mass Spectrometry in Human Health and Molecular Toxicology
Enright, Heather A.; Malfatti, Michael A.; Zimmermann, Maike; Ognibene, Ted; Henderson, Paul; Turteltaub, Kenneth W.
2016-01-01
Accelerator Mass Spectrometry (AMS) has been adopted as a powerful bio-analytical method for human studies in the areas of pharmacology and toxicology. The exquisite sensitivity (10−18 mol) of AMS has facilitated studies of toxins and drugs at environmentally and physiologically relevant concentrations in humans. Such studies include: risk assessment of environmental toxicants, drug candidate selection, absolute bioavailability determination, and more recently, assessment of drug-target binding as a biomarker of response to chemotherapy. Combining AMS with complementary capabilities such as high performance liquid chromatography (HPLC) can maximize data within a single experiment and provide additional insight when assessing drugs and toxins, such as metabolic profiling. Recent advances in the AMS technology at Lawrence Livermore National Laboratory have allowed for direct coupling of AMS with complementary capabilities such as HPLC via a liquid sample moving wire interface, offering greater sensitivity compared to graphite-based analysis therefore, enabling the use of lower 14C and chemical doses, which are imperative for clinical testing. The aim of this review is to highlight the recent efforts in human studies using AMS, including technological advancements and discussion of the continued promise of AMS for innovative clinical based research. PMID:27726383
Singh, Sheelendra Pratap; Dwivedi, Nistha; Raju, Kanumuri Siva Rama; Taneja, Isha; Wahajuddin, Mohammad
2016-04-01
United States Environmental Protection Agency has recommended estimating pyrethroids' risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography-tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8-2,000 ng/mL with correlation coefficients of ≥ 0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC-MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Neale, Peta A; Antony, Alice; Bartkow, Michael E; Farré, Maria José; Heitz, Anna; Kristiana, Ina; Tang, Janet Y M; Escher, Beate I
2012-09-18
Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train. Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not yet being optimized for volatile DBPs. As such, the bioassays are useful as monitoring tools as they provide sensitive responses even at low DBP levels.
Luminescent 1-hydroxy-2-pyridinone chelates of lanthanides
Raymond, Kenneth N.; Xu, Jide; Moore, Evan G.; Werner, Eric J.
2013-10-15
The present invention provides luminescent complexes between a lanthanide ion and an organic ligand which contains 1,2-hydroxypyridinone units. The complexes of the invention are stable in aqueous solutions and are useful as molecular probes, for example in medical diagnostics and bioanalytical assay systems. The invention also provides methods of using the complexes of the invention.
Luminescent 1-hydroxy-2-pyridinone chelates of lanthanides
Raymond, Kenneth N.; Xu, Jide; Moore, Evan G.; Werner, Eric J.
2017-01-31
The present invention provides luminescent complexes between a lanthanide ion and an organic ligand which contains 1,2-hydroxypyridinone units. The complexes of the invention are stable in aqueous solutions and are useful as molecular probes, for example in medical diagnostics and bioanalytical assay systems. The invention also provides methods of using the complexes of the invention.
Louisse, Jochem; Dingemans, Milou M L; Baken, Kirsten A; van Wezel, Annemarie P; Schriks, Merijn
2018-06-14
The present study explores the ToxCast/Tox21 database to select candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. To this aim, the ToxCast/Tox21 database was explored for bioassays that detect polycyclic aromatic hydrocarbons (PAHs), aromatic amines (AAs), (chloro)phenols ((C)Ps) and halogenated aliphatic hydrocarbons (HAliHs), which are included in the European and/or Dutch Drinking Water Directives. Based on the analysis of the availability and performance of bioassays included in the database, we concluded that several bioassays are suitable as bioanalytical tools for assessing the presence of PAHs and (C)Ps in drinking water sources. No bioassays were identified for AAs and HAliHs, due to the limited activity of these chemicals and/or the limited amount of data on these chemicals in the database. A series of bioassays was selected that measure molecular or cellular effects that are covered by bioassays currently in use for chemical water quality monitoring. Interestingly, also bioassays were selected that represent molecular or cellular effects that are not covered by bioassays currently applied. The usefulness of these newly identified bioassays as bioanalytical tools should be further evaluated in follow-up studies. Altogether, this study shows how exploration of the ToxCast/Tox21 database provides a series of candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. This assessment can be performed for any group of chemicals of interest (if represented in the database), and may provide candidate bioassays that can be used to complement the currently applied bioassays for chemical water quality assessment. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Kenneth Paul
Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonancemore » (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.« less
Determination of tafenoquine in dried blood spots and plasma using LC and fluorescence detection.
Römsing, Susanne; Lindegardh, Niklas; Bergqvist, Yngve
2011-08-01
The growing problem of parasites developing resistance to the traditional antimalarial drugs makes the development of new effective and safe drugs crucial. Tafenoquine is a new promising antimalarial drug for prophylaxis and treatment. A bioanalytical method for the determination of tafenoquine in 100 µl of capillary blood applied onto sampling paper and in 100 µl of plasma has been developed and validated. The Whatman 31 ET Chr paper was treated with 0.6 mol/l tartaric acid to improve the extraction recovery and solid-phase extraction was used for cleanup procedure of the blood samples. Plasma samples were precipitated with methanol. Tafenoquine and internal standard were separated on a Zorbax SB-CN column by reversed-phase LC and detected with fluorescence detection at 262 and 470 nm. The within- and between-day variations were below 10 and 14%, respectively, over the range 50-200 nmol/l for capillary blood on sampling paper and below 6 and 10% for plasma samples. The LLOQ of the method was 50 nmol/l. The developed method has adequate sensitivity and is highly suitable for clinical studies in dried blood spots and plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying
My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were ablemore » to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic resolution, high column stability, and high sensitivity. In addition, this method showed potential usefulness for the sensitive and quick analysis of hydrolysis products of polysaccharides, and for trace level analysis of individual oligosaccharides or oligosaccharide isomers from biological systems.« less
NASA Astrophysics Data System (ADS)
Badhulika, Sushmee
The detection of gaseous analytes and biological molecules is of prime importance in the fields of environmental pollution control, food and water - safety and analysis; and medical diagnostics. This necessitates the development of advanced and improved technology that is reliable, inexpensive and suitable for high volume production. The conventional sensors are often thin film based which lack sensitivity due to the phenomena of current shunting across the charge depleted region when an analyte binds with them. One dimensional (1-D) nanostructures provide a better alternative for sensing applications by eliminating the issue of current shunting due to their 1-D geometries and facilitating device miniaturization and low power operations. Carbon nanotubes (CNTs) are 1-D nanostructures that possess small size, high mechanical strength, high electrical and thermal conductivity and high specific area that have resulted in their wide spread applications in sensor technology. To overcome the issue of low sensitivity of pristine CNTs and to widen their scope, hybrid devices have been fabricated that combine the synergistic properties of CNTs along with materials like metals and conducting polymers (CPs). CPs exhibit electronic, magnetic and optical properties of metals and semiconductors while retaining the processing advantages of polymers. Their high chemical sensitivity, room temperature operation and tunable charge transport properties has made them ideal for use as transducing elements in chemical sensors. In this dissertation, various CNT based hybrid devices such as CNT-conducting polymer and graphene-CNT-metal nanoparticles based sensors have been developed and demonstrated towards bioanalytical applications such as detection of volatile organic compounds (VOCs) and saccharides. Electrochemical polymerization enabled the synthesis of CPs and metal nanoparticles in a simple, cost effective and controlled way on the surface of CNT based platforms thus resulting in the fabrication of hybrid sensors which exhibited superior properties and improved performance when used for sensing applications using various modes of sensor configurations.
Spooner, Neil; Sangster, Timothy
2016-07-01
21st International Reid Bioanalytical Forum, University of Surrey, Guildford, UK, 7-10 September 2015 The 21st International Reid Bioanalytical Forum held between 7 and 10 September 2015, brought together over 100 scientists from around the world, representing industry, academia and vendors, for 4 days of engaging science at the University of Surrey in Guildford, UK. The scientific program consisted of 43 podium and 23 poster presentations from key opinion leaders and those just setting out on their scientific career. The latter being the focus of the meeting. One of the highlights of the forum was the debate. An expert panel helped spark off an active discussion among a passionate audience on the topic of 'The Current Skills Gaps in Analytical Sciences are Failing Industry.'
Dhanure, Shivanand; Savalia, Atulkumar; More, Pravinkumar; Shirode, Prashant; Kapse, Kailas; Shah, Virag
2014-01-01
A simple, sensitive, and selective LC-MS/MS method was developed and validated for the quantification of carbocisteine in human plasma. Rosiglitazone was used as the internal standard and heparin was used as the anticoagulant. The chromatographic separation was performed by using the Waters Symmetry Shield RP 8, 150 × 3.9 mm, 5 μ column at 40°C with a mobile phase consisting of a mixture of methanol and 0.5% formic acid solution in a 40:60 proportion. The flow rate was 500 μl/min along with a 5 μl injection volume. Protein precipitation was used as the extraction method. Mass spectrometric data were detected in positive ion mode. The MRM mode of the ions for carbocisteine was 180.0 > 89.0 and for rosiglitazone it was 238.1 > 135.1. The method was validated in the concentration curve range of 50.000 ng/mL to 6000.000 ng/mL. The retention times of carbocisteine and the internal standard rosiglitazone were approximately 2.20 and 3.01 min, respectively. The overall run time was 4.50 min. This method was found suitable to analyze human plasma samples for the application in pharmacokinetic and BA/BE studies.
Schaefer, J; Burckhardt, B B; Tins, J; Bartel, A; Laeer, S
2017-12-01
Heart failure is well investigated in adults, but data in children is lacking. To overcome this shortage of reliable data, appropriate bioanalytical assays are required. Development and validation of a bioanalytical assay for the determination of aldosterone concentrations in small sample volumes applicable to clinical studies under Good Clinical Laboratory Practice. An immunoassay was developed based on a commercially available enzyme-linked immunosorbent assay and validated according to current bioanalytical guidelines of the EMA and FDA. The assay (range 31.3-1000 pg/mL [86.9-2775 pmol/L]) is characterized by a between-run accuracy from - 3.8% to - 0.8% and a between-run imprecision ranging from 4.9% to 8.9% (coefficient of variation). For within-run accuracy, the relative error was between - 11.1% and + 9.0%, while within-run imprecision ranged from 1.2% to 11.8% (CV). For parallelism and dilutional linearity, the relative error of back-calculated concentrations varied from - 14.1% to + 8.4% and from - 7.4% to + 10.5%, respectively. The immunoassay is compliant with the bioanalytical guidelines of the EMA and FDA and allows accurate and precise aldosterone determinations. As the assay can run low-volume samples, it is especially valuable for pediatric investigations.
Ma, Zheng-Yuan; Xu, Fei; Qin, Yu; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan
2016-04-19
In this work, direct exciton-plasmon interactions (EPI) between CdS quantum dots (QDs) and Ag nanoparticles (NPs) were invoked ingeniously by catalytic Ag deposition on Au NPs for the stimulation of high efficient damping effect toward the excitonic responses in CdS QDs, on the basis of which a novel photoelectrochemical (PEC) bioanalytical format was achieved for sensitive microRNA detection. Specifically, upon the configurational change from the hairpin probe DNA to the "Y"-shaped ternary conjugate consisting of the original probe DNA, assistant DNA, and the target microRNA, the alkaline phosphatase (ALP) catalytic chemistry would then trigger the transition of the interparticle interplay from the CdS QDs-Au NPs to the CdS QDs-Ag NPs systems for the microRNA detection due to the dependence of the photocurrent quenching on the target concentration. This work not only provided a unique method for EPI generation among the PEC nanosystems but also offered a versatile and general protocol for future PEC bioanalysis development.
Su, Cheng; Zhou, Lei; Hu, Zheng; Weng, Winnie; Subramani, Jayanthi; Tadkod, Vineet; Hamilton, Kortney; Bautista, Ami; Wu, Yu; Chirmule, Narendra; Zhong, Zhandong Don
2015-10-01
Biotherapeutics can elicit immune responses, which can alter the exposure, safety, and efficacy of the therapeutics. A well-designed and robust bioanalytical method is critical for the detection and characterization of relevant anti-drug antibody (ADA) and the success of an immunogenicity study. As a fundamental criterion in immunogenicity testing, assay cut points need to be statistically established with a risk-based approach to reduce subjectivity. This manuscript describes the development of a validated, web-based, multi-tier customized assay statistical tool (CAST) for assessing cut points of ADA assays. The tool provides an intuitive web interface that allows users to import experimental data generated from a standardized experimental design, select the assay factors, run the standardized analysis algorithms, and generate tables, figures, and listings (TFL). It allows bioanalytical scientists to perform complex statistical analysis at a click of the button to produce reliable assay parameters in support of immunogenicity studies. Copyright © 2015 Elsevier B.V. All rights reserved.
2017-01-01
In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include resolution, surface roughness, leakage, transparency, material deformation, and the possibilities for integration of other materials. Next, the autofluorescence, solvent compatibility, and biocompatibility of 12 representative FDM materials were tested and evaluated. Finally, we demonstrate the feasibility of FDM in a number of important applications. In particular, we consider the fabrication of fluidic channels, masters for polymer replication, and tools for the production of paper microfluidic devices. This work thus provides a guideline for (i) the use of FDM technology by addressing its possibilities and current limitations, (ii) material selection for FDM, based on solvent compatibility and biocompatibility, and (iii) application of FDM technology to (bio)analytical research by demonstrating a broad range of illustrative examples. PMID:28628294
Statistical Data Analyses of Trace Chemical, Biochemical, and Physical Analytical Signatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udey, Ruth Norma
Analytical and bioanalytical chemistry measurement results are most meaningful when interpreted using rigorous statistical treatments of the data. The same data set may provide many dimensions of information depending on the questions asked through the applied statistical methods. Three principal projects illustrated the wealth of information gained through the application of statistical data analyses to diverse problems.
Marina Perez, Arina; Aquino, Bruno; Viviani, Vadim; Kobarg, Jörg
2017-07-19
Luciferases, enzymes that catalyze bioluminescent reactions in different organisms, have been extensively used for bioanalytical purposes. The most well studied bioluminescent system is that of firefly and other beetles, which depends on a luciferase, a benzothiazolic luciferin and ATP, and it is being widely used as a bioanalytical reagent to quantify ATP. Protein kinases are proteins that modify other proteins by transferring phosphate groups from a nucleoside triphosphate, usually ATP. Here, we used a red-light emitting luciferase from Phrixotrix hirtus railroad worm to determine the activity of kinases in a coupled assay, based on luminescence that is generated when luciferase is in the presence of its substrate, the luciferin, and ATP. In this work we used, after several optimization reactions, creatine kinase isoforms as well as NEK7 protein kinase in the absence or presence of ATP analogous inhibitors to validate this new luminescence method. With this new approach we validated a luminescence method to quantify kinase activity, with different substrates and inhibition screening tests, using a novel red-light emitting luciferase as a reporter enzyme.
Summerfield, Scott G; Evans, Christopher; Spooner, Neil; Dunn, John A; Szapacs, Matthew E; Yang, Eric
2014-05-01
The portfolios of pharmaceutical companies have diversified substantially over recent years in recognition that monotherapies and/or small molecules are less suitable for modulating many complex disease etiologies. Furthermore, there has been increased pressure on drug-development budgets over this same period. This has placed new challenges in the path of bioanalytical scientists, both within the industry and with contract research organizations (CROs). Large pharmaceutical, biotechnology and small-medium healthcare enterprises have had to make important decisions on what internal capabilities they wish to retain and where CROs offers a significant strategic benefit to their business model. Our journey has involved asking where we believe an internal bioanalytical facility offers the greatest benefit to progressing drug candidates through the drug-development cycle and where externalization can help free up internal resources, adding flexibility to our organization in order to deal with the inevitable peaks and troughs in workload.
Yang, Yimin; Ying, Sha; Li, Te; Zhen, Juan; Chen, Dongmei; Wang, Jianmeng
2018-04-14
A selective and sensitive liquid chromatography tandem mass spectrometry method was developed for the simultaneous determination of salviaflaside and rosmarinic acid in rat plasma. Sample preparation was carried out through liquid-liquid extraction with ethyl acetate using curculigoside as internal standard (IS). The analytes were determined by selected reaction monitoring operated in the positive ESI mode. Chromatographic separation was performed on an Agilent Eclipse Plus C 18 column (100 × 4.6 mm, 1.8 μm) with a mobile phase consisting of methanol-water-formic acid (50:50:0.1, v/v/v) at a flow rate of 0.3 mL/min. The run time was 1.9 min per sample and the injection volume was 5 μL. The method had an LLOQ of 1.6 ng/mL for salviaflaside and 0.94 ng/mL for rosmarinic acid in plasma. The linear calibration curves were fitted over the range of 1.6-320 ng/mL for salviaflaside and 0.94-188 ng/mL for rosmarinic acid in plasma with correlation coefficients (r 2 ) >0.99. Intra- and inter-day precisions (relative standard deviation) were < 13.5%, and accuracies (relative error) were between -8.6% and 14.5% for all quality control samples. The method was validated and applied to the pharmacokinetics of salviaflaside and rosmarinic acid in plasma after oral administration of Prunella vulgaris extract to rats. Copyright © 2018 John Wiley & Sons, Ltd.
Police, Anitha; Gurav, Sandip; Dhiman, Vinay; Zainuddin, Mohd; Bhamidipati, Ravi Kanth; Rajagopal, Sriram; Mullangi, Ramesh
2015-11-01
A simple, specific, sensitive and reproducible high-performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of odanacatib in rat and human plasma. The bioanalytical procedure involves extraction of odanacatib and itraconazole (internal standard, IS) from a 200 μL plasma aliquot with simple liquid-liquid extraction process. Chromatographic separation was achieved on a Symmetry Shield RP18 using an isocratic mobile phase at a flow rate of 0.7 mL/min. The UV detection wave length was 268 nm. Odanacatib and IS eluted at 5.5 and 8.6 min, respectively with a total run time of 10 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 50.9-2037 ng/mL (r(2) = 0.994). The intra- and inter-day precisions were in the range of 2.06-5.11 and 5.84-13.1%, respectively, in rat plasma and 2.38-7.90 and 6.39-10.2%, respectively, in human plasma. The validated HPLC method was successfully applied to a pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.
Azadniya, Ebrahim; Morlock, Gertrud E
2018-01-19
An affordable bioanalytical workflow supports the collection of data on active ingredients, required for the understanding of health-related food, superfood and traditional medicines. Targeted effect-directed responses of single compounds in a complex sample highlight this powerful bioanalytical hyphenation of planar chromatography with (bio)assays. Among many reports about biological properties of Salvia miltiorrhiza Bunge root (Danshen) and their analytical methods, the highly efficient direct bioautography (DB) workflow has not been considered so far. There was just one TLC-acetylcholinesterase (AChE) method with a poor zone resolution apart from our two HPTLC-DB studies, however, all methods were focused on the nonpolar extracts of Danshen (tanshinones) only. The current study on HPTLC-UV/Vis/FLD-(bio)assay-HRMS, followed by streamlined scale-up to preparative layer chromatography (PLC)- 1 H-NMR, aimed at an even more streamlined, yet comprehensive bioanalytical workflow. It comprised effect-directed screening of both, its polar (containing phenolics) and nonpolar extracts (containing tanshinones) on the same HPTLC plate, the biochemical and biological profiling with four different (bio)assays and elucidation of structures of known and unidentified active compounds. The five AChE inhibitors, salvianolic acid B (SAB), lithiospermic acid (LSA) and rosmarinic acid (RA) as well as cryptotanshinone (CT) and 15,16-dihydrotanshinone I (DHTI) were confirmed, but also unidentified inhibitors were observed. In the polar extracts, SAB, LSA and RA exhibited free radical scavenging properties in the 2,2-diphenyl-1-picrylhydrazyl assay. CT, DHTI and some unidentified nonpolar compounds were found active against Gram-positive Bacillus subtilis and Gram-negative Aliivibrio fischeri (LOD 12 ng/band for CT, and 5 ng/band for DHTI). For the first time, the most multipotent unidentified active compound zone in the B. subtilis, A. fischeri and AChE fingerprints of the nonpolar Danshen extract was identified as co-eluted band of 1,2-dihydrotanshinone and methylenetanshinquinone in the ratio of 2:1. Copyright © 2017 Elsevier B.V. All rights reserved.
Highly sensitive detection of target molecules using a new fluorescence-based bead assay
NASA Astrophysics Data System (ADS)
Scheffler, Silvia; Strauß, Denis; Sauer, Markus
2007-07-01
Development of immunoassays with improved sensitivity, specificity and reliability are of major interest in modern bioanalytical research. We describe the development of a new immunomagnetic fluorescence detection (IM-FD) assay based on specific antigen/antibody interactions and on accumulation of the fluorescence signal on superparamagnetic PE beads in combination with the use of extrinsic fluorescent labels. IM-FD can be easily modified by varying the order of coatings and assay conditions. Depending on the target molecule, antibodies (ABs), entire proteins, or small protein epitopes can be used as capture molecules. The presence of target molecules is detected by fluorescence microscopy using fluorescently labeled secondary or detection antibodies. Here, we demonstrate the potential of the new assay detecting the two tumor markers IGF-I and p53 antibodies in the clinically relevant concentration range. Our data show that the fluorescence-based bead assay exhibits a large dynamic range and a high sensitivity down to the subpicomolar level.
Schimpf, Karen J.; Meek, Claudia C.; Leff, Richard D.; Phelps, Dale L.; Schmitz, Daniel J.; Cordle, Christopher T.
2015-01-01
Inositol is a six-carbon sugar alcohol and is one of nine biologically significant isomers of hexahydroxycyclohexane. Myo-inositol is the primary biologically active form and is present in higher concentrations in the fetus and newborn than in adults. It is currently being examined for the prevention of retinopathy of prematurity in newborn preterm infants. A robust method for quantifying myo-inositol (MI), D-chiro-inositol (DCI) and 1,5-anhydro-D-sorbitol (ADS) in very small-volume (25 μL) urine, blood serum and/or plasma samples was developed. Using a multiple-column, multiple mobile phase liquid chromatographic system with electrochemical detection, the method was validated with respect to (a) selectivity, (b) accuracy/recovery, (c) precision/reproducibility, (d) sensitivity, (e) stability and (f) ruggedness. The standard curve was linear and ranged from 0.5 to 30 mg/L for each of the three analytes. Above-mentioned performance measures were within acceptable limits described in the Food and Drug Administration’s Guidance for Industry: Bioanalytical Method Validation. The method was validated using blood serum and plasma collected using four common anticoagulants, and also by quantifying the accuracy and sensitivity of MI measured in simulated urine samples recovered from preterm infant diaper systems. The method performs satisfactorily measuring the three most common inositol isomers on 25 μL clinical samples of serum, plasma milk, and/or urine. Similar performance is seen testing larger volume samples of infant formulas and infant formula ingredients. MI, ADS and DCI may be accurately tested in urine samples collected from five different preterm infant diapers if the urine volume is greater than 2–5 mL. PMID:26010453
Use of Accelerator Mass Spectrometry in Human Health and Molecular Toxicology
Enright, Heather A.; Malfatti, Michael A.; Zimmermann, Maike; ...
2016-10-11
Accelerator mass spectrometry (AMS) has been adopted as a powerful bioanalytical method for human studies in the areas of pharmacology and toxicology. The exquisite sensitivity (10–18 mol) of AMS has facilitated studies of toxins and drugs at environmentally and physiologically relevant concentrations in humans. Such studies include risk assessment of environmental toxicants, drug candidate selection, absolute bioavailability determination, and more recently, assessment of drug-target binding as a biomarker of response to chemotherapy. Combining AMS with complementary capabilities such as high performance liquid chromatography (HPLC) can maximize data within a single experiment and provide additional insight when assessing drugs and toxins,more » such as metabolic profiling. Recent advances in the AMS technology at Lawrence Livermore National Laboratory have allowed for direct coupling of AMS with complementary capabilities such as HPLC via a liquid sample moving wire interface, offering greater sensitivity compared to that of graphite-based analysis, therefore enabling the use of lower 14C and chemical doses, which are imperative for clinical testing. In conclusion, the aim of this review is to highlight the recent efforts in human studies using AMS, including technological advancements and discussion of the continued promise of AMS for innovative clinical based research.« less
Use of Accelerator Mass Spectrometry in Human Health and Molecular Toxicology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enright, Heather A.; Malfatti, Michael A.; Zimmermann, Maike
Accelerator mass spectrometry (AMS) has been adopted as a powerful bioanalytical method for human studies in the areas of pharmacology and toxicology. The exquisite sensitivity (10–18 mol) of AMS has facilitated studies of toxins and drugs at environmentally and physiologically relevant concentrations in humans. Such studies include risk assessment of environmental toxicants, drug candidate selection, absolute bioavailability determination, and more recently, assessment of drug-target binding as a biomarker of response to chemotherapy. Combining AMS with complementary capabilities such as high performance liquid chromatography (HPLC) can maximize data within a single experiment and provide additional insight when assessing drugs and toxins,more » such as metabolic profiling. Recent advances in the AMS technology at Lawrence Livermore National Laboratory have allowed for direct coupling of AMS with complementary capabilities such as HPLC via a liquid sample moving wire interface, offering greater sensitivity compared to that of graphite-based analysis, therefore enabling the use of lower 14C and chemical doses, which are imperative for clinical testing. In conclusion, the aim of this review is to highlight the recent efforts in human studies using AMS, including technological advancements and discussion of the continued promise of AMS for innovative clinical based research.« less
Verdirame, Maria; Veneziano, Maria; Alfieri, Anna; Di Marco, Annalise; Monteagudo, Edith; Bonelli, Fabio
2010-03-11
Turbulent Flow Chromatography (TFC) is a powerful approach for on-line extraction in bioanalytical studies. It improves sensitivity and reduces sample preparation time, two factors that are of primary importance in drug discovery. In this paper the application of the ARIA system to the analytical support of in vivo pharmacokinetics (PK) and in vitro drug metabolism studies is described, with an emphasis in high throughput optimization. For PK studies, a comparison between acetonitrile plasma protein precipitation (APPP) and TFC was carried out. Our optimized TFC methodology gave better S/N ratios and lower limit of quantification (LOQ) than conventional procedures. A robust and high throughput analytical method to support hepatocyte metabolic stability screening of new chemical entities was developed by hyphenation of TFC with mass spectrometry. An in-loop dilution injection procedure was implemented to overcome one of the main issues when using TFC, that is the early elution of hydrophilic compounds that renders low recoveries. A comparison between off-line solid phase extraction (SPE) and TFC was also carried out, and recovery, sensitivity (LOQ), matrix effect and robustness were evaluated. The use of two parallel columns in the configuration of the system provided a further increase of the throughput. Copyright 2009 Elsevier B.V. All rights reserved.
Kumar, Ajay; Monif, Tausif; Khuroo, Arshad; Sasmal, Dinakar; Goswami, Dipanjan; Lahkar, Vijay Kumar
2011-06-01
LC- ESI- MS/MS simultaneous bioanalytical method was developed to determine acitretin and its metabolite isoacitretin in human plasma using acitretin-d3 used as the internal standard for both analytes. The compounds were extracted using protein precipitation coupled with liquid-liquid extraction with flash freezing technique. Negative mass transitions (m/z) of acitretin, isoacitretin and acitretin-d3 were detected in multiple reactions monitoring (MRM) mode at 325.4 → 266.3, 325.2 → 266.1 and 328.3 → 266.3, respectively, with a turbo ion spray interface. The chromatographic separation was achieved on an Ascentis-RP amide column (4.6 × 150 mm, 5 µm) with mobile phase delivered in isocratic mode. The method was validated over a concentration range of 1.025-753.217 ng/mL for acitretin and 0.394-289.234 ng/mL for isoacitretin with a limit of quantification of 1.025 and 0.394 ng/mL. The intra-day and inter-day precisions were below 8.1% for acitretin and below 13.8% for isoacitretin, while accuracy was within ±7.0 and ±10.6% respectively. For the first time, the best possible conditions for plasma stability of acitretin and isoacitretin are presented and discussed with application to clinical samples. Copyright © 2010 John Wiley & Sons, Ltd.
Stalter, Daniel; Peters, Leon I; O'Malley, Elissa; Tang, Janet Yat-Man; Revalor, Marion; Farré, Maria José; Watson, Kalinda; von Gunten, Urs; Escher, Beate I
2016-06-21
Enrichment methods used in sample preparation for the bioanalytical assessment of disinfected drinking water result in the loss of volatile and hydrophilic disinfection byproducts (DBPs) and hence likely tend to underestimate biological effects. We developed and evaluated methods that are compatible with bioassays, for extracting nonvolatile and volatile DBPs from chlorinated and chloraminated drinking water to minimize the loss of analytes. For nonvolatile DBPs, solid-phase extraction (SPE) with TELOS ENV as solid phase performed superior compared to ten other sorbents. SPE yielded >70% recovery of nonpurgeable adsorbable organic halogens (AOX). For volatile DBPs, cryogenic vacuum distillation performed unsatisfactorily. Purge and cold-trap with crushed ice serving as condensation nuclei achieved recoveries of 50-100% for trihalomethanes and haloacetonitriles and approximately 60-90% for purged AOX from tap water. We compared the purgeable versus the nonpurgeable fraction by combining purge-and-trap extraction with SPE. The purgeable DBP fraction enriched with the purge-and-trap method exerted a lower oxidative stress response in mammalian cells than the nonpurgeable DBPs enriched with SPE after purging, while contributions of both fractions to bacterial cytotoxicity was more variable. 37 quantified DBPs explained almost the entire AOX in the purge-and-trap extracts, but <16% in the SPE extracts demonstrating that the nonpurgeable fraction is dominated by unknown DBPs.
Escher, Beate I; Lawrence, Michael; Macova, Miroslava; Mueller, Jochen F; Poussade, Yvan; Robillot, Cedric; Roux, Annalie; Gernjak, Wolfgang
2011-06-15
Advanced water treatment of secondary treated effluent requires stringent quality control to achieve a water quality suitable for augmenting drinking water supplies. The removal of micropollutants such as pesticides, industrial chemicals, endocrine disrupting chemicals (EDC), pharmaceuticals, and personal care products (PPCP) is paramount. As the concentrations of individual contaminants are typically low, frequent analytical screening is both laborious and costly. We propose and validate an approach for continuous monitoring by applying passive sampling with Empore disks in vessels that were designed to slow down the water flow, and thus uptake kinetics, and ensure that the uptake is only marginally dependent on the chemicals' physicochemical properties over a relatively narrow molecular size range. This design not only assured integrative sampling over 27 days for a broad range of chemicals but also permitted the use of a suite of bioanalytical tools as sum parameters, representative of mixtures of chemicals with a common mode of toxic action. Bioassays proved to be more sensitive than chemical analysis to assess the removal of organic micropollutants by reverse osmosis, followed by UV/H₂O₂ treatment, as many individual compounds fell below the quantification limit of chemical analysis, yet still contributed to the observed mixture toxicity. Nonetheless in several cases, the responses in the bioassays were also below their quantification limits and therefore only three bioassays were evaluated here, representing nonspecific toxicity and two specific end points for estrogenicity and photosynthesis inhibition. Chemical analytical techniques were able to quantify 32 pesticides, 62 PCPPs, and 12 EDCs in reverse osmosis concentrate. However, these chemicals could explain only 1% of the nonspecific toxicity in the Microtox assay in the reverse osmosis concentrate and 0.0025% in the treated water. Likewise only 1% of the estrogenic effect in the E-SCREEN could be explained by the quantified EDCs after reverse osmosis. In comparison, >50% of the estrogenic effect can typically be explained in sewage. Herbicidal activity could be fully explained by chemical analysis as the sampling period coincided with an illegal discharge and two herbicides dominated the mixture effect. The mass balance of the reverse osmosis process matched theoretical expectations for both chemical analysis and bioanalytical tools. Overall the investigated treatment train removed >97% estrogenicity, >99% herbicidal activity, and >96% baseline toxicity, confirming the suitability of the treatment train for polishing water for indirect potable reuse. The product water was indistinguishable from local tap water in all three bioassays. This study demonstrates the suitability and robustness of passive sampling linked with bioanalytical tools for semicontinuous monitoring of advanced water treatment with respect to micropollutant removal.
cp-R, an interface the R programming language for clinical laboratory method comparisons.
Holmes, Daniel T
2015-02-01
Clinical scientists frequently need to compare two different bioanalytical methods as part of assay validation/monitoring. As a matter necessity, regression methods for quantitative comparison in clinical chemistry, hematology and other clinical laboratory disciplines must allow for error in both the x and y variables. Traditionally the methods popularized by 1) Deming and 2) Passing and Bablok have been recommended. While commercial tools exist, no simple open source tool is available. The purpose of this work was to develop and entirely open-source GUI-driven program for bioanalytical method comparisons capable of performing these regression methods and able to produce highly customized graphical output. The GUI is written in python and PyQt4 with R scripts performing regression and graphical functions. The program can be run from source code or as a pre-compiled binary executable. The software performs three forms of regression and offers weighting where applicable. Confidence bands of the regression are calculated using bootstrapping for Deming and Passing Bablok methods. Users can customize regression plots according to the tools available in R and can produced output in any of: jpg, png, tiff, bmp at any desired resolution or ps and pdf vector formats. Bland Altman plots and some regression diagnostic plots are also generated. Correctness of regression parameter estimates was confirmed against existing R packages. The program allows for rapid and highly customizable graphical output capable of conforming to the publication requirements of any clinical chemistry journal. Quick method comparisons can also be performed and cut and paste into spreadsheet or word processing applications. We present a simple and intuitive open source tool for quantitative method comparison in a clinical laboratory environment. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Jiang, Hongliang; Li, Yinghe; Pelzer, Mary; Cannon, Michelle J; Randlett, Christopher; Junga, Heiko; Jiang, Xiangyu; Ji, Qin C
2008-05-30
A sensitive and selective bioanalytical assay was developed and validated for the determination of enantiomeric molindone in human plasma using high-performance liquid chromatography-tandem mass spectrometry along with supported liquid extraction procedures. The chiral separation was evaluated and optimized on macrocyclic antibiotic type chiral stationary phases (CSPs) based on teicoplanin aglycone (Chirobiotic TAG) in polar organic, polar ionic, and reversed-phase mode chromatography, respectively. Complete baseline separation was achieved on a Chirobiotic TAG column under isocratic condition in reversed-phase chromatography. The method validation was conducted using a Chirobiotic TAG column (100 mm x 2.1 mm) over the curve range 0.100-100 ng/ml for each molindone enantiomer using 0.0500 ml of plasma sample. The flow rate was 0.8 ml/min and the total run time was 9 min. Supported liquid extraction in a 96-well plate format was used for sample preparation. Parameters including recovery, matrix effect, linearity, sensitivity, specificity, carryover, precision, accuracy, dilution integrity, and stability were evaluated. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels were RSD
Min, Jee Sun; Kim, Jiseon; Kim, Jung Ho; Kim, Doyun; Zheng, Yu Fen; Park, Ji Eun; Lee, Wooin; Bae, Soo Kyung
2017-11-30
A highly sensitive and rapid LC-MS/MS method was developed and validated to determine the levels of carfilzomib in mice plasma by using chlorpropamide as an internal standard. Carfilzomib and chlorpropamide were extracted from 5 μL of plasma after protein precipitation with acetonitrile. Chromatographic separation was performed on Phenomenex Luna C 18 column (50×2.0mm id, 3μm). The mobile phase consisted of 0.1% formic acid in acetonitrile -0.1% formic acid in water (1:1v/v) and the flow rate was 0.3mL/min. The total chromatographic run time was 2.5min. Detection was performed on a triple quadrupole mass spectrometer equipped with positive-ion electrospray ionization by selected reaction monitoring of the transitions at m/z 720.20>100.15 (for carfilzomib) and m/z 277.05>111.05 (for the internal standard). The lower limit of quantification was 0.075ng/mL and the linear range was 0.075-1250ng/mL (r≥0.9974). All validation data, including selectivity, precision, accuracy, matrix effect, recovery, dilution integrity, stability, and incurred sample reanalysis, were well within acceptance limits. This newly developed bioanalytical method was simple, highly sensitive, required only a small volume of plasma, and was suitable for application in pharmacokinetic studies in mice that used serial blood sampling. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Evelyn H.; Combe, Peter C.; Schug, Kevin A.
2016-05-01
Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (<5% error), and precision (1%-12% CV) were determined for each model protein. Sensitivities for different proteins varied considerably. Biological fluids, including human urine, equine plasma, and bovine plasma were used to demonstrate the specificity of the approach. The purpose of this model study was to identify, study, and demonstrate the advantages and challenges for QQQ-MS-based intact protein quantitation, a largely underutilized approach to date.
NASA Astrophysics Data System (ADS)
Lily; Laila, L.; Prasetyo, B. E.
2018-03-01
A selective, reproducibility, effective, sensitive, simple and fast High-Performance Liquid Chromatography (HPLC) was developed, optimized and validated to analyze 25-Desacetyl Rifampicin (25-DR) in human urine which is from tuberculosis patient. The separation was performed by HPLC Agilent Technologies with column Agilent Eclipse XDB- Ci8 and amobile phase of 65:35 v/v methanol: 0.01 M sodium phosphate buffer pH 5.2, at 254 nm and flow rate of 0.8ml/min. The mean retention time was 3.016minutes. The method was linear from 2–10μg/ml 25-DR with a correlation coefficient of 0.9978. Standard deviation, relative standard deviation and coefficient variation of 2, 6, 10μg/ml 25-DR were 0-0.0829, 03.1752, 0-0.0317%, respectively. The recovery of 5, 7, 9μg/ml25-DR was 80.8661, 91.3480 and 111.1457%, respectively. Limits of detection (LoD) and quantification (LoQ) were 0.51 and 1.7μg/ml, respectively. The method has fulfilled the validity guidelines of the International Conference on Harmonization (ICH) bioanalytical method which includes parameters of specificity, linearity, precision, accuracy, LoD, and LoQ. The developed method is suitable for pharmacokinetic analysis of various concentrations of 25-DR in human urine.
Awad, Mohamed; Hammad, Mohamed A; Abdel-Megied, Ahmed M; Omar, Mahmoud A
2018-04-30
Simple, precise and selective spectrofluorimetric technique was evolved for quantitation of selective β 2 agonist drug namely salmeterol xinafoate (SAL). Utilizing its phenolic nature, a method was described based on the reaction of the studied drug with ethyl acetoacetate (EAA) to yield extremely fluorescent coumarin product which can be detected at 480 nm (λ ex = 420 nm). The procedure obeys Beer's law with a correlation coefficient of r = 0.9999 in the concentration range between 500 and 5000 ng ml -1 with and 177 ng ml -1 for limit of detection (LOD) and limit of quantification (LOQ), respectively. Diverse reaction variables influencing the firmness and formation of the coumarin product were accurately examined and modified to ensure greatest sensitivity of the procedure. The proposed technique was performed and examined according to the US Food and Drug Administration (FDA) guidelines for bio-analytical methods and was efficiently applied for quantitation of SAL in both pharmaceutical preparations (% recovery = 100.06 ± 1.07) and spiked human plasma (% recovery = 96.64-97.14 ± 1.01-1.52). Copyright © 2018 John Wiley & Sons, Ltd.
Poly(ionic liquid) based chemosensors for detection of basic amino acids in aqueous medium
NASA Astrophysics Data System (ADS)
Li, Xinjuan; Wang, Kai; Ma, Nana; Jia, Xianbin
2017-09-01
Naked-eye detection of amino acids in water is of great significance in the field of bio-analytical applications. Herein, polymerized ionic liquids (PILs) with controlled chain length structures were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and post-quaternization approach. The amino acids recognition performance of PILs with different alkyl chain lengths and molecular weights was evaluated by naked-eye color change and ultraviolet-visible (UV-vis) spectral studies. These PILs were successfully used for highly sensitive and selective detection of Arg, Lys and His in water. The recognition performance was improved effectively with increased molecular weight of PILs. The biosensitivity of the PILs in water was strongly dependent on their aggregation effect and polarization effect. Highly sensitive and selective detection of amino acids was successfully accomplished by introducing positively charged pyridinium moieties and controlled RAFT radical polymerization.
Validation of Biomarkers for Prostate Cancer Prognosis
2017-06-01
such as the innate immune response to the malignancy, interactions of the malignant cells with the sur- rounding stroma, or stochastic factors that are...it is inadequate for automatic imaging reading. The main reason is that it still requires pathologists to sketch the boundary for cancer cell region...and merely requires a method (imaging, cell collection, measurement of a bioanalyte) that correlates with a disease state, followed by the application
Tuning direct current streaming dielectrophoresis of proteins
Nakano, Asuka; Camacho-Alanis, Fernanda; Chao, Tzu-Chiao; Ros, Alexandra
2012-01-01
Dielectrophoresis (DEP) of biomolecules has large potential to serve as a novel selectivity parameter for bioanalytical methods such as (pre)concentration, fractionation, and separation. However, in contrast to well-characterized biological cells and (nano)particles, the mechanism of protein DEP is poorly understood, limiting bioanalytical applications for proteins. Here, we demonstrate a detailed investigation of factors influencing DEP of diagnostically relevant immunoglobulin G (IgG) molecules using insulator-based DEP (iDEP) under DC conditions. We found that the pH range in which concentration of IgG due to streaming iDEP occurs without aggregate formation matches the pH range suitable for immunoreactions. Numerical simulations of the electrokinetic factors pertaining to DEP streaming in this range further suggested that the protein charge and electroosmotic flow significantly influence iDEP streaming. These predictions are in accordance with the experimentally observed pH-dependent iDEP streaming profiles as well as the determined IgG molecular properties. Moreover, we observed a transition in the streaming behavior caused by a change from positive to negative DEP induced through micelle formation for the first time experimentally, which is in excellent qualitative agreement with numerical simulations. Our study thus relates molecular immunoglobulin properties to observed iDEP, which will be useful for the future development of protein (pre)concentration or separation methods based on DEP. PMID:23908679
Xu, Guifen; Chen, Jiyun S; Phadnis, Ruta; Huang, Tom; Uyeda, Craig; Soto, Marcus; Stouch, Brian; Wells, Mary C; James, Christopher A; Carlson, Timothy J
2012-08-01
Dried blood spot (DBS) sampling in combination with LC-MS/MS has been used increasingly in drug discovery for quantitative analysis to support pharmacokinetic (PK) studies. In this study, we assessed the effect of blood-to-plasma (B:P) partitioning on the bioanalytical performance and PK data acquired by DBS for a compound AMG-1 with species and concentration-dependent B:P ratio. B:P partitioning did not adversely affect bioanalytical performance of DBS for AMG-1. For rat, (B:P ratio of 0.63), PK profiles from DBS and plasma methods were comparable. For dog, concentration-dependence of B:P ratio was observed both in vivo and in vitro. Additional studies demonstrated concentration-dependence of the compound's unbound fraction in plasma, which may contribute to the concentration-dependence of the B:P ratio. DBS is a promising sampling technique for preclinical pharmacokinetic studies. For compounds with high B:P ratio, caution needs to be applied for data comparison and interpretation between matrices.
Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi
2013-09-01
Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.
Advances in Mid-Infrared Spectroscopy for Chemical Analysis
NASA Astrophysics Data System (ADS)
Haas, Julian; Mizaikoff, Boris
2016-06-01
Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.
S, Vijay Kumar; Dhiman, Vinay; Giri, Kalpesh Kumar; Sharma, Kuldeep; Zainuddin, Mohd; Mullangi, Ramesh
2015-09-01
A novel, simple, specific, sensitive and reproducible high-performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of tofacitinib in rat plasma. The bioanalytical procedure involves extraction of tofacitinib and itraconazole (internal standard, IS) from rat plasma with a simple liquid-liquid extraction process. The chromatographic analysis was performed on a Waters Alliance system using a gradient mobile phase conditions at a flow rate of 1.0 mL/min and C18 column maintained at 40 ± 1 °C. The eluate was monitored using an UV detector set at 287 nm. Tofacitinib and IS eluted at 6.5 and 8.3 min, respectively and the total run time was 10 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 182-5035 ng/mL (r(2) = 0.995). The intra- and inter-day precisions were in the range of 1.41-11.2 and 3.66-8.81%, respectively, in rat plasma. The validated HPLC method was successfully applied to a pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.
Bussy, Ugo; Wassink, Lydia; Scribner, Kim T; Li, Weiming
2017-01-01
Quantifying cortisol concentrations in fish eggs is important to understand the effects of environmental conditions on maternal physiological condition and on egg provisioning and quality. Data are particularly relevant to studies of the ecology of threatened species such as lake sturgeon (Aciperser fulvescens) as well as assessments of larval physical and behavioral phenotypes, fish health and caviar quality in sturgeon aquaculture. This study focuses on development of bioanalytical methods for high sensitivity and robust determination of cortisol in sturgeon eggs. Sample preparation was optimized after investigating protein precipitation and liquid-liquid extraction techniques. Ethyl acetate was found to be the most efficient solvent (recovery parameter) and also provided the best sample clean up (matrix effect parameter). The method was determined to be linear for cortisol concentrations between 0.025 and 100ng/mL. The limits of detection and quantification were 0.025 and 0.1ng/mL respectively. Intra- and inter-day performances of the method were validated at three concentrations (0.25; 10 and 100ng/mL). The method was applied to field-collected samples for the determination of endogenous cortisol in lake sturgeon eggs. Cortisol was detected in all egg samples and statistical analysis showed significant differences between fertilized and non-fertilized eggs. Copyright © 2016 Elsevier B.V. All rights reserved.
Gounder, Murugesan K.; Lin, Hongxia; Stein, Mark; Goodin, Susan; Bertino, Joseph R.; Kong, Ah-Ng Tony; DiPaola, Robert S.
2015-01-01
2-deoxyglucose (2-DG), an analog of glucose, is widely used to interfere with the glycolysis in tumor cells and studied as a therapeutic approach in clinical trials. To evaluate the pharmacokinetics of 2-DG, we describe the development and validation of a sensitive HPLC fluorescent method for the quantitation of 2-DG in plasma. Plasma samples were deproteinized with methanol and the supernatant was dried at 45°C. The residues were dissolved in methanolic sodium acetate/boric acid solution. 2-DG and other monosaccharides were derivatized to 2-aminobenzoic acid derivatives in a single step in the presence of sodium cyanoborohydride at 80°C for 45min. The analytes were separated on a YMC ODS C18 reversed-phase column using gradient elution. The excitation and emission wavelengths were set at 360 and 425nm. The 2-DG calibration curves were linear over the range of 0.63 to 300μg/mL with the limit of detection of 0.5μg/mL. The assay provided satisfactory intra-day and inter-day precision with RSD less than 9.8% and the accuracy ranged from 86.8% to 110.0%. The HPLC method is reproducible and suitable for the quantitation of 2-DG in plasma. The method was successfully applied to characterize the pharmacokinetics profile of 2-DG in patients with advanced solid tumors. PMID:21932382
Nanomanipulation-coupled nanospray mass spectrometry as an approach for single cell analysis
NASA Astrophysics Data System (ADS)
Phelps, Mandy; Hamilton, Jason; Verbeck, Guido F.
2014-12-01
Electrospray mass spectrometry is now a widely used technique for observing cell content of various biological tissues. However, electrospray techniques (liquid chromatography and direct infusion) often involve lysing a group of cells and extracting the biomolecules of interest, rather than a sensitive, individual cell method to observe local chemistry. Presented here is an approach of combining a nanomanipulator workstation with nanospray mass spectrometry, which allows for extraction of a single cell, followed by rapid mass analysis that can provide a detailed metabolic profile. Triacylglycerol content was profiled with this tool coupled to mass spectrometry to investigate heterogeneity between healthy and tumorous tissues as well as lipid droplet containing adipocytes in vitro as proof of concept. This selective approach provides cellular resolution and complements existing bioanalytical techniques with minimal invasion to samples. In addition, the coupling of nanomanipulation and mass spectrometry holds the potential to be used in a great number of applications for individual organelles, diseased tissues, and in vitro cell cultures for observing heterogeneity even amongst cells and organelles of the same tissue.
Study on a Luminol-based Electrochemiluminescent Sensor for Label-Free DNA Sensing
Chu, Hai-Hong; Yan, Ji-Lin; Tu, Yi-Feng
2010-01-01
Automatic, inexpensive, simple and sensitive methods for DNA sensing and quantification are highly desirable for biomedical research. The rapid development of both the fundamentals and applications of electrochemiluminescence (ECL) over the past years has demonstrated its potential for analytical and bio-analytical chemistry. This paper reports the quenching effect of DNA on the ECL of luminol and the further development of a DNA sensing device. With the pre-functionalization by a composite of carbon nano-tubes (CNTs) and Au nanoparticles (AuNPs), the sensor provides a novel and valuable label-free approach for DNA sensing. Here the ECL intensity was remarkably decreased when more than 1.0 × 10−12 molar of DNA were adsorbed on the sensor. Linearity of the DNA amount with the reciprocal of ECL intensity was observed. A saturated sensor caused a 92.8% quenching effect. The research also proposes the mechanism for the quenching effect which could be attributed to the interaction between luminol and DNA and the elimination of reactive oxygen species (ROSs) by DNA. PMID:22163421
Páez-Avilés, Cristina; Juanola-Feliu, Esteve; Punter-Villagrasa, Jaime; del Moral Zamora, Beatriz; Homs-Corbera, Antoni; Colomer-Farrarons, Jordi; Miribel-Català, Pere Lluís; Samitier, Josep
2016-01-01
Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments. PMID:27649201
Photon upconversion in homogeneous fluorescence-based bioanalytical assays.
Soukka, Tero; Rantanen, Terhi; Kuningas, Katri
2008-01-01
Upconverting phosphors (UCPs) are very attractive reporters for fluorescence resonance energy transfer (FRET)-based bioanalytical assays. The large anti-Stokes shift and capability to convert near-infrared to visible light via sequential absorption of multiple photons enable complete elimination of autofluorescence, which commonly impairs the performance of fluorescence-based assays. UCPs are ideal donors for FRET, because their very narrow-banded emission allows measurement of the sensitized acceptor emission, in principle, without any crosstalk from the donor emission at a wavelength just tens of nanometers from the emission peak of the donor. In addition, acceptor dyes emitting at visible wavelengths are essentially not excited by near-infrared, which further emphasizes the unique potential of upconversion FRET (UC-FRET). These characteristics result in favorable assay performance using detection instrumentation based on epifluorometer configuration and laser diode excitation. Although UC-FRET is a recently emerged technology, it has already been applied in both immunoassays and nucleic acid hybridization assays. The technology is also compatible with optically difficult biological samples, such as whole blood. Significant advances in assay performance are expected using upconverting lanthanide-doped nanocrystals, which are currently under extensive research. UC-FRET, similarly to other fluorescence techniques based on resonance energy transfer, is strongly distance dependent and may have limited applicability, for example in sandwich-type assays for large biomolecules, such as viruses. In this article, we summarize the essentials of UC-FRET, describe its current applications, and outline the expectations for its future potential.
NASA Astrophysics Data System (ADS)
März, Anne; Mönch, Bettina; Walter, Angela; Bocklitz, Thomas; Schumacher, Wilm; Rösch, Petra; Kiehntopf, Michael; Popp, Jürgen
2011-07-01
This contribution will present a variety of applications of lab-on-a-chip surface enhanced Raman spectroscopy in the field of bioanalytic. Beside the quantification and online monitoring of drugs and pharmaceuticals, determination of enzyme activity and discrimination of bacteria are successfully carried out utilizing LOC-SERS. The online-monitoring of drugs using SERS in a microfluidic device is demonstrated for nicotine. The enzyme activity of thiopurine methyltransferase (TPMT) in lysed red blood cells is determined by SERS in a lab-on-a-chip device. To analyse the activity of TPMT the metabolism of 6-mercaptopurine to 6-methylmercaptopurine is investigated. The discrimination of bacteria on strain level is carried out with different E. coli strains. For the investigations, the bacteria are busted by ultra sonic to achieve a high information output. This sample preparation provides the possibility to detect SERS spectra containing information of the bacterial cell walls as well as of the cytoplasm. This contribution demonstrates the great potential of LOC-SERS in the field of bioanalytics.
NASA Astrophysics Data System (ADS)
Ispas, Cristina R.
The rapid progress of nanotechnology and advanced nanomaterials production offer significant opportunities for designing powerful biosensing devices with enhanced performances. This thesis introduces ceria (CeO 2) nanoparticles and its congeners as a new class of materials with huge potential in bioanalytical and biosensing applications. Unique redox, catalytic and oxygen storage/release properties of ceria nanoparticles, originating from their dual oxidation state are used to design biomedical sensors with high sensitivity and low oxygen dependency. This thesis describes a new approach for fabrication of implantable microbiosensors designed for monitoring neurological activity in physiological conditions. Understanding the mechanisms involved in neurological signaling and functioning is of great physiological importance. In this respect, the development of effective methods that allow accurate detection and quantification of biological analytes (i.e. L-glutamate and glucose) associated with neurological processes is of paramount importance. The performance of most analytical techniques currently used to monitor L-glutamate and glucose is suboptimal and only a limited number of approaches address the problem of operation in oxygen-restricted conditions, such as ischemic brain injury. Over the past couple of years, enzyme based biosensors have been used to investigate processes related to L-glutamate release/uptake and the glucose cycle within the brain. However, most of these sensors, based on oxidoreductase enzymes, do not work in conditions of limited oxygen availability. This thesis presents the development of a novel sensing technology for the detection of L-glutamate and glucose in conditions of oxygen deprivation. This technology provides real-time assessment of the concentrations of these analytes with high sensitivity, wide linear range, and low oxygen dependence. The fabrication, characterization and optimization of enzyme microbiosensors are discussed. This work introduces a new generic approach of improving the sensitivity of oxidase-based enzymatic assays and indicates that ceria and its mixture with other metal oxide nanoparticles could be used to minimize the problems associated with variations of the oxygen. These materials have great potential in bioanalytical and biotechnological applications and offer great opportunities for development of implantable sensing devices for in vivo and in vitro monitoring of analytes of clinical relevance. Additionally, this thesis evaluates the toxicity of different metal and metal oxide nanoparticles by using zebrafish embryos as a toxicological target. Because of their similarities with other vertebrates, rapid development and low cost, zebrafish embryos are ideal animal models for probing toxicological effects of engineered nanomaterials. Among the nanomaterials tested, nickel nanoparticles were characterized by high toxicity and induced delayed development and morphological malformations, while metal oxides nanoparticles (i.e. ceria nanoparticles) had no toxic effects.
Neiens, Patrick; De Simone, Angela; Ramershoven, Anna; Höfner, Georg; Allmendinger, Lars; Wanner, Klaus T
2018-03-03
MS Binding Assays represent a label-free alternative to radioligand binding assays. In this study, we present an LC-ESI-MS/MS method for the quantification of (R,R)-4-(2-benzhydryloxyethyl)-1-(4-fluorobenzyl)piperidin-3-ol [(R,R)-D-84, (R,R)-1], (S,S)-reboxetine [(S,S)-2], and (S)-citalopram [(S)-3] employed as highly selective nonlabeled reporter ligands in MS Binding Assays addressing the dopamine [DAT, (R,R)-D-84], norepinephrine [NET, (S,S)-reboxetine] and serotonin transporter [SERT, (S)-citalopram], respectively. The developed LC-ESI-MS/MS method uses a pentafluorphenyl stationary phase in combination with a mobile phase composed of acetonitrile and ammonium formate buffer for chromatography and a triple quadrupole mass spectrometer in the multiple reaction monitoring mode for mass spectrometric detection. Quantification is based on deuterated derivatives of all three analytes serving as internal standards. The established LC-ESI-MS/MS method enables fast, robust, selective and highly sensitive quantification of all three reporter ligands in a single chromatographic run. The method was validated according to the Center for Drug Evaluation and Research (CDER) guideline for bioanalytical method validation regarding selectivity, accuracy, precision, calibration curve and sensitivity. Finally, filtration-based MS Binding Assays were performed for all three monoamine transporters based on this LC-ESI-MS/MS quantification method as read out. The affinities determined in saturation experiments for (R,R)-D-84 toward hDAT, for (S,S)-reboxetine toward hNET, and for (S)-citalopram toward hSERT, respectively, were in good accordance with results from literature, clearly demonstrating that the established MS Binding Assays have the potential to be an efficient alternative to radioligand binding assays widely used for this purpose so far. Copyright © 2018 John Wiley & Sons, Ltd.
Single Mode SU8 Polymer Based Mach-Zehnder Interferometer for Bio-Sensing Application
NASA Astrophysics Data System (ADS)
Boiragi, Indrajit; Kundu, Sushanta; Makkar, Roshan; Chalapathi, Krishnamurthy
2011-10-01
This paper explains the influence of different parameters to the sensitivity of an optical waveguide Mach-Zehnder Interferometer (MZI) for real time detection of biomolecules. The sensing principle is based on the interaction of evanescence field with the biomolecules that get immobilized on sensing arm. The sensitivity has been calculated by varying the sensing window length, wavelength and concentration of bio-analyte. The maximum attainable sensitivity for the preferred design is the order of 10-8 RIU at 840 nm wavelength with a sensing window length of 1cm. All the simulation work has been carried out with Opti-BPMCAD for the optimization of MZI device parameters. The SU8 polymers are used as a core and clad material to fabricate the waveguide. The refractive index of cladding layer is optimized by varying the curing temperature for a fixed time period and the achieved index difference between core and clad is Δn = 0.0151. The fabricated MZI device has been characterized with LASER beam profiler at 840 nm wavelength. This study demonstrates the effectiveness of the different parameter to the sensitivity of a single mode optical waveguide Mach-Zehnder Interferometer for bio-sensing application.
Bogan, Michael J
2013-04-02
Atomic resolution structures of large biomacromolecular complexes can now be recorded at room temperature from crystals with submicrometer dimensions using intense femtosecond pulses delivered by the world's largest and most powerful X-ray machine, a laser called the Linac Coherent Light Source. Abundant opportunities exist for the bioanalytical sciences to help extend this revolutionary advance in structural biology to the ultimate goal of recording molecular-movies of noncrystalline biomacromolecules. This Feature will introduce the concept of serial femtosecond crystallography to the nonexpert, briefly review progress to date, and highlight some potential contributions from the analytical sciences.
Ding, Yue; Peng, Ming; Zhang, Tong; Tao, Jian-Sheng; Cai, Zhen-Zhen; Zhang, Yong
2013-10-01
Glucuronidation and sulfation represent two major pathways in phase II drug metabolism in humans and other mammalian species. The great majority of drugs, for example, polyphenols, flavonoids and anthraquinones, could be transformed into sulfated and glucuronidated conjugates simultaneously and extensively in vivo. The pharmacological activities of drug conjugations are normally decreased compared with those of their free forms. However, some drug conjugates may either bear biological activities themselves or serve as excellent sources of biologically active compounds. As the bioactivities of drugs are thought to be relevant to the kinetics of their conjugates, it is essential to study the pharmacokinetic behaviors of the conjugates in more detail. Unfortunately, the free forms of drugs cannot be detected directly in most cases if their glucuronides and sulfates are the predominant forms in biological samples. Nevertheless, an initial enzymatic hydrolysis step using β-glucuronidase and/or sulfatase is usually performed to convert the glucuronidated and/or sulfated conjugates to their free forms prior to the extraction, purification and other subsequent analysis steps in the literature. This review provides fundamental information on drug metabolism pathways, the bio-analytical strategies for the quantification of various drug conjugates, and the applications of the analytical methods to pharmacokinetic studies. Copyright © 2013 John Wiley & Sons, Ltd.
Process development for waveguide chemical sensors with integrated polymeric sensitive layers
NASA Astrophysics Data System (ADS)
Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo
2008-02-01
Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.
Yang, Bin; Xu, Yanyan; Wu, Yuanyuan; Wu, Huanyu; Wang, Yuan; Yuan, Lei; Xie, Jiabin; Li, Yubo; Zhang, Yanjun
2016-10-15
A rapid, sensitive and selective ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for simultaneous determination of ten Aconitum alkaloids in rat tissues. The tissue samples were prepared by a simple procedure protein precipitation with acetonitrile containing 0.1% acetic acid and separated on an Agilent XDB C18 column (4.6 mm×50mm, 1.8μm) using gradient elution with a mobile phase consisting of water and acetonitrile (both containing 0.1% formic acid) at a flow rate of 0.3mL/min. The quantitive determination was performed on an electrospray ionization (ESI) triple quadrupole tandem mass spectrometer using selective reaction monitoring (SRM) under positive ionization mode. The established method was fully validated according to the USA Food and Drug Administration (FDA) bioanalytical method validation guidance and the results demonstrated that the method was sensitive and selective with the lowest limits of quantification (LLOQ) at 0.025ng/mL in rat tissue homogenates. Meanwhile, the linearity, precision, accuracy, extraction recovery, matrix effect and stability were all within the required limits of biological sample analysis. After method validation, the validated method was successfully applied to the tissue distribution study on the compatibility of Heishunpian (HSP, the processed product of Aconitum carmichaelii Debx) and Fritillariae thunbergii Bulbus (Zhebeimu, ZBM). The results indicated that the distribution feature of monoester diterpenoid aconitines (MDAs), diester diterpenoid aconitines (DDAs) and non-ester alkaloids (NEAs) were inconsistency, and the compatibility of HSP and ZBM resulted in the distribution amount of DDAs increased in tissues. What's more, the results could provide the reliable basis for systematic research on the substance foundation of the compatibility of the herbal pair. Copyright © 2016 Elsevier B.V. All rights reserved.
Burckhardt, Bjoern B; Tins, Jutta; Laeer, Stephanie
2014-08-05
Although serum and plasma are the biological fluids of choice for pharmacokinetic determination of drugs in adults, it is desirable to elucidate noninvasive methods which can be used for investigations in vulnerable groups such as children. If the drug properties grant sufficient penetration of the drug from blood into saliva, the latter is a useful matrix for noninvasive investigations. Concerning the known physicochemical properties, the direct renin inhibitor aliskiren is one of the substances of which saliva concentrations could substitute blood concentrations for pharmacokinetic investigations in children. Therefore, a reliable bioanalytical method was successfully developed and validated according to the criteria of current international bioanalytical guidelines to enable the comparison of blood and saliva concentrations of aliskiren. After purification of the fluid by solid-phase extraction the chromatographic separation was conducted by using Xselect™ C18 CSH columns. Applying a mobile phase gradient of acidified methanol and acidified water at a flow rate of 0.4ml/min the column effluent was monitored during a total run time of 7.5min by tandem mass spectrometry with electrospray ionization. Running in positive mode the following transitions were investigated: 552.2-436.2m/z for aliskiren and 425.3-351.2m/z for benazepril (internal standard). Calibration curves were constructed in the range of 0.586-1200ng/ml and were analyzed utilizing 1/x(2) weighted linear regression. Intra-run and inter-run precision were 3.8-8.1% and 3.4-8.9%. The method provides selectivity, linearity and accuracy. The validated method was then applied to determine aliskiren concentrations in saliva and blood of three healthy volunteers after oral administration of 300mg aliskiren. Copyright © 2014 Elsevier B.V. All rights reserved.
Shi, Meiyun; Yang, Yan; Zhou, Xiaotong; Cai, Lanlan; Fang, Chunxue; Wang, Can; Sun, Heping; Sun, Yantong; Gao, Yin; Gu, Jingkai; Fawcett, J Paul
2015-05-01
The pentapeptide thymopentin (Arg-Lys-Asp-Val-Tyr, RKDVY) corresponds to amino acids 32-36 of the 49 amino acid immunomodulatory polypeptide, thymopoietin, whose biological activity is partially reproduced. Thymopentin is widely used in the clinic and represents a promising target for drug design but bioanalytical and pharmacokinetic data are limited due to its enzymatic instability. This paper reports a rapid and sensitive method based on liquid chromatography with tandem mass spectrometry for the determination of thymopentin in beagle dog blood. To inactivate peptidases and stabilize thymopentin, acetonitrile was added to blood samples immediately after collection followed by addition of stable isotope-labeled thymopentin as internal standard and washing with dichloromethane. Chromatography was carried out on an Ascentis Express Peptide ES-C18 column using gradient elution with methanol and aqueous 0.1% formic acid at a flow rate of 0.6 mL/min. Positive electrospray ionization mass spectrometry with selected reaction monitoring achieved linearity in the range of 1.5-800 ng/mL with good accuracy/precision and minimal matrix effects. The method was successfully applied to a pharmacokinetic study in beagle dogs after intravenous administration of 0.2 mg/kg thymopentin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bhatti, M M; Hanson, G D; Schultz, L
1998-03-01
The Bioanalytical Chemistry Department at the Madison facility of Covance Laboratories, has developed and validated a simple and sensitive method for the simultaneous determination of phenytoin (PHT), carbamazepine (CBZ) and 10,11-carbamazepine epoxide (CBZ-E) in human plasma by high-performance liquid chromatography with 10,11 dihydrocarbamazepine as the internal standard. Acetonitrile was added to plasma samples containing PHT, CBZ and CBZ-E to precipitate the plasma proteins. After centrifugation, the acetonitrile supernatant was transferred to a clean tube and evaporated under N2. The dried sample extract was reconstituted in 0.4 ml of mobile phase and injected for analysis by high-performance liquid chromatography. Separation was achieved on a Spherisorb ODS2 analytical column with a mobile phase of 18:18:70 acetonitrile:methanol:potassium phosphate buffer. Detection was at 210 nm using an ultraviolet detector. The mean retention times of CBZ-E, PHT and CBZ were 5.8, 9.9 and 11.8 min, respectively. Peak height ratios were fit to a least squares linear regression algorithm with a 1/(concentration)2 weighting. The method produces acceptable linearity, precision and accuracy to a minimum concentration of 0.050 micrograms ml-1 in human plasma. It is also simple and convenient, with no observable matrix interferences.
Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav
2016-06-30
Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Advances in bioanalytical techniques to measure steroid hormones in serum.
French, Deborah
2016-06-01
Steroid hormones are measured clinically to determine if a patient has a pathological process occurring in the adrenal gland, or other hormone responsive organs. They are very similar in structure making them analytically challenging to measure. Additionally, these hormones have vast concentration differences in human serum adding to the measurement complexity. GC-MS was the gold standard methodology used to measure steroid hormones clinically, followed by radioimmunoassay, but that was replaced by immunoassay due to ease of use. LC-MS/MS has now become a popular alternative owing to simplified sample preparation than for GC-MS and increased specificity and sensitivity over immunoassay. This review will discuss these methodologies and some new developments that could simplify and improve steroid hormone analysis in serum.
Bräunig, Jennifer; Tang, Janet Y M; Warne, Michael St J; Escher, Beate I
2016-08-01
In sediments several binding phases dictate the fate and bioavailability of organic contaminants. Black carbon (BC) has a high sorptive capacity for organic contaminants and can limit their bioavailability, while the fraction bound to organic carbon (OC) is considered to be readily desorbable and bioavailable. We investigated the bioavailability and mixture toxicity of sediment-associated contaminants by combining different extraction techniques with in vitro bioanalytical tools. Sediments from a harbour with high fraction of BC, and sediments from remote, agricultural and urban areas with lower BC were treated with exhaustive solvent extraction, Tenax extraction and passive sampling to estimate total, bioaccessible and bioavailable fractions, respectively. The extracts were characterized with cell-based bioassays that measure dioxin-like activity (AhR-CAFLUX) and the adaptive stress response to oxidative stress (AREc32). Resulting bioanalytical equivalents, which are effect-scaled concentrations, were applied in an effect-balance model, consistent with a mass balance-partitioning model for single chemicals. Sediments containing BC had most of the bioactivity associated to the BC fraction, while the OC fraction played a role for sediments with lower BC. As effect-based sediment-water distribution ratios demonstrated, most of the bioactivity in the AhR-CAFLUX was attributable to hydrophobic chemicals while more hydrophilic chemicals activated AREc32, even though bioanalytical equivalents in the aqueous phase remained negligible. This approach can be used to understand the fate and effects of mixtures of diverse organic contaminants in sediments that would not be possible if single chemicals were targeted by chemical analysis; and make informed risk-based decisions concerning the management of contaminated sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie
2013-12-15
Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO. Copyright © 2013 Elsevier B.V. All rights reserved.
Benitex, Yulia; McNaney, Colleen A; Luchetti, David; Schaeffer, Eric; Olah, Timothy V; Morgan, Daniel G; Drexler, Dieter M
2013-08-30
Research on disorders of the central nervous system (CNS) has shown that an imbalance in the levels of specific endogenous neurotransmitters may underlie certain CNS diseases. These alterations in neurotransmitter levels may provide insight into pathophysiology, but can also serve as disease and pharmacodynamic biomarkers. To measure these potential biomarkers in vivo, the relevant sample matrix is cerebrospinal fluid (CSF), which is in equilibrium with the brain's interstitial fluid and circulates through the ventricular system of the brain and spinal cord. Accurate analysis of these potential biomarkers can be challenging due to low CSF sample volume, low analyte levels, and potential interferences from other endogenous compounds. A protocol has been established for effective method development of bioanalytical assays for endogenous compounds in CSF. Database searches and standard-addition experiments are employed to qualify sample preparation and specificity of the detection thus evaluating accuracy and precision. This protocol was applied to the study of the histaminergic neurotransmitter system and the analysis of histamine and its metabolite 1-methylhistamine in rat CSF. The protocol resulted in a specific and sensitive novel method utilizing pre-column derivatization ultra high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS), which is also capable of separating an endogenous interfering compound, identified as taurine, from the analytes of interest. Copyright © 2013 John Wiley & Sons, Ltd.
Sun, Li; Li, Hankun; Willson, Kenneth; Breidinger, Sheila; Rizk, Matthew L; Wenning, Larissa; Woolf, Eric J
2012-10-16
HIV-1 integrase strand transfer inhibitors are an important class of compounds targeted for the treatment of HIV-1 infection. Microdosing has emerged as an attractive tool to assist in drug candidate screening for clinical development, but necessitates extremely sensitive bioanalytical assays, typically in the pg/mL concentration range. Currently, accelerator mass spectrometry is the predominant tool for microdosing support, which requires a specialized facility and synthesis of radiolabeled compounds. There have been few studies attempted to comprehensively assess a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach in the context of microdosing applications. Herein, we describe the development of automated LC-MS/MS methods to quantify five integrase inhibitors in plasma with the limits of quantification at 1 pg/mL for raltegravir and 2 pg/mL for four proprietary compounds. The assays involved double extractions followed by UPLC coupled with negative ion electrospray MS/MS analysis. All methods were fully validated to the rigor of regulated bioanalysis requirements, with intraday precision between 1.20 and 14.1% and accuracy between 93.8 and 107% at the standard curve concentration range. These methods were successfully applied to a human microdose study and demonstrated to be accurate, reproducible, and cost-effective. Results of the study indicate that raltegravir displayed linear pharmacokinetics between a microdose and a pharmacologically active dose.
Bhattarai, Jay K.; Sharma, Abeera; Fujikawa, Kohki; Demchenko, Alexei V.; Stine, Keith J.
2014-01-01
Localized surface plasmon resonance (LSPR) spectroscopy is a label-free chemical and biological molecular sensing technique whose sensitivity depends upon development of nanostructured transducers. Herein, we report an electrodeposition method for fabricating nanostructured gold films (NGFs) that can be used as transducers in LSPR spectroscopy. The NGF was prepared by electrodepositing gold from potassium dicyanoaurate solution onto a flat gold surface using two sequential controlled potential steps. Imaging by scanning electron microscopy reveals a morphology consisting of randomly configured block-like nanostructures. The bulk refractive index sensitivity of the prepared NGF is 100 ± 2 nm RIU−1 and the initial peak in the reflectance spectrum is at 518 ± 1 nm under N2(g). The figure of merit is 1.7. In addition, we have studied the interaction between carbohydrate (mannose) and lectin (Concanavalin A) on the NGF surface using LSPR spectroscopy by measuring the interaction of 8-mercaptooctyl-α-D-mannopyranoside (αMan-C8-SH) with Concanavalin A by first immobilizing αMan-C8-SH in mixed SAMs with 3,6-dioxa-8-mercaptooctanol (TEG-SH) on the NGF surface. The interaction of Con A with the mixed SAMs is confirmed using electrochemical impedance spectroscopy. Finally, the NGF surface was regenerated to its original sensitivity by removing the SAM and the bound biomolecules. The results from these experiments contribute toward the development of inexpensive LSPR based sensors that could be useful for studying glycan–protein interactions and other bioanalytical purposes. PMID:25442712
Zweigenbaum, J; Henion, J
2000-06-01
The high-throughput determination of small molecules in biological matrixes has become an important part of drug discovery. This work shows that increased throughput LC/MS/MS techniques can be used for the analysis of selected estrogen receptor modulators in human plasma where more than 2000 samples may be analyzed in a 24-h period. The compounds used to demonstrate the high-throughput methodology include tamoxifen, raloxifene, 4-hydroxytamoxifen, nafoxidine, and idoxifene. Tamoxifen and raloxifene are used in both breast cancer therapy and osteoporosis and have shown prophylactic potential for the reduction of the risk of breast cancer. The described strategy provides LC/MS/MS separation and quantitation for each of the five test articles in control human plasma. The method includes sample preparation employing liquid-liquid extraction in the 96-well format, an LC separation of the five compounds in less than 30 s, and selected reaction monitoring detection from low nano- to microgram per milliter levels. Precision and accuracy are determined where each 96-well plate is considered a typical "tray" having calibration standards and quality control (QC) samples dispersed through each plate. A concept is introduced where 24 96-well plates analyzed in 1 day is considered a "grand tray", and the method is cross-validated with standards placed only at the beginning of the first plate and the end of the last plate. Using idoxifene-d5 as an internal standard, the results obtained for idoxifene and tamoxifen satisfy current bioanalytical method validation criteria on two separate days where 2112 and 2304 samples were run, respectively. Method validation included 24-h autosampler stability and one freeze-thaw cycle stability for the extracts. Idoxifene showed acceptable results with accuracy ranging from 0.3% for the high quality control (QC) to 15.4% for the low QC and precision of 3.6%-13.9% relative standard deviation. Tamoxifen showed accuracy ranging from 1.6% to 13.8% and precision from 7.8% to 15.2%. The linear dynamic range for these compounds was 3 orders of magnitude. The limit of quantification was 5 and 50 ng/ mL for tamoxifen and idoxifene, respectively. The other compounds in this study in general satisfy the more relaxed bioanalytical acceptance criteria for modern drug discovery. It is suggested that the quantification levels reported in this high-throughput analysis example are adequate for many drug discovery and related early pharmaceutical studies.
Di Paolo, Carolina; Ottermanns, Richard; Keiter, Steffen; Ait-Aissa, Selim; Bluhm, Kerstin; Brack, Werner; Breitholtz, Magnus; Buchinger, Sebastian; Carere, Mario; Chalon, Carole; Cousin, Xavier; Dulio, Valeria; Escher, Beate I; Hamers, Timo; Hilscherová, Klára; Jarque, Sergio; Jonas, Adam; Maillot-Marechal, Emmanuelle; Marneffe, Yves; Nguyen, Mai Thao; Pandard, Pascal; Schifferli, Andrea; Schulze, Tobias; Seidensticker, Sven; Seiler, Thomas-Benjamin; Tang, Janet; van der Oost, Ron; Vermeirssen, Etienne; Zounková, Radka; Zwart, Nick; Hollert, Henner
2016-11-01
Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in chemical and waste assessments, and stakeholders from the science-police interface have recommended their integration in regulatory water quality monitoring. Still, there is a need to address bioassay suitability to evaluate water samples containing emerging pollutants, which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories following their own protocols, would produce comparable results when applied to evaluate blinded samples consisting of a pristine water extract spiked with four emerging pollutants as single chemicals or mixtures, i.e. triclosan, acridine, 17α-ethinylestradiol (EE2) and 3-nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery presented complementary sensitivity and specificity to evaluate the different blinded water extract spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae > daphnids > fish) and acridine (fish > daphnids > algae) spikes, confirming the complementary role of the three taxa for water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the respective mechanism-specific effects of spikes even when non-specific toxicity occurred in mixture. For estrogenicity, although differences were observed between assays and models, EE2 spike relative induction EC 50 values were comparable to the literature, and E2/EE2 equivalency factors reliably reflected the sample content. In the Ames, strong revertant induction occurred following 3-NBA spike incubation with the TA98 strain, which was of lower magnitude after metabolic transformation and when compared to TA100. Differences in experimental protocols, model organisms, and data analysis can be sources of variation, indicating that respective harmonized standard procedures should be followed when implementing bioassays in water monitoring. Together with other ongoing activities for the validation of a basic bioassay battery, the present study is an important step towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.
Geißler, Daniel; Hildebrandt, Niko
2016-07-01
The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics. Graphical Abstract Quantum dots (QDs) can be applied as donors and/or acceptors for Förster resonance energy transfer- (FRET-) based biosensing for multiplexed and sensitive diagnostics in various assay formats.
Cellphone-based devices for bioanalytical sciences
Vashist, Sandeep Kumar; Mudanyali, Onur; Schneider, E.Marion; Zengerle, Roland; Ozcan, Aydogan
2014-01-01
During the last decade, there has been a rapidly growing trend toward the use of cellphone-based devices (CBDs) in bioanalytical sciences. For example, they have been used for digital microscopy, cytometry, read-out of immunoassays and lateral flow tests, electrochemical and surface plasmon resonance based bio-sensing, colorimetric detection and healthcare monitoring, among others. Cellphone can be considered as one of the most prospective devices for the development of next-generation point-of-care (POC) diagnostics platforms, enabling mobile healthcare delivery and personalized medicine. With more than 6.5 billion cellphone subscribers worldwide and approximately 1.6 billion new devices being sold each year, cellphone technology is also creating new business and research opportunities. Many cellphone-based devices, such as those targeted for diabetic management, weight management, monitoring of blood pressure and pulse rate, have already become commercially-available in recent years. In addition to such monitoring platforms, several other CBDs are also being introduced, targeting e.g., microscopic imaging and sensing applications for medical diagnostics using novel computational algorithms and components already embedded on cellphones. This manuscript aims to review these recent developments in CBDs for bioanalytical sciences along with some of the challenges involved and the future opportunities. PMID:24287630
Cheruvu, Hanumanth Srikanth; Yadav, Navneet K; Valicherla, Guru R; Arya, Rakesh K; Hussain, Zakir; Sharma, Chetan; Arya, Kamal R; Singh, Rama K; Datta, Dipak; Gayen, Jiaur R
2018-04-01
Eclipta alba (Bhringraj) in ayurveda has been widely used as a traditional medicine for its multi-therapeutic properties for ages. Luteolin (LTL), wedelolactone (WDL) and apigenin (APG) are the three main bioactive phytochemicals present in Eclipta alba extract. However there was a lack of sensitive bioanalytical method for the pharmacokinetics of these free compounds in plasma which majorly contributes for their activities after oral administration of Eclipta alba. The present study aims to develop a sensitive, rapid and reliable liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous estimation of mice plasma concentrations of LTL, WDL and APG using quercetin as an internal standard for the pharmacokinetic analysis. Analytes were separated on Phenomenex Luna C18 (150 × 4.6 mm, 3.0 μm) column with mobile phase containing methanol: acetonitrile (90: 10, v/v) and 0.1% formic acid in 10 mM ammonium formate buffer in the ratio of 70: 30 (v/v) in isocratic mode. Liquid-liquid extraction was optimized using Hansen solubility parameters and diethyl ether finalized as an extraction solvent for the recovery ranging from 61 to 76% for all analytes in mice plasma. The validated method has an accuracy and precision over the linearity range of 0.1-200 ng/mL with a correlation coefficient (r 2 ) of ≥0.997. The intra and inter-day assay accuracy was between 98.17 and 107% and 95.83-107.89% respectively and the intra and inter day assay precision ranged from 0.37-6.05% and 1.85-10.76%, respectively for all the analytes. This validated method can be used for future clinical investigation studies of Eclipta alba extracts. Copyright © 2018 Elsevier B.V. All rights reserved.
Abu-Awwad, Ahmad; Arafat, Tawfiq; Schmitz, Oliver J
2016-09-01
Nicotine (Nic) distribution in human fluids and tissues has a deleterious effect on human health. In addition to its poisoning profile, Nic may contribute to the particular impact of smoking on human reproduction. Although present in seminal fluid, still nobody knows whether nicotine is available in sperm or not. Herein, we developed and validated a new bioanalytical method, for simultaneous determination of Nic, cotinine (Cot), and nicotine N'-oxide (Nox) in human plasma, semen, and sperm by LC-ESI-orbitrap-MS. Blood and semen samples were collected from 12 healthy smoking volunteers in this study. Sperm bodies were then separated quantitatively from 1 mL of semen samples by centrifugation. The developed method was fully validated for plasma following European and American guidelines for bioanalytical method validation, and partial validation was applied to semen analysis. Plasma, semen, and sperm samples were treated by trichloroacetic acid solution for protein direct precipitation in single extraction step. The established calibration range for Nic and Nox in plasma and semen was linear between 5 and 250 ng/mL, and for Cot between 10 and 500 ng/mL. Nic and Cot were detected in human sperm at concentrations as high as in plasma. In addition, Nox was present in semen and sperm but not in plasma. Graphical abstract Nicotine correlation between plasma and semen a; Nicotine correlation between semen and sperm c; Cotinine correlation between plasma and semen b; Cotinine correlation between semen and sperm d.
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
Objective(s): The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. Materials and Methods: The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. Results: The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 – 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. Conclusion: The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study. PMID:23638292
Wang, Haidong; Yang, Guangsheng; Zhou, Jinyu; Pei, Jiang; Zhang, Qiangfeng; Song, Xingfa; Sun, Zengxian
2016-08-01
In this study, a simple and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for quantitation of droxidopa in human plasma for the first time. A simple plasma protein precipitation method using methanol containing 3% formic acid was selected, and the separation was achieved by an Acquity UPLC™ BEH Amide column (2.1mm×50mm, 1.7μm) with a gradient elution using acetonitrile, ammonium formate buffer and formic acid as mobile phase. The detection of droxidopa and benserazide (internal standard, IS) was performed using positive-ion electrospray tandem mass spectrometry via multiple reaction monitoring (MRM). The precursor-to-product ion transitions m/z 214.2→m/z 152.0 for droxidopa, and m/z 258.1→m/z 139.1 for IS were used for quantification. A lower limit of quantification of 5.00ng/mL was achieved and the linear curve range was 5.00-4000ng/mL using a weighted (1/x(2)) linear regression model. Intra-assay and inter-assay precision was less than 10.2%, and the accuracy ranged from 0.1% to 2.1%. Stability, recovery and matrix effects were within the acceptance criteria recommended by the regulatory bioanalytical guidelines. The method was successfully applied to a pharmacokinetic study of droxidopa in healthy Chinese volunteers. Copyright © 2016. Published by Elsevier B.V.
Bystrowska, Beata; Smaga, Irena; Tyszka-Czochara, Małgorzata; Filip, Małgorzata
2014-05-01
In recent years, a potential participation of endocannabinoids (eCBs) and related endocannabinoid-like molecules, including N-acylethanolamines (NAEs), in the physiological and pathophysiological processes has been highlighted, whereas measurement of their levels still remains difficult. The aim of this study was to develop a bioanalytical method that would enable researchers to simultaneously determine quantitatively eCBs (anandamide - AEA and 2-arachidonoylglycerol - 2-AG) and NAEs (oleoylethanolamide or oleoylethanolamine - OEA, palmitoylethanolamide or palmitoylethanolamine - PEA and linoleoylethanolamide or linoleoylethanolamine - LEA) in the rat brain. The analytical problems with analysis and possible solutions have been also shown. The methodology for quantifying eCBs/NAEs by means of a sensitive and selective liquid chromatography tandem mass spectrometry (LC-MS/MS) with electrospray positive ionization and multiple reaction monitoring (MRM) mode was developed and validated. Analytical problems with analyzed compounds were estimated. Reasonably high precision and accuracy of the method were demonstrated in the validation process. The method is linear up to 200 ng/g for AEA, OEA, PEA and LEA and up to 100 μg/g for 2-AG, while the quantification limit reaches 0.2 ng/g and 0.8 μg/g, respectively. Simplicity and rapidity of the assay allows analyzing many samples on a routine basis. This article presents the new procedure applied to the analysis of brain tissues.
Gounder, Murugesan K; Lin, Hongxia; Stein, Mark; Goodin, Susan; Bertino, Joseph R; Kong, Ah-Ng Tony; DiPaola, Robert S
2012-05-01
2-Deoxyglucose (2-DG), an analog of glucose, is widely used to interfere with glycolysis in tumor cells and studied as a therapeutic approach in clinical trials. To evaluate the pharmacokinetics of 2-DG, we describe the development and validation of a sensitive HPLC fluorescent method for the quantitation of 2-DG in plasma. Plasma samples were deproteinized with methanol and the supernatant was dried at 45°C. The residues were dissolved in methanolic sodium acetate-boric acid solution. 2-DG and other monosaccharides were derivatized to 2-aminobenzoic acid derivatives in a single step in the presence of sodium cyanoborohydride at 80°C for 45 min. The analytes were separated on a YMC ODS C₁₈ reversed-phase column using gradient elution. The excitation and emission wavelengths were set at 360 and 425 nm. The 2-DG calibration curves were linear over the range of 0.63-300 µg/mL with a limit of detection of 0.5 µg/mL. The assay provided satisfactory intra-day and inter-day precision with RSD less than 9.8%, and the accuracy ranged from 86.8 to 110.0%. The HPLC method is reproducible and suitable for the quantitation of 2-DG in plasma. The method was successfully applied to characterize the pharmacokinetics profile of 2-DG in patients with advanced solid tumors. Copyright © 2011 John Wiley & Sons, Ltd.
Metaxalone estimation in biological matrix using high-throughput LC-MS/MS bioanalytical method.
Goswami, Dipanjan; Saha, Arabinda; Gurule, Sanjay; Khuroo, Arshad; Monif, Tausif; Vats, Poonam
2012-08-01
Metaxalone is a skeletal muscle relaxant, an approved drug for pain relief. Published bioanalytical methods lacked detailed stability evaluation in blood and plasma. An accurate, precise, high-throughput tandem mass spectroscopic method has been developed and validated. Following solid phase extraction (SPE), metaxalone and the internal standard metaxalone-d(3) were extracted from an aliquot of 200 μL of human plasma. Chromatographic separation achieved on an Ascentis Express C18 column (50 mm × 4.6 mm i.d., 2.7 μm particle size) with mobile phase is a mixture of 10mM ammonium acetate buffer (pH 4.5)-methanol-acetonitrile (20:50:30, v/v/v), at an isocratic flow rate of 0.7 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via electrospray ionization (ESI) source. The mass transitions of metaxalone and metaxalone-d(3) were m/z 222.3→161.2 and m/z 225.3→163.3, respectively. The linear calibration curves were obtained in the concentration range of 0.105-10.081 μg/mL (r(2)≥0.99) with a lower limit of quantification (LLOQ) of 0.105 μg/mL. The intra- and inter-day precisions and relative error were all within 6%. Despite achieving high mean recovery (>78%), no interference peaks or matrix effects were observed. Detailed stability exercises including drug stability in blood, hemolyzed, lipemic and normal plasma were conducted to extend the method applicability in vast majority of clinical studies using 800 mg metaxalone extended release oral dosage form. Copyright © 2012 Elsevier B.V. All rights reserved.
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 - 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study.
Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A
2008-01-01
Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.
Graça, J S; de Oliveira, R F; de Moraes, M L; Ferreira, M
2014-04-01
An important step in several bioanalytical applications is the immobilization of biomolecules. Accordingly, this procedure must be carefully chosen to preserve their biological structure and fully explore their properties. For this purpose, we combined the versatility of the layer-by-layer (LbL) method for the immobilization of biomolecules with the protective behavior of liposome-encapsulated systems to fabricate a novel amperometric glucose biosensor. To obtain the biosensing unit, an LbL film of the H2O2 catalyst polypeptide microperoxidase-11 (MP-11) was assembled onto an indium-tin oxide (ITO) electrode followed by the deposition of a liposome-encapsulated glucose oxidase (GOx) layer. The biosensor response toward glucose detection showed a sensitivity of 0.91±0.09 (μA/cm2)/mM and a limit of detection (LOD) of 8.6±1.1 μM, demonstrating an improved performance compared to similar biosensors with a single phospholipid-liposome or even containing a non-encapsulated GOx layer. Finally, glucose detection was also performed in a zero-lactose milk sample to demonstrate the potential of the biosensor for food analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Recent advances in detection of AGEs: Immunochemical, bioanalytical and biochemical approaches.
Ashraf, Jalaluddin Mohd; Ahmad, Saheem; Choi, Inho; Ahmad, Nashrah; Farhan, Mohd; Tatyana, Godovikova; Shahab, Uzma
2015-12-01
Advanced glycation end products (AGEs) are a cohort of heterogeneous compounds that are formed after the nonenzymatic glycation of proteins, lipids and nucleic acids. Accumulation of AGEs in the body is implicated in various pathophysiological conditions like diabetes, cardiovascular diseases and atherosclerosis. Numerous studies have reported the connecting link between AGEs and the various complications associated with diseases. Hence, detection and measurement of AGEs becomes centrally important to understand and manage the menace created by AGEs inside the body. In recent years, an increasing number of immunotechniques as well as bioanalytical techniques have been developed to efficiently measure the levels of AGEs, but most of them are still far away from being clinically consistent, as relative disparity and ambiguity masks their standardization. This article is designed to critically review the recent advances and the emerging techniques for detection of AGEs. It is an attempt to summarize the major techniques that exist currently for the detection of AGEs both qualitatively and quantitatively. This review primarily focuses on the detection and quantification of AGEs which are formed in vivo. Immunochemical approach though costly but most effective and accurate method to measure the level of AGEs. Literature review suggests that detection of autoantibody targeting AGEs is a promising way that can be utilized for detection of AGEs. Future research efforts should be dedicated to develop this method in order to push forward the clinical applications of detection of AGEs. © 2015 International Union of Biochemistry and Molecular Biology.
Cismesia, Adam P.; Bailey, Laura S.; Bell, Matthew R.; Tesler, Larry F.; Polfer, Nicolas C.
2016-01-01
The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors? opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation. PMID:26975370
Kaewsaneha, Chariya; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid
2015-10-28
Fluorescent-magnetic particles (FMPs) play important roles in modern materials, especially as nanoscale devices in the biomedical field. The interesting features of FMPs are attributed to their dual detection ability, i.e., fluorescent and magnetic modes. Functionalization of FMPs can be performed using several types of polymers, allowing their use in various applications. The synergistic potentials for unique multifunctional, multilevel targeting nanoscale devices as well as combination therapies make them particularly attractive for biomedical applications. However, the synthesis of FMPs is challenging and must be further developed. In this review article, we summarized the most recent representative works on polymer-based FMP systems that have been applied particularly in the bioanalytical field.
de Grazia, Ugo; D'Urso, Annachiara; Ranzato, Federica; De Riva, Valentina; Contarato, Giorgia; Billo, Giuseppe; Perini, Francesco; Galloni, Elisabetta
2018-05-09
Perampanel is a novel non-competitive selective antagonist at the postsynaptic ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) glutamate receptor, approved as an adjunctive agent for the treatment of partial-onset seizure with or without secondary generalization and for primary generalized tonic-clonic seizure in patients with epilepsy who are at least 12 years of age. Limited information is available about the clinical utility of therapeutic drug monitoring of perampanel and therapeutic ranges are so far not established. Therefore, perampanel titration should be performed especially in case of insufficient success of the drug. The authors developed a selective and sensitive LC-MS/MS assay to monitor perampanel concentrations in plasma which was compared to a commercially available HPLC kit with fluorescent detection. Perampanel and the internal standard were extracted from plasma samples by a simple protein precipitation. The method allows the simultaneous quantification of perampanel and several other antiepileptic drugs (AEDs). Data were evaluated according to EMA guidelines for bioanalytical method validation. Extraction recovery of perampanel from human plasma was consistently above 98%. No matrix effect was found. Analytical interferences by other AEDs were not observed. The method was linear in the range from 2.5 to 2800 ng/ml. Intra- and inter-assay reproducibility analyses demonstrated accuracy and precision within acceptance criteria. Data collected from 95 patients, given perampanel as their maintenance antiepileptic therapy, showed a very strong correlation between the two methods. The assay allows for highly sensitive and selective quantification of perampanel and concomitant antiepileptic drugs in patient plasma samples and can be easily implemented in clinical settings. Our findings are in agreement with previously published data in patients comedicated with enzyme inducer AEDs, but seem to indicate a possible interaction in patients treated with the enzyme inhibitor drug valproic acid (VPA).
Gray, Nicola; Lewis, Matthew R; Plumb, Robert S; Wilson, Ian D; Nicholson, Jeremy K
2015-06-05
A new generation of metabolic phenotyping centers are being created to meet the increasing demands of personalized healthcare, and this has resulted in a major requirement for economical, high-throughput metabonomic analysis by liquid chromatography-mass spectrometry (LC-MS). Meeting these new demands represents an emerging bioanalytical problem that must be solved if metabolic phenotyping is to be successfully applied to large clinical and epidemiological sample sets. Ultraperformance (UP)LC-MS-based metabolic phenotyping, based on 2.1 mm i.d. LC columns, enables comprehensive metabolic phenotyping but, when employed for the analysis of thousands of samples, results in high solvent usage. The use of UPLC-MS employing 1 mm i.d. columns for metabolic phenotyping rather than the conventional 2.1 mm i.d. methodology shows that the resulting optimized microbore method provided equivalent or superior performance in terms of peak capacity, sensitivity, and robustness. On average, we also observed, when using the microbore scale separation, an increase in response of 2-3 fold over that obtained with the standard 2.1 mm scale method. When applied to the analysis of human urine, the 1 mm scale method showed no decline in performance over the course of 1000 analyses, illustrating that microbore UPLC-MS represents a viable alternative to conventional 2.1 mm i.d. formats for routine large-scale metabolic profiling studies while also resulting in a 75% reduction in solvent usage. The modest increase in sensitivity provided by this methodology also offers the potential to either reduce sample consumption or increase the number of metabolite features detected with confidence due to the increased signal-to-noise ratios obtained. Implementation of this miniaturized UPLC-MS method of metabolic phenotyping results in clear analytical, economic, and environmental benefits for large-scale metabolic profiling studies with similar or improved analytical performance compared to conventional UPLC-MS.
Nanostructure-enhanced surface plasmon resonance imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Špašková, Barbora; Lynn, Nicholas S.; Slabý, Jiří Bocková, Markéta; Homola, Jiří
2017-06-01
There remains a need for the multiplexed detection of biomolecules at extremely low concentrations in fields of medical diagnostics, food safety, and security. Surface plasmon resonance imaging is an established biosensing approach in which the measurement of the intensity of light across a sensor chip is correlated with the amount of target biomolecules captured by the respective areas on the chip. In this work, we present a new approach for this method allowing for enhanced bioanalytical performance via the introduction of nanostructured sensing chip and polarization contrast measurement, which enable the exploitation of both amplitude and phase properties of plasmonic resonances on the nanostructures. Here we will discuss a complex theoretical analysis of the sensor performance, whereby we investigate aspects related to both the optical performance as well as the transport of the analyte molecules to the functionalized surfaces. This analysis accounts for the geometrical parameters of the nanostructured sensing surface, the properties of functional coatings, and parameters related to the detection assay. Based on the results of the theoretical analysis, we fabricated sensing chips comprised of arrays of gold nanoparticles (by electron-beam lithography), which were modified by a biofunctional coating to allow for the selective capturing of the target biomolecules in the regions with high sensitivity. In addition, we developed a compact optical reader with an integrated microfluidic cell, allowing for the measurement from 50 independent sensing channels. The performance of this biosensor is demonstrated through the sensitive detection of short oligonucleotides down to the low picomolar level.
Hroch, Miloš; Mičuda, Stanislav; Cermanová, Jolana; Chládek, Jaroslav; Tomšík, Pavel
2013-10-01
Boldine belongs to the group of aporphine alkaloids isolated from Boldo tree. In contrast with numerous reports on the pharmacological effects of boldine, the data about its pharmacokinetics and biotransformation are scarce. No validated bioanalytical method of sufficient sensitivity has so far been described in the literature which could be used for quantification of boldine in various body fluids collected in pharmacokinetic studies. This work presents, for the first time, the assay for boldine in the plasma, bile and urine of rats. It includes liquid-liquid extraction/back-extraction of boldine, its chromatographic separation and sensitive fluorescence detection. Separation was carried out on a pentafluorophenyl core-shell column (Kinetex PFP, 150×3mm, 2.6μm) in gradient elution mode with solvent system consisting of an acetonitrile-ammonium formate buffer (5mM, pH=3.8). Fluorimetric detection (λEX=320nm, λEM=370nm) was used for quantitative work. Validation according to the EMEA guideline proved the assay LLOQ (0.1μmolL(-1)), linearity over a broad range of 0.1-50μmolL(-1), precision (intra- and inter-day CVs less than 4.5% and 6.1%, respectively) and accuracy (relative errors between -5.8% and 4.8%). In a pilot pharmacokinetic experiment, the concentration-time profiles were described for boldine (single i.v. bolus 50mgkg(-1)) in plasma and bile and cumulative excretion in urine was investigated. The major metabolites identified by means of LC-MS(n) were boldine-O-glucuronide, boldine-O-sulphate and disulphate, boldine-O-glucuronide-O-sulphate and N-demethyl-boldine-O-sulphate. Copyright © 2013 Elsevier B.V. All rights reserved.
A bioanalytical platform for simultaneous detection and quantification of biological toxins.
Weingart, Oliver G; Gao, Hui; Crevoisier, François; Heitger, Friedrich; Avondet, Marc-André; Sigrist, Hans
2012-01-01
Prevalent incidents support the notion that toxins, produced by bacteria, fungi, plants or animals are increasingly responsible for food poisoning or intoxication. Owing to their high toxicity some toxins are also regarded as potential biological warfare agents. Accordingly, control, detection and neutralization of toxic substances are a considerable economic burden to food safety, health care and military biodefense. The present contribution describes a new versatile instrument and related procedures for array-based simultaneous detection of bacterial and plant toxins using a bioanalytical platform which combines the specificity of covalently immobilized capture probes with a dedicated instrumentation and immuno-based microarray analytics. The bioanalytical platform consists of a microstructured polymer slide serving both as support of printed arrays and as incubation chamber. The platform further includes an easy-to-operate instrument for simultaneous slide processing at selectable assay temperature. Cy5 coupled streptavidin is used as unifying fluorescent tracer. Fluorescence image analysis and signal quantitation allow determination of the toxin's identity and concentration. The system's performance has been investigated by immunological detection of Botulinum Neurotoxin type A (BoNT/A), Staphylococcal enterotoxin B (SEB), and the plant toxin ricin. Toxins were detectable at levels as low as 0.5-1 ng · mL(-1) in buffer or in raw milk.
A Bioanalytical Platform for Simultaneous Detection and Quantification of Biological Toxins
Weingart, Oliver G.; Gao, Hui; Crevoisier, François; Heitger, Friedrich; Avondet, Marc-André; Sigrist, Hans
2012-01-01
Prevalent incidents support the notion that toxins, produced by bacteria, fungi, plants or animals are increasingly responsible for food poisoning or intoxication. Owing to their high toxicity some toxins are also regarded as potential biological warfare agents. Accordingly, control, detection and neutralization of toxic substances are a considerable economic burden to food safety, health care and military biodefense. The present contribution describes a new versatile instrument and related procedures for array-based simultaneous detection of bacterial and plant toxins using a bioanalytical platform which combines the specificity of covalently immobilized capture probes with a dedicated instrumentation and immuno-based microarray analytics. The bioanalytical platform consists of a microstructured polymer slide serving both as support of printed arrays and as incubation chamber. The platform further includes an easy-to-operate instrument for simultaneous slide processing at selectable assay temperature. Cy5 coupled streptavidin is used as unifying fluorescent tracer. Fluorescence image analysis and signal quantitation allow determination of the toxin’s identity and concentration. The system’s performance has been investigated by immunological detection of Botulinum Neurotoxin type A (BoNT/A), Staphylococcal enterotoxin B (SEB), and the plant toxin ricin. Toxins were detectable at levels as low as 0.5–1 ng·mL−1 in buffer or in raw milk. PMID:22438766
A new LC-MS/MS bioanalytical method for perindopril and perindoprilat in human plasma and milk.
Lwin, Ei Mon Phyo; Gerber, Cobus; Song, Yunmei; Leggett, Catherine; Ritchie, Usha; Turner, Sean; Garg, Sanjay
2017-10-01
A first of its kind, simple, rapid, and sensitive liquid chromatography mass spectrometry (LC-MS/MS) method was developed and validated for quantification of perindopril and perindoprilat in both human plasma and breast milk. The analytes and internal standards (phenazone and acetyl salicylic acid) were extracted from biological matrices by protein precipitation. A Phenomenex® C-18 column was used to provide an appropriate chromatographic separation of the analytes, followed by detection with tandem mass spectrometry. Gradient chromatographic and mass spectrometric detection conditions with mobile phases (A: 5% methanol + 0.1% formic acid in water v/v, and B: 95% methanol + 0.1% formic acid in water v/v) were developed to achieve a LOQ of 0.5 ng/mL in both human plasma and milk. The method was suitable of evaluating clinical samples. The mass transition was followed as m/z 369.10/172.00 for perindopril, m/z 339.00/168.10 for perindoprilat, m/z 188.90/55.95 for phenazone, and m/z 179.04/137.02 for acetyl salicylic acid. The developed method was optimized and validated with a linear range of 0.1-200 ng/mL (r 2 = better than 0.99 for both perindopril and perindoprilat). The precision and accuracy values were within 15% CV. The overall recovery of the analytes was 80-110%. The method has good specificity and repeatability. Stability studies were conducted in both human plasma and bovine milk for up to 3 months, at the storage conditions of 25, 4, and -80 °C.
Balla, Anusha; Cho, Kwan Hyung; Kim, Yu Chul; Maeng, Han-Joo
2018-03-30
A simple, sensitive, and reliable reversed-phase, Ultra-High-Pressure Liquid Chromatography (UHPLC) coupled with a Diode Array Detector (DAD) method for the simultaneous determination of Procainamide (PA) and its major metabolite, N -acetylprocainamide (NAPA), in rat plasma was developed and validated. A simple deproteinization method with methanol was applied to the rat plasma samples, which were analyzed using UHPLC equipped with DAD at 280 nm, and a Synergi™ 4 µm polar, reversed-phase column using 1% acetic acid (pH 5.5) and methanol (76:24, v / v ) as eluent in isocratic mode at a flow rate 0.2 mL/min. The method showed good linearity ( r ² > 0.998) over the concentration range of 20-100,000 and 20-10,000 ng/mL for PA and NAPA, respectively. Intra- and inter-day accuracies ranged from 97.7 to 110.9%, and precision was <10.5% for PA and 99.7 to 109.2 and <10.5%, respectively, for NAPA. The lower limit of quantification was 20 ng/mL for both compounds. This is the first report of the UHPLC-DAD bioanalytical method for simultaneous measurement of PA and NAPA. The most obvious advantage of this method over previously reported HPLC methods is that it requires small sample and injection volumes, with a straightforward, one-step sample preparation. It overcomes the limitations of previous methods, which use large sample volume and complex sample preparation. The devised method was successfully applied to the quantification of PA and NAPA after an intravenous bolus administration of 10 mg/kg procainamide hydrochloride to rats.
Rehman, Shaheed Ur; Kim, In Sook; Choi, Min Sun; Luo, Zengwei; Yao, Guangming; Xue, Yongbo; Zhang, Yonghui; Yoo, Hye Hyun
2016-02-20
Kinsenoside is a major bioactive constituent isolated from Anoectochilus formosanus and is investigated as an antihyperlipidemic candidate. In this study, a rapid, sensitive, and reliable bioanalytical method was developed for the determination of kinsenoside in rat plasma using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). The plasma sample was pretreated with 1% acetic acid, followed by protein precipitation with acetonitrile:methanol (70:30). Chromatographic separation was performed on a HILIC silica column (2.1mm×100mm, 3μm). The mobile phases consisted of 0.1% acetic acid in distilled water (solvent A) and 0.1% acetic acid in acetonitrile (solvent B). A gradient program was used at a flow rate of 0.2mL/min. For mass spectrometric detection, the multiple reaction monitoring mode was used; the MRM transitions were m/z 265.2→m/z 102.9 for kinsenoside and m/z 163.3→m/z 132.1 for the internal standard (IS) nicotine in the positive ionization mode. A calibration curve was constructed in the range of 2-500ng/mL. The intra- and interday precision and accuracy were within 5%. The HILIC-MS/MS method was specific, accurate, and reproducible and was successfully applied in a pharmacokinetic study of kinsenoside in rats. Copyright © 2015 Elsevier B.V. All rights reserved.
Kohl, Felix J; Montealegre, Cristina; Neusüß, Christian
2016-04-01
CE is becoming more and more important in many fields of bioanalytical chemistry. Besides optical detection, hyphenation to ESI-MS detection is increasingly applied for sensitive identification purposes. Unfortunately, many CE techniques and methods established in research and industry are not compatible to ESI-MS since essential components of the background electrolyte interfere in ES ionization. In order to identify unknown peaks in established CE methods, here, a heart-cut 2D-CE separation system is introduced using a fully isolated mechanical valve with an internal loop of only 20 nL. In this system, the sample is separated using potentially any non-ESI compatible method in the first separation dimension. Subsequently, the portion of interest is cut by the internal sample loop of the valve and reintroduced to the second dimension where the interfering compounds are removed, followed by ESI-MS detection. When comparing the separation efficiency of the system with the valve to a system using a continuous capillary only a slight increase in peak width is observed. Ultraviolet/visible detection is integrated in the first dimension for switching time determination, enabling reproducible cutting of peaks of interest. The feasibility of the system is successfully demonstrated by a 2D analysis of a BSA tryptic digest sample using a nonvolatile (phosphate based) background electrolyte in the first dimension. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Pei; Beck, Wayne D.; Callahan, Patrick M.; Terry, Alvin V.; Bartlett, Michael G.
2016-01-01
Background Attention has been paid to cotinine (COT), one of the major metabolites of nicotine (NIC), for its pro-cognitive effects and potential therapeutic activities against Alzheimer's Disease (AD) and other types of cognitive impairment. In order to facilitate pharmacological and toxicological studies on COT for its pro-cognitive activities, we conducted a pharmacokinetic (PK) study of COT in rats, providing important oral and intravenously (IV) PK information. Methods In this study, plasma samples were obtained up to 48 hours after COT was dosed to rats orally and IV at a dose of 3 mg/kg. Plasma samples were prepared and analyzed using a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) bioanalytical method, providing concentration profiles of COT and metabolites after oral and IV administrations. Results The data were fitted into a one-compartment model and a two-compartment model for the oral and IV groups, respectively, providing important PK information for COT including PK profiles, half-life, clearance and bioavailability. The results suggested fast absorption, slow elimination and high bioavailability of COT in rats. Conclusions Several important facts about the PK properties in rats suggested COT could be a potential pro-cognitive agent. Information about the pharmacokinetics of COT in rats revealed in this study is of great importance for the future studies on COT or potential COT analogues as agents for improving cognition. PMID:25933960
Rezende, Vinícius Marcondes; Rivellis, Ariane Julio; Gomes, Melissa Medrano; Dörr, Felipe Augusto; Novaes, Mafalda Megumi Yoshinaga; Nardinelli, Luciana; Costa, Ariel Lais de Lima; Chamone, Dalton de Alencar Fisher; Bendit, Israel
2013-01-01
Objective The goal of this study was to monitor imatinib mesylate therapeutically in the Tumor Biology Laboratory, Department of Hematology and Hemotherapy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP). A simple and sensitive method to quantify imatinib and its metabolite (CGP74588) in human serum was developed and fully validated in order to monitor treatment compliance. Methods The method used to quantify these compounds in serum included protein precipitation extraction followed by instrumental analysis using high performance liquid chromatography coupled with mass spectrometry. The method was validated for several parameters, including selectivity, precision, accuracy, recovery and linearity. Results The parameters evaluated during the validation stage exhibited satisfactory results based on the Food and Drug Administration and the Brazilian Health Surveillance Agency (ANVISA) guidelines for validating bioanalytical methods. These parameters also showed a linear correlation greater than 0.99 for the concentration range between 0.500 µg/mL and 10.0 µg/mL and a total analysis time of 13 minutes per sample. This study includes results (imatinib serum concentrations) for 308 samples from patients being treated with imatinib mesylate. Conclusion The method developed in this study was successfully validated and is being efficiently used to measure imatinib concentrations in samples from chronic myeloid leukemia patients to check treatment compliance. The imatinib serum levels of patients achieving a major molecular response were significantly higher than those of patients who did not achieve this result. These results are thus consistent with published reports concerning other populations. PMID:23741187
Translating Current Bioanalytical Techniques for Studying Corona Activity.
Wang, Chunming; Wang, Zhenzhen; Dong, Lei
2018-07-01
The recent discovery of the biological corona is revolutionising our understanding of the in vivo behaviour of nanomaterials. Accurate analysis of corona bioactivity is essential for predicting the fate of nanomaterials and thereby improving nanomedicine design. Nevertheless, current biotechniques for protein analysis are not readily adaptable for analysing corona proteins, given that their conformation, activity, and interaction may largely differ from those of the native proteins. Here, we introduce and propose tailor-made modifications to five types of mainstream bioanalytical methodologies. We specifically illustrate how these modifications can translate existing techniques for protein analysis into competent tools for dissecting the composition, bioactivity, and interaction (with both nanomaterials and the tissue) of corona formed on specific nanomaterial surfaces. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bogani, Patrizia; Spiriti, Maria Michela; Lazzarano, Stefano; Arcangeli, Annarosa; Buiatti, Marcello; Minunni, Maria
2011-11-01
The World Anti-Doping Agency fears the use of gene doping to enhance athletic performances. Thus, a bioanalytical approach based on end point PCR for detecting markers' of transgenesis traceability was developed. A few sequences from two different vectors using an animal model were selected and traced in different tissues and at different times. In particular, enhanced green fluorescent protein gene and a construct-specific new marker were targeted in the analysis. To make the developed detection approach open to future routine doping analysis, matrices such as urine and tears as well blood were also tested. This study will have impact in evaluating the vector transgenes traceability for the detection of a gene doping event by non-invasive sampling.
Species-specific susceptibility to cannabis-induced convulsions.
Whalley, Benjamin J; Lin, Hong; Bell, Lynne; Hill, Thomas; Patel, Amesha; Gray, Roy A; Elizabeth Roberts, C; Devinsky, Orrin; Bazelot, Michael; Williams, Claire M; Stephens, Gary J
2018-02-19
Numerous claims are made for cannabis' therapeutic utility upon human seizures, but concerns persist about risks. A potential confounder is the presence of both Δ 9 -tetrahydrocannabinol (THC), variously reported to be pro- and anticonvulsant, and cannabidiol (CBD), widely confirmed as anticonvulsant. Therefore, we investigated effects of prolonged exposure to different THC/CBD cannabis extracts on seizure activity and associated measures of endocannabinoid (eCB) system signalling. Cannabis extract effects on in vivo neurological and behavioural responses, and on bioanalyte levels, were measured in rats and dogs. Extract effects on seizure activity were measured using electroencephalography telemetry in rats. eCB signalling was also investigated using radioligand binding in cannabis extract-treated rats and treatment-naïve rat, mouse, chicken, dog and human tissue. Prolonged exposure to cannabis extracts caused spontaneous, generalized seizures, subserved by epileptiform discharges in rats, but not dogs, and produced higher THC, but lower 11-hydroxy-THC (11-OH-THC) and CBD, plasma concentrations in rats versus dogs. In the same rats, prolonged exposure to cannabis also impaired cannabinoid type 1 receptor (CB 1 receptor)-mediated signalling. Profiling CB 1 receptor expression, basal activity, extent of activation and sensitivity to THC suggested interspecies differences in eCB signalling, being more pronounced in a species that exhibited cannabis extract-induced seizures (rat) than one that did not (dog). Sustained cannabis extract treatment caused differential seizure, behavioural and bioanalyte levels between rats and dogs. Supporting radioligand binding data suggest species differences in eCB signalling. Interspecies variations may have important implications for predicting cannabis-induced convulsions from animal models. © 2018 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Ornatsky, Olga I.; Kinach, Robert; Bandura, Dmitry R.; Lou, Xudong; Tanner, Scott D.; Baranov, Vladimir I.; Nitz, Mark; Winnik, Mitchell A.
2008-01-01
Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping. PMID:19122859
Ray, Chad A; Patel, Vimal; Shih, Judy; Macaraeg, Chris; Wu, Yuling; Thway, Theingi; Ma, Mark; Lee, Jean W; Desilva, Binodh
2009-02-20
Developing a process that generates robust immunoassays that can be used to support studies with tight timelines is a common challenge for bioanalytical laboratories. Design of experiments (DOEs) is a tool that has been used by many industries for the purpose of optimizing processes. The approach is capable of identifying critical factors and their interactions with a minimal number of experiments. The challenge for implementing this tool in the bioanalytical laboratory is to develop a user-friendly approach that scientists can understand and apply. We have successfully addressed these challenges by eliminating the screening design, introducing automation, and applying a simple mathematical approach for the output parameter. A modified central composite design (CCD) was applied to three ligand binding assays. The intra-plate factors selected were coating, detection antibody concentration, and streptavidin-HRP concentrations. The inter-plate factors included incubation times for each step. The objective was to maximize the logS/B (S/B) of the low standard to the blank. The maximum desirable conditions were determined using JMP 7.0. To verify the validity of the predictions, the logS/B prediction was compared against the observed logS/B during pre-study validation experiments. The three assays were optimized using the multi-factorial DOE. The total error for all three methods was less than 20% which indicated method robustness. DOE identified interactions in one of the methods. The model predictions for logS/B were within 25% of the observed pre-study validation values for all methods tested. The comparison between the CCD and hybrid screening design yielded comparable parameter estimates. The user-friendly design enables effective application of multi-factorial DOE to optimize ligand binding assays for therapeutic proteins. The approach allows for identification of interactions between factors, consistency in optimal parameter determination, and reduced method development time.
Bioimaging of cells and tissues using accelerator-based sources.
Petibois, Cyril; Cestelli Guidi, Mariangela
2008-07-01
A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (< 1 mum) or tissue (<1 mm) analyses, (2) a temporal resolution to follow molecular dynamics, and (3) a sensitivity in the micromolar to nanomolar range, thus allowing true investigations on biological dynamics. Third-generation synchrotrons now offer the opportunity of bioanalytical measurements at nanometer resolutions with incredible sensitivity. Linear accelerators are more specialized in their physical features but may exceed synchrotron performances. All these techniques have become irreplaceable tools for developing knowledge in biology. This review highlights the pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.
Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care
NASA Astrophysics Data System (ADS)
Marks, Haley; Schechinger, Monika; Garza, Javier; Locke, Andrea; Coté, Gerard
2017-06-01
Point-of-care (POC) device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere - from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS) is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable) criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.
Jiang, Hongliang; Wang, Yurong; Shet, Manjunath S; Zhang, Yang; Zenke, Duane; Fast, Douglas M
2011-09-01
A rapid, specific, and reliable LC-MS/MS based bioanalytical method was developed and validated for the simultaneous determination of naloxone (NLX) and its two metabolites, 6β-naloxol (NLL) and naloxone-3β-D-glucuronide (NLG) in mouse plasma. The optimal chromatographic behavior of these analytes was achieved on an Aquasil C18 column (50 mm × 2.1 mm, 5 μm) using reversed phase chromatography. The total LC analysis time per injection was 2.5 min with a flow rate of 1.0 mL/min with gradient elution. Sample preparation via protein precipitation with acetonitrile in a 96-well format was applied for analyses of these analytes. The analytes were monitored by electrospray ionization in positive ion multiple reaction monitoring (MRM) mode. Modification of collision energy besides chromatographic separation was applied to further eliminate interference peaks for NLL and NLG. The method validation was conducted over the curve range of 0.200/0.400/0.500 to 100/200/250 ng/mL for NLX/NLL/NLG, respectively, using 0.0250 mL of plasma sample. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels showed ≤ 6.5% relative standard deviation (RSD) and -8.3 to -2.5% relative error (RE). The method was successfully applied to determine the concentrations of NLX, NLL, and NLG in incurred mouse plasma samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir
2016-05-25
Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.
Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir
2016-01-01
Metabolomics, along with other “omics” approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data. PMID:27231903
Liu, Jikun; White, Ian; DeVoe, Don L.
2011-01-01
The use of porous polymer monoliths functionalized with silver nanoparticles is introduced in this work for high-sensitivity surface-enhanced Raman scattering (SERS) detection. Preparation of the SERS detection elements is a simple process comprising the synthesis of a discrete polymer monolith section within a silica capillary, followed by physically trapping silver nanoparticle aggregates within the monolith matrix. A SERS detection limit of 220 fmol for Rhodamine 6G (R6G) is demonstrated, with excellent signal stability over a 24 h period. The capability of the SERS-active monolith for label-free detection of biomolecules was demonstrated by measurements of bradykinin and cyctochrome c. The SERS-active monoliths can be readily integrated into miniaturized micro-total-analysis systems for on-line and label-free detection for a variety of biosensing, bioanalytical, and biomedical applications. PMID:21322579
Lei, Kin Fong; Huang, Chia-Hao
2014-12-24
Investigation of cellular phosphorylation and signaling pathway has recently gained much attention for the study of pathogenesis of cancer. Related conventional bioanalytical operations for this study including cell culture and Western blotting are time-consuming and labor-intensive. In this work, a paper-based microreactor has been developed to integrate cell culture and subsequent immunoassay on a single paper. The paper-based microreactor was a filter paper with an array of circular zones for running multiple cell cultures and subsequent immunoassays. Cancer cells were directly seeded in the circular zones without hydrogel encapsulation and cultured for 1 day. Subsequently, protein expressions including structural, functional, and phosphorylated proteins of the cells could be detected by their specific antibodies, respectively. Study of the activation level of phosphorylated Stat3 of liver cancer cells stimulated by IL-6 cytokine was demonstrated by the paper-based microreactor. This technique can highly reduce tedious bioanalytical operation and sample and reagent consumption. Also, the time required by the entire process can be shortened. This work provides a simple and rapid screening tool for the investigation of cellular phosphorylation and signaling pathway for understanding the pathogenesis of cancer. In addition, the operation of the paper-based microreactor is compatible to the molecular biological training, and therefore, it has the potential to be developed for routine protocol for various research areas in conventional bioanalytical laboratories.
Li, Juan-Ying; Tang, Janet Yat Man; Jin, Ling; Escher, Beate I
2013-12-01
Bioavailable and bioaccessible fractions of sediment-associated contaminants are considered as better dose metrics for sediment-quality assessment than total concentrations. The authors applied exhaustive solvent extraction and nondepletive equilibrium sampling techniques to sediment samples collected along the Brisbane River in South East Queensland, Australia, which range from pristine environments to urban and industry-impacted areas. The wide range of chemicals expected prevents comprehensive chemical analysis, but a battery of cell-based bioassays sheds light on mixture effects of chemicals in relation to various modes of toxic action. Toxic effects were expressed as bioanalytical equivalent concentrations (BEQs) normalized to the organic carbon content of each sediment sample. Bioanalytical equivalent concentrations from exhaustive extraction agreed fairly well with values estimated from polydimethylsiloxane passive sampling extracts via the constant organic carbon to polydimethylsiloxane partition coefficient. Agreement was best for bioassays indicative of photosynthesis inhibition and oxidative stress response and discrepancy within a factor of 3 for the induction of the aryl hydrocarbon receptor. For nonspecific cytotoxicity, BEQ from exhaustive extraction were 1 order of magnitude higher than values from equilibrium sampling, possibly because of coextraction of bioactive natural organic matter that led to an overestimation of toxicity in the exhaustive extracts, which suggests that passive sampling is better suited in combination with bioanalytical assessment than exhaustive extraction. © 2013 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahan, Christine Alexandra; Garcia, Omar Fidel; Martino, Anthony A.
2010-08-01
The search is on for new renewable energy and algal-derived biofuel is a critical piece in the multi-faceted renewable energy puzzle. It has 30x more oil than any terrestrial oilseed crop, ideal composition for biodiesel, no competition with food crops, can be grown in waste water, and is cleaner than petroleum based fuels. This project discusses these three goals: (1) Conduct fundamental research into the effects that dynamic biotic and abiotic stressors have on algal growth and lipid production - Genomics/Transcriptomics, Bioanalytical spectroscopy/Chemical imaging; (2) Discover spectral signatures for algal health at the benchtop and greenhouse scale - Remote sensing,more » Bioanalytical spectroscopy; and (3) Develop computational model for algal growth and productivity at the raceway scale - Computational modeling.« less
Macova, Miroslava; Toze, Simon; Hodgers, Leonie; Mueller, Jochen F; Bartkow, Michael; Escher, Beate I
2011-08-01
A bioanalytical test battery was used for monitoring organic micropollutants across an indirect potable reuse scheme testing sites across the complete water cycle from sewage to drinking water to assess the efficacy of different treatment barriers. The indirect potable reuse scheme consists of seven treatment barriers: (1) source control, (2) wastewater treatment plant, (3) microfiltration, (4) reverse osmosis, (5) advanced oxidation, (6) natural environment in a reservoir and (7) drinking water treatment plant. Bioanalytical results provide complementary information to chemical analysis on the sum of micropollutants acting together in mixtures. Six endpoints targeting the groups of chemicals with modes of toxic action of particular relevance for human and environmental health were included in the evaluation: genotoxicity, estrogenicity (endocrine disruption), neurotoxicity, phytotoxicity, dioxin-like activity and non-specific cell toxicity. The toxicity of water samples was expressed as toxic equivalent concentrations (TEQ), a measure that translates the effect of the mixtures of unknown and potentially unidentified chemicals in a water sample to the effect that a known reference compound would cause. For each bioassay a different representative reference compound was selected. In this study, the TEQ concept was applied for the first time to the umuC test indicative of genotoxicity using 4-nitroquinoline as the reference compound for direct genotoxicity and benzo[a]pyrene for genotoxicity after metabolic activation. The TEQ were observed to decrease across the seven treatment barriers in all six selected bioassays. Each bioassay showed a differentiated picture representative for a different group of chemicals and their mixture effect. The TEQ of the samples across the seven barriers were in the same order of magnitude as seen during previous individual studies in wastewater and advanced water treatment plants and reservoirs. For the first time a benchmarking was performed that allows direct comparison of different treatment technologies and covers several orders of magnitude of TEQ from highly contaminated sewage to drinking water with TEQ close or below the limit of detection. Detection limits of the bioassays were decreased in comparison to earlier studies by optimizing sample preparation and test protocols, and were comparable to or lower than the quantification limits of the routine chemical analysis, which allowed monitoring of the presence and removal of micropollutants post Barrier 2 and in drinking water. The results obtained by bioanalytical tools were reproducible, robust and consistent with previous studies assessing the effectiveness of the wastewater and advanced water treatment plants. The results of this study indicate that bioanalytical results expressed as TEQ are useful to assess removal efficiency of micropollutants throughout all treatment steps of water recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gil, Jeovanis; Cabrales, Ania; Reyes, Osvaldo; Morera, Vivian; Betancourt, Lázaro; Sánchez, Aniel; García, Gerardo; Moya, Galina; Padrón, Gabriel; Besada, Vladimir; González, Luis Javier
2012-02-23
Growth hormone-releasing peptide 6 (GHRP-6, His-(DTrp)-Ala-Trp-(DPhe)-Lys-NH₂, MW=872.44 Da) is a potent growth hormone secretagogue that exhibits a cytoprotective effect, maintaining tissue viability during acute ischemia/reperfusion episodes in different organs like small bowel, liver and kidneys. In the present work a quantitative method to analyze GHRP-6 in human plasma was developed and fully validated following FDA guidelines. The method uses an internal standard (IS) of GHRP-6 with ¹³C-labeled Alanine for quantification. Sample processing includes a precipitation step with cold acetone to remove the most abundant plasma proteins, recovering the GHRP-6 peptide with a high yield. Quantification was achieved by LC-MS in positive full scan mode in a Q-Tof mass spectrometer. The sensitivity of the method was evaluated, establishing the lower limit of quantification at 5 ng/mL and a range for the calibration curve from 5 ng/mL to 50 ng/mL. A dilution integrity test was performed to analyze samples at higher concentration of GHRP-6. The validation process involved five calibration curves and the analysis of quality control samples to determine accuracy and precision. The calibration curves showed R² higher than 0.988. The stability of the analyte and its internal standard (IS) was demonstrated in all conditions the samples would experience in a real time analyses. This method was applied to the quantification of GHRP-6 in plasma from nine healthy volunteers participating in a phase I clinical trial. Copyright © 2011 Elsevier B.V. All rights reserved.
Swortwood, Madeleine J; Boland, Diane M; DeCaprio, Anthony P
2013-02-01
Recently, clandestine drug lab operators have attempted to bypass controlled substances laws and regulations with "designer" compounds chemically and pharmacologically similar to controlled substances. For example, "bath salts" have erupted onto the scene as "legal highs" containing cathinone analogs that have produced severe side effects in users worldwide. These products have sparked concern among law enforcement agencies, and emergency bans have been placed on the sale of such items. Despite the increasing number of designer drugs available, there are few comprehensive screening techniques for their detection and quantification in biological specimens. The liquid chromatography triple quadrupole tandem mass spectrometry (LC-QQQ-MS/MS) method presented here encompasses over thirty important compounds within the phenethylamine, tryptamine, and piperazine designer drug classes. Analytes were determined by LC-QQQ-MS/MS in the multiple-reaction monitoring mode after mixed-mode solid-phase extraction. The bioanalytical method was fully validated according to recommended international guidelines. The assay was selective for all analytes with acceptable accuracy and precision. Limits of quantification were in the range of 1-10 ng/mL for each compound with limits of detection near 10 pg/mL. In order to evaluate its applicability in a forensic toxicological setting, the validated method was used to analyze post-mortem specimens from two cases that were suspected of containing designer drugs. The method was able to identify and quantify seven of these compounds at concentrations as low as 11 ng/mL. The method should have wide applicability for rapid screening of important new drugs of abuse at high sensitivity in both post- and ante-mortem forensic analysis.
Hollert, Henner; Crawford, Sarah E; Brack, Werner; Brinkmann, Markus; Fischer, Elske; Hartmann, Kai; Keiter, Steffen; Ottermanns, Richard; Ouellet, Jacob D; Rinke, Karsten; Rösch, Manfred; Roß-Nickoll, Martina; Schäffer, Andreas; Schüth, Christoph; Schulze, Tobias; Schwarz, Anja; Seiler, Thomas-Benjamin; Wessels, Martin; Hinderer, Matthias; Schwalb, Antje
2018-06-01
Lake ecosystems are sensitive recorders of environmental changes that provide continuous archives at annual to decadal resolution over thousands of years. The systematic investigation of land use changes and emission of pollutants archived in Holocene lake sediments as well as the reconstruction of contamination, background conditions, and sensitivity of lake systems offer an ideal opportunity to study environmental dynamics and consequences of anthropogenic impact that increasingly pose risks to human well-being. This paper discusses the use of sediment and other lines of evidence in providing a record of historical and current contamination in lake ecosystems. We present a novel approach to investigate impacts from human activities using chemical-analytical, bioanalytical, ecological, paleolimnological, paleoecotoxicological, archeological as well as modeling techniques. This multi-time slice weight-of-evidence (WOE) approach will generate knowledge on conditions prior to anthropogenic influence and provide knowledge to (i) create a better understanding of the effects of anthropogenic disturbances on biodiversity, (ii) assess water quality by using quantitative data on historical pollution and persistence of pollutants archived over thousands of years in sediments, and (iii) define environmental threshold values using modeling methods. This technique may be applied in order to gain insights into reference conditions of surface and ground waters in catchments with a long history of land use and human impact, which is still a major need that is currently not yet addressed within the context of the European Water Framework Directive. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Jie; Wei, Shimin; Ayres, David W; Smith, Harold T; Tse, Francis L S
2011-09-01
Although it is well known that automation can provide significant improvement in the efficiency of biological sample preparation in quantitative LC-MS/MS analysis, it has not been widely implemented in bioanalytical laboratories throughout the industry. This can be attributed to the lack of a sound strategy and practical procedures in working with robotic liquid-handling systems. Several comprehensive automation assisted procedures for biological sample preparation and method validation were developed and qualified using two types of Hamilton Microlab liquid-handling robots. The procedures developed were generic, user-friendly and covered the majority of steps involved in routine sample preparation and method validation. Generic automation procedures were established as a practical approach to widely implement automation into the routine bioanalysis of samples in support of drug-development programs.
Parsons, Teresa L.; Emory, Joshua F.; Seserko, Lauren A.; Aung, Wutyi S.; Marzinke, Mark A.
2014-01-01
Background Topical microbicidal agents are being actively pursued as a modality to prevent HIV viral transmission during sexual intercourse. Quantification of antiretroviral agents in specimen sources where antiviral activity is elicited is critical, and drug measurements in cervicovaginal fluid can provide key information on local drug concentrations. Two antiretroviral drugs, dapivirine and maraviroc, have gained interest as vaginal microbicidal agents, and rugged methods are required for their quantification in cervicovaginal secretions. Methods Cervicovaginal fluid spiked with dapivirine and maraviroc were applied to ophthalmic tear strips or polyester-based swabs to mimic collection procedures used in clinical studies. Following sample extraction and the addition of isotopically-labeled internal standards, samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis using a Waters BEH C8, 50 × 2.1 mm, 1.7 µm particle size column, on an API 4000 mass analyzer operated in selective reaction monitoring mode. The method was validated according to FDA Bioanalytical Method Validation guidelines. Results Due to the disparate saturation capacity of the tested collection devices, the analytical measuring ranges for dapivirine and maravirocin cervicovaginal fluid on the ophthalmic tear strip were 0.05 to 25 ng/tear strip, and 0.025 to 25 ng/tear strip, respectively. As for the polyester-based swab, the analytical measuring ranges were 0.25 to 125 ng/swab for dapivirine and 0.125 to 125 ng/swab for maraviroc. Dilutional studies were performed for both analytes to extended ranges of 25,000 ng/tear strip and 11,250 ng/swab. Standard curves were generated via weighted (1/x2) linear or quadratic regression of calibrators. Precision, accuracy, stability and matrix effects studies were all performed and deemed acceptable according to the recommendations of the FDA Bioanalytical Method Validation guidelines. Conclusions A rugged LC-MS/MS method for the dual quantification of dapivirine and maraviroc in cervicovaginal fluid using two unique collection devices has been developed and validated. The described method meets the criteria to support large research trials. PMID:25005891
Kuhlmann, O; Krauss, G J
1997-12-01
A sensitive and selective bioanalytical method for diclofenac using reversed-phase HPLC and fluorescence detection is described. Diclofenac was detected as its fluorescent derivative after on-line post-column photoderivatization. Irradiation with UV light of diclofenac in aqueous solutions leads to the sequential loss of both chlorine substituents and ring closure. The major product, carbazole-1-acetic acid, was detected by a fluorescence detector using an excitation wavelength of 286 nm and an emission wavelength of 360 nm. The self-made reactor was a crocheted ethylene and tetrafluoroethylene (ETFE, named TEFZEL) capillary, 20 m in length, wound directly around a 253.7 nm UV lamp. The capillary was crocheted in order to overcome peak widening. Chromatographic separation was achieved by using a Regis SPS 100 RP-8 column (5 microm; 150 mm x 4.6 mm i.d.) and a LiChrospher 100 RP-18 (5 microm) guard column from E. Merck. The detection limit was 1 ng ml(-1) at an injection volume of 20 microl. Daily relative standard deviations (RSD) were 5.5%, (73 ng diclofenac/ml, n = 9), and 5.1% (405 ng diclofenac/ml, n = 6), respectively. Chromatograms of human aqueous humor and human serum containing diclofenac, and figures showing the time dependent increase/decrease of the photoderivatization product, are shown.
Pharmacokinetic evaluation of avicularin using a model-based development approach.
Buqui, Gabriela Amaral; Gouvea, Dayana Rubio; Sy, Sherwin K B; Voelkner, Alexander; Singh, Ravi S P; da Silva, Denise Brentan; Kimura, Elza; Derendorf, Hartmut; Lopes, Norberto Peporine; Diniz, Andrea
2015-03-01
The aim of this study was to use the pharmacokinetic information of avicularin in rats to project a dose for humans using allometric scaling. A highly sensitive and specific bioanalytical assay to determine avicularin concentrations in the plasma was developed and validated for UPLC-MS/MS. The plasma protein binding of avicularin in rat plasma determined by the ultrafiltration method was 64%. The pharmacokinetics of avicularin in nine rats was studied following an intravenous bolus administration of 1 mg/kg and was found to be best described by a two-compartment model using a nonlinear mixed effects modeling approach. The pharmacokinetic parameters were allometrically scaled by body weight and centered to the median rat weight of 0.23 kg, with the power coefficient fixed at 0.75 for clearance and 1 for volume parameters. Avicularin was rapidly eliminated from the systemic circulation within 1 h post-dose, and the avicularin pharmacokinetic was linear up to 5 mg/kg based on exposure comparison to literature data for a 5-mg/kg single dose in rats. Using allometric scaling and Monte Carlo simulation approaches, the rat doses of 1 and 5 mg/kg correspond to the human equivalent doses of 30 and 150 mg, respectively, to achieve comparable plasma avicularin concentrations in humans. Georg Thieme Verlag KG Stuttgart · New York.
Timmerman, Philip; Henderson, Neil; Smeraglia, John; Mulder, Hans; Ingelse, Benno; Brudny-Kloeppel, Margarete; Companjen, Arjen
2013-01-01
On 12-13 June 2012, the European Bioanalysis Forum hosted its third Focus Meeting in Brussels (Belgium). At the meeting, a panel discussion was held on the hurdles that the bioanalytical community encounters when adopting new technologies or managing regulated bioanalysis expectations around emerging technologies. Over the last few years, the industry has seen many new technologies maturing. As they became available, the bioanalytical scientist has observed that implementing these technologies in the regulated environment has become increasingly challenging. For one, scientific developments and regulatory expectations may not go hand in hand. At the same time, the pharmaceutical industry has become increasingly risk averse in their response to these real or perceived higher expectations in regulated bioanalysis. As a downstream consequence, the potential result of overinterpretation of guidance or occasional widespread and premature implementation of responses to health authority inspections, industry may be contributing significantly to raising the bar on some processes related to day-to-day practices in the bioanalytical laboratory. Last but not least, with the community being satisfied with the performance of the current tools, potential complacency can be observed in the regulated bioanalytical community because existing technologies, such as LC-MS/MS and ligand-binding assays, have served and still are serving them extremely well. Hence, the question 'what's next after LC-MS/MS or ELISA?' is not resonating with many scientists as pertinently compared with 'What's next after RIA, GC or LC-UV?', which was the key question in the 1990s, certainly in the context of an increasing effort needed to validate these new tools. With this article, the European Bioanalysis Forum aims to stimulate an open dialogue between all stakeholders in regulated bioanalysis to positively influence how we balance science, process and regulations in day-to-day work. This discussion should facilitate the evaluation and the subsequent implementation of innovative techniques for the benefit of the patient, while stimulating our community to raise the bar on added-value science, but at the same time removing the bar on processes with limited or no added value.
Qu, Lihua; Fan, Yuanjie; Wang, Wenjun; Ma, Kai; Yin, Zheng
2016-09-01
A simple and efficient bioanalytical method for simultaneous determination of phenobarbital (PB), phenytoin (PHT), carbamazepine (CBZ), and its active metabolite carbamazepine 10,11-epoxide (CBZE) in human plasma using online solid phase extraction (SPE)-liquid chromatography (LC) coupled with high resolution mass spectrum (HRMS) under targeted MS/MS (t-MS(2)) analysis mode has been developed. The procedure integrated an automated sample clean-up of human plasma by Oasis®HLB SPE cartridge, a separation by ZORBAX SB-C18 analysis column, and a quantification by Q-Exactive Hybrid Quadrupole-Orbitrap. The total running time was 13min. The lower limit of quantification (LLOQ) of PB, PHT, CBZ, and CBZE were 0.008, 0.008, 0.0016 and 0.0016μgmL(-1) respectively and the linearities were in the range of 0.008-2.500, 0.008-2.500, 0.0016-0.500 and 0.0016-0.500μgmL(-1) respectively. The mean recovery was between 91.82% and 108.27% and the matrix effect was between 93.29% and 102.09%. The relative standard deviations of interday and intraday were less than 6.41%. The method has been successfully applied in therapeutic drug monitoring (TDM) of four Chinese epilepsy patients. This fully automated, simple, sensitive and reliable online-SPE-LC-HRMS/MS method serves well for TDM of PB, PHT, CBZ and CBZE at clinics for either single or combination treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Mano, Yuji; Takenaka, Osamu; Kusano, Kazutomi
2015-03-25
Perampanel (Fycompa(®)) is a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist registered for the adjunctive treatment of patients (≥12 years) with refractory partial onset seizures. In order to support clinical trials, as well as therapeutic drug monitoring, a sensitive bioanalytical method for the determination of perampanel concentrations in human plasma was established and validated using liquid chromatography with tandem mass spectrometry. Perampanel and an internal standard were extracted from human plasma (100 μL) by liquid extraction using methyl t-butyl ether, then evaporated and reconstituted. The chromatographic separation was conducted on a C8 column with isocratic elution at a flow rate of 0.2 mL/min. The established method showed linearity in the range 0.25-200 ng/mL with correlation coefficients of >0.99 that could be extended 10-fold as validated by dilution integrity analyses. No significant endogenous peaks were detected in the elution of analytes in blank human plasma and no significant matrix effect was observed. The intra- and inter-batch reproducibility analyses demonstrated accuracy and precision within the acceptance criteria. To check the impact of anti-epileptic drugs on the perampanel assay, accuracy, precision, and specificity were assessed in the presence of 14 anti-epileptic drugs. No anti-epileptic drugs at clinically relevant levels showed a significant impact on the perampanel assay. Copyright © 2014 Elsevier B.V. All rights reserved.
Petoud, Stéphane; Muller, Gilles; Moore, Evan G.; Xu, Jide; Sokolnicki, Jurek; Riehl, James P.; Le, Uyen N.; Cohen, Seth M.; Raymond, Kenneth N.
2009-01-01
The synthesis, characterization, and luminescent behavior of trivalent Sm, Eu, Dy, and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, glum, recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments. PMID:17199285
Sciutto, Giorgia; Zangheri, Martina; Anfossi, Laura; Guardigli, Massimo; Prati, Silvia; Mirasoli, Mara; Di Nardo, Fabio; Baggiani, Claudio; Mazzeo, Rocco; Roda, Aldo
2018-06-18
The point-of-care testing concept has been exploited to design and develop portable and cheap bioanalytical systems that can be used on-site by conservators. These systems employ lateral flow immunoassays to simultaneously detect two proteins (ovalbumin and collagen) in artworks. For an in-depth study on the application of these portable biosensors, both chemiluminescent and colorimetric detections were developed and compared in terms of sensitivity and feasibility. The chemiluminescent system displayed the best analytical performance (that is, two orders of magnitude lower limits of detection than the colorimetric system). To simplify its use, a disposable cartridge was designed ad hoc for this specific application. These results highlight the enormous potential of these inexpensive, easy-to-use, and minimally invasive diagnostic tools for conservators in the cultural heritage field. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advances in explosives analysis—part II: photon and neutron methods
Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; ...
2015-10-07
The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. Our review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. In Part II, we review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less
Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods
Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; ...
2015-10-13
The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). We review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Moreover, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less
Bioanalysis in microfluidic devices.
Khandurina, Julia; Guttman, András
2002-01-18
Microfabricated bioanalytical devices (also referred to as laboratory-on-a-chip or micro-TAS) offer highly efficient platforms for simultaneous analysis of a large number of biologically important molecules, possessing great potential for genome, proteome and metabolome studies. Development and implementation of microfluidic-based bioanalytical tools involves both established and evolving technologies, including microlithography, micromachining, micro-electromechanical systems technology and nanotechnology. This article provides an overview of the latest developments in the key device subject areas and the basic interdisciplinary technologies. Important aspects of DNA and protein analysis, interfacing issues and system integration are all thoroughly discussed, along with applications for this novel "synergized" technology in high-throughput separations of biologically important molecules. This review also gives a better understanding of how to utilize these technologies as well as to provide appropriate technical solutions to problems perceived as being more fundamental.
Staack, Roland F; Jordan, Gregor; Heinrich, Julia
2012-02-01
For every drug development program it needs to be discussed whether discrimination between free and total drug concentrations is required to accurately describe its pharmacokinetic behavior. This perspective describes the application of mathematical simulation approaches to guide this initial decision based on available knowledge about target biology, binding kinetics and expected drug concentrations. We provide generic calculations that can be used to estimate the necessity of free drug quantification for different drug molecules. In addition, mathematical approaches are used to simulate various assay conditions in bioanalytical ligand-binding assays: it is demonstrated that due to the noncovalent interaction between the binding partners and typical assay-related interferences in the equilibrium, a correct quantification of the free drug concentration is highly challenging and requires careful design of different assay procedure steps.
Bellon, L; Maloney, L; Zinnen, S P; Sandberg, J A; Johnson, K E
2000-08-01
Versatile bioanalytical assays to detect chemically stabilized hammerhead ribozyme and putative ribozyme metabolites from plasma are described. The extraction protocols presented are based on serial solid-phase extractions performed on a 96-well plate format and are compatible with either IEX-HPLC or CGE back-end analysis. A validation of both assays confirmed that both the HPLC and the CGE methods possess the required linearity, accuracy, and precision to accurately measure concentrations of hammerhead ribozyme extracted from plasma. These methods should be of general use to detect and quantitate ribozymes from other biological fluids such as serum and urine. Copyright 2000 Academic Press.
Tavares, Anthony J; Noor, M Omair; Uddayasankar, Uvaraj; Krull, Ulrich J; Vannoy, Charles H
2014-01-01
Semiconductor quantum dots (QDs) have long served as integral components in signal transduction modalities such as Förster resonance energy transfer (FRET). The majority of bioanalytical methods using QDs for FRET-based techniques simply monitor binding-induced conformational changes. In more recent work, QDs have been incorporated into solid-phase support systems, such as microfluidic chips, to serve as physical platforms in the development of functional biosensors and bioprobes. Herein, we describe a simple strategy for the transduction of nucleic acid hybridization that combines a novel design method based on FRET with an electrokinetically controlled microfluidic technology, and that offers further potential for amelioration of sample-handling issues and for simplification of dynamic stringency control.
Jones, Jace W; Tudor, Gregory; Bennett, Alexander; Farese, Ann M; Moroni, Maria; Booth, Catherine; MacVittie, Thomas J; Kane, Maureen A
2014-07-01
The potential risk of a radiological catastrophe highlights the need for identifying and validating potential biomarkers that accurately predict radiation-induced organ damage. A key target organ that is acutely sensitive to the effects of irradiation is the gastrointestinal (GI) tract, referred to as the GI acute radiation syndrome (GI-ARS). Recently, citrulline has been identified as a potential circulating biomarker for radiation-induced GI damage. Prior to biologically validating citrulline as a biomarker for radiation-induced GI injury, there is the important task of developing and validating a quantitation assay for citrulline detection within the radiation animal models used for biomarker validation. Herein, we describe the analytical development and validation of citrulline detection using a liquid chromatography tandem mass spectrometry assay that incorporates stable-label isotope internal standards. Analytical validation for specificity, linearity, lower limit of quantitation, accuracy, intra- and interday precision, extraction recovery, matrix effects, and stability was performed under sample collection and storage conditions according to the Guidance for Industry, Bioanalytical Methods Validation issued by the US Food and Drug Administration. In addition, the method was biologically validated using plasma from well-characterized mouse, minipig, and nonhuman primate GI-ARS models. The results demonstrated that circulating citrulline can be confidently quantified from plasma. Additionally, circulating citrulline displayed a time-dependent response for radiological doses covering GI-ARS across multiple species.
Chen, Guilin; Huang, Bill X; Guo, Mingquan
2018-05-21
Medicinal plants have played an important role in maintaining human health for thousands of years. However, the interactions between the active components in medicinal plants and some certain biological targets during a disease are still unclear in most cases. To conduct the high-throughput screening for small active molecules that can interact with biological targets, which is of great theoretical significance and practical value. The ultrafiltration mass spectrometry (UF-LC/MS) is a powerful bio-analytical method by combining affinity ultrafiltration and liquid chromatography-mass spectrometry (LC/MS), which could rapidly screen and identify small active molecules that bind to biological targets of interest at the same time. Compared with other analytical methods, affinity UF-LC/MS has the characteristics of fast, sensitive and high throughput, and is especially suitable for the complicated extracts of medicinal plants. In this review, the basic principle, characteristics and some most recent challenges in UF-LC/MS have been demonstrated. Meanwhile, the progress and applications of affinity UF-LC/MS in the discovery of the active components from natural medicinal plants and the interactions between small molecules and biological target proteins are also briefly summarised. In addition, the future directions for UF-LC/MS are also prospected. Affinity UF-LC/MS is a powerful tool in studies on the interactions between small active molecules and biological protein targets, especially in the high-throughput screening of active components from the natural medicinal plants. Copyright © 2018 John Wiley & Sons, Ltd.
Moreno-Vicente, Raquel; Fernández-Nieva, Zuriñe; Navarro, Arantza; Gascón-Crespí, Irene; Farré-Albaladejo, Magí; Igartua, Manuela; Hernández, Rosa María; Pedraz, José Luis
2015-10-10
A bioanalytical method using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for simultaneous quantification of heroin, its main metabolites and naloxone. In addition, naltrexone was detected qualitatively. This method was used to analyse human plasma samples from a clinical trial after oral administration of a heroin/naloxone formulation in healthy volunteers. O-methylcodeine was used as an internal standard. Samples were kept in an ice-bath during their processing to minimize the degradation of heroin. A short methodology based on protein precipitation with methanol was used for sample preparation. After protein precipitation, only the addition of a formic acid solution was needed to elute heroin, 6-monoacetylmorphine, morphine, naloxone and naltrexone. Morphine metabolites were evaporated to dryness and reconstituted in a formic acid solution. Chromatographic separation was achieved at 35 °C on an X-Bridge Phenyl column (150 × 4.6 mm, 5 μm) using a gradient elution with a mobile phase of ammonium formate buffer at pH 3.0 and formic acid in acetonitrile. The run time was 8 min. The analytes were monitored using a triple quadrupole mass spectrometer with positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode. The method was found to be linear in a concentration range of 10-2000 ng/mL for M3G and 10-1000 ng/mL for the rest of compounds. Quality controls showed accurate values between -3.6% and 4.0% and intra- and inter-day precisions were below 11.5% for all analytes. The overall recoveries were approximately 100% for all analytes including the internal standard. A rapid, specific, precise and simple method was developed for the determination of heroin, its metabolites, naloxone and naltrexone in human plasma. This method was successfully applied to a clinical trial in 12 healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.
Parsons, Teresa L; Emory, Joshua F; Seserko, Lauren A; Aung, Wutyi S; Marzinke, Mark A
2014-09-01
Topical microbicidal agents are being actively pursued as a modality to prevent HIV viral transmission during sexual intercourse. Quantification of antiretroviral agents in specimen sources where antiviral activity is elicited is critical, and drug measurements in cervicovaginal fluid can provide key information on local drug concentrations. Two antiretroviral drugs, dapivirine and maraviroc, have gained interest as vaginal microbicidal agents, and rugged methods are required for their quantification in cervicovaginal secretions. Cervicovaginal fluid spiked with dapivirine and maraviroc were applied to ophthalmic tear strips or polyester-based swabs to mimic collection procedures used in clinical studies. Following sample extraction and the addition of isotopically labeled internal standards, samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis using a Waters BEH C8, 50mm×2.1mm, 1.7μm particle size column, on an API 4000 mass analyzer operated in selective reaction monitoring mode. The method was validated according to FDA Bioanalytical Method Validation guidelines. Due to the disparate saturation capacity of the tested collection devices, the analytical measuring ranges for dapivirine and maravirocin cervicovaginal fluid on the ophthalmic tear strip were 0.05-25ng/tear strip, and 0.025-25ng/tear strip, respectively. As for the polyester-based swab, the analytical measuring ranges were 0.25-125ng/swab for dapivirine and 0.125-125ng/swab for maraviroc. Dilutional studies were performed for both analytes to extended ranges of 25,000ng/tear strip and 11,250ng/swab. Standard curves were generated via weighted (1/x(2)) linear or quadratic regression of calibrators. Precision, accuracy, stability and matrix effects studies were all performed and deemed acceptable according to the recommendations of the FDA Bioanalytical Method Validation guidelines. A rugged LC-MS/MS method for the dual quantification of dapivirine and maraviroc in cervicovaginal fluid using two unique collection devices has been developed and validated. The described method meets the criteria to support large research trials. Copyright © 2014 Elsevier B.V. All rights reserved.
Petrou, Panagiota S; Chatzichristidi, Margarita; Douvas, Antonios M; Argitis, Panagiotis; Misiakos, Konstantinos; Kakabakos, Sotirios E
2007-04-15
The last years, there is a steadily growing demand for methods and materials appropriate to create patterns of biomolecules for bioanalytical applications. Here, a photolithographic method for patterning biomolecules onto a silicon surface coated with a polymeric layer of high protein binding capacity is presented. The patterning process does not affect the polymeric film and the activity of the immobilized onto the surface biomolecules. Therefore, it permits sequential immobilization of different biomolecules on spatially distinct areas on the same solid support. The polymeric layer is based on a commercially available photoresist (AZ5214) that is cured at high temperature in order to provide a stable substrate for creation of protein microarrays by the developed photolithographic process. The photolithographic material consists of a (meth)acrylate copolymer and a sulfonium salt as a photoacid generator, and it is lithographically processed by thermal treatment at temperatures
NASA Astrophysics Data System (ADS)
Patonay, Gabor; Henary, Maged; Chapman, Gala; Emer, Kyle; Crow, Sidney
2016-03-01
Silica nanoparticles have proven to be useful in many bioanalytical and medical applications and have been used in numerous applications during the last decade. Combining the properties of silica nanoparticles and fluorescent dyes that may be used as chemical probes or labels can be relatively easy by simply soaking porous silica nanoparticles in a solution of the dye of interest. Under proper conditions the entrapped dye can stay inside the silica nanoparticle for several hours resulting in a useful probe. In spite of the relative durability of these probes, leaching can still occur. A much better approach is to synthesize silica nanoparticles that have the fluorescent dye covalently attached to the backbone structure of the silica nanoparticle. This can be achieved by using appropriately modified tetraethyl orthosilicate (TEOS) analogues during the silica nanoparticle synthesis. The molar ratio of TEOS and modified TEOS will determine the fluorescent dye load in the silica nanoparticle. Dependent on the chemical stability of the reporting dye either reverse micellar (RM) or Stöber method can be used for silica nanoparticle synthesis. If dye stability allows RM procedure is preferred as it results in a much easier control of the silica nanoparticle reaction itself. Also controlling the size and uniformity of the silica nanoparticles are much easier using RM method. Dependent on the functional groups present in the reporting dye used in preparation of the modified TEOS, the silica nanoparticles can be utilized in many applications such as pH sensor, metal ion sensors, labels, etc. In addition surface activated silica nanoparticles with reactive moieties are also excellent reporters or they can be used as bright fluorescent labels. Many different fluorescent dyes can be used to synthesize silica nanoparticles including visible and NIR dyes. Several bioanalytical applications are discussed including studying amoeba phagocytosis.
Xu, Dong-Hang; Ruan, Zou-Rong; Zhou, Quan; Yuan, Hong; Jiang, Bo
2006-01-01
A simple and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated for determining rosuvastatin in human plasma, a new synthetic hydroxymethylglutaryl-coenzyme A reductase inhibitor. The analyte and internal standard (IS; cilostazol) were extracted by simple one-step liquid/liquid extraction with ether. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The chromatographic separation was performed on an Atlantis C18 column (2.1 mm x 150 mm, 5.0 microm) with a mobile phase consisting of 0.2% formic acid/methanol (30:70, v/v) at a flow rate of 0.20 mL/min. The analyses were carried out by multiple reaction monitoring (MRM) using the precursor-to-product combinations of m/z 482 --> 258 and m/z 370 --> 288. The areas of peaks from the analyte and the IS were used for quantification of rosuvastatin. The method was validated according to the FDA guidelines on bioanalytical method validation. Validation results indicated that the lower limit of quantification (LLOQ) was 0.2 ng/mL and the assay exhibited a linear range of 0.2-50.0 ng/mL and gave a correlation coefficient (r) of 0.9991 or better. Quality control samples (0.4, 8, 25 and 40 ng/mL) in six replicates from three different runs of analysis demonstrated an intra-assay precision (RSD) 7.97-15.94%, an inter-assay precision 3.19-15.27%, and an overall accuracy (relative error) of < 3.7%. The method can be applied to pharmacokinetic or bioequivalence studies of rosuvastatin.
Woźniak, Mateusz Kacper; Wiergowski, Marek; Aszyk, Justyna; Kubica, Paweł; Namieśnik, Jacek; Biziuk, Marek
2018-01-30
Amphetamine, methamphetamine, phentermine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), and 3,4-methylenedioxy-N-ethylamphetamine (MDEA) are the most popular amphetamine-type stimulants. The use of these substances is a serious societal problem worldwide. In this study, a method based on gas chromatography-tandem mass spectrometry (GC-MS/MS) with simple and rapid liquid-liquid extraction (LLE) and derivatization was developed and validated for the simultaneous determination of the six aforementioned amphetamine derivatives in blood and urine. The detection of all compounds was based on multiple reaction monitoring (MRM) transitions. The most important advantage of the method is the minimal sample volume (as low as 200μL) required for the extraction procedure. The validation parameters, i.e., the recovery (90.5-104%), inter-day accuracy (94.2-109.1%) and precision (0.5-5.8%), showed the repeatability and sensitivity of the method for both matrices and indicated that the proposed procedure fulfils internationally established acceptance criteria for bioanalytical methods The procedure was successfully applied to the analysis of real blood and urine samples examined in 22 forensic toxicological cases. To the best of our knowledge, this is the first work presenting the use of GC-MS/MS for the determination of amphetamine-type stimulants in blood and urine. In view of the low limits of detection (0.09-0.81ng/mL), limits of quantification (0.26-2.4ng/mL), and high selectivity, the procedure can be applied for drug monitoring in both fatal and non-fatal intoxication cases in routine toxicology analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Heinig, Katja; Herzog, Denis; Ferrari, Luca; Fraier, Daniela; Miya, Kazuhiro; Morcos, Peter N
2017-03-01
Alectinib (Alecensa ® ) is an anaplastic lymphoma kinase inhibitor for the treatment of anaplastic lymphoma kinase positive non-small-cell lung cancer, and M4 is its major pharmacologically active metabolite. To characterize the pharmacokinetics and excretion of alectinib and M4 in human urine, a bioanalytical method was required. An LC-MS/MS method using supported liquid extraction was developed for the determination of alectinib and M4 in human urine over the concentration range 0.5-500 ng/ml. Accuracy ranged from 92.0 to 112.2% and precision (CV) was below 9.6%. The method was successfully employed to determine alectinib and M4 concentrations in urine samples from a clinical mass balance study. Addition of the surfactant Tween-20 to urine prevented nonspecific binding of the analytes.
Alcohol biosensing by polyamidoamine (PAMAM)/cysteamine/alcohol oxidase-modified gold electrode.
Akin, Mehriban; Yuksel, Merve; Geyik, Caner; Odaci, Dilek; Bluma, Arne; Höpfner, Tim; Beutel, Sascha; Scheper, Thomas; Timur, Suna
2010-01-01
A highly stable and sensitive amperometric alcohol biosensor was developed by immobilizing alcohol oxidase (AOX) through Polyamidoamine (PAMAM) dendrimers on a cysteamine-modified gold electrode surface. Ethanol determination is based on the consumption of dissolved oxygen content due to the enzymatic reaction. The decrease in oxygen level was monitored at -0.7 V vs. Ag/AgCl and correlated with ethanol concentration. Optimization of variables affecting the system was performed. The optimized ethanol biosensor showed a wide linearity from 0.025 to 1.0 mM with 100 s response time and detection limit of (LOD) 0.016 mM. In the characterization studies, besides linearity some parameters such as operational and storage stability, reproducibility, repeatability, and substrate specificity were studied in detail. Stability studies showed a good preservation of the bioanalytical properties of the sensor, 67% of its initial sensitivity was kept after 1 month storage at 4 degrees C. The analytical characteristics of the system were also evaluated for alcohol determination in flow injection analysis (FIA) mode. Finally, proposed biosensor was applied for ethanol analysis in various alcoholic beverage as well as offline monitoring of alcohol production through the yeast cultivation. Copyright 2010 American Institute of Chemical Engineers
Progress in chemical luminescence-based biosensors: A critical review.
Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia
2016-02-15
Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation. Copyright © 2015 Elsevier B.V. All rights reserved.
Electroacoustic miniaturized DNA-biosensor.
Gamby, Jean; Lazerges, Mathieu; Pernelle, Christine; Perrot, Hubert; Girault, Hubert H; Tribollet, Bernard
2007-11-01
A micrometer-sized electroacoustic DNA-biosensor was developed. The device included a thin semi-crystalline polyethylene terephthalate (PET) dielectric layer with two Ag microband electrodes on one side and a DNA thiol-labeled monolayer adsorbed on a gold surface on the other. A resonance wave was observed at 29 MHz with a network analyzer, upon AC voltage application between the two Ag electrodes, corresponding to electromechanical coupling induced by molecular dipoles of the PET polymer chain in the dielectric layer. It was found that the device size and geometry were well adapted to detect DNA hybridization, by measuring the capacity of the resonance response evolution: hybridization induced polarization of the dielectric material that affected the electromechanical coupling established in the dielectric layer. The 0.2 mm(2) sensor sensitive area allows detection in small volumes and still has higher detection levels for bioanalytical applications, the non-contact configuration adopted avoids electric faradic reactions that may damage biosensor sensitive layers, and finally, PET is a costless raw material, easy to process and well adapted for large scale production. The well-balanced technological and economic advantages of this kind of device make it a good candidate for biochip integration.
Chem/bio sensing with non-classical light and integrated photonics.
Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B
2018-01-29
Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.
Wu, Chunsheng; Lillehoj, Peter B; Wang, Ping
2015-11-07
Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.
Matrix effect and recovery terminology issues in regulated drug bioanalysis.
Huang, Yong; Shi, Robert; Gee, Winnie; Bonderud, Richard
2012-02-01
Understanding the meaning of the terms used in the bioanalytical method validation guidance is essential for practitioners to implement best practice. However, terms that have several meanings or that have different interpretations exist within bioanalysis, and this may give rise to differing practices. In this perspective we discuss an important but often confusing term - 'matrix effect (ME)' - in regulated drug bioanalysis. The ME can be interpreted as either the ionization change or the measurement bias of the method caused by the nonanalyte matrix. The ME definition dilemma makes its evaluation challenging. The matrix factor is currently used as a standard method for evaluation of ionization changes caused by the matrix in MS-based methods. Standard additions to pre-extraction samples have been suggested to evaluate the overall effects of a matrix from different sources on the analytical system, because it covers ionization variation and extraction recovery variation. We also provide our personal views on the term 'recovery'.
Ye, Guangming; Cai, Xuejian; Wang, Biao; Zhou, Zhongxian; Yu, Xiaohua; Wang, Weibin; Zhang, Jiandong; Wang, Yuhai; Dong, Jierong; Jiang, Yunyun
2008-11-04
A simple, accurate and rapid method for simultaneous analysis of vancomycin and ceftazidime in cerebrospinal fluid (CSF), utilizing high-performance liquid chromatography (HPLC), has been developed and thoroughly validated to satisfy strict FDA guidelines for bioanalytical methods. Protein precipitation was used as the sample pretreatment method. In order to increase the accuracy, tinidazole was chosen as the internal standard. Separation was achieved on a Diamonsil C18 column (200 mm x 4.6mm I.D., 5 microm) using a mobile phase composed of acetonitrile and acetate buffer (pH 3.5) (8:92, v/v) at room temperature (25 degrees C), and the detection wavelength was 240 nm. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was applied to determine vancomycin and ceftazidime concentrations in CSF in five craniotomy patients.
NASA Technical Reports Server (NTRS)
Ricco, A. J.; Hanel, R.; Bhattacharya, S.; Boone, T.; Tan, M.; Mousavi, A.; Rademacher, A.; Schooley, A.; Klamm, B.; Benton, J.;
2016-01-01
We will present details and initial lab test results from an integrated bioanalytical microsystem designed to conduct the first biology experiments beyond low Earth orbit (LEO) since Apollo 17 (1972). The 14-kg, 12x24x37-cm BioSentinel spacecraft (Figure 1) assays radiation-responsive yeast in its science payload by measuring DNA double-strand breaks (DSBs) repaired via homologous recombination, a mechanism common to all eukaryotes including humans. S. cerevisiae (brewer's yeast) in 288 microwells are provided with nutrient and optically assayed for growth and metabolism via 3-color absorptimetry monthly during the 18-month mission. BioSentinel is one of several secondary payloads to be deployed by NASA's Exploration Mission 1 (EM-1) launch vehicle into approximately 0.95 AU heliocentric orbit in July 2018; it will communicate with Earth from up to 100 million km.
Swarm intelligence metaheuristics for enhanced data analysis and optimization.
Hanrahan, Grady
2011-09-21
The swarm intelligence (SI) computing paradigm has proven itself as a comprehensive means of solving complicated analytical chemistry problems by emulating biologically-inspired processes. As global optimum search metaheuristics, associated algorithms have been widely used in training neural networks, function optimization, prediction and classification, and in a variety of process-based analytical applications. The goal of this review is to provide readers with critical insight into the utility of swarm intelligence tools as methods for solving complex chemical problems. Consideration will be given to algorithm development, ease of implementation and model performance, detailing subsequent influences on a number of application areas in the analytical, bioanalytical and detection sciences.
An interlaboratory transfer of a multi-analyte assay between continents.
Georgiou, Alexandra; Dong, Kelly; Hughes, Stephen; Barfield, Matthew
2015-01-01
Alex has worked at GlaxoSmithKline for the past 15 years and currently works within the bioanalytical and toxicokinetic group in the United Kingdom. Alex's role in previous years has been the in-house support of preclinical and clinical bioanalysis, from method development through to sample analysis activities as well as acting as PI for GLP bioanalysis and toxicokinetics. For the past two years, Alex has applied this analytical and regulatory experience to focus on the outsourcing of preclinical bioanalysis, toxicokinetics and clinical bioanalysis, working closely with multiple bioanalytical and in-life CRO partners worldwide. Alex works to support DMPK and Safety Assessment outsourcing activities for GSK across multiple therapeutic areas, from the first GLP study through to late stage clinical PK studies. Transfer and cross-validation of an existing analytical assay between a laboratory providing current analytical support, and a laboratory needed for new or additional support, can present the bioanalyst with numerous challenges. These challenges can be technical or logistical in nature and may prove to be significant when transferring an assay between laboratories in different continents. Part of GlaxoSmithKline's strategy to improve confidence in providing quality data, is to cross-validate between laboratories. If the cross-validation fails predefined acceptance criteria, then a subsequent investigation would follow. This may also prove to be challenging. The importance of thorough planning and good communication throughout assay transfer, cross-validation and any subsequent investigations is illustrated in this case study.
Shah, Kumar A; Peoples, Michael C; Halquist, Matthew S; Rutan, Sarah C; Karnes, H Thomas
2011-01-25
The work described in this paper involves development of a high-throughput on-line microfluidic sample extraction method using capillary micro-columns packed with MIP beads coupled with tandem mass spectrometry for the analysis of urinary NNAL. The method was optimized and matrix effects were evaluated and resolved. The method enabled low sample volume (200 μL) and rapid analysis of urinary NNAL by direct injection onto the microfluidic column packed with molecularly imprinted beads engineered to NNAL. The method was validated according to the FDA bioanalytical method validation guidance. The dynamic range extended from 20.0 to 2500.0 pg/mL with a percent relative error of ±5.9% and a run time of 7.00 min. The lower limit of quantitation was 20.0 pg/mL. The method was used for the analysis of NNAL and NNAL-Gluc concentrations in smokers' urine. Copyright © 2010 Elsevier B.V. All rights reserved.
Schmidt, Holger; Böttcher, Christoph; Trampczynska, Aleksandra; Clemens, Stephan
2011-01-01
Nicotianamine (NA) is an important metal chelator, implicated in the intra- and intercellular trafficking of several transition metal ions in plants. To decipher its roles in physiological processes such as micronutrient acquisition, distribution or storage, fast and sensitive analytical techniques for quantification of this non-proteinogenic amino acid will be required. The use of a recombinant Schizosaccharomyces pombe strain expressing a nicotianamine synthase (NAS) gene allowed for the production of [(15)N(3)]-NA, which was enriched from cell extracts through cation exchange and used for stable isotope dilution analysis of NA. Such an approach should be widely applicable to important bioanalytes that are difficult to synthesize. The analytical procedure comprises mild aqueous extraction and rapid Fmoc derivatization, followed by fast separation using ultra-performance liquid chromatography (UPLC) and sensitive detection by positive ion electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) with a chromatographic cycle time of only 8 min. Derivatization was optimized with respect to incubation time and species suitable for quantification. The limit of detection was 0.14 to 0.23 pmol in biological matrices with the response being linear up to 42 pmol. Recovery rates were between 83% and 104% in various biological matrices including fission yeast cells, fungal mycelium, plant leaves and roots.
Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish.
Segner, Helmut
2004-10-01
In ecotoxicology, in vitro assays with fish cells are currently applied for mechanistic studies, bioanalytical purposes and toxicity screening. This paper discusses the potential of cytotoxicity assays with fish cells to reduce, refine or replace acute lethality tests using fish. Basal cytotoxicity data obtained with fish cell lines or fish primary cell cultures show a reasonable to good correlation with lethality data from acute toxicity tests, with the exception of compounds that exert a specific mode of toxic action. Basal cytotoxicity data from fish cell lines also correlate well with cytotoxicity data from mammalian cell lines. However, both the piscine and mammalian in vitro assays are clearly less sensitive than the fish test. Therefore, in vivo LC50 values (concentrations of the test compounds that are lethal to 50% of the fish in the experiment within 96 hours) currently cannot be predicted from in vitro values. This in vitro-in vivo difference in sensitivity appears to be true for both fish cell lines and mammalian cell lines. Given the good in vitro-in vivo correlation in toxicity ranking, together with the clear-cut difference in sensitivity, the role of cytotoxicity assays in a tiered alternative testing strategy could be in priority setting in relation to toxic hazard and in the toxicity classification of chemicals and environmental samples.
Li, Tie-Mei; Liu, Weilong; Lu, Shan; Zhang, Yan-Ping; Jia, Le-Mei; Chen, Jie; Li, Xiangke; Lei, Xiaoguang; Dong, Meng-Qiu
2015-05-12
The steroid hormone dafachronic acid (DA) regulates dauer formation and lifespan in Caenorhabditis elegans by binding to the nuclear receptor DAF-12. However, little is known about how DA concentrations change under various physiologic conditions and about how DA/DAF-12 signaling interacts with other signaling pathways that also regulate dauer formation and lifespan. Using a sensitive bioanalytical method, we quantified the endogenous DA concentrations in a long-lived germline-less glp-1 mutant and in the Dauer formation-defective (Daf-d) mutants daf-12, daf-16, daf-5, and daf-3. We found that the DA concentration in the glp-1 mutant was similar to that in the wild type (WT). This result is contrary to the long-held belief that germline loss-induced longevity involves increased DA production and suggests instead that this type of longevity involves an enhanced response to DA. We also found evidence suggesting that increased DA sensitivity underlies lifespan extension triggered by exogenous DA. At the L2/L3 stage, the DA concentration in a daf-12 null mutant decreased to 22% of the WT level. This finding is consistent with the previously proposed positive feedback regulation between DAF-12 and DA production. Surprisingly, the DA concentrations in the daf-16, daf-5, and daf-3 mutants were only 19-34% of the WT level at the L2/L3 stage, slightly greater than those in the Dauer formation-constitutive (Daf-c) mutants at the pre-dauer stage (4-15% of the WT L2 control). Our experimental evidence suggested that the positive feedback between DA and DAF-12 was partially induced in the three Daf-d mutants. Copyright © 2015 Li et al.
Kij, Agnieszka; Mateuszuk, Lukasz; Sitek, Barbara; Przyborowski, Kamil; Zakrzewska, Agnieszka; Wandzel, Krystyna; Walczak, Maria; Chlopicki, Stefan
2016-09-10
The balance between vascular prostacyclin (PGI2) generated mainly via cyclooxygenase-2 (COX-2) and its physiological antagonist platelet-derived thromboxane A2 (TXA2) formed by cyclooxygenase-1 (COX-1) determines cardiovascular homeostasis. In the present work, a novel bioanalytical method for simultaneous quantification of stable plasma and urinary metabolites of PGI2 (6-keto-PGF1α, 2,3-dinor-6-keto-PGF1α) and TXA2 (TXB2, 2,3-dinor-TXB2) using ultra high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) was developed. The method was validated using artificial plasma and urine and linearity range, intra- and inter-day precision and accuracy, recovery of analytes, relative and absolute matrix effect and stability of analytes were determined. The use of artificial biofluids improved the method sensitivity as it eliminated the contribution of endogenous metabolites present in mice plasma and urine to validation procedure. The newly developed and validated method allowed to quantify 6-keto-PGF1α and TXB2 in mice plasma as well as 2,3-dinor-6-keto-PGF1α and 2,3-dinor-TXB2 in urine samples with high sensitivity and accuracy. The calibration range was established from 0.1 to 100ng/mL for all analytes using artificial biofluids and the recoveries were greater than 89.9%. All validated parameters met the criteria of acceptance specified in FDA and EMA guidance. This method was successfully employed for profiling of the changes in PGI2 and TXA2 generation in NO-deficient mice. This work demonstrated that NO-deficiency induced by L-NAME, evidenced by a fall in nitrite in plasma and urine, was associated with platelet activation, robust increase in TXB2 and mild increase in 6-keto-PGF1α concentration in plasma. Changes in 2,3-dinor-6-keto-PGF1α and 2,3-dinor-TXB2 concentration in urine were less evident suggesting that the measurements in plasma better reflect modest changes in PGI2/TXA2 homeostasis than measurements in urine. Copyright © 2016 Elsevier B.V. All rights reserved.
Lubin, Arnaud; De Vries, Ronald; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2017-08-05
The type and design of an ionization source can have a significant influence on the performances of a bioanalytical method. It is, therefore, of high interest to evaluate the performances of newly introduced sources to highlight their benefits and limitations in comparison to other well established sources. In this paper, liquid chromatography - mass spectrometry (LC/MS) performances of a new atmospheric pressure ionization (API) source, commercialized as UniSpray, is evaluated. The dynamic range of 24 pharmaceutical and biological compounds is compared between the new API source and electrospray ionization (ESI) for 3 different mobile phase conditions. Matrix effects are also compared with ESI on a refined selection of 19 pharmaceutical and biological compounds in 4 matrices commonly encountered in bioanalysis. A slightly better dynamic range towards lower concentrations was often observed with the new API source. Matrix effects were quite similar between the two sources with a small, but statistically significant, lower percentage of matrix effects observed for the new API source in plasma and bile in the positive ion mode, and bile in negative ion mode for ESI. Finally, the sensitivity of late eluting compounds could be improved on the new API source by post-column addition of water. Copyright © 2017 Elsevier B.V. All rights reserved.
Kumar, Keshav; Espaillat, Akbar; Cava, Felipe
2017-01-01
Bacteria cells are protected from osmotic and environmental stresses by an exoskeleton-like polymeric structure called peptidoglycan (PG) or murein sacculus. This structure is fundamental for bacteria’s viability and thus, the mechanisms underlying cell wall assembly and how it is modulated serve as targets for many of our most successful antibiotics. Therefore, it is now more important than ever to understand the genetics and structural chemistry of the bacterial cell walls in order to find new and effective methods of blocking it for the treatment of disease. In the last decades, liquid chromatography and mass spectrometry have been demonstrated to provide the required resolution and sensitivity to characterize the fine chemical structure of PG. However, the large volume of data sets that can be produced by these instruments today are difficult to handle without a proper data analysis workflow. Here, we present PG-metrics, a chemometric based pipeline that allows fast and easy classification of bacteria according to their muropeptide chromatographic profiles and identification of the subjacent PG chemical variability between e.g. bacterial species, growth conditions and, mutant libraries. The pipeline is successfully validated here using PG samples from different bacterial species and mutants in cell wall proteins. The obtained results clearly demonstrated that PG-metrics pipeline is a valuable bioanalytical tool that can lead us to cell wall classification and biomarker discovery. PMID:29040278
Hu, Zhe-Yi; Parker, Robert B.; Herring, Vanessa L.; Laizure, S. Casey
2012-01-01
Dabigatran etexilate (DABE) is an oral prodrug that is rapidly converted by esterases to dabigatran (DAB), a direct inhibitor of thrombin. To elucidate the esterase-mediated metabolic pathway of DABE, a high-performance liquid chromatography/mass spectrometer (LC-MS/MS)-based metabolite identification and semi-quantitative estimation approach was developed. To overcome the poor full-scan sensitivity of conventional triple quadrupole mass spectrometry, precursor-product ion pairs were predicted, to search for the potential in vitro metabolites. The detected metabolites were confirmed by the product ion scan. A dilution method was introduced to evaluate the matrix effects of tentatively identified metabolites without chemical standards. Quantitative information on detected metabolites was obtained using ‘metabolite standards’ generated from incubation samples that contain a high concentration of metabolite in combination with a correction factor for mass spectrometry response. Two in vitro metabolites of DABE (M1 and M2) were identified, and quantified by the semi-quantitative estimation approach. It is noteworthy that CES1 convert DABE to M1 while CES2 mediates the conversion of DABE to M2. M1 (or M2) was further metabolized to DAB by CES2 (or CES1). The approach presented here provides a solution to a bioanalytical need for fast identification and semi-quantitative estimation of CES metabolites in preclinical samples. PMID:23239178
Staphylococcus aureus methicillin resistance detected by HPLC-MS/MS targeted metabolic profiling.
Schelli, Katie; Rutowski, Joshua; Roubidoux, Julia; Zhu, Jiangjiang
2017-03-15
Recently, novel bioanalytical methods, such as NMR and mass spectrometry based metabolomics approaches, have started to show promise in providing rapid, sensitive and reproducible detection of Staphylococcus aureus antibiotic resistance. Here we performed a proof-of-concept study focused on the application of HPLC-MS/MS based targeted metabolic profiling for detecting and monitoring the bacterial metabolic profile changes in response to sub-lethal levels of methicillin exposure. One hundred seventy-seven targeted metabolites from over 20 metabolic pathways were specifically screened and one hundred and thirty metabolites from in vitro bacterial tests were confidently detected from both methicillin susceptible and methicillin resistant Staphylococcus aureus (MSSA and MRSA, respectively). The metabolic profiles can be used to distinguish the isogenic pairs of MSSA strains from MRSA strains, without or with sub-lethal levels of methicillin exposure. In addition, better separation between MSSA and MRSA strains can be achieved in the latter case using principal component analysis (PCA). Metabolite data from isogenic pairs of MSSA and MRSA strains were further compared without and with sub-lethal levels of methicillin exposure, with metabolic pathway analyses additionally performed. Both analyses suggested that the metabolic activities of MSSA strains were more susceptible to the perturbation of the sub-lethal levels of methicillin exposure compared to the MRSA strains. Copyright © 2016 Elsevier B.V. All rights reserved.
INTEGRATING BIOANALYTICAL CAPABILITY IN AN ENVIRONMENTAL ANALYTICAL LABORATORY
The product is a book chapter which is an introductory and summary chapter for the reference work "Immunoassays and Other Bianalytical Techniques" to be published by CRC Press, Taylor and Francis Books. The chapter provides analytical chemists information on new techni...
Automated solid-phase extraction workstations combined with quantitative bioanalytical LC/MS.
Huang, N H; Kagel, J R; Rossi, D T
1999-03-01
An automated solid-phase extraction workstation was used to develop, characterize and validate an LC/MS/MS method for quantifying a novel lipid-regulating drug in dog plasma. Method development was facilitated by workstation functions that allowed wash solvents of varying organic composition to be mixed and tested automatically. Precision estimates for this approach were within 9.8% relative standard deviation (RSD) across the calibration range. Accuracy for replicate determinations of quality controls was between -7.2 and +6.2% relative error (RE) over 5-1,000 ng/ml(-1). Recoveries were evaluated for a wide variety of wash solvents, elution solvents and sorbents. Optimized recoveries were generally > 95%. A sample throughput benchmark for the method was approximately equal 8 min per sample. Because of parallel sample processing, 100 samples were extracted in less than 120 min. The approach has proven useful for use with LC/MS/MS, using a multiple reaction monitoring (MRM) approach.
Jager, Nynke Gl; Rosing, Hilde; Schellens, Jan Hm; Beijnen, Jos H
2014-01-01
We developed an HPLC-MS/MS method to quantify tamoxifen (2.5-250 ng/ml) and its metabolite (Z)-endoxifen (0.5-50 ng/ml) in dried blood spots. Extraction recovery of both analytes from Whatman DMPK-A cards was 100% and consistent over time, however, recovery of (Z)-endoxifen from Whatman 903 cards was incomplete and increased upon storage. When SDS, a constituent of the DMPK-A coating, was present during the extraction, recovery improved. The method using DMPK-A cards was validated using bioanalytical guidelines. Additionally, influence of haematocrit (0.29-0.48 L/L), spot volume (20-50 µl) and homogeneity was within limits and both analytes were stable in DBS for at least 4 months. The method for the quantification of tamoxifen and (Z)-endoxifen in DBS collected on DMPK-A cards was successfully validated.
NASA Astrophysics Data System (ADS)
Brassard, D.; Clime, L.; Daoud, J.; Geissler, M.; Malic, L.; Charlebois, D.; Buckley, N.; Veres, T.
2018-02-01
An innovative centrifugal microfluidic universal platform for remote bio-analytical assays automation required in life-sciences research and medical applications, including purification and analysis from body fluids of cellular and circulating markers.
ERIC Educational Resources Information Center
Niagi, John; Warner, John; Andreesco, Silvana
2007-01-01
The study describes the development of new biosensors based on metal nanoparticles because of its high surface area and large binding ability. The adopted procedure is extremely simple and versatile and can be used in various applications of electrochemistry.
Bioanalytical Applications of Fluorenscence Quenching.
1986-02-10
fluorescence is observed. Thus, ’ the enzymes (in this case phosphorylase C) which can hydrolyze the lecithin , can be determined by measuring the released...encapsulated in lecithin liposomes. In this manner the fluorescence is self-quenched. When the liposomes are disrupted, the dye is released and
Płotka, Justyna; Narkowicz, Sylwia; Polkowska, Zaneta; Biziuk, Marek; Namieśnik, Jacek
2014-01-01
The use of addictive substances during pregnancy is a serious social problem, not only because of effects on the health of the woman and child, but also because drug or alcohol dependency detracts from child care and enhances the prospect of child neglect and family breakdown. Developing additive substance abuse treatment programs for pregnant women is socially important and can help ensure the health of babies, prevent subsequent developmental and behavioral problems (i.e., from intake of alcohol or other additive substances such as methamphetamine, cocaine,or heroine) and can reduce addiction costs to society. Because women of childbearing age often abuse controlled substances during their pregnancy, it is important to undertake biomonitoring of these substances in biological samples taken from the pregnant or nursing mother (e.g., blood, urine,hair, breast milk, sweat, oral fluids, etc.), from the fetus and newborn (e.g., meconium,cord blood, neonatal hair and urine) and from both the mother and fetus (i.e.,amniotic fluids and placenta). The choice of specimens to be analyzed is determined by many factors; however, the most important is knowledge of the chemical and physical characteristics of a substance and the route of it administration. Maternal and neonatal biological materials reflect exposures that occur over a specific time period, and each of these biological specimens has different advantages and disadvantages,in terms of accuracy, time window of exposure and cost/benefit ratio.Sampling the placenta may be the most important biomonitoring choice for assessing in utero exposure to addictive substances. The use of the placenta in scientific research causes a minimum of ethical problems, partly because its sampling is noninvasive, causes no harm to mother or child, and partly because, in any case,placentas are discarded and incinerated after birth. Such samples, when properly analyzed, may provide key essential information about fetal exposure to toxic substances, and may provide the groundwork for protecting the fetus or newborn and the mother from further damage.Several sensitive and specific bioanalytical methods are commonly utilized to accurately measure for drug biomarkers of in utero drug exposure. Moreover, several immunoassay methods are used to rapidly screen for drugs in many biological specimen types. However, results from immunoassays should be carefully interpreted,and should be confirmed by more specific and sensitive chromatographic methods, such as GC-MS or LC-MS. Although techniques for analysis of addictive substances are still being developed or are being refined, current methods are efficient and sensitive and provide valuable information on human exposures to addictive substances and their metabolites.
"Print-n-Shrink" technology for the rapid production of microfluidic chips and protein microarrays.
Sollier, Kevin; Mandon, Céline A; Heyries, Kevin A; Blum, Loïc J; Marquette, Christophe A
2009-12-21
An innovative method for the production of microfluidic chips integrating protein spots is described. The technology, called "Print-n-Shrink", is based on the screen-printing of a microfluidic design (using a dielectric ink) onto Polyshrink polystyrene sheets. The initial print which has a minimum size of 15 microm (height) x 230 microm (width) is thermally treated (30 seconds, 163 degrees C) to shrink and generate features of 85 microm (height) x 100 microm (width). Concomitantly, proteins such as monoclonal antibodies or cellular adhesion proteins are spotted onto the Polyshrink sheets and shrunk together with the microfluidic design, creating a complete biochip integrating both complex microfluidic designs and protein spots for bioanalytical applications.
Li, Fumin; Wang, Jun; Jenkins, Rand
2016-05-01
There is an ever-increasing demand for high-throughput LC-MS/MS bioanalytical assays to support drug discovery and development. Matrix effects of sofosbuvir (protonated) and paclitaxel (sodiated) were thoroughly evaluated using high-throughput chromatography (defined as having a run time ≤1 min) under 14 elution conditions with extracts from protein precipitation, liquid-liquid extraction and solid-phase extraction. A slight separation, in terms of retention time, between underlying matrix components and sofosbuvir/paclitaxel can greatly alleviate matrix effects. High-throughput chromatography, with proper optimization, can provide rapid and effective chromatographic separation under 1 min to alleviate matrix effects and enhance assay ruggedness for regulated bioanalysis.
Hebert, Armelle; Feliers, Cedric; Lecarpentier, Caroline; Neale, Peta A; Schlichting, Rita; Thibert, Sylvie; Escher, Beate I
2018-04-01
Drinking water can contain low levels of micropollutants, as well as disinfection by-products (DBPs) that form from the reaction of disinfectants with organic and inorganic matter in water. Due to the complex mixture of trace chemicals in drinking water, targeted chemical analysis alone is not sufficient for monitoring. The current study aimed to apply in vitro bioassays indicative of adaptive stress responses to monitor the toxicological profiles and the formation of DBPs in three drinking water distribution systems in France. Bioanalysis was complemented with chemical analysis of forty DBPs. All water samples were active in the oxidative stress response assay, but only after considerable sample enrichment. As both micropollutants in source water and DBPs formed during treatment can contribute to the effect, the bioanalytical equivalent concentration (BEQ) approach was applied for the first time to determine the contribution of DBPs, with DBPs found to contribute between 17 and 58% of the oxidative stress response. Further, the BEQ approach was also used to assess the contribution of volatile DBPs to the observed effect, with detected volatile DBPs found to have only a minor contribution as compared to the measured effects of the non-volatile chemicals enriched by solid-phase extraction. The observed effects in the distribution systems were below any level of concern, quantifiable only at high enrichment and not different from bottled mineral water. Integrating bioanalytical tools and the BEQ mixture model for monitoring drinking water quality is an additional assurance that chemical monitoring is not overlooking any unknown chemicals or transformation products and can help to ensure chemically safe drinking water. Copyright © 2017. Published by Elsevier Ltd.
Gu, Huidong; Liu, Guowen; Wang, Jian; Aubry, Anne-Françoise; Arnold, Mark E
2014-09-16
A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (x). The weighting factor of 1, 1/x, or 1/x(2) should be selected if, over the entire concentration range, σ is a constant, σ(2) is proportional to x, or σ is proportional to x, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/x(2) should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors were unstable. It was also found that there was a very insignificant impact on the concentrations reported with calibration curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/x(2) and 1/y(2) was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm.
Brilliant Sm, Eu, Tb and Dy chiral lanthanide complexes withstrong circularly polarized luminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petoud, Stephane; Muller, Gilles; Moore, Evan G.
The synthesis, characterization and luminescent behavior of trivalent Sm, Eu, Dy and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g{sub lum}, recorded for the Eu(III) complexmore » is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.« less
Rodrigo, Daniel; Tittl, Andreas; Ait-Bouziad, Nadine; John-Herpin, Aurelian; Limaj, Odeta; Kelly, Christopher; Yoo, Daehan; Wittenberg, Nathan J; Oh, Sang-Hyun; Lashuel, Hilal A; Altug, Hatice
2018-06-04
A multitude of biological processes are enabled by complex interactions between lipid membranes and proteins. To understand such dynamic processes, it is crucial to differentiate the constituent biomolecular species and track their individual time evolution without invasive labels. Here, we present a label-free mid-infrared biosensor capable of distinguishing multiple analytes in heterogeneous biological samples with high sensitivity. Our technology leverages a multi-resonant metasurface to simultaneously enhance the different vibrational fingerprints of multiple biomolecules. By providing up to 1000-fold near-field intensity enhancement over both amide and methylene bands, our sensor resolves the interactions of lipid membranes with different polypeptides in real time. Significantly, we demonstrate that our label-free chemically specific sensor can analyze peptide-induced neurotransmitter cargo release from synaptic vesicle mimics. Our sensor opens up exciting possibilities for gaining new insights into biological processes such as signaling or transport in basic research as well as provides a valuable toolkit for bioanalytical and pharmaceutical applications.
Biolabeling with 2,4-dichlorophenoxyacetic acid derivatives: the 2,4-D tag.
Bade, Steffen; Röckendorf, Niels; Franek, Milan; Gorris, Hans H; Lindner, Buko; Olivier, Verena; Schaper, Klaus-Jürgen; Frey, Andreas
2009-12-01
Many bioanalytic and diagnostic procedures rely on labels with which the molecule of interest can be tracked in or discriminated from accompanying like substances. Herein, we describe a new labeling and detection system based on derivatives of 2,4-dichlorophenoxyacetic acid (2,4-D) and anti-2,4-D antibodies. The 2,4-D system is highly sensitive with a K(D) of 7 x 10(-11) M for the hapten-antibody pair, can be used on a large variety of biomolecules such as proteins, peptides, carbohydrates, and nucleic acids, is not hampered by endogenous backgrounds because 2,4-D is a xenobiotic, and is robust because 2,4-D is a very stable compound that withstands the conditions of most reactions usually performed on biomolecules. With this unique blend of properties, the 2,4-D system compares favorably with its rivals digoxigenin (DIG)/anti-DIG and biotin/(strept)avidin and provides an interesting and powerful tool in biomolecular labeling.
Optofluidic bioanalysis: fundamentals and applications
Ozcelik, Damla; Cai, Hong; Leake, Kaelyn D.; Hawkins, Aaron R.; Schmidt, Holger
2017-01-01
Over the past decade, optofluidics has established itself as a new and dynamic research field for exciting developments at the interface of photonics, microfluidics, and the life sciences. The strong desire for developing miniaturized bioanalytic devices and instruments, in particular, has led to novel and powerful approaches to integrating optical elements and biological fluids on the same chip-scale system. Here, we review the state-of-the-art in optofluidic research with emphasis on applications in bioanalysis and a focus on waveguide-based approaches that represent the most advanced level of integration between optics and fluidics. We discuss recent work in photonically reconfigurable devices and various application areas. We show how optofluidic approaches have been pushing the performance limits in bioanalysis, e.g. in terms of sensitivity and portability, satisfying many of the key requirements for point-of-care devices. This illustrates how the requirements for bianalysis instruments are increasingly being met by the symbiotic integration of novel photonic capabilities in a miniaturized system. PMID:29201591
Menz, Jakob; Toolaram, Anju Priya; Rastogi, Tushar; Leder, Christoph; Olsson, Oliver; Kümmerer, Klaus; Schneider, Mandy
2017-01-01
Transformation products (TPs) emerging from incomplete degradation of micropollutants in aquatic systems can retain the biological activity of the parent compound, or may even possess new unexpected toxic properties. The chemical identities of these substances remain largely unknown, and consequently, the risks caused by their presence in the water cycle cannot be assessed thoroughly. In this study, a combined approach for the proactive identification of hazardous elements in the chemical structures of TPs, comprising analytical, bioanalytical and computational methods, was assessed by the example of the pharmaceutically active micropollutant propranolol (PPL). PPL was photo-transformed using ultraviolet (UV) irradiation and 115 newly formed TPs were monitored in the reaction mixtures by LC-MS analysis. The reaction mixtures were screened for emerging effects using a battery of in vitro bioassays and the occurrence of cytotoxic and mutagenic activities in bacteria was found to be significantly correlated with the occurrence of specific TPs during the treatment process. The follow-up analysis of structure-activity-relationships further illustrated that only small chemical transformations, such as the hydroxylation or the oxidative opening of an aromatic ring system, could substantially alter the biological effects of micropollutants in aquatic systems. In conclusion, more efforts should be made to prevent the occurrence and transformation of micropollutants in the water cycle and to identify the principal degradation pathways leading to their toxicological activation. With regard to the latter, the judicious combination of bioanalytical and computational tools represents an appealing approach that should be developed further. Copyright © 2016 Elsevier Ltd. All rights reserved.
78 FR 56239 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-12
... Integrated Review Group; Molecular and Cellular. Endocrinology Study Section Date: October 8, 2013. Time: 8... Molecular Sciences and Training Integrated Review Group; Enabling Bioanalytical and Imaging Technologies...: Genes, Genomes, and Genetics Integrated Review Group; Genetics of Health and Disease Study Section. Date...
Duo, Jia; Dong, Huijin; DeSilva, Binodh; Zhang, Yan J
2013-07-01
Sample dilution and reagent pipetting are time-consuming steps in ligand-binding assays (LBAs). Traditional automation-assisted LBAs use assay-specific scripts that require labor-intensive script writing and user training. Five major script modules were developed on Tecan Freedom EVO liquid handling software to facilitate the automated sample preparation and LBA procedure: sample dilution, sample minimum required dilution, standard/QC minimum required dilution, standard/QC/sample addition, and reagent addition. The modular design of automation scripts allowed the users to assemble an automated assay with minimal script modification. The application of the template was demonstrated in three LBAs to support discovery biotherapeutic programs. The results demonstrated that the modular scripts provided the flexibility in adapting to various LBA formats and the significant time saving in script writing and scientist training. Data generated by the automated process were comparable to those by manual process while the bioanalytical productivity was significantly improved using the modular robotic scripts.
NASA Astrophysics Data System (ADS)
Ford, Sean M.; McCandless, Andrew B.; Liu, Xuezhu; Soper, Steven A.
2001-09-01
In this paper we present embossing tools that were fabricated using both UV and X-ray lithography. The embossing tools created were used to emboss microfluidic channels for bioanalytical applications. Specifically, two tools were fabricated. One, using x-ray lithography, was fabricated for electrophoretic separations of DNA restriction fragment analysis. A second tool, fabricated using SU8, was designed for micro PCR applications. Depths of both tools were approximately 100 micrometers . Both tools were made by directly electroforming nickel on a stainless steel base. Fabrication time for the tool fabricated using x-ray lithography was less than 1 week, and largely depended on the availability of the x-ray source. The SU8 embossing tool was fabricated in less than 24 hours. The resulting nickel electroforms from both processes were extremely robust and did not fail under embossing conditions required for PMMA and/or polycarbonate. Some problems removing SU8 after electroforming were sen for smaller size gaps between nickel structures.
Hoff, Rodrigo Barcellos; Rübensam, Gabriel; Jank, Louise; Barreto, Fabiano; Peralba, Maria do Carmo Ruaro; Pizzolato, Tânia Mara; Silvia Díaz-Cruz, M; Barceló, Damià
2015-01-01
In residue analysis of veterinary drugs in foodstuff, matrix effects are one of the most critical points. This work present a discuss considering approaches used to estimate, minimize and monitoring matrix effects in bioanalytical methods. Qualitative and quantitative methods for estimation of matrix effects such as post-column infusion, slopes ratios analysis, calibration curves (mathematical and statistical analysis) and control chart monitoring are discussed using real data. Matrix effects varying in a wide range depending of the analyte and the sample preparation method: pressurized liquid extraction for liver samples show matrix effects from 15.5 to 59.2% while a ultrasound-assisted extraction provide values from 21.7 to 64.3%. The matrix influence was also evaluated: for sulfamethazine analysis, losses of signal were varying from -37 to -96% for fish and eggs, respectively. Advantages and drawbacks are also discussed considering a workflow for matrix effects assessment proposed and applied to real data from sulfonamides residues analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
2010-01-01
Background The Worldwide Antimalarial Resistance Network (WWARN) is a global collaboration to support the objective that anyone affected by malaria receives effective and safe drug treatment. The Pharmacology module aims to inform optimal anti-malarial drug selection. There is an urgent need to define the drug exposure - effect relationship for most anti-malarial drugs. Few anti-malarials have had their therapeutic blood concentration levels defined. One of the main challenges in assessing safety and efficacy data in relation to drug concentrations is the comparability of data generated from different laboratories. To explain differences in anti-malarial pharmacokinetics in studies with different measurement laboratories it is necessary to confirm the accuracy of the assay methods. This requires the establishment of an external quality assurance process to assure results that can be compared. This paper describes this process. Methods The pharmacology module of WWARN has established a quality assurance/quality control (QA/QC) programme consisting of two separate components: 1. A proficiency testing programme where blank human plasma spiked with certified reference material (CRM) in different concentrations is sent out to participating bioanalytical laboratories. 2. A certified reference standard programme where accurately weighed amounts of certified anti-malarial reference standards, metabolites, and internal standards are sent to participating bioanalytical and in vitro laboratories. Conclusion The proficiency testing programme is designed as a cooperative effort to help participating laboratories assess their ability to carry out drug analysis, resolve any potential problem areas and to improve their results - and, in so doing, to improve the quality of anti-malarial pharmacokinetic data published and shared with WWARN. By utilizing the same source of standards for all laboratories, it is possible to minimize bias arising from poor quality reference standards. By providing anti-malarial drug standards from a central point, it is possible to lower the cost of these standards. PMID:21184684
NIR fluorescent dyes: versatile vehicles for marker and probe applications
NASA Astrophysics Data System (ADS)
Patonay, Gabor; Chapman, Gala; Beckford, Garfield; Henary, Maged
2013-02-01
The use of the NIR spectral region (650-900 nm) is advantageous due to the inherently lower background interference and the high molar absorptivities of NIR chromophores. Near-Infrared (NIR) dyes are increasingly used in the biological and medical field. The binding characteristics of NIR dyes to biomolecules are possibly controlled by several factors, including hydrophobicity, size and charge just to mention a few parameters. Binding characteristics of symmetric carbocyanines and found that the hydrophobic nature of the NIR dye is only partially responsible for the binding strength. Upon binding to biomolecules significant fluorescence enhancement can be observed for symmetrical carbocyanines. This fluorescence amplification facilitates the detection of the NIR dye and enhances its utility as NIR reporter. This manuscript discusses some probe and marker applications of such NIR fluorescent dyes. One application discussed here is the use of NIR dyes as markers. For labeling applications the fluorescence intensity of the NIR fluorescent label can significantly be increased by enclosing several dye molecules in nanoparticles. To decrease self quenching dyes that have relatively large Stokes' shift needs to be used. This is achieved by substituting meso position halogens with amino moiety. This substitution can also serve as a linker to covalently attach the dye molecule to the nanoparticle backbone. We report here on the preparation of NIR fluorescent silica nanoparticles. Silica nanoparticles that are modified with aminoreactive moieties can be used as bright fluorescent labels in bioanalytical applications. A new bioanalytical technique to detect and monitor the catalytic activity of the sulfur assimilating enzyme using NIR dyes is reported as well. In this spectroscopic bioanalytical assay a family of Fischer based n-butyl sulfonate substituted dyes that exhibit distinct variation in absorbance and fluorescence properties and strong binding to serum albumin as its sulfonic acid moiety is modified to less water soluble moiety was identified. In polar solvents, these water soluble compounds are strongly fluorescent, however form the less soluble aggregated species with virtual loss of fluorescence when the sulfonate groups are cleaved by enzymatic activity to form the corresponding straight chain alkyl aldehyde derivatives. To achieve this conversion in vitro photo-reduced riboflavin mononucleotide (FMN) with a glucose/ glucose-oxygenase oxygen scavenging system was utilized. The reduced FMN serves as a key substrate in the enzymatic desulfonation. Once the FMNH2 was produced the desulfonation reaction was characterized by using Laser Induced Fluorescence Capillary Zone Electropheresis (LIF-CZE). This method can be utilized as an assay to detect the enzyme activity in vitro with the possibilities of in vivo applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... with this standard by using a well-designed filtration system. Manufacturers and engineers cannot...) Embryos. Environmental Toxicology and Chemistry. 26:708-716. 5. EPA. (2010) Material Characterization of...) Ecotoxicity and Analysis of Nanomaterials in the Aquatic Environment. Analytical and Bioanalytical Chemistry...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Nanoparticle-based biologic mimetics
Cliffel, David E.; Turner, Brian N.; Huffman, Brian J.
2009-01-01
Centered on solid chemistry foundations, biology and materials science have reached a crossroad where bottom-up designs of new biologically important nanomaterials are a reality. The topics discussed here present the interdisciplinary field of creating biological mimics. Specifically, this discussion focuses on mimics that are developed using various types of metal nanoparticles (particularly gold) through facile synthetic methods. These methods conjugate biologically relevant molecules, e.g., small molecules, peptides, proteins, and carbohydrates, in conformationally favorable orientations on the particle surface. These new products provide stable, safe, and effective substitutes for working with potentially hazardous biologicals for applications such as drug targeting, immunological studies, biosensor development, and biocatalysis. Many standard bioanalytical techniques can be used to characterize and validate the efficacy of these new materials, including quartz crystal microbalance (QCM), surface plasmon resonance (SPR), and enzyme-linked immunosorbent assay (ELISA). Metal nanoparticle–based biomimetics continue to be developed as potential replacements for the native biomolecule in applications of immunoassays and catalysis. PMID:20049778
Sahu, Kapendra; Siddiqui, Anees A; Shaharyar, Mohammad; Ahmad, Niyaz; Anwar, Mohammad; Ahmad, Farhan J
2013-07-01
A rapid bioanalytical method was evaluated for the simultaneous determination of piracetam and its metabolite (M1) in human microsomal preparations by fast ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). In addition, a validated method of M1 in rat plasma was developed and successfully applied on pharmacokinetic studies. The present study was carried out to determine the metabolic pathways of piracetam for phase I metabolism and used cytochrome P450 isoforms responsible for the piracetam metabolism in human liver microsomes (HLMs). While additional potential metabolites of piracetam were suggested by computer-modeling. The resulting 2-(2-oxopyrrolidin-1-yl) acetic acid was the sole metabolite detected after the microsomal treatment. The amide hydrolysis mainly underwent to form a metabolite i.e., 2-(2-oxopyrrolidin-1-yl) acetic acid (M1). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Spectroscopic approach for dynamic bioanalyte tracking with minimal concentration information
NASA Astrophysics Data System (ADS)
Spegazzini, Nicolas; Barman, Ishan; Dingari, Narahara Chari; Pandey, Rishikesh; Soares, Jaqueline S.; Ozaki, Yukihiro; Dasari, Ramachandra Rao
2014-11-01
Vibrational spectroscopy has emerged as a promising tool for non-invasive, multiplexed measurement of blood constituents - an outstanding problem in biophotonics. Here, we propose a novel analytical framework that enables spectroscopy-based longitudinal tracking of chemical concentration without necessitating extensive a priori concentration information. The principal idea is to employ a concentration space transformation acquired from the spectral information, where these estimates are used together with the concentration profiles generated from the system kinetic model. Using blood glucose monitoring by Raman spectroscopy as an illustrative example, we demonstrate the efficacy of the proposed approach as compared to conventional calibration methods. Specifically, our approach exhibits a 35% reduction in error over partial least squares regression when applied to a dataset acquired from human subjects undergoing glucose tolerance tests. This method offers a new route at screening gestational diabetes and opens doors for continuous process monitoring without sample perturbation at intermediate time points.
Zheng, Hong; Qiu, Feng; Zhao, Hui; Chen, Jie; Wang, Lei; Zou, Haiyan
2018-06-07
A specific, sensitive and rapid ultra high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) method was developed and validated for simultaneous determination of six major bioactive constituents in Rhizoma Panacis Japonici (RPJ), including oleanolic acid-type chikusetsusaponin V, IV, hemsgiganoside B, damarane-type ginsenoside Rb1, Rg1 and Re in rat plasma, using estazolam as the internal standard (IS). Plasma samples were pretreated with methanol/acetonitrile (1:1, V/V) for protein precipitation. Chromatographic separation was performed on an Agilent Eclipse Plus C 18 column, using a gradient mobile phase consisting of methanol and 0.1% formic acid aqueous solution. A tandem mass spectrometric detection with an electrospray ionization (ESI) interface was conducted via multiple reaction monitoring (MRM) under positive ionization mode. For all the six analytes of interest, the calibration curves were linear in the concentration range of 2.00-500 ng/mL with r ≥ 0.9956. The intra- and inter-day precisions (in terms of relative standard deviation, RSD) were all below 10.2% and the accuracies (in terms of relative error, RE) were within -5.0% to 6.3% for all six analytes. Extraction recovery, matrix effect and stability data all met the acceptance criteria of FDA guideline for bioanalytical method validation. The developed method was applied to the pharmacokinetic study in rat. After oral administration of the total saponins from RPJ, six analytes were quickly absorbed into the blood and presented the phenomenon of double peaks. Among the six analytes, ginsenoside Rb1 showed slowest elimination from plasma with a t 1/2z of 16.00 h, while that of the others were between 1.72 and 5.62 h. In conclusion, the developed method was successfully used to simultaneously analyze major oleanolic acid-type and damarane-type saponins of RPJ in rat plasma after oral administration. Copyright © 2018. Published by Elsevier B.V.
Genetically modified crops: detection strategies and biosafety issues.
Kamle, Suchitra; Ali, Sher
2013-06-15
Genetically modified (GM) crops are increasingly gaining acceptance but concurrently consumers' concerns are also increasing. The introduction of Bacillus thuringiensis (Bt) genes into the plants has raised issues related to its risk assessment and biosafety. The International Regulations and the Codex guidelines regulate the biosafety requirements of the GM crops. In addition, these bodies synergize and harmonize the ethical issues related to the release and use of GM products. The labeling of GM crops and their products are mandatory if the genetically modified organism (GMO) content exceeds the levels of a recommended threshold. The new and upcoming GM crops carrying multiple stacked traits likely to be commercialized soon warrant sensitive detection methods both at the DNA and protein levels. Therefore, traceability of the transgene and its protein expression in GM crops is an important issue that needs to be addressed on a priority basis. The advancement in the area of molecular biology has made available several bioanalytical options for the detection of GM crops based on DNA and protein markers. Since the insertion of a gene into the host genome may even cause copy number variation, this may be uncovered using real time PCR. Besides, assessing the exact number of mRNA transcripts of a gene, correlation between the template activity and expressed protein may be established. Here, we present an overview on the production of GM crops, their acceptabilities, detection strategies, biosafety issues and potential impact on society. Further, overall future prospects are also highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.
LC-MS/MS assay for the quantitation of the ATR kinase inhibitor VX-970 in human plasma.
Kiesel, Brian F; Scemama, Jonas; Parise, Robert A; Villaruz, Liza; Iffland, Andre; Doyle, Austin; Ivy, Percy; Chu, Edward; Bakkenist, Christopher J; Beumer, Jan H
2017-11-30
DNA damaging chemotherapy and radiation are widely used standard-of-care modalities for the treatment of cancer. Nevertheless, the outcome for many patients remains poor and this may be attributed, at least in part, to highly effective DNA repair mechanisms. Ataxia-telangiectasia mutated and Rad3-related (ATR) is a key regulator of the DNA-damage response (DDR) that orchestrates the repair of damaged replication forks. ATR is a serine/threonine protein kinase and ATR kinase inhibitors potentiate chemotherapy and radiation. The ATR kinase inhibitor VX-970 (NSC 780162) is in clinical development in combination with primary cytotoxic agents and as a monotherapy for tumors harboring specific mutations. We have developed and validated an LC-MS/MS assay for the sensitive, accurate and precise quantitation of VX-970 in human plasma. A dilute-and-shoot method was used to precipitate proteins followed by chromatographic separation with a Phenomenex Polar-RP 80Å (4μm, 50×2mm) column and a gradient acetonitrile-water mobile phase containing 0.1% formic acid from a 50μL sample volume. Detection was achieved using an API 4000 mass spectrometer using electrospray positive ionization mode. The assay was linear from 3 to 5,000ng/mL, proved to be accurate (94.6-104.2%) and precise (<8.4% CV), and fulfilled criteria from the FDA guidance for bioanalytical method validation. This LC-MS/MS assay will be a crucial tool in defining the clinical pharmacokinetics and pharmacology of VX-970 as it progresses through clinical development. Copyright © 2017 Elsevier B.V. All rights reserved.
Brennan, Jennifer C; Bassal, Arzoo; He, Guochun; Denison, Michael S
2016-01-01
Estrogenic endocrine-disrupting chemicals are found in environmental and biological samples, commercial and consumer products, food, and numerous other sources. Given their ubiquitous nature and potential for adverse effects, a critical need exists for rapidly detecting these chemicals. The authors developed an estrogen-responsive recombinant human ovarian (BG1Luc4E2) cell line recently accepted by the US Environmental Protection Agency (USEPA) and Organisation for Economic Co-operation and Development (OECD) as a bioanalytical method to detect estrogen receptor (ER) agonists/antagonists. Unfortunately, these cells appear to contain only 1 of the 2 known ER isoforms, ERα but not ERβ, and the differential ligand selectivity of these ERs indicates that the currently accepted screening method only detects a subset of total estrogenic chemicals. To improve the estrogen screening bioassay, BG1Luc4E2 cells were stably transfected with an ERβ expression plasmid and positive clones identified using ERβ-selective ligands (genistein and Br-ERβ-041). A highly responsive clone (BG1LucERβc9) was identified that exhibited greater sensitivity and responsiveness to ERβ-selective ligands than BG1Luc4E2 cells, and quantitative reverse-transcription polymerase chain reaction confirmed the presence of ERβ expression in these cells. Screening of pesticides and industrial chemicals identified chemicals that preferentially stimulated ERβ-dependent reporter gene expression. Together, these results not only demonstrate the utility of this dual-ER recombinant cell line for detecting a broader range of estrogenic chemicals than the current BG1Luc4E2 cell line, but screening with both cell lines allows identification of ERα- and ERβ-selective chemicals. © 2015 SETAC.
Brennan, Jennifer C.; Bassal, Arzoo; He, Guochun; Denison, Michael S.
2016-01-01
Estrogenic endocrine disrupting chemicals are found in environmental and biological samples, commercial and consumer products, food, and numerous other sources. Given their ubiquitous nature and potential for adverse effects, there is a critical need for rapidly detecting these chemicals. We developed an estrogen-responsive recombinant human ovarian (BG1Luc4E2) cell line recently accepted by the USEPA and OECD as a bioanalytical method to detect estrogen receptor (ER) agonists/antagonists. Unfortunately, these cells appear to contain only one of the two known ER isoforms, ERα but not ERβ, and the differential ligand selectivity of these ERs indicates that the currently accepted screening method only detects a subset of total estrogenic chemicals. To improve the estrogen screening bioassay, BG1Luc4E2 cells were stably transfected with an ERβ expression plasmid and positive clones identified using ERβ-selective ligands (genistein and Br-ERβ-041). A highly responsive clone (BG1LucERβc9) was identified that exhibited greater sensitivity and responsiveness to ERβ-selective ligands than BG1Luc4E2 cells and qRT-PCR confirmed the presence of ERβ expression in these cells. Screening of pesticides and industrial chemicals identified chemicals that preferentially stimulated ERβ-dependent reporter gene expression. Together, these results not only demonstrate the utility of this dual ER recombinant cell line for detecting a broader range of estrogenic chemicals than the current BG1Luc4E2 cell line, but screening with both cell lines allows identification of ERα and ERβ-selective chemicals. PMID:26139245
Shen, Guoxiang; Hong, Jin-Liern; Kong, Ah-Ng Tony
2007-06-01
A highly sensitive and simple high-performance liquid chromatographic (HPLC) assay has been developed and validated for the quantification of dibenzoylmethane (DBM) in rat plasma. DBM and internal standard (I.S.) 1-(5-chloro-2-hydroxy-4-methylphenyl)-3-phenyl-1,3-propanedione (CHMPP) were extracted from rat plasma by ethyl acetate/methanol (95:5, v/v) and analyzed using reverse-phase gradient elution with a Phenomenex Gemini C18 5-mum column. A gradient of mobile phase (mobile phase A: water/methanol (80:20, v/v) with 0.1% TFA and mobile phase B: acetonitrile with 0.1% TFA) at a flow rate of 0.2 mL/min, and ultraviolet (UV) detection at 335 nm were utilized. The lower limit of quantification (LLOQ) using 50 microL rat plasma was 0.05 microg/mL. The calibration curve was linear over a concentration range of 0.05-20 microg/mL. The mean recoveries were 80.6+/-5.7, 83.4+/-1.6 and 77.1+/-3.4% with quality control (QC) level of 0.05, 1 and 20 microg/mL, respectively. Intra- and inter-day assay accuracy and precision fulfilled US FDA guidance for industry bioanalytical method validation. Stability studies showed that DBM was stable in rat plasma after 4h incubation at room temperature, one month storage at -80 degrees C and three freeze/thaw cycles, as well as in reconstitute buffer for 48 h at 4 degrees C. The utility of the assay was confirmed by the successful analysis of plasma samples from DBM pharmacokinetics studies in the rats after oral and intravenous administrations.
Gómez-Ríos, Germán Augusto; Liu, Chang; Tascon, Marcos; Reyes-Garcés, Nathaly; Arnold, Don W; Covey, Thomas R; Pawliszyn, Janusz
2017-04-04
In recent years, the direct coupling of solid phase microextraction (SPME) and mass spectrometry (MS) has shown its great potential to improve limits of quantitation, accelerate analysis throughput, and diminish potential matrix effects when compared to direct injection to MS. In this study, we introduce the open port probe (OPP) as a robust interface to couple biocompatible SPME (Bio-SPME) fibers to MS systems for direct electrospray ionization. The presented design consisted of minimal alterations to the front-end of the instrument and provided better sensitivity, simplicity, speed, wider compound coverage, and high-throughput in comparison to the LC-MS based approach. Quantitative determination of clenbuterol, fentanyl, and buprenorphine was successfully achieved in human urine. Despite the use of short extraction/desorption times (5 min/5 s), limits of quantitation below the minimum required performance levels (MRPL) set by the world antidoping agency (WADA) were obtained with good accuracy (≥90%) and linearity (R 2 > 0.99) over the range evaluated for all analytes using sample volumes of 300 μL. In-line technologies such as multiple reaction monitoring with multistage fragmentation (MRM 3 ) and differential mobility spectrometry (DMS) were used to enhance the selectivity of the method without compromising analysis speed. On the basis of calculations, once coupled to high throughput, this method can potentially yield preparation times as low as 15 s per sample based on the 96-well plate format. Our results demonstrated that Bio-SPME-OPP-MS efficiently integrates sampling/sample cleanup and atmospheric pressure ionization, making it an advantageous configuration for several bioanalytical applications, including doping in sports, in vivo tissue sampling, and therapeutic drug monitoring.
The future of novel diagnostics in medical mycology.
Teles, Fernando; Seixas, Jorge
2015-04-01
Several fungal diseases have become serious threats to human health and life, especially upon the advent of human immunodeficiency virus/AIDS epidemics and of other typical immunosuppressive conditions of modern life. Accordingly, the burden posed by these diseases and, concurrently, by intensive therapeutic regimens against these diseases has increased worldwide. Existing and available rapid tests for point-of-care diagnosis of important fungal diseases could enable the limitations of current laboratory methods for detection and identification of medically important fungi to be surpassed, both in low-income countries and for first-line diagnosis (screening) in richer countries. As with conventional diagnostic methods and devices, former immunodiagnostics have been challenged by molecular biology-based platforms, as a way to enhance the sensitivity and shorten the assay time, thus enabling early and more accurate diagnosis. Most of these tests have been developed in-house, without adequate validation and standardization. Another challenge has been the DNA extraction step, which is especially critical when dealing with fungi. In this paper, we have identified three major research trends in this field: (1) the application of newer biorecognition techniques, often applied in analytical chemistry; (2) the development of new materials with improved physico-chemical properties; and (3) novel bioanalytical platforms, allowing fully automated testing. Keeping up to date with the fast technological advances registered in this field, primarily at the proof-of-concept level, is essential for wise assessment of those that are likely to be more cost effective and, as already observed for bacterial and viral pathogens, may provide leverage to the current tepid developmental status of novel and improved diagnostics for medical mycology. © 2015 The Authors.
NASA Astrophysics Data System (ADS)
Yang, Chih-Tsung; Thierry, Benjamin
2015-12-01
Surface plasmon resonance (SPR) biosensing has been successfully applied for the label-free detection of a broad range of bioanalytes ranging from bacteria, cell, exosome, protein and nucleic acids. When it comes to the detection of small molecules or analytes found at low concentration, amplification schemes are desirable to enhance binding signals and in turn increase sensitivity. A number of SPR signal amplification schemes have been developed and validated; however, little effort has been devoted to understanding the effect of the SPR sensor structures on the amplification of binding signals and therefore on the overall sensing performance. The physical phenomenon of long-range SPR (LRSPR) relies on the propagation of coupled surface plasmonic waves on the opposite sides of a nanoscale-thick noble metal film suspended between two dielectrics with similar refractive indices. Importantly, as compared with commonly used conventional SPR (cSPR), LRSPR is not only characterized by a longer penetration depth of the plasmonic waves in the analyzed medium but also by a greater sensitivity to bulk refractive index changes. In this work, an immunoassay signal amplification platform based on horseradish peroxidase (HRP) catalyzed precipitation was utilized to investigate the sensing performance with regards to cSPR and LRSPR. The enzymatic precipitation of 3, 3'-diaminobenzidine tetrahydrochloride (DAB)/H2O2 was used to amplify SPR signals. The structure-function relationship of cSPR and LRSPR sensors is presented for both standard refractometric measurements and the enzymatic precipitation scheme. Experimental data shows that despite its inherent higher sensitivity to bulk refractive index changes and higher figure of merit, LRSPR was characterized by a lower angular sensitivity in the model enzymatic amplification scheme used here.
Wang, Shujie J; Wu, Steven T; Gokemeijer, Jochem; Fura, Aberra; Krishna, Murli; Morin, Paul; Chen, Guodong; Price, Karen; Wang-Iverson, David; Olah, Timothy; Weiner, Russell; Tymiak, Adrienne; Jemal, Mohammed
2012-01-01
High-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA) methods were developed for the quantification of a PEGylated scaffold protein drug in monkey plasma samples. The LC-MS/MS method was based on the extraction of the therapeutic protein with a water-miscible organic solvent and the subsequent trypsin digestion of the extract followed by the detection of a surrogate peptide. The assay was linear over a range of 10-3,000 ng/mL. The ELISA method utilized a therapeutic target-binding format in which the recombinant target antigen was used to capture the drug in the sample, followed by detection with an anti-PEG monoclonal antibody. The assay range was 30-2,000 ng/mL. A correlation study between the two methods was performed by measuring the drug concentrations in plasma samples from a single-dose pharmacokinetic (PK) study in cynomolgus monkeys following a 5-mg/kg subcutaneous administration (n = 4). In the early time points of the PK profile, the drug concentrations obtained by the LC-MS/MS method agreed very well with those obtained by the ELISA method. However, at later time points, the drug concentrations measured by the LC-MS/MS method were consistently higher than those measured by the ELISA method. The PK parameters calculated based on the concentration data showed that the two methods gave equivalent peak exposure (C(max)) at 24-48 h. However, the LC-MS/MS results exhibited about 1.53-fold higher total exposure (AUC(tot)) than the ELISA results. The discrepancy between the LC-MS/MS and ELISA results was investigated by conducting immunogenicity testing, anti-drug antibody (ADA) epitope mapping, and Western blot analysis of the drug concentrations coupled with Protein G separation. The results demonstrated the presence of ADA specific to the engineered antigen-binding region of the scaffold protein drug that interfered with the ability of the drug to bind to the target antigen used in the ELISA method. In the presence of the ADAs, the ELISA method measured only the active circulating drug (target-binding), while the LC-MS/MS method measured the total circulating drug. The work presented here indicates that the bioanalysis of protein drugs may be complicated owing to the presence of drug-binding endogenous components or ADAs in the post-dose (incurred) samples. The clear understanding of the behavior of different bioanalytical techniques vis-à-vis the potentially interfering components found in incurred samples is critical in selecting bioanalytical strategies for measuring protein drugs.
NASA Astrophysics Data System (ADS)
Cartlidge, Rhys; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald
2016-12-01
Behavioural alterations can occur as a result of a toxicant exposure at concentrations significantly lower than lethal effects that are commonly measured in acute toxicity testing. The use of alternating light and dark photoperiods to test phototactic responses of aquatic invertebrates in the presence of environmental contaminants provides an attractive analytical avenue. Quantification of phototactic responses represents a sublethal endpoint that can be employed as an early warning signal. Despite the benefits associated with the assessment of these endpoints, there is currently a lack of automated and miniaturized bioanalytical technologies to implement the development of toxicity testing with small aquatic species. In this study we present a proof-of-concept microfluidic Lab-on-a-Chip (LOC) platform for the assessment of rotifer swimming behavior in the presence of the toxicant copper sulfate. The device was designed to assess impact of toxicants at sub-lethal concentrations on freshwater crustacean Brachionus calyciflorus, testing behavioral endpoints such as animal swimming distance, speed and acceleration. The LOC device presented in this work enabled straightforward caging of microscopic crustaceans as well as non-invasive analysis of rapidly swimming animals in a focal plane of a video-microscopy system. The chip-based technology was fabricated using a new photolithography method that enabled formation of thick photoresist layers with minimal distortion. Photoresist molds were then employed for replica molding of LOC devices with poly(dimethylsiloxane) (PDMS) elastomer. The complete bioanalytical system consisted of: (i) microfluidic PDMS chip-based device; (ii) peristaltic microperfusion pumping manifold; (iii) miniaturized CMOS camera for video data acquisition; and (iv) video analysis software algorithms for quantification of changes in swimming behaviour of B. calyciflorus in response to reference toxicants.
Steinritz, Dirk; Striepling, Enno; Rudolf, Klaus-Dieter; Schröder-Kraft, Claudia; Püschel, Klaus; Hullard-Pulstinger, Andreas; Koller, Marianne; Thiermann, Horst; Gandor, Felix; Gawlik, Michael; John, Harald
2016-02-26
Sulfur mustard (SM) is a chemical warfare agent (CWA) that was first used in World War I and in several military conflicts afterwards. The threat by SM is still present even today due to remaining stockpiles, old and abandoned remainders all over the world as well as to its ease of synthesis. CWA are banned by the Chemical Weapons Convention (CWC) interdicting their development, production, transport, stockpiling and use and are subjected to controlled destruction. The present case report describes an accidental exposure of three workers that occurred during the destruction of SM. All exposed workers presented a characteristic SM-related clinical picture that started about 4h after exposure with erythema and feeling of tension of the skin at the upper part of the body. Later on, superficial blister and a burning phenomenon of the affected skin areas developed. Similar symptoms occurred in all three patients differing severity. One patient presented sustained skin affections at the gluteal region while another patient came up with affections of the axilla and genital region. Fortunately, full recovery was observed on day 56 after exposure except some little pigmentation changes that were evident even on day 154 in two of the patients. SM-exposure was verified for all three patients using bioanalytical GC MS and LC MS/MS based methods applied to urine and plasma. Urinary biotransformation products of the β-lyase pathway were detected until 5 days after poisoning whereas albumin-SM adducts could be found until day 29 underlining the beneficial role of adduct detection for post-exposure verification. In addition, we provide general recommendations for management and therapy in case of SM poisoning. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Macova, M; Escher, B I; Reungoat, J; Carswell, S; Chue, K Lee; Keller, J; Mueller, J F
2010-01-01
A bioanalytical test battery was used to monitor the removal efficiency of organic micropollutants during advanced wastewater treatment in the South Caboolture Water Reclamation Plant, Queensland, Australia. This plant treats effluent from a conventional sewage treatment plant for industrial water reuse. The aqueous samples were enriched using solid-phase extraction to separate some organic micropollutants of interest from metals, nutrients and matrix components. The bioassays were chosen to provide information on groups of chemicals with a common mode of toxic action. Therefore they can be considered as sum indicators to detect certain relevant groups of chemicals, not as the most ecologically or human health relevant endpoints. The baseline toxicity was quantified with the bioluminescence inhibition test using the marine bacterium Vibrio fischeri. The specific modes of toxic action that were targeted with five additional bioassays included aspects of estrogenicity, dioxin-like activity, genotoxicity, neurotoxicity, and phytotoxicity. While the accompanying publication discusses the treatment steps in more detail by drawing from the results of chemical analysis as well as the bioanalytical results, here we focus on the applicability and limitations of using bioassays for the purpose of determining the treatment efficacy of advanced water treatment and for water quality assessment in general. Results are reported in toxic equivalent concentrations (TEQ), that is, the concentration of a reference compound required to elicit the same response as the unknown and unidentified mixture of micropollutants actually present. TEQ proved to be useful and easily communicable despite some limitations and uncertainties in their derivation based on the mixture toxicity theory. The results obtained were reproducible, robust and sensitive. The TEQ in the influent ranged in the same order of magnitude as typically seen in effluents of conventional sewage treatment plants. In the initial steps of the treatment chain, no significant degradation of micropollutants was observed, and the high levels of dissolved organic carbon probably affected the outcome of the bioassays. The steps of coagulation/flocculation/dissolved air flotation/sand filtration and ozonation decreased the effect-based micropollutant burden significantly. (c) 2009 Elsevier Ltd. All rights reserved.
ICECAP: an integrated, general-purpose, automation-assisted IC50/EC50 assay platform.
Li, Ming; Chou, Judy; King, Kristopher W; Jing, Jing; Wei, Dong; Yang, Liyu
2015-02-01
IC50 and EC50 values are commonly used to evaluate drug potency. Mass spectrometry (MS)-centric bioanalytical and biomarker labs are now conducting IC50/EC50 assays, which, if done manually, are tedious and error-prone. Existing bioanalytical sample preparation automation systems cannot meet IC50/EC50 assay throughput demand. A general-purpose, automation-assisted IC50/EC50 assay platform was developed to automate the calculations of spiking solutions and the matrix solutions preparation scheme, the actual spiking and matrix solutions preparations, as well as the flexible sample extraction procedures after incubation. In addition, the platform also automates the data extraction, nonlinear regression curve fitting, computation of IC50/EC50 values, graphing, and reporting. The automation-assisted IC50/EC50 assay platform can process the whole class of assays of varying assay conditions. In each run, the system can handle up to 32 compounds and up to 10 concentration levels per compound, and it greatly improves IC50/EC50 assay experimental productivity and data processing efficiency. © 2014 Society for Laboratory Automation and Screening.
Luckwell, Jacquelynn; Denniff, Philip; Capper, Stephen; Michael, Paul; Spooner, Neil; Mallender, Philip; Johnson, Barry; Clegg, Sarah; Green, Mark; Ahmad, Sheelan; Woodford, Lynsey
2013-11-01
To ensure that PK data generated from DBS samples are of the highest quality, it is important that the paper substrate is uniform and does not unduly contribute to variability. This study investigated any within and between lot variations for four cellulose paper types: Whatman™ FTA(®) DMPK-A, -B and -C, and 903(®) (GE Healthcare, Buckinghamshire, UK). The substrates were tested to demonstrate manufacturing reproducibility (thickness, weight, chemical coating concentration) and its effect on the size of the DBS produced, and the quantitative data derived from the bioanalysis of human DBS samples containing six compounds of varying physicochemical properties. Within and between lot variations in paper thickness, mass and chemical coating concentration were within acceptable manufacturing limits. No variation in the spot size or bioanalytical data was observed. Bioanalytical results obtained for DBS samples containing a number of analytes spanning a range of chemical space are not affected by the lot used or by the location within a lot.
Cost-effective and business-beneficial computer validation for bioanalytical laboratories.
McDowall, Rd
2011-07-01
Computerized system validation is often viewed as a burden and a waste of time to meet regulatory requirements. This article presents a different approach by looking at validation in a bioanalytical laboratory from the business benefits that computer validation can bring. Ask yourself the question, have you ever bought a computerized system that did not meet your initial expectations? This article will look at understanding the process to be automated, the paper to be eliminated and the records to be signed to meet the requirements of the GLP or GCP and Part 11 regulations. This paper will only consider commercial nonconfigurable and configurable software such as plate readers and LC-MS/MS data systems rather than LIMS or custom applications. Two streamlined life cycle models are presented. The first one consists of a single document for validation of nonconfigurable software. The second is for configurable software and is a five-stage model that avoids the need to write functional and design specifications. Both models are aimed at managing the risk each type of software poses whist reducing the amount of documented evidence required for validation.
NASA Astrophysics Data System (ADS)
Raptis, Ioannis; Misiakos, Konstantinos; Makarona, Eleni; Salapatas, Alexandros; Petrou, Panagiota; Kakabakos, Sotirios; Botsialas, Athanasios; Jobst, Gerhard; Haasnoot, Willem; Fernandez-Alba, Amadeo; Lees, Michelle; Valamontes, Evangelos
2016-03-01
Optical biosensors have emerged in the past decade as the most promising candidates for portable, highly-sensitive bioanalytical systems that can be employed for in-situ measurements. In this work, a miniaturized optoelectronic system for rapid, quantitative, label-free detection of harmful species in food is presented. The proposed system has four distinctive features that can render to a powerful tool for the next generation of Point-of-Need applications, namely it accommodates the light sources and ten interferometric biosensors on a single silicon chip of a less-than-40mm2 footprint, each sensor can be individually functionalized for a specific target analyte, the encapsulation can be performed at the wafer-scale, and finally it exploits a new operation principle, Broad-band Mach-Zehnder Interferometry to ameliorate its analytical capabilities. Multi-analyte evaluation schemes for the simultaneous detection of harmful contaminants, such as mycotoxins, allergens and pesticides, proved that the proposed system is capable of detecting within short time these substances at concentrations below the limits imposed by regulatory authorities, rendering it to a novel tool for the near-future food safety applications.
Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
NASA Astrophysics Data System (ADS)
Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming
2013-06-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.
Semiconductor quantum dots for bioimaging and biodiagnostic applications.
Kairdolf, Brad A; Smith, Andrew M; Stokes, Todd H; Wang, May D; Young, Andrew N; Nie, Shuming
2013-01-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.
Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming
2013-01-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future. PMID:23527547
Recent advances in merging photonic crystals and plasmonics for bioanalytical applications.
Liu, Bing; Monshat, Hosein; Gu, Zhongze; Lu, Meng; Zhao, Xiangwei
2018-05-29
Photonic crystals (PhCs) and plasmonic nanostructures offer the unprecedented capability to control the interaction of light and biomolecules at the nanoscale. Based on PhC and plasmonic phenomena, a variety of analytical techniques have been demonstrated and successfully implemented in many fields, such as biological sciences, clinical diagnosis, drug discovery, and environmental monitoring. During the past decades, PhC and plasmonic technologies have progressed in parallel with their pros and cons. The merging of photonic crystals with plasmonics will significantly improve biosensor performances and enlarge the linear detection range of analytical targets. Here, we review the state-of-the-art biosensors that combine PhC and plasmonic nanomaterials for quantitative analysis. The optical mechanisms of PhCs, plasmonic crystals, and metal nanoparticles (NPs) are presented, along with their integration and potential applications. By explaining the optical coupling of photonic crystals and plasmonics, the review manifests how PhC-plasmonic hybrid biosensors can achieve the advantages, including high sensitivity, low cost, and short assay time as well. The review also discusses the challenges and future opportunities in this fascinating field.
Rood, Johannes J M; van Hoppe, Stephanie; Schinkel, Alfred H; Schellens, Jan H M; Beijnen, Jos H; Sparidans, Rolf W
2016-01-25
A validated simple, fast and sensitive bio-analytical assay for ibrutinib and its dihydrodiol metabolite in human and mouse plasma was set up. Sample preparation was performed by protein precipitation, and addition of the respective deuterated internal standards, followed by LC-MS/MS analysis. Separation was performed on a 3.5 μm particle-size, bridged ethylene hybrid column with gradient elution by 0.1% v/v formic acid and acetonitrile. The full eluate was transferred to an electrospray interface in positive ionization mode, and subsequently analyzed by a triple quadrupole mass spectrometer by selected reaction monitoring. The assay was validated in a 5-5000 ng/ml calibration range. Both ibrutinib and dihydrodiol-ibrutinib were deemed stable under refrigerated or frozen storage conditions. At room temperature, ibrutinib showed a not earlier described instability, and revealed rapid degradation at 37 °C. Finally, the assay was used for a pharmacokinetic study of plasma levels in treated FVB mice. Copyright © 2015 Elsevier B.V. All rights reserved.
A nanoporous gold membrane for sensing applications
Oo, Swe Zin; Silva, Gloria; Carpignano, Francesca; Noual, Adnane; Pechstedt, Katrin; Mateos, Luis; Grant-Jacob, James A.; Brocklesby, Bill; Horak, Peter; Charlton, Martin; Boden, Stuart A.; Melvin, Tracy
2016-01-01
Design and fabrication of three-dimensionally structured, gold membranes containing hexagonally close-packed microcavities with nanopores in the base, are described. Our aim is to create a nanoporous structure with localized enhancement of the fluorescence or Raman scattering at, and in the nanopore when excited with light of approximately 600 nm, with a view to provide sensitive detection of biomolecules. A range of geometries of the nanopore integrated into hexagonally close-packed assemblies of gold micro-cavities was first evaluated theoretically. The optimal size and shape of the nanopore in a single microcavity were then considered to provide the highest localized plasmon enhancement (of fluorescence or Raman scattering) at the very center of the nanopore for a bioanalyte traversing through. The optimized design was established to be a 1200 nm diameter cavity of 600 nm depth with a 50 nm square nanopore with rounded corners in the base. A gold 3D-structured membrane containing these sized microcavities with the integrated nanopore was successfully fabricated and ‘proof of concept’ Raman scattering experiments are described. PMID:26973809
Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel
2007-07-01
The optimized protocols of the bioanalytes separation, proteins and yeasts, dynamically modified by the nonionogenic tenside PEG pyrenebutanoate, were applied in CZE and CIEF with the acidic gradient in pH range 2-5.5, both with fluorescence detection. PEG pyrenebutanoate was used as a buffer additive for a dynamic modification of proteins and/or yeast samples. The narrow peaks of modified analytes were detected. The values of the pI's of the labeled proteins were calculated using new fluorescent pI markers in CIEF and they were found to be comparable with pI's of the native compounds. As an example of the possible use of the suggested CIEF technique, the mixed cultures of yeasts, Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Candida zeylanoides, Geotrichum candidum, Saccharomyces cerevisiae, Trichosporon asahii and Yarrowia lipolytica, were reproducibly focused and separated with high sensitivity. Using UV excitation for the on-column fluorometric detection, the minimum detectable amounts of analytes, femtograms of proteins and down to ten cells injected on the separation capillary, were estimated.
Li, Fumin; Ewles, Matthew; Pelzer, Mary; Brus, Theodore; Ledvina, Aaron; Gray, Nicholas; Koupaei-Abyazani, Mohammad; Blackburn, Michael
2013-10-01
Achieving sufficient selectivity in bioanalysis is critical to ensure accurate quantitation of drugs and metabolites in biological matrices. Matrix effects most classically refer to modification of ionization efficiency of an analyte in the presence of matrix components. However, nonanalyte or matrix components present in samples can adversely impact the performance of a bioanalytical method and are broadly considered as matrix effects. For the current manuscript, we expand the scope to include matrix elements that contribute to isobaric interference and measurement bias. These three categories of matrix effects are illustrated with real examples encountered. The causes, symptoms, and suggested strategies and resolutions for each form of matrix effects are discussed. Each case is presented in the format of situation/action/result to facilitate reading.
ERIC Educational Resources Information Center
Albright, Jessica C.; Dassenko, David J.; Mohamed, Essa A.; Beussman, Douglas J.
2009-01-01
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important bioanalytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. This is an especially powerful tool when combined with gel separation of proteins and database mining using the mass spectral data. Currently, few hands-on…
The Chemically Activated Luciferase gene expression (CALUX) in vitro cell bioassay is an emerging bioanalytical tool that is increasingly being used for the screening and relative quantification of dioxins and dioxin-like compounds. Since CALUX analyses provide a biological respo...
Kim, Hyeon; Kim, Hyeong Jun; Choi, Min Sun; Kim, In Sook; Gye, Myung Chan; Yoo, Hye Hyun
2017-05-01
Alcohol ethoxylates (AEs) are a major class of non-ionic surfactants, which are widely used in household, institutional and industrial cleaners, and they are considered as an alternative of nonylphenol. In this study, a rapid, sensitive and reliable bioanalytical method was developed for the determination of octaethylene glycol monodecyl ether (C10E8, an AE) in rat plasma using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Chromatographic separation was performed on a reversed-phase C18 column (2.1 mm × 50 mm, 2.1 μm). The mobile phase consisted of 0.1% formic acid in distilled water and 0.1% formic acid in acetonitrile (40:60% v/v). The flow rate was 0.3 mL/min. For mass spectrometric detection, the multiple reaction monitoring (MRM) mode was used; the MRM transitions were m/z 511.5 → m/z 133.1 for C10E8 and m/z 423.3 → m/z 133.1 for hexaethylene glycol monodecyl ether (internal standard) in the positive ion mode. A calibration curve was constructed within the range of 2-2,000 ng/mL; the intra- (n = 5) and inter-day (n = 3) precision and accuracy were within 10%. The LC-MS-MS method was specific, accurate and reproducible, and this method was successfully applied in a pharmacokinetic study of C10E8 in rats. C10E8 was intravenously (1 mg/kg, n = 6) and orally (10 mg/kg, n = 7) administered to rats. The kinetic parameters were analyzed based on a noncompartmental statistical model using the pharmacokinetic modeling software (WinNonlin). The oral bioavailability of C10E8 was 34.4%. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Misra, A; Kushwaha, H N; Gautam, N; Singh, B; Verma, P C; Pratap, R; Singh, S K
2014-08-01
A sensitive and selective LC-MS/MS method has been developed and validated for CDRI antidiabetic candidate S007-1261 in rat plasma using 16-dehydropregnenolone as an internal standard. The API 4000 triple quadrupole LC-MS/MS system was operated under multiple reaction monitoring mode using electrospray ionization technique in positive mode. The sample processing method involves 2-step liquid-liquid extraction using n-hexane as an extracting solvent. The analyte was chromatographed on RP 18, waters column (3.5 µm, 2.1 mm i.d. × 30 mm) with guard using acetonitrile and ammonium acetate buffer (pH 5.0, 10 mM) in 90:10 (v/v) composition at a flow rate of 0.40 mL min(-1). The chromatographic run time was 5.30 min. Calibration curve shows linearity over concentration range 1.56-200 ng mL(-1). The lower limit of detection was 0.39 ng mL(-1) and lower limit of quantitation was 1.56 ng mL(-1). The inter- and intra-day accuracy and precision were found to be within the assay variability limits as per US FDA guidelines. The absolute recovery of S007-1261 was found to be >90%. S007-1261 does not show any stability problems as it was stable at room temperature for 8 h. S007-1261 was also stable up to 3 freeze-thaw cycles and can be stored up to 30 days at -60 °C. The assay was successfully applied to both oral (40 mg kg(-1)) and intravenous (10 mg kg(-1)) pharmacokinetic studies in male Sprague-Dawley rats. The oral bioavailability of S007-1261 was found to be 33.61%. © Georg Thieme Verlag KG Stuttgart · New York.
Bienboire-Frosini, Cecile; Chabaud, Camille; Cozzi, Alessandro; Codecasa, Elisa; Pageat, Patrick
2017-01-01
The neurohormone oxytocin (OT) has a broad range of behavioral effects in mammals. It modulates a multitude of social behaviors, e.g., affiliative and sexual interactions. Consequently, the OT role in various animal species is increasingly explored. However, several issues have been raised regarding the peripheral OT measurement. Indeed, various methods have been described, leading to assay discrepancies and inconsistent results. This highlights the need for a recognized and reliable method to measure peripheral OT. Our aim was to validate a method combining a pre-extraction step, previously demonstrated as essential by several authors, and a commercially available enzyme immunoassay (EIA) for OT measurement, using plasma from seven domestic species (cat, dog, horse, cow, pig, sheep, and goat). The Oxytocin EIA kit (EnzoLifeSciences) was used to assay the solid-phase extracted samples following the manufacturer's instructions with slight modifications. For all species except dogs and cats, concentration factors were applied to work above the kit's sensitivity (15 pg/ml). To validate the method, the following performance characteristics were evaluated using Validation Samples (VS) at various concentrations in each species: extraction efficiency via spiking tests and intra- and inter-assay precision, allowing for the calculation of total errors. Parallelism studies to assess matrix effects could not be performed because of too low basal concentrations. Quantification ranges and associated precision profiles were established to account for the various OT plasma concentrations in each species. According to guidelines for bioanalytical validation of immunoassays, the measurements were sufficiently precise and accurate in each species to achieve a total error ≤30% in each VS sample. In each species, the inter-assay precision after 3 runs was acceptable, except in low concentration samples. The linearity under dilution of dogs and cats' samples was verified. Although matrix effects assessments are lacking, our results indicate that OT plasma levels can reliably be measured in several domestic animal species by the method described here. Studies involving samples with low OT plasma concentrations should pay attention to reproducibility issues. This work opens new perspectives to reliably study peripheral OT in a substantial number of domestic animal species in various behavioral contexts.
75 FR 80508 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
..., Member Conflict: Diabetes, Obesity and Nutrition. Date: January 10, 2011. Time: 1p.m. to 5 p.m. Agenda...: Enabling Bioanalytical and Imaging Technologies. Date: December 29, 2010. Time: 2 p.m. to 4 p.m. Agenda: To... Hematology SEP. Date: January 10-11, 2011. Time: 8 a.m. to 5 p.m. Agenda: To review and evaluate grant...
Perspectives on bioanalytical mass spectrometry and automation in drug discovery.
Janiszewski, John S; Liston, Theodore E; Cole, Mark J
2008-11-01
The use of high speed synthesis technologies has resulted in a steady increase in the number of new chemical entities active in the drug discovery research stream. Large organizations can have thousands of chemical entities in various stages of testing and evaluation across numerous projects on a weekly basis. Qualitative and quantitative measurements made using LC/MS are integrated throughout this process from early stage lead generation through candidate nomination. Nearly all analytical processes and procedures in modern research organizations are automated to some degree. This includes both hardware and software automation. In this review we discuss bioanalytical mass spectrometry and automation as components of the analytical chemistry infrastructure in pharma. Analytical chemists are presented as members of distinct groups with similar skillsets that build automated systems, manage test compounds, assays and reagents, and deliver data to project teams. The ADME-screening process in drug discovery is used as a model to highlight the relationships between analytical tasks in drug discovery. Emerging software and process automation tools are described that can potentially address gaps and link analytical chemistry related tasks. The role of analytical chemists and groups in modern 'industrialized' drug discovery is also discussed.
Solid state light engines for bioanalytical instruments and biomedical devices
NASA Astrophysics Data System (ADS)
Jaffe, Claudia B.; Jaffe, Steven M.
2010-02-01
Lighting subsystems to drive 21st century bioanalysis and biomedical diagnostics face stringent requirements. Industrywide demands for speed, accuracy and portability mean illumination must be intense as well as spectrally pure, switchable, stable, durable and inexpensive. Ideally a common lighting solution could service these needs for numerous research and clinical applications. While this is a noble objective, the current technology of arc lamps, lasers, LEDs and most recently light pipes have intrinsic spectral and angular traits that make a common solution untenable. Clearly a hybrid solution is required to service the varied needs of the life sciences. Any solution begins with a critical understanding of the instrument architecture and specifications for illumination regarding power, illumination area, illumination and emission wavelengths and numerical aperture. Optimizing signal to noise requires careful optimization of these parameters within the additional constraints of instrument footprint and cost. Often the illumination design process is confined to maximizing signal to noise without the ability to adjust any of the above parameters. A hybrid solution leverages the best of the existing lighting technologies. This paper will review the design process for this highly constrained, but typical optical optimization scenario for numerous bioanalytical instruments and biomedical devices.
State of the art on granular sludge by using bibliometric analysis.
Zheng, Tianlong; Li, Pengyu; Wu, Wenjun; Liu, Jianguo; Shi, Zhining; Guo, Xuesong; Liu, Junxin
2018-04-01
With rapid industrialization and urbanization in the nineteenth century, the activated sludge process (ASP) has experienced significant steps forward in the face of greater awareness of and sensitivity toward water-related environmental problems. Compared with conventional flocculent ASP, the major advantages of granular sludge are characterized by space saving and resource recovery, where the methane and hydrogen recovery in anaerobic granular and 50% more space saving, 30-50% of energy consumption reduction, 75% of footprint cutting, and even alginate recovery in aerobic granular. Numerous engineers and scientists have made great efforts to explore the superiority over the last 40 years. Therefore, a bibliometric analysis was desired to trace the global trends of granular sludge research from 1992 to 2016 indexed in the SCI-EXPANDED. Articles were published in 276 journals across 44 subject categories spanning 1420 institutes across 68 countries. Bioresource Technology (293, 11.9%), Water Research (235, 9.6%), and Applied Microbiology and Biotechnology (127, 5.2%) dominated in top three journals. The Engineering (991, 40.3%), China (906, 36.9%), and Harbin Inst Technol, China (114, 4.6%) were the most productive subject category, country, and institution, respectively. The hotspot is the emerging techniques depended on granular reactors in response to the desired removal requirements and bio-energy production (primarily in anaerobic granular sludge). In view of advanced and novel bio-analytical methods, the characteristics, functions, and mechanisms for microbial granular were further revealed in improving and innovating the granulation techniques. Therefore, a promising technique armed with strengthened treatment efficiency and efficient resource and bio-energy recovery can be achieved.
Anderson, Carolyn G; Joshi, Geetika; Bair, Daniel A; Oriol, Charlotte; He, Guochun; Parikh, Sanjai J; Denison, Michael S; Scow, Kate M
2017-08-01
Biosolids are a potentially valuable source of carbon and nutrients for agricultural soils; however, potential unintended impacts on human health and the environment must be considered. Virtually all biosolids contain trace amounts endocrine-disrupting chemicals derived from human use of pharmaceuticals and personal care products (PPCPs). One potential way to reduce the bioavailability of PPCPs is to co-apply biosolids with biochar to soil, because biochar's chemical (e.g., aromaticity) and physical properties (e.g., surface area) give it a high affinity to bind many organic chemicals in the environment. We developed a soil-specific extraction method and utilized a luciferase-based bioassay (CALUX) to detect endocrine active chemicals in a biosolids-biochar co-amendment soil greenhouse study. Both biochar (walnut shell, 900 °C) and biosolids had positive impacts on carrot and lettuce biomass accumulation over our study period. However, the walnut shell biochar stimulated aryl hydrocarbon receptor activity, suggesting the presence of potential endocrine active chemicals in the biochar. Since the biochar rate tested (100 t ha -1 ) is above the average agronomic rate (10-20 t ha -1 ), endocrine effects would not be expected in most environmental applications. The effect of high temperature biochars on endocrine system pathways must be explored further, using both quantitative analytical tools to identify potential endocrine active chemicals and highly sensitive bioanalytical assays such as CALUX to measure the resulting biological activity of such compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic, electronically switchable surfaces for membrane protein microarrays.
Tang, C S; Dusseiller, M; Makohliso, S; Heuschkel, M; Sharma, S; Keller, B; Vörös, J
2006-02-01
Microarray technology is a powerful tool that provides a high throughput of bioanalytical information within a single experiment. These miniaturized and parallelized binding assays are highly sensitive and have found widespread popularity especially during the genomic era. However, as drug diagnostics studies are often targeted at membrane proteins, the current arraying technologies are ill-equipped to handle the fragile nature of the protein molecules. In addition, to understand the complex structure and functions of proteins, different strategies to immobilize the probe molecules selectively onto a platform for protein microarray are required. We propose a novel approach to create a (membrane) protein microarray by using an indium tin oxide (ITO) microelectrode array with an electronic multiplexing capability. A polycationic, protein- and vesicle-resistant copolymer, poly(l-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG), is exposed to and adsorbed uniformly onto the microelectrode array, as a passivating adlayer. An electronic stimulation is then applied onto the individual ITO microelectrodes resulting in the localized release of the polymer thus revealing a bare ITO surface. Different polymer and biological moieties are specifically immobilized onto the activated ITO microelectrodes while the other regions remain protein-resistant as they are unaffected by the induced electrical potential. The desorption process of the PLL-g-PEG is observed to be highly selective, rapid, and reversible without compromising on the integrity and performance of the conductive ITO microelectrodes. As such, we have successfully created a stable and heterogeneous microarray of biomolecules by using selective electronic addressing on ITO microelectrodes. Both pharmaceutical diagnostics and biomedical technology are expected to benefit directly from this unique method.
Wang, Yong; Ni, Yongnian
2014-01-21
In recent years, great efforts have focused on the exploration and fabrication of protein nanoconjugates due to potential applications in many fields including bioanalytical science, biosensors, biocatalysis, biofuel cells and bio-based nanodevices. An important aspect of our understanding of protein nanoconjugates is to quantitatively understand how proteins interact with nanomaterials. In this report, human serum albumin (HSA) and citrate-coated silver nanoparticles (AgNPs) are selected as a case study of protein-nanomaterial interactions. UV-visible spectroscopy together with multivariate curve resolution by alternating least squares (MCR-ALS) algorithm is first exploited for the detailed study of AgNPs-HSA interactions. Introduction of the chemometrics tool allows extracting the kinetic profiles, spectra and distribution diagrams of two major absorbing pure species (AgNPs and AgNPs-HSA conjugate). These resolved profiles are then analysed to give the thermodynamic, kinetic and structural information of HSA binding to AgNPs. Transmission electron microscopy, circular dichroism spectroscopy and Fourier transform infrared spectroscopy are used to further characterize the complex system. Moreover, a sensitive spectroscopic biosensor for HSA is fabricated with the MCR-ALS resolved concentration of absorbing pure species. It is found that the linear range for the HSA nanosensor was from 1.9 nM to 45.0 nM with a detection limit of 0.9 nM. It is believed that the proposed method will play an important role in the fabrication and optimization of a robust nanobiosensor or cross-reactive sensors array for the detection and identification of biocomponents.
Rudzki, Piotr J; Gniazdowska, Elżbieta; Buś-Kwaśnik, Katarzyna
2018-06-05
Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for studying pharmacokinetics and toxicokinetics. Reliable bioanalysis requires the characterization of the matrix effect, i.e. influence of the endogenous or exogenous compounds on the analyte signal intensity. We have compared two methods for the quantitation of matrix effect. The CVs(%) of internal standard normalized matrix factors recommended by the European Medicines Agency were evaluated against internal standard normalized relative matrix effects derived from Matuszewski et al. (2003). Both methods use post-extraction spiked samples, but matrix factors require also neat solutions. We have tested both approaches using analytes of diverse chemical structures. The study did not reveal relevant differences in the results obtained with both calculation methods. After normalization with the internal standard, the CV(%) of the matrix factor was on average 0.5% higher than the corresponding relative matrix effect. The method adopted by the European Medicines Agency seems to be slightly more conservative in the analyzed datasets. Nine analytes of different structures enabled a general overview of the problem, still, further studies are encouraged to confirm our observations. Copyright © 2018 Elsevier B.V. All rights reserved.
Pistachio (Pistacia vera L.) gum: a potent inhibitor of reactive oxygen species.
Sehitoglu, M Hilal; Han, Hatice; Kalin, Pınar; Gülçin, İlhami; Ozkan, Ali; Aboul-Enein, Hassan Y
2015-04-01
In the present study, in order to evaluate antioxidant and radical scavenging properties of Pistachio gum (P-Gum), different bioanalytical methods such as DPPH(•) scavenging activity, DMPD(•+) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, reducing ability Fe(3+)-Fe(2+) transformation, Cuprac and FRAP assays, O2(•-) scavenging by riboflavin-methionine-illuminate system and ferrous ions (Fe(2+)) chelating activities by 2,2'-bipyridyl reagent were performed separately. P-Gum inhibited 54.2% linoleic acid peroxidation at 10 µg/ml concentration. On the other hand, BHA, BHT, α-tocopherol and trolox, pure antioxidant compounds, indicated inhibition of 80.3%, 73.5%, 36.2% and 72.0% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, all of sample had an effective DPPH(•), DMPD(•+) and O2(•-) scavenging, Fe(3+) reducing power by Fe(3+)-Fe(2+) transformation and FRAP assay, Cu(2+) reducing ability by Cuprac method and Fe(2+) chelating activities.
NASA Astrophysics Data System (ADS)
Rosen, Christian B.; Kodal, Anne L. B.; Nielsen, Jesper S.; Schaffert, David H.; Scavenius, Carsten; Okholm, Anders H.; Voigt, Niels V.; Enghild, Jan J.; Kjems, Jørgen; Tørring, Thomas; Gothelf, Kurt V.
2014-09-01
DNA-protein conjugates are important in bioanalytical chemistry, molecular diagnostics and bionanotechnology, as the DNA provides a unique handle to identify, functionalize or otherwise manipulate proteins. To maintain protein activity, conjugation of a single DNA handle to a specific location on the protein is often needed. However, preparing such high-quality site-specific conjugates often requires genetically engineered proteins, which is a laborious and technically challenging approach. Here we demonstrate a simpler method to create site-selective DNA-protein conjugates. Using a guiding DNA strand modified with a metal-binding functionality, we directed a second DNA strand to the vicinity of a metal-binding site of His6-tagged or wild-type metal-binding proteins, such as serotransferrin, where it subsequently reacted with lysine residues at that site. This method, DNA-templated protein conjugation, facilitates the production of site-selective protein conjugates, and also conjugation to IgG1 antibodies via a histidine cluster in the constant domain.
Chang, Min; Li, Yongchao; Angeles, Reginald; Khan, Samina; Chen, Lian; Kaplan, Julia; Yang, Liyu
2011-08-01
Two approaches to monitor the matrix effect on ionization in study samples were described. One approach is the addition of multiple reaction monitoring transitions to the bioanalytical methods to monitor the presence of known ionization modification-causing components of the matrix, for example, m/z 184→125 (or m/z 184→184) and m/z 133→89 may be used for phospholipids and polyethylene oxide containing surfactants, respectively. This approach requires no additional equipment and can be readily adapted for most method. The approach detects only the intended interfering compounds and provides little quantitative indication if the matrix effect is within the tolerable range (±15%). The other approach requires the addition of an infusion pump and identifies an appropriate surrogate of the analyte to be infused for the determination of modification on the ionization of the analyte. The second approach detects interferences in the sample regardless of the sources (i.e., dosing vehicle components, co-administrated drugs, their metabolites, phospholipids, plasticizers and endogenous components introduced due to disease stage).
Vardakou, Maria; Salmon, Melissa; Faraldos, Juan A.; O’Maille, Paul E.
2014-01-01
Terpenes are the largest group of natural products with important and diverse biological roles, while of tremendous economic value as fragrances, flavours and pharmaceutical agents. Class-I terpene synthases (TPSs), the dominant type of TPS enzymes, catalyze the conversion of prenyl diphosphates to often structurally diverse bioactive terpene hydrocarbons, and inorganic pyrophosphate (PPi). To measure their kinetic properties, current bio-analytical methods typically rely on the direct detection of hydrocarbon products by radioactivity measurements or gas chromatography–mass spectrometry (GC–MS). In this study we employed an established, rapid colorimetric assay, the pyrophosphate/malachite green assay (MG), as an alternative means for the biochemical characterization of class I TPSs activity.•We describe the adaptation of the MG assay for turnover and catalytic efficiency measurements of TPSs.•We validate the method by direct comparison with established assays. The agreement of kcat/KM among methods makes this adaptation optimal for rapid evaluation of TPSs.•We demonstrate the application of the MG assay for the high-throughput screening of TPS gene libraries. PMID:26150952
Vardakou, Maria; Salmon, Melissa; Faraldos, Juan A; O'Maille, Paul E
2014-01-01
Terpenes are the largest group of natural products with important and diverse biological roles, while of tremendous economic value as fragrances, flavours and pharmaceutical agents. Class-I terpene synthases (TPSs), the dominant type of TPS enzymes, catalyze the conversion of prenyl diphosphates to often structurally diverse bioactive terpene hydrocarbons, and inorganic pyrophosphate (PPi). To measure their kinetic properties, current bio-analytical methods typically rely on the direct detection of hydrocarbon products by radioactivity measurements or gas chromatography-mass spectrometry (GC-MS). In this study we employed an established, rapid colorimetric assay, the pyrophosphate/malachite green assay (MG), as an alternative means for the biochemical characterization of class I TPSs activity.•We describe the adaptation of the MG assay for turnover and catalytic efficiency measurements of TPSs.•We validate the method by direct comparison with established assays. The agreement of k cat/K M among methods makes this adaptation optimal for rapid evaluation of TPSs.•We demonstrate the application of the MG assay for the high-throughput screening of TPS gene libraries.
Maciulaitis, R; Kontrimaviciute, V; Bressolle, F M M; Briedis, V
2008-03-01
Ibogaine is an indole alkaloid derived from the bark of the root of the African shrub Tabernanthe iboga. Psychoactive properties of ibogaine have been known for decades. More recently, based on experimental data from animals and anectodal reports in human, it has been found that this drug has anti-addictive effects. Several patents were published between 1969 and 1995. The pharmacology of ibogaine is quite complex, affecting many different neurotransmitter systems simultaneously. However, the pharmacological targets underlying the physiological and psychological actions of ibogaine are not completely understood. Ibogaine is rapidly metabolized in the body in noribogaine. The purpose of this article was to review data from the literature concerning physicochemical properties, bio-analytical methods, and pharmacology of ibogaine; this article will be focused on the use of this drug as anti-addictive agent.
Toxicity characterization of urban stormwater with bioanalytical tools.
Tang, Janet Y M; Aryal, Rupak; Deletic, Ana; Gernjak, Wolfgang; Glenn, Eva; McCarthy, David; Escher, Beate I
2013-10-01
Stormwater harvesting has become an attractive alternative strategy to address the rising demand for urban water supply due to limited water sources and population growth. Nevertheless, urban stormwater is also a major source of surface water pollution. Runoff from different urban catchments with source contributions from anthropogenic activities and various land uses causes variable contaminant profiles, thus posing a challenging task for environmental monitoring and risk assessment. A thorough understanding of raw stormwater quality is essential to develop appropriate treatment facilities for potential indirect potable reuse of stormwater. While some of the key chemical components have previously been characterized, only scarce data are available on stormwater toxicity. We benchmarked stormwater samples from urban, residential and industrial sites across various Australian capital cities against samples from the entire water cycle, from sewage to drinking water. Six biological endpoints, targeting groups of chemicals with modes of toxic action of particular relevance for human and environmental health, were investigated: non-specific toxicity (Microtox and combined algae test), the specific modes of action of phytotoxicity (combined algae test), dioxin-like activity (AhR-CAFLUX), and estrogenicity (E-SCREEN), as well as reactive toxicity encompassing genotoxicity (umuC) and oxidative stress (AREc32). Non-specific toxicity was highly variable across sites. The baseline toxicity equivalent concentrations of the most polluted samples were similar to secondary treated effluent from wastewater treatment plants. Phytotoxicity results correlated well with the measured herbicide concentrations at all sites. High estrogenicity was found in two sampling events and could be related to sewage overflow. Genotoxicity, dioxin-like activity, and oxidative stress response were evident in only three of the samples where the stormwater drain was beside a heavy traffic road, confirming that road runoff is the potential source of contaminants, while the bioanalytical equivalent concentrations (BEQ) of these samples were similar to those of raw sewage. This study demonstrates the benefit of bioanalytical tools for screening-level stormwater quality assessment, forming the basis for the evaluation of future stormwater treatment and reuse schemes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Neale, Peta A; Altenburger, Rolf; Aït-Aïssa, Selim; Brion, François; Busch, Wibke; de Aragão Umbuzeiro, Gisela; Denison, Michael S; Du Pasquier, David; Hilscherová, Klára; Hollert, Henner; Morales, Daniel A; Novák, Jiří; Schlichting, Rita; Seiler, Thomas-Benjamin; Serra, Helene; Shao, Ying; Tindall, Andrew J; Tollefsen, Knut Erik; Williams, Timothy D; Escher, Beate I
2017-10-15
Surface waters can contain a diverse range of organic pollutants, including pesticides, pharmaceuticals and industrial compounds. While bioassays have been used for water quality monitoring, there is limited knowledge regarding the effects of individual micropollutants and their relationship to the overall mixture effect in water samples. In this study, a battery of in vitro bioassays based on human and fish cell lines and whole organism assays using bacteria, algae, daphnids and fish embryos was assembled for use in water quality monitoring. The selection of bioassays was guided by the principles of adverse outcome pathways in order to cover relevant steps in toxicity pathways known to be triggered by environmental water samples. The effects of 34 water pollutants, which were selected based on hazard quotients, available environmental quality standards and mode of action information, were fingerprinted in the bioassay test battery. There was a relatively good agreement between the experimental results and available literature effect data. The majority of the chemicals were active in the assays indicative of apical effects, while fewer chemicals had a response in the specific reporter gene assays, but these effects were typically triggered at lower concentrations. The single chemical effect data were used to improve published mixture toxicity modeling of water samples from the Danube River. While there was a slight increase in the fraction of the bioanalytical equivalents explained for the Danube River samples, for some endpoints less than 1% of the observed effect could be explained by the studied chemicals. The new mixture models essentially confirmed previous findings from many studies monitoring water quality using both chemical analysis and bioanalytical tools. In short, our results indicate that many more chemicals contribute to the biological effect than those that are typically quantified by chemical monitoring programs or those regulated by environmental quality standards. This study not only demonstrates the utility of fingerprinting single chemicals for an improved understanding of the biological effect of pollutants, but also highlights the need to apply bioassays for water quality monitoring in order to prevent underestimation of the overall biological effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meng, Qingfang; Buchanan, Beth; Zuccolo, Jonathan; Poulin, Mathieu-Marc; Gabriele, Joseph; Baranowski, David Charles
2018-01-01
In the past 50 years, Cannabis sativa (C. sativa) has gone from a substance essentially prohibited worldwide to one that is gaining acceptance both culturally and legally in many countries for medicinal and recreational use. As additional jurisdictions legalize Cannabis products and the variety and complexity of these products surpass the classical dried plant material, appropriate methods for measuring the biologically active constituents is paramount to ensure safety and regulatory compliance. While there are numerous active compounds in C. sativa the primary cannabinoids of regulatory and safety concern are (-)-Δ⁹-tetrahydrocannabinol (THC), cannabidiol (CBD), and their respective acidic forms THCA-A and CBDA. Using the US Food and Drug Administration (FDA) bioanalytical method validation guidelines we developed a sensitive, selective, and accurate method for the simultaneous analysis CBD, CBDA, THC, and THCA-A in oils and THC & CBD in more complex matrices. This HPLC-MS/MS method was simple and reliable using standard sample dilution and homogenization, an isocratic chromatographic separation, and a triple quadrupole mass spectrometer. The lower limit of quantification (LLOQ) for analytes was 0.195 ng/mL over a 0.195-50.0 ng/mL range of quantification with a coefficient of correlation of >0.99. Average intra-day and inter-day accuracies were 94.2-112.7% and 97.2-110.9%, respectively. This method was used to quantify CBD, CBDA, THC, and THCA-A in 40 commercial hemp products representing a variety of matrices including oils, plant materials, and creams/cosmetics. All products tested met the federal regulatory restrictions on THC content in Canada (<10 μg/g) except two, with concentrations of 337 and 10.01 μg/g. With respect to CBD, the majority of analyzed products contained low CBD levels and a CBD: CBDA ratio of <1.0. In contrast, one product contained 8,410 μg/g CBD and a CBD: CBDA ratio of >1,000 (an oil-based product). Overall, the method proved amenable to the analysis of various commercial products including oils, creams, and plant material and may be diagnostically indicative of adulteration with non-hemp C. sativa, specialized hemp cultivars, or unique manufacturing methods.
Meng, Qingfang; Buchanan, Beth; Zuccolo, Jonathan; Poulin, Mathieu-Marc; Gabriele, Joseph
2018-01-01
In the past 50 years, Cannabis sativa (C. sativa) has gone from a substance essentially prohibited worldwide to one that is gaining acceptance both culturally and legally in many countries for medicinal and recreational use. As additional jurisdictions legalize Cannabis products and the variety and complexity of these products surpass the classical dried plant material, appropriate methods for measuring the biologically active constituents is paramount to ensure safety and regulatory compliance. While there are numerous active compounds in C. sativa the primary cannabinoids of regulatory and safety concern are (-)-Δ⁹-tetrahydrocannabinol (THC), cannabidiol (CBD), and their respective acidic forms THCA-A and CBDA. Using the US Food and Drug Administration (FDA) bioanalytical method validation guidelines we developed a sensitive, selective, and accurate method for the simultaneous analysis CBD, CBDA, THC, and THCA-A in oils and THC & CBD in more complex matrices. This HPLC-MS/MS method was simple and reliable using standard sample dilution and homogenization, an isocratic chromatographic separation, and a triple quadrupole mass spectrometer. The lower limit of quantification (LLOQ) for analytes was 0.195 ng/mL over a 0.195–50.0 ng/mL range of quantification with a coefficient of correlation of >0.99. Average intra-day and inter-day accuracies were 94.2–112.7% and 97.2–110.9%, respectively. This method was used to quantify CBD, CBDA, THC, and THCA-A in 40 commercial hemp products representing a variety of matrices including oils, plant materials, and creams/cosmetics. All products tested met the federal regulatory restrictions on THC content in Canada (<10 μg/g) except two, with concentrations of 337 and 10.01 μg/g. With respect to CBD, the majority of analyzed products contained low CBD levels and a CBD: CBDA ratio of <1.0. In contrast, one product contained 8,410 μg/g CBD and a CBD: CBDA ratio of >1,000 (an oil-based product). Overall, the method proved amenable to the analysis of various commercial products including oils, creams, and plant material and may be diagnostically indicative of adulteration with non-hemp C. sativa, specialized hemp cultivars, or unique manufacturing methods. PMID:29718956
Analysis of multiple mycotoxins in food.
Hajslova, Jana; Zachariasova, Milena; Cajka, Tomas
2011-01-01
Mycotoxins are secondary metabolites of microscopic filamentous fungi. With regard to the widespread distribution of fungi in the environment, mycotoxins are considered to be one of the most important natural contaminants in foods and feeds. To protect consumers' health and reduce economic losses, surveillance and control of mycotoxins in food and feed has become a major objective for producers, regulatory authorities, and researchers worldwide. In this context, availability of reliable analytical methods applicable for this purpose is essential. Since the variety of chemical structures of mycotoxins makes impossible to use one single technique for their analysis, a vast number of analytical methods has been developed and validated. Both a large variability of food matrices and growing demands for a fast, cost-saving and accurate determination of multiple mycotoxins by a single method outline new challenges for analytical research. This strong effort is facilitated by technical developments in mass spectrometry allowing decreasing the influence of matrix effects in spite of omitting sample clean-up step. The current state-of-the-art together with future trends is presented in this chapter. Attention is focused mainly on instrumental method; advances in biosensors and other screening bioanalytical approaches enabling analysis of multiple mycotoxins are not discussed in detail.
Filist, Monika; Szlaska, Iwona; Kaza, Michał; Pawiński, Tomasz
2016-06-01
Estimating the influence of interfering compounds present in the biological matrix on the determination of an analyte is one of the most important tasks during bioanalytical method development and validation. Interferences from endogenous components and, if necessary, from major metabolites as well as possible co-administered medications should be evaluated during a selectivity test. This paper describes a simple, rapid and cost-effective HPLC-UV method for the determination of naproxen in human plasma in the presence of two other analgesics, ibuprofen and paracetamol. Sample preparation is based on a simple liquid-liquid extraction procedure with a short, 5 s mixing time. Fenoprofen, which is characterized by a similar structure and properties to naproxen, was first used as the internal standard. The calibration curve is linear in the concentration range of 0.5-80.0 µg/mL, which is suitable for pharmacokinetic studies following a single 220 mg oral dose of naproxen sodium. The method was fully validated according to international guidelines and was successfully applied in a bioequivalence study in humans. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Gröer, C; Busch, D; Patrzyk, M; Beyer, K; Busemann, A; Heidecke, C D; Drozdzik, M; Siegmund, W; Oswald, S
2014-11-01
Cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGT) are major determinants in the pharmacokinetics of most drugs on the market. To investigate their impact on intestinal and hepatic drug metabolism, we developed and validated quantification methods for nine CYP (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) and four UGT enzymes (UGT1A1, UGT1A3, UGT2B7 and UGT2B15) that have been shown to be of clinical relevance in human drug metabolism. Protein quantification was performed by targeted proteomics using liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based determination of enzyme specific peptides after tryptic digestion using in each case stable isotope labelled peptides as internal standard. The chromatography of the respective peptides was performed with gradient elution using a reversed phase (C18) column (Ascentis(®) Express Peptide ES-C18, 100mm×2.1mm, 2.7μm) and 0.1% formic acid (FA) as well as acetonitrile with 0.1% FA as mobile phases at a flow rate of 300μl/min. The MS/MS detection of all peptides was done simultaneously with a scheduled multiple reaction monitoring (MRM) method in the positive mode by monitoring in each case three mass transitions per proteospecific peptide and the internal standard. The assays were validated according to current bioanalytical guidelines with respect to specificity, linearity (0.25-50nM), within-day and between-day accuracy and precision, digestion efficiency as well as stability. Finally, the developed method was successfully applied to determine the CYP and UGT protein amount in human liver and intestinal microsomes. The method was shown to possess sufficient specificity, sensitivity, accuracy, precision and stability to quantify clinically relevant human CYP and UGT enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.
2012-01-01
Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak) and amber (587 nm peak) LEDs it achieves 8 m lateral resolution using a CMOS imaging chip (as configured for serial data speeds) or 4 m resolution using USB imaging chips. The imager consists of a modified commercial off-the-shelf CMOS chip camera, amber, blue and white LEDs, as well as a relay lens and dual-band filters to obviate moving parts while supporting both fluorescence wavelengths.
Hosseini, Samira; Aeinehvand, Mohammad M; Uddin, Shah M; Benzina, Abderazak; Rothan, Hussin A; Yusof, Rohana; Koole, Leo H; Madou, Marc J; Djordjevic, Ivan; Ibrahim, Fatimah
2015-11-09
The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres' specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.
NASA Astrophysics Data System (ADS)
Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek
2018-05-01
Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.
Rapp, Bastian E; Schickling, Benjamin; Prokop, Jürgen; Piotter, Volker; Rapp, Michael; Länge, Kerstin
2011-10-01
We describe an integration strategy for arbitrary sensors intended to be used as biosensors in biomedical or bioanalytical applications. For such devices ease of handling (by a potential end user) as well as strict disposable usage are of importance. Firstly we describe a generic array compatible polymer sensor housing with an effective sample volume of 1.55 μl. This housing leaves the sensitive surface of the sensor accessible for the application of biosensing layers even after the embedding. In a second step we show how this sensor housing can be used in combination with a passive disposable microfluidic chip to set up arbitrary 8-fold sensor arrays and how such a system can be complemented with an indirect microfluidic flow injection analysis (FIA) system. This system is designed in a way that it strictly separates between disposable and reusable components- by introducing tetradecane as an intermediate liquid. This results in a sensor system compatible with the demands of most biomedical applications. Comparative measurements between a classical macroscopic FIA system and this integrated indirect microfluidic system are presented. We use a surface acoustic wave (SAW) sensor as an exemplary detector in this work.
Comparison of five in vitro bioassays to measure estrogenic activity in environmental waters.
Leusch, Frederic D L; de Jager, Christiaan; Levi, Yves; Lim, Richard; Puijker, Leo; Sacher, Frank; Tremblay, Louis A; Wilson, Vickie S; Chapman, Heather F
2010-05-15
Bioassays are well established in the pharmaceutical industry and single compound analysis, but there is still uncertainty about their usefulness in environmental monitoring. We compared the responses of five bioassays designed to measure estrogenic activity (the yeast estrogen screen, ER-CALUX, MELN, T47D-KBluc, and E-SCREEN assays) and chemical analysis on extracts from four different water sources (groundwater, raw sewage, treated sewage, and river water). All five bioassays displayed similar trends and there was good agreement with analytical chemistry results. The data from the ER-CALUX and E-SCREEN bioassays were robust and predictable, and well-correlated with predictions from chemical analysis. The T47D-KBluc appeared likewise promising, but with a more limited sample size it was less compelling. The YES assay was less sensitive than the other assays by an order of magnitude, which resulted in a larger number of nondetects. The MELN assay was less predictable, although the possibility that this was due to laboratory-specific difficulties cannot be discounted. With standardized bioassay data analysis and consistency of operating protocols, bioanalytical tools are a promising advance in the development of a tiered approach to environmental water quality monitoring.
Pandey, Khushaboo; Dubey, Rama Shankar; Prasad, Bhim Bali
2016-03-01
The most important objectives that are frequently found in bio-analytical chemistry involve applying tools to relevant medical/biological problems and refining these applications. Developing a reliable sample preparation step, for the medical and biological fields is another primary objective in analytical chemistry, in order to extract and isolate the analytes of interest from complex biological matrices. Since, main inborn errors of metabolism (IEM) diagnosable through uracil analysis and the therapeutic monitoring of toxic 5-fluoruracil (an important anti-cancerous drug) in dihydropyrimidine dehydrogenase deficient patients, require an ultra-sensitive, reproducible, selective, and accurate analytical techniques for their measurements. Therefore, keeping in view, the diagnostic value of uracil and 5-fluoruracil measurements, this article refines several analytical techniques involved in selective recognition and quantification of uracil and 5-fluoruracil from biological and pharmaceutical samples. The prospective study revealed that implementation of molecularly imprinted polymer as a solid-phase material for sample preparation and preconcentration of uracil and 5-fluoruracil had proven to be effective as it could obviates problems related to tedious separation techniques, owing to protein binding and drastic interferences, from the complex matrices in real samples such as blood plasma, serum samples.
NASA Astrophysics Data System (ADS)
Misiakos, K.; Petrou, P. S.; Kakabakos, S. E.; Ruf, H. H.; Ehrentreich-Förster, E.; Bier, F. F.
2005-01-01
A bioanalytical microsystem that is based on a monolithic silicon optical transducer and a microfluidic module and it is appropriate for real-time sensing of either DNA or protein analytes is presented. The optical transducer monolithically integrates silicon avalanche diodes as light sources, silicon nitride optical fibers and detectors and efficiently intercouples these optical elements through a self-alignment technique. After hydrophilization and silanization of the transducer surface, the biomolecular probes are immobilized through physical adsorption. Detection is performed through reaction of the immobilized biomolecules with gold nanoparticle labeled counterpart molecules. The binding of these molecules within the evanescent field at the surface of the optical fiber cause attenuated total reflection of the waveguided modes and reduction of the detector photocurrent. Using the developed microsystem, determination of single nucleotide polymorphism (SNP) in the gene of the human phenol sulfotransferase SULT1A1 was achieved. Full-matching hybrid resulted in 4-5 times higher signals compared to the mismatched hybrid after hybridization and dissociation processes. The protein sensing abilities of the developed microsystem were also investigated through a non-competitive assay for the determination of the MB isoform of creatine kinase enzyme (CK-MB) that is a widely used cardiac marker.
Welink, Jan; Fluhler, Eric; Hughes, Nicola; Arnold, Mark; Garofolo, Fabio; Bustard, Mark; Coppola, Laura; Dhodda, Raj; Evans, Christopher; Gleason, Carol; Haidar, Sam; Hayes, Roger; Heinig, Katja; Katori, Noriko; Blaye, Olivier Le; Li, Wenkui; Liu, Guowen; Lima Santos, Gustavo Mendes; Meng, Min; Nicholson, Bob; Savoie, Natasha; Skelly, Michael; Sojo, Luis; Tampal, Nilufer; de Merbel, Nico van; Verhaeghe, Tom; Vinter, Stephen; Wickremsinhe, Enaksha; Whale, Emma; Wilson, Amanda; Witte, Bärbel; Woolf, Eric
2015-01-01
The 2015 9th Workshop on Recent Issues in Bioanalysis (9th WRIB) took place in Miami, Florida with participation of over 600 professionals from pharmaceutical and biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. It is once again a 5-day week long event - a full immersion bioanalytical week - specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest in bioanalysis. The topics covered included both small and large molecules, and involved LCMS, hybrid LBA/LCMS, LBA approaches including the focus on biomarkers and immunogenicity. This 2015 White Paper encompasses recommendations that emerged from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to advance scientific excellence, improve quality and deliver better regulatory compliance. Due to its length, the 2015 edition of this comprehensive White Paper has been divided into three parts. Part 1 covers the recommendations for small molecule bioanalysis using LCMS. Part 2 (hybrid LBA/LCMS and regulatory agencies' inputs) and Part 3 (large molecule bioanalysis using LBA, biomarkers and immunogenicity) will also be published in volume 7 of Bioanalysis, issues 23 and 24, respectively.
Resch-Genger, Ute; Gorris, Hans H
2017-10-01
Lanthanide-doped photon-upconversion nanoparticles (UCNPs) have been the focus of many research activities in materials and life sciences in the last 15 years because of their potential to convert light between different spectral regions and their unique photophysical properties. To fully exploit the application potential of these fascinating nanomaterials, a number of challenges have to be overcome, such as the low brightness, particularly of small UCNPs, and the reliable quantification of the excitation-power-density-dependent upconversion luminescence. In this series of critical reviews, recent developments in the design, synthesis, optical-spectroscopic characterization, and application of UCNPs are presented with special focus on bioanalysis and the life sciences. Here we guide the reader from the synthesis of UCNPs to different concepts to enhance their luminescence, including the required optical-spectroscopic assessment to quantify material performance; surface modification strategies and bioanalytical applications as well as selected examples of the use of UCNPs as reporters in different assay formats are addressed in part II. Future trends and challenges in the field of upconversion are discussed with special emphasis on UCNP synthesis and material characterization, particularly quantitative luminescence studies. Graphical Abstract Both synthesis and spectroscopy as well bioanalytical applications of UCNPs are driven and supported by COST Action CM1403 "The European Upconversion Network".
Bioanalytical system for detection of cancer cells with photoluminescent ZnO nanorods
NASA Astrophysics Data System (ADS)
Viter, R.; Jekabsons, K.; Kalnina, Z.; Poletaev, N.; Hsu, S. H.; Riekstina, U.
2016-11-01
Using photoluminescent ZnO nanorods and carbohydrate marker SSEA-4, a novel cancer cell recognition system was developed. Immobilization of SSEA-4 antibodies (αSSEA-4) on ZnO nanorods was performed in buffer solution (pH = 7.1) over 2 h. The cancer cell line probes were fixed on the glass slide. One hundred microliters of ZnO-αSSEA-4 conjugates were deposited on the cell probe and exposed for 30 min. After washing photoluminescence spectra were recorded. Based on the developed methodology, ZnO-αSSEA-4 probes were tested on patient-derived breast and colorectal carcinoma cells. Our data clearly show that the carbohydrate SSEA-4 molecule is expressed on cancer cell lines and patient-derived cancer cells. Moreover, SSEA-4 targeted ZnO nanorods bind to the patient-derived cancer cells with high selectivity and the photoluminescence signal increased tremendously compared to the signal from the control samples. Furthermore, the photoluminescence intensity increase correlated with the extent of malignancy in the target cell population. A novel portable bioanalytical system, based on optical ZnO nanorods and fiber optic detection system was developed. We propose that carbohydrate SSEA-4 specific ZnO nanorods could be used for the development of cancer diagnostic biosensors and for targeted therapy.
Bioanalysis Young Investigator: Sadagopan Krishnan.
Krishnan, Sadagopan
2011-05-01
Supervisor's supporting comments. I am pleased to recommend Sadagopan Krishnan for the Bioanalysis Young Investigator award. Sadagopan is a bright, creative and highly-motivated young bioanalytical chemist. His theses in our laboratory involved the development of electrochemiluminescent arrays for chemical toxicity screening utilizing cytochrome P450 metalloenzymes. He was senior author of a paper in Analytical Chemistry on this that was featured on the cover. He also investigated fundamental properties of human metabolic cytochrome P450s - research was carried out at his own initiative, and explains for the first time the role of iron spin state on enzyme electron transfer rates. He then developed thin films that mimic the natural cytochrome P450 redox cycle for the first time. He worked with several other group members to develop a superparamagnetic labeling scheme for immunosensing of proteins by surface plasmon resonance at unprecedented low levels, down to 10 fg/ml. Sadagopan has also demonstrated strong leadership skills. After his PhD, Sadagopan joined the group of Fraser Armstrong at Oxford University, UK, as a postdoctoral fellow. He is currently expanding his research horizons into the area of biofuel cells. His eventual goal is to join the faculty of a major university and build a world-class research group in bioanalytical chemistry.
The promise of macromolecular crystallization in microfluidic chips
NASA Technical Reports Server (NTRS)
van der Woerd, Mark; Ferree, Darren; Pusey, Marc
2003-01-01
Microfluidics, or lab-on-a-chip technology, is proving to be a powerful, rapid, and efficient approach to a wide variety of bioanalytical and microscale biopreparative needs. The low materials consumption, combined with the potential for packing a large number of experiments in a few cubic centimeters, makes it an attractive technique for both initial screening and subsequent optimization of macromolecular crystallization conditions. Screening operations, which require a macromolecule solution with a standard set of premixed solutions, are relatively straightforward and have been successfully demonstrated in a microfluidics platform. Optimization methods, in which crystallization solutions are independently formulated from a range of stock solutions, are considerably more complex and have yet to be demonstrated. To be competitive with either approach, a microfluidics system must offer ease of operation, be able to maintain a sealed environment over several weeks to months, and give ready access for the observation and harvesting of crystals as they are grown.
The science of laboratory and project management in regulated bioanalysis.
Unger, Steve; Lloyd, Thomas; Tan, Melvin; Hou, Jingguo; Wells, Edward
2014-05-01
Pharmaceutical drug development is a complex and lengthy process, requiring excellent project and laboratory management skills. Bioanalysis anchors drug safety and efficacy with systemic and site of action exposures. Development of scientific talent and a willingness to innovate or adopt new technology is essential. Taking unnecessary risks, however, should be avoided. Scientists must strategically assess all risks and find means to minimize or negate them. Laboratory Managers must keep abreast of ever-changing technology. Investments in instrumentation and laboratory design are critical catalysts to efficiency and safety. Matrix management requires regular communication between Project Managers and Laboratory Managers. When properly executed, it aligns the best resources at the right times for a successful outcome. Attention to detail is a critical aspect that separates excellent laboratories. Each assay is unique and requires attention in its development, validation and execution. Methods, training and facilities are the foundation of a bioanalytical laboratory.
Singlet oxygen-based electrosensing by molecular photosensitizers
NASA Astrophysics Data System (ADS)
Trashin, Stanislav; Rahemi, Vanoushe; Ramji, Karpagavalli; Neven, Liselotte; Gorun, Sergiu M.; de Wael, Karolien
2017-07-01
Enzyme-based electrochemical biosensors are an inspiration for the development of (bio)analytical techniques. However, the instability and reproducibility of the reactivity of enzymes, combined with the need for chemical reagents for sensing remain challenges for the construction of useful devices. Here we present a sensing strategy inspired by the advantages of enzymes and photoelectrochemical sensing, namely the integration of aerobic photocatalysis and electrochemical analysis. The photosensitizer, a bioinspired perfluorinated Zn phthalocyanine, generates singlet-oxygen from air under visible light illumination and oxidizes analytes, yielding electrochemically-detectable products while resisting the oxidizing species it produces. Compared with enzymatic detection methods, the proposed strategy uses air instead of internally added reactive reagents, features intrinsic baseline correction via on/off light switching and shows C-F bonds-type enhanced stability. It also affords selectivity imparted by the catalytic process and nano-level detection, such as 20 nM amoxicillin in μl sample volumes.
How Actuated Particles Effectively Capture Biomolecular Targets
2017-01-01
Because of their high surface-to-volume ratio and adaptable surface functionalization, particles are widely used in bioanalytical methods to capture molecular targets. In this article, a comprehensive study is reported of the effectiveness of protein capture by actuated magnetic particles. Association rate constants are quantified in experiments as well as in Brownian dynamics simulations for different particle actuation configurations. The data reveal how the association rate depends on the particle velocity, particle density, and particle assembly characteristics. Interestingly, single particles appear to exhibit target depletion zones near their surface, caused by the high density of capture molecules. The depletion effects are even more limiting in cases with high particle densities. The depletion effects are overcome and protein capture rates are enhanced by applying dynamic particle actuation, resulting in an increase in the association rate constants by up to 2 orders of magnitude. PMID:28192952
Cyborg cells: functionalisation of living cells with polymers and nanomaterials.
Fakhrullin, Rawil F; Zamaleeva, Alsu I; Minullina, Renata T; Konnova, Svetlana A; Paunov, Vesselin N
2012-06-07
Living cells interfaced with a range of polyelectrolyte coatings, magnetic and noble metal nanoparticles, hard mineral shells and other complex nanomaterials can perform functions often completely different from their original specialisation. Such "cyborg cells" are already finding a range of novel applications in areas like whole cell biosensors, bioelectronics, toxicity microscreening, tissue engineering, cell implant protection and bioanalytical chemistry. In this tutorial review, we describe the development of novel methods for functionalisation of cells with polymers and nanoparticles and comment on future advances in this technology in the light of other literature approaches. We review recent studies on the cell viability and function upon direct deposition of nanoparticles, coating with polyelectrolytes, polymer assisted assembly of nanomaterials and hard shells on the cell surface. The cell toxicity issues are considered for many practical applications in terms of possible adverse effects of the deposited polymers, polyelectrolytes and nanoparticles on the cell surface.
Gunn, G. R.; Sealey, D. C. F.; Jamali, F.; Meibohm, B.; Ghosh, S.
2016-01-01
Summary Unlike conventional chemical drugs where immunogenicity typically does not occur, the development of anti‐drug antibodies following treatment with biologics has led to concerns about their impact on clinical safety and efficacy. Hence the elucidation of the immunogenicity of biologics is required for drug approval by health regulatory authorities worldwide. Published ADA ‘incidence’ rates can vary greatly between same‐class products and different patient populations. Such differences are due to disparate bioanalytical methods and interpretation approaches, as well as a plethora of product‐specific and patient‐specific factors that are not fully understood. Therefore, the incidence of ADA and their association with clinical consequences cannot be generalized across products. In this context, the intent of this review article is to discuss the complex nature of ADA and key nuances of the methodologies used for immunogenicity assessments, and to dispel some fallacies and myths. PMID:26597698
Identification of Microorganisms by Modern Analytical Techniques.
Buszewski, Bogusław; Rogowska, Agnieszka; Pomastowski, Paweł; Złoch, Michał; Railean-Plugaru, Viorica
2017-11-01
Rapid detection and identification of microorganisms is a challenging and important aspect in a wide range of fields, from medical to industrial, affecting human lives. Unfortunately, classical methods of microorganism identification are based on time-consuming and labor-intensive approaches. Screening techniques require the rapid and cheap grouping of bacterial isolates; however, modern bioanalytics demand comprehensive bacterial studies at a molecular level. Modern approaches for the rapid identification of bacteria use molecular techniques, such as 16S ribosomal RNA gene sequencing based on polymerase chain reaction or electromigration, especially capillary zone electrophoresis and capillary isoelectric focusing. However, there are still several challenges with the analysis of microbial complexes using electromigration technology, such as uncontrolled aggregation and/or adhesion to the capillary surface. Thus, an approach using capillary electrophoresis of microbial aggregates with UV and matrix-assisted laser desorption ionization time-of-flight MS detection is presented.
Sample flow switching techniques on microfluidic chips.
Pan, Yu-Jen; Lin, Jin-Jie; Luo, Win-Jet; Yang, Ruey-Jen
2006-02-15
This paper presents an experimental investigation into electrokinetically focused flow injection for bio-analytical applications. A novel microfluidic device for microfluidic sample handling is presented. The microfluidic chip is fabricated on glass substrates using conventional photolithographic and chemical etching processes and is bonded using a high-temperature fusion method. The proposed valve-less device is capable not only of directing a single sample flow to a specified output port, but also of driving multiple samples to separate outlet channels or even to a single outlet to facilitate sample mixing. The experimental results confirm that the sample flow can be electrokinetically pre-focused into a narrow stream and guided to the desired outlet port by means of a simple control voltage model. The microchip presented within this paper has considerable potential for use in a variety of applications, including high-throughput chemical analysis, cell fusion, fraction collection, sample mixing, and many other applications within the micro-total-analysis systems field.
Gao, Zhan; Henthorn, David B.; Kim, Chang-Soo
2009-01-01
In this work, we detail a method whereby a polymeric hydrogel layer is grafted to the negative tone photoresist SU-8 in order to improve its wettability. A photoinitiator is first immobilized on freshly prepared SU-8 samples, acting as the starting point for various surface modifications strategies. Grafting of a 2-hydroxyethylmethacrylate-based hydrogel from the SU-8 surface resulted in the reduction of the static contact angle of a water droplet from 79 ± 1° to 36 ± 1°, while addition of a poly(ethylene glycol)-rich hydrogel layer resulted in further improvement (8 ± 1°). Wettability is greatly enhanced after 30 minutes of polymerization, with a continued but more gradual decrease in contact angle up to approximately 50 minutes. Hydrogel formation is triggered by exposure to UV irradiation, allowing for the formation of photopatterned structures using existing photolithographic techniques. PMID:19756177
[Lab-on-a-chip systems in the point-of-care diagnostics].
Szabó, Barnabás; Borbíró, András; Fürjes, Péter
2015-12-27
The need in modern medicine for near-patient diagnostics being able to accelerate therapeutic decisions and possibly replacing laboratory measurements is significantly growing. Reliable and cost-effective bioanalytical measurement systems are required which - acting as a micro-laboratory - contain integrated biomolecular recognition, sensing, signal processing and complex microfluidic sample preparation modules. These micro- and nanofabricated Lab-on-a-chip systems open new perspectives in the diagnostic supply chain, since they are able even for quantitative, high-precision and immediate analysis of special disease specific molecular markers or their combinations from a single drop of sample. Accordingly, crucial requirements regarding the instruments and the analytical methods are the high selectivity, extremely low detection limit, short response time and integrability into the healthcare information networks. All these features can make the hierarchical examination chain shorten, and revolutionize laboratory diagnostics, evolving a brand new situation in therapeutic intervention.
Singlet oxygen-based electrosensing by molecular photosensitizers
Trashin, Stanislav; Rahemi, Vanoushe; Ramji, Karpagavalli; Neven, Liselotte; Gorun, Sergiu M.; De Wael, Karolien
2017-01-01
Enzyme-based electrochemical biosensors are an inspiration for the development of (bio)analytical techniques. However, the instability and reproducibility of the reactivity of enzymes, combined with the need for chemical reagents for sensing remain challenges for the construction of useful devices. Here we present a sensing strategy inspired by the advantages of enzymes and photoelectrochemical sensing, namely the integration of aerobic photocatalysis and electrochemical analysis. The photosensitizer, a bioinspired perfluorinated Zn phthalocyanine, generates singlet-oxygen from air under visible light illumination and oxidizes analytes, yielding electrochemically-detectable products while resisting the oxidizing species it produces. Compared with enzymatic detection methods, the proposed strategy uses air instead of internally added reactive reagents, features intrinsic baseline correction via on/off light switching and shows C-F bonds-type enhanced stability. It also affords selectivity imparted by the catalytic process and nano-level detection, such as 20 nM amoxicillin in μl sample volumes.
Grandin, Flore; Picard-Hagen, Nicole; Gayrard, Véronique; Puel, Sylvie; Viguié, Catherine; Toutain, Pierre-Louis; Debrauwer, Laurent; Lacroix, Marlène Z
2017-12-01
Regulatory measures and public concerns regarding bisphenol A (BPA) have led to its replacement by structural analogues, such as Bisphenol S (BPS), in consumer products. At present, no toxicokinetic investigations have been conducted to assess the factors determining human internal exposure to BPS for subsequent risk assessment. Toxicokinetic studies require reliable analytical methods to measure the plasma concentrations of BPS and its main conjugated metabolite, BPS-glucuronide (BPS-G). An efficient on-line SPE-UPLC-MS/MS method for the simultaneous quantification of BPS and BPS-G in ovine plasma was therefore developed and validated in accordance with the European Medicines Agency guidelines for bioanalytical method validation. This method has a limit of quantification of 3ngmL -1 for BPS and 10ngmL -1 for BPS-G, an analytical capacity of 200 samples per day, and is particularly well suited to toxicokinetic studies. Use of this method in toxicokinetic studies in sheep showed that BPS, like BPA, is efficiently metabolized into its glucuronide form. However, the clearances and distributions of BPS and BPS-G were lower than those of the corresponding unconjugated and glucuroconjugated forms of BPA. Copyright © 2017 Elsevier B.V. All rights reserved.
Nováková, Lucie; Pavlík, Jakub; Chrenková, Lucia; Martinec, Ondřej; Červený, Lukáš
2018-01-05
This review is a Part II of the series aiming to provide comprehensive overview of currently used antiviral drugs and to show modern approaches to their analysis. While in the Part I antivirals against herpes viruses and antivirals against respiratory viruses were addressed, this part concerns antivirals against hepatitis viruses (B and C) and human immunodeficiency virus (HIV). Many novel antivirals against hepatitis C virus (HCV) and HIV have been introduced into the clinical practice over the last decade. The recent broadening portfolio of these groups of antivirals is reflected in increasing number of developed analytical methods required to meet the needs of clinical terrain. Part II summarizes the mechanisms of action of antivirals against hepatitis B virus (HBV), HCV, and HIV, their use in clinical practice, and analytical methods for individual classes. It also provides expert opinion on state of art in the field of bioanalysis of these drugs. Analytical methods reflect novelty of these chemical structures and use by far the most current approaches, such as simple and high-throughput sample preparation and fast separation, often by means of UHPLC-MS/MS. Proper method validation based on requirements of bioanalytical guidelines is an inherent part of the developed methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Hupert, Michelle; Elfgen, Anne; Schartmann, Elena; Schemmert, Sarah; Buscher, Brigitte; Kutzsche, Janine; Willbold, Dieter; Santiago-Schübel, Beatrix
2018-01-15
During preclinical drug development, a method for quantification of unlabeled compounds in blood plasma samples from treatment or pharmacokinetic studies in mice is required. In the current work, a rapid, specific, sensitive and validated liquid chromatography mass-spectrometric UHPLC-ESI-QTOF-MS method was developed for the quantification of the therapeutic compound RD2 in mouse plasma. RD2 is an all-D-enantiomeric peptide developed for the treatment of Alzheimer's disease, a progressive neurodegenerative disease finally leading to dementia. Due to RD2's highly hydrophilic properties, the sample preparation and the chromatographic separation and quantification were very challenging. The chromatographic separation of RD2 and its internal standard were accomplished on an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm particle size) within 6.5 min at 50 °C with a flow rate of 0.5 mL/min. Mobile phases consisted of water and acetonitrile with 1% formic acid and 0.025% heptafluorobutyric acid, respectively. Ions were generated by electrospray ionization (ESI) in the positive mode and the peptide was quantified by QTOF-MS. The developed extraction method for RD2 from mouse plasma revealed complete recovery. The linearity of the calibration curve was in the range of 5.3 ng/mL to 265 ng/mL (r 2 > 0.999) with a lower limit of detection (LLOD) of 2.65 ng/mL and a lower limit of quantification (LLOQ) of 5.3 ng/mL. The intra-day and inter-day accuracy and precision of RD2 in plasma ranged from -0.54% to 2.21% and from 1.97% to 8.18%, respectively. Moreover, no matrix effects were observed and RD2 remained stable in extracted mouse plasma at different conditions. Using this validated bioanalytical method, plasma samples of unlabeled RD2 or placebo treated mice were analyzed. The herein developed UHPLC-ESI-QTOF-MS method is a suitable tool for the quantitative analysis of unlabeled RD2 in plasma samples of treated mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Al-Ghobashy, Medhat A; Hassan, Said A; Abdelaziz, Doaa H; Elhosseiny, Noha M; Sabry, Nirmeen A; Attia, Ahmed S; El-Sayed, Manal H
2016-12-01
Individualized therapy is a recent approach aiming to specify dosage regimen for each patient according to its genetic state. Cancer chemotherapy requires continuous monitoring of the plasma concentration levels of active forms of cytotoxic drugs and subsequent dose adjustment. In order to attain optimum therapeutic efficacy, correlation to pharmacogenetics data is crucial. In this study, a specific, accurate and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) has been developed for determination of methotrexate (MTX), 6-mercaptopurine (MP) and its metabolite 6-thioguanine nucleotide (TG) in human plasma. Based on the basic character of the studied compounds, solid phase extraction using a strong cation exchanger was found the optimum approach to achieve good extraction recovery. Chromatographic separation was carried out using RP-HPLC and isocratic elution by acetonitrile: 0.1% aqueous formic acid (85:15v/v) with a flow rate of 0.8mL/min at 40°C. The detection was performed by tandem mass spectrometry in MRM mode via electrospray ionization source in positive ionization mode. Analysis was carried out within 1.0min over a concentration range of 6.25-200.00ng/mL for the studied analytes. Validation was carried out according to FDA guidelines for bioanalytical method validation and satisfactory results were obtained. The applicability of the assay for the monitoring of the MTX, MP and TG and subsequent application to personalized therapy was demonstrated in a clinical study on children with acute lymphoblastic leukemia (ALL). Results confirmed the need for implementation of reliable analysis tools for therapeutic dose adjustment. Copyright © 2016 Elsevier B.V. All rights reserved.
Bajrai, Amal A; Ezzeldin, Essam; Al-Rashood, Khalid A; Raish, Mohammad; Iqbal, Muzaffar
2016-03-01
Lorcaserin is a novel, potent and highly efficacious 5-HT2C receptor agonist, recently approved by US Food and Drug Administration for the treatment of obesity. It has some abuse potential also and is listed as a Schedule IV drug in the Controlled Substances Act. Herein, a sensitive, selective and reliable UPLC-MS-MS assay was developed and validated for the quantitative analysis of lorcaserin in rat plasma and brain tissue using carbamazepine as an internal standard (IS). After the extraction of samples by protein precipitation, both lorcaserin and IS were separated on an Acquity BEH™ C18 (50 × 2.1 mm, 1.7 µm) column using a mobile phase consisting of acetonitrile-10 mM ammonium acetate-formic acid (85:15:0.1, v/v/v) at a flow rate of 0.25 mL/min. Detection and quantification were performed on a positive electrospray ionization interface in the multiple-reaction monitoring (MRM) mode. The MS-MS ion transitions were monitored at m/z 195.99 > 143.91 for lorcaserin and m/z 237.00 > 178.97 for IS, respectively. The calibration curves were linear over a concentration range of 1.08-500 ng/mL in plasma and 3.07-500 ng/mL in brain tissue homogenates, respectively. All the validation parameters results were within the acceptable range described in guidelines for bioanalytical method validation. The assay was successfully applied in a pharmacokinetic study of lorcaserin after oral administration in rats. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rapid Nanoprobe Signal Enhancement by In Situ Gold Nanoparticle Synthesis.
Dias, Jorge T; Svedberg, Gustav; Nystrand, Mats; Andersson-Svahn, Helene; Gantelius, Jesper
2018-03-07
The use of nanoprobes such as gold, silver, silica or iron-oxide nanoparticles as detection reagents in bioanalytical assays can enable high sensitivity and convenient colorimetric readout. However, high densities of nanoparticles are typically needed for detection. The available synthesis-based enhancement protocols are either limited to gold and silver nanoparticles or rely on precise enzymatic control and optimization. Here, we present a protocol to enhance the colorimetric readout of gold, silver, silica, and iron oxide nanoprobes. It was observed that the colorimetric signal can be improved by up to a 10000-fold factor. The basis for such signal enhancement strategies is the chemical reduction of Au 3+ to Au 0 . There are several chemical reactions that enable the reduction of Au 3+ to Au 0 . In the protocol, Good's buffers and H2O2 are used and it is possible to favor the deposition of Au 0 onto the surface of existing nanoprobes, in detriment of the formation of new gold nanoparticles. The protocol consists of the incubation of the microarray with a solution consisting of chloroauric acid and H2O2 in 2-(N-morpholino)ethanesulfonic acid pH 6 buffer following the nanoprobe-based detection assay. The enhancement solution can be applied to paper and glass-based sensors. Moreover, it can be used in commercially available immunoassays as demonstrated by the application of the method to a commercial allergen microarray. The signal development requires less than 5 min of incubation with the enhancement solution and the readout can be assessed by naked eye or low-end image acquisition devices such as a table-top scanner or a digital camera.
Single cell analysis using surface enhanced Raman scattering (SERS) tags
Nolan, John P.; Duggan, Erika; Liu, Er; Condello, Danilo; Dave, Isha; Stoner, Samuel A.
2013-01-01
Fluorescence is a mainstay of bioanalytical methods, offering sensitive and quantitative reporting, often in multiplexed or multiparameter assays. Perhaps the best example of the latter is flow cytometry, where instruments equipped with multiple lasers and detectors allow measurement of 15 or more different fluorophores simultaneously, but increases beyond this number are limited by the relatively broad emission spectra. Surface enhanced Raman scattering (SERS) from metal nanoparticles can produce signal intensities that rival fluorescence, but with narrower spectral features that allow a greater degree of multiplexing. We are developing nanoparticle SERS tags as well as Raman flow cytometers for multiparameter single cell analysis of suspension or adherent cells. SERS tags are based on plasmonically active nanoparticles (gold nanorods) whose plasmon resonance can be tuned to give optimal SERS signals at a desired excitation wavelength. Raman resonant compounds are adsorbed on the nanoparticles to confer a unique spectral fingerprint on each SERS tag, which are then encapsulated in a polymer coating for conjugation to antibodies or other targeting molecules. Raman flow cytometry employs a high resolution spectral flow cytometer capable of measuring the complete SERS spectra, as well as conventional flow cytometry measurements, from thousands of individual cells per minute. Automated spectral unmixing algorithms extract the contributions of each SERS tag from each cell to generate high content, multiparameter single cell population data. SERS-based cytometry is a powerful complement to conventional fluorescence-based cytometry. The narrow spectral features of the SERS signal enables more distinct probes to be measured in a smaller region of the optical spectrum with a single laser and detector, allowing for higher levels of multiplexing and multiparameter analysis. PMID:22498143
Casanova-Moreno, J; Bizzotto, D
2015-02-17
Electrostatic control of the orientation of fluorophore-labeled DNA strands immobilized on an electrode surface has been shown to be an effective bioanalytical tool. Modulation techniques and later time-resolved measurements were used to evaluate the kinetics of the switching between lying and standing DNA conformations. These measurements, however, are the result of a convolution between the DNA "switching" response time and the other frequency limited responses in the measurement. In this work, a method for analyzing the response of a potential driven DNA sensor is presented by calculating the potential effectively dropped across the electrode interface (using electrochemical impedance spectroscopy) as opposed to the potential applied to the electrochemical cell. This effectively deconvolutes the effect of the charging time on the observed frequency response. The corrected response shows that DNA is able to switch conformation faster than previously reported using modulation techniques. This approach will ensure accurate measurements independent of the electrochemical system, removing the uncertainty in the analysis of the switching response, enabling comparison between samples and measurement systems.
Polyfluorinated substances in abiotic standard reference ...
The National Institute of Standards and Technology (NIST) has a wide range of Standard Reference Materials (SRMs) which have values assigned for legacy organic pollutants and toxic elements. Existing SRMs serve as homogenous materials that can be used for method development, method validation, and measurement for contaminants that are now of concern. NIST and multiple groups have been measuring the mass fraction of a group of emerging contaminants, polyfluorinated substances (PFASs), in a variety of SRMs. Here we report levels determined in an interlaboratory comparison of up to 23 PFASs determined in five SRMs: sediment (SRMs 1941b and 1944), house dust (SRM 2585), soil (SRM 2586), and sludge (SRM 2781). Measurements presented show an array of PFASs, with perfluorooctane sulfonate being the most frequently detected. SRMs 1941b, 1944, and 2586 had relatively low concentrations of most PFASs measured while 23 PFASs were at detectable levels in SRM 2585 and most of the PFASs measured were at detectable levels in SRM 2781. The measurements made in this study were used to add values to the Certificates of Analysis for SRMs 2585 and 2781. Journal article published in Analytical and Bioanalytical Chemistry
Nie, Ji; Zhang, De-Wen; Tie, Cai; Zhou, Ying-Lin; Zhang, Xin-Xiang
2013-11-15
The combination of aptamer and peroxidase-mimicking DNAzyme within a hairpin structure can form a functional DNA probe. The activities of both aptamer (as biorecognition element) and DNAzyme (as signal amplification element) are blocked via base pairing in the hairpin structure. The presence of target triggers the opening of the hairpin to form target/aptamer complex and releases G-quadruplex sequence which can generate amplified colorimetric signals. In this work, we elaborated a universal and simple procedure to design an efficient and sensitive hairpin probe with suitable functional DNA partners. A fill-in-the-blank process was developed for sequence design, and two key points including the pretreatment of the hairpin probe and the selection of suitable signal transducer sequence were proved to enhance the detection sensitivity. Cocaine was chosen as a model target for a proof of concept. A series of hairpins with different numbers of base pairs in the stem region were prepared. Hairpin-C10 with ten base pairs was screened out and a lowest detectable cocaine concentration of 5 μM by colorimetry was obtained. The proposed functional DNA hairpin showed good selectivity and satisfactory analysis in spiked biologic fluid. The whole "mix-and-measure" detection based on DNA hairpin without the need of immobilization and labeling was indicated to be time and labor saving. The strategy has potential to be transplanted into more smart hairpins toward other targets for general application in bioanalytical chemistry. Copyright © 2013 Elsevier B.V. All rights reserved.
Phung, Nhi; Kuncze, Karen; Okochi, Hideaki; Louie, Alexander; Benet, Leslie Z; Ofokotun, Igho; Haas, David W; Currier, Judith S; Chawana, Tariro D; Sheth, Anandi N; Bacchetti, Peter; Gandhi, Monica; Horng, Howard
2018-03-15
Assays to quantify antiretrovirals in hair samples are increasingly used to monitor adherence and exposure in both HIV prevention and treatment studies. Atazanavir (ATV) is a protease inhibitor used in combination antiretroviral therapy (ART). We developed and validated a liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based method to quantify ATV in human hair, per the NIH Division of AIDS Clinical Pharmacology Quality Assurance (CPQA) program and the FDA bioanalytical method validation guidelines. ATV was extracted from hair using optimized methods and the extracts were injected onto a BDS C-18 column (5 μm, 4.6 × 100 mm), followed by isocratic elution via a mobile phase composed of 55% acetonitrile, 45% water, 0.15% acetic acid, and 4 mM ammonium acetate, at a flow rate of 0.8 mL/min prior to analysis by MS/MS. Levels were quantified using positive electrospray ionization by multiple reaction monitoring (MRM) for the transitions MH + m/z 705.3 to m/z 168.0 and MH + m/z 710.2 to m/z 168.0 for ATV and ATV-d5 (internal standard), respectively. Our assay demonstrated a linear standard curve (r = 0.99) over the concentration range of 0.0500 ng ATV/mg hair to 20.0 ng/mg hair. The inter- and intraday accuracy of ATV quality control (QC) samples was -1.33 to 4.00% and precision (% coefficient of variation (%CV)) was 1.75 to 6.31%. The %CV for ATV levels in hair samples from highly adherent patients (incurred samples) was less than 10%. No significant endogenous peaks or crosstalk were observed in the specificity test with other HIV drugs. The overall extraction efficiency of ATV from incurred hair samples was greater than 95%. This highly sensitive, highly specific and validated assay can be considered for therapeutic drug monitoring for HIV-infected patients on ATV-based ART. Copyright © 2018 John Wiley & Sons, Ltd.
Zhang, Qiyang; Gong, Maojun
2016-06-10
Flow-gated capillary electrophoresis (CE) coupled with microdialysis has become an important tool for in vivo bioanalytical measurements because it is capable of performing rapid and efficient separations of complex biological mixtures thus enabling high temporal resolution in chemical monitoring. However, the limit of detection (LOD) is often limited to a micro- or nano-molar range while many important target analytes have picomolar or sub-nanomolar levels in brain and other tissues. To enhance the capability of flow-gated CE for catecholamine detection, a novel and simple on-line sample preconcentration method was developed exclusively for fluorescent derivatives of catecholamines that were fluorogenically derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanide. The effective preconcentration coupled with the sensitive laser-induced fluorescence (LIF) detection lowered the LOD down to 20pM for norepinephrine (NE) and 50pM for dopamine (DA) at 3-fold of S/N ratio, and the signal enhancement was estimated to be over 100-fold relative to normal injection when standard analytes were dissolved in artificial cerebrospinal fluid (aCSF). The basic focusing principle is novel since the sample plug contains borate while the background electrolyte (BGE) is void of borate. This strategy took advantage of the complexation between diols and borate, through which one negative charge was added to the complex entity. The sample derivatization mixture was electrokinetically injected into a capillary via the flow-gated injection, and then NE and DA derivatives were selectively focused to a narrow zone by the reversible complexation. Separation of NE and DA derivatives was executed by incoming surfactants of cholate and deoxycholate mixed in the front BGE plug. This on-line preconcentration method was finally applied to the detection of DA in rat cerebrospinal fluid (CSF) via microdialysis and on-line derivatization. It is anticipated that the method would be valuable for in vivo monitoring of DA and NE in various brain regions of live animals on flow-gated CE or microchip platforms. Published by Elsevier B.V.
Saleh, Aljona; Gökturk, Camilla; Warpman-Berglund, Ulrika; Helleday, Thomas; Granelli, Ingrid
2015-02-01
MTH1 is a protein that is required for cancer cell survival and is overexpressed in cancer cells. TH588 and TH287 are two new compounds that inhibit the MTH1 protein. The inhibitors were tested in pharmacokinetic studies on mice. A bioanalytical method was developed and validated for determination in mice plasma. The method was based on protein precipitation followed by LC-MS/MS analysis. The separation was performed on an Ascentis Express RP-Amide C18 column. The mass spectrometer was operated in positive electrospray ionization mode and the analytes were determined with multiple reaction monitoring (MRM). Abundant monoisotopic fragments were used for quantification. Two additional fragments were used for conformational analysis. The recovery of the compounds in plasma varied between 61 and 91% and the matrix effects were low and ranged between -3% and +2%. The method showed to be selective, linear, accurate and precise, and applicable for preclinical pharmacokinetic studies of TH588 and TH287 in mouse plasma. Half-life (T1/2) was ≤3.5h and maximum concentration (Cmax) ranged between 0.82 and 338μM for the different administration routes and compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Kinoshita, Kohnosuke; Jingu, Shigeji; Yamaguchi, Jun-ichi
2013-01-15
A bioanalytical method for determining endogenous d-serine levels in the mouse brain using a surrogate analyte and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. [2,3,3-(2)H]D-serine and [(15)N]D-serine were used as a surrogate analyte and an internal standard, respectively. The surrogate analyte was spiked into brain homogenate to yield calibration standards and quality control (QC) samples. Both endogenous and surrogate analytes were extracted using protein precipitation followed by solid phase extraction. Enantiomeric separation was achieved on a chiral crown ether column with an analysis time of only 6 min without any derivatization. The column eluent was introduced into an electrospray interface of a triple-quadrupole mass spectrometer. The calibration range was 1.00 to 300 nmol/g, and the method showed acceptable accuracy and precision at all QC concentration levels from a validation point of view. In addition, the brain d-serine levels of normal mice determined using this method were the same as those obtained by a standard addition method, which is time-consuming but is often used for the accurate measurement of endogenous substances. Thus, this surrogate analyte method should be applicable to the measurement of d-serine levels as a potential biomarker for monitoring certain effects of drug candidates on the central nervous system. Copyright © 2012 Elsevier Inc. All rights reserved.
Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways
NASA Astrophysics Data System (ADS)
Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna
2013-12-01
DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications. Electronic supplementary information (ESI) available: Detailed description of all oligonucleotide sequences used in this study; list of figures that support claims from the main text. Mainly these show sensor sequences, phage display results, scFv purification and binding data, cell images clamped at different pH and co-localization studies with endocytic tracers. See DOI: 10.1039/c3nr03769j
Analytical chemistry in the Aegean Sea region: current status.
Samanidou, Victoria F
2012-12-01
The Eighth Aegean Analytical Chemistry Days Conference took place in Urla, İzmir, Turkey, from 16-20 September 2012. This conference is held every 2 years, organized alternately by analytical chemistry departments of Turkish and Greek universities, so that analytical chemists from the region around the Aegean Sea can exchange experience and knowledge based on their research in a large number of fields. This report summarizes the most interesting presentations and posters pertaining to bioanalytical work.
Optical Fiber Sensing Using Quantum Dots
Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz
2007-01-01
Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms. PMID:28903308
Last Advances in Silicon-Based Optical Biosensors.
Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M
2016-02-24
We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.
Ackermann, Brad; Neubert, Hendrik; Hughes, Nicola; Garofolo, Fabio; Abberley, Lee; Alley, Stephen C; Brown-Augsburger, Patricia; Bustard, Mark; Chen, Lin-Zhi; Heinrich, Julia; Katori, Noriko; Kaur, Surinder; Kirkovsky, Leo; Laterza, Omar F; Le Blaye, Olivier; Lévesque, Ann; Santos, Gustavo Mendes Lima; Olah, Timothy; Savoie, Natasha; Skelly, Michael; Spitz, Susan; Szapacs, Matthew; Tampal, Nilufer; Wang, Jian; Welink, Jan; Wieling, Jaap; Haidar, Sam; Vinter, Stephen; Whale, Emma; Witte, Bärbel
2015-12-01
The 2015 9th Workshop on Recent Issues in Bioanalysis (9th WRIB) took place in Miami, Florida with participation of over 600 professionals from pharmaceutical and biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. It is once again a 5-day week long event - a full immersion bioanalytical week - specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest in bioanalysis. The topics covered included both small and large molecules, and involved LCMS, hybrid LBA/LCMS, LBA approaches including the focus on biomarkers and immunogenicity. This 2015 White Paper encompasses recommendations that emerged from the extensive discussions held during the workshop, and is aimed at providing the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to advance scientific excellence, improve quality and deliver better regulatory compliance. Due to its length, the 2015 edition of this comprehensive White Paper has been divided into three parts. Part 2 covers the recommendations for hybrid LBA/LCMS and regulatory agencies' inputs. Part 1 (small molecule bioanalysis using LCMS) and Part 3 (large molecule bioanalysis using LBA, biomarkers and immunogenicity) will be published in volume 7 of Bioanalysis, issues 22 and 24, respectively.
Airborne chemistry: acoustic levitation in chemical analysis.
Santesson, Sabina; Nilsson, Staffan
2004-04-01
This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.
Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging.
Deiss, F; Sojic, N; White, D J; Stoddart, P R
2010-01-01
Optical fibre bundles usually comprise a few thousand to tens of thousands of individually clad glass optical fibres. The ordered arrangement of the fibres enables coherent transmission of an image through the bundle and therefore enables analysis and viewing in remote locations. In fused bundles, this architecture has also been used to fabricate arrays of various micro to nano-scale surface structures (micro/nanowells, nanotips, triangles, etc.) over relatively large areas. These surface structures have been used to obtain new optical and analytical capabilities. Indeed, the imaging bundle can be thought of as a "starting material" that can be sculpted by a combination of fibre drawing and selective wet-chemical etching processes. A large variety of bioanalytical applications have thus been developed, ranging from nano-optics to DNA nanoarrays. For instance, nanostructured optical surfaces with intrinsic light-guiding properties have been exploited as surface-enhanced Raman scattering (SERS) platforms and as near-field probe arrays. They have also been productively associated with electrochemistry to fabricate arrays of transparent nanoelectrodes with electrochemiluminescent imaging properties. The confined geometry of the wells has been loaded with biosensing materials and used as femtolitre-sized vessels to detect single molecules. This review describes the fabrication of high-density nanostructured optical fibre arrays and summarizes the large range of optical and bioanalytical applications that have been developed, reflecting the versatility of this ordered light-guiding platform.
Drug Target Interference in Immunogenicity Assays: Recommendations and Mitigation Strategies.
Zhong, Zhandong Don; Clements-Egan, Adrienne; Gorovits, Boris; Maia, Mauricio; Sumner, Giane; Theobald, Valerie; Wu, Yuling; Rajadhyaksha, Manoj
2017-11-01
Sensitive and specific methodology is required for the detection and characterization of anti-drug antibodies (ADAs). High-quality ADA data enables the evaluation of potential impact of ADAs on the drug pharmacokinetic profile, patient safety, and efficacious response to the drug. Immunogenicity assessments are typically initiated at early stages in preclinical studies and continue throughout the drug development program. One of the potential bioanalytical challenges encountered with ADA testing is the need to identify and mitigate the interference mediated by the presence of soluble drug target. A drug target, when present at sufficiently high circulating concentrations, can potentially interfere with the performance of ADA and neutralizing antibody (NAb) assays, leading to either false-positive or, in some cases, false-negative ADA and NAb assay results. This publication describes various mechanisms of assay interference by soluble drug target, as well as strategies to recognize and mitigate such target interference. Pertinent examples are presented to illustrate the impact of target interference on ADA and NAb assays as well as several mitigation strategies, including the use of anti-target antibodies, soluble versions of the receptors, target-binding proteins, lectins, and solid-phase removal of targets. Furthermore, recommendations for detection and mitigation of such interference in different formats of ADA and NAb assays are provided.
Malaei, Reyhane; Ramezani, Amir M; Absalan, Ghodratollah
2018-05-04
A sensitive and reliable ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) procedure was developed and validated for extraction and analysis of malondialdehyde (MDA) as an important lipids-peroxidation biomarker in human plasma. In this methodology, to achieve an applicable extraction procedure, the whole optimization processes were performed in human plasma. To convert MDA into readily extractable species, it was derivatized to hydrazone structure-base by 2,4-dinitrophenylhydrazine (DNPH) at 40 °C within 60 min. Influences of experimental variables on the extraction process including type and volume of extraction and disperser solvents, amount of derivatization agent, temperature, pH, ionic strength, sonication and centrifugation times were evaluated. Under the optimal experimental conditions, the enhancement factor and extraction recovery were 79.8 and 95.8%, respectively. The analytical signal linearly (R 2 = 0.9988) responded over a concentration range of 5.00-4000 ng mL -1 with a limit of detection of 0.75 ng mL -1 (S/N = 3) in the plasma sample. To validate the developed procedure, the recommend guidelines of Food and Drug Administration for bioanalytical analysis have been employed. Copyright © 2018. Published by Elsevier B.V.
Development of Immunocapture-LC/MS Assay for Simultaneous ADA Isotyping and Semiquantitation
2016-01-01
Therapeutic proteins and peptides have potential to elicit immune responses resulting in anti-drug antibodies that can pose problems for both patient safety and product efficacy. During drug development immunogenicity is usually examined by risk-based approach along with specific strategies for developing “fit-for-purpose” bioanalytical approaches. Enzyme-linked immunosorbent assays and electrochemiluminescence immunoassays are the most widely used platform for ADA detection due to their high sensitivity and throughput. During the past decade, LC/MS has emerged as a promising technology for quantitation of biotherapeutics and protein biomarkers in biological matrices, mainly owing to its high specificity, selectivity, multiplexing, and wide dynamic range. In fully taking these advantages, we describe here an immunocapture-LC/MS methodology for simultaneous isotyping and semiquantitation of ADA in human plasma. Briefly, ADA and/or drug-ADA complex is captured by biotinylated drug or anti-drug Ab, immobilized on streptavidin magnetic beads, and separated from human plasma by a magnet. ADA is then released from the beads and subjected to trypsin digestion followed by LC/MS detection of specific universal peptides for each ADA isotype. The LC/MS data are analyzed using cut-point and calibration curve. The proof-of-concept of this methodology is demonstrated by detecting preexisting ADA in human plasma. PMID:27034966
Development of Immunocapture-LC/MS Assay for Simultaneous ADA Isotyping and Semiquantitation.
Chen, Lin-Zhi; Roos, David; Philip, Elsy
2016-01-01
Therapeutic proteins and peptides have potential to elicit immune responses resulting in anti-drug antibodies that can pose problems for both patient safety and product efficacy. During drug development immunogenicity is usually examined by risk-based approach along with specific strategies for developing "fit-for-purpose" bioanalytical approaches. Enzyme-linked immunosorbent assays and electrochemiluminescence immunoassays are the most widely used platform for ADA detection due to their high sensitivity and throughput. During the past decade, LC/MS has emerged as a promising technology for quantitation of biotherapeutics and protein biomarkers in biological matrices, mainly owing to its high specificity, selectivity, multiplexing, and wide dynamic range. In fully taking these advantages, we describe here an immunocapture-LC/MS methodology for simultaneous isotyping and semiquantitation of ADA in human plasma. Briefly, ADA and/or drug-ADA complex is captured by biotinylated drug or anti-drug Ab, immobilized on streptavidin magnetic beads, and separated from human plasma by a magnet. ADA is then released from the beads and subjected to trypsin digestion followed by LC/MS detection of specific universal peptides for each ADA isotype. The LC/MS data are analyzed using cut-point and calibration curve. The proof-of-concept of this methodology is demonstrated by detecting preexisting ADA in human plasma.
Detection of Antibodies in Blood Plasma Using Bioluminescent Sensor Proteins and a Smartphone.
Arts, Remco; den Hartog, Ilona; Zijlema, Stefan E; Thijssen, Vito; van der Beelen, Stan H E; Merkx, Maarten
2016-04-19
Antibody detection is of fundamental importance in many diagnostic and bioanalytical assays, yet current detection techniques tend to be laborious and/or expensive. We present a new sensor platform (LUMABS) based on bioluminescence resonance energy transfer (BRET) that allows detection of antibodies directly in solution using a smartphone as the sole piece of equipment. LUMABS are single-protein sensors that consist of the blue-light emitting luciferase NanoLuc connected via a semiflexible linker to the green fluorescent acceptor protein mNeonGreen, which are kept close together using helper domains. Binding of an antibody to epitope sequences flanking the linker disrupts the interaction between the helper domains, resulting in a large decrease in BRET efficiency. The resulting change in color of the emitted light from green-blue to blue can be detected directly in blood plasma, even at picomolar concentrations of antibody. Moreover, the modular architecture of LUMABS allows changing of target specificity by simple exchange of epitope sequences, as demonstrated here for antibodies against HIV1-p17, hemagglutinin (HA), and dengue virus type I. The combination of sensitive ratiometric bioluminescent detection and the intrinsic modularity of the LUMABS design provides an attractive generic platform for point-of-care antibody detection that avoids the complex liquid handling steps associated with conventional immunoassays.
Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek
2018-05-15
Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism. Copyright © 2018. Published by Elsevier B.V.
Hosseini, Samira; Aeinehvand, Mohammad M.; Uddin, Shah M.; Benzina, Abderazak; Rothan, Hussin A.; Yusof, Rohana; Koole, Leo H.; Madou, Marc J.; Djordjevic, Ivan; Ibrahim, Fatimah
2015-01-01
The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres’ specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness. PMID:26548806
Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads.
Centi, Sonia; Tombelli, Sara; Minunni, Maria; Mascini, Marco
2007-02-15
The DNA thrombin aptamer has been extensively investigated, and the coupling of this aptamer to different transduction principles has demonstrated the wide applicability of aptamers as bioreceptors in bioanalytical assays. The goal of this work was to design an aptamer-based sandwich assay with electrochemical detection for thrombin analysis in complex matrixes, using a simple target capturing step by aptamer-functionalized magnetic beads. The conditions for the aptamer immobilization and for the protein binding have been first optimized by surface plasmon resonance, and then transferred to the electrochemical-based assay performed onto screen-printed electrodes. The assay was then applied to the analysis of thrombin in buffer, spiked serum, and plasma and high sensitivity and specificity were found. Moreover, thrombin was generated in situ in plasma by the conversion of its precursor prothrombin, and the formation of thrombin was followed at different times. The concentrations detected by the electrochemical assay were in agreement with a simulation software that mimics the formation of thrombin over time (thrombogram). The proposed work demonstrates that the high specificity of aptamers together with the use of magnetic beads are the key features for aptamer-based analysis in complex matrixes, opening the possibility of a real application to diagnostics or medical investigation.
Laviale, Martin; Morin, Soizic; Créach, Anne
2011-07-01
Aquatic organisms are exposed to fluctuating concentrations of herbicides which contaminate rivers following their use for agricultural or domestic purposes. The development of sensitive bioanalytical tests enabling us not only to detect the effects of those pollutants but to take into account this pattern of exposure should improve the ecological relevance of river toxicity assessment. In this respect, the use of chlorophyll fluorescence measurements is a convenient way to probe the effect of photosystem II (PSII) inhibitors on primary producers. This study was devoted to validate the combined use of two fluorescence parameters, the effective and the optimal quantum yields of PSII photochemistry (Φ(PSII) and F(v)/F(m)), as reliable biomarkers of initial isoproturon (IPU) or atrazine (ATZ) toxicity to natural periphyton in a pulse exposition scenario. Φ(PSII) and F(v)/F(m) were regularly estimated during a 7 h-exposure to each pollutant (0-100 μM) and also later after being transferred in herbicide-free water (up to 36 h). Our results showed that IPU was more toxic than ATZ, but with effects reversible within 12 h. Moreover, these two similarly acting herbicides (i.e. same target site) presented contrasted short term recovery patterns, regarding the previous exposure duration. Copyright © 2011 Elsevier Ltd. All rights reserved.
Deng, Chunyan; Chen, Jinhua; Chen, Xiaoli; Xiao, Chunhui; Nie, Lihua; Yao, Shouzhuo
2008-03-14
Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.
Silva Neto, A J; Scorsato, V; Arnoldi, F G C; Viviani, V R
2009-12-01
Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, K(M) values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging.
Zhang, Ti; Cai, Shuang; Forrest, Wai Chee; Mohr, Eva; Yang, Qiuhong; Forrest, M Laird
2016-09-01
Cisplatin, a platinum chemotherapeutic, is one of the most commonly used chemotherapeutic agents for many solid tumors. In this work, we developed and validated an inductively coupled plasma mass spectrometry (ICP-MS) method for quantitative determination of platinum levels in rat urine, plasma, and tissue matrices including liver, brain, lungs, kidney, muscle, heart, spleen, bladder, and lymph nodes. The tissues were processed using a microwave accelerated reaction system (MARS) system prior to analysis on an Agilent 7500 ICP-MS. According to the Food and Drug Administration guidance for industry, bioanalytical validation parameters of the method, such as selectivity, accuracy, precision, recovery, and stability were evaluated in rat biological samples. Our data suggested that the method was selective for platinum without interferences caused by other presenting elements, and the lower limit of quantification was 0.5 ppb. The accuracy and precision of the method were within 15% variation and the recoveries of platinum for all tissue matrices examined were determined to be 85-115% of the theoretical values. The stability of the platinum-containing solutions, including calibration standards, stock solutions, and processed samples in rat biological matrices was investigated. Results indicated that the samples were stable after three cycles of freeze-thaw and for up to three months. © The Author(s) 2016.
Zhang, Ti; Cai, Shuang; Forrest, Wai Chee; Mohr, Eva; Yang, Qiuhong; Forrest, M. Laird
2016-01-01
Cisplatin, a platinum chemotherapeutic, is one of the most commonly used chemotherapeutic agents for many solid tumors. In this work, we developed and validated an inductively coupled plasma mass spectrometry (ICP-MS) method for quantitative determination of platinum levels in rat urine, plasma, and tissue matrices including liver, brain, lungs, kidney, muscle, heart, spleen, bladder, and lymph nodes. The tissues were processed using a microwave accelerated reaction system (MARS) system prior to analysis on an Agilent 7500 ICP-MS. According to the Food and Drug Administration guidance for industry, bioanalytical validation parameters of the method, such as selectivity, accuracy, precision, recovery, and stability were evaluated in rat biological samples. Our data suggested that the method was selective for platinum without interferences caused by other presenting elements, and the lower limit of quantification was 0.5 ppb. The accuracy and precision of the method were within 15% variation and the recoveries of platinum for all tissue matrices examined were determined to be 85–115% of the theoretical values. The stability of the platinum-containing solutions, including calibration standards, stock solutions, and processed samples in rat biological matrices was investigated. Results indicated that the samples were stable after three cycles of freeze–thaw and for up to three months. PMID:27527103
Teijlingen, Raymond van; Meijer, John; Takusagawa, Shin; Gelderen, Marcel van; Beld, Cas van den; Usui, Takashi
2012-03-01
Mirabegron is being developed for the treatment of overactive bladder. To support the development of mirabegron, including pharmacokinetic studies, liquid chromatography/tandem mass spectrometry methods for mirabegron and eight metabolites (M5, M8, M11-M16) were developed and validated for heparinized human plasma containing sodium fluoride. Four separate bioanalytical methods were developed for the analysis of: (1) mirabegron; (2) M5 and M16; (3) M8; and (4) M11-M15. Either solid-phase extraction or liquid-liquid extraction was used to extract the analytes of interest from matrix constituents. For mirabegron, an Inertsil C₈-3 analytical column was used and detection was performed using a triple-quad mass spectrometer equipped with an atmospheric pressure chemical ionization interface. For the metabolite assays, chromatographic separation was performed through a Phenomenex Synergi Fusion-RP C₁₈ analytical column and detection was performed using a triple-quad mass spectrometer equipped with a Heated Electrospray Ionization interface. The validation results demonstrated that the developed liquid chromatography/tandem mass spectrometry methods were precise, accurate, and selective for the determination of mirabegron and its metabolites in human plasma. All methods were successfully applied in evaluating the pharmacokinetic parameters of mirabegron and metabolites in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.
Quantitative measurement of XLR11 and UR-144 in oral fluid by LC-MS-MS.
Amaratunga, Piyadarsha; Thomas, Christopher; Lemberg, Bridget Lorenz; Lemberg, Dave
2014-01-01
Availability and consumption of synthetic cannabinoids have risen recently in the USA and Europe. These drugs have adverse effects, including acute psychosis and bizarre behavior. In 2012, the United States Drug Enforcement Agency permanently banned five of the synthetic cannabinoids and in 2013, temporarily added XLR11, UR-144 and AKB48 to Schedule I of the Controlled Substances Act. As synthetic cannabinoid strains are added to the Schedule I list, new strains are being introduced into the market. XLR11 and UR-144 are two of the most recent additions to the synthetic cannabinoid drug class. To test collected oral fluid samples for XLR11 and UR-144, we developed a bioanalytical method that initially purifies the sample with solid-phase extraction and then quantitatively identifies the drugs with ultra-high-performance liquid chromatography-tandem mass spectrometry. The method was validated according to United States Food and Drug Administration guidelines and Scientific Working Group for Forensic Toxicology guidelines and the validation data showed that the method is an accurate, precise, robust and efficient method suited for high-throughput toxicological screening applications. We tested human subject samples with the developed method and found the presence of parent drugs (XLR11 and UR-144), their metabolites and their pyrolysis products in oral fluid. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2014-08-01
still require months to produce, whereas alternatives such as aptamers [5, 6] require less time to discover, but are not as thermally stable. Smart...Bioanalytical Chemistry, 402(10), 3027-3038 (2012). [5] K.-M. Song, S. Lee, and C. Ban, " Aptamers and Their Biological Applications," Sensors, 12(1...612-631 (2012). [6] B. Strehlitz, N. Nikolaus, and R. Stoltenburg, "Protein Detection with Aptamer Biosensors," Sensors, 8(7), 4296- 4307 (2008). [7
Plasmonic nanoparticles for bioanalytics and therapy at the limit
NASA Astrophysics Data System (ADS)
Schneider, T.; Wirth, J.; Garwe, F.; Csáki, A.; Fritzsche, W.
2011-12-01
Noble metal nanoparticles interacting with electromagnetic waves exhibit the effect of localized surface plasmon resonance (LSPR) based on the collective oscillation of their conduction electrons. Local refractive index changes by a (bio) molecular layer surrounding the nanoparticle are important for a variety of research areas like optics and life sciences. In this work we demonstrate the potential of two applications in the field of molecular plasmonics, single nanoparticle sensors and nanoantennas, situated between plasmonics effects and the molecular world.
2006-10-01
Gibbs, E. M., Fletterick, R. J., Day, Y. S. N., Myszka, D. G., and Rath, V. L. (2002) “Structure-activity analysis of the purine-binding site of human ...Rich, R. L., Day, Y. S. N., Morton, T. A., and Myszka, D. G., (2001) “High- resolution and high-throughput protocols for measuring drug/ human serum...entire text) 1. Attard, P., Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett., 2001. 87. 2. Ottino, J.M
Workshop on Recent Issues in Bioanalysis (WRIB) Poster Award winners 2017.
Simmons, Neil; Lowe, John; Coddens, Annelies
2017-07-01
The 11th WRIB held in Los Angeles, CA, USA in April 2017. It drew over 750 professionals representing large Pharmas, Biotechs, CROs and multiple regulatory agencies from around the world, from the global bioanalytical community. Bioanalysis and Bioanalysis Zone are very proud to be supporting the WRIB Poster Awards again this year, and we feature the profiles of the authors of the winning posters. Visit www.bioanalysis-zone.com to see the winning posters in full.
The development of a strategy for the implementation of automation in a bioanalytical laboratory.
Mole, D; Mason, R J; McDowall, R D
1993-03-01
Laboratory automation is equipment, instrumentation, software and techniques that are classified into four groups: instrument automation; communications; data to information conversion; and information management. This new definition is necessary to understand the role that automation can play in achieving the aims and objectives of a laboratory within its organization. To undertake automation projects effectively, a laboratory automation strategy is outlined which requires an intimate knowledge of an organization and the target environment to implement individual automation projects.
Last Advances in Silicon-Based Optical Biosensors
Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C.; Lechuga, Laura M.
2016-01-01
We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies. PMID:26927105
Fraselle, S; De Cremer, K; Coucke, W; Glorieux, G; Vanmassenhove, J; Schepers, E; Neirynck, N; Van Overmeire, I; Van Loco, J; Van Biesen, W; Vanholder, R
2015-04-15
Despite decades of creatinine measurement in biological fluids using a large variety of analytical methods, an accurate determination of this compound remains challenging. Especially with the novel trend to assess biomarkers on large sample sets preserved in biobanks, a simple and fast method that could cope with both a high sample throughput and a low volume of sample is still of interest. In answer to these challenges, a fast and accurate ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to measure creatinine in small volumes of human urine. In this method, urine samples are simply diluted with a basic mobile phase and injected directly under positive electrospray ionization (ESI) conditions, without further purification steps. The combination of an important diluting factor (10(4) times) due to the use of a very sensitive triple quadrupole mass spectrometer (XEVO TQ) and the addition of creatinine-d3 as internal standard completely eliminates matrix effects coming from the urine. The method was validated in-house in 2012 according to the EMA guideline on bioanalytical method validation using Certified Reference samples from the German External Quality Assessment Scheme (G-Equas) proficiency test. All obtained results for accuracy and recovery are within the authorized tolerance ranges defined by G-Equas. The method is linear between 0 and 5 g/L, with LOD and LOQ of 5 × 10(-3) g/L and 10(-2) g/L, respectively. The repeatability (CV(r) = 1.03-2.07%) and intra-laboratory reproducibility (CV(RW) = 1.97-2.40%) satisfy the EMA 2012 guideline. The validated method was firstly applied to perform the German G-Equas proficiency test rounds 51 and 53, in 2013 and 2014, respectively. The obtained results were again all within the accepted tolerance ranges and very close to the reference values defined by the organizers of the proficiency test scheme, demonstrating an excellent accuracy of the developed method. The method was finally applied to measure the creatinine concentration in 210 urine samples, coming from 190 patients with a chronic kidney disease (CKD) and 20 healthy subjects. The obtained creatinine concentrations (ranging from 0.12 g/L up to 3.84 g/L) were compared, by means of a Passing Bablok regression, with the creatinine contents obtained for the same samples measured using a traditional compensated Jaffé method. The UHPLC-MS/MS method described in this paper can be used to normalize the concentration of biomarkers in urine for the extent of dilution. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Zhiying; Bian, Liangqiao; Mo, Chenglin; Kukula, Maciej; Schug, Kevin A; Brotto, Marco
2017-09-01
Lipid mediators (LMs) are a class of bioactive metabolites of the essential polyunsaturated fatty acids (PUFA), which are involved in many physiological processes. Their quantification in biological samples is critical for understanding their functions in lifestyle and chronic diseases, such as diabetes, as well allergies, cancers, and in aging processes. We developed a rapid, and sensitive LC-MS/MS method to quantify the concentrations of 14 lipid mediators of interest in mouse skeletal muscle tissue without time-consuming liquid-liquid or solid-phase extractions. A restricted-access media (RAM) based trap was used prior to LC-MS as cleanup process to prevent the analytical column from clogging and deterioration. The system enabled automatic removal of residual proteins and other biological interferences presented in the tissue extracts; the target analytes were retained in the trap and then eluted to an analytical column for separation. Matrix evaluation tests demonstrated that the use of the combined RAM trap and chromatographic separation efficiently eliminated the biological or chemical matrix interferences typically encountered in bioanalytical analysis. Using 14 LM standards and 12 corresponding deuterated compounds as internal standards, the five-point calibration curves, established over the concentration range of 0.031-320 ng mL -1 , demonstrated good linearity of r 2 > 0.9903 (0.9903-0.9983). The lower detection limits obtained were 0.016, 0.031, 0.062, and 0.31 ng mL -1 (0.5, 1, 2, and 10 pg on column), respectively, depending on the specific compounds. Good accuracy (87.1-114.5%) and precision (<13.4%) of the method were observed for low, medium, and high concentration quality control samples. The method was applied to measure the amount of 14 target LMs in mouse skeletal muscle tissues. All 14 analytes in this study were successfully detected and quantified in the gastrocnemius muscle samples, which provided crucial information for both age and gender-related aspects of LMs signaling in skeletal muscles previously unknown. This method could be applied to advance the understanding of skeletal muscle pathophysiology to study the role of LMs in health and disease. Furthermore, we will expand the application of this methodology to humans and other tissues/matrices in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.
Back, Hyun-moon; Lee, Jong-Hwa; Chae, Jung-woo; Song, Byungjeong; Seo, Joung-Wook; Yun, Hwi-yeol; Kwon, Kwang-il
2015-10-10
Astemizole (AST), a second-generation antihistamine, is metabolized to desmethyl astemizole (DEA), and although it has been removed from the market for inducing QT interval prolongation, it has reemerged as a potential anticancer and antimalarial agent. This report describes a novel high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for simultaneously determining the concentrations of AST and DEA in beagle dog and cynomolgus monkey plasma with simple preparation method and short retention time. Prior to HPLC analyses, the plasma samples were extracted with simple liquid-liquid extraction method. The isocratic mobile phase was 0.025% trifluoroacetic acid (TFA dissolved in acetonitrile) and 20 mM ammonium acetate (94:6) at a flow rate of 0.25 mL/min and diphenhydramine used as internal standard. In MS/MS analyses, precursor ions of the analytes were optimized as protonated molecular ions: [M+H](+). The lower limit of quantification of astemizole was 2.5 ng/mL in both species and desmethyl astemizole were 7.5 ng/mL and 10 ng/mL in dog and monkey plasma, respectively. The accuracy, precision, and stability of the method were in accordance with FDA guidelines for the validation of bioanalytical methods. Finally this validated method was successfully applied to a pharmacokinetic study in dogs and monkeys after oral administration of 10 mg/kg AST. Copyright © 2015 Elsevier B.V. All rights reserved.
Regtmeier, Jan; Käsewieter, Jörg; Everwand, Martina; Anselmetti, Dario
2011-05-01
Continuous-flow separation of nanoparticles (NPs) (15 and 39 nm) is demonstrated based on electrostatic sieving at a micro-nanofluidic interface. The interface is realized in a poly(dimethylsiloxane) device with a nanoslit of 525 nm laterally spanning the microfluidic channel (aspect ratio of 540:1). Within this nanoslit, the Debye layers overlap and generate an electrostatic sieve. This was exploited to selectively deflect and sort NPs with a sorting purity of up to 97%. Because of the continuous-flow operation, the sample is continuously fed into the device, immediately separated, and the parameters can be adapted in real time. For bioanalytical purposes, we also demonstrate the deflection of proteins (longest axis 6.8 nm). The continuous operation mode and the general applicability of this separation concept make this method a valuable addition to the current Lab-on-a-Chip devices for continuous sorting of NPs and macromolecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Xiaojuan; Wang, Yanan; He, Hua; Ma, Xiqi; Chen, Qi; Zhang, Shuai; Ge, Baosheng; Wang, Shengjie; Nau, Werner M; Huang, Fang
2017-05-31
Nucleoli are important subnuclear structures inside cells. We report novel fluorescent gold nanoclusters (K-AuNCs) that are able to stain the nucleoli selectively and make it possible to explore the nucleolar morphology with fluorescence imaging technique. This novel probe is prepared through an easy synthesis method by employing a tripeptide (Lys-Cys-Lys) as the surface ligand. The properties, including deep-red fluorescence emission (680 nm), large Stocks shift, broad excitation band, low cytotoxicity, and good photostability, endow this probe with potential for bioanalytical applications. Because of their small size and their positively charged surface, K-AuNCs are able to accumulate efficiently at the nucleolar regions and provide precise morphological information. K-AuNCs are also used to monitor the nucleolar dynamics along the reverse-transformation process of malignant cells, induced by the agonist of protein A, 8-chloro-cyclic adenosine monophosphate. This gives a novel approach for investigating the working mechanism of antitumor drugs.
Gregg, Evan O.; Minet, Emmanuel
2013-01-01
There are established guidelines for bioanalytical assay validation and qualification of biomarkers. In this review, they were applied to a panel of urinary biomarkers of tobacco smoke exposure as part of a “fit for purpose” approach to the assessment of smoke constituents exposure in groups of tobacco product smokers. Clinical studies have allowed the identification of a group of tobacco exposure biomarkers demonstrating a good doseresponse relationship whilst others such as dihydroxybutyl mercapturic acid and 2-carboxy-1-methylethylmercapturic acid – did not reproducibly discriminate smokers and non-smokers. Furthermore, there are currently no agreed common reference standards to measure absolute concentrations and few inter-laboratory trials have been performed to establish consensus values for interim standards. Thus, we also discuss in this review additional requirements for the generation of robust data on urinary biomarkers, including toxicant metabolism and disposition, method validation and qualification for use in tobacco products comparison studies. PMID:23902266
Antioxidant activity of taxifolin: an activity-structure relationship.
Topal, Fevzi; Nar, Meryem; Gocer, Hulya; Kalin, Pınar; Kocyigit, Umit M; Gülçin, İlhami; Alwasel, Saleh H
2016-08-01
Taxifolin is a kind of flavanonol, whose biological ability. The objectives of this study were to investigate the antioxidants and antiradical activities of taxifolin by using different in vitro bioanalytical antioxidant methods including DMPD√(+), ABTS√(+), [Formula: see text], and DPPH√-scavenging effects, the total antioxidant influence, reducing capabilities, and Fe(2+)-chelating activities. Taxifolin demonstrated 81.02% inhibition of linoleic acid emulsion peroxidation at 30 µg/mL concentration. At the same concentration, standard antioxidants including trolox, α-tocopherol, BHT, and BHA exhibited inhibitions of linoleic acid emulsion as 88.57, 73.88, 94.29, and 90.12%, respectively. Also, taxifolin exhibited effective DMPD√(+), ABTS√(+), [Formula: see text], and DPPH√-scavenging effects, reducing capabilities, and Fe(2+)-chelating effects. The results obtained from this study clearly showed that taxifolin had marked antioxidant, reducing ability, radical scavenging and metal-chelating activities. Also, this study exhibits a scientific shore for the significant antioxidant activity of taxifolin and its structure-activity insight.
Ma, Dik-Lung; Wang, Modi; He, Bingyong; Yang, Chao; Wang, Wanhe; Leung, Chung-Hang
2015-09-02
In this study, a series of 10 in-house cyclometalated iridium(III) complexes bearing different auxiliary ligands were tested for their selectivity toward split G-quadruplex in order to construct a label-free switch-on cocaine detection platform employing a three-way junction architecture and a G-quadruplex motif as a signal output unit. Through two rounds of screening, we discovered that the iridium(III) complex 7 exhibited excellent selectivity toward the intermolecular G-quadruplex motif. A detection limit as low as 30 nM for cocaine can be achieved by this sensing approach with a linear relationship between luminescence intensity and cocaine concentration established from 30 to 300 nM. Furthermore, this sensing approach could detect cocaine in diluted oral fluid. We hope that our simple, signal-on, label-free oligonucleotide-based sensing method for cocaine using a three-way DNA junction architecture could act as a useful platform in bioanalytical research.
Identification of a novel structure in heparin generated by potassium permanganate oxidation
Beccati, Daniela; Roy, Sucharita; Yu, Fei; Gunay, Nur Sibel; Capila, Ishan; Lech, Miroslaw; Linhardt, Robert J.; Venkataraman, Ganesh
2012-01-01
The worldwide heparin contamination crisis in 2008 led health authorities to take fundamental steps to better control heparin manufacture, including implementing appropriate analytical and bio-analytical methods to ensure production and release of high quality heparin sodium product. Consequently, there is an increased interest in the identification and structural elucidation of unusually modified structures that may be present in heparin. Our study focuses on the structural elucidation of species that give rise to a signal observed at 2.10 ppm in the N-acetyl region of the 1H NMR spectrum of some pharmaceutical grade heparin preparations. Structural elucidation experiments were carried out using homonuclear (COSY, TOSCY and NOESY) and heteronuclear (HSQC, HSQC-DEPT, HMQC-COSY, HSQC-TOCSY, and HMBC) 2D NMR spectroscopy on both heparin as well as heparin-like model compounds. Our results identify a novel type of oxidative modification of the heparin chain that results from a specific step in the manufacturing process used to prepare heparin. PMID:25147414
Theodoridis, Georgios
2006-01-18
Protein-drug interactions of seven common pharmaceuticals were studied using solid-phase microextraction (SPME). SPME can be used in such investigations on the condition that no analyte depletion occurs. In multi-compartment systems (e.g. a proteinaceous matrix) only the free portion of the analyte is able to partition into the SPME fiber. In addition if no sample depletion occurs, the bound drug-free drug equilibria are not disturbed. In the present study seven pharmaceuticals (quinine, quinidine, naproxen, ciprofloxacin, haloperidol, paclitaxel and nortriptyline) were assayed by SPME. For quantitative purposes SPME was validated first in the absence of proteins. Calibration curves were constructed for each drug by HPLC-fluorescence and HPLC-UV analysis. SPME was combined to HPLC off-line, desorption occurring in HPLC inserts filled with 200 microL methanol. Binding of each drug to human serum albumin was studied independently. Experimental results were in agreement with literature data and ultrafiltration experiments, indicating the feasibility of the method for such bioanalytical purposes.
Hemachandra, C K; Pathiratne, A
2017-10-01
Complex effluents originating from diverse industrial processes in industrial zones could pose cytotoxic/genotoxic hazards to biota in the receiving ecosystems which cannot be revealed by conventional monitoring methods. This study assessed potential cytotoxicity/genotoxicity of treated effluents of two industrial zones which are discharged into Kelani river, Sri Lanka combining erythrocytic abnormality tests and comet assay of the tropical model fish, Nile tilapia. Exposure of fish to the effluents induced erythrocytic DNA damage and deformed erythrocytes with serrated membranes, vacuolations, nuclear buds and micronuclei showing cytotoxic/genotoxic hazards in all cases. Occasional exceedance of industrial effluent discharge regulatory limits was noted for color and lead which may have contributed to the observed cytotoxicity/genotoxicity of effluents. The results demonstrate that fish erythrocytic responses could be used as effective bioanalytical tools for cytotoxic/genotoxic hazard assessments of complex effluents of industrial zones for optimization of the waste treatment process in order to reduce biological impacts.
The Promise of Macromolecular Crystallization in Micro-fluidic Chips
NASA Technical Reports Server (NTRS)
vanderWoerd, Mark; Ferree, Darren; Pusey, Marc
2003-01-01
Micro-fluidics, or lab on a chip technology, is proving to be a powerful, rapid, and efficient approach to a wide variety of bio-analytical and microscale bio-preparative needs. The low materials consumption, combined with the potential for packing a large number of experiments in a few cubic centimeters, makes it an attractive technique for both initial screening and subsequent optimization of macromolecular crystallization conditions. Screening operations, which require equilibrating macromolecule solution with a standard set of premixed solutions, are relatively straightforward and have been successfully demonstrated in a micro-fluidics platform. More complex optimization methods, where crystallization solutions are independently formulated from a range of stock solutions, are considerably more complex and have yet to be demonstrated. To be competitive with either approach, a micro-fluidics system must offer ease of operation, be able to maintain a sealed environment over several weeks to months, and give ready access for the observation of crystals as they are grown.
Silver nanowires as infrared-active materials for surface-enhanced Raman scattering.
Becucci, Maurizio; Bracciali, Monica; Ghini, Giacomo; Lofrumento, Cristiana; Pietraperzia, Giangaetano; Ricci, Marilena; Tognaccini, Lorenzo; Trigari, Silvana; Gellini, Cristina; Feis, Alessandro
2018-05-17
Surface-enhanced Raman scattering (SERS) is increasing in significance as a bioanalytical tool. Novel nanostructured metal substrates are required to improve performances and versatility of SERS spectroscopy. In particular, as biological tissues are relatively transparent in the infrared wavelength range, SERS-active materials suitable for infrared laser excitation are needed. Nanowires appear interesting in this respect as they show a very broad localized surface plasmon resonance band, ranging from near UV to near infrared wavelengths. The SERS activity of silver nanowires has been tested at three wavelengths and a fair enhancement at 1064 and 514 nm has been observed, whereas a very weak enhancement was present when exciting close to the nanowire extinction maximum. These experimentally measured optical properties have been contrasted with finite element method simulations. Furthermore, laser-induced optoacoustic spectroscopy measurements have shown that the extinction at 1064 nm is completely due to scattering. This result has an important implication that no heating occurs when silver nanowires are utilized as SERS-active substrates, thereby preventing possible thermal damage.
Erdem, S. Sibel; Nesterova, Irina V.; Soper, Steven A.; Hammer, Robert P.
2009-01-01
Phthalocyanines (Pcs) are excellent candidates for use as fluors for near-infrared (near-IR) fluorescent tagging of biomolecules for a wide variety of bioanalytical applications. Mono-functionalized Pcs, having two different types of peripheral substitutents; one for covalent conjugation of the Pc to biomolecules and others to improve the solubility of the macrocycle, ideally suit for the desired applications. To date, difficulties faced during the purification of the mono-functionalized Pcs limited their usage in various types of applications. Herein are reported a new synthetic method for rapid synthesis of the target Pcs and bioconjugation techniques for labeling of the oligonucleotides with the near-IR flours. A novel synthetic route was developed utilizing a hydrophilic, polyethylene glycol-based (PEG) support with an acid labile Rink Amide linker. The Pcs were functionalized with an amine group for covalent conjugation purposes and were decorated with short PEG chains, serving as solubilizing groups. Mwave-assisted solid-phase synthetic method was successfully applied to obtain pure asymmetrically-substituted mono-amine functionalized Pcs in a short period of time. Three different bioconjugation techniques, reductive amination, amidation and Huisgen cycloaddition, were employed for covalent conjugation of Pcs to oligonucleotides. The described μwave-assisted bioconjugation methods give an opportunity to synthesize and isolate the Pc-oligonucleotide conjugate in a few hours. PMID:19911767
Rapid and label-free bioanalytical method of alpha fetoprotein detection using LSPR chip
NASA Astrophysics Data System (ADS)
Kim, Dongjoo; Kim, Jinwoon; Kwak, Cheol Hwan; Heo, Nam Su; Oh, Seo Yeong; Lee, Hoomin; Lee, Go-Woon; Vilian, A. T. Ezhil; Han, Young-Kyu; Kim, Woo-Sik; Kim, Gi-bum; Kwon, Soonjo; Huh, Yun Suk
2017-07-01
Alpha fetoprotein (AFP) is a cancer marker, particularly for hepatocellular carcinoma. Normal levels of AFP are less than 20 ng/mL; however, its levels can reach more than 400 ng/mL in patients with HCC. Enzyme linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) have been employed for clinical diagnosis of AFP; however, these methods are time consuming and labor intensive. In this study, we developed a localized surface plasmon resonance (LSPR) based biosensor for simple and rapid detection of AFP. This biosensor consists of a UV-Vis spectrometer, a cuvette cell, and a biosensor chip nanopatterned with gold nanoparticles (AuNPs). In our LSPR biosensor, binding of AFP to the surface of the sensor chip led to an increasing magnitude of the LSPR signals, which was measured by an ultraviolet-visible (UV-Vis) spectrometer. Our LSPR biosensor showed sufficient detectability of AFP at concentrations of 1 ng/mL to 1 μg/mL. Moreover, the overall procedure for detection of AFP was completed within 20 min. This biosensor could also be utilized for a point of care test (POCT) by employing a portable UV-Vis spectrometer. Owing to the simplicity and rapidity of the detection process, our LSPR biosensor is expected to replace traditional diagnostic methods for the early detection of diseases.
Janiszewski, J; Schneider, P; Hoffmaster, K; Swyden, M; Wells, D; Fouda, H
1997-01-01
The development and application of membrane solid phase extraction (SPE) in 96-well microtiter plate format is described for the automated analysis of drugs in biological fluids. The small bed volume of the membrane allows elution of the analyte in a very small solvent volume, permitting direct HPLC injection and negating the need for the time consuming solvent evaporation step. A programmable liquid handling station (Quadra 96) was modified to automate all SPE steps. To avoid drying of the SPE bed and to enhance the analytical precision a novel protocol for performing the condition, load and wash steps in rapid succession was utilized. A block of 96 samples can now be extracted in 10 min., about 30 times faster than manual solvent extraction or single cartridge SPE methods. This processing speed complements the high-throughput speed of contemporary high performance liquid chromatography mass spectrometry (HPLC/MS) analysis. The quantitative analysis of a test analyte (Ziprasidone) in plasma demonstrates the utility and throughput of membrane SPE in combination with HPLC/MS. The results obtained with the current automated procedure compare favorably with those obtained using solvent and traditional solid phase extraction methods. The method has been used for the analysis of numerous drug prototypes in biological fluids to support drug discovery efforts.
Barraud, A; Perrot, H; Billard, V; Martelet, C; Therasse, J
1993-01-01
Nowadays, immunosensors play a leading part in the field of bioanalytical chemistry research. As with any biosensor, they need appropriate transducers and a suitable technique to immobilize the active biocomponents. In this study, two transduction modes were chosen: mass effects (quartz microbalance measurements) and geometric and dielectric effects (capacitance measurements). The Langmuir-Blodgett (LB) method appears to be quite suitable for generating biospecific surfaces. This work has focused on the detection of staphylococcal enterotoxin B, the corresponding antibody being immobilized at the surface of fatty acids by a variant of the LB method. The composition of the film and the nature of antibody-fatty acid interactions were studied by means of the two transducers mentioned above. FTIR (Fourier transform infra-red) spectroscopy and protein diagnostic assay. Influence of several parameters (pH, ionic strength, transfer pressure, antibody concentration in the subphase) was investigated. The immobilization rate reached its maximum when experimental conditions allowed optimal electrostatic interactions. In this case, the quartz crystal microbalance response, in air, reached 55 Hz per monolayer of immobilized immunoglobulin G and the equivalent capacitance variation, measured in liquid media, was around 300 pF cm-2. Activity of the biospecific LB films, when binding enterotoxin, was checked by the classical ELISA (enzyme immuno-linked assay) technique.
Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission
Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N.; De Lacey, Antonio L.; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M.; Conghaile, Peter Ó.; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D.; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey
2014-01-01
Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply. PMID:25310190
Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.
Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N; De Lacey, Antonio L; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M; Conghaile, Peter Ó; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey
2014-01-01
Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.
Wackers, Gideon; Vandenryt, Thijs; Cornelis, Peter; Kellens, Evelien; Thoelen, Ronald; De Ceuninck, Ward; Losada-Pérez, Patricia; van Grinsven, Bart; Peeters, Marloes; Wagner, Patrick
2014-01-01
In this work we present the first steps towards a molecularly imprinted polymer (MIP)-based biomimetic sensor array for the detection of small organic molecules via the heat-transfer method (HTM). HTM relies on the change in thermal resistance upon binding of the target molecule to the MIP-type receptor. A flow-through sensor cell was developed, which is segmented into four quadrants with a volume of 2.5 μL each, allowing four measurements to be done simultaneously on a single substrate. Verification measurements were conducted, in which all quadrants received a uniform treatment and all four channels exhibited a similar response. Subsequently, measurements were performed in quadrants, which were functionalized with different MIP particles. Each of these quadrants was exposed to the same buffer solution, spiked with different molecules, according to the MIP under analysis. With the flow cell design we could discriminate between similar small organic molecules and observed no significant cross-selectivity. Therefore, the MIP array sensor platform with HTM as a readout technique, has the potential to become a low-cost analysis tool for bioanalytical applications. PMID:24955945
NASA Astrophysics Data System (ADS)
Malý, J.; Lampová, H.; Semerádtová, A.; Štofik, M.; Kováčik, L.
2009-09-01
This paper presents a synthesis of a novel nanoparticle label with selective biorecognition properties based on a biotinylated silver-dendrimer nanocomposite (AgDNC). Two types of labels, a biotin-AgDNC (bio-AgDNC) and a biotinylated AgDNC with a poly(ethylene)glycol spacer (bio-PEG-AgDNC), were synthesized from a generation 7 (G7) hydroxyl-terminated ethylenediamine-core-type (2-carbon core) PAMAM dendrimer (DDM) by an N,N'-dicyclohexylcarbodiimide (DDC) biotin coupling and a NaBH4 silver reduction method. Synthesized conjugates were characterized by several analytical methods, such as UV-vis, FTIR, AFM, TEM, ELISA, HABA assay and SPR. The results show that stable biotinylated nanocomposites can be formed either with internalized silver nanoparticles (AgNPs) in a DMM polymer backbone ('type I') or as externally protected ('type E'), depending on the molar ratio of the silver/DMM conjugate and type of conjugate. Furthermore, the selective biorecognition function of the biotin is not affected by the AgNPs' synthesis step, which allows a potential application of silver nanocomposite conjugates as biospecific labels in various bioanalytical assays, or potentially as fluorescence cell biomarkers. An exploitation of the presented label in the development of electrochemical immunosensors is anticipated.
Integrated air stream micromixer for performing bioanalytical assays on a plastic chip.
Geissler, Matthias; Li, Kebin; Zhang, Xuefeng; Clime, Liviu; Robideau, Gregg P; Bilodeau, Guillaume J; Veres, Teodor
2014-10-07
This paper describes the design, functioning and use of an integrated mixer that relies on air flux to agitate microliter entities of fluid in an embedded microfluidic cavity. The system was fabricated from multiple layers of a thermoplastic elastomer and features circuits for both liquid and air supply along with pneumatic valves for process control. Internally-dyed polymer particles have been used to visualize flow within the fluid phase during agitation. Numerical modelling of the micromixer revealed an overall efficacy of 10(-1) to 10(-2) for momentum transfer at the air-water interface. Simulation of air vortex dynamics showed dependency of the flow pattern on the velocity of the flux entering the cavity. Three bioanalytical assays have been performed as proof-of-concept demonstrations. In a first assay, cells of Listeria monocytogenes were combined with magnetic nanoparticles (NPs), resulting in high-density coverage of the bacteria's surface with NPs after 1 min of agitation. This finding is contrasted by a control experiment without agitation for which interaction between bacteria and NPs remains low. In a second one, capture and release of genomic DNA from fungi through adsorption onto magnetic beads was tested and shown to be improved by agitation compared to non-agitated controls. A third assay finally involved fluorescently-labelled target oligonucleotide strands and polystyrene particles modified with DNA capture probes to perform detection of nucleic acids on beads. Excellent selectivity was obtained in a competitive hybridization process using a multiplexed micromixer chip design.
Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications
Mo, Liuting; Lu, Chun-Hua; Fu, Ting
2016-01-01
Hydrogels are crosslinked hydrophilic polymers that can absorb a large amount of water. By their hydrophilic, biocompatible and highly tunable nature, hydrogels can be tailored for applications in bioanalysis and biomedicine. Of particular interest are DNA-based hydrogels owing to the unique features of nucleic acids. Since the discovery of DNA double helical structure, interest in DNA has expanded beyond its genetic role to applications in nanotechnology and materials science. In particular, DNA-based hydrogels present such remarkable features as stability, flexibility, precise programmability, stimuli-responsive DNA conformations, facile synthesis and modification. Moreover, functional nucleic acids (FNAs) have allowed the construction of hydrogels based on aptamers, DNAzymes, i-motif nanostructures, siRNAs and CpG oligodeoxynucleotides to provide additional molecular recognition, catalytic activities and therapeutic potential, making them key players in biological analysis and biomedical applications. To date, a variety of applications have been demonstrated with FNA-based hydrogels, including biosensing, environmental analysis, controlled drug release, cell adhesion and targeted cancer therapy. In this review, we focus on advances in the development of FNA-based hydrogels, which have fully incorporated both the unique features of FNAs and DNA-based hydrogels. We first introduce different strategies for constructing DNA-based hydrogels. Subsequently, various types of FNAs and the most recent developments of FNA-based hydrogels for bioanalytical and biomedical applications are described with some selected examples. Finally, the review provides an insight into the remaining challenges and future perspectives of FNA-based hydrogels. PMID:26758955
Weisshoff, Hardy; Wenzel, Katrin; Schulze-Rothe, Sarah; Nikolenko, Heike; Davideit, Hanna; Becker, Niels-Peter; Göttel, Peter; Srivatsa, G Susan; Dathe, Margitta; Müller, Johannes; Haberland, Annekathrin
2018-04-18
Possible unwanted folding of biopharmaceuticals during manufacturing and storage has resulted in analysis schemes compared to small molecules that include bioanalytical characterization besides chemical characterization. Whether bioanalytical characterization is required for nucleotide-based drugs, may be decided on a case-by-case basis. Nucleotide-based pharmaceuticals, if chemically synthesized, occupy an intermediate position between small-molecule drugs and biologics. Here, we tested whether a physicochemical characterization of a nucleotide-based drug substance, BC 007, was adequate, using circular dichroism (CD) spectroscopy. Nuclear magnetic resonance confirmed CD data in one experimental setup. BC 007 forms a quadruplex structure under specific external conditions, which was characterized for its stability and structural appearance also after denaturation using CD and nuclear magnetic resonance. The amount of the free energy (ΔG 0 ) involved in quadruplex formation of BC 007 was estimated at +8.7 kJ/mol when dissolved in water and +1.4 kJ/mol in 154 mM NaCl, indicating structural instability under these conditions. However, dissolution of the substance in 5 mM of KCl reduced the ΔG 0 to -5.6 kJ/mol due to the stabilizing effect of cations. These results show that positive ΔG 0 of quadruplex structure formation in water and aqueous NaCl prevents BC 007 from preforming stable 3-dimensional structures, which could potentially affect drug function. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Carlsson, Björn; Holmgren, Anita; Ahlner, Johan; Bengtsson, Finn
2009-03-01
Citalopram is marketed as a racemate (50:50) mixture of the S(+)-enantiomer and R(-)-enantiomer and the active S(+)-enantiomer (escitalopram) that possess inhibitory effects. Citalopram was introduced in Sweden in 1992 and is the most frequently used antidepressant to date in Sweden. In 2002, escitalopram was introduced onto the Swedish market for treatment of depression and anxiety disorders. The main objective of this study was to investigate S(+)-citalopram [i.e., the racemic drug (citalopram) or the enantiomer (escitalopram)] present in forensic autopsy cases positive for the presence of citalopram in routine screening using a non-enantioselective bioanalytical method. Fifty out of the 270 samples found positive by gas chromatography-nitrogen-phosphorus detection were further analyzed using enantioselective high-performance liquid chromatography. The 50 cases were genotyped for CYP2D6 and CYP2C19, as these isoenzymes are implicated in the metabolism of citalopram and escitalopram. In samples positive for racemic citalopram using the screening method for forensic autopsy cases, up to 20% would have been misinterpreted in the absence of an enantioselective method. An enantioselective method is thus necessary for correct interpretation of autopsy cases, after the enantiomer has been introduced onto the market. The percentage of poor metabolizers was 6% for CYP2D6 and 8% for CYP2C19.
Cavalier, Jean-François; Lafont, Dominique; Boullanger, Paul; Houisse, David; Giallo, Jacqueline; Ballester, Jean-Michel; Carrière, Frédéric
2009-09-11
A general and easily accessible method for the extraction followed by the simultaneous separation and quantitative determination of triacylglycerols, diacylglycerols, monoacylglycerols and free fatty acids has been improved and optimized based on existing protocols using liquid-phase extraction and thin-layer chromatography coupled to flame ionization detection (TLC/FID Iatroscan). After lipid extraction in the presence of a suitable new synthetic internal standard, namely CholE1, a single elution step using n-heptane/diethyl ether/formic acid (55:45:1, v/v/v) was applied. This method was validated in line with international bioanalytical method validation guidelines using two different matrix systems: purified water and human gastro-intestinal fluid. Overall, the assay was found to have high levels of precision with coefficients of variation ranging from 1.48% to 11.0% and accuracy ranging from -13.3% to +5.79% RE. The confidence limits of the lipid mean recovery rates varied between 89.9% and 104%. This method is therefore highly suitable for quantifying the lipolysis products generated in vitro during the hydrolysis of various fats and oils by digestive lipases, as well as those collected from the gastro-intestinal tract in the course of human clinical studies on lipid digestion.
Wang, Guifang; Lu, Gang; Zhao, Jiandi; Yin, Pinghe; Zhao, Ling
2016-08-01
Landfill-concentrated leachate from membrane separation processes is a potential pollution source for the surroundings. In this study, the toxicity and estrogenicity potentials of concentrated leachate prior to and during UV-Fenton and Fenton treatments were assessed by a combination of chemical (di (2-ethylhexyl) phthalate and dibutyl phthalate were chosen as targets) and biological (Daphnia magna, Chlorella vulgaris, and E-screen assay) analyses. Removal efficiencies of measured di (2-ethylhexyl) phthalate and dibutyl phthalate were more than 97 % after treatment with the two methods. Biological tests showed acute toxicity effects on D. magna tests in untreated concentrated leachate samples, whereas acute toxicity on C. vulgaris tests was not observed. Both treatment methods were found to be efficient in reducing acute toxicity effects on D. magna tests. The E-screen test showed concentrated leachate had significant estrogenicity, UV-Fenton and Fenton treatment, especially the former, were effective methods for reducing estrogenicity of concentrated leachate. The EEQchem (estradiol equivalent concentration) of all samples could only explain 0.218-5.31 % range of the EEQbio. These results showed that UV-Fenton reagent could be considered as a suitable method for treatment of concentrated leachate, and the importance of the application of an integrated (biological + chemical) analytical approach for a comprehensive evaluation of treatment suitability.
Baldelli, Sara; Marrubini, Giorgio; Cattaneo, Dario; Clementi, Emilio; Cerea, Matteo
2017-10-01
The application of Quality by Design (QbD) principles in clinical laboratories can help to develop an analytical method through a systematic approach, providing a significant advance over the traditional heuristic and empirical methodology. In this work, we applied for the first time the QbD concept in the development of a method for drug quantification in human plasma using elvitegravir as the test molecule. The goal of the study was to develop a fast and inexpensive quantification method, with precision and accuracy as requested by the European Medicines Agency guidelines on bioanalytical method validation. The method was divided into operative units, and for each unit critical variables affecting the results were identified. A risk analysis was performed to select critical process parameters that should be introduced in the design of experiments (DoEs). Different DoEs were used depending on the phase of advancement of the study. Protein precipitation and high-performance liquid chromatography-tandem mass spectrometry were selected as the techniques to be investigated. For every operative unit (sample preparation, chromatographic conditions, and detector settings), a model based on factors affecting the responses was developed and optimized. The obtained method was validated and clinically applied with success. To the best of our knowledge, this is the first investigation thoroughly addressing the application of QbD to the analysis of a drug in a biological matrix applied in a clinical laboratory. The extensive optimization process generated a robust method compliant with its intended use. The performance of the method is continuously monitored using control charts.
Elmongy, Hatem; Ahmed, Hytham; Wahbi, Abdel-Aziz; Amini, Ahmad; Colmsjö, Anders; Abdel-Rehim, Mohamed
2016-08-01
A sensitive, accurate and reliable bioanalytical method for the enantioselective determination of metoprolol in plasma and saliva samples utilizing liquid chromatography-electrospray ionization tandem mass spectrometry was developed and validated. Human plasma and saliva samples were pretreated by microextraction by packed sorbent (MEPS) prior to analysis. A new MEPS syringe form with two inputs was used. Metoprolol enantiomers and internal standard pentycaine (IS) were eluted from MEPS sorbent using isopropanol after removal of matrix interferences using aliquots of 5% methanol in water. Complete separation of metoprolol enantiomers was achieved on a Cellulose-SB column (150 × 4.6 mm, 5 μm) using isocratic elution with mobile phase 0.1% ammonium hydroxide in hexane-isopropanol (80:20, v/v) with a flow rate of 0.8 mL/min. A post-column solvent-assisted ionization was applied to enhance metoprolol ionization signal in positive mode monitoring (+ES) using 0.5% formic acid in isopropanol at a flow rate of 0.2 mL/min. The total chromatographic run time was 10 min for each injection. The detection of metoprolol in plasma and saliva samples was performed using triple quadrupole tandem mass spectrometer in +ES under the following mass transitions: m/z 268.08 → 72.09 for metoprolol and m/z 303.3 → 154.3 for IS. The linearity range was 2.5-500 ng/mL for both R- and S-metoprolol in plasma and saliva. The limits of detection and quantitation for both enantiomers were 0.5 and 2.5 ng/mL respectively, in both matrices (plasma and saliva). The intra- and inter-day precisions were presented in terms of RSD values for replicate analysis of quality control samples and were <5%; the accuracy of determinations varied from 96 to 99%. The method was able to determine the therapeutic levels of metoprolol enantiomers in both human plasma and saliva samples successfully, which can aid in therapeutic drug monitoring in clinical laboratories. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Goswami, Dipanjan; Kumar, Ajay; Khuroo, Arshad H; Monif, Tausif; Rab, Shamsur
2009-11-01
A LC-MS/MS method for plasma topiramate analysis is delineated involving least number of healthy volunteers. Topiramate and amlodipine internal standard (IS) were extracted by simple centrifuge-coupled solid-phase extraction and reverse-phase chromatographic separation was performed on an Ascentis C(18) column. Turbo-spray negative-ion mode multiple-reaction monitoring was selected for mass pair detection at m/z 338.3 --> 78.0 and m/z 407.3 --> 295.5 for analyte and IS respectively. The method showed a dynamic linearity range from 10.4 to 2045.0 ng/mL, lower limit of quantitation achieved at 10.4 ng/mL and finally a mass spectrometric total run time of within 2.5 min for human sample analysis. Bioequivalence was assessed successfully using this fully validated method on 16 fasted Indian male subjects with 25 mg topiramate tablet administration. An appropriate study design describes plasma samples collection up to 216 h post dose in two periods, separated by a 28 day washout period. The challenge of half-life matching for test and reference drug was achieved with 73.43 +/- 9.68 and 73.06 +/- 14.03 h, respectively, and intra-subject coefficient of variation achieved within 11% for AUCs and C(max) evaluated by non-compartmental pharmacokinetic analysis. The results of LCMS topiramate complete method validation supported by pharmacokinetic study have not been published before, and are presented and discussed for the first time in this article. Copyright (c) 2009 John Wiley & Sons, Ltd.
Jiang, Jian; James, Christopher A; Wong, Philip
2016-09-05
A LC-MS/MS method has been developed and validated for the determination of glycine in human cerebrospinal fluid (CSF). The validated method used artificial cerebrospinal fluid as a surrogate matrix for calibration standards. The calibration curve range for the assay was 100-10,000ng/mL and (13)C2, (15)N-glycine was used as an internal standard (IS). Pre-validation experiments were performed to demonstrate parallelism with surrogate matrix and standard addition methods. The mean endogenous glycine concentration in a pooled human CSF determined on three days by using artificial CSF as a surrogate matrix and the method of standard addition was found to be 748±30.6 and 768±18.1ng/mL, respectively. A percentage difference of -2.6% indicated that artificial CSF could be used as a surrogate calibration matrix for the determination of glycine in human CSF. Quality control (QC) samples, except the lower limit of quantitation (LLOQ) QC and low QC samples, were prepared by spiking glycine into aliquots of pooled human CSF sample. The low QC sample was prepared from a separate pooled human CSF sample containing low endogenous glycine concentrations, while the LLOQ QC sample was prepared in artificial CSF. Standard addition was used extensively to evaluate matrix effects during validation. The validated method was used to determine the endogenous glycine concentrations in human CSF samples. Incurred sample reanalysis demonstrated reproducibility of the method. Copyright © 2016 Elsevier B.V. All rights reserved.
Nemitz, Marina C; Yatsu, Francini K J; Bidone, Juliana; Koester, Letícia S; Bassani, Valquiria L; Garcia, Cássia V; Mendez, Andreas S L; von Poser, Gilsane L; Teixeira, Helder F
2015-03-01
There is a growing interest in the pharmaceutical field concerning isoflavones topical delivery systems, especially with regard to their skin care properties and antiherpetic activity. In this context, the present work describes an ultra-fast liquid chromatography method (UFLC) for determining daidzein, glycitein, and genistein in different matrices during the development of topical systems containing isoflavone aglycones (IA) obtained from soybeans. The method showed to be specific, precise, accurate, and linear (0.1 to 5 µg mL(-1)) for IA determination in soybean acid extract, IA-rich fraction obtained after the purification process, IA loaded-nanoemulsions, and topical hydrogel, as well as for permeation/retention assays in porcine skin and porcine esophageal mucosa. The matrix effect was determined for all complex matrices, demonstrating low effect during the analysis. The stability indicating UFLC method was verified by submitting IA to acidic, alkaline, oxidative, and thermal stress conditions, and no interference of degradation products was detected during analysis. Mass spectrometry was performed to show the main compounds produced after acid hydrolysis of soybeans, as well as suggest the main degradation products formed after stress conditions. Besides the IA, hydroxymethylfurfural and ethoxymethylfurfural were produced and identified after acid hydrolysis of the soybean extract and well separated by the UFLC method. The method's robustness was confirmed using the Plackett-Burman experimental design. Therefore, the new method affords fast IA analysis during routine processes, extract purification, products development, and bioanalytical assays. Copyright © 2014 Elsevier B.V. All rights reserved.
Tu, Ying; Ahmad, Norlaily; Briscoe, Joe; Zhang, De-Wen; Krause, Steffi
2018-06-22
Light-addressable potentiometric sensors (LAPS) are of great interest in bioimaging applications such as the monitoring of concentrations in microfluidic channels or the investigation of metabolic and signaling events in living cells. By measuring the photocurrents at electrolyte-insulator-semiconductor (EIS) and electrolyte-semiconductor structures, LAPS can produce spatiotemporal images of chemical or biological analytes, electrical potentials and impedance. However, its commercial applications are often restricted by their limited AC photocurrents and resolution of LAPS images. Herein, for the first time, the use of 1D semiconducting oxides in the form of ZnO nanorods for LAPS imaging is explored to solve this issue. A significantly increased AC photocurrent with enhanced image resolution has been achieved based on ZnO nanorods, with a photocurrent of 45.7 ± 0.1 nA at a light intensity of 0.05 mW, a lateral resolution as low as 3.0 μm as demonstrated by images of a PMMA dot on ZnO nanorods and a pH sensitivity of 53 mV/pH. The suitability of the device for bioanalysis and bioimaging was demonstrated by monitoring the degradation of a thin poly(ester amide) film with the enzyme α-chymotrypsin using LAPS. This simple and robust route to fabricate LAPS substrates with excellent performance would provide tremendous opportunities for bioimaging.
Rise of the micromachines: microfluidics and the future of cytometry.
Wlodkowic, Donald; Darzynkiewicz, Zbigniew
2011-01-01
The past decade has brought many innovations to the field of flow and image-based cytometry. These advancements can be seen in the current miniaturization trends and simplification of analytical components found in the conventional flow cytometers. On the other hand, the maturation of multispectral imaging cytometry in flow imaging and the slide-based laser scanning cytometers offers great hopes for improved data quality and throughput while proving new vistas for the multiparameter, real-time analysis of cells and tissues. Importantly, however, cytometry remains a viable and very dynamic field of modern engineering. Technological milestones and innovations made over the last couple of years are bringing the next generation of cytometers out of centralized core facilities while making it much more affordable and user friendly. In this context, the development of microfluidic, lab-on-a-chip (LOC) technologies is one of the most innovative and cost-effective approaches toward the advancement of cytometry. LOC devices promise new functionalities that can overcome current limitations while at the same time promise greatly reduced costs, increased sensitivity, and ultra high throughputs. We can expect that the current pace in the development of novel microfabricated cytometric systems will open up groundbreaking vistas for the field of cytometry, lead to the renaissance of cytometric techniques and most importantly greatly support the wider availability of these enabling bioanalytical technologies. Copyright © 2011 Elsevier Inc. All rights reserved.
Rise of the Micromachines: Microfluidics and the Future of Cytometry
Wlodkowic, Donald; Darzynkiewicz, Zbigniew
2011-01-01
The past decade has brought many innovations to the field of flow and image-based cytometry. These advancements can be seen in the current miniaturization trends and simplification of analytical components found in the conventional flow cytometers. On the other hand, the maturation of multispectral imaging cytometry in flow imaging and the slide-based laser scanning cytometers offers great hopes for improved data quality and throughput while proving new vistas for the multiparameter, real-time analysis of cells and tissues. Importantly, however, cytometry remains a viable and very dynamic field of modern engineering. Technological milestones and innovations made over the last couple of years are bringing the next generation of cytometers out of centralized core facilities while making it much more affordable and user friendly. In this context, the development of microfluidic, lab-on-a-chip (LOC) technologies is one of the most innovative and cost-effective approaches toward the advancement of cytometry. LOC devices promise new functionalities that can overcome current limitations while at the same time promise greatly reduced costs, increased sensitivity, and ultra high throughputs. We can expect that the current pace in the development of novel microfabricated cytometric systems will open up groundbreaking vistas for the field of cytometry, lead to the renaissance of cytometric techniques and most importantly greatly support the wider availability of these enabling bioanalytical technologies. PMID:21704837
Nirala, Narsingh R; Abraham, Shiju; Kumar, Vinod; Pandey, Shobhit A; Yadav, Umakant; Srivastava, Monika; Srivastava, S K; Singh, Vidya Nand; Kayastha, Arvind M; Srivastava, Anchal; Saxena, Preeti S
2015-11-01
The present work proposes partially reduced graphene oxide-gold nanorods supported by chitosan (CH-prGO-AuNRs) as a potential bioelectrode material for enhanced glucose sensing. Developed on ITO substrate by immobilizing glucose oxidase on CH-prGO-AuNRs composite, these CH-prGO-AuNRs/ITO bioelectrodes demonstrate high sensitivity of 3.2 µA/(mg/dL)/cm(2) and linear range of 25-200 mg/dL with an ability to detect as low as 14.5 mg/dL. Further, these CH-prGO-AuNRs/ITO based electrodes attest synergistiacally enhanced sensing properties when compared to simple graphene oxide based CH-GO/ITO electrode. This is evident from one order higher electron transfer rate constant (Ks) value in case of CH-prGO-AuNRs modified electrode (12.4×10(-2) cm/s), in contrast to CH-GO/ITO electrode (6×10(-3) cm/s). Additionally, very low Km value [15.4 mg/dL(0.85 mM)] ensures better binding affinity of enzyme to substrate which is desirable for good biosensor stability and resistance to environmental interferences. Hence, with better loading capacity, kinetics and stability, the proposed CH-prGO-AuNRs composite shows tremendous potential to detect several bio-analytes in the coming future. Copyright © 2015 Elsevier B.V. All rights reserved.
New detection targets for amyloid-reactive probes: spectroscopic recognition of bacterial spores
NASA Astrophysics Data System (ADS)
Jones, Guilford, II; Landsman, Pavel
2005-05-01
We report characteristic changes in fluorescence of amyloid-binding dyes Thioflavin T (TfT), pinacyanol (PIN) and related dyes, caused by their interaction with suspended Bacillus spore cultures (B. subtilis, B thuringiensis). The gain in TfT emission in the presence of spores allowed their immediate detection in aqueous suspensions, with a sensitivity limit of < 105 spores per ml. The spectroscopic signatures are consistent with a large number of binding sites for the two dyes on spore coats. The possible structural relationship of these dye binding loci with characteristic motifs (β-stacks) of amyloid deposits and other misfolded protein formations suggests new designs for probing biocontamination and also for clinical studies of non-microbial human pathogens (e.g., amyloid-related protein aggregates in prion-related transmissible encephalopathies or in Alzheimer's disease). Also reported is a special screening technique that was designed and used herein for calibration of new detection probes and assays for spore detection. It employed spectroscopic interactions between the candidate amyloid stains and poly(vinylpyrrolidone)-coated colloid silica (Percoll) nanoparticles that also display remarkable parallelism with the corresponding dye-amyloid and dye-spore reactivities. Percoll may thus find new applications as a convenient non-biological structural model mimicking the putative probe-targeted motifs in both classes of bioanalytes. These findings are important in the design of new probes and assays for important human pathogens (i.e. bacterial spores and amyloidogenic protein aggregates).
Liu, Xuan; Wang, Nianyue; Zhao, Wei; Jiang, Hui
2015-02-01
This work reports for the first time a potential-based nano-electrochemiluminescent (ECL) pH sensor, using anatase TiO2 nanocrystals (NCs) as the ECL probe. The first ECL peak potential of the TiO2 NCs shifted negatively with increasing pH, showing a linear range from -0.47 V (vs Ag/AgCl) at pH 3 to -1.06 V at pH 10. This phenomenon was attributed to the absorption of 'potential-determining ions' of OH(-) on the surface of TiO2 NCs, leading to larger impedance of the electron injection. Other common 'potential-determining ions', such as phosphate, induced a slight potential shift of 0.03 V at a concentration of 0.1 M. Using urease as an enzyme model, a urea biosensor was developed by the simultaneous modification of urease and TiO2 NCs on indium-tin oxide (ITO) electrodes. The biosensor, measured on the basis of the pH increase caused by the enzyme catalysis reaction, had a linear range of 0.01-2.0 mM, with a potential shift of 0.175 V. The as-prepared pH sensor, which has simple construction procedures and acceptable sensitivity and selectivity, may provide new avenues for the construction of ECL bioanalytical methodologies. Copyright © 2014 John Wiley & Sons, Ltd.
Biomolecular recognition and detection using gold-based nanoprobes
NASA Astrophysics Data System (ADS)
Crew, Elizabeth
The ability to control the biomolecular interactions is important for developing bioanalytical probes used in biomolecule and biomarker detections. This work aims at a fundamental understanding of the interactions and reactivities involving DNA, miRNA, and amino acids using gold-based nanoparticles as nanoprobes, which has implications for developing new strategies for the early detection of diseases, such as cancer, and controlled delivery of drugs. Surface modifications of the nanoprobes with DNA, miRNA, and amino acids and the nanoprobe directed biomolecular reactivities, such as complementary-strand binding, enzymatic cutting and amino acid interactions, have been investigated. Among various analytical techniques employed for the analysis of the biomolecule-nanoprobe interactions, surface enhanced Raman scattering spectroscopy (SERS) has been demonstrated to provide a powerful tool for real time monitoring of the DNA assembly and enzymatic cutting processes in solutions. This demonstration harnesses the "hot-spot" characteristic tuned by the interparticle biomolecular-regulated interactions and distances. The assembly of gold nanoparticles has also been exploited as sensing thin films on chemiresistor arrays for the detection of volatile organic compounds, including biomarker molecules associated with diabetes. Important findings of the nanoprobes in delivering miRNA to cells, detecting DNA hybridization kinetics, discerning chiral recognition with enantiomeric cysteines, and sensing biomarker molecules with the nanostructured thin films will be discussed, along with their implications to enhancing sensitivity, selectivity and limits of detection.
Croes, K; Colles, A; Koppen, G; De Galan, S; Vandermarken, T; Govarts, E; Bruckers, L; Nelen, V; Schoeters, G; Van Larebeke, N; Denison, M S; Mampaey, M; Baeyens, W
2013-09-15
Since the CALUX (Chemically Activated LUciferase gene eXpression) bioassay is a fast and inexpensive tool for the determination of dioxin-like compounds in a large number of samples and requires only small sample volumes, the use of this technique in human biomonitoring programs provides a good alternative to GC-HRMS. In this study, a new CALUX method for the separate analysis of PCDD/Fs and dioxin-like PCBs (dl-PCBs) in small amounts of human milk samples with the new sensitive H1L7.5c1 cell line was used to analyze 84 human milk samples, collected from mothers residing in the Flemish rural communities. The geometric mean CALUX-Bioanalytical Equivalent (CALUX-BEQ) values, reported for the 84 mothers from the study area were 10.4 (95% CI: 9.4-11.4) pg CALUX-BEQ per gram lipid or 0.41 (95% CI: 0.37-0.45) pg CALUX-BEQ per gram milk for the PCDD/Fs and 1.73 (1.57-1.91) pg CALUX-BEQ per gram lipid or 0.07 (95% CI: 0.06-0.08) pg CALUX-BEQ per gram milk for the dioxin-like PCBs. Multiple regression analysis showed significant associations between PCDD/Fs and weight change after pregnancy, smoking and consumption of local eggs. One pooled human milk sample was analyzed with both CALUX and GC-HRMS. The ratio of CALUX and GC-HRMS results for this sample were respectively 1.60, 0.58 and 1.23 for the PCDD/Fs, the dl-PCBs and the sum of both fractions, when using the 2005-TEF values. Additionally, also low levels of certain brominated dioxins and furans were detected in the pooled sample with GC-HRMS. Copyright © 2013 Elsevier B.V. All rights reserved.
Tracking live cell response to cadmium (II) concentrations by scanning electrochemical microscopy.
Henderson, Jeffrey D; Filice, Fraser P; Li, Michelle S M; Ding, Zhifeng
2016-05-01
The biological chemistry of toxic heavy metals, such as Cd (II), has become an active area of research due to connections with increased oxidative stress, cytotoxicity, and human/animal carcinogenicity. In this study, scanning electrochemical microscopy (SECM) was used as a noninvasive technique to monitor membrane permeability of single live human bladder cancer cells (T24) subjected to exposure of Cd (II) at various concentrations. The addition of a membrane permeable redox mediator, ferrocenemethanol (FcMeOH), in combination with depth scan imaging provided probe approach curves (PACs) to reveal changes in membrane homeostasis. To demonstrate the strength of SECM as a bioanalytical technique for cell physiology and pathology, we tested responses of live cells after 1h incubations with various concentrations of Cd (II). For the first time, a trend in membrane permeability of Cd (II) treated live T24 cells was discovered. Dependent on the incubation concentration, the trend displayed an initial decrease in membrane permeability coefficient from 75μm/s for control cells to 25μm/s for cells incubated with 75μM Cd (II). This was followed by an eventual return to the permeability coefficient of control cells (75μm/s) with further increases in Cd (II) exposure. The cells were found to respond at as little as 10μM Cd (II) concentrations. This work further demonstrates the use of SECM as a bioanalytical technique to monitor cell physiology and topography. A greater insight into the complex mechanisms behind Cd (II) toxicity is anticipated. Copyright © 2015 Elsevier Inc. All rights reserved.
Protein Chips Compatible with MALDI Mass Spectrometry Prepared by Ambient Ion Landing.
Pompach, Petr; Benada, Oldřich; Rosůlek, Michal; Darebná, Petra; Hausner, Jiří; Růžička, Viktor; Volný, Michael; Novák, Petr
2016-09-06
We present a technology that allows the preparation of matrix-assisted laser desorption/ionization (MALDI)-compatible protein chips by ambient ion landing of proteins and successive utilization of the resulting protein chips for the development of bioanalytical assays. These assays are based on the interaction between the immobilized protein and the sampled analyte directly on the protein chip and subsequent in situ analysis by MALDI mass spectrometry. The electrosprayed proteins are immobilized on dry metal and metal oxide surfaces, which are nonreactive under normal conditions. The ion landing of electrosprayed protein molecules is performed under atmospheric pressure by an automated ion landing apparatus that can manufacture protein chips with a predefined array of sample positions or any other geometry of choice. The protein chips prepared by this technique are fully compatible with MALDI ionization because the metal-based substrates are conductive and durable enough to be used directly as MALDI plates. Compared to other materials, the nonreactive surfaces show minimal nonspecific interactions with chemical species in the investigated sample and are thus an ideal substrate for selective protein chips. Three types of protein chips were used in this report to demonstrate the bioanalytical applications of ambient ion landing. The protein chips with immobilized proteolytic enzymes showed the usefulness for fast in situ peptide MALDI sequencing; the lectin-based protein chips showed the ability to enrich glycopeptides from complex mixtures with subsequent MALDI analysis, and the protein chips with immobilized antibodies were used for a novel immunoMALDI workflow that allowed the enrichment of antigens from the serum followed by highly specific MALDI detection.
Hendrikx, Jeroen J M A; Rosing, Hilde; Schinkel, Alfred H; Schellens, Jan H M; Beijnen, Jos H
2014-02-01
A combined assay for the determination of paclitaxel, docetaxel and ritonavir in human feces and urine is described. The drugs were extracted from 200 μL urine or 50 mg feces followed by high-performance liquid chromatography analysis coupled with positive ionization electrospray tandem mass spectrometry. The validation program included calibration model, accuracy and precision, carry-over, dilution test, specificity and selectivity, matrix effect, recovery and stability. Acceptance criteria were according to US Food and Drug Administration guidelines on bioanalytical method validation. The validated range was 0.5-500 ng/mL for paclitaxel and docetaxel, 2-2000 ng/mL for ritonavir in urine, 2-2000 ng/mg for paclitaxel and docetaxel, and 8-8000 ng/mg for ritonavir in feces. Inter-assay accuracy and precision were tested for all analytes at four concentration levels and were within 8.5% and <10.2%, respectively, in both matrices. Recovery at three concentration levels was between 77 and 94% in feces samples and between 69 and 85% in urine samples. Method development, including feces homogenization and spiking blank urine samples, are discussed. We demonstrated that each of the applied drugs could be quantified successfully in urine and feces using the described assay. The method was successfully applied for quantification of the analytes in feces and urine samples of patients. Copyright © 2013 John Wiley & Sons, Ltd.
Real-time modulated nanoparticle separation with an ultra-large dynamic range.
Zeming, Kerwin Kwek; Thakor, Nitish V; Zhang, Yong; Chen, Chia-Hung
2016-01-07
Nanoparticles exhibit size-dependent properties which make size-selective purification of proteins, DNA or synthetic nanoparticles essential for bio-analytics, clinical medicine, nano-plasmonics and nano-material sciences. Current purification methods of centrifugation, column chromatography and continuous-flow techniques suffer from particle aggregation, multi-stage process, complex setups and necessary nanofabrication. These increase process costs and time, reduce efficiency and limit dynamic range. Here, we achieve an unprecedented real-time nanoparticle separation (51-1500 nm) using a large-pore (2 μm) deterministic lateral displacement (DLD) device. No external force fields or nanofabrication are required. Instead, we investigated innate long-range electrostatic influences on nanoparticles within a fluid medium at different NaCl ionic concentrations. In this study we account for the electrostatic forces beyond Debye length and showed that they cannot be assumed as negligible especially for precise nanoparticle separation methods such as DLD. Our findings have enabled us to develop a model to simultaneously quantify and modulate the electrostatic force interactions between nanoparticle and micropore. By simply controlling buffer solutions, we achieve dynamic nanoparticle size separation on a single device with a rapid response time (<20 s) and an enlarged dynamic range (>1200%), outperforming standard benchtop centrifuge systems. This novel method and model combines device simplicity, isolation precision and dynamic flexibility, opening opportunities for high-throughput applications in nano-separation for industrial and biological applications.
2016-01-01
Levetiracetam (LEV) is an antiepileptic drug that is clinically effective in generalized and partial epilepsy syndromes. The use of this drug has been increasing in clinical practice and intra- or -interindividual variability has been exhibited for special population. For this reason, bioanalytical methods are required for drug monitoring in biological matrices. So this work presents a dispersive liquid-liquid microextraction method followed by gas chromatography-mass spectrometry (DLLME-GC-MS) for LEV quantification in human plasma. However, due to the matrix complexity a previous purification step is required. Unlike other pretreatment techniques presented in the literature, for the first time, a procedure employing ultrafiltration tubes Amicon® (10 kDa porous size) without organic solvent consumption was developed. GC-MS analyses were carried out using a linear temperature program, capillary fused silica column, and helium as the carrier gas. DLLME optimized parameters were type and volume of extraction and dispersing solvents, salt addition, and vortex agitation time. Under chosen parameters (extraction solvent: chloroform, 130 μL; dispersing solvent: isopropyl alcohol, 400 μL; no salt addition and no vortex agitation time), the method was completely validated and all parameters were in agreement with the literature recommendations. LEV was quantified in patient's plasma sample using less than 550 μL of organic solvent. PMID:27830105
Seo, Seung-Yong; Kang, Wonku
2016-11-30
An amide derivative of gallic acid (GA), 3,4,5-trihydroxy-N-(8-hydroxyquinolin-2-yl)benzamide) (SG-HQ2) was recently synthesized, and its inhibitory actions were previously shown on histamine release and pro-inflammatory cytokine expression. In this study, a simultaneous quantification method was developed for the determination of SG-HQ2 and its possible metabolite, GA, in rat plasma using liquid chromatography with a tandem mass spectrometry (LC-MS/MS). After simple protein precipitation with acetonitrile including diclofenac (internal standard, IS), the analytes were chromatographed on a reversed phased column with a mobile phase of acetonitrile and water (60:40, v/v, including 0.1% formic acid). The ion transitions of the precursor to the product ion were principally protonated ion [M+H] + at m/z 313.2→160.6 for SG-HQ2, and deprotonated ions [M-H] - at m/z 168.7→124.9 for GA and 296.0→251.6 for the IS. The accuracy and precision of the assay were in accordance with FDA regulations for the validation of bioanalytical methods. This method was successfully applied to a pharmacokinetic study of SG-HQ2 after intravenous administration in rats. Copyright © 2016 Elsevier B.V. All rights reserved.
Piešťanský, Juraj; Maráková, Katarína; Kovaľ, Marián; Havránek, Emil; Mikuš, Peter
2015-12-01
A new multidimensional analytical approach for the ultra-trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on-line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean-up) in a large injection volume (1-10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP - chiral CZE-QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, P.; Block, H; Doiron, K
Conventional 'wet' chemical analyses rely heavily on the use of harsh chemicals and derivatization, thereby altering native seed structures leaving them unable to detect any original inherent structures within an intact tissue sample. A synchrotron is a giant particle accelerator that turns electrons into light (million times brighter than sunlight) which can be used to study the structure of materials at the molecular level. Synchrotron radiation-based Fourier transform IR microspectroscopy (SR-FTIRM) has been developed as a rapid, direct, non-destructive and bioanalytical technique. This technique, taking advantage of the brightness of synchrotron light and a small effective source size, is capablemore » of exploring the molecular chemistry within the microstructures of a biological tissue without the destruction of inherent structures at ultraspatial resolutions within cellular dimensions. This is in contrast to traditional 'wet' chemical methods, which, during processing for analysis, often result in the destruction of the intrinsic structures of feeds. To date there has been very little application of this technique to the study of plant seed tissue in relation to nutrient utilization. The objective of this study was to use novel synchrotron radiation-based technology (SR-FTIRM) to identify the differences in the molecular chemistry and conformation of carbohydrate and protein in various plant seed endosperms within intact tissues at cellular and subcellular level from grains with different biodegradation kinetics. Barley grain (cv. Harrington) with a high rate (31.3%/h) and extent (78%), corn grain (cv. Pioneer) with a low rate (9.6%/h) and extent of (57%), and wheat grain (cv. AC Barrie) with an intermediate rate (23%/h) and extent (72%) of ruminal DM degradation were selected for evaluation. SR-FTIRM evaluations were performed at the National Synchrotron Light Source at the Brookhaven National Laboratory (Brookhaven, NY). These results suggest that SR-FTIRM plus the multivariate analyses can be used to identify spectral features associated with the molecular structure of endosperm from grains with different biodegradation kinetics, especially in relation to protein structure. The Novel synchrotron radiation-based bioanalytical technique provides a new approach for plant seed structural molecular studies at ultraspatial resolution and within intact tissue in relation to nutrient availability.« less
Raising the shields: PCR in the presence of metallic surfaces protected by tailor-made coatings.
Scherag, Frank D; Brandstetter, Thomas; Rühe, Jürgen
2014-10-01
The implementation of PCR reactions in the presence of metallic surfaces is interesting for the generation of novel bioanalytical devices, because metals exhibit high mechanical stability, good thermal conductivity, and flexibility during deformation. However, metallic substrates are usually non-compatible with enzymatic reactions such as PCR due to poisoning of the active center of the enzyme or nonspecific adsorption of the enzymeto the metal surface, which could result in protein denaturation. We present a method for the generation of polymer coatings on metallic surfaces which are designed to minimize protein adsorption and also prevent the release of metal ions. These coatings consist of three layers covalently linked to each other; a self-assembled monolayer to promote adhesion, a photochemically generated barrier layer and a photochemically generated hydrogel. The coatings can be deposited onto aluminum, stainless steel, gold and copper surfaces. We compare PCR efficiencies in the presence of bare metallic surfaces with those of surfaces treated with the novel coating system. Copyright © 2014 Elsevier B.V. All rights reserved.
Ionic liquids: solvents and sorbents in sample preparation.
Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L
2018-01-01
The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Timiryasova, Tatyana M.; Bonaparte, Matthew I.; Luo, Ping; Zedar, Rebecca; Hu, Branda T.; Hildreth, Stephen W.
2013-01-01
A dengue plaque reduction neutralization test (PRNT) to measure dengue serotype–specific neutralizing antibodies for all four virus serotypes was developed, optimized, and validated in accordance with guidelines for validation of bioanalytical test methods using human serum samples from dengue-infected persons and persons receiving a dengue vaccine candidate. Production and characterization of dengue challenge viruses used in the assay was standardized. Once virus stocks were characterized, the dengue PRNT50 for each of the four serotypes was optimized according to a factorial design of experiments approach for critical test parameters, including days of cell seeding before testing, percentage of overlay carboxymethylcellulose medium, and days of incubation post-infection to generate a robust assay. The PRNT50 was then validated and demonstrated to be suitable to detect and measure dengue serotype-specific neutralizing antibodies in human serum samples with acceptable intra-assay and inter-assay precision, accuracy/dilutability, specificity, and with a lower limit of quantitation of 10. PMID:23458954
Individual Biomarkers Using Molecular Personalized Medicine Approaches.
Zenner, Hans P
2017-01-01
Molecular personalized medicine tries to generate individual predictive biomarkers to assist doctors in their decision making. These are thought to improve the efficacy and lower the toxicity of a treatment. The molecular basis of the desired high-precision prediction is modern "omex" technologies providing high-throughput bioanalytical methods. These include genomics and epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, imaging, and functional analyses. In most cases, producing big data also requires a complex biomathematical analysis. Using molecular personalized medicine, the conventional physician's check of biomarker results may no longer be sufficient. By contrast, the physician may need to cooperate with the biomathematician to achieve the desired prediction on the basis of the analysis of individual big data typically produced by omex technologies. Identification of individual biomarkers using molecular personalized medicine approaches is thought to allow a decision-making for the precise use of a targeted therapy, selecting the successful therapeutic tool from a panel of preexisting drugs or medical products. This should avoid the treatment of nonresponders and responders that produces intolerable unwanted effects. © 2017 S. Karger AG, Basel.
Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review
Mammeri, Fayna; Ammar, Souad
2018-01-01
Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i) their synthesis from simple “one-step” to complex “multi-step” routes, including seed-mediated and non-seed-mediated methods; and (ii) the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology—namely spherical and non-spherical, core-satellite and core-shell, and the desired applications. PMID:29518969
Liu, Ying; Kumar, Sriram; Taylor, Rebecca E
2018-04-06
The evergrowing need to understand and engineer biological and biochemical mechanisms has led to the emergence of the field of nanobiosensing. Structural DNA nanotechnology, encompassing methods such as DNA origami and single-stranded tiles, involves the base pairing-driven knitting of DNA into discrete one-, two-, and three-dimensional shapes at nanoscale. Such nanostructures enable a versatile design and fabrication of nanobiosensors. These systems benefit from DNA's programmability, inherent biocompatibility, and the ability to incorporate and organize functional materials such as proteins and metallic nanoparticles. In this review, we present a mix-and-match taxonomy and approach to designing nanobiosensors in which the choices of bioanalyte and transduction mechanism are fully independent of each other. We also highlight opportunities for greater complexity and programmability of these systems that are built using structural DNA nanotechnology. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Diagnostic Tools > Biosensing Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.