Sample records for sensitive clays

  1. Application of artificial neural network to predict clay sensitivity in a high landslide prone area using CPTu data- A case study in Southwest of Sweden

    NASA Astrophysics Data System (ADS)

    Shahri, Abbas; Mousavinaseri, Mahsasadat; Naderi, Shima; Espersson, Maria

    2015-04-01

    Application of Artificial Neural Networks (ANNs) in many areas of engineering, in particular to geotechnical engineering problems such as site characterization has demonstrated some degree of success. The present paper aims to evaluate the feasibility of several various types of ANN models to predict the clay sensitivity of soft clays form piezocone penetration test data (CPTu). To get the aim, a research database of CPTu data of 70 test points around the Göta River near the Lilli Edet in the southwest of Sweden which is a high prone land slide area were collected and considered as input for ANNs. For training algorithms the quick propagation, conjugate gradient descent, quasi-Newton, limited memory quasi-Newton and Levenberg-Marquardt were developed tested and trained using the CPTu data to provide a comparison between the results of field investigation and ANN models to estimate the clay sensitivity. The reason of using the clay sensitivity parameter in this study is due to its relation to landslides in Sweden.A special high sensitive clay namely quick clay is considered as the main responsible for experienced landslides in Sweden which has high sensitivity and prone to slide. The training and testing program was started with 3-2-1 ANN architecture structure. By testing and trying several various architecture structures and changing the hidden layer in order to have a higher output resolution the 3-4-4-3-1 architecture structure for ANN in this study was confirmed. The tested algorithm showed that increasing the hidden layers up to 4 layers in ANN can improve the results and the 3-4-4-3-1 architecture structure ANNs for prediction of clay sensitivity represent reliable and reasonable response. The obtained results showed that the conjugate gradient descent algorithm with R2=0.897 has the best performance among the tested algorithms. Keywords: clay sensitivity, landslide, Artificial Neural Network

  2. Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

    NASA Astrophysics Data System (ADS)

    Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da

    2018-03-01

    The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.

  3. Influence of Soil Organic Matter Stabilization Mechanisms on Temperature Sensitivity of Soil Respiration

    NASA Astrophysics Data System (ADS)

    Gillabel, J.; de Gryze, S.; Six, J.; Merckx, R.

    2007-12-01

    Knowledge on the sensitivity of soil organic matter (SOM) respiration to changes in temperature is crucial for predicting future impacts of climate change on soil C stocks. Temperature sensitivity of respiration is determined by the chemical structure of the compound to be decomposed and by the availability of the organic matter for decomposers. Biochemically recalcitrant SOM has a higher temperature sensitivity than biochemically labile SOM. However, it is hypothesized that the stabilization of SOM by interaction with the soil matrix could be an important attenuating control on temperature sensitivity. We investigated the effect of different SOM stabilization mechanisms on temperature sensitivity of SOM respiration. Two main mechanisms were considered: chemical interactions of SOM with clay and silt particles, and physical protection inside aggregates. Soil samples from an agricultural silt loam soil were fractionated by wet-sieving into macroaggregates, microaggregates and silt+clay fractions. SOM stabilization in the silt+clay fraction occurs mainly chemically, whereas in aggregates physical protection of SOM is more important. Samples of each fraction and of bulk soil were incubated at two temperatures (20°C and 30°C) for one month. After 2% of total soil carbon was respired, temperature sensitivity was determined for respiration of the next 0.5% of total soil carbon. This was done by calculating a Q10 value as the ratio of the times needed at each temperature to respire that fraction of the soil C. This method allows determination of temperature sensitivity independent of C quality. Calculated Q10 values decreased in the order bulk soil > macroaggregates > microaggregates > silt+clay, with the difference between macroaggregate Q10 and silt+clay Q10 being the only significant difference. These results indicate that protection of SOM attenuates temperature sensitivity, with chemical protection (silt+clay) having a larger effect than physical protection (aggregates).

  4. Sensitive strata in Bootlegger Cove Formation

    USGS Publications Warehouse

    Olsen, Harold W.

    1989-01-01

    Sensitivity magnitudes are interpreted from remolded strength values in recent subsurface geologic, geotechnical, and geochemical data from the Bootlegger Cove Formation adjacent to the Turnagain Heights Landslide. The results show that strata composed of highly sensitive clays occur in both the middle and lower zones of the formation, and that between these strata the clays are generally of low-to-medium sensitivity. The most sensitive stratum is in the middle zone between two sand layers, and its sensitivity increases from both clay-sand interfaces to a maximum at the center of the stratum. The pore fluid chemistry of the highly sensitive materials differs from that in the materials of low to medium sensitivity only in their concentrations of organic carbon, chloride, bicarbonate, and sulfate. The total dissolved solids concentration is low, and the ratio of monovalent to divalent cations is very high throughout the middle and lower zones of the formation. Of the known causes of high and extremely high sensitivities, only organic and/or anionic dispersants are consistent with these findings.

  5. Normalized sensitivities and parameter identifiability of in situ diffusion experiments on Callovo Oxfordian clay at Bure site

    NASA Astrophysics Data System (ADS)

    Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.

    Diffusion of inert and reactive tracers (DIR) is an experimental program performed by ANDRA at Bure underground research laboratory in Meuse/Haute Marne (France) to characterize diffusion and retention of radionuclides in Callovo-Oxfordian (C-Ox) argillite. In situ diffusion experiments were performed in vertical boreholes to determine diffusion and retention parameters of selected radionuclides. C-Ox clay exhibits a mild diffusion anisotropy due to stratification. Interpretation of in situ diffusion experiments is complicated by several non-ideal effects caused by the presence of a sintered filter, a gap between the filter and borehole wall and an excavation disturbed zone (EdZ). The relevance of such non-ideal effects and their impact on estimated clay parameters have been evaluated with numerical sensitivity analyses and synthetic experiments having similar parameters and geometric characteristics as real DIR experiments. Normalized dimensionless sensitivities of tracer concentrations at the test interval have been computed numerically. Tracer concentrations are found to be sensitive to all key parameters. Sensitivities are tracer dependent and vary with time. These sensitivities are useful to identify which are the parameters that can be estimated with less uncertainty and find the times at which tracer concentrations begin to be sensitive to each parameter. Synthetic experiments generated with prescribed known parameters have been interpreted automatically with INVERSE-CORE 2D and used to evaluate the relevance of non-ideal effects and ascertain parameter identifiability in the presence of random measurement errors. Identifiability analysis of synthetic experiments reveals that data noise makes difficult the estimation of clay parameters. Parameters of clay and EdZ cannot be estimated simultaneously from noisy data. Models without an EdZ fail to reproduce synthetic data. Proper interpretation of in situ diffusion experiments requires accounting for filter, gap and EdZ. Estimates of the effective diffusion coefficient and the porosity of clay are highly correlated, indicating that these parameters cannot be estimated simultaneously. Accurate estimation of De and porosities of clay and EdZ is only possible when the standard deviation of random noise is less than 0.01. Small errors in the volume of the circulation system do not affect clay parameter estimates. Normalized sensitivities as well as the identifiability analysis of synthetic experiments provide additional insight on inverse estimation of in situ diffusion experiments and will be of great benefit for the interpretation of real DIR in situ diffusion experiments.

  6. Clay Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studiesmore » of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.« less

  7. February 2011 sensitive clay landslides in eastern Turkey

    NASA Astrophysics Data System (ADS)

    Akçar, N.; Yavuz, V.; Ivy-Ochs, S.; Fredin, O.; Schlunegger, F.

    2016-12-01

    The Çöllolar open pit mine is situated in the northwestern sector of the Elbistan basin, which is an intramontane basin located at a mean elevation of about 1200 m in the eastern Turkey. The basement rock in the basin is karstic limestone, which is overlain by a thick layer of clay (>100 m), followed by 20-50 m thick lignite series that is overlain by the 20-50 m thick gyttja sequence. These deposits are overlain by Quaternary deposits, comprising the top surfaces of the terraces of the Hurman River, which drains the surface and ground water from the surrounding hills to the northeast towards the center of the Elbistan basin. The lignite series in the basin has been excavated since early 1970's. In February 2011, two landslides in which 10 workers were killed, occurred in the Çöllolar mine. Of the two landslides, the 2nd and largest which covers an area of ca. 2.3 km2, was caused by the collapse of the northeastern wall of the open-pit mine. The failure was made of successive rearward collapses with the debris flowing into the open-pit. In this study, we focus on the sensitivity of the clays within the Quaternary deposits that seems led to instability and the trigger of the landslides based on the flow style of the movement and nature of the failure. To reveal these factors, we employed six boreholes and collected 64 undisturbed, 41 disturbed and 10 surface samples for the sedimentological and geotechnical analysis. Our results from this study show that Quaternary deposits are heterogeneous and have variable clay content. Mineralogically, most of these clays belong to the smectite group with high swelling potential. They are high plastic clays with high consolidation ratio. They have high shear and remolded shear strengths, thus low to medium sensitivity. Their sensitivity increases dramatically with increasing water content. During our analysis, we encountered a soft clay layer, which showed an over consolidation ratio of 10 and a strain softening response. This response is typical for quick clays. This indicates that the landslide was caused by the liquefaction of this layer within the thick sequence of this part of the Elbistan basin. In brief, we conclude that massive failures at the Çöllolar coalfield are unique examples of sensitive clay landslides occurred in a subtropical arid region beyond the extent of Quaternary glaciations.

  8. Tailoring the mechanical properties of SU-8/clay nanocomposites: polymer microcantilever fabrication perspective

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Ojijo, Vincent; Cele, Hastings; Joubert, Trudi; Suprakas, Sinha Ray; Land, Kevin

    2014-06-01

    SU-8/Clay nanocomposite is considered as a candidate material for microcantilever sensor fabrication. Organically modified montmorillonite clay nanoparticles are dispersed in the universally used negative photoresist polymer SU-8, for a low cost material, which is also biocompatible. If varying the clay loading of the composite material yields a variation of the Young's modulus, the tailored material stiffness presents an opportunity for fabrication of microcantilevers with tunable sensor sensitivity. With this microcantilever application perspective, mechanical and thermal properties of the material were investigated. SU-8/Clay nanocomposite samples were prepared with clay loadings from 1wt% - 10wt%. Tensile test results show a general trend of increase in composite modulus with an increase in the clay loading up to 7wt%, followed by a small drop at 10wt%. The composite material indeed yields moderate variation of the Young's modulus. It was also found that the thermal degradation peak of the material occurred at 300°C, which is beyond the operating temperature of typical microcantilever sensor applications. The fabrication of a custom designed microcantilever array chip with the SU-8/Clay nanocomposite material was achieved in a class 100 cleanroom, using spin-coating and photolithography microfabrication techniques. The optimization of the process for fabricating microcantilever with the SU-8/Clay nanocomposite material is discussed in this paper. The results of this research are promising for cheaper mass production of low cost disposable, yet sensitive, microcantilever sensor elements, including biosensor applications.

  9. Controlled release in transdermal pressure sensitive adhesives using organosilicate nanocomposites.

    PubMed

    Shaikh, Sohel; Birdi, Anil; Qutubuddin, Syed; Lakatosh, Eric; Baskaran, Harihara

    2007-12-01

    Polydimethyl siloxane (PDMS) based pressure sensitive adhesives (PSA) incorporating organo-clays at different loadings were fabricated via solution casting. Partially exfoliated nanocomposites were obtained for the hydroxyl terminated PDMS in ethyl acetate solvent as determined by X-ray diffraction and atomic force microscopy. Drug release studies showed that the initial burst release was substantially reduced and the drug release could be controlled by the addition of organo-clay. Shear strength and shear adhesion failure temperature (SAFT) measurements indicated substantial improvement in adhesive properties of the PSA nanocomposite adhesives. Shear strength showed more than 200% improvement at the lower clay loadings and the SAFT increased by about 21% due to the reinforcement provided by the nano-dispersed clay platelets. It was found that by optimizing the level of the organosilicate additive to the polymer matrix, superior control over drug release kinetics and simultaneous improvements in adhesive properties could be attained for a transdermal PSA formulation.

  10. Electrochemical detection of phenolic estrogenic compounds at clay modified carbon paste electrode

    NASA Astrophysics Data System (ADS)

    Belkamssa, N.; Ouattara, L.; Kawachi, A.; Tsujimura, M.; Isoda, H.; Chtaini, A.; Ksibi, M.

    2015-04-01

    A simple and sensitive electroanalytical method was developed to determine the Endocrine Disrupting chemical 4-tert-octylphenol on clay modified carbon paste electrode (Clay/CPE). The electrochemical response of the proposed electrode was studied by means of cyclic and square wave voltammetry. It has found that the oxidation of 4-tert-octylphenol on the clay/CPE displayed a well-defined oxidation peak. Under these optimal conditions, a linear relation between concentrations of 4-tert-octylphenol current response was obtained over range of 7.26×10-6 to 3.87×10-7 with a detection and quantification limit of 9.2×10-7 M and 3.06×10-6 M, respectively. The correlation coefficient is 0.9963. The modified electrode showed suitable sensitivity, high stability and an accurate detection of 4-tert-octylphenol. The modified electrode also relevant suitable selectivity for various phenolic estrogenic compounds.

  11. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion

    PubMed Central

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-01-01

    The Earth’s surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data. PMID:27025192

  12. Controlled Release in Transdermal Pressure Sensitive Adhesives using Organosilicate Nanocomposites

    PubMed Central

    Shaikh, Sohel; Birdi, Anil; Qutubuddin, Syed; Lakatosh, Eric; Baskaran, Harihara

    2010-01-01

    Polydimethyl siloxane (PDMS) based pressure sensitive adhesives (PSA) incorporating organo-clays at different loadings were fabricated via solution casting. Partially exfoliated nanocomposites were obtained for the hydroxyl terminated PDMS in ethyl acetate solvent as determined by X-ray diffraction (XRD) and atomic force microscopy (AFM). Drug release studies showed that the initial burst release was substantially reduced and the drug release could be controlled by the addition of organo-clay. Shear strength and shear adhesion failure temperature (SAFT) measurements indicated substantial improvement in adhesive properties of the PSA nanocomposite adhesives. Shear strength showed more than 200 % improvement at the lower clay loadings and the SAFT increased by about 21% due to the reinforcement provided by the nano-dispersed clay platelets. It was found that by optimizing the level of the organosilicate additive to the polymer matrix, superior control over drug release kinetics and simultaneous improvements in adhesive properties could be attained for a transdermal PSA formulation. PMID:17786555

  13. Evaluation of Rhizobium tropici-derived Biopolymer for Erosion Control of Protective Berms. Field Study: Iowa Army Ammunition Plant

    DTIC Science & Technology

    2016-06-01

    for several cyanobacteria (Hu et al. 2003) as well as for EPS in clay soil (Nugent et al. 2009). The adhesion, water retention, and protective...exopolymers on the liquid limit of clays and its engineering applications. Transportation Research Record: Journal of the Transportation Research...Development of progressive failure in sensitive clay slopes. Canadian Geotechnical Journal 49: 782-795. Rushing, J. F., and J. K. Newman., 2010

  14. Towards a numerical run-out model for quick-clay slides

    NASA Astrophysics Data System (ADS)

    Issler, Dieter; L'Heureux, Jean-Sébastien; Cepeda, José M.; Luna, Byron Quan; Gebreslassie, Tesfahunegn A.

    2015-04-01

    Highly sensitive glacio-marine clays occur in many relatively low-lying areas near the coasts of eastern Canada, Scandinavia and northern Russia. If the load exceeds the yield stress of these clays, they quickly liquefy, with a reduction of the yield strength and the viscosity by several orders of magnitude. Leaching, fluvial erosion, earthquakes and man-made overloads, by themselves or combined, are the most frequent triggers of quick-clay slides, which are hard to predict and can attain catastrophic dimensions. The present contribution reports on two preparatory studies that were conducted with a view to creating a run-out model tailored to the characteristics of quick-clay slides. One study analyzed the connections between the morphological and geotechnical properties of more than 30 well-documented Norwegian quick-clay slides and their run-out behavior. The laboratory experiments by Locat and Demers (1988) suggest that the behavior of quick clays can be reasonably described by universal relations involving the liquidity index, plastic index, remolding energy, salinity and sensitivity. However, these tests should be repeated with Norwegian clays and analyzed in terms of a (shear-thinning) Herschel-Bulkley fluid rather than a Bingham fluid because the shear stress appears to grow in a sub-linear fashion with the shear rate. Further study is required to understand the discrepancy between the material parameters obtained in laboratory tests of material from observed slides and in back-calculations of the same slides with the simple model by Edgers & Karlsrud (1982). The second study assessed the capability of existing numerical flow models to capture the most important aspects of quick-clay slides by back-calculating three different, well documented events in Norway: Rissa (1978), Finneidfjord (1996) and Byneset (2012). The numerical codes were (i) BING, a quasi-two-dimensional visco-plastic model, (ii) DAN3D (2009 version), and (iii) MassMov2D. The latter two are quasi-three-dimensional codes with a choice of bed-friction laws. The findings of the simulations point strongly towards the need for a different modeling approach that incorporates the essential physical features of quick-clay slides. The major requirement is a realistic description of remolding. A two-layer model is needed to describe the non-sensitive topsoil that often is passively advected by the slide. In many cases, the topography is rather complex so that 3D or quasi-3D (depth-averaged) models are required for realistic modeling of flow heights and velocities. Finally, since many Norwegian quick-clay slides run-out in a fjord (and may generate a tsunami), it is also desirable to explicitly account for buoyancy and hydrodynamic drag.

  15. DNA-labeled clay: A sensitive new method for tracing particle transport

    USGS Publications Warehouse

    Mahler, B.J.; Winkler, M.; Bennett, P.; Hillis, D.M.

    1998-01-01

    The behavior of mobile colloids and sediment in most natural environments remains poorly understood, in part because characteristics of existing sediment tracers limit their wide-spread use. Here we describe the development of a new approach that uses a DNA-labeled montmorillonite clay as a highly sensitive and selective sediment tracer that can potentially characterize sediment and colloid transport in a wide variety of environments, including marine, wetland, ground-water, and atmospheric systems. Characteristics of DNA in natural systems render it unsuitable as an aqueous tracer but admirably suited as a label for tracing particulates. The DNA-labeled-clay approach, using techniques developed from molecular biology, has extremely low detection limits, very specific detection, and a virtually infinite number of tracer signatures. Furthermore, DNA-labeled clay has the same physical characteristics as the particles it is designed to trace, it is environmentally benign, and it can be relatively inexpensively produced and detected. Our initial results show that short (500 base pair) strands of synthetically produced DNA reversibly adsorb to both Na-montmorillonite and powdered silica surfaces via a magnesium bridge. The DNA-montmorillonite surface complexes are stable in calcium-bicarbonate spring waters for periods of up to 18 days and only slowly desorb to the aqueous phase, whereas the silica surface complex is stable only in distilled water. Both materials readily release the adsorbed DNA in dilute EDTA solutions for amplification by the polymerase chain reaction (PCR) and quantification. The stability of the DNA-labeled clay complex suggests that this material would be appropriate for use as an extremely sensitive sediment tracer for flow periods of as long as 2 weeks, and possibly longer.

  16. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    PubMed Central

    Kielmann, Udo; Jeschke, Gunnar; García-Rubio, Inés

    2014-01-01

    Polymer-clay nanocomposites (PCNCs) containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural) suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR) techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid) or the clay surface (labeled catamine). Continuous-wave (CW) EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack. PMID:28788520

  17. SUPPRESSION OF HUMORAL IMMUNE RESPONSES BY 2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN INTERCALATED IN SMECTITE CLAY

    PubMed Central

    Boyd, Stephen A.; Johnston, Cliff T.; Pinnavaia, Thomas J.; Kaminski, Norbert E.; Teppen, Brian J.; Li, Hui; Khan, Bushra; Crawford, Robert B.; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L.F.

    2018-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. PMID:21994089

  18. Responses of 1-year-old cottonwood to increasing soil moisture tension

    Treesearch

    F.T. Bonner

    1967-01-01

    Cottonwood cuttings planted in sandy loam and clay soils showed a sensitive control of water loss as soil moisture tension increased. Transpiration rates began decreasing at leaf water deficits of 2.5 percent in sandy loam and 4.5 percent in clay. There were no significant differences in rates per unit of leaf area or shoot dry weight between plants grown in the two...

  19. Interaction of ordinary Portland cement and Opalinus Clay: Dual porosity modelling compared to experimental data

    NASA Astrophysics Data System (ADS)

    Jenni, A.; Gimmi, T.; Alt-Epping, P.; Mäder, U.; Cloet, V.

    2017-06-01

    Interactions between concrete and clays are driven by the strong chemical gradients in pore water and involve mineral reactions in both materials. In the context of a radioactive waste repository, these reactions may influence safety-relevant clay properties such as swelling pressure, permeability or radionuclide retention. Interfaces between ordinary Portland cement and Opalinus Clay show weaker, but more extensive chemical disturbance compared to a contact between low-pH cement and Opalinus Clay. As a consequence of chemical reactions porosity changes occur at cement-clay interfaces. These changes are stronger and may lead to complete pore clogging in the case of low-pH cements. The prediction of pore clogging by reactive transport simulations is very sensitive to the magnitude of diffusive solute fluxes, cement clinker chemistry, and phase reaction kinetics. For instance, the consideration of anion-depleted porosity in clays substantially influences overall diffusion and pore clogging at interfaces. A new concept of dual porosity modelling approximating Donnan equilibrium is developed and applied to an ordinary Portland cement - Opalinus Clay interface. The model predictions are compared with data from the cement-clay interaction (CI) field experiment in the Mt Terri underground rock laboratory (Switzerland), which represent 5 y of interaction. The main observations such as the decalcification of the cement at the interface, the Mg enrichment in the clay detached from the interface, and the S enrichment in the cement detached from the interface, are qualitatively predicted by the new model approach. The model results reveal multiple coupled processes that create the observed features. The quantitative agreement of modelled and measured data can be improved if uncertainties of key input parameters (tortuosities, reaction kinetics, especially of clay minerals) can be reduced.

  20. Evaluation of Biological and Physical Protection against Nuclease Degradation of Clay-Bound Plasmid DNA

    PubMed Central

    Demanèche, Sandrine; Jocteur-Monrozier, Lucile; Quiquampoix, Hervé; Simonet, Pascal

    2001-01-01

    In order to determine the mechanisms involved in the persistence of extracellular DNA in soils and to monitor whether bacterial transformation could occur in such an environment, we developed artificial models composed of plasmid DNA adsorbed on clay particles. We determined that clay-bound DNA submitted to an increasing range of nuclease concentrations was physically protected. The protection mechanism was mainly related to the adsorption of the nuclease on the clay mineral. The biological potential of the resulting DNA was monitored by transforming the naturally competent proteobacterium Acinetobacter sp. strain BD413, allowing us to demonstrate that adsorbed DNA was only partially available for transformation. This part of the clay-bound DNA which was available for bacteria, was also accessible to nucleases, while the remaining fraction escaped both transformation and degradation. Finally, transformation efficiency was related to the perpetuation mechanism, with homologous recombination being less sensitive to nucleases than autonomous replication, which requires intact molecules. PMID:11133458

  1. Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin intercalated in smectite clay.

    PubMed

    Boyd, Stephen A; Johnston, Cliff T; Pinnavaia, Thomas J; Kaminski, Norbert E; Teppen, Brian J; Li, Hui; Khan, Bushra; Crawford, Robert B; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L F

    2011-12-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. Copyright © 2011 SETAC.

  2. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    PubMed

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.

  3. Evaluation of the medicinal use of clay minerals as antibacterial agents.

    PubMed

    Williams, Lynda B; Haydel, Shelley E

    2010-07-01

    Natural clays have been used to heal skin infections since the earliest recorded history. Recently our attention was drawn to a clinical use of French green clay (rich in Fe-smectite) for healing Buruli ulcer, a necrotizing fasciitis ('flesh-eating' infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources.Microbiological testing of two French green clays, and other clays used traditionally for healing, identified three samples that were effective at killing a broad-spectrum of human pathogens. A clear distinction must be made between 'healing clays' and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s).The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g., an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation.Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200 degrees C), then dehydroxylation (550 degrees C or more), and finally to destruction of the clay mineral structure by (~900 degrees C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall.

  4. Degradation of Nitrobenzene Using Bio-Reduced Fe-Clays: Progress Towards the Development of an in-situ Groundwater Remediation Technology

    NASA Astrophysics Data System (ADS)

    White, M. L.; Fialips, C. I.

    2008-12-01

    Clay minerals are widely used in agricultural, industrial and environmental engineering applications due to their specific physical and chemical properties and their high abundance in soils in sediments. Currently however, Fe-bearing clays are not widely exploited in these applied fields. Fe-rich smectites, such as nontronite, can contain up to 20wt% of Fe2O3 as structural Fe(III) and if a suitable electron donor is available, this Fe(III) can be utilized by Fe-reducing bacteria as a terminal electron acceptor. When reduced, the overall reactivity of Fe-smectites changes, particularly where interactions with water and various organic compounds are involved. For instance, the presence of reduced Fe-smectites has been found to induce the degradation of certain organic contaminants found in groundwaters and the subsurface, e.g. chlorinated aliphatics and nitroaromatic compounds. The goal of this study is to develop an in-situ groundwater remediation technology that targets redox- sensitive organics, in the form of a permeable Bio Fe-clay barrier. To achieve this, the iron-reducing bacterium Shewanella algae BrY was first used to reduce structural FeIII in <2micron fractions of the Fe- rich smectite nontronite (NAu-2, 41.74wt% Fe2O3) and a Fe-bearing montmorrillonite (Speeton Clay, Yorkshire, UK, ~8wt% Fe2O3). S. algae BrY was able to reduce structural FeIII within these clays to maximum Fe(II)/Fe(II)+Fe(III) ratios 0.34 and 0.19 for the nontronite and Speeton Clay, respectively, in the presence and absence of the electron shuttle, AQDS (9, 10-anthraquinone-2, 6-disulfonic acid). These results are novel because the capability of S. algae BrY to reduce structural Fe(III) in smectite clays has not previously been tested. Nitrobenzene was selected as the test redox-sensitive organic compound as it is a common subsurface contaminant and is of global ecotoxicological concern. To test the capability of bio- reduced Fe-clays to transform nitrobenzene to aniline (the less toxic and more stable degradation product of nitrobenzene), nontronite suspensions with reduction levels of 20% and 30% were spiked with various concentrations of nitrobenzene and monitored for 5 days. Results showed that when reduced clay, S. algae BrY and AQDS were present, 100% of the nitrobenzene had been transformed to aniline within 24 hours. Further recent results suggest that bio-reduced nontronite alone is also capable of degrading nitrobenzene but at a slower rate than when AQDS is present. Future experiments will constrain absorption and degradation rates of nitrobenzene in contact with the reduced Fe-clays and the role(s) of the Fe-reducing bacteria. Results to date will be presented.

  5. Evaluation of the medicinal use of clay minerals as antibacterial agents

    PubMed Central

    Williams, Lynda B.; Haydel, Shelley E.

    2010-01-01

    Natural clays have been used to heal skin infections since the earliest recorded history. Recently our attention was drawn to a clinical use of French green clay (rich in Fe-smectite) for healing Buruli ulcer, a necrotizing fasciitis (‘flesh-eating’ infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources. Microbiological testing of two French green clays, and other clays used traditionally for healing, identified three samples that were effective at killing a broad-spectrum of human pathogens. A clear distinction must be made between ‘healing clays’ and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s). The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g., an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation. Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200°C), then dehydroxylation (550°C or more), and finally to destruction of the clay mineral structure by (~900°C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall. PMID:20640226

  6. The Evaluation of Basal Respiration for Various Soil Textures in Ecologically Sensitive Area

    NASA Astrophysics Data System (ADS)

    Huličová, P.; Kotorová, D.; Fazekašová, D.; Hynšt, J.

    2017-10-01

    The present contribution was focused on monitoring changes in the soil basal respiration in different textures of soil in the dry polder Beša. The research was conducted between 2012 and 2014 on soil type Fluvisol locations on three soil textures: clay - loam soil, clayey soil and clay soil in three soil depths. The basal respiration (BR) has been determine by soil CO2 production measuring from incubated soil samples in serum bottles in laboratory condition. Release Co2 has been analysed by gas chromatography. Content of clay particles were in the range 52.18 % to 81.31%, indicating the high difference between the minimum and maximum content. By using of multiple LSD-test we recorded statistically significant impact of clay on basal respiration. Results confirm the values of basal respiration with the depth of the soil profile decreased.

  7. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Odeta; Pearce, Carolyn I.; Neumann, Anke

    Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important source of electron equivalents limiting the transport of redox active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced clays in field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) concentration, but FeTOTAL remains constant demonstrating no Fe loss duringmore » reduction-oxidation cycling. At its native pH of 8.6, the anoxic fraction despite its significant Fe(II) (~23% of FeTOTAL), exhibits minimal reactivity with TcO4- and CrO42- and much slower reaction kinetics than that measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added Fe(II) (if Fe(II)SORBED >8% clay Fe(II)LABILE), however the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II)SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within clay mineral.« less

  8. Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China.

    PubMed

    Ding, Fan; Huang, Yao; Sun, Wenjuan; Jiang, Guangfu; Chen, Yue

    2014-01-01

    It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2-50 µm), and clay (<2 µm) particles increased exponentially with increasing temperature. The sand fractions emitted more CO2 (CO2-C per unit fraction-C) than the silt and clay fractions in both forest and grassland soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming.

  9. PEG-PE/clay composite carriers for doxorubicin: Effect of composite structure on release, cell interaction and cytotoxicity.

    PubMed

    Kohay, Hagay; Sarisozen, Can; Sawant, Rupa; Jhaveri, Aditi; Torchilin, Vladimir P; Mishael, Yael G

    2017-06-01

    A novel drug delivery system for doxorubicin (DOX), based on organic-inorganic composites was developed. DOX was incorporated in micelles (M-DOX) of polyethylene glycol-phosphatidylethanolamine (PEG-PE) which in turn were adsorbed by the clay, montmorillonite (MMT). The nano-structures of the PEG-PE/MMT composites of LOW and HIGH polymer loadings were characterized by XRD, TGA, FTIR, size (DLS) and zeta measurements. These measurements suggest that for the LOW composite a single layer of polymer intercalates in the clay platelets and the polymer only partially covers the external surface, while for the HIGH composite two layers of polymer intercalate and a bilayer may form on the external surface. These nanostructures have a direct effect on formulation stability and on the rate of DOX release. The release rate was reversely correlated with the degree of DOX interaction with the clay and followed the sequence: M-DOX>HIGH formulation>LOW formulation>DOX/MMT. Despite the slower release from the HIGH formulation, its cytotoxicity effect on sensitive cells was as high as the "free" DOX. Surprisingly, the LOW formulation, with the slowest release, demonstrated the highest cytotoxicity in the case of Adriamycin (ADR) resistant cells. Confocal microscopy images and association tests provided an insight into the contribution of formulation-cell interactions vs. the contribution of DOX release rate. Internalization of the formulations was suggested as a mechanism that increases DOX efficiency, particularly in the ADR resistant cell line. The employment of organic-inorganic hybrid materials as drug delivery systems, has not reached its full potential, however, its functionality as an efficient tunable release system was demonstrated. DOX PEG-PE/clay formulations were design as an efficient drug delivery system. The main aim was to develop PEG-PE/clay formulations of different structures based on various PEG-PE/clay ratios in order to achieve tunable release rates, to control the external surface characteristics and formulation stability. The formulations showed significantly higher toxicity in comparison to "free" DOX, explained by formulation internalization. For each cell line tested, sensitive and ADR resistant, a different formulation structure was found most efficient. The potential of PEG-PE/clay-DOX formulations to improve DOX administration efficacy was demonstrated and should be further explored and implemented for other cancer drugs and cells. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone.

    PubMed

    Qafoku, Odeta; Pearce, Carolyn I; Neumann, Anke; Kovarik, Libor; Zhu, Mengqiang; Ilton, Eugene S; Bowden, Mark E; Resch, Charles T; Arey, Bruce W; Arenholz, Elke; Felmy, Andrew R; Rosso, Kevin M

    2017-08-15

    Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important sources of electron equivalents limiting the transport of redox-active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from the RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) natural content, but Fe TOTAL remains constant, demonstrating no Fe loss during its reduction-oxidation cyclings. At native pH of 8.6, the anoxic fraction, despite its significant Fe(II), ∼23% of Fe TOTAL , exhibits minimal reactivity with TcO 4 - and CrO 4 2- and much slower reaction kinetics than those measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added/sorbed Fe(II) (if Fe(II) SORBED > 8% clay Fe(II) LABILE ); however, the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II) SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within the clay mineral structure.

  11. Influence of soil types and osmotic pressure on growth and 137Cs accumulation in blackgram (Vigna mungo L.).

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Bellingrath-Kimura, Sonoko Dorothea

    2017-04-01

    A pot experiment was conducted to study the effects of soil types and osmotic levels on growth and 137 Cs accumulation in two blackgram varieties differing in salinity tolerance grown in Fukushima contaminated soils. The contamination levels of the sandy clay loam and clay soil were 1084 and 2046 Bq kg -1 DW, respectively. The 137 Cs activity was higher in both plants grown on the sandy clay loam than on the clay soil regardless of soil 137 Cs activity concentration. No significant differences were observed in all measured growth parameters between the two varieties under optimal water conditions for both types of soil. However, the growth, leaf water contents and 137 Cs activity concentrations in both plants were lower in both soil types when there was water stress induced by addition of polyethylene glycol. Water stress-induced reduction in total leaf area and total biomass, in addition to leaf relative water content, were higher in salt sensitive 'Mut Pe Khaing To' than in salt tolerant 'U-Taung-2' plants for both soil types. Varietal difference in decreased 137 Cs uptake under water stress was statically significant in the sandy clay loam soil, however, it was not in the clay soil. The transfer of 137 Cs from soil to plants (i.e., root, stem and leaf) was higher for the sandy clay loam for both plants when compared with those of the clay soil. The decreased activity of 137 Cs in the above ground samples (leaf and stem) in both plants in response to osmotic stress suggested that plant available 137 Cs decreased when soil water is limited by osmotic stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Monitoring of organic contaminants in sediments using low field proton nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Rupert, Yuri

    2016-04-01

    The effective monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. Recent geophysical methods such as electrical resistivity, complex conductivity, and ground penetrating radar have been successfully applied to characterize organic contaminants in the subsurface and to monitor remediation process both in laboratory and in field. Low field proton nuclear magnetic resonance (NMR) is a geophysical tool sensitive to the molecular-scale physical and chemical environment of hydrogen-bearing fluids in geological materials and shows promise as a novel method for monitoring contaminant remediation. This laboratory research focuses on measurements on synthetic samples to determine the sensitivity of NMR to the presence of organic contaminants and improve understanding of relationships between NMR observables, hydrological properties of the sediments, and amount and state of contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL) has been selected as a representative organic contaminant. Three types of porous media (pure silica sands, montmorillonite clay, and various sand-clay mixtures with different sand/clay ratios) were prepared as synthetic sediments. NMR relaxation time (T2) and diffusion-relaxation (D - T2) correlation measurements were performed in each sediment saturated with water and toluene mixed fluid at assorted concentrations (0% toluene and 100% water, 1% toluene and 99% water, 5% toluene and 95% water, 25% toluene and 75% water, and 100% toluene and 0% water) to 1) understand the effect of different porous media on the NMR responses in each fluid mixture, 2) investigate the role of clay content on T2 relaxation of each fluid, 3) quantify the amount hydrocarbons in the presence of water in each sediment, and 4) resolve hydrocarbons from water in D - T2 map. Relationships between the compositions of porous media, hydrocarbon concentration, and hydraulic properties of sediments will be presented and discussed. A minimum toluene detection limit has been established, and influences on NMR signals from increasing contaminant concentration have been investigated as well. It is evident in our data that the dominant control of porous media on NMR responses relies on clay content in the sand-clay mixture.

  13. Decomposition of Organic Carbon in Fine Soil Particles Is Likely More Sensitive to Warming than in Coarse Particles: An Incubation Study with Temperate Grassland and Forest Soils in Northern China

    PubMed Central

    Ding, Fan; Huang, Yao; Sun, Wenjuan; Jiang, Guangfu; Chen, Yue

    2014-01-01

    It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2–50 µm), and clay (<2 µm) particles increased exponentially with increasing temperature. The sand fractions emitted more CO2 (CO2-C per unit fraction-C) than the silt and clay fractions in both forest and grassland soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming. PMID:24736659

  14. Pharmaceutical grade phyllosilicate dispersions: the influence of shear history on floc structure.

    PubMed

    Viseras, C; Meeten, G H; Lopez-Galindo, A

    1999-05-10

    The effect of mixing conditions on the flow curves of some clay-water dispersions was studied. Two Spanish fibrous phyllosilicates (sepiolite from Vicálvaro and palygorskite from Turón) and a commercial bentonite (Bentopharm Copyright, UK) were selected as model clays. The disperse systems were made up using a rotor-stator mixer working at two different mixing rates (1000 and 8000 rpm), for periods of 1 and 10 min. Rheological measurements were taken and the corresponding flow curves obtained immediately after interposition and then after a period of 24 h under low shear caused by a roller apparatus. Aqueous sepiolite dispersions showed the highest viscosity and were easily interposed, whereas palygorskite dispersions were more difficult to obtain, resulting in low to medium viscosity gels. Bentonite dispersions provided medium viscosity systems, which greatly increased their viscosity after the low shear treatment (as a result of swelling), whereas the viscosity of the fibrous clays stayed at approximately the same values or even decreased. A linear relation was found between mixing energy and apparent viscosity in the bentonite systems, while apparent viscosity in the sepiolite samples was related to mixing power, with minor influence of mixing times. All the systems studied had thixotropic behaviour, changing from clearly positive to even negative thixotropy in some palygorskite systems. Finally, we studied the effect of drastic pH changes on the system structure. Results showed that rheological properties were highly sensitive to pH in the fibrous dispersions, but less sensitive behaviour was found in the laminar clay systems. Copyright.

  15. Complex resistivity signatures of ethanol in sand-clay mixtures

    USGS Publications Warehouse

    Personna, Yves Robert; Slater, Lee; Ntarlagiannis, Dimitrios; Werkema, Dale D.; Szabo, Zoltan

    2013-01-01

    We performed complex resistivity (CR) measurements on laboratory columns to investigate changes in electrical properties as a result of varying ethanol (EtOH) concentration (0% to 30% v/v) in a sand–clay (bentonite) matrix. We applied Debye decomposition, a phenomenological model commonly used to fit CR data, to determine model parameters (time constant: τ, chargeability: m, and normalized chargeability: mn). The CR data showed a significant (P ≤ 0.001) time-dependent variation in the clay driven polarization response (~ 12 mrad) for 0% EtOH concentration. This temporal variation probably results from the clay–water reaction kinetics trending towards equilibrium in the sand–clay–water system. The clay polarization is significantly suppressed (P ≤ 0.001) for both measured phase (ϕ) and imaginary conductivity (σ″) with increasing EtOH concentration. Normalized chargeability consistently decreases (by up to a factor of ~ 2) as EtOH concentration increases from 0% to 10% and 10 to 20%, respectively. We propose that such suppression effects are associated with alterations in the electrical double layer (EDL) at the clay–fluid interface due to (a) strong EtOH adsorption on clay, and (b) complex intermolecular EtOH–water interactions and subsequent changes in ionic mobility on the surface in the EDL. Changes in the CR data following a change of the saturating fluid from EtOH 20% to plain water indicate strong hysteresis effects in the electrical response, which we attribute to persistent EtOH adsorption on clay. Our results demonstrate high sensitivity of CR measurements to clay–EtOH interactions in porous media, indicating the potential application of this technique for characterization and monitoring of ethanol contamination in sediments containing clays.

  16. Modification and characterization of montmorillonite clay for the extraction of zearalenone

    NASA Astrophysics Data System (ADS)

    Hue, Kerri-Ann Alicia

    Mycotoxins are secondary metabolites of organisms belonging to the fungus kingdom. The cost associated with mycotoxin contamination in the USA and Canada is approximately US $5 billion. Zearalenone (ZEN), a resorcylic acid lactone, is produced by various members of the genus Fusarium . These fungi often colonize a variety of foods and feedstuffs including, corn, sorghum, wheat, oats, barley, and other cereal grains. This metabolite has estrogenic effects in farm animals with pigs being the most sensitive. ZEN induces hyperestrogenism and can cause infertility, reduced sex drive, fetal mummification, and abortions. Clays have successfully been used in the animal feed industry as an adsorbent and binders for certain small, water soluble mycotoxins. These mycotoxins are attracted to the electrical imbalance between the layers of the clays caused by isomorphic substitution of structural atoms. The mycotoxins are sequestered in the clay layers and pass harmlessly through the animal. However, ZEN is water insoluble and is not extracted easily with aluminosilicate clays. Therefore the modification of hydrated sodium calcium aluminosilicate (HSCAS) clays with organic cations has been proposed to render the clays hydrophobic and increase the ZEN binding capacity. The goal of this study was to develop a safe and cost effective organophilic material able to bind and extract zearalenone, to investigate the factors most important to extraction, and to investigate the fundamental properties between the clay-surfactant-mycotoxin systems that lead to extraction. The clay was modified by cation exchange reactions with tricaprylmethylammonium (TCMA) chloride and generic corn oil. The organophilic clays were then characterized using XRD, FTIR, and TGA analytical techniques. These techniques were used to determine the change in fundamental clay properties that would lead to the extraction of ZEN. Desorption studies were performed to determine any increase in toxicity that might be caused by washing of the clays or exposure to electrolytic solutions. Statistical design of experiments was used to determine the factors most influential during ZEN extraction. Modification by TCMA resulted in an increase in intergallery spacing of ˜0.6nm. TGA and FTIR studies indicated intercalation of organic species within the clay layers. An increase in weight loss proportional to the amount of TCMA added was observed by TGA analysis. In addition to the peaks found in the natural clay, peaks at 2928 cm-1, 2852 cm -1, and 1466 cm-1, which belong to C-H asymmetric stretching, C-H symmetric stretching and -CH2 scissoring respectively characteristic of TCMA were present. The clays developed were able to extract >90% ZEN in vitro at pH 3 and pH7. The factors most important for extraction changed depending on the levels of parameters chosen. Mathematical models were developed that showed the relationship between the factors and the ZEN removal percentage. When exposed to electrolyte solutions ˜1.5pmm of surfactant desorbed from the modified clay.

  17. Effects of the earthquake of March 27, 1964, at Anchorage, Alaska: Chapter A in The Alaska earthquake, March 27, 1964: effects on communities

    USGS Publications Warehouse

    Hansen, Wallace R.

    1965-01-01

    Anchorage, Alaska’s largest city, is about 80 miles west-northwest of the epicenter of the March 27 earthquake. Because of its size, Anchorage bore the brunt of property damage from the quake; it sustained greater losses than all the rest of Alaska combined. Damage was caused by direct seismic vibration, by ground cracks, and by landslides. Direct seismic vibration affected chiefly multistory buildings and buildings having large floor areas, probably because of the long period and large amplitude of the seismic waves reaching Anchorage. Most small buildings were spared. Ground cracks caused capricious damage throughout the Anchorage Lowland. Cracking was mast prevalent near the heads or within landslides but was also widespread elsewhere. Landslides themselves caused the most devastating damage. Triggering of landslides by the earthquake was related to the physical-engineering properties of the Bootlegger Cove Clay, a glacial estuarine-marine deposit that underlies much of the Anchorage area. The Bootlegger Cove Clay contains zones of low shear strength, high water content, and high sensitivity that failed under the vibratory stress of the earthquake. Shear strength in sensitive zones ranged from less than 0.2 tsf to about 0.5 tsf; sensitivity ranged from about 10 to more than 40. Sensitive zones generally are centered about 10 to 20 feet above sea level, between zones of stiff insensitive clay. Many physical tests by the U.S. Army Corps of Engineers were directed toward analyzing the causes of failure in the Bootlegger Cove Clay and finding possible remedies. Strengths and sensitivities were measured directly in the field by means of vane shear apparatus. A4tterberg limits, natural water contents, triaxial shear, sensitivity, dynamic modulus, consolidation strength, and other properties were measured in the laboratory. Pulsating-load tests simulated earthquake loading. Most of the destructive landslides in the Anchorage area moved primarily by translation rather than by rotation. Thus, all the highly damaging slides were of a single structural dynamic family despite wide variations in size, appearance, and complexity. They slid on nearly horizontal slip surfaces after loss of strength in the Bootlegger Core Clay. Same failures are attributed to spontaneous liquefaction of sand layers. All translatory slides surmounted flat-topped bluffs bounded marginally by steep slopes facing lower ground. Destructive translatory slides occurred in the downtown area (Fourth Avenue slide and L Street slide), at Government Hill, and at Turnagain Heights. Less destructive slides occurred in many other places-mostly uninhabited or undeveloped areas. In most translatory slides, damage was greatest in graben areas at the head and in pressure-ridge areas at the toe. Many buildings inside the perimeters of slide blocks were little damaged despite horizontal translations of several feet. The large Turnagain Heights slide, however, was characterized by a complete disintegration and drastic lowering of the prequake land surface. Extensive damage back from the slide, moreover, was caused by countless tension cracks. An approximation of the depth of failure in the Bootlegger Cove Clay in the various slides may be obtained by using a geometric relationship herein called the "graben rule." Because the cross-sectional area of the graben at the head of the slide approximated the cross-sectional area of the space voided behind the slide block as the block moved outward, the depth of failure was equal to the area of the graben divided by the lateral displacement. This approximation supplements and accords with test data obtained from borings. The graben rule should apply to any translatory slide in which flowage of material from the zone of failure has not been excessive. Geologic evidence indicates that landslides similar to those triggered by the March 27 earthquake have occurred in the Anchorage area at various times in the past.

  18. Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity

    PubMed Central

    Otto, Caitlin C.; Koehl, Jennifer L.; Solanky, Dipesh; Haydel, Shelley E.

    2014-01-01

    Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions. PMID:25502790

  19. Geophysical monitoring of organic contaminants in sediments

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Jennings, J.

    2016-12-01

    Soil and groundwater contamination pose threats to the health of human and the environment. Successful contaminant remediation requires effective in situ monitoring of physical, chemical, and biological processes in the subsurface. Minimally invasive geophysical methods have shown promise in characterizing organic contaminants in soil and groundwater and have been applied to monitor remediation processes. This study examines the sensitivity of low field proton nuclear magnetic resonance (NMR) and complex conductivity to the presence of organic contaminants in sediments. We aim to improve understanding of relationships between NMR and complex conductivity observables and hydrological properties of the sediments, as well as the amount and state of contaminants in porous media. We used toluene as a representative organic contaminant, and pure silica sands and montmorillonite clay as synthetic sediments. Sand-clay mixtures with various sand/clay ratios were prepared and saturated with different concentration of toluene. Relationships between the compositions of porous media, hydrocarbon concentration, and hydrological properties of sediments and geophysical response were investigated. The results from NMR relaxation time (T2) measurements reveal the dominant control of clay content on T2 relaxation, establish minimum toluene detectability, and demonstrate the effect of contaminant concentration on NMR signals. The diffusion-relaxation (D-T2) correlation measurement show toluene can be resolved from toluene-water mixture in sand-clay mixture. The results from ongoing complex conductivity measurements will also be presented and discussed.

  20. Sensitivity of the acid-base properties of clays to the methods of preparation and measurement. 1. Literature review.

    PubMed

    Duc, Myriam; Gaboriaud, Fabien; Thomas, Fabien

    2005-09-01

    Measuring and modeling the surface charge of clays, and more especially smectites, has become an important issue in the use of bentonites as a waste confinement material aimed at retarding migration of water and solutes. Therefore, many studies of the acid-base properties of montmorillonite have appeared recently in the literature, following older studies principally devoted to cation exchange. It is striking that beyond the consensus about the complex nature of the surface charge of clays, there are many discrepancies, especially concerning the dissociable charge, that prevents intercomparison among the published data. However, a general trend is observed regarding the absence of common intersection point on raw titration curves at different ionic strengths. Analysis of the literature shows that these discrepancies originate from the experimental procedures for the preparation of the clays and for the quantification of their surface charge. The present work is an attempt to understand how these procedures can impact the final results. Three critical operations can be identified as having significant effects on the surface properties of the studied clays. The first one is the preparation of purified clay from the raw material: the use of acid or chelation treatments, and the repeated washings in deionized water result in partial dissolution of the clays. Then storage of the purified clay in dry or wet conditions strongly influences the equilibria in the subsequent experiments respectively by precipitation or enhanced dissolution. The third critical operation is the quantification of the surface charge by potentiometric titration, which requires the use of strong acids and bases. As a consequence, besides dissociation of surface sites, many secondary titrant consuming reactions were described in the literature, such as cation exchange, dissolution, hydrolysis, or precipitation. The cumulated effects make it difficult to derive proper dissociation constants, and to build adequate models. The inadequation of the classical surface complexation models to describe the acid-base behavior of clays is illustrated by the electrokinetic behavior of smectites, which is independent from the pH and the ionic strength. Therefore, there is still a need on one hand for accurate data recorded in controlled conditions, and on the other hand for new models taking into account the complex nature of the charge of clays.

  1. Artificial recharge to a freshwater-sensitive brackish-water sand aquifer, Norfolk, Virginia

    USGS Publications Warehouse

    Brown, Donald L.; Silvey, William Dudley

    1977-01-01

    Fresh water was injected into a brackish-water sand for storage and retrieval. The initial injection rate of 400 gpm decreased to 70 gpm during test 3. The specific capacity of the well decreased also, from 15.4 to 0.93 gpm. Current-meter surveys indicated uniform reduction in hydraulic conductivity of all contributing zones in the aquifer. Hydraulic and chemical data indicate this was caused by dispersion of the interstitial clay upon introduction of the calcium bicarbonate water into the sodium chloride bearing sand aquifer. The clay dispersion also caused particulate rearrangement and clogging of well screen. A pre-flush of 0.2 N calcium chloride solution injected in front of the fresh water at the start of test 4 stabilized the clay. However, it did not reverse the particulate clogging that permanently reduced permeability and caused sanding during redevelopment. Clogging can be prevented by stabilization of the clay using commercially available trivalent aluminum compounds. Test 1 and test 2 showed that 85 percent of the water injected can be recovered, and the water meets U.S. Public Health Standards. Storage of fresh water in a brackish-water aquifer appears feasible provided proper control measures are used. (Woodard-USGS)

  2. February 2011 sensitive clay landslides at the Çöllolar coalfield, eastern Turkey

    NASA Astrophysics Data System (ADS)

    Akçar, Naki; Yavuz, Vural; Ivy-Ochs, Susan; Nyffenegger, Franziska; Fredin, Ola; Stolz, Martin; Schlunegger, Fritz

    2016-04-01

    The Elbistan basin is an intramontane basin, which is located in the eastern Turkey and bound by the Taurus and Antitaurus Mountains. The basin covers an area of 900 km² at a mean elevation of about 1200 m. The basement rock in this field is karstic limestone, which is overlain by a thick layer of clay (>100 m), followed by 20-50 m thick Lignite series that is overlain by the 20-50 m thick Gyttja sequence. These deposits are overlain by Quaternary deposits, comprising the top surfaces of the terraces of the Hurman River, which drains the surface and ground water from the surrounding hills to the northeast towards the center of the Elbistan basin. The Çöllolar open pit mine, situated in the northwestern sector of the Elbistan basin, contains 90 km2 of mineable coal which has been excavated since 2008. In February 2011, two landslides in which 10 workers were killed, occurred in this field. Of the two landslides, the 2nd and largest which covers an area of ca. 2.3 km2,was caused by the collapse of the northeastern wall of the open-pit mine. The failure was made of successive rearward collapses with the debris flowing into the open-pit. In this study, we focus on the geologic factors that led to instability and the trigger of the landslides. To reveal these factors, we employ sedimentological and geotechnical analysis of deposits, with a special emphasis on the Pliocene lacustrine carbonaceous sediments and the sensitivity of the overlying Quaternary clays. First results from the fieldwork and the mineralogical composition and physical properties of the collected samples indicate that the landslide was caused by the liquefaction of one of the layers within the thick sequence of this part of the Elbistan basin based on the flow style of the movement and nature of the failure. In brief, we conclude that massive failures at the Çöllolar coalfield are unique examples of sensitive clay landslides occurred in a subtropical arid region beyond the extent of Quaternary glaciations.

  3. A new attraction-disseverance model for explaining landsliding in clay-rich tephras

    NASA Astrophysics Data System (ADS)

    Kluger, M. O.; Moon, V.; Kreiter, S.; Lowe, D.; Churchman, J.; Hepp, D. A.; Seibel, D.; Jorat, E.; Mörz, T.

    2016-12-01

    Altered tephras are highly susceptible to landsliding and account for fatalities and property damage every year. The clay mineral halloysite is often associated with landslide-prone layers within weathered tephra successions, especially in deposits with high sensitivity, which describes the post-failure strength loss. However, the precise role of halloysite on the development of sensitivity and thus sudden and unpredictable landsliding is unknown. Here we show that an abundance of halloysite, dominated by a distinctive ovate mushroom-cap-shaped (MCS) spherical morphology, governs the development of sensitivity, and hence proneness to landsliding, in weathered rhyolitic tephras in eastern North Island, New Zealand. We found that a highly sensitive layer, which was involved in a retrogressive landslide, has an extraordinarily high content of aggregated MCS spheres with imperfectly-closed exterior surfaces, i.e., the MCS spheres have substantial openings on one side. We suggest that short-range electrostatic and van der Waals' interactions enabled the MCS spheres to form interconnected aggregates by attraction between numerous paired silanol and aluminol layers with a weakly positive, or neutral, charge exposed in the openings and the negatively-charged convex silanol faces on the curved exterior surfaces of the spheres. However, if these weak attractions are overcome during slope failure, the prevailing repulsion between two exterior surfaces result in a low remolded shear strength, i.e., a high sensitivity, and thus a high propensity for flow-like landsliding. Our results indicate that this novel electrostatic attraction-disseverance model explains the high sensitivity and therefore contributes to a general understanding of the mechanisms of landsliding in sensitive altered tephras rich in spherical halloysite.

  4. pH-Sensitive breathing of clay within the polyelectrolyte matrix.

    PubMed

    Chaturbedy, Piyush; Jagadeesan, Dinesh; Eswaramoorthy, Muthusamy

    2010-10-26

    Stimuli-responsive organic-inorganic hybrid spheres were synthesized by coating the colloidal polystyrene spheres with polyelectrolyte-protected aminoclay, Mg phyllo(organo)silicate layers in a layer-by-layer method. The clay layers are sandwiched between the polyelectrolyte layers. The aminoclay swells in water due to protonation of amino groups, and the degree of swelling depends on the pH of the medium. As a result, the hybrid spheres undergo a size change up to 60% as the pH is changed from 9 to 4. The stimuli-responsive property of the hybrid spheres was used for the release of ibuprofen and eosin at different pH.

  5. Nonlinear behavior of PP/PS blends with and without clay under large amplitude oscillatory shear (LAOS) flow

    NASA Astrophysics Data System (ADS)

    Salehiyan, Reza; Song, Hyeong Yong; Hyun, Kyu

    2015-05-01

    Dynamic oscillatory measurement, i.e., small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) test was used to investigate linear and non-linear viscoelastic properties of Polypropylene (PP)/Polystyrene (PS) blends with and without 5 wt.% clay (C20A). Fourier transform (FT-Rheology), Lissajous curves and stress decomposition methods were used to analyze non-linear responses under LAOS flow. Composition effects of blends were investigated prior to compatibilization effects. Elevated concentrations of dispersed phase (PS) increased the moduli G'(ω) from SAOS test and G*( γ 0) from LAOS test of the blends as well as strain thinning behavior. Interestingly, addition of 5 wt.% clay (C20A) boosted moduli of the blends as well as led to similar strain thinning behaviors among the PP/PS/C20A blends, except for the (90/10) PP/PS blend. The latter did not show improved rheological properties despite morphological improvements, as shown by SEM. Results from SEM and improved rheological properties of PP/PS/C20A blends revealed the compatibilization effects of clay (C20A) particles regardless of size reduction mechanisms. Third relative intensities ( I 3/1) from FT-rheology were found to be sensitive to clay (C20A) additions for the (70/30) and (30/70) PP/PS blends. Similarly, Lissajous curves could detect changes upon clay (C20A) addition, specifically at lower strain amplitudes whereupon addition of 5 wt.% clay resulted in the closed loops of Lissajous curves showing a more ellipsoidal shape due to increased elasticity in the blends. However, detection of these changes at larger strain amplitudes was more challenging. Therefore, stress decomposition (SD) method was applied for more precise characterization as it decomposes the total stress (σ) into elastic stress (σ') and viscous stress (σ″). Using SD method, elastic stress was more distorted, especially, strain hardening, while the total stress response remained almost unchanged at larger strain amplitudes.

  6. Sensitive clay landslide detection and characterization in and around Lakelse Lake, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Geertsema, Marten; Blais-Stevens, Andrée; Kwoll, Eva; Menounos, Brian; Venditti, Jeremy G.; Grenier, Alain; Wiebe, Kelsey

    2018-02-01

    The Lakelse Lake area in northwestern British Columbia, Canada, has a long history, and prehistory, of rapid sensitive clay landslides moving on very low gradients. However, until now, many landslides have gone undetected. We use an array of modern tools to identify hitherto unknown or poorly known landslide deposits, including acoustic subbottom profiles, multibeam sonar, and LiDAR. The combination of these methods reveals not only landslide deposits, but also geomorphic and sedimentologic structures that give clues about landslide type and mode of emplacement. LiDAR and bathymetric data reveal the areal extent of landslide deposits as well as the orientation of ridges that differentiate between spreading and flowing kinematics. The subbottom profiles show two-dimensional structures of disturbed landslide deposits, including horst and grabens indicative of landslides classified as spreads. A preliminary computer tomography (CT) scan of a sediment core confirms the structures of one subbottom profile. We also use archival data from the Ministry of Transportation and Infrastructure and resident interviews to better characterize historic landslides.

  7. Comparative characterization of the quaternary deposits of Northwest Peninsular Malaysia by wash boring and CPTU site investigation methods

    NASA Astrophysics Data System (ADS)

    Selamat, Mohamad R.; Rosli, Ros N.; Ramli, Muhd H.; Azmi, Mastura; Kumaravelu, Prakash; Govindasamy, Darvintharen

    2017-10-01

    A site investigation by wash boring method was carried out in the compound of the Engineering Campus, Universiti Sains Malaysia, in Northwest Peninsular Malaysia. The subsurface soils of the region are known to be comprised of quaternary deposits including the prominent marine clays of the Gula formation. The conventional Standard Penetration Test, or SPT, was carried out for every 1.5m depth. The 18 disturbed samples collected were tested for grain size distribution, Atterberg limits, and specific gravity; and categorized according to the unified soil classification system. The results indicate low SPT numbers, or SPTN, i.e. SPTN<4 for depths lesser than 10m, slightly high SPTN, i.e. 4≤SPTN≤8 for depths between 10 and 12m, and very high SPTN, i.e. SPTN>8 for depths deeper than 12m. Samples from shallower than 12m were mostly classified as low plasticity clay, or CL, which represents the soft marine clay while the underlying materials were mostly sands, namely poorly graded sand, or SP, silty sand, or SM, clayey sand, or SC, and well graded sand, or SW. Another site investigation by the CPTU method was also carried out 5m from the wash boring position, penetrating the entire soft clay stratum, thus giving another marine clay characterization in addition to the one given by the first method. The CPTU results generally gave SPTN≤2 for depths lesser than 8m, 2≤;SPTN≤4 for depths between 8 and 12m, and SPTN=23 at 12.5m, where the CPTU test terminated. The CPTU method classified the soft materials as sensitive fine grains, clays, and clayey silts to silty clays. Thus the CPTU results did not agree very well with the conventional wash boring SPT results in terms of the SPTN obtained. Nevertheless both methods equally identified the prominent presence of the soft marine clay stratum in the top 12.5m and the underlying strong sandy bed with higher bearing capacity values.

  8. Reduction And Immobilization Of Hexavalent Chromium By Microbially Reduced Fe-bearing Clay Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanismsmore » of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10°, 20°, and 30°C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10°C, though at 30°C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly in the form of sub-nanometer Cr2O3 in association with residual clay minerals as micro-aggregates. This textural association was expected to minimize the chance of Cr(III) reoxidation upon exposure to oxidants. These results are important for our understanding of how various clay minerals may be used to reductively immobilize the heavy metal contaminant Cr in the environment.« less

  9. Organic matter and the geotechnical properties of submarine sediments

    NASA Astrophysics Data System (ADS)

    Keller, George H.

    1982-09-01

    Continental slope deposits off Peru and Oregon where coastal upwelling is a pronounced oceanographic process possess significant concentrations of organic carbon. Geotechnical properties are altered to varying degrees by the organic matter. Organic matter absorbs water and causes clay-size particles to aggregate forming an open fabric. This causes unusually high water contents and plasticity and exceptionally low wet bulk densities. Some of these deposits show notable increases in shear strength, sensitivity and degree of apparent overconsolidation. Owing to the unique geotechnical properties, sediment stability characteristics are considered to be poor in situations of excess pore pressures. Failure appears to take the form of a fluidized flow somewhat similar to the quick clays of Scandinavia.

  10. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  11. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE PAGES

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; ...

    2015-10-07

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  12. A Comparative Study of T1 and T2 Relaxation in Shale

    NASA Astrophysics Data System (ADS)

    Keating, K.; Obasi, C. C.; Pashin, J. C.

    2015-12-01

    Nuclear magnetic resonance (NMR) relaxation measurement have been used extensively in petroleum and, more recently, in groundwater resource evaluation to estimate the porosity, pore-size distributions, permeability, fluid saturation, and fluid mobility. In shale, the transverse decay rate of NMR signal is sensitive to the microporosity, but is also affected by the paramagnetic contributions of clay and other iron-bearing minerals. Furthermore, contrasts in the magnetic susceptibility of the mineral matrix and pore fluids that result in an inhomogeneous magnetic field within the pore space results in an extra term in transverse relaxation. These issues can cause errors in NMR-based estimates of pore-size distribution and permeability. In this study we compare T1 and T2 relaxation time distributions in order to study the molecular mechanism of relaxation in brine-saturated mixtures of clay and other common minerals. We collected measurements on a range of mixtures of clay minerals common in shale (illite, glauconite, celadonite, chamosite, montmorillonite and kaolinite) and pyrite. To constrain the interpretation of the NMR data, we measured the magnetic susceptibility and surface area of all samples. We are confident that by accounting for the presence and variations of clay and pyrite in shale, we can substantially improve both the NMR estimate of pore-size distribution and permeability.

  13. Quantifying the clay content with borehole depth and impact on reservoir flow

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  14. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    NASA Astrophysics Data System (ADS)

    Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.

    2014-07-01

    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which is expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of Global Climate Model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the Integrated Catchment Model of Phosphorus Dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivity) were highly varied. Sensitivity was governed by soil type (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy-loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.

  15. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    NASA Astrophysics Data System (ADS)

    Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.

    2014-12-01

    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.

  16. Simultaneous existence of different enviroments in aqueous clay systems and its possible role in prebiotic synthesis.

    PubMed

    Lahav, N

    1975-08-05

    The formation of packets of parallel oriented platelets and separating distances of several angstrom units in montmorillonite-water systems produces an intrinsic inhomogeneity with respect to the proton donating power of internal and external zones. Stable packets can be induced by both inorganic and organic molecules or ions, in suspensions or in drying-out systems. The coexistence of zones with different proton donating power was demonstrated by the pH-sensitive color reaction of benzidine, where stable packets of montmorillonite platelets were formed by the use of either paraquat or diquat. The close proximity of the two types of zones, which can be of the order of several angstroms, produces the conditions which were defined by Katchalsky as essential for the polymerization of amino acids. Since these enviromental conditions are quite common in nature, both at present and in prebiotic times, it is proposed that the inhomogeneity of clay-water systems with respect to proton donating power should be taken into account in both theoretical and experimental efforts to demonstrate the catalytic activity of clays in prebiotic synthesis.

  17. Layer-by-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine

    NASA Astrophysics Data System (ADS)

    de Lucena, Nathalia C.; Miyazaki, Celina M.; Shimizu, Flávio M.; Constantino, Carlos J. L.; Ferreira, Marystela

    2018-04-01

    Dopamine (DA) abnormal levels are related to diseases which makes important the development of fast, reliable, low-cost and sensitive devices for diagnosis and pharmaceutical controls. Nanostructured film composite of sodium montmorillonite clay (Na+MMT) and nickel phthalocyanine (NiTsPc) was self-assembled by layer-by-layer (LbL) technique and applied as electrochemical sensor for DA in the presence of common natural interferents as ascorbic acid (AA) and uric acid (UA). Three different LbL architecture films were investigated: LbL films of clay (PEI/Na+MMT) and phthalocyanine (PEI/NiTsPc) in a bilayer structure with a conventional polyelectrolyte (PEI) and a composite film formed by both materials to verify the synergistic effect in the LbL film in a quadri-layer assembly (PEI/Na+MMT/PEI/NiTsPc). Structural characterization indicated molecular level interactions between the layers forming the LbL films. The ITO/(PEI/Na+MMT/PEI/NiTsPc)10 electrode exhibited a LOD of 1.0 μmol L-1 and linear range 5-150 μmol L-1.

  18. Assessing Atmospheric CO2 Entrapped in Clay Nanotubes using Residual Gas Analyzer.

    PubMed

    Das, Sankar; Maity, Abhijit; Pradhan, Manik; Jana, Subhra

    2016-02-16

    A residual gas analyzer (RGA) coupled with a high-vacuum chamber has been explored to measure atmospheric CO2 entrapped in aminosilane-modified clay nanotubes. Ambient CO2 uptake efficacy together with stability of these novel adsorbents composed of both primary and/or secondary amine sites has been demonstrated at standard ambient temperature and pressure. The unprecedented sensitivity and accuracy of the RGA-based mass spectrometry technique toward atmospheric CO2 measurement has been substantiated with a laser-based optical cavity-enhanced integrated cavity output spectroscopy. The adsorption kinetics of atmospheric CO2 on amine-functionalized clay nanotubes followed the fractional-order kinetic model compared to that of the pseudo-first-order or pseudo-second-order rate equations. The efficiency along with stability of these novel adsorbents has also been demonstrated by their repetitive use for CO2 capture in the oxidative environment. Our findings thus point to a fundamental study on the atmospheric CO2 adsorption by amine-loaded adsorbents using an easy handling and low-cost benchtop RGA-based mass spectrometer, opening a new strategy for CO2 capture and sequestering study.

  19. A modelling approach to evaluate the long-term effect of soil texture on spring wheat productivity under a rain-fed condition.

    PubMed

    He, Yong; Hou, Lingling; Wang, Hong; Hu, Kelin; McConkey, Brian

    2014-07-30

    Soil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat (Triticum aestivum L.) from two soil textures (silt loam and clay) under rain-fed condition were analyzed. Regression analysis showed that wheat grown in silt loam soil is more sensitive to WU than wheat grown in clay soil, indicating that the wheat grown in clay soil has higher drought tolerance than that grown in silt loam. Yield variation can be explained by WU other than by precipitation use (PU). These results demonstrated that the DSSAT-CERES-Wheat model can be used to evaluate the WU of different soil textures and assess the feasibility of wheat production under various conditions. These outcomes can improve our understanding of the long-term effect of soil texture on spring wheat productivity in rain-fed condition.

  20. New evidence for the catastrophic demise of a prehistoric settlement (the Lajia Ruins) in the Guanting Basin, upper Yellow River, NW China

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Huang, Chun Chang; Zheng, Zixing; Hu, Ying; Zhang, Yuzhu; Guo, Yongqiang; Zhou, Qiang

    2017-09-01

    The Lajia Ruins in the Guanting Basin, NW China, are a product of the prehistoric Qijia Culture. Like Pompeii, they are a rare example of an archaeological site preserved by a natural disaster and are therefore important in archaeology, anthropology and geology. However, the nature of the disaster(s) responsible for the destruction of the site remains controversial. Most studies have focused on an earthquake and a red clay layer directly overlying the site and a detailed stratigraphic study of the mid-Holocene sedimentary strata combined with other intervals of red clay deposition (hence possible disasters) is lacking. We identified a mid-Holocene paleosol sequence (the Shanglajia section) at the site which contains two layers of red clay, dated to 3950 a BP and 3500 a BP, intercalated within the mid-Holocene paleosol (S0). Subsequent multi-proxy analysis indicated that the characteristics of the two red clay layers resemble those of typical Tertiary red clay deposits and the modern gully deposit at the foot of the Great Red Hills, but are distinctly different from those of the slackwater deposits of the Yellow River and the mid-Holocene paleosol. Our results suggest that, at 3950 a BP and 3500 a BP, two large-scale rainstorm-induced mudflow events, originating from the gullies to the north, flooded the Lajia area on the second terrace of the Yellow River, devastating and burying the human settlements. We infer that the intensified erosion and mass wasting were caused by human activity; in addition, natural factors such as rainstorms and earthquakes, may also have played an important role in triggering catastrophic mudflow events in the Tertiary Red Clay deposits. Overall, our results provide further insights into prehistoric man-land relationships in this environmentally sensitive region which may have implications for modern land use in this region of China and elsewhere.

  1. One-dimensional filtration of pharmaceutical grade phyllosilicate dispersions.

    PubMed

    Viseras, C; Cerezo, P; Meeten, G H; Lopez-Galindo, A

    2001-04-17

    The filtration behaviour of some clay-water dispersions was studied. Two Spanish fibrous phyllosilicates (sepiolite from Vicálvaro and palygorskite from Turón) and a commercial bentonite (Bentopharm UK) with similar sizes and different morphologies (fibrous and/or laminar) were selected as model clays. Sepiolite from Vicálvaro is an almost pure fibrous sample, Bentopharm presents a high amount of laminar particles and palygorskite from Turón is made up of similar percentages of laminar and fibrous particles. The disperse systems were made up using a rotor-stator mixer working at two different mixing rates (1000 and 8000 rpm), for periods of 1 and 10 min. Filtration measurements were taken and the corresponding filtration curves obtained. Finally, the desorptivity (S) of the filtration cakes was calculated and correlated to the textural characteristics of the materials, the solid fraction and mixing conditions. Filtration behaviour of the dispersions depended on all three of these factors. Laminar dispersions presented lower S values than fibrous dispersions. In the 2% w/v dispersions the bridging forces between particles did not permit formation of an interconnected network as in 10% w/v dispersions and, consequently, filtration times increased with the solid fraction (i.e. S values decreased). Regarding stability to pH changes, the results showed that filtration behaviour was highly sensitive to basic pH in the fibrous clay dispersions and almost insensitive in the laminar clay dispersions.

  2. Sensitive life detection strategies for low-biomass environments: optimizing extraction of nucleic acids adsorbing to terrestrial and Mars analogue minerals.

    PubMed

    Direito, Susana O L; Marees, Andries; Röling, Wilfred F M

    2012-07-01

    The adsorption of nucleic acids to mineral matrixes can result in low extraction yields and negatively influences molecular microbial ecology studies, in particular for low-biomass environments on Earth and Mars. We determined the recovery of nucleic acids from a range of minerals relevant to Earth and Mars. Clay minerals, but also other silicates and nonsilicates, showed very low recovery (< 1%). Consequently, optimization of DNA extraction was directed towards clays. The high temperatures and acidic conditions used in some methods to dissolve mineral matrices proved to destruct DNA. The most efficient method comprised a high phosphate solution (P/EtOH; 1 M phosphate, 15% ethanol buffer at pH 8) introduced at the cell-lysing step in DNA extraction, to promote chemical competition with DNA for adsorption sites. This solution increased DNA yield from clay samples spiked with known quantities of cells up to nearly 100-fold. DNA recovery was also enhanced from several mineral samples retrieved from an aquifer, while maintaining reproducible DGGE profiles. DGGE profiles were obtained for a clay sample for which no profile could be generated with the standard DNA isolation protocol. Mineralogy influenced microbial community composition. The method also proved suitable for the recovery of low molecular weight DNA (< 1.5 kb). © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Sensitivity of the acid-base properties of clays to the methods of preparation and measurement. 2. Evidence from continuous potentiometric titrations.

    PubMed

    Duc, Myriam; Gaboriaud, Fabien; Thomas, Fabien

    2005-09-01

    The effects of experimental procedures on the acid-base consumption titration curves of montmorillonite suspension were studied using continuous potentiometric titration. For that purpose, the hysteresis amplitudes between the acid and base branches were found to be useful to systematically evaluate the impacts of storage conditions (wet or dried), the atmosphere in titration reactor, the solid-liquid ratio, the time interval between successive increments, and the ionic strength. In the case of storage conditions, the increase of the hysteresis was significantly higher for longer storage of clay in suspension and drying procedures compared to "fresh" clay suspension. The titration carried out under air demonstrated carbonate contamination that could only be cancelled by performing experiments under inert gas. Interestingly, the increase of the time intervals between successive increments of titrant strongly emphasized the amplitude of hysteresis, which could be correlated with the slow kinetic process specifically observed for acid addition in acid media. Thus, such kinetic behavior is probably associated with dissolution processes of clay particles. However, the resulting curves recorded at different ionic strengths under optimized conditions did not show the common intersection point required to define point of zero charge. Nevertheless, the ionic strength dependence of the point of zero net proton charge suggested that the point of zero charge of sodic montmorillonite could be estimated as lower than 5.

  4. Micro-fabric damages in Boom Clay inferred from cryo-BIB-SEM experiment: recent results

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schmatz, Joyce; Klaver, Jop; Urai, Janos L.

    2017-04-01

    The Boom Clay is considered as a potential host rock in Belgium for nuclear waste disposal in a deep geological formation. One of the keys to understand the long-term performance of such a host rock is the fundamental understanding of coupling between microstructural evolution, poromechanical behaviour and the state of hydration of the system. At in situ conditions, Boom Clay is a nearly water-saturated (>94%) clay-rich geomaterial. Subsequently, for measurement of mechanical and transport properties in laboratory, cores of Boom Clay are vacuum-packed in Al-coated-poly-ethylene barrier foil to be best preserved at original hydric state. Because clay microstructures are very sensitive to dehydration, the validity of investigations done on such preserved or/and dried samples is often questionable. Desbois et al. (2009, 2013, 2014) showed the possibility to image fluid-filled porosity in Boom Clay, by using the FIB-cryo-SEM (FIB: Focussed Ion Beam) and FIB-cryo-SEM (BIB: Broad Ion Beam) techniques. However, surprisingly in Desbois et al. (2014), BIB-cryo-SEM experiments on Boom Clay, shown that the majority of the pores were fluid-free, contrasting with result in Desbois et al. (2009). In Desbois et al. (2014), several reasons were discussed to explain such discrepancies. The likely ones are the sealing efficiency of the Al-barrier foil at long term and the volume expansion due to the release of in-situ stress after core extraction, contributing both to dehydration and microfabric damage. This contribution presents the newest results based on cryo-BIB-SEM. Small pieces (30 mm3) of Boom Clay were preserved in liquid nitrogen after the core extraction at the MOL/Dessel Underground Research Laboratory in Belgium. A maximum of ten minutes time span was achieved between opening the core, the sub-sample extraction and the quenching of sub-samples in liquid nitrogen. First results show that all pores visible at cryo-SEM resolution are water saturated. However, water-filled micro-cracks are also present and they are interpreted to result from the releasing of in-situ stress after the core extraction. Moreover, the comparison of the clay micro-fabrics in the same preserved and dried sample suggests collapsing of the clay aggregates' pores in dried sample. These newest results are still preliminary and they need to be analysed in more details. However, if they are confirmed they may be important input to discuss about the validity of measurement of mechanical and transport properties done in laboratory. Desbois G., Urai J.L. and Kukla P.A. (2009). Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. E-Earth, 4 :15-22. Desbois G., J.L. Urai, F. Pérez-Willard, Z. Radi, S. van Offern, I. Burkart, P.A. Kukla, U. Wollenberg (2013). Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid. Journal of Microscopy, 249(3): 215-235. Desbois G., Urai J.L., Hemes S., Brassinnes S., De Craen M., Sillen X. (2014). Nanometer-scale pore fluid distribution and drying damage in preserved clay cores from Belgian clay formations inferred by BIB-cryo-SEM. Engineering Geology, 170:117-131.

  5. Thermal acidization and recovery process for recovering viscous petroleum

    DOEpatents

    Poston, Robert S.

    1984-01-01

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  6. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    NASA Astrophysics Data System (ADS)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform these analyses. The amplification functions were extracted using the programme SITE_AMP (Boore, 2003), which computes amplifications based on the square root of the effective seismic impedance. Sensitivity indices were obtained by changing two parameters (thickness and shear-wave velocity) of the different layers while keeping the others constant. Additional analyses were carried out by producing various profiles within specified boundaries which are able to fit the experimental data. The analyses also show the important role that the shear-wave velocity profiles play in ground motion simulations. The results obtained highlight the importance of the correct knowledge of both the properties of the Upper Coralline Limestone and the Blue Clay, especially the Blue Clay thickness.

  7. Seasonal variations in the diversity and abundance of diazotrophic communities across soils.

    PubMed

    Pereira e Silva, Michele C; Semenov, Alexander V; van Elsas, Jan Dirk; Salles, Joana Falcão

    2011-07-01

    The nitrogen (N)-fixing community is a key functional community in soil, as it replenishes the pool of biologically available N that is lost to the atmosphere via anaerobic ammonium oxidation and denitrification. We characterized the structure and dynamic changes in diazotrophic communities, based on the nifH gene, across eight different representative Dutch soils during one complete growing season, to evaluate the amplitude of the natural variation in abundance and diversity, and identify possible relationships with abiotic factors. Overall, our results indicate that soil type is the main factor influencing the N-fixing communities, which were more abundant and diverse in the clay soils (n=4) than in the sandy soils (n=4). On average, the amplitude of variation in community size as well as the range-weighted richness were also found to be higher in the clay soils. These results indicate that N-fixing communities associated with sandy and clay soil show a distinct amplitude of variation under field conditions, and suggest that the diazotrophic communities associated with clay soil might be more sensitive to fluctuations associated with the season and agricultural practices. Moreover, soil characteristics such as ammonium content, pH and texture most strongly correlated with the variations observed in the diversity, size and structure of N-fixing communities, whose relative importance was determined across a temporal and spatial scale. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture

    NASA Astrophysics Data System (ADS)

    Gherboudj, Imen; Beegum, S. Naseema; Marticorena, Beatrice; Ghedira, Hosni

    2015-10-01

    The mineral dust emissions from arid/semiarid soils were simulated over the MENA (Middle East and North Africa) region using the dust parameterization scheme proposed by Alfaro and Gomes (2001), to quantify the effect of the soil moisture and clay fraction in the emissions. For this purpose, an extensive data set of Soil Moisture and Ocean Salinity soil moisture, European Centre for Medium-Range Weather Forecasting wind speed at 10 m height, Food Agricultural Organization soil texture maps, MODIS (Moderate Resolution Imaging Spectroradiometer) Normalized Difference Vegetation Index, and erodibility of the soil surface were collected for the a period of 3 years, from 2010 to 2013. Though the considered data sets have different temporal and spatial resolution, efforts have been made to make them consistent in time and space. At first, the simulated sandblasting flux over the region were validated qualitatively using MODIS Deep Blue aerosol optical depth and EUMETSAT MSG (Meteosat Seciond Generation) dust product from SEVIRI (Meteosat Spinning Enhanced Visible and Infrared Imager) and quantitatively based on the available ground-based measurements of near-surface particulate mass concentrations (PM10) collected over four stations in the MENA region. Sensitivity analyses were performed to investigate the effect of soil moisture and clay fraction on the emissions flux. The results showed that soil moisture and soil texture have significant roles in the dust emissions over the MENA region, particularly over the Arabian Peninsula. An inversely proportional dependency is observed between the soil moisture and the sandblasting flux, where a steep reduction in flux is observed at low friction velocity and a gradual reduction is observed at high friction velocity. Conversely, a directly proportional dependency is observed between the soil clay fraction and the sandblasting flux where a steep increase in flux is observed at low friction velocity and a gradual increase is observed at high friction velocity. The magnitude of the percentage reduction/increase in the sandblasting flux decreases with the increase of the friction velocity for both soil moisture and soil clay fraction. Furthermore, these variables are interdependent leading to a gradual decrease in the percentage increase in the sandblasting flux for higher soil moisture values.

  9. Burrowing mayfly populations in Chequamegon Bay, Wisconsin: 2002 and 2012

    USGS Publications Warehouse

    Brunk, Kristin M.; Vinson, Mark R.; Ogle, Derek H.; Evrard, Lori M.

    2014-01-01

    Burrowing mayflies (Ephemeroptera: Ephemeridae) are sensitive to pollution and have been used as environmental indicators in the Great Lakes. Hexagenia limbata and Ephemera simulans population abundance and biomass estimates from Chequamegon Bay, Lake Superior, were compared between the years 2002 and 2012 as well as inside and outside the Northern States Power Lakefront Superfund site. Mean abundance was similar and mean biomass of Ephemeridae was slightly less in 2012 than in 2002, most likely due to the occurrence of E. simulans in 2012, a smaller species not collected in 2002. In 2012, mean ephemerid abundance and biomass outside the Superfund site was significantly higher than inside the Superfund site. Biomass was higher in clay, clay with sand, and sand with clay substrates than in fine sand, coarse sand, or wood debris substrates. Substrate in the Superfund site was predominantly wood debris. Future monitoring of ephemerid populations in Chequamegon Bay, and particularly in the Superfund site as clean up begins, would be valuable to establish long-term population trends for these two species and potentially shed light on the habitat requirements of E. simulans, an understudied species in the Great Lakes.

  10. Recent spectroscopic findings concerning clay/water interactions at low humidity: Possible applications to models of Martian surface reactivity

    NASA Technical Reports Server (NTRS)

    Coyne, L.; Bishop, J.; Howard, L.; Scattergood, T. W.

    1991-01-01

    A feasibility study assessing the utility of the adaptation of near infrared correlation spectroscopy to quantifying iron and adsorbed water in some clay-based Mars soil analog materials (MarSAM's). The work was intended to constitute Phase 1 of an approach to identifying optical analytical wavelength regions, not only for important mineral classes, but for chemically active centers within them. Many of these centers are common to unrelated mineral classes and of disproportionate influence relative to the mineral structure as a whole in determining the surface reactivity of mineral surfaces. We previously reported linearity between reflectance and total iron and total moisture over a large range of both key variables. We also discovered interesting relationships between the intensity of iron bands and the relative humidity of the systems. These relationships were confirmed. We also show that, in the low humidity range, reflectance is linearly dependent on a different kind of water from that best representing the full humidity range (the kind of water associated, in clays, with surface acidity). These relationships and the sensitivity and capability of quantitation of near infrared data indicate high promise with the production of reactive surface intermediates of products of surface reactions.

  11. Turnover of intra- and extra-aggregate organic matter at the silt-size scale

    Treesearch

    I. Virto; C. Moni; C. Swanston; C. Chenu

    2010-01-01

    Temperate silty soils are especially sensitive to organic matter losses associated to some agricultural management systems. Long-term preservation of organic C in these soils has been demonstrated to occur mainly in the silt- and clay-size fractions, although our knowledge about the mechanisms through which it happens remains unclear. Although organic matter in such...

  12. Changes in Community Structure and Biomass of Seagrass Communities along Gradients of Siltation in SE Asia

    NASA Astrophysics Data System (ADS)

    Terrados, J.; Duarte, C. M.; Fortes, M. D.; Borum, J.; Agawin, N. S. R.; Bach, S.; Thampanya, U.; Kamp-Nielsen, L.; Kenworthy, W. J.; Geertz-Hansen, O.; Vermaat, J.

    1998-05-01

    The patterns of change in species richness and biomass of Southeast Asian seagrass communities along siltation gradients were compared at different sites in The Philippines and Thailand. Seagrass species richness and community leaf biomass declined sharply when the silt and clay content of the sediment exceeded 15%. Syringodium isoetifoliumand Cymodocea rotundatawere present only in multispecific meadows, while Enhalus acoroideswas the only species remaining in heavily silted sediments. The following ranking of species sensitivity to siltation is proposed (from the least to most sensitive): S. isoetifolium→ C. rotundata→ Thalassia hemprichii→ Cymodocea serrulata→ Halodule uninervis→ Halophila ovalis→ Enhalus acoroides. Positive correlations were found between species richness and both community leaf biomass and the leaf biomass of individual seagrass species. The increase in community biomass with increasing species richness was associated with a more even distribution of the leaf biomass among seagrass species. The relationships between percent silt and clay in the sediment and seagrass community leaf biomass and species richness provide useful dose-response relationships which can be used to set allowable or threshold siltation loads in SE Asian coastal waters, and indicate that species loss from seagrass meadows is an early warning of detrimental siltation loads.

  13. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    NASA Astrophysics Data System (ADS)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    While most magnetic resonance imaging (MRI) applications concern medical research, there is a rapidly increasing number of MRI studies in the field of environmental science and technology. In this presentation, MRI will be introduced from the latter perspective. While many processes in these areas are similar to those addressed in medical applications of MRI, parameters and experimental implementations are often quite different and, in many respects, far more demanding. This hinders direct transfer of existing methods developed for biomedical research, especially when facing the challenging task of obtaining spatially resolved quantitative information. In MRI investigation of soils, clays, and rocks, mainly water signal is detected, similarly to MRI of biological and medical samples. However, a strong variation of water mobility and a wide spread of water spin relaxation properties in these materials make it difficult to use standard MRI approaches. Other significant limitations can be identified as following: T2 relaxation and probe dead time effects; molecular diffusion artifacts; varying dielectric losses and induced currents in conductive samples; limited dynamic range; blurring artifacts accompanying drive for increasing sensitivity and/or imaging speed. Despite these limitations, by combining MRI techniques developed for solid and liquid states and using independent information on relaxation properties of water, interacting with the material of interest, true images of distributions of both water, material and molecular properties in a wide range of concentrations can be obtained. Examples of MRI application will be given in the areas of soil and mineral research where understanding water transport and erosion processes is one of the key challenges. Efforts in developing and adapting MRI approaches to study these kinds of systems will be outlined as well. Extensive studies of clay/water interaction have been carried out in order to provide a quantitative measure of clay distribution in extended samples during different physical processes such as swelling, dissolution, and sedimentation on the time scale from minutes to years [1-3]. To characterize the state of colloids that form after/during clay swelling the water self-diffusion coefficient was measured on a spatially resolved manner. Both natural clays and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. These results have a significant impact for engineering barriers for storage of spent nuclear fuel where clay erosion by low salinity water must be addressed. Presented methods were developed under the motivation of using bentonite clays as a buffer medium to build in-ground barriers for the encapsulation of radioactive waste. Nevertheless, the same approaches can be found suitable in other applications in soil and environmental science to study other types of materials as they swell, dissolve, erode, or sediment. Acknowledgements: This work has been supported by the Swedish Nuclear Fuel and Waste Management Co (SKB) and the Swedish Research Council VR. [1] N. Nestle, T. Baumann, R. Niessner, Magnetic resonance imaging in environmental science. Environ. Sci. Techn. 36 154A (2002). [2] S. V. Dvinskikh, K. Szutkowski, I. Furó. MRI profiles over a very wide concentration ranges: application to swelling of a bentonite clay. J. Magn. Reson. 198 146 (2009). [3] S. V. Dvinskikh, I. Furó. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems. Technical Report, TR-09-27, SKB (2009), www.skb.se.

  14. Blast Induced Liquefaction Potential and Transient Porewater Pressure Response of Saturated Sands.

    DTIC Science & Technology

    1985-10-15

    14 2. CartquresIbducityGroundNotion.................... ... 16 .omaio fLefaction Mechsmse................ 17 . Pl...soil-water system by a factor of 16 , and reduce the wave propagation velocity by a factor of four. While liquefaction of materials containing air bubbles...restore the 16 effective stress. Low permeability soils, such as fine silts and low sensitivity clays, are not usually prone to liquefaction. Coarse silts

  15. Rates of biotite weathering, and clay mineral transformation and neoformation, determined from watershed geochemical mass-balance methods for the Coweeta Hydrologic Laboratory, Southern Blue Ridge Mountains, North Carolina, USA

    Treesearch

    Jason R. Price; Michael A. Velbel

    2013-01-01

    Biotite is a common constituent of silicate bedrock. Its weathering releases plant nutrients and consumes atmospheric CO2. Because of its stoichiometric relationship with its transformational weathering product and sensitivity to botanical activity, calculating biotite weathering rates using watershed mass-balance methods has proven challenging....

  16. A simple way for targeted delivery of an antibiotic: In vitro evaluation of a nanoclay-based composite

    PubMed Central

    Pérez, Irela; de Ménorval, Louis Charles; Altshuler, Ernesto; Fossum, Jon Otto

    2017-01-01

    The sodium-modified form of fluorohectorite nanoclay (NaFh) is introduced as a potential drug carrier, demonstrating its ability for the controlled release of the broad-spectrum antibiotic Ciprofloxacin through in vitro tests. The new clay-drug composite is designed to target the local infections in the large intestine, where it delivers most of the incorporated drug thanks to its pH-sensitive behavior. The composite has been conceived to avoid the use of coating technology and to decrease the side-effects commonly associated to the burst-release of the ciprofloxacin at the stomach level. NaFh was obtained from lithium-fluorohectorite by ion exchange, and its lack of toxicity was demonstrated by in vivo studies. Ciprofloxacin hydrochloride (Cipro) was encapsulated into the clay at different values of the pH, drug initial concentration, temperature and time. Systematic studies by X-ray diffraction (XRD), infrared and visible spectrophotometry (FT-IR and UV-vis), and thermal analysis (TGA) indicated that the NaFh host exhibits a high encapsulation efficiency for Cipro, which reaches a 90% of the initial Cipro in solution at 65 oC, with initial concentration of drug in solution of 1.36 x 10−2 mol L-1 at acid pH. XRD revealed that a true intercalation of Cipro takes place between clay layers. TG showed an increased thermal stability of the drug when intercalated into the clay, as compared to the “free” Cipro. IR suggested a strong clay-Cipro interaction via ketone group, as well as the establishment of hydrogen bonds between the two materials. In vitro drug release tests revealed that NaFh is a potentially efficient carrier to deliver Cipro in the large intestine, where the release process is mediated by more than just one mechanism. PMID:29149176

  17. The Global ASTER Geoscience and Mineralogical Maps

    NASA Astrophysics Data System (ADS)

    Abrams, M.

    2017-12-01

    In 2012, Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) released 17 Geoscience mineral maps for the continent of Australia We are producing the CSIRO Geoscience data products for the entire land surface of the Earth. These maps are created from Advanced Spacecraft Thermal Emission and Reflection Radiometer (ASTER) data, acquired between 2000 and 2008. ASTER, onboard the United States' Terra satellite, is part of NASA's Earth Observing System. This multispectral satellite system has 14 spectral bands spanning: the visible and near-infrared (VNIR) @ 15 m pixel resolution; shortwave-infrared (SWIR) @ 30 m pixel resolution; and thermal infrared (TIR) @ 90 m pixel resolution. In a polar-orbit, ASTER acquires a 60 km swath of data.The CSIRO maps are the first continental-scale mineral maps generated from an imaging satellite designed to measure clays, quartz and other minerals. Besides their obvious use in resource exploration, the data have applicability to climatological studies. Over Australia, these satellite mineral maps improved our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map showed how kaolinite has developed over tectonically stable continental crust in response to deep weathering. The same clay composition map, in combination with one sensitive to water content, enabled the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust. This product was also used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The two-year project is undertaken by JPL with collaboration from CSIRO. JPL has in-house the entire ASTER global archive of Level 1B image data—more than 1,500,000 scenes. This cloud-screened and vegetation-masked data set will be the basis for creation of the suite of global Geoscience products using all of ASTER's 14 VNIR-SWIR-TIR spectral bands resampled to 100 m pixel resolution. We plan a staged release of the geoscience products through NASA's LPDAAC.

  18. Polymer based nanocomposites with nanofibers and exfoliated clay

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Reneker, Darrell H.

    2005-01-01

    Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.

  19. Clay for Little Fingers.

    ERIC Educational Resources Information Center

    Koster, Joan Bouza

    1999-01-01

    Discusses the renewed interest in clay as a modeling compound in early childhood programs; describes the nature of clay and presents a working vocabulary. Suggests methods of working with clay, including introducing clay to children, discovering its uses, clean up, firing clay, and finishing baked clay. Includes activity suggestions and…

  20. 75 FR 15655 - Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... and/or copolymer products. Brick and Structural Clay Products...... 327121 Brick and structural clay tile manufacturing facilities. Brick and Structural Clay Products; Clay 327122 Ceramic wall and floor... Structural Clay Products...... 327123 Other structural clay products manufacturing facilities. Clay Ceramics...

  1. The effect of shearing strain-rate on the ultimate shearing resistance of clay

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1975-01-01

    An approach for investigating the shearing resistance of cohesive soils subjected to a high rate of shearing strain is described. A fast step-loading torque apparatus was used to induce a state of pure shear in a hollow cylindrical soil specimen. The relationship between shearing resistance and rate of shear deformation was established for various soil densities expressed in terms of initial void ratio or water content. For rate of shearing deformation studies, the shearing resistance increases initially with shearing velocity, but subsequently reaches a terminal value as the shearing velocity increases. The terminal shearing resistance is also found to increase as the density of the soil increases. The results of this investigation are useful in the rheological study of clay. It is particularly important for mobility problems of soil runways, since the soil resistance is found to be sensitive to the rate of shearing.

  2. Suitability of the methylene blue test for determination of cation exchange capacity of clay minerals related to ammonium acetate method

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil; Dojčinović, Biljana; Erić, Suzana

    2015-04-01

    Cation exchange capacity (CEC) represents one of the most important parameters of clay minerals which reflects their ability to exchange cations with liquid phases in near contact. Measurement of CEC is used for characterizing sample plasticity, adsorbing and swelling properties which later define their usage in industrial purposes. Several methods have been developed over the years for determination of layer charge, charge density, charge distribution, etc. and have been published in numerous papers (Czimerova et al., 2006; Yukselen and Kaya, 2008). The main goal of present study is comparison of suitability of more recent method - methylene blue test in regard to older method - ammonium acetate for determination of CEC. For this study, we selected one montmorillonite clay (Bogovina, Serbia) and two mainly kaolinite clays (Miličinica, Serbia). Chemicals used for CEC determinations were solution of methylene blue (MB)(14*10-6M/ml) and ammonium acetate (AA) solution (1M). The obtained results are showing generally lower values in case of MB method. The main difference is due to molecular aggregation of MB on the clay surface. AA method is highly sensitive to the presence of CaO. Release of Ca ion from the sample into the solution can limit the saturation of exchange sites by the ammonium ion. This is clearly visible in case of montmorillonite clay. Fe2+ and Mg ions are difficult to move by the ammonium ion because of their ion radius, but in case of MB molecule there is no such restriction in removing them from the exchange sites. MB solution, even in a low concentration (2*10-6M/ml), is showing preferable results in moving the ions from their positions which is already visible after adding a small quantity of solution (25cm3). Both MB-titration and MB-spot test yield similar results and are much simpler methods than AA and they also give other information such as specific surface area (external and internal) whereas AA method only provides information about cations in exchangeable positions. Both methods, methylene blue test and ammonium acetate method, have advantages and disadvantages and differ in their requirements for the sample preparations but in general method selection is depending on the specific application of the given sample. References: - Yukselen, Y. and Kaya, A., Engineering Geology 102 (2008) 38-45 - Czimerova, A., Bujdak, J. and Dohrmann, R., Applied Clay Science 34 (2006) 2-13

  3. Remanence anisotropy effect on the palaeointensity results obtained from various archaeological materials, excluding pottery

    NASA Astrophysics Data System (ADS)

    Kovacheva, M.; Chauvin, A.; Jordanova, N.; Lanos, P.; Karloukovski, V.

    2009-06-01

    The effect of magnetic anisotropy on the palaeointensity results has been evaluated in different materials, including samples from archaeological structures of various ages, such as baked clay from prehistoric domestic ovens or pottery kilns, burnt soil from ancient fires, and bricks and bricks or tiles used in the kiln's construction. The remanence anisotropy was estimated by the thermoremanent (TRM) anisotropy tensor and isothermal remanence (IRM) tensor methods. The small anisotropy effect (less than 5%) observed in the palaeointensity results of baked clay from the relatively thin prehistoric oven's floors estimated previously through IRM anisotropy was confirmed by TRM anisotropy of this material. The new results demonstrate the possibility of using IRM anisotropy evaluation to correct baked clay palaeointensity data instead of the more difficult to determine TRM anisotropy ellipsoid. This is not always the case for the palaeointensity results from bricks and tiles. The anisotropy correction to palaeointensity results seems negligible for materials other than pottery. It would therefore appear that the palaeointensity determination is more sensitive to the degree of remanence anisotropy P and the angle between the natural remanent magnetization (NRM) vector and the laboratory field direction, than to the angle between the NRM and the maximum axis of the remanence anisotropy ellipsoid (Kmax).

  4. A novel polythiophene - ionic liquid modified clay composite solid phase microextraction fiber: Preparation, characterization and application to pesticide analysis.

    PubMed

    Pelit, Füsun Okçu; Pelit, Levent; Dizdaş, Tuğberk Nail; Aftafa, Can; Ertaş, Hasan; Yalçınkaya, E E; Türkmen, Hayati; Ertaş, F N

    2015-02-15

    This report comprises the novel usage of polythiophene - ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett-Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box-Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002-0.667ng mL(-1). Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; however, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and itsmore » natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. We demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.« less

  6. Synthesis and characterization of redox-active ferric nontronite

    DOE PAGES

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.; ...

    2017-07-12

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; but, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and itsmore » natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. Here, we demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; but, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and itsmore » natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. Here, we demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.« less

  8. Studies on thermal reactions and sintering behaviour of red clays by irreversible dilatometry

    NASA Astrophysics Data System (ADS)

    Anil, Asha; Misra, S. N.; Misra, N. M.

    2018-05-01

    Thermal behavior of clays strongly influences that of ceramic bodies made thereof and hence, its study is must for assessing its utility in ceramic products as well as to set the body composition. Irreversible dilatometry is an effective thermal analysis tool for evaluating thermal reactions as well as sintering behavior of clays or clay based ceramic bodies. In this study, irreversible dilatometry of four red clay samples (S, M, R and G) of Gujarat region, which vary in their chemical and mineralogical compositions was carried out using a Dilatometer and compared. Chemical analysis and XRD of red clays were carried out. XRD showed that major clay minerals in S, M and R clays are kaolinite. However, clay marked R and G showed presence of both kaolinite and illite and /muscovite. Presence of non-clay minerals such as hematite, quartz, anatase were also observed in all clays. XRD results were in agreement with chemical analyses results. Rational analyses showed variation in amount of clay and non-clay minerals in red clay samples. Evaluation of dilatometric curves showed that clay marked as S, M and R exhibit patterns typical for kaolinitic clays. Variation in linear expansion (up to 550°C) and shrinkage (above 550°C) between these three clays was found to be related to difference in amount of quartz and kaolinite respectively. However, dilatometric curve of G exhibit a pattern similar to that for an illitic clay. This study confirmed that sintering of investigated kaolinitic and illitic and / muscovitic red clays initiates at above 1060°C and 860°C respectively and this behaviour strongly depends upon type and amount of minerals and their chemical compositions.

  9. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  10. The challenge of modelling nitrogen management at the field scale: simulation and sensitivity analysis of N2O fluxes across nine experimental sites using DailyDayCent

    NASA Astrophysics Data System (ADS)

    Fitton, N.; Datta, A.; Hastings, A.; Kuhnert, M.; Topp, C. F. E.; Cloy, J. M.; Rees, R. M.; Cardenas, L. M.; Williams, J. R.; Smith, K.; Chadwick, D.; Smith, P.

    2014-09-01

    The United Kingdom currently reports nitrous oxide emissions from agriculture using the IPCC default Tier 1 methodology. However Tier 1 estimates have a large degree of uncertainty as they do not account for spatial variations in emissions. Therefore biogeochemical models such as DailyDayCent (DDC) are increasingly being used to provide a spatially disaggregated assessment of annual emissions. Prior to use, an assessment of the ability of the model to predict annual emissions should be undertaken, coupled with an analysis of how model inputs influence model outputs, and whether the modelled estimates are more robust that those derived from the Tier 1 methodology. The aims of the study were (a) to evaluate if the DailyDayCent model can accurately estimate annual N2O emissions across nine different experimental sites, (b) to examine its sensitivity to different soil and climate inputs across a number of experimental sites and (c) to examine the influence of uncertainty in the measured inputs on modelled N2O emissions. DailyDayCent performed well across the range of cropland and grassland sites, particularly for fertilized fields indicating that it is robust for UK conditions. The sensitivity of the model varied across the sites and also between fertilizer/manure treatments. Overall our results showed that there was a stronger correlation between the sensitivity of N2O emissions to changes in soil pH and clay content than the remaining input parameters used in this study. The lower the initial site values for soil pH and clay content, the more sensitive DDC was to changes from their initial value. When we compared modelled estimates with Tier 1 estimates for each site, we found that DailyDayCent provided a more accurate representation of the rate of annual emissions.

  11. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    NASA Astrophysics Data System (ADS)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  12. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  13. 77 FR 8004 - Fall 2011 Regulatory Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    .... Title Identifier No. 438 SAN No. 5367 NESHAP: Brick 2060-AP69 and Structural Clay Products and Clay...-Term Actions 438. NESHAP: Brick and Structural Clay Products and Clay Products Legal Authority: Not Yet... metals) emitted from brick and clay ceramics kilns and glazing operations at clay ceramics production...

  14. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    PubMed

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  15. Mineral Acquisition from Clay by Budongo Forest Chimpanzees

    PubMed Central

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms. PMID:26218593

  16. Mineralogy and instrumental neutron activation analysis of seven National Bureau of Standards and three Instituto de Pesquisas Tecnologicas clay reference samples

    USGS Publications Warehouse

    Hosterman, John W.; Flanagan, F.J.; Bragg, Anne; Doughten, M.W.; Filby, R.H.; Grimm, Catherine; Mee, J.S.; Potts, P.J.; Rogers, N.W.

    1987-01-01

    The concentrations of 3 oxides and 29 elements in 7 National Bureau of Standards (NBS) and 3 Instituto de Pesquisas Techno16gicas (IPT) reference clay samples were etermined by instrumental neutron activation analysis. The analytical work was designed to test the homogeneity of constituents in three new NBS reference clays, NBS-97b, NBS-98b, and NBS-679. The analyses of variance of 276 sets of data for these three standards show that the constituents are distributed homogeneously among bottles of samples for 94 percent of the sets of data. Three of the reference samples (NBS-97, NBS-97a, and NBS-97b) are flint clays; four of the samples (NBS-98, NBS-98a, NBS-98b, and IPT-32) are plastic clays, and three of the samples (NBS-679, IPT-28, and IPT-42) are miscellaneous clays (both sedimentary and residual). Seven clays are predominantly kaolinite; the other three clays contain illite and kaolinite in the approximate ratio 3:2. Seven clays contain quartz as the major nonclay mineral. The mineralogy of the flint and plastic clays from Missouri (NBS-97a and NBS-98a) differs markedly from that of the flint and plastic clays from Pennsylvania (NBS-97, NBS-97b, NBS-98, and NBS-98b). The flint clay NBS-97 has higher average chromium, hafnium, lithium, and zirconium contents than its replacement, reference sample NBS-97b. The differences between the plastic clay NBS-98 and its replacement, NBS-98b, are not as pronounced. The trace element contents of the flint and plastic clays from Missouri, NBS-97a and NBS-98a, differ significantly from those of the clays from Pennsylvania, especially the average rare earth element (REE) contents. The trace element contents of clay sample IPT-32 differ from those of the other plastic clays. IPT-28 and IPT-42 have some average trace element contents that differ not only between these two samples but also from all the other clays. IPT-28 has the highest summation of the average REE contents of the 10 samples. The uranium content of NBS-98a, 46 parts per million, is very much higher than that of the other clays. Plots of average REE contents of the flint and plastic clays, normalized to chondritic abundances, show that the clays from Missouri differ from the same types of clay from Pennsylvania. The plot of REE contents for the miscellaneous clays shows that the normalized means for the elements lanthanum through samarium for IPT-28 are much greater than those for the other miscellaneous clays. The means for the elements europium through lutetium are similar for all three miscellaneous clays.

  17. Thermo Gravimetric and Differential Thermal Analysis of Clay of Western Rajasthan (india)

    NASA Astrophysics Data System (ADS)

    Shekhawat, M. S.

    The paper presents the study of thermo gravimetric and differential thermal analysis of blended clay. Western part of Rajasthan (India) is rich resource of Ball clays and it is mainly used by porcelain, sanitary ware, and tile industry. The quality and grade of clay available in the region vary from one deposit to other. To upgrade the fired colour and strength properties, different variety of clays may be blended together. The paper compares the results of thermal analysis one of blended clay B2 with reference clay of Ukraine which is imported by industries owners. The result revealed that the blended clay is having mineral kaolinite while the Ukrainian clay is Halloysite.

  18. Investigation of nanoscopic free volume and interfacial interaction in an epoxy resin/modified clay nanocomposite using positron annihilation spectroscopy.

    PubMed

    Patil, Pushkar N; Sudarshan, Kathi; Sharma, Sandeep K; Maheshwari, Priya; Rath, Sangram K; Patri, Manoranjan; Pujari, Pradeep K

    2012-12-07

    Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N-dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free-volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent-casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho-positronium lifetime (τ(3)), a measure of the free-volume size, as well as the fractional free volume (f(v)) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I(2)), an index of the epoxy-clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age-momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy-clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous meticillin-resistant Staphylococcus aureus infections in mice

    PubMed Central

    Otto, Caitlin C.; Kilbourne, Jacquelyn

    2016-01-01

    Discoveries associated with antibacterial activity of hydrated clays necessitate assessments of in vivo efficacy, practical use and safety. Surface properties of clays can lead to variations in the composition and abundance of bound compounds or ions, thus affecting antibacterial activity. Since exchangeable metal ions released from the clay surface are responsible for in vitro antibacterial activity, we evaluated the in vivo antibacterial efficacy of four natural clays (one illite clay, two montmorillonite clays and one kaolinite clay) and three ion-exchanged, antibacterial clays against superficial, cutaneous meticillin-resistant Staphylococcus aureus (MRSA) infections in mice. Superficial, cutaneous wounds on the back of SKH1-Elite mice were generated and subsequently infected with MRSA. Following twice daily applications of a hydrated clay poultice to infected wounds for 7 days, we observed significant differences in the in vivo antibacterial efficacy between different types of clays. The natural and ion-exchanged illite clays performed best, as measured by bacterial load, inflammatory response and gross wound morphology with significant decreases in bacterial viability and dermatitis. Topical application of kaolinite clay was the least effective, resulting in the lowest decrease in bacterial load and exhibiting severe dermatitis. These data suggest that specific types of clays may offer a complementary and integrative strategy for topically treating MRSA and other cutaneous infections. However, since natural clays exhibit in vitro antibacterial variability and vary vastly in surface chemistries, adsorptive/absorptive characteristics and structural composition, the properties and characteristics of illite clays could aid in the development of standardized and customized aluminosilicates for topical infections. PMID:26508716

  20. Development of a new medium frequency EM device: Mapping soil water content variations using electrical conductivity and dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Kessouri, P.; Buvat, S.; Tabbagh, A.

    2012-12-01

    Both electrical conductivity and dielectric permittivity of soil are influenced by its water content. Dielectric permittivity is usually measured in the high frequency range, using GPR or TDR, where the sensitivity to water content is high. However, its evaluation is limited by a low investigation depth, especially for clay rich soils. Electrical conductivity is closely related not only to soil water content, but also to clay content and soil structure. A simultaneous estimation of these electrical parameters can allow the mapping of soil water content variations for an investigation depth close to 1m. In order to estimate simultaneously both soil electrical conductivity and dielectric permittivity, an electromagnetic device working in the medium frequency range (between 100 kHz and 10 MHz) has been designed. We adopted Slingram geometry for the EM prototype: its PERP configuration (vertical transmission loop Tx and horizontal measuring loop Rx) was defined using 1D ground models. As the required investigation depth is around 1m, the coil spacing was fixed to 1.2m. This prototype works in a frequency range between 1 and 5 MHz. After calibration, we tested the response of prototype to objects with known properties. The first in situ measurements were led on experimental sites with different types of soils and different water content variations (artificially created or natural): sandy alluvium on a plot of INRA (French National Institute for Agricultural Research) in Orléans (Centre, France), a clay-loam soil on an experimental site in Estrée-Mons (Picardie, France) and fractured limestone at the vicinity of Grand (Vosges, France). In the case of the sandy alluvium, the values of dielectric permittivity measured are close to those of HF permittivity and allow the use of existing theoretical models to determine the soil water content. For soils containing higher amount of clay, the coupled information brought by the electrical conductivity and the dielectric permittivity is used. Variations of water content detected by the EM prototype are confirmed by additional DC electrical profiling and direct mass water content measurements along depth. For the clay-loam soil, containing more than 20% of clay, the relative dielectric permittivity values, ranging from 63 to 138, are much higher than those expected in the high frequency range (above 20 MHz, the highest measured permittivity is equal to 81 for water). In the medium frequency range, those values are very likely due to interfacial polarization. This effect, also known as Maxwell-Wagner polarization, should increase with the soil clay content. The first measuring trial is coherent with the gravimetric water content as well as DC electrical profiling measurements. For a clay rich soil, the EM prototype is able to detect water content variations for an investigation depth close to 1m with both electrical conductivity and dielectric permittivity in the medium frequency range. Other field experiments are scheduled to confirm these results on other types of soils.

  1. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance.

    PubMed

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-05

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m 2 and ~78 kW/m 2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  2. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    NASA Astrophysics Data System (ADS)

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  3. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    PubMed Central

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-01-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay. PMID:27917901

  4. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  5. Removal of clay by stingless bees: load size and moisture selection.

    PubMed

    Costa-Pereira, Raul

    2014-09-01

    Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis) collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.

  6. Delineation of a quick clay zone at Smørgrav, Norway, with electromagnetic methods under geotechnical constraints

    NASA Astrophysics Data System (ADS)

    Kalscheuer, Thomas; Bastani, Mehrdad; Donohue, Shane; Persson, Lena; Aspmo Pfaffhuber, Andreas; Reiser, Fabienne; Ren, Zhengyong

    2013-05-01

    In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures. For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 Ω m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.

  7. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  8. Clays in prebiological chemistry

    NASA Technical Reports Server (NTRS)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  9. The Alberhill and other clay deposits of Temescal Canyon, Riverside County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    Clay is mined in open pits by several companies in the Alberhill district, and the refractory clays of relatively high alumina sediment are used largely for fire brick. The Alberhill Coal and Clay Company is the largest operator and has produced a little over 2,000,000 tons of clay, of which nearly half was the refractory type. The clay occurs at the contact of the lower Tertiary and the Mesozoic basement complex. The weathered surface of basement rocks includes much clay of high iron and low alumina content, and the better clay occurs in the basal Tertiary sediments. The clay deposits vary rather abruptly in thickness and quality, and only local lenses contain workable deposits. Structural deformation makes dips of 10 to 20 degrees common and the clay strata therefore pitch under excessive overburden in short distances. Extensive deposits of thick alluvial fan deposits cover the clay-bearing strata over most of the area, and add to the overburden problems. The apparent lack of clay deposits of good quality that would total several million tons of ore, and the geological conditions that would make exploration and mining difficult and expensive make this district unpromising.

  10. [Mechanisms of removing red tide organisms by organo-clays].

    PubMed

    Cao, Xi-Hua; Song, Xiu-Xian; Yu, Zhi-Ming; Wang, Kui

    2006-08-01

    We tested the influence of the preparation conditions of the quaternary ammonium compounds (QACs) modified clays on their capacities to remove red tide organisms, then discussed the mechanisms of the organo-clays removing red tide organisms. Hexadecyltrimethylammonium (HDTMA) improved the capacity of clays to flocculate red tide algae, and the HDTMA in metastable state enhanced the toxicity of the clay complexes to algae. The capacities of the organo-clays correlated with the toxicity and the adsorbed amount of the QACs used in clays modification, but as the incubation time was prolonged the stability of the organo-clays was improved and the algal removal efficiencies of the clay complexes decreased. When the adsorbed HDTMA was arranged in different clays in which the spatial resistance was different, there was more HDTMA in metastable state in the three-layer montmorillonite. Because of the homo-ion effect the bivalent or trivalent metal ions induced more HDTMA in metastable state and the corresponding organo-clays had high capacities to remove red tide organisms. When the reaction temperature was 60 degrees C the adsorbed HDTMA was easily arranged on cation exchange sites, if the temperature rose or fell the metastable HDTMA would increase so that the capacity of the clays was improved.

  11. Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly.

    PubMed

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong

    2016-11-08

    Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.

  12. Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.

    PubMed

    Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin

    2003-10-15

    Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.

  13. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    PubMed

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  14. Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation

    PubMed Central

    Bristow, Thomas F.; Kennedy, Martin J.; Derkowski, Arkadiusz; Droser, Mary L.; Jiang, Ganqing; Creaser, Robert A.

    2009-01-01

    Assemblages of clay minerals are routinely used as proxies for paleoclimatic change and paleoenvironmental conditions in Phanerozoic rocks. However, this tool is rarely applied in older sedimentary units. In this paper, the clay mineralogy of the Doushantuo Formation in South China is documented, providing constraints on depositional conditions of the Ediacaran Yangtze platform that host the earliest animal fossils in the geological record. In multiple sections from the Yangtze Gorges area, trioctahedral smectite (saponite) and its diagenetic products (mixed-layer chlorite/smectite, corrensite, and chlorite) are the dominant clays through the lower 80 m of the formation and constitute up to 30 wt% of the bulk rock. Saponite is interpreted as an in situ early diagenetic phase that formed in alkaline conditions (pH ≥ 9). The absence of saponite in stratigraphically equivalent basin sections, 200–400 km to the south, indicates that alkaline conditions were localized in a nonmarine basin near the Yangtze Gorges region. This interpretation is consistent with crustal abundances of redox-sensitive trace elements in saponitic mudstones deposited under anoxic conditions, as well as a 10‰ difference in the carbon isotope record between Yangtze Gorges and basin sections. Our findings suggest that nonmarine environments may have been hospitable for the fauna preserved in the Yangtze Gorges, which includes the oldest examples of animal embryo fossils and acanthomorphic acritarchs. PMID:19666508

  15. Simulating Donnan equilibria based on the Nernst-Planck equation

    NASA Astrophysics Data System (ADS)

    Gimmi, Thomas; Alt-Epping, Peter

    2018-07-01

    Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.

  16. Incorporation of gypsum waste in ceramic block production: Proposal for a minimal battery of tests to evaluate technical and environmental viability of this recycling process.

    PubMed

    Godinho-Castro, Alcione P; Testolin, Renan C; Janke, Leandro; Corrêa, Albertina X R; Radetski, Claudemir M

    2012-01-01

    Civil engineering-related construction and demolition debris is an important source of waste disposed of in municipal solid waste landfills. After clay materials, gypsum waste is the second largest contributor to the residential construction waste stream. As demand for sustainable building practices grows, interest in recovering gypsum waste from construction and demolition debris is increasing, but there is a lack of standardized tests to evaluate the technical and environmental viability of this solid waste recycling process. By recycling gypsum waste, natural deposits of gypsum might be conserved and high amounts of the waste by-product could be reused in the civil construction industry. In this context, this paper investigates a physical property (i.e., resistance to axial compression), the chemical composition and the ecotoxicological potential of ceramic blocks constructed with different proportions of clay, cement and gypsum waste, and assesses the feasibility of using a minimal battery of tests to evaluate the viability of this recycling process. Consideration of the results for the resistance to axial compression tests together with production costs revealed that the best formulation was 35% of plastic clay, 35% of non-plastic clay, 10% of Portland cement and 20% of gypsum waste, which showed a mean resistance of 4.64MPa. Energy dispersive X-ray spectrometry showed calcium and sulfur to be the main elements, while quartz, gypsum, ettringite and nacrite were the main crystalline compounds found in this formulation. Ecotoxicity tests showed that leachate from this formulation is weakly toxic toward daphnids and bacteria (EC(20%)=69.0 and 75.0, respectively), while for algae and fish the leachate samples were not toxic at the EC(50%) level. Overall, these results show that the addition of 20% of gypsum waste to the ceramic blocks could provide a viable substitute for clay in the ceramics industry and the tests applied in this study proved to be a useful tool for the technical and environmental evaluation of this recycling process, bacterial and daphnid tests being more sensitive than algae and fish tests. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: Montmorillonite and illite

    NASA Astrophysics Data System (ADS)

    Hatch, Courtney D.; Greenaway, Ann L.; Christie, Matthew J.; Baltrusaitis, Jonas

    2014-04-01

    Fresh mineral aerosol has recently been found to be effective cloud condensation nuclei (CCN) and contribute to the number of cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on Na-montmorillonite and illite clay to determine empirical adsorption parameters that can be used in a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) that accounts for the effect of water adsorption on CCN activation. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98 ± 22 and 1.79 ± 0.11 for montmorillonite and 75 ± 17 and 1.77 ± 0.11 for illite, respectively. The AFHH and BFHH values obtained from water adsorption measurements differ from values reported previously determined by applying FHH-AT to CCN activation measurements. Differences in FHH adsorption parameters were attributed to different methods used to obtain them and the hydratable nature of the clays. FHH adsorption parameters determined from water adsorption measurements were then used to calculate the critical super-saturation (sc) for CCN activation using FHH-AT. The relationship between sc and the dry particle diameter (Ddry) gave CCN activation curve exponents (xFHH) of -0.61 and -0.64 for montmorillonite and illite, respectively. The xFHH values were slightly lower than reported previously for mineral aerosol. The lower exponent suggests that the CCN activity of hydratable clays is less sensitive to changes in Ddry and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. Despite the differences in AFHH, BFHH and xFHH, the FHH-AT derived CCN activities of montmorillonite and illite are quite similar to each other and in excellent agreement with experimental CCN measurements resulting from wet-generated clay aerosol. This study illustrates that FHH-AT using adsorption parameters constrained by water adsorption is a simple, valid method for predicting CCN activation of fresh clay minerals and provides parameters that can be used in atmospheric models to study the effect of mineral dust aerosol on cloud formation and climate.

  18. Geological and technological characterization of the Late Jurassic-Early Cretaceous clay deposits (Jebel Ammar, northeastern Tunisia) for ceramic industry

    NASA Astrophysics Data System (ADS)

    Ben M'barek-Jemaï, Moufida; Sdiri, Ali; Ben Salah, Imed; Ben Aissa, Lassaad; Bouaziz, Samir; Duplay, Joelle

    2017-05-01

    Late Jurassic-Lower Cretaceous clays of the Jebel Ammar study site were used as raw materials for potential applications in ceramic industry. Physico-chemical characterization of the collected samples was performed using atomic absorption spectroscopy, X-ray diffraction, thermogravimetry and dilatometry (Bugot's curve). Geotechnical study was also undertaken by the assessment of plasticity and liquidity limits. It was found that high concentrations of silica, alumina with SiO2/Al2O3 ratio characterized the studied clays; its high amounts of CaO and Fe2O3 in the Late Jurassic clays indicated their calcareous nature. In addition, technological tests indicated moderate to low plasticity values for the Late Jurassic and Lower Cretaceous clays, respectively. Clay fraction (<2 μm) reached 50% of the natural clay in some cases. Mineralogical analysis showed that Jurassic clays were dominated by smectite, illite and kaolinite, as clay mineral species; calcite was the main associated mineral. Lower Cretaceous clays were mainly composed of abundant illite accompanied by well-crystallized smectite and kaolinite. Kaolinite gradually increased upwards, reaching 70% of the total clay fraction (i.e. <2 μm). Quartz, calcite and feldspar were the main non-clay minerals. Based on these analyses, the clays meet technological requirements that would allow their use in the ceramic industry and for the manufacturing of ceramic tiles.

  19. 78 FR 44315 - Spring 2013 Regulatory Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Structural Clay Products Manufacturing and Clay Ceramics Manufacturing. 238 Standards of Performance 2060... (NESHAP): Brick and Structural Clay Products Manufacturing and Clay Ceramics Manufacturing Legal Authority... pollutants (HF, HCl, and metals) emitted from brick and clay ceramics kilns, as well as dryers and glazing...

  20. Coupled Heat and Moisture Transport Simulation on the Re-saturation of Engineered Clay Barrier

    NASA Astrophysics Data System (ADS)

    Huang, W. H.; Chuang, Y. F.

    2014-12-01

    Engineered clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation processes of clay barrier, with emphasis on the coupling effects of heat and moisture during the intrusion of groundwater to the repository. A reference bentonite and a locally available clay were adopted in the laboratory program. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures so as to determine the soil water characteristic curves of the two clays at different temperatures. And water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the clay barrier. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. It was found that soil suction decreases as temperature increases, resulting in a reduction in water retention capability. The finite element method was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on the clays. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. Finally, the model was then used to evaluate the effect of clay barrier thickness on the time required for groundwater to penetrate the clay barrier and approach saturation. Due to the variation in clay suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.

  1. [Interaction of clay minerals with microorganisms: a review of experimental data].

    PubMed

    Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I

    2009-01-01

    A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation.

  2. Origin and evolution of phyllosilicate deformation bands in the poorly lithified sandstones of the Rio do Peixe Basin, NE Brazil

    NASA Astrophysics Data System (ADS)

    Nogueira, Francisco; Nicchio, Matheus; Balsamo, Fabrizio; Bezerra, Francisco; Souza, Jorge; Carvalho, Bruno; Storti, Fabrizio

    2017-04-01

    In this work we describe the genetic processes and the microstructural evolution of phylossilicate deformation bands developed in poorly lithified, high porosity sandstones of the Rio do Peixe Basin, Northeast Brazil. The studied deformation bands occur in damage zones of NE-SW and NW-SE transtensional faults that exhibit well developed anastomosed clusters, with a thickness varying from tens of centimeters to 1 meter. The Host rocks are arkosic to lithic arkosic coarse sandstones to fine conglomerate and with less than 1% of clay content in the matrix. Based on (i) field observations, (ii) clay amount in deformation band cores and (iii) clay mineral arrangements in deformation bands cores, we identified two types of phyllosilicate deformation bands: (1) clay smearing deformation bands and (2) phyllosilicate deformation bands formed by clay authigenesis. The former occur only in fault zones that cut across clay-rich layers and are characterized by 45-50% of clay content. Single element chemical analysis indicates that the composition of clay minerals in clay smearing deformation bands is similar to that of clay-rich layers in the host rocks. The dominant deformation mechanism is particulate flow, which produces preferential alignments of grains and clay minerals. Only subordinate cataclasis occurs. Based on microstructural fabrics, three evolutionary stages can be identified for phyllosilicate deformation bands formed by clay authigenesis. The first one is characterized by preferentially cataclasis and weathering of feldspars. Clay concentration is relatively low, reaching 15-20%, with preferential concentration where crushed feldspar abundance is higher. The second stage is characterized by clay migration within deformation bands, to form continuous films with more than 20-25% of clay concentration. In the last stage clay mineral fabric re-organization occurs, forming well a developed S-C foliation. Clay concentration exceeds 35%. Single element chemical analysis indicates that the only external element present in phyllosilicate deformation bands formed by clay authigenesis is iron oxide. This feature suggests formation at very shallow depth, in the vadose zone where fluid flow preferentially occurs by capillarity in deformation band cores. Petrophysical analysis shows that both types of phyllosilicate deformation bands have high sealing potential. Clay smearing deformation bands reduce rock permeability by three orders of magnitude whereas phyllosilicate deformation bands formed by authigenesis causes permeability reduction of about two orders of magnitude with respect to the corresponding host rock.

  3. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites

    PubMed Central

    Zope, Indraneel S.; Yu, Zhong-Zhen

    2017-01-01

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition. PMID:28800095

  4. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    PubMed

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  5. Examination and Manipulation of Clay Aggregates - Initial Inquiry

    DTIC Science & Technology

    2011-06-06

    and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...PSU and the X-gum content from 0% to 10% of the mineral content of the clay (by weight). Montmorillonite was used in all the suspensions prepared

  6. Domestic Aluminum Resources: Dilemmas of Development. Volume II. Appendixes II-VII. Detailed Agency Comments and GAO Response.

    DTIC Science & Technology

    1980-07-17

    31 Clay/hydrochloric acid, gas - induced crystallization 32 Clay/nitric acid evaporative crystallization 32 Clay/hydrochloric acid, evapora- tive...ALUMINA AND ALUMINUM TECHNOLOGIES 53 Evaluation of nonbauxitic alumina production processes 54 Clay/carbo-chlorination 54 Clay/hydrochloric acid, gas ...reports that the miniplant program is centered on a single process-- clay/hydrochloric acid- gas precipitation. The Bureau of Mines has not retreated

  7. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  8. Sediment management and renewability of floodplain clay for structural ceramics

    NASA Astrophysics Data System (ADS)

    van der Meulen, M. J.; Wiersma, A. P.; Middelkoop, H.; van der Perk, M.; Bakker, M.; Maljers, D.; Hobo, N.; Makaske, B.

    2009-04-01

    The Netherlands have vast resources of clay that are exploited for the fabrication of structural ceramic products such as bricks and roof tiles. The extraction of clay creates land surface lowerings of about 1.5 m, of which the majority are located in the embanked floodplains of the rivers Rhine and Meuse. At these surface lowerings, clay is replenished within several decades. This study explores to which extent the clay can be regarded as a renewable resource, with potential for sustainable use. For this purpose, first the current and past clay consumption is calculated. Subsequently, clay deposition in the floodplains is estimated from literature data on clay accumulation using sediment traps, heavy metal and radionuclide distribution in soil profiles, and from morphological modelling studies. These estimates of clay-deposition and consumption are then compared following three approaches that consider various temporal and spatial scales of clay deposition. This allows us to establish the extent to which man determines sedimentary processes in the Dutch floodplains. Consequently, using the sediment response to the land surface lowering resulting from clay extraction, we explore sediment management options for the Dutch Rhine and Meuse. Altogether we argue that clay has been, probably is, and certainly can be managed as a renewable mineral resource.

  9. Feasibility of Plasma Treated Clay in Clay/Polymer Nanocomposites Powders for use Laser Sintering (LS)

    NASA Astrophysics Data System (ADS)

    Almansoori, Alaa; Seabright, Ryan; Majewski, C.; Rodenburg, C.

    2017-05-01

    The addition of small quantities of nano-clay to nylon is known to improve mechanical properties of the resulting nano-composite. However, achieving a uniform dispersion and distribution of the clay within the base polymer can prove difficult. A demonstration of the fabrication and characterization of plasma-treated organoclay/Nylon12 nanocomposite was carried out with the aim of achieving better dispersion of clay platelets on the Nylon12 particle surface. Air-plasma etching was used to enhance the compatibility between clays and polymers to ensure a uniform clay dispersion in composite powders. Downward heat sintering (DHS) in a hot press is used to process neat and composite powders into tensile and XRD specimens. Morphological studies using Low Voltage Scanning Electron Microscopy (LV-SEM) were undertaken to characterize the fracture surfaces and clay dispersion in powders and final composite specimens. Thermogravimetric analysis (TGA) testing performed that the etched clay (EC) is more stable than the nonetched clay (NEC), even at higher temperatures. The influence of the clay ratio and the clay plasma treatment process on the mechanical properties of the nanocomposites was studied by tensile testing. The composite fabricated from (3% EC/N12) powder showed ~19 % improvement in elastic modulus while the composite made from (3% NEC/N12) powder was improved by only 14%). Most notably however is that the variation between tests is strongly reduced when etch clay is used in the composite. We attribute this to a more uniform distribution and better dispersion of the plasma treated clay within polymer powders and ultimately the composite.

  10. Clays causing adhesion with tool surfaces during mechanical tunnel driving

    NASA Astrophysics Data System (ADS)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.

    2009-04-01

    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the frame of the programme GEOTECHNOLOGIEN.

  11. Retention and loss of water extractable carbon in soils: effect of clay properties.

    PubMed

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  12. Quantitative experimental monitoring of molecular diffusion in clay with positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Zakhnini, Abdelhamid; Gründig, Marion; Lippmann-Pipke, Johanna

    2016-08-01

    Clay plays a prominent role as barrier material in the geosphere. The small particle sizes cause extremely small pore sizes and induce low permeability and high sorption capacity. Transport of dissolved species by molecular diffusion, driven only by a concentration gradient, is less sensitive to the pore size. Heterogeneous structures on the centimetre scale could cause heterogeneous effects, like preferential transport zones, which are difficult to assess. Laboratory measurements with diffusion cells yield limited information on heterogeneity, and pore space imaging methods have to consider scale effects. We established positron emission tomography (PET), applying a high-resolution PET scanner as a spatially resolved quantitative method for direct laboratory observation of the molecular diffusion process of a PET tracer on the prominent scale of 1-100 mm. Although PET is rather insensitive to bulk effects, quantification required significant improvements of the image reconstruction procedure with respect to Compton scatter and attenuation. The experiments were conducted with 22Na and 124I over periods of 100 and 25 days, respectively. From the images we derived trustable anisotropic diffusion coefficients and, in addition, we identified indications of preferential transport zones. We thus demonstrated the unique potential of the PET imaging modality for geoscientific process monitoring under conditions where other methods fail, taking advantage of the extremely high detection sensitivity that is typical of radiotracer applications.

  13. Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.

    The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected tomore » mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.« less

  14. Clay-based nanocomposite coating for flexible optoelectronics applying commercial polymers.

    PubMed

    Kunz, Daniel A; Schmid, Jasmin; Feicht, Patrick; Erath, Johann; Fery, Andreas; Breu, Josef

    2013-05-28

    Transparency, flexibility, and especially ultralow oxygen (OTR) and water vapor (WVTR) transmission rates are the key issues to be addressed for packaging of flexible organic photovoltaics and organic light-emitting diodes. Concomitant optimization of all essential features is still a big challenge. Here we present a thin (1.5 μm), highly transparent, and at the same time flexible nanocomposite coating with an exceptionally low OTR and WVTR (1.0 × 10(-2) cm(3) m(-2) day(-1) bar(-1) and <0.05 g m(-2) day(-1) at 50% RH, respectively). A commercially available polyurethane (Desmodur N 3600 and Desmophen 670 BA, Bayer MaterialScience AG) was filled with a delaminated synthetic layered silicate exhibiting huge aspect ratios of about 25,000. Functional films were prepared by simple doctor-blading a suspension of the matrix and the organophilized clay. This preparation procedure is technically benign, is easy to scale up, and may readily be applied for encapsulation of sensitive flexible electronics.

  15. Lithology, reservoir properties, and burial history of portion of Gammon Shale ( Cretaceous), southwestern North Dakota.

    USGS Publications Warehouse

    Gautier, D.L.

    1981-01-01

    In the northern Great Plains, large quantities of biogenic methane are contained at shallow depths in Cretaceous marine mudstones. The Gammon Shale and equivalents of the Milk River Formation in Canada are typical. At Little Missouri field, Gammon reservoirs consist of discontinuous lenses and laminae of siltstone, enclosed by silty clay shale. Large amounts of allogenic clay, including highly expansible mixed-layer illite-smectite cause great water sensitivity and high water-saturation values. Studies show that the Gammon has not undergone thermal conditions sufficient for oil or thermal gas generation. The scarcity of authigenic silicates suggests that diagenesis has been inhibited by the presence of free methane. Shale layers are practically impermeable whereas siltstone microlenses are porous (30-40%) and have permeabilities on the order of 3-30 md. Organic matter in the low-permeability reservoirs served as the source of biogenic methane, and capillary forces acted as the trapping mechanism for gas accumulation. Much of the Gammon interval is potentially economic. -from Author

  16. Preparation and properties of recycled HDPE/clay hybrids

    Treesearch

    Yong Lei; Qinglin Wu; Craig M. Clemons

    2007-01-01

    Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...

  17. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.

  18. Clay deposits of the Tierra Colorado district, southern Orange County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    The clay of this district is being mined for fire brick by the Vitrofrax Corporation. Much of the clay contains 35 percent or more of alumina and between 1 and 2 percent of iron oxide. Production is largely from an underground mine as the best clay deposit known in the district occurs on the side of a steep hill with more than 100 feet of sandstone overlying most of it. The good clay deposits occur at the base of an Eocene sandstone formation, and overlie mottled clays with a high iron content that are residual deposits formed on an old weathered surface. Mapping indicates that the clay deposits are very lenticular, though all occur at the same stratigraphic position, and they grade laterally into sandy clay and quartz sand. Topographic relief and the dip of the strata preclude finding large areas where the clay strata have relatively little overburden.

  19. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    PubMed

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  20. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  1. Pore space analysis of NAPL distribution in sand-clay media

    USGS Publications Warehouse

    Matmon, D.; Hayden, N.J.

    2003-01-01

    This paper introduces a conceptual model of clays and non-aqueous phase liquids (NAPLs) at the pore scale that has been developed from a mathematical unit cell model, and direct micromodel observation and measurement of clay-containing porous media. The mathematical model uses a unit cell concept with uniform spherical grains for simulating the sand in the sand-clay matrix (???10% clay). Micromodels made with glass slides and including different clay-containing porous media were used to investigate the two clays (kaolinite and montmorillonite) and NAPL distribution within the pore space. The results were used to understand the distribution of NAPL advancing into initially saturated sand and sand-clay media, and provided a detailed analysis of the pore-scale geometry, pore size distribution, NAPL entry pressures, and the effect of clay on this geometry. Interesting NAPL saturation profiles were observed as a result of the complexity of the pore space geometry with the different packing angles and the presence of clays. The unit cell approach has applications for enhancing the mechanistic understanding and conceptualization, both visually and mathematically, of pore-scale processes such as NAPL and clay distribution. ?? 2003 Elsevier Science Ltd. All rights reserved.

  2. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.

    PubMed

    Chen, Ning; Fang, Guodong; Zhou, Dongmei; Gao, Juan

    2016-12-01

    Phthalate esters are a group of plasticizers, which are commonly detected in China's soils and surface water. Fenton reactions are naturally occurring and widely applied in the degradation of contaminants. However, limited research was considered the effects of clay minerals on contaminants degradation with OH oxidation. In this study, batch experiments were conducted to investigate the degradation of diethyl phthalate (DEP) in Fenton reactions in the presence of clay minerals, and the effects of clay type, Fe content in clay structure. The results showed the clay adsorption inhibited total degradation of DEP, and Fe content in clay structure played an important role in DEP degradation, including in solution and adsorbed in clay minerals. Clay minerals with less Fe content (<3%) quenched OH radical, while nontronite with Fe content 19.2% improved OH radical generation and accelerated DEP degradation in solution. The degradation of clay-adsorbed DEP was much slower than DEP in solution. Six main products of DEP degradation were identified, including monoethyl phthalate, phthalate acid, hydroxyl diethyl phthalate, etc. This study implied that phthalate ester's degradation would be much slower in natural water than expected in the presence of clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Method of preparation of a CO.sub.2 removal sorbent with high chemical stability during multiple cycles

    DOEpatents

    Siriwardane, Ranjani V.; Rosencwaig, Shira

    2015-07-14

    Method for the production of a clay-alkali-amine CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air. Results are presented illustrating the performance of the clay-alkali-amine CO.sub.2 sorbent compared to a clay-amine sorbent lacking the alkali inclusion.

  4. [Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms].

    PubMed

    Cao, Xi-hua; Song, Xiu-xian; Yu, Zhi-ming

    2004-09-01

    Removal efficiencies of Prorocentrum donghaiense (Prorocentrum dentatum) by Hexadecyltrimethylammonium (HDTMA) bromide and organo-clay modified by HDTMA were identified. Moreover the toxicity of the unbound HDTMA and HDTMA plus clay to aquacultural organisms, Penaeus japonicus, was also tested. The results suggested that (1) The unbound HDTMA had an excellent ability to remove the red tide organisms. However, its strong toxicity to Penaeus japonicus would restrict its practical use in red tide control. (2) The toxicity of HDTMA could be remarkably decreased by addition of clay and the organo-clay complex had a good ability to removal red tide organisms. At the same time the availability of organo-clay to remove the red tide of P. donghaiense and Heterosigma akashiwo in the lab-imitated cultures were studied. The results indicated that the organo-clay complex could remove 100% P. donghaiense at the dosage of 0.03 g/L and effectively control H. akashiwo at 0.09 g/L while the survival rate of Penaeus japonicus larvae, which were cultured in the red tide seawater, is kept 100%. According to the results in laboratory, the mesocosm tests (CEPEX) in East China Sea were conducted in April and May of 2003. The removal efficiencies of original clay, organic clay and inorganic clay were compared during the CEPEX tests. The results revealed that both inorganic clay and organic clay could remove red tide organisms more effectively than the original clay.

  5. Chemical and mineralogical characteristics of French green clays used for healing

    USGS Publications Warehouse

    Williams, Lynda B.; Haydel, Shelley E.; Giese, Rossman F.; Eberl, Dennis D.

    2008-01-01

    The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest.The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or ‘flesh-eating’ infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections.Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer.Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria.

  6. Impact of Oxidative Dissolution on Black Shale Fracturing: Implication for Shale Fracturing Treatment Design

    NASA Astrophysics Data System (ADS)

    You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.

    2017-12-01

    Black shales contain a large amount of environment-sensitive compositions, e.g., clay minerals, carbonate, siderite, pyrite, and organic matter. There have been numerous studies on the black shales compositional and pore structure changes caused by oxic environments. However, most of the studies did not focus on their ability to facilitate shale fracturing. To test the redox-sensitive aspects of shale fracturing and its potentially favorable effects on hydraulic fracturing in shale gas reservoirs, the induced microfractures of Longmaxi black shales exposed to deionized water, hydrochloric acid, and hydrogen peroxide at room-temperature for 240 hours were imaged by scanning electron microscopy (SEM) and CT-scanning in this paper. Mineral composition, acoustic emission, swelling, and zeta potential of the untreated and oxidative treatment shale samples were also recorded to decipher the coupled physical and chemical effects of oxidizing environments on shale fracturing processes. Results show that pervasive microfractures (Fig.1) with apertures ranging from tens of nanometers to tens of microns formed in response to oxidative dissolution by hydrogen peroxide, whereas no new microfracture was observed after the exposure to deionized water and hydrochloric acid. The trajectory of these oxidation-induced microfractures was controlled by the distribution of phyllosilicate framework and flaky or stringy organic matter in shale. The experiments reported in this paper indicate that black shales present the least resistance to crack initiation and subcritical slow propagation in hydrogen peroxide, a process we refer to as oxidation-sensitive fracturing, which are closely related to the expansive stress of clay minerals, dissolution of redox-sensitive compositions, destruction of phyllosilicate framework, and the much lower zeta potential of hydrogen peroxide solution-shale system. It could mean that the injection of fracturing water with strong oxidizing aqueous solution may play an important role in improving hydraulic fracturing of shale formation by reducing the energy requirements for crack growth. However, additional work is needed to the selection of highly-effective, economical, and environmentally friendly oxidants.

  7. Numerous nanopores developed in organo-clay complexes during the shale formations

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Wang, T.; Lu, H.; Liao, J.

    2017-12-01

    Shale gas as new energy resource is either stored in nano pores and microfractures or absorbed on the surface of kerogen and clay aggregate (Chalmers et al., 2012). Nano pores developed in organic matters is very important, because these organic pores have better connectivity than inorganic pores (Loucks et al., 2012) and can form an effective pore system where shale gas flows dominantly (Curtis et al., 2010). In order to figure out how the organic pores is affected by shale compositions, we conduct in-situ FE-SEM and EDS analysis on organic-rich Longmaxi shales. The data indicate that 1) organic matter, mixed with clay minerals, can form an organo-clay complex containing many nanopores; 2)furthermore, larger organic pores are developed in organo-clay complexes with higher clay content than in those with lower clay content(Wang et al., 2017). It seems that the presence of organo-clay complex raises the heterogeneous than pure organic matters. Organo-clay complex may bring in lots of intergranular nanopores between organic matter and clay minerals. Another potential interpretation is that clay minerals may influence kerogen thermal decomposition, generation of hydrocarbons and thus the development of organic pores. The presence of numerous nanopores in organo-clay complexes may promote the connectivity of the pore network and enhance the hydrocarbon production efficiency for shale gas field.

  8. In situ characterization of organo-modified and unmodified montmorillonite aqueous suspensions by UV-visible spectroscopy.

    PubMed

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-10-15

    UV-visible (UV-Vis) spectroscopy (Tyndall spectra) was applied and tested for its ability to measure organo-modified and unmodified montmorillonite (MMT) clays in aqueous suspensions. A full factorial design of experiments was used to study the influence of pH, NaCl and clay concentrations on the average particle size of the clay agglomerates. The methodology was evaluated by observing results that were consistent with previous research about the unmodified clay's behavior in aqueous suspensions. The results from this evaluation corresponded to accepted theories about the unmodified clay's behavior, indicating that the methodology is precise enough to distinguish the effects of the studied factors on these clay suspensions. The effect of clay concentration was related to the amount of ions per clay particle for the unmodified clay, but was not significant for the organo-modified MMT. The average particle size of the organo-modified MMT in suspension was significantly larger than that of the unmodified clay. Size of the organo-modified MMT agglomerates in suspension decreased in the presence of NaCl and at both high and low pH; this behavior was opposite to that of the unmodified clay. These results demonstrate that the UV-Vis methodology is well-suited for characterizing clay particle size in aqueous suspensions. The technique also is simple, rapid, and low-cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry.

    PubMed

    Adazabra, A N; Viruthagiri, G; Shanmugam, N

    2017-04-15

    The peculiar challenge of effective disposing abundant spent shea waste and the excellent compositional variation tolerance of clay material offered an impetus to examine the incorporation of spent shea waste into clay material as an eco-friendly disposal route in making clay bricks. For this purpose, the chemical constituent, mineralogical compositions and thermal behavior of both clay material and spent shea waste were initially characterized from which modelled brick specimens incorporating 5-20 wt% of the waste into the clay material were prepared. The clay material showed high proportions of SiO 2 (52.97 wt%) and Al 2 O 3 (27.10 wt%) indicating their rich kaolinitic content: whereas, the inert nature of spent shea waste was exhibited by their low oxide content. The striking similarities in infrared absorption bands of pristine clay material and clay materials incorporated with 15 wt% of spent shea waste showed that the waste incorporation had no impact on bond formation of the clay bricks. Potential performance benefits of developing bricks from clay material incorporated with spent shea waste included improved fluxing agents, economic sintering and making of sustainable bricks. Consequently, the analytical results authenticate the incorporation of spent shea waste into clay materials for various desired benefits aside being an environmental correct route of its disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  11. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  12. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  13. Clay preference and particle transport behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae): a laboratory study.

    PubMed

    Wang, Cai; Henderson, Gregg

    2014-12-01

    Although preference and utilization of clay have been studied in many higher termites, little attention has been paid to lower termites, especially subterranean termites. The Formosan subterranean termite, Coptotermes formosanus Shiraki, can modify its habitat by using clay to fill tree cavities. Here, the biological significance of clay on C. formosanus was investigated. Choice tests showed that significantly more termites aggregated in chambers where clay blocks were provided, regardless of colony group, observation period, or nutritional condition (fed or starved). No-choice tests showed that clay had no observable effect on survivorship, live or dry biomass, water content, and tunneling activity after 33-35 d. However, clay appeared to significantly decrease filter paper consumption (dry weight loss). Active particle (sand, paper, and clay) transport behavior was observed in both choice and no-choice tests. When present, clay was preferentially spread on the substrate, attached to the smooth surfaces of the containers, and used to line sand tunnels. Mechanisms and potential application of clay attraction are discussed. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  14. Termites utilise clay to build structural supports and so increase foraging resources.

    PubMed

    Oberst, Sebastian; Lai, Joseph C S; Evans, Theodore A

    2016-02-08

    Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites.

  15. Effect of chemical environment and rock composition on fracture mechanics properties of reservoir lithologies in context of CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Major, J. R.; Eichhubl, P.; Callahan, O. A.

    2015-12-01

    The coupled chemical and mechanical response of reservoir and seal rocks to injection of CO2 have major implications on the short and long term security of sequestered carbon. Many current numerical models evaluating behavior of reservoirs and seals during and after CO2 injection in the subsurface consider chemistry and mechanics separately and use only simple mechanical stability criteria while ignoring time-dependent failure parameters. CO2 injection irreversibly alters the subsurface chemical environment which can then affect geomechanical properties on a range of time scales by altering rock mineralogy and cements through dissolution, remobilization, and precipitation. It has also been documented that geomechanical parameters such as fracture toughness (KIC) and subcritical index (SCI) are sensitive to chemical environment. Double torsion fracture mechanics testing of reservoir lithologies under controlled environmental conditions relevant to CO2 sequestration show that chemical environment can measurably affect KIC and SCI. This coupled chemical-mechanical behavior is also influenced by rock composition, grains, amount and types of cement, and fabric. Fracture mechanics testing of the Aztec Sandstone, a largely silica-cemented, subarkose sandstone demonstrate it is less sensitive to chemical environment than Entrada Sandstone, a silty, clay-rich sandstone. The presence of de-ionized water lowers KIC by approximately 20% and SCI 30% in the Aztec Sandstone relative to tests performed in air, whereas the Entrada Sandstone shows reductions on the order of 70% and 90%, respectively. These results indicate that rock composition influences the chemical-mechanical response to deformation, and that the relative chemical reactivity of target reservoirs should be recognized in context of CO2 sequestration. In general, inert grains and cements such as quartz will be less sensitive to the changing subsurface environment than carbonates and clays.

  16. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study

    NASA Astrophysics Data System (ADS)

    Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.

    2017-11-01

    Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

  17. Release of Escherichia coli under raindrop impact: The role of clay

    NASA Astrophysics Data System (ADS)

    Wang, C.; Parlange, J.-Y.; Schneider, R. L.; Rasmussen, E. W.; Wang, X.; Chen, M.; Dahlke, H. E.; Truhlar, A. M.; Walter, M. T.

    2018-01-01

    A recent paper by Wang et al. (2017) showed that the release of Escherichia coli (E. coli) from soil into overland flow under raindrop impact and the release of clay follow identical temporal patterns. This raised the question: what is the role of clay, if any, in E. coli transfer from soil to overland flow, e.g., does clay facilitate E. coli transfer? Using simulated rainfall experiments over soil columns with and without clay in the matrix, we found there was significantly more E. coli released from the non-clay soil because raindrops penetrated more deeply than into the soil with clay.

  18. Unraveling the antibacterial mode of action of a clay from the Colombian Amazon.

    PubMed

    Londono, Sandra Carolina; Williams, Lynda B

    2016-04-01

    Natural antibacterial clays can inhibit growth of human pathogens; therefore, understanding the antibacterial mode of action may lead to new applications for health. The antibacterial modes of action have shown differences based on mineralogical constraints. Here we investigate a natural clay from the Colombian Amazon (AMZ) known to the Uitoto natives as a healing clay. The physical and chemical properties of the AMZ clay were compared to standard reference materials: smectite (SWy-1) and kaolinite (API #5) that represent the major minerals in AMZ. We tested model Gram-negative (Escherichia coli ATCC #25922) and Gram-positive (Bacillus subtilis ATCC #6633) bacteria to assess the clay's antibacterial effectiveness against different bacterial types. The chemical and physical changes in the microbes were examined using bioimaging and mass spectrometry of clay digests and aqueous leachates. Results indicate that a single dose of AMZ clay (250 mg/mL) induced a 4-6 order of magnitude reduction in cell viability, unlike the reference clays that did not impact bacterial survival. AMZ clay possesses a relatively high specific surface area (51.23 m(2)/g) and much higher total surface area (278.82 m(2)/g) than the reference clays. In aqueous suspensions (50 mg clay/mL water), soluble metals are released and the minerals buffer fluid pH between 4.1 and 4.5. We propose that the clay facilitates chemical interactions detrimental to bacteria by absorbing nutrients (e.g., Mg, P) and potentially supplying metals (e.g., Al) toxic to bacteria. This study demonstrates that native traditional knowledge can direct scientific studies.

  19. Effect of red clay on diesel bioremediation and soil bacterial community.

    PubMed

    Jung, Jaejoon; Choi, Sungjong; Hong, Hyerim; Sung, Jung-Suk; Park, Woojun

    2014-08-01

    Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.

  20. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  1. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  2. Removal of waterborne microorganisms by filtration using clay-polymer complexes.

    PubMed

    Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda

    2014-08-30

    Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    PubMed Central

    Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin

    2012-01-01

    The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515

  4. soil organic matter pools and quality are sensitive to global climate change in tropical forests from India

    NASA Astrophysics Data System (ADS)

    Mani, Shanmugam; Merino, Agustín; García-Oliva, Felipe; Riotte, Jean; Sukumar, Raman

    2016-04-01

    Soil organic carbon (SOC) storage and quality are some of the most important factors determining ecological process in tropical forests, which are especially sensitive to global climate change (GCC). In India, the GCC scenarios expect increasing of drought period and wildfire, which may affect the SOC, and therefore the capacity of forest for C sequestration. The aim of the study was to evaluate the amount of soil C and its quality in the mineral soil across precipitation gradient with different factors (vegetation, pH, soil texture and bedrock composition) for generate SOC predictions under GCC. Six soil samples were collected (top 10 cm depth) from 19 1-ha permanent plots in the Mudumalai Wildlife Sanctuary of southern India, which are characterised by four types of forest vegetation (i.e. dry thorn, dry deciduous, moist deciduous and semi-evergreen forest) distributed along to rainfall gradient. The driest sites are dominated by sandy soils, while the soil clay proportion increased in the wet sites. Total organic C (Leco CN analyser), and the SOM quality was assessed by Differential Scanning Calorimetry (DSC) and Solid-state 13CCP-MAS NMR analyses. Soil organic C was positively correlated with precipitation (R2 = 0.502, p<0.01) and with soil clay content (R2 =0.15, p<0.05), and negatively with soil sand content (R2=0.308, p<0.001) and with pH (R2=0.529, p<0.01); while the C/N was only found positive correlation with clay (R2= 0.350, p<0.01). The driest sites (dry thorn forest) has the lowest proportion of thermal combustion of recalcitrant organic matter (Q2,375-475 °C) than the other sites (p<0.05) and this SOC fraction correlated positively with rainfall (R2=0.27, p=0.01). The Q2 model with best fit included rainfall, pH, sand, clay, C and C/N (R2=0.52, p=0.01). Principal component analysis explains 77% of total variance. The sites on the fist component are distributed along the rainfall gradient. These results suggest that the 50% of variance was explained by precipitation and therefore vegetation type. Consequently, the drier sites has a lower C pools with a higher proportion of labile SOC fraction. As a consequence, we expect if the rainfall decreased by GCC could increase SOC mineralization, and therefore reducing the capacity of C sequestration within soil profile.

  5. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  6. Environmental Assessment of Selected Cone Penetrometer Grouts and a Tracer

    DTIC Science & Technology

    1993-08-01

    Bentonite Clay ............ ...................... A2 Attapulgite Clay ................................... A22 Microfine Portland Cement...and the tracer are a. Bentonite clay. b. Attapulgite clay. c. Microfine portland cement. d. Joosten grout (calcium silicate grout). e. Urethane grout. f...Inc., on an attapulgite clay product (trade name: Zeogel). " Microfine portland cement. Information was obtained for two micro- fine portland cements

  7. Clay: The Forgotten Art.

    ERIC Educational Resources Information Center

    Martin, Doris Marie

    1995-01-01

    Discusses the tactile and kinesthetic areas of learning children experience when using clay. Includes practical tips for using and storing clay for preschool use and notes the differences between potters' clay and play dough. (HTH)

  8. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  9. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    PubMed

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  10. Probing Contaminant Transport to and from Clay Surfaces in Organic Solvents and Water Using Solution Calorimetry.

    PubMed

    Pourmohammadbagher, Amin; Shaw, John M

    2015-09-15

    Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.

  11. The use of fortified soil-clay as on-site system for domestic wastewater purification.

    PubMed

    Oladoja, N A; Ademoroti, C M A

    2006-02-01

    The quest for simple, low-cost and high-performance decentralized wastewater treatment system for domestic application in developing nations necessitated this study. Clay samples collected from different deposits in Nigeria were characterized by studying the mineralogical and geochemical composition using X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS), respectively. Three major clay minerals of kaolinite, illite and smectite were identified. The geochemical studies showed the abundance of SiO2, Al2O3 and H2O+ in each of the clay samples. Performance efficiency studies were conducted to determine the best combination ratio of pebbles/soil-clay. Soil-clay fortified by pebbles in combination ratios of 1:3 (i.e. pebbles:soil-clay = 1:3 (w/w) showed the optimum water purification, while the combination 3:1 gave the least. The flow rate studies showed that the wastewater had a longer residence time in non-fortified soil-clay than in fortified soil-clay. Two modes of treatment methods were employed-single and double column treatment methods (SCT and DCT). The two methods gave effluents of good quality characteristics, but those from the DCT were of better quality. The quality of effluents also varies from one clay type to another. The quality of effluents from media containing smectite clay mineral was better than those from other columns. Repeated usage of the fortified clay column showed a decrease of pH, TS and DO, and an increase of COD when monitored over a period of 10 days.

  12. Impact-Induced Clay Mineral Formation and Distribution on Mars

    NASA Technical Reports Server (NTRS)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  13. Effects of biochar on hydraulic conductivity of compacted kaolin clay.

    PubMed

    Wong, James Tsz Fung; Chen, Zhongkui; Wong, Annie Yan Yan; Ng, Charles Wang Wai; Wong, Ming Hung

    2018-03-01

    Compacted clay is widely used as capillary barriers in landfill final cover system. Recently, biochar amended clay (BAC) has been proposed as a sustainable alternative cover material. However, the effects of biochar on saturated hydraulic conductivity (k sat ) of clay with high degree of compaction is not yet understood. The present study aims to investigate the effects of biochar on k sat of compacted kaolin clay. Soil specimens were prepared by amending kaolin clay with biochar derived from peanut-shell at 0, 5 and 20% (w/w). The k sat of soil specimens was measured using a flexible water permeameter. The effects of biochar on the microstructure of the compacted clay was also investigated using MIP. Adding 5% and 20% of biochar increased the k sat of compacted kaolin clay from 1.2 × 10 -9 to 2.1 × 10 -9 and 1.3 × 10 -8 ms -1 , respectively. The increase in k sat of clay was due to the shift in pore size distribution of compacted biochar-amended clay (BAC). MIP results revealed that adding 20% of biochar shifted the dominant pore diameter of clay from 0.01-0.1 μm (meso- and macropores) to 0.1-4 μm (macropores). Results reported in this communication revealed that biochar application increased the k sat of compacted clay, and the increment was positively correlated to the biochar percentage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Toxicity of Aluminum Silicates Used in Hemostatic Dressings Toward Human Umbilical Veins Endothelial Cells, HeLa Cells, and RAW267.4 Mouse Macrophages

    DTIC Science & Technology

    2011-09-01

    ORIGINAL ARTICLE Toxicity of Aluminum Silicates Used in Hemostatic Dressings Toward Human Umbilical Veins Endothelial Cells, HeLa Cells, and RAW267.4...not known. Clay minerals are generally considered nontoxic to humans and have been widely used in cosmetics and as excipient in drugs and foods...Bentonite, which has a long history in pharmaceutical formulations,7 along with kaolin are listed in the US Pharmacopeia.8 The sensitivity of some human

  15. Impact of pore-water freshening on clays and the compressibility of hydrate-bearing reservoirs during production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Junbong; Cao, Shuang; Waite, William

    Gas production efficiency from natural hydrate-bearing sediments depends in part on geotechnical properties of fine-grained materials, which are ubiquitous even in sandy hydrate-bearing sediments. The responses of fine-grained material to pore fluid chemistry changes due to freshening during hydrate dissociation could alter critical sediment characteristics during gas production activities. We investigate the electrical sensitivity of fine grains to pore fluid freshening and the implications of freshening on sediment compression and recompression parameters.

  16. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressuremore » is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6 m or thicker compacted clay is able to prevent gas breakthrough at degree of saturation of 60% or above (in humid regions). Furthermore, to meet the limit of gas emission rate set by the Australian guideline, a 0.6 m-thick clay layer may be sufficient even at low degree of saturation (i.e., 10% like in arid regions)« less

  17. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  18. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  19. Termites utilise clay to build structural supports and so increase foraging resources

    PubMed Central

    Oberst, Sebastian; Lai, Joseph C. S.; Evans, Theodore A.

    2016-01-01

    Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites. PMID:26854187

  20. Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment

    NASA Astrophysics Data System (ADS)

    Curry, Kenneth J.; Bennett, Richard H.; Mayer, Lawrence M.; Curry, Ann; Abril, Maritza; Biesiot, Patricia M.; Hulbert, Matthew H.

    2007-04-01

    We employed direct visualization of organic matter (OM) sequestered by microfabric signatures in organo-clay systems to study mechanisms of OM protection. We studied polysaccharides, an abundant class of OM in marine sediments, associated with the nano- and microfabric of clay sediment using a novel application of transmission electron microscopy, histochemical staining (periodic acid-thiosemicarbazide-silver proteinate), and enzymatic digestion techniques. We used two experimental organo-clay sediment environments. First, laboratory-consolidated sediment with 10% chitin (w/w) added was probed for chitin before and after digestion with chitinase. Second, fecal pellets from the polychaete Heteromastus filiformis were used as a natural environment rich in clay and polysaccharides. Sections of this material were probed with silver proteinate for polysaccharides before and after digestion with a mixture of enzymes (amylase, cellulase, chitinase, dextranase, and pectinase). In both environments, chitin or other polysaccharides were found within pores, bridging clay domains, and attached to clay surfaces in undigested samples. Digested samples showed chitin or polysaccharides more closely associated with clay surfaces and in small pores. Our results imply protective roles for both sorption to clay surfaces and encapsulation within clay microfabric signatures.

  1. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    PubMed

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  2. Mineral resource of the Month: Clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    Clays were one of the first mineral commodities used by people. Clay pottery has been found in archeological sites that are 12,000 years old, and clay figurines have been found in sites that are even older.

  3. Field trip guidebook on environmental impact of clays along the upper Texas coast

    NASA Technical Reports Server (NTRS)

    Garcia, Theron D.; Ming, Douglas W.; Tuck, Lisa Kay

    1991-01-01

    The field trip was prepared to provide an opportunity to see first hand some the environmental hazards associated with clays in the Houston, Texas area. Because of the very high clay content in area soils and underlying Beaumont Formation clay, Houston is a fitting location to host the Clay Mineral Society. Examinations were made of (1) expansive soils, (2) subsidence and surface faulting, and (3) a landfill located southeast of Houston at the Gulf Coast Waste Disposal Authority where clay is part of the liner material.

  4. Evaluation of Nanoclay Exfoliation Strategies for Thermoset Polyimide Nanocomposite Systems

    NASA Technical Reports Server (NTRS)

    Ginter, Michael J.; Jana, Sadhan C.; Miller, Sandi G.

    2007-01-01

    Prior works show exfoliated layered silicate reinforcement improves polymer composite properties. However, achieving full clay exfoliation in high performance thermoset polyimides remains a challenge. This study explores a new method of clay exfoliation, which includes clay intercalation by lower molecular weight PMR monomer under conditions of low and high shear and sonication, clay treatments by aliphatic and aromatic surfactants, and clay dispersion in primary, higher molecular weight PMR resin. Clay spacing, thermal, and mechanical properties were evaluated and compared with the best results available in literature for PMR polyimide systems.

  5. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.

  6. Investigation of Four Different Laponite Clays as Stabilizers in Pickering Emulsion Polymerization.

    PubMed

    Brunier, Barthélémy; Sheibat-Othman, Nida; Chniguir, Mehdi; Chevalier, Yves; Bourgeat-Lami, Elodie

    2016-06-21

    Clay-armored polymer particles were prepared by emulsion polymerization in the presence of Laponite platelets that adsorb at the surface of latex particles and act as stabilizers during the course of the polymerization. While Laponite RDS clay platelets are most often used, the choice of the type of clay still remains an open issue that is addressed in the present article. Four different grades of Laponite were investigated as stabilizers in the emulsion polymerization of styrene. First, the adsorption isotherms of the clays, on preformed polystyrene particles, were determined by ICP-AES analysis of the residual clay in the aqueous phase. Adsorption of clay depended on the type of clay at low concentrations corresponding to adsorption as a monolayer. Adsorption of clay particles as multilayers was observed for all the grades above a certain concentration under the considered ionic strength (mainly due to the initiator ionic species). The stabilization efficiency of these clays was investigated during the polymerization reaction (free of any other stabilizer). The clays did not have the same effect on stabilization, which was related to differences in their compositions and in their adsorption isotherms. The different grades led to different polymer particles sizes and therefore to different polymerization reaction rates. Laponite RDS and S482 gave similar results, ensuring the best stabilization efficiency and the fastest reaction rate; the number of particles increased as the clay concentration increased. Stabilization with Laponite XLS gave the same particles size and number as the latter two clays at low clay concentrations, but it reached an upper limit in the number of nucleated polymer particles at higher concentrations indicating a decrease of stabilization efficiency at high concentrations. Laponite JS did not ensure a sufficient stability of the polymer particles, as the polymerization results were comparable to a stabilizer-free polymerization system.

  7. Study of colloidal properties of natural and Al-pillared smectite and removal of copper ions from an aqueous solution.

    PubMed

    Sartor, Lucas Resmini; de Azevedo, Antonio Carlos; Andrade, Gabriel Ramatis Pugliese

    2015-01-01

    In this study, an Al-pillared smectite was synthesized and changes in its colloidal properties were investigated. The pillaring solution was prepared by mixing 0.4 mol L(-1) NaOH and 0.2 mol L(-1) AlCl3.6H2O solutions. Intercalated clays were heated to obtain the pillared clay, and X-ray diffractometry (XRD), X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy and N2 sorption/desorption isotherms analysis were done to characterize the changes in clay properties. Moreover, adsorption experiments were carried out in order to evaluate the capacity of the pillared clays to remove Cu2+ from an aqueous solution and to characterize the interaction between adsorbent and adsorbate. The results indicate that the natural clay has a basal spacing of 1.26 nm, whereas the pillared clays reached 1.78 nm (500°C) and 1.80 nm (350°C) after calcination. XRF analysis revealed an increase in the Al3+ in the pillared clay as compared to the natural clay. The surface area and pore volume (micro and mesoporous) were higher for the pillared clays. Experimental data from the adsorption experiment were fit to Langmuir and Freundlich and Temkin adsorption models, and the former one was the best fit (highest r2 value) for all the clays and lower standard deviation (Δg%) for the natural clay. On the other hand, the Temkin model exhibited Δg% value lower for the pillared clays. Thermodynamics parameters demonstrate that the Cu2+ adsorption process is spontaneous for all the clays, but with higher values for the pillared materials. In addition, application of the Dubinin-Radushkevich model revealed that the bond between the metal and the clay are weak, characterizing a physisorption.

  8. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace

    NASA Astrophysics Data System (ADS)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.

  9. Ziegler-Natta Catalyst Based on MgCl₂/Clay/ID/TiCl₄ for the Synthesis of Spherical Particles of Polypropylene Nanocomposites.

    PubMed

    Cardoso, Renata da Silva; Oliveira, Jaqueline da Silva; Ramis, Luciana Bortolin; Marques, Maria de Fátima V

    2018-07-01

    In the present work, we have designed MgCl2/clay/internal donor (ID)/TiCl4 based bisupported Ziegler-Natta catalysts containing varying amounts of organoclay (montmorillonite) in order to synthesize spherical particles of polypropylene/clay nanocomposites (PCN). The organoclay was introduced into the catalyst support formulation and PCN was obtained using the in situ polymerization technique. Decreasing the reaction time, it was possible to obtain nanocomposites with high concentrations of clay (masterbatches). Micrographs of SEM confirmed the spherical morphology of the catalysts. In addition, XRD patterns show that the active sites for polymerization were inserted in the clay galleries. The catalytic performance was evaluated in slurry propylene polymerization using triethylaluminium as cocatalyst and silane as external electron donor at 70 °C, 4 bar, and different reaction times. The PCNs obtained containing different clay amounts were characterized by X-ray diffraction, thermal analyses, transmission electronic microscopy, and extractables in heptane. The results revealed that the synthesized PP/clay particles were also spherical showing that the morphological control is possible even using catalysts containing high amounts of clay. The PCN presented high degradation temperature (459 °C). The XRD peak related to the clay interlamellar distance has shifted to lower angles, and TEM images confirmed the formation of exfoliated/intercalated clay on the PP matrix and absence of microparticles of clay.

  10. Adsorption of dyes using different types of clay: a review

    NASA Astrophysics Data System (ADS)

    Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon

    2017-05-01

    Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.

  11. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    PubMed

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.

  12. Three Ways.

    ERIC Educational Resources Information Center

    Lisitano, Larry F.; And Others

    1983-01-01

    Three student projects using clay are discussed. These include a ceramic wall panel with an eagle motif, clay vessels formed by coiling clay, and clay puppets made with light bulbs as armatures. Instructions on materials, forming techniques, and finishing are given. (IS)

  13. Clay mineral formation and transformation in rocks and soils

    USGS Publications Warehouse

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  14. Sorption of Cesium on smectite-rich clays from the Bohemian Massif (Czech Republic) and their mixtures with sand.

    PubMed

    Vejsada, J; Jelínek, E; Randa, Z; Hradil, D; Prikryl, R

    2005-01-01

    Sorption is an important process for the transport of radionuclides through backfill materials in a radioactive waste underground repository. Within this study, sorption of Cs on selected Czech clay materials and their mixtures with sand was investigated by batch tests. The experiments were performed under oxic conditions at 25 degrees C. Synthetic groundwater as a liquid phase and unconditioned clays (as they were provided by their producer) were used to reach the natural conditions as close as possible. Distribution ratios (Rds) of Cs for all selected clays rise with increase of the clay fraction in clay/sand mixtures in agreement with previous works studying sorption behaviour of such mixtures. The rise of Rds is from 10(2) cm3 g(-1) for mixtures with 80% of sand to 10(3) cm3 g(-1) for pure clays. There are significant differences between natural and technologically modified clays.

  15. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  16. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    PubMed

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  18. Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres.

    PubMed

    Frindy, Sana; Primo, Ana; Qaiss, Abou El Kacem; Bouhfid, Rachid; Lahcini, Mohamed; Garcia, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim

    2016-08-01

    Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CS

  19. Prebiotic carbon in clays from Orgueil and Ivuna (CI), and Tagish Lake (C2 ungrouped) meteorites

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.; Buseck, Peter R.

    Transmission electron microscopic (TEM) and electron energy-loss spectroscopic (EELS) study of the Ivuna and Orgueil (CI), and Tagish Lake (C2 ungrouped) carbonaceous chondrite meteorites shows two types of C-clay assemblages. The first is coarser-grained (to 1 μm) clay flakes that show an intense O K edge from the silicate together with a prominent C K edge, but without discrete C particles. Nitrogen is common in some clay flakes. Individual Orgueil and Tagish Lake meteorite clay flakes contain up to 6 and 8 at% C, respectively. The C K-edge spectra from the clays show fine structure revealing aromatic, aliphatic, carboxylic, and carbonate C. The EELS data shows that this C is intercalated with the clay flakes. The second C-clay association occurs as poorly crystalline to amorphous material occurring as nanometer aggregates of C, clay, and Fe-O-rich material. Some aggregates are dominated by carbonaceous particles that are structurally and chemically similar to the acid insoluble organic matter. The C K-edge shape from this C resembles that of amorphous C, but lacking the distinct peaks corresponding to aliphatic, carboxylic, and carbonate C groups. Nanodiamonds are locally abundant in some carbonaceous particles. The abundance of C in the clays suggest that molecular speciation in the carbonaceous chondrites is partly determined by the effects of aqueous processing on the meteorite parent bodies, and that clays played an important role. This intricate C-clay association lends credence to the proposal that minerals were important in the prebiotic chemical evolution of the early solar system.

  20. Intercalated layered clay composites and their applications

    NASA Astrophysics Data System (ADS)

    Phukan, Anjali

    Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double or pseudo-trilayer composites. Metal ion and metal ion metal salts intercalated on Montmorillonite are efficient catalysts for Friedel-Crafts (FC) reactions, such as benzylation of benzene, synthesis of Raspberry ketone [4-(4'-hydroxyphenyl)butan-2-one] etc. Montmorillonite clay can be used as a good support for controlled release of pesticides and medicinal drugs, adsorbent for cationic dyes, toxic substances and heavy metals effective adsorbent for radioactive and toxic industrial wastes,...

  1. The surface modification of clay particles by RF plasma technique

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Keol

    In this study, the surface coatings of ball clay, organoclay and exfoliated clay prepared by sol-gel process were done by RF plasma polymerization to improve the surface activity of the clay filler. Characterization of the above plasma-treated clays has been carried out by various techniques. The effects of plasma-treated clays as substitute of carbon black in styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) on the curing and mechanical properties were investigated. After plasma treatment, the tensile properties of organo and exfoliated clay were not unsatisfactory to that of carbon black filler system. Moreover, only 10 phr filler loading of plasma-treated organoclay in EPDM vulcanizates showed better results than 40 phr filler loading of carbon black in EPDM vulcanizates. The main objective of this study was to verify the applicability of the plasma technique for modifying clay surfaces for their use in the tire manufacturing industry. Another purpose was to reveal the advantage of the plasma technique used to obtain modified-clay and improved properties that those materials can display.

  2. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  3. CEC-normalized clay-water sorption isotherm

    NASA Astrophysics Data System (ADS)

    Woodruff, W. F.; Revil, A.

    2011-11-01

    A normalized clay-water isotherm model based on BET theory and describing the sorption and desorption of the bound water in clays, sand-clay mixtures, and shales is presented. Clay-water sorption isotherms (sorption and desorption) of clayey materials are normalized by their cation exchange capacity (CEC) accounting for a correction factor depending on the type of counterion sorbed on the mineral surface in the so-called Stern layer. With such normalizations, all the data collapse into two master curves, one for sorption and one for desorption, independent of the clay mineralogy, crystallographic considerations, and bound cation type; therefore, neglecting the true heterogeneity of water sorption/desorption in smectite. The two master curves show the general hysteretic behavior of the capillary pressure curve at low relative humidity (below 70%). The model is validated against several data sets obtained from the literature comprising a broad range of clay types and clay mineralogies. The CEC values, derived by inverting the sorption/adsorption curves using a Markov chain Monte Carlo approach, are consistent with the CEC associated with the clay mineralogy.

  4. Sorption-desorption behavior of PCP on soil organic matter and clay minerals.

    PubMed

    Pu, Xunchi; Cutright, Teresa J

    2006-08-01

    Pentachlorophenol (PCP) contamination is a severe environmental problem due to its widespread occurrence, toxicity and recalcitrance. In order to gain a better understanding of the fate of PCP in soils, the role of the soil organic matter (SOM) and clay minerals in the PCP sorption-desorption was studied on two bulk field soils, two subsoils (i.e., SOM or clay-removed soil) and two artificial soils. The two field soils used were a silty loam from New Mexico (NM) containing 10% clay and a sandy-clay-loam from Colombia (CO) South America comprised of 18% clay minerals. The bulk CO soil containing kaolinite sorbed significantly less PCP than the NM soil. All soils depicted an apparent hysteresis during sorption. The CO bulk and subsoils desorbed 14-20% and 15-26% of the sorbed PCP respectively whereas the NM bulk and subsoils desorbed only 4-12% and 5-16%, respectively. Experiments conducted with pure clay and artificial soils indicated that the expandable clay minerals were key sorbent material. Additional studies to investigate the interaction between SOM and clay minerals are needed to fully understand sorptive phenomena.

  5. Alteration minerals in impact-generated hydrothermal systems - Exploring host rock variability

    NASA Astrophysics Data System (ADS)

    Schwenzer, Susanne P.; Kring, David A.

    2013-09-01

    Impact-generated hydrothermal systems have been previously linked to the alteration of Mars’ crust and the production of secondary mineral assemblages seen from orbit. The sensitivity of the resultant assemblages has not yet been evaluated as a function of precursor primary rock compositions. In this work, we use thermochemical modeling to explore the variety of minerals that could be produced by altering several known lithologies based on martian meteorite compositions. For a basaltic host rock lithology (Dhofar 378, Humphrey) the main alteration phases are feldspar, zeolite, pyroxene, chlorite, clay (nontronite, kaolinite), and hematite; for a lherzolithic host rock lithology (LEW 88516) the main alteration phases are amphibole, serpentine, chlorite, clay (nontronite, kaolinite), and hematite; and for an ultramafic host rock lithology (Chassigny) the main minerals are secondary olivine, serpentine, magnetite, quartz, and hematite. These assemblages and proportions of phases in each of those cases depend on W/R and temperature. Integrating geologic, hydrologic and alteration mineral evidence, we have developed a model to illustrate the distribution of alteration assemblages that occur in different levels of an impact structure. At the surface, hot, hydrous alteration affects the ejecta and melt sheet producing clay and chlorite. Deeper in the subsurface and depending on the permeability of the rock, a variety of minerals - smectite, chlorite, serpentine, amphiboles and hematite - are produced in a circulating hydrothermal system. These modeled mineral distributions should assist with interpretation of orbital observations and help guide surface exploration by rovers and sample return assets.

  6. Geology and Refractory Clay Deposits of the Haldeman and Wrigley Quadrangles, Kentucky

    USGS Publications Warehouse

    Patterson, Sam H.; Hosterman, John W.; Huddle, John Warfield

    1962-01-01

    The Haldeman and Wrigley 7th-minute quadrangles are near the western edge of the eastern Kentucky coal field and cover an area of approximately 117 square miles in parts of Carter, Rowan, Elliott, and Morgan Counties, Ky. The rocks exposed in the two quadrangles are of Early and Late Mississippian and Early and Middle Pennsylvanian age. The Mississippian rocks are composed of the thick Brodhead formation, which consists of siltstone and shale, and eleven thin marine limestone and shale formations, having an aggregate thickness of about 150 feet. The Lee and Breathitt formations, of Pennsylvanian age, consist of sandstone, siltstone, and shale; they also contain thin beds of coal and several beds of underclay, including the economically important Olive Hill clay bed of Crider, 1913. Pennsylvanian rocks include beds of both continental and marine origin. The eleven thin Mississippian formations and the upper-most part of the thick Brodhead formation are truncated by a prominent unconformity on which rocks of Pennsylvanian age rest. The rocks occupy a region of gentle dips between the Cincinnati arch and the Appalachian Mountains. Refractory clay deposits are in the Olive Hill clay bed, which occurs in the lower part of the Lee formation. The Olive Hill clay bed is discontinuous and consists of a series of irregularly shaped lenses. The bed is approximately two-thirds semifiint clay and one-third flint clay, and it contains minor amounts of plastic clay. Some of the flint clay is nearly pure kaolinite, but the semi flint and plastic clay consists of mixtures of kaolinite, illite, and mixed-layer clay minerals. The structure of the kaolinite ranges from highly crystalline to very poorly crystalline 'fireclay' type. The degree of crystallinity of the kaolinite and the hardness of the clay vary inversely with the amount of illite and mixed-layer clay minerals present. The nearly pure kaolinite is believed to have formed by the removal of alkalies and some silica fram mixtures of kaolinite, illite, and mixed-layer clays by leaching in swamps to the deposition of the beds overlying the clay. The refractory properties of the clay vary directly with the purity of the kaolinite, and refractoriness decreases as the proportions of illite and mixed-layer clays increase. Certain nonclay minerals, chiefly siderite, pyrite, and iron oxide-bearing minerals, also act as fiuxes, reducing the refractory properties of the clay. The entire resources of clay in the Olive Hill clay bed are roughly and tentatively estimated to include 105,000,000 tons in the Haldeman quadrangle and 175,000,000 tons in the Wrigley quadrangle. Much of this clay is of poor quality and the amount that is better than the minimum requirements for use in refractories is probably about 30,000,000 tons. Only a fraction of this tonnage is suitable for superheat-duty products. Limestone is the only nonmetallic mineral resource other than refractory clay that has been developed in the two quadrangles, but 1arge amounts of shale suitable for use in making lightweight aggregate and structural clay products may also be present. Most of the limestone, which is quarried. in both quadrangles, is used for road-metal, concrete aggregate, and agriculture stone, but some of the limestone is of the quality that would be suitable for other uses. Virtually all the Mississippian Beech Creek limestone of Malott, 1919 which is as much as 18 feet thick, consists of high-calcium limestone. Shale beds that appear most favoralble for making lightweight aggregate are in the shale facies of the Lee formation of Pennsylvanian age. Shale that is probably suitable for structural clay products is present in the shale flacles of the Lee formation and in the Muldraugh formation of Mississippian age. Several dry holes have been drilled in search for oil and gas within the area of the two quadrangles. Though no commercial production was ever attained, one well furnished a supply of gas f

  7. Clay and Polymer-Based Composites Applied to Drug Release: A Scientific and Technological Prospection.

    PubMed

    Meirelles, Lyghia Maria Araújo; Raffin, Fernanda Nervo

    2017-01-01

    There has been a growing trend in recent years for the development of hybrid materials, called composites, based on clay and polymers, whose innovative properties render them attractive for drug release. The objective of this manuscript was to conduct a review of original articles on this topic published over the last decade and of the body of patents related to these carriers. A scientific prospection was carried out spanning the period from 2005 to 2015 on the Web of Science database. The technological prospection encompassed the United States Patent and Trademark Office, the European Patent Office, the World International Patent Office and the National Institute of Industrial Property databases, filtering patents with the code A61K. The survey revealed a rise in the number of publications over the past decade, confirming the potential of these hybrids for use in pharmaceutical technology. Through interaction between polymer and clay, the mechanical and thermal properties of composites are enhanced, promoting stable, controlled drugs release in biological media. The most cited clays analyzed in the articles was montmorillonite, owing to its high surface area and capacity for ion exchange. The polymeric part is commonly obtained by copolymerization, particularly using acrylate derivatives. The hybrid materials are obtained mainly in particulate form on a nanometric scale, attaining a modified release profile often sensitive to stimuli in the media. A low number of patents related to the topic were found. The World International Patent Office had the highest number of lodged patents, while Japan was the country which published the most patents. A need to broaden the application of this technology to include more therapeutic classes was identified. Moreover, the absence of regulation of nanomaterials might explain the disparity between scientific and technological output. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  8. Estimation of landslide-triggering factors using clay minerals, ASTER satellite image and GIS in the Busan area, southeastern Korea

    NASA Astrophysics Data System (ADS)

    Jeong, G. C.; Kim, M. G.; Choi, J. J.; Ryu, J. O.; Nho, J. G.; Choo, C. O.

    2016-12-01

    This study aims at estimating landslide-inducing factors such as extreme rainfall, slope, and geological factors in Busan city, southeastern Korea, using clay mineralogy, DM analysis and DB construction in order to develop the landslide evaluation standards suitable for the country. GIS-based data collected from the study area include geological maps, topological maps, soil maps, forest maps and others in the DB construction. Data extraction and processing for landslide-induced factors consist of expandable clay minerals identified using XRD, along with XRF and weathering sensitivity analysis and fundamental soil analysis on 38 bulk samples composed of weathered rocks and soils. Finally landslide sensibility maps were constructed using ArcGIS, together with ASTER satellite images for identifying clay minerals on regional areas helpful for saving time and money. In Mt. Cheonma, 16 samples are composed of quartz, albite, illite, vermiculite, and kaolinite, with little difference in mineralogy. In Mt. Hwangryeong and Mt. Geumryeun, 12 samples consist of quartz, albite, illite, vermiculite, kaolinite and hornblende, with little difference in mineralogy. In Mt. Songhak, 10 samples are composed of quartz, illite, vermiculite, and kaolinite. Quartz, albite and illite are abundant in most samples, regardless of sites studied. IDW interpolation method was applied to the Busan area. The resolution of space grids consists of 5 m x 5 m. Especially, illite was used as the most effective factor that induces landslide using IDW interpolation and ASTER satellite images. In conclusion, sensibility maps constructed using 16 layers including illite content, weathered sensibility are well in accordance with the real sites where landslides took place, showing that areas with high sensibility are closely related to the high frequencies of landslide. This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (grant number 2012M3A2A1050976)

  9. Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

    NASA Astrophysics Data System (ADS)

    Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun

    2015-06-01

    In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

  10. Relation between Soil Order and Sorptive Capacity for Dissolved Organic Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heal, Katherine R; Brandt, Craig C; Mayes, Melanie

    2012-01-01

    Soils have historically been considered a temporary sink for organic C, but deeper soils may serve as longer term C sinks due to the sorption of dissolved organic C (DOC) onto Fe- and clay-rich mineral soil particles. This project provides an improved understanding and predictive capability of the physical and chemical properties of deep soils that control their sorptive capacities for DOC. Two hundred thirteen subsurface soil samples (72 series from five orders) were selected from the eastern and central United States. A characterized natural DOC source was added to the soils, and the Langmuir sorption equation was fitted tomore » the observed data by adjusting the maximum DOC sorption capacity (Q{sub max}) and the binding coefficient (k). Different isotherm shapes were observed for Ultisols, Alfisols, and Mollisols due to statistically significant differences in the magnitude of k, while Q{sub max} was statistically invariant among these three orders. Linear regressions were performed on the entire database and as a function of soil order to correlate Langmuir fitted parameters with measured soil properties, e.g., pH, clay content, total organic C (TOC), and total Fe oxide content. Together, textural clay and Fe oxide content accounted for 35% of the variation in Q{sub max} in the database, and clay was most important for Alfisols and Ultisols. The TOC content, however, accounted for 27% of the variation in Q{sub max} in Mollisols. Soil pH accounted for 45% of the variation in k for the entire database, 41% for Mollisols, and 22% for Alfisols. Our findings demonstrate that correlations between Langmuir parameters and soil properties are different for different soil orders and that k is a more sensitive parameter for DOC sorption than is Q{sub max} for temperate soils from the central and eastern United States.« less

  11. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  12. Enhancement of Plant Establishment on Dredged Material Sites with Mycorrhizal Fungi and Clay Amendments

    DTIC Science & Technology

    1989-10-01

    montmorillonite enhanced the growth of smooth brome grass. Topsoil, the clays attapulgite and kaolinite , and the commercial products Agrosoke anj Stawetwere...clays bentonite, attapulgite, kaolinite , and montmorillonite . Trade name and company addresses for the clays are listed in Table 1. Agrosoke and Stawet...desertcoZa, G. etunicatwn, and G. intraradice8. The clays attapulgite, ben- tonite, kaclinite,/and montmorillonite from various commercial sources were

  13. Process for the preparation of organoclays

    DOEpatents

    Chaiko, David J.

    2004-11-23

    A method for preparing organoclays for use as rheological control agents and in the preparation of nanocomposites. Typically, the clay is dispersed in water, and a specific amount of polymeric hydrotrope, ranging from 0.1 to 15 weight percent relative to the weight of the clay, is adsorbed onto the clay surface. Quaternary amine exchange is also performed on the clay to modify the surface hydrophilic/lipophilic balance (HLB) of the clay.

  14. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    PubMed

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.

  15. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Suwanich, Parkorn

    Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.

  16. Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”

    PubMed Central

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  17. Ultrasonically assisted single screw extrusion, film blowing and film casting of LLDPE/clay and PA6/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Niknezhad, Setareh

    The major objective of this study was to investigate the effect of ultrasonic treatment on the dispersion of modified clay particles in LLDPE and PA6 matrices and the final properties of nanocomposites. LLDPE and PA6 are two polymers that are widely used in packaging industry. Blown and cast films were manufactured from the prepared nanocomposites. To achieve one step film processing, an online ultrasonic film casting was developed. Ultrasonic waves caused high-energy mixing and dispersion due to the acoustic cavitation, causing the clay agglomorates to separate into individual platelets in polymer matrix. Ultrasonic waves also broke down the polymer molecular chains reducing viscosity of the melt, facilating dispersion of the clay platelets throughout the matrix. Ultrasound also led to a breakage of the clay platelets reducing the particle size and improving their distribution. Clay particles acted as a heterogenous nucleation agent generating smaller size polymer crystals. In turn, these improved different properties including mechanical properties, oxygen permeability and transparency of films. In LLDPE/clay 20A nanocomposites, the effect of ultrasound was more obvious at higher clay loadings. Exfoliated structure for ultrasonically treated nanocomposites containing 2.5, 5 and 7.5 wt% of clay 20A and highly intercalated structure for ultrasonically treated nanocomposites containing 10 wt% of clay 20A were achieved. However, in blown films, the exfoliated structure transferred to the intercalated structure due to the addition of more shear and thermal degradation of surfactants of the clay particles. While, manufacturing cast films using the new developed online ultrasonic cast film machine revealed the exfoliated structure with ultrasonic treatment till 7.5 wt% of clay loadings. Cast films of nanocomposites containing 5 wt% of clay loadings were also prepared with addition of different compatibilizers. The compatibilizer containing higher amount of grafted maleic anhydride (MA) affected mechanical properties and oxygen permeability with ultrasonic treatment to higher extent. However, use of compatibilizers led to a higher die pressure and resulted in opaque cast films. The mechanical properties were in agreement with crystallinity of samples. The exfoliated structure was achieved for PA6/clay 30B nanocomposites prepared using ultrasonically assisted single screw extrusion except for untreated nanocomposites containing 10 wt% of clay 30B. Untreated 92.5/7.5 and 90/10 PA6/clay 30B blown films showed the intercalated structure, but the exfoliated structure was achieved with ultrasonic treatment. All cast films of PA6/clay 30B showed the exfoliated structure. FTIR spectroscopy along with XRD results confirmed the existence of alpha and gamma-type crystals in the cast films, with clay particles favoring the formation of gamma-type crystals, and ultrasonic treatment favoring the formation of alpha-type crystals. Both parameters increased crystallinity of cast films improving their mechanical properties and oxygen permeability.

  18. Impact of clay minerals on sulfate-reducing activity in aquifers

    USGS Publications Warehouse

    Wong, D.; Suflita, J.M.; McKinley, J.P.; Krumholz, L.R.

    2004-01-01

    Previous studies have shown that sulfate-reduction activity occurs in a heterogeneous manner throughout the terrestrial subsurface. Low-activity regions are often observed in the presence of clay minerals. Here we report that clays inhibit sulfate reduction activity in sediments and in a pure culture of Desulfovibriovulgaris. Clay minerals including bentonite and kaolinite inhibited sulfate reduction by 70–90% in sediments. Intact clays and clay colloids or soluble components, capable of passing through a 0.2-µm filter, were also inhibitory to sulfate-reducing bacteria. Other adsorbent materials, including anion or cation exchangers and a zeolite, did not inhibit sulfate reduction in sediments, suggesting that the effect of clays was not due to their cation-exchange capacity. We observed a strong correlation between the Al2O3content of clays and their relative ability to inhibit sulfate reduction in sediments (r2 = 0.82). This suggested that inhibition might be a direct effect of Al3+ (aq) on the bacteria. We then tested pure aluminum oxide (Al2O3) and showed it to act in a similar manner to clay. As dissolved aluminum is known to be toxic to a variety of organisms at low concentrations, our results suggest that the effects of clay on sulfate-reducing bacteria may be directly due to aluminum. Thus, our experiments provide an explanation for the lack of sulfate-reduction activity in clay-rich regions and presents a mechanism for the effect.

  19. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    NASA Astrophysics Data System (ADS)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  20. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.

    PubMed

    Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan

    2015-06-02

    To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.

  1. Assessing the interactions of a natural antibacterial clay with model Gram-positive and Gram-negative human pathogens

    NASA Astrophysics Data System (ADS)

    Londono, S. C.; Williams, L. B.

    2013-12-01

    The emergence of antibiotic resistant bacteria and increasing accumulations of antibiotics in reclaimed water, drive the quest for new natural antimicrobials. We are studying the antibacterial mechanism(s) of clays that have shown an ability to destroy bacteria or significantly inhibit their growth. One possible mode of action is from soluble transition metal species, particularly reduced Fe, capable of generating deleterious oxygen radical species. Yet another possibility is related to membrane damage as a consequence of physical or electrostatic interaction between clay and bacteria. Both mechanisms could combine to produce cell death. This study addresses a natural antibacterial clay from the NW Amazon basin, South America (AMZ clay). Clay mineralogy is composed of disordered kaolinite (28.9%), halloysite (17.8%) illite (12%) and smectite (16.7%). Mean particle size is 1.6μm and total and specific surface area 278.82 and 51.23 m2/g respectively. The pH of a suspension (200mg/ml) is 4.1 and its Eh is 361mV after 24h of equilibration. The ionic strength of the water in equilibrium with the clay after 24 h. is 6 x10-4M. These conditions, affect the element solubility, speciation, and interactions between clay and bacteria. Standard microbiological methods were used to assess the viability of two model bacteria (Escherichia coli and Bacillus subtilis) after incubation with clay at 37 degC for 24 hrs. A threefold reduction in bacterial viability was observed upon treatment with AMZ clay. We separated the cells from the clay using Nycodenz gradient media and observed the mounts under the TEM and SEM. Results showed several membrane anomalies and structural changes that were not observed in the control cells. Additionally, clay minerals appeared in some places attached to cell walls. Experiments showed that exchanging AMZ clay with KCl caused loss of antibacterial property. Among the exchangeable -and potentially toxic- ions we measured Al+3, Cu+2, Zn+2, Ba+2 and Co+2. Besides being toxic at high concentrations, these species affect the electrophoretic interactions between clay and bacteria surfaces. Additionally, the cation exchange neutralizes the clay surface charge thus modifying further the behavior of particles in suspension. Therefore, we evaluated the clay and bacteria zeta potential (ζ) as an index for possible electrostatic forces and modeled the total interactions using DLVO theory. We suspended the particles in water equilibrated with clay (leachate). Results show that at pH 4, the ζ of clays is -14 mV while it is -3mV for bacteria. The divalent ions and trivalent Aluminum, present in the AMZ leachate, compress the thickness of the double layer (hydration shell) thus decreasing electrostatic repulsion and allowing particles to come closer. The proximity of particles increases the probability of attractive forces to bind clays and cells. In summary, results indicate that a process other than simple chemical transfer from clay to bacteria is operating. The electrostatic attraction and physical proximity may enhance the toxic action of metals and interfere with the membrane properties or processes.

  2. Clay Mineral Structure Similar to Clays Observed in Mudstone on Mars

    NASA Image and Video Library

    2013-12-09

    This schematic shows the atomic structure of the smallest units that make up the layers and interlayer region of clay minerals. This structure is similar to the clay mineral in drilled rock powder collected by NASA Curiosity Mars rover.

  3. Bentonite Clay as a Natural Remedy: A Brief Review

    PubMed Central

    2017-01-01

    Background: From old times, the human kind has used clays, externally or internally, for maintaining body health or treating some diseases. Meanwhile there are few scientific articles reviewing the beneficial effects of clays on body function. Bentonite clay is one of the available clays in nature, used as traditional habits, and remedies in many cultures. Methods: These articles explored among 2500 scientific articles published in PubMed to sort the scientific works have been done on the effects of this clay on body function (it was about 100 articles). Results: Bentonite has a broad range of action on different parts of body. Conclusion: As traditional remedies seem to have a deep root in maintaining body health, it merits doing more research works on bentonite clay and its impacts on body function. PMID:29026782

  4. CO.sub.2 removal sorbent composition with high chemical stability during multiple cycles

    DOEpatents

    Siriwardane, Ranjani V.; Rosencwaig, Shira

    2015-09-22

    Disclosed herein is a clay-alkali-amine CO.sub.2 sorbent composition prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay-alkali-amine C02 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a C02 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.

  5. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  6. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    NASA Astrophysics Data System (ADS)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    SummaryA reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well contamination from surface water. This study suggests that it is unlikely that glyphosate in streams can pose a threat to drinking water wells, while MCPP in surface water can represent a risk: MCPP concentration at the drinking water well can be up to 7% of surface water concentration in confined aquifers and up to 10% in unconfined aquifers. Thus, the presence of confining clay aquitards may not prevent contamination of drinking water wells by persistent compounds in surface water. Results are consistent with data on pesticide occurrence in Denmark where pesticides are found at higher concentrations at shallow depths and close to streams.

  7. Mars, clays and the origins of life

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  8. Burnt clay magnetic properties and palaeointensity determination

    NASA Astrophysics Data System (ADS)

    Avramova, Mariya; Lesigyarski, Deyan

    2014-05-01

    Burnt clay structures found in situ are the most valuable materials for archaeomagnetic studies. From these materials the full geomagnetic field vector described by inclination, declination and intensity can be retrieved. The reliability of the obtained directional results is related to the precision of samples orientation and the accuracy of characteristic remanence determination. Palaeointensity evaluations depend on much more complex factors - stability of carried remanent magnetization, grain-size distribution of magnetic particles and mineralogical transformations during heating. In the last decades many efforts have been made to shed light over the reasons for the bad success rate of palaeointensity experiments. Nevertheless, sometimes the explanation of the bad archaeointensity results with the magnetic properties of the studied materials is quite unsatisfactory. In order to show how difficult is to apply a priory strict criteria for the suitability of a given collection of archaeomagnetic materials, artificial samples formed from four different baked clays are examined. Two of the examined clay types were taken from clay deposits from different parts of Bulgaria and two clays were taken from ancient archaeological baked clay structures from the Central part of Bulgaria and the Black sea coast, respectively. The samples formed from these clays were repeatedly heated in known magnetic field to 700oC. Different analyses were performed to obtain information about the mineralogical content and magnetic properties of the samples. The obtained results point that all clays reached stable magnetic mineralogy after the repeated heating to 700oC, the main magnetic mineral is of titano/magnetite type and the magnetic particles are predominantly with pseudo single domain grain sizes. In spite that, the magnetic properies of the studied clays seem to be very similar, reliable palaeointensity results were obtained only from the clays coming from clay deposits. The palaeointensity experiments for the samples formed from the ancient baked clays completely failed to give relibable results.

  9. Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation

    PubMed Central

    Ribeiro, Simone P S; Estevão, Luciana R M; Nascimento, Regina S V

    2008-01-01

    Organophilic clay particles were added to a standard intumescent formulation and, since the role of clay expansion or intercalation is still a matter of much controversy, several clays with varying degrees of interlayer distances were evaluated. The composites were obtained by blending the nanostructured clay and the intumescent system with a polyethylenic copolymer. The flame-retardant properties of the materials were evaluated by the limiting oxygen index (LOI), the UL-94 rating and thermogravimetric analysis (TGA). The results showed that the addition of highly expanded clays to the ammonium polyphosphate and pentaerythritol formulation does not significantly increase the flame retardancy of the mixture, when measured by the LOI and UL-94. However, when clays with smaller basal distances were added to the intumescent formulation, a synergistic effect was observed. In contrast, the simple addition of clays to the copolymer, without the intumescent formulation, did not increase the fire retardance of the materials. PMID:27877975

  10. Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  11. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    PubMed

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The Clay Shoveler's Fracture: A Case Report and Review of the Literature.

    PubMed

    Posthuma de Boer, Jantine; van Wulfften Palthe, Alexander F Y; Stadhouder, Agnita; Bloemers, Frank W

    2016-09-01

    A clay-shoveler's fracture is a very rarely occurring stress-type avulsion fracture of the lower cervical or upper thoracic spinous processes owing its name to the clay shovelers of past times. Currently, this type of injury is mainly encountered in individuals practicing sports involving rotational movements of the upper spine. We present a case of a man sustaining a clay-shoveler's injury during his work in a horse-riding school. Treatment consisted of a period of rest and analgesics, followed by mobilization as was tolerated. We give a brief historical account of clay shoveler's fractures. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Clay-shoveler's fractures are frequently overlooked due to their rareness; however, they have specific clinical features that should alert an attending physician to set the correct diagnosis. This report describes a typical case of a clay-shoveler's fracture, relates to the historical entity of clay-shoveler's fractures, and summarizes existing literature on this topic. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation.

    PubMed

    Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian

    2016-03-01

    Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.

  15. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    PubMed

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The influence of total suction on the brittle failure characteristics of clay shales

    NASA Astrophysics Data System (ADS)

    Amann, F.; Linda, W.; Zimmer, S.; Thoeny, R.

    2013-12-01

    Clay shale testing is challenging and the results obtained from standard laboratory tests may not always reflect the strength of the clay shale in-situ. This is to a certain extend associated with the sensitivity of these rock types to desaturation processes during drilling, sample storage, and sample preparation. In this study the relationship between total suction, uniaxial compressive strength and Brazilian tensile (BTS) strength of cylindrical samples of Opalinus Clay was established in a systematic manner. Unconfined uniaxial compression and BTS tests were performed utilizing a servo-controlled testing procedure. Total suctions in the specimens was generated in air tight desiccators using supersaturated saline solutions which establish a relative humidity ranging from 20% to 99%. For unconfined compressive strength tests loading of the specimens occurred parallel to bedding. For BTS tests loading was either oriented normal or perpendicular to bedding. Both, the crack initiation and volumetric strain reversal threshold values were determined using volumetric and radial stress-strain methods. The results of BTS tests show that the tensile strength normal and perpendicular to bedding increases by a factor of approximately 3 when total suction is increased from 0 to 90 MPa (i.e. saturation decreases from 1.0 to 0.7) . Beyond 90 MPa total suction no further increase in tensile strength was observed, most probably due to shrinkage cracks which alter the tensile strength of the clay shale. Results obtained from UCS tests suggest that higher total suctions result in higher UCS values. Between total suctions of 0 to 90 MPa, the strength increase is almost linear (i.e. the UCS increases by a factor of 1.5 MPa). Beyond 90 MPa total suction no further strength increase was observed. A similar trend can be observed for crack initiation and crack damage values. In the same range of total suction the crack initiation stress increases by a factor of 5 (from 2 MPa to 10 MPa), and the crack damage stress increases by a factor of 2 (from 6 to 12 MPa). In addition to UCS tests, the water retention curve of intact and disturbed specimens was established. Here, results indicate that the drying path remains nearly unaffected by mechanical damage. However, the wetting path is considerably affected by mechanical damage.

  17. Chronology of magmatism and mineralization in the Kassandra mining area, Greece: The potentials and limitations of dating hydrothermal illites

    NASA Astrophysics Data System (ADS)

    Gilg, H. Albert; Frei, Robert

    1994-05-01

    Various geochronological methods ( U/Pb, Rb/Sr, and K/Ar) have been applied to constrain the timing of magmatism and polymetallic mineralization in the Kassandra mining district, northern Greece. These data provide the first geochronological evidence that porphyry copper mineralization, proximal copper skarns, and distal high-temperature carbonate-hosted Pb-Zn-Ag-Au replacement ores formed contemporaneously and probably within less than 2 million years. Polymetallic mineralization is temporally related to the emplacement of granodioritic to quartz dioritic porphyries (24-25 Ma) that postdate the largest post-tectonic intrusion of the area, the Stratoni granodiorite (27.9 ± 1.2 Ma). Andesite porphyry dikes, which crosscut the Pb-Zn-Ag-Au ores and associated alterations, represent the last magmatic phase in the area (19.1 ± 0.6 Ma) and did not contribute to metal concentration. The combination of K/Ar, Rb/Sr, and oxygen isotope studies of hydrothermal illite-rich clays and careful granulometric analysis constrains the reliability of these geochronological methods and emphasizes the importance of characterizing the post-formational history of the sample. We identify various processes which partly disturbed the K/Ar and Rb/Sr system of some clays, such as retrograde alteration by heated meteoric waters, superimposed supergene illitization, and resetting of both isotopic systems due to a hydrothermal overprint related to the intrusion of the andesite porphyry. Our data, however, suggest that diffusive Ar loss from the finest clay fractions (< 0.6 μm) during cooling of the hydrothermal system probably played the most important role in the disturbance of the K/Ar system. Conventional K/Ar ages of < 2 μm fractions from high-temperature illites (> 200°C), therefore, do not give reliable formation ages. The loss of Ar may be used to model the cooling history of the hydrothermal system applying the concept of closure temperatures ( DODSON, 1973). 40K- 40Ar rad isochrons of natural, coarser grained (> 0.6 μm) size fractions of illites from single samples, even when slightly contaminated with feldspars, may yield meaningful ages either of the formation or of a reheating event. The Rb/Sr dating of hydrothermal clays is sensitive to contamination by adsorbed strontium, which may not be cogenetic with the clay, as well as feldspars, which may not have been homogenized isotopically by the illitization process.

  18. Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.

    1981-01-01

    Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.

  19. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  20. Concentrations of polychlorinated dibenzo-p-dioxins in processed ball clay from the United States.

    PubMed

    Ferrario, Joseph; Byrne, Christian; Schaum, John

    2007-04-01

    Processed ball clays commonly used by the ceramic art industry in the United States were collected from retail suppliers and analyzed for the presence and concentration of the 2,3,7,8-Cl substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs). The average PCDD toxic equivalent (TEQ) concentrations of these processed ball clays was approximately 800 pg/g (TEQ-WHO) with characteristic congener profiles and isomer distributions similar to patterns of previously analyzed raw and processed ball clays. The PCDF concentrations were below the average limit of detection (LOD) of 0.5 pg/g. Correlation analyses reveal no significant relationship between total organic carbon (TOC) and either individual, homologues, and total tetra-through octa-chlorinated PCDD congeners, or TEQ concentrations of the processed ball clays. The results are consistent with earlier studies on levels of PCDDs in ball clays. Data from earlier studies indicated that dioxins may be released to the environment during the processing of raw clay or the firing process used in commercial ceramic facilities. The presence of dioxin in the clays also raises concerns about potential occupational exposure for individuals involved in the mining/processing of ball clay, ceramics manufacturing and ceramic artwork.

  1. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals.

    PubMed

    Pan, Gang; Zhang, Ming-Ming; Chen, Hao; Zou, Hua; Yan, Hai

    2006-05-01

    Algal removal abilities of 26 clays/minerals were classified into three categories according to the 8-h equilibrium removal efficiency (Q8h) and removal rate at a clay loading of 0.7 g/L. Type I clays (sepiolite, talc, ferric oxide, and kaolinite) had a Q8h > 90%, a t50 (time needed to remove 50% of the algae) < 15 min, and a t80 < 2.5 h. Type II clays (6 clays) had a Q8h 50-90%, a t50 < 2.5 h, and a t80 > 2.5 h. Type III clays (14 clays) with Q8h < 50%, t50 > 8 h and t80 > 14 h had no practical value in removal of algal blooms. When the clay loading was reduced to 0.2 g/L, Q8h for all the 25 materials decreased to below 60%, except for sepiolite whose Q8h remained about 97%. The high efficiency for sepiolite to flocculate M. aeruginosa cells in freshwaters was due to the mechanism of netting and bridging effect.

  2. Reducing the Cation Exchange Capacity of Lithium Clay to Form Better Dispersed Polymer-Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Liang, Maggie

    2004-01-01

    Polymer-clay nanocomposites have exhibited superior strength and thermo- oxidative properties as compared to pure polymers for use in air and space craft; however, there has often been difficulty completely dispersing the clay within the matrices of the polymer. In order to improve this process, the cation exchange capacity of lithium clay is first lowered using twenty-four hour heat treatments of no heat, 130 C, 150 C, or 170 C to fixate the lithium ions within the clay layers so that they are unexchangeable. Generally, higher temperatures have generated lower cation exchange capacities. An ion exchange involving dodecylamine, octadecylamine, or dimethyl benzidine (DMBZ) is then employed to actually expand the clay galleries. X-ray diffraction and transmission electron microscopy can be used to determine whether the clay has been successfully exfoliated. Finally, resins of DMBZ with clay are then pressed into disks for characterization using dynamic mechanical analyzer and oven- aging techniques in order to evaluate their glass transition, modulus strength, and thermal-oxidative stability in comparison to neat DMBZ. In the future, they may also be tested as composites for flexural and laminar shear strength.

  3. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    USGS Publications Warehouse

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The factors influencing water compositions were determined.

  5. 76 FR 54932 - TSCA Inventory Update Reporting Modifications; Chemical Data Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... neutralized light naphthenic. 64742-36-5 Distillates (petroleum), clay- treated heavy paraffinic. 64742-37-6 Distillates (petroleum), clay- treated light paraffinic. 64742-38-7 Distillates (petroleum), clay- treated... agents (petroleum), spent sodium hydroxide. 64742-41-2 Residual oils (petroleum), clay- treated. 64742-42...

  6. Final Regulations to Reduce Toxic Air Pollutant Emissions from Brick and Structural Clay Products Manufacturing and Clay Ceramics Manufacturing Fact Sheets

    EPA Pesticide Factsheets

    This page contains a February 2003 and September 2015 fact sheet with information regarding the final rules to the NESHAP for Brick and Structural Clay Products Manufacturing and the NESHAP for Clay Ceramics Manufacturing

  7. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    PubMed

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on wildlife, with laboratory trials showing contradictory outcomes. Clay minerals have different applications in the environment, thus with a strict control of the concentrations used, they can provide beneficial uses. Despite the extensive number of reports available, there is also a need of systematic in vitro-in vivo extrapolation studies, with still scarce information on toxicity biomarkers such as inmunomodulatory effects or alteration of the genetic expression. In conclusion, a case by case toxicological evaluation is required taking into account that different clays have their own toxicological profiles, their modification can change this profile, and the potential increase of the human/environmental exposure to clay minerals due to their novel applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  9. Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.

    PubMed

    Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-07-23

    Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills.

  10. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    NASA Astrophysics Data System (ADS)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  11. Development of High Capacity Enterosorbents for Aflatoxin B1 and Other Hazardous Chemicals.

    PubMed

    Wang, Meichen; Maki, Cody R; Deng, Youjun; Tian, Yanan; Phillips, Timothy D

    2017-09-18

    Previously, a calcium montmorillonite clay (NovaSil) included in the diet of animals has been shown to bind aflatoxin B1 (AfB1) and reduce the symptoms of aflatoxicosis. To investigate and improve the capacity and efficacy of clay-based materials as aflatoxin sorbents, we developed and tested calcium and sodium montmorillonite clays amended with nutrients including l-carnitine and choline. Also, we determined the sorption of AfB1 by isothermal analysis and tested the ability of these amended sorbents to protect adult hydra from AfB1 toxicity. The results showed that exchanging montmorillonite clays with l-carnitine and choline inhibited swelling of the clays and increased the sorption capacity and efficacy of clay surfaces for AfB1. Results from dehydroxylated and heat-collapsed clays suggested that AfB1 was primarily adsorbed in the clay interlayer, as predicted from thermodynamic calculations and computational modeling. The hydra bioassay further indicated that the modified clays can significantly protect adult hydra from AfB1 with as low as 0.005% clay inclusion. This enterosorbent therapy may also be applied to screen hazardous chemicals such as pesticides and PAHs based on similar sorption mechanisms. Taken together, enterosorbent therapy could be delivered in nutritional supplements, foods that are vulnerable to aflatoxin contamination, flavored liquids and animal feeds during emergencies and outbreaks of acute aflatoxicosis, and as a screening model for hazardous environmental chemicals.

  12. The influence of tennis court surfaces on player perceptions and biomechanical response.

    PubMed

    Starbuck, Chelsea; Damm, Loïc; Clarke, James; Carré, Matt; Capel-Davis, Jamie; Miller, Stuart; Stiles, Victoria; Dixon, Sharon

    2016-09-01

    This study aimed to examine player perceptions and biomechanical responses to tennis surfaces and to evaluate the influence of prior clay court experience. Two groups with different clay experiences (experience group, n = 5 and low-experience group, n = 5) performed a 180° turning movement. Three-dimensional ankle and knee movements (50 Hz), plantar pressure of the turning step (100 Hz) and perception data (visual analogue scale questionnaire) were collected for two tennis courts (acrylic and clay). Greater initial knee flexion (acrylic 20. 8 ± 11.2° and clay 32.5 ± 9.4°) and a more upright position were reported on the clay compared to the acrylic court (P < 0.05). This suggests adaptations to increase player stability on clay. Greater hallux pressures and lower midfoot pressures were observed on the clay court, allowing for sliding whilst providing grip at the forefoot. Players with prior clay court experience exhibited later peak knee flexion compared to those with low experience. All participants perceived the differences in surface properties between courts and thus responded appropriately to these differences. The level of previous clay court experience did not influence players' perceptions of the surfaces; however, those with greater clay court experience may reduce injury risk as a result of reduced loading through later peak knee flexion.

  13. Dynamics of the microaggregate composition of chernozem in relation to changes in the content of organic matter

    NASA Astrophysics Data System (ADS)

    Kryshchenko, V. S.; Zamulina, I. V.; Rybyanets, T. V.; Kravtsova, N. E.; Biryukova, O. A.; Golozubov, O. M.

    2016-06-01

    Monitoring of soil dispersivity and humus state has been performed in the stationary profile of ordinary chernozem in the Botanic Garden of the Southern Federal University in 2009-2014. The contents of physical clay and sand are almost stable in time, which indicates a quasi-static (climax) equilibrium in the soil. Another (reversible dynamic) process occurs simultaneously: seasonal and annual variation in the mass fractions of clay and silt in physical clay. Variations of humus content in the whole soil and in its physical clay are also observed on the background of seasonal changes in precipitation and temperature. A procedure has been developed for the analysis of the polydisperse soil system with consideration for the quasi-static and dynamic equilibriums. A two-vector coordinate system has been introduced, which consists of scales for changes in the contents of physical clay and physical sand in 100 g of soil and changes in the fractions of clay and silt in 100 g of physical clay. Co-measurements of two dispersivity series of soil samples—actual dynamic and calculated under quasi-static equilibrium (ideal)—have been performed. Dynamic equilibrium coefficients, which cumulatively reflect the varying proportions of physical clay and physical sand in the soil and the mass fractions of clay and silt in physical clay, have been calculated.

  14. Hydraulic and mechanical behavior of landfill clay liner containing SSA in contact with leachate.

    PubMed

    Zhang, Qian; Lu, Haijun; Liu, Junzhu; Wang, Weiwei; Zhang, Xiong

    2018-05-01

    Sewage sludge ash (SSA) produced by municipal sludge can be used as a modified additive for clay liner, and improves the working performance of landfill clay liner in contact with leachate. Under the action of landfill leachate, the permeability, shear strength, phase composition, and pore structure of the modified clay are investigated through the flexible wall permeability test, triaxial shear test, thermal gravimetric and differential thermal analysis, and low-temperature nitrogen adsorption test, respectively. The hydraulic conductivity of the modified clay containing 0-5% SSA is in the range of 3.94 × 10 -8 -1.16 × 10 -7  cm/s, and the pollutant concentration of the sample without SSA was higher than others. The shear strength of the modified clay is more than that of the traditional clay liner, the cohesion rate of modified clay increases from 32.5 to 199.91 kPa, and the internal friction angle decreases from 32.5° to 15.6°. Furthermore, the weight loss rates of the samples are 15.69%, 17.92%, 18.06%, and 20.68%, respectively, when the SSA content increases from 0% to 5%. The total pore volume and average pore diameter of the modified clay decrease with the increase in the SSA content, respectively. However, the specific area of the modified clay increases with the increase in the SSA content.

  15. Analysis of the eukaryotic community and metabolites found in clay wall material used in the construction of traditional Japanese buildings.

    PubMed

    Kitajima, Sakihito; Kamei, Kaeko; Nishitani, Maiko; Sato, Hiroyuki

    2010-01-01

    Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.

  16. Iridium, sulfur isotopes and rare earth elements in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark

    NASA Astrophysics Data System (ADS)

    Schmitz, Birger; Andersson, Per; Dahl, Jeremy

    1988-01-01

    Microbial activity and redox-controlled precipitation have been of major importance in the process of metal accumulation in the strongly Ir-enriched Cretaceous-Tertiary (K-T) boundary clay, the Fish Clay, at Stevns Klint in Denmark. Two important findings support this view: 1) Kerogen, recovered by leaching the Fish Clay in HCl and HF, shows an Ir concentration of 1100 ppb; this represents about 50% of the Ir present in the bulk sample Fish Clay. Strong organometallic complexes is the most probable carrier phase for this fraction of Ir. Kerogen separated from the K-T boundary clay at Caravaca, Spain, similarly exhibits enhanced Ir concentrations. 2) Sulfur isotope analyses of metal-rich pyrite spherules, which occur in extreme abundance (about 10% by weight) in the basal Fish Clay, give a δ 34S value of -32%.. This very low value shows that sulfide formation by anaerobic bacteria was intensive in the Fish Clay during early diagenesis. Since the pyrite spherules are major carriers of elements such as Ni, Co, As, Sb and Zn, microbial activity may have played an important role for concentrating these elements. In the Fish Clay large amounts of rare earth elements have precipitated from sea water on fish scales. Analyses reveal that, compared with sea water, the Fish Clay is only about four times less enriched in sea-water derived lanthanides than in Ir. This shows that a sea-water origin is plausible for elements that are strongly enriched in the clay, but whose origin cannot be accounted for by a lithogenic precursor.

  17. Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle

    NASA Astrophysics Data System (ADS)

    Sheng, Nuo; Boyce, Mary C.; Parks, David M.; Manovitch, Oleg; Rutledge, Gregory C.; Lee, Hojun; McKinley, Gareth H.

    2003-03-01

    Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions (Wp) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase ¡°particles¡+/-; in particular, the particle volume fraction (fp), the particle aspect ratio (L/t), and the ratio of particle mechanical properties to those of the matrix. However, these important aspects of as-processed nanoclay composites have yet to be consistently and accurately defined. A multiscale modeling strategy was developed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns, the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a) exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of nanometer level height. Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs are used to determine geometric features of the as-processed clay ¡°particles¡+/-, including L/t and the ratio of fp to Wp. These geometric features, together with estimates of silicate lamina stiffness obtained from molecular dynamics simulations, provide a basis for modeling effective mechanical properties of the clay particle. The structure-based predictions of the macroscopic elastic modulus of the nanocomposite as a function of clay weight fraction are in excellent agreement with experimental data. The adopted methodology offers promise for study of related properties in polymer/clay nanocomposites.

  18. Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis.

    PubMed

    Gupta, Govind Sharan; Senapati, Violet Aileen; Dhawan, Alok; Shanker, Rishi

    2017-06-01

    The extensive use of zinc oxide nanoparticles (ZnO NPs) in cosmetics, sunscreens and healthcare products increases their release in the aquatic environment. The present study explored the possible interaction of ZnO NPs with montmorillonite clay minerals in aqueous conditions. An addition of ZnO NPs on clay suspension significantly (p<0.05) increases the hydrodymic size of clay particles from 1652±90nm to 2158±13nm due to heteroagglomeration. The electrokinetic measurements showed a significant (p<0.05) difference in the electrophoretic mobilities of bare (-1.80±0.03μmcm/Vs) and ZnO NPs-clay association (-1.37±0.03μmcm/Vs) that results to the electrostatic interaction between ZnO NPs and clay particles. The attenuated total reflectance Fourier transform infrared spectroscopy analysis of ZnO NPs-clay association demonstrated the binding of ZnO NPs with the Si-O-Al region on the edges of clay particles. The increase in size of ZnO NPs-clay heteroagglomerates further leads to their sedimentation at 24h. Although, the stability of ZnO NPs in the clay suspension was decreased due to heteroagglomeration, but the bioavailability and toxicity of ZnO NPs-clay heteroagglomerates in Tetrahymena pyriformis was enhanced. These observations provide an evidence on possible mechanisms available in natural environment that can facilitate nanoparticles entry into the organisms present in lower trophic levels of the food web. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Exfoliation of Layered Magnesium Aluminum Silicate Platelets in Polymer Hosts Enabled by Cation Chemistry and Temperature

    DTIC Science & Technology

    2010-10-21

    Preprints. 14. ABSTRACT Montmorillonite -smectite clay consists of anisotropic clay platelets, generally a nanometer in thickness by hundreds of...Cation Chemistry and Temperature GregO!)’ R. Yandek, Palrick N. RUlh. Joseph M. Mabry Montmorillonite -smedite clay consists 01 anisotropic clay

  20. 40 CFR 710.46 - Chemical substances for which information is not required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... neutralized light naphthenic 64742-36-5 Distillates (petroleum), clay-treated heavy paraffinic 64742-37-6 Distillates (petroleum), clay-treated light paraffinic 64742-38-7 Distillates (petroleum), clay-treated middle... (petroleum), spent sodium hydroxide 64742-41-2 Residual oils (petroleum), clay-treated 64742-42-3 Hydrocarbon...

  1. Clay Animals and Their Habitats

    ERIC Educational Resources Information Center

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  2. Clay Houses

    ERIC Educational Resources Information Center

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  3. Identification of dominating factors affecting vadose zone vulnerability by a simulation method

    PubMed Central

    Li, Juan; Xi, Beidou; Cai, Wutian; Yang, Yang; Jia, Yongfeng; Li, Xiang; Lv, Yonggao; Lv, Ningqing; Huan, Huan; Yang, Jinjin

    2017-01-01

    The characteristics of vadose zone vulnerability dominating factors (VDFs) are closely related to the migration and transformation mechanisms of contaminants in the vadose zone, which directly affect the state of the contaminants percolating to the groundwater. This study analyzes the hydrogeological profile of the pore water regions in the vadose zone, and conceptualizes the vadose zone as single lithologic, double lithologic, or multi lithologic. To accurately determine how the location of the pollution source influences the groundwater, we classify the permeabilities (thicknesses) of different media into clay-layer and non-clay-layer permeabilities (thicknesses), and introduce the maximum pollution thickness. Meanwhile, the physicochemical reactions of the contaminants in the vadose zone are represented by the soil adsorption and soil degradability. The VDFs are determined from the factors and parameters in groundwater vulnerability assessment. The VDFs are identified and sequenced in simulations and a sensitivity analysis. When applied to three polluted sites in China, the method improved the weighting of factors in groundwater vulnerability assessment, and increased the reliability of predicting groundwater vulnerability to contaminants. PMID:28387232

  4. Effects of Kaolin Clay on the Mechanical Properties of Asphaltic Concrete AC14

    NASA Astrophysics Data System (ADS)

    Abdullah, M. E.; Ramadhansyah, P. J.; Rafsanjani, M. H.; Norhidayah, A. H.; Yaacob, H.; Hainin, M. R.; Warid, M. N. Mohd; Satar, M. K. I. Mohd; Aziz, Md Maniruzzaman A.; Mashros, N.

    2018-04-01

    This study investigated the effect of kaolin clay on the mechanical properties of asphaltic concrete AC14 through Marshall Stability, resilient modulus, and dynamic creep tests. Four replacement levels of kaolin clay (2%, 4%, 6%, and 8% by weight of the binder) were considered. Kaolin clay functioned as an effective filler replacement material to increase the mechanical properties of asphalt mixtures. Asphaltic concrete with 2% to 4% kaolin clay replacement level exhibited excellent performance with good stability, resilient modulus, and creep stiffness.

  5. State summaries: Kentucky

    USGS Publications Warehouse

    Greb, S.F.; Anderson, W.H.

    2006-01-01

    Kentucky mines coal, limestone, clay, sand and gravel. Coal mining operations are carried out mainly in the Western Kentucky Coal Field and the Eastern Kentucky Coal field. As to nonfuel minerals, Mississippian limestones are mined in the Mississippian Plateaus Region and along Pine Mountain in southeastern Kentucky. Ordovician and Silurian limestones are mined from the central part of the state. Clay minerals that are mined in the state include common clay, ceramic and ball clays, refractory clay and shale. Just like in 2004, mining activities in the state remain significant.

  6. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  7. Mechanistic examination of pre-exfoliating confinement of surface-active polystyrene nanobeads within pristine clay.

    PubMed

    Khvan, Svetlana; Kim, Junkyung; Lee, Sang-Soo

    2007-02-01

    Hydrophobic polymer (PS) nanoparticles preformed through an emulsifier-free emulsion polymerization method were successfully incorporated into a gallery of pristine sodium montmorillonite via interfacial cation exchange. The polymer beads confined between clay nanosheets were capable of (1) preventing the silicate layers from restacking and (2) maintaining the exfoliated state of clay. The increase in the abundance of surface groups promoted adsorption of the nanobeads onto the silicate surface and eventually led to the establishment of strong polymer-clay interactions. These findings suggest that, on the basis of the obtained pre-exfoliated clay masterbatch, the presence of strong polymer-clay interactions could improve the mechanical performance of nanocomposites.

  8. Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.

    PubMed

    Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang

    2010-09-01

    The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.

  9. Water-assisted extrusion of bio-based PETG/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Naeun; Lee, Sangmook

    2018-02-01

    Bio-based polyethylene terephthalate glycol-modified (PETG)/clay nanocomposites were prepared using the water-assisted extrusion process. The effects of different types of clay and clay mixing methods (with or without the use of water) and the resulting nanocomposites properties were investigated by measuring the rheological and tensile properties and morphologies. The valuable properties were achieved when Cloisite 30B was mixed in a slurry state. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nano-clay was well dispersed within the PETG matrix. This shows that the slurry process could be an effective exfoliation method for many nanocomposites systems as well as for bio-based PETG/clay nanocomposites.

  10. Clays and other minerals in prebiotic processes

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  11. Numerical simulations of sand production in interbedded hydrate-bearing sediments during depressurization

    USGS Publications Warehouse

    Uchida, Shun; Lin, Jeen-Shang; Myshakin, Evgeniy; Seol, Yongkoo; Collett, Timothy S.; Boswell, Ray

    2017-01-01

    Geomechanical behavior of hydrate-bearing sediments during gas production is complex, involving changes in hydrate-dependent mechanical properties. When interbedded clay layers are present, the complexity is more pronounced because hydrate dissociation tends to occur preferentially in the sediments adjacent to the clay layers due to clay layers acting as a heat source. This would potentially lead to shearing deformation along the sand/clay contacts and may contribute to solid migration, which hindered past field-scale gas production tests. This paper presents a near-wellbore simulation of sand/clay interbedded hydrate-bearing sediments that have been subjected to depressurization and discusses the effect of clay layers on sand production.

  12. Clay facial masks: physicochemical stability at different storage temperatures.

    PubMed

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  13. Characterisation of the wall-slip during extrusion of heavy-clay products

    NASA Astrophysics Data System (ADS)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (d<2µm) was separated by the help of sedimentation. The viscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  14. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    PubMed

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  15. Reinforcement of natural rubber latex by nanosize montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Tantatherdtam, Rattana

    Based on the unique character of montmorillonite namely its layer structure and the ability of silicate particles to separate into nanometer-size platelets, natural rubber (polyisoprene)/clay composites were obtained by mixing rubber latex with clay-water dispersion and coagulating the mixture. The resulting film had greatly improved mechanical properties compared with films using micron-sized fillers. Further, both modulus and toughness were improved; in many composite system an improvement in modulus leads to a loss of toughness. X-ray diffraction results indicated that clay platelets dispersed in the rubber matrix on the nanoscale level with some macromolecules intercalated into the clay gallery. The observed considerable improvement in mechanical properties, coupled with a theoretical model of composite modulus suggests a dispersed structure of clay in the composite. While not all clay particles are exfoliated, data suggest that a reasonable fraction of exfoliated materials is required to explain the experimental results.

  16. The clays of the United States east of the Mississippi River

    USGS Publications Warehouse

    Ries, Henrich

    1903-01-01

    Since clays vary mineralogically they vary also chemically, but the plasticity may remain the same through a wide range of chemical composition, and this property is evidently not dependent on the chemical composition alone, but is due rather to some physical cause. The plasticity may be destroyed by heating the clay to a sufficiently high temperature to drive off the chemically combined water. Although varying in their mineral composition, most clays are supposed to contain more or less of the mineral kaolinite (a hydrated silicate of alumina), which is commonly referred to as the clay base or clay substance. The adoption of the latter term has probably arisen from the fact that many have 'considered this mineral to be the cause of plasticity, an idea now known to be somewhat incorrect, because some of the most plastic clays contain but small quantities of kaolinite, and vice versa. 

  17. California Bearing Ratio (CBR) test on stabilization of clay with lime addition

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Roesyanto; Limbong, M. N.; Oberlyn, S. J.

    2018-02-01

    Clay is a type of soil with particles of certain minerals giving plastic properties when mixed with water. Soil has an important role in a construction, besides as a building material in a wide variety of civil engineering works, soil is also used as supporting foundation of the building. Basic properties of clay are rock-solid in dry and plastic with medium water content. In high water content, clay becomes sticky like (cohesive) and soften. Therefore, clay stabilization is necessary to repair soil’s mechanical properties. In this research, lime is use as a stabilizer that contains the Ca+ element to bond bigger particles. Lime used is slaked lime Ca(OH)2. Clay used has liquid limitation (LL) value of 47.33%, plasticity index of 29.88% and CBR value 6.29. The results explain about 10% lime mixture variation gives the optimum stabilized clay with CBR value of 8.75%.

  18. Soil clay content underlies prion infection odds

    PubMed Central

    David Walter, W.; Walsh, Daniel P.; Farnsworth, Matthew L.; Winkelman, Dana L.; Miller, Michael W.

    2011-01-01

    Environmental factors—especially soil properties—have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. PMID:21326232

  19. Soil clay content underlies prion infection odds.

    PubMed

    David Walter, W; Walsh, Daniel P; Farnsworth, Matthew L; Winkelman, Dana L; Miller, Michael W

    2011-02-15

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings.

  20. Paleoenvironmental Implications of Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas F.; Blake, David F.

    2014-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx. 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx. 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at approx. 10A with a slight inflexion at approx. 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating >60 C in the presence of water. Given estimated geothermal gradients on Mars temperatures <60 C might still be consistent with (but do not require) moderate burial. However, our ability to identify interstratified minerals is greatly limited by the lack of access to traditional treatments methods used in the lab (e.g., ethylene glycol solvation). Our preferred explanation for the origin of trioctahedral smectites in Sheepbed mudstone is in situ production via reaction of olivine, water and Si-bearing amorphous material, an important mudstone component detected by XRD. Elevated levels of magnetite in the Sheepbed and the trioctahedral monomineralic nature of the clay minerals support this model. These observations, combined with previous studies of olivine stability, support the persistence of circum-neutral hydrous conditions for thousands of years at YKB.

  1. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    NASA Astrophysics Data System (ADS)

    Bristow, T.; Blake, D.; Bish, D. L.; Vaniman, D.; Ming, D. W.; Morris, R. V.; Chipera, S.; Rampe, E. B.; Farmer, J. D.; Treiman, A. H.; Downs, R.; Morrison, S.; Achilles, C.; Des Marais, D. J.; Crisp, J. A.; Sarrazin, P.; Morookian, J.; Grotzinger, J. P.; Team, M.

    2013-12-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent ~150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (~3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of ~20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at ~10A with a slight inflexion at ~12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating >60°C in the presence of water. Given estimated geothermal gradients on Mars temperatures <60 °C might still be consistent with (but do not require) moderate burial. However, our ability to identify interstratified minerals is greatly limited by the lack of access to traditional treatments methods used in the lab (e.g., ethylene glycol solvation). Our preferred explanation for the origin of trioctahedral smectites in Sheepbed mudstone is in situ production via reaction of olivine, water and Si-bearing amorphous material, an important mudstone component detected by XRD. Elevated levels of magnetite in the Sheepbed and the trioctahedral monomineralic nature of the clay minerals support this model. These observations, combined with previous studies of olivine stability, support the persistence of circum-neutral hydrous conditions for thousands of years at YKB.

  2. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas; Blake, David; Bish, David L.; Vaniman, David; Ming, Douglas W.; Morris, Richard V.; Chipera, Steve; Rampe, Elizabeth B.; Farmer, Jack, D.; Treiman, Allan H; hide

    2013-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 021 band consistent with a trioctahedral phyllosilicate. A broad peak at approx 10A with a slight inflexion at approx 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating >60degC in the presence of water. Given estimated geothermal gradients on Mars temperatures <60 degC might still be consistent with (but do not require) moderate burial. However, our ability to identify interstratified minerals is greatly limited by the lack of access to traditional treatments methods used in the lab (e.g., ethylene glycol solvation). Our preferred explanation for the origin of trioctahedral smectites in Sheepbed mudstone is in situ production via reaction of olivine, water and Si-bearing amorphous material, an important mudstone component detected by XRD. Elevated levels of magnetite in the Sheepbed and the trioctahedral monomineralic nature of the clay minerals support this model. These observations, combined with previous studies of olivine stability, support the persistence of circum-neutral hydrous conditions for thousands of years at YKB.

  3. Textured Sling Pots

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2010-01-01

    Clay is one of the most satisfying mediums for children to work with. It's relatively inexpensive, and the texture and changes that take place with the clay during firing make it irresistible. Molding clay from rolled-out slabs of clay is an easy way to make simple, shallow vessels or display pots. In this article, the author describes how her…

  4. Preparation of sorbent pellets with high integrity for sorption of CO.sub.2 from gas streams

    DOEpatents

    Siriwardane, Ranjani V.

    2016-05-10

    Method for the production of a CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, amine liquid, hydraulic binder, and a liquid binder. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.

  5. Clay-Enriched Silk Biomaterials for Bone Formation

    PubMed Central

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  6. Clay energetics in chemical evolution

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.

    1986-01-01

    Clays have been implicated in the origin of terrestrial life since the 1950's. Originally they were considered agents which aid in selecting, concentrating and promoting oligomerization of the organic monomeric substituents of cellular life forms. However, more recently, it has been suggested that minerals, with particular emphasis on clays, may have played a yet more fundamental role. It has been suggested that clays are prototypic life forms in themselves and that they served as a template which directed the self-assembly of cellular life. If the clay-life theory is to have other than conceptual credibility, clays must be shown by experiment to execute the operations of cellular life, not only individually, but also in a sufficiently concerted manner as to produce some semblance of the functional attributes of living cells. Current studies are focussed on the ability of clays to absorb, store and transfer energy under plausible prebiotic conditions and to use this energy to drive chemistry of prebiotic relevance. Conclusions of the work are applicable to the role of clays either as substrates for organic chemistry, or in fueling their own life-mimetic processes.

  7. Effects of clay dispersion on aquifer storage and recovery in coastal aquifers

    USGS Publications Warehouse

    Konikow, Leonard F.; August, L.L.; Voss, C.I.

    2001-01-01

    Cyclic injection, storage, and withdrawal of freshwater in brackish aquifers is a form of aquifer storage and recovery (ASR) that can beneficially supplement water supplies in coastal areas. A 1970s field experiment in Norfolk, Virginia, showed that clay dispersion in the unconsolidated sedimentary aquifer occurred because of cation exchange on clay minerals as freshwater displaced brackish formation water. Migration of interstitial clay particles clogged pores, reduced permeability, and decreased recovery efficiency, but a calcium preflush was found to reduce clay dispersion and lead to a higher recovery efficiency. Column experiments were performed in this study to quantify the relations between permeability changes and clay mineralogy, clay content, and initial water salinity. The results of these experiments indicate that dispersion of montmorillonite clay is a primary contributor to formation damage. The reduction in permeability by clay dispersion may be expressed as a linear function of chloride content. Incorporating these simple functions into a radial, cross-sectional, variable-density, ground-water flow and transport model yielded a satisfactory simulation of the Norfolk field test - and represented an improvement over the model that ignored changes in permeability. This type of model offers a useful planning and design tool for ASR operations in coastal clastic aquifer systems.

  8. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils

    NASA Astrophysics Data System (ADS)

    Farahani, Elham; Emami, Hojat; Keller, Thomas

    2018-01-01

    In this study, we investigated the impact of adding solutions with different potassium and sodium concentrations on dispersible clay, water retention characteristics, air permeability, and soil shrinkage behaviour using two agricultural soils from Switzerland with different clay content but similar organic carbon to clay ratio. Three different solutions (including only Na, only K, and the combination of both) were added to soil samples at three different cation ratio of soil structural stability levels, and the soil samples were incubated for one month. Our findings showed that the amount of readily dispersible clay increased with increasing Na concentrations and with increasing cation ratio of soil structural stability. The treatment with the maximum Na concentration resulted in the highest water retention and in the lowest shrinkage capacity. This was was associated with high amounts of readily dispersible clay. Air permeability generally increased during incubation due to moderate wetting and drying cycles, but the increase was negatively correlated with readily dispersible clay. Readily dispersible clay decreased with increasing K, while readily dispersible clay increased with increasing K in Iranian soil (Part I of our study). This can be attributed to the different clay mineralogy of the studied soils (muscovite in Part I and illite in Part II).

  9. Evaluation of the healing activity of therapeutic clay in rat skin wounds.

    PubMed

    Dário, Giordana Maciel; da Silva, Geovana Gomes; Gonçalves, Davi Ludvig; Silveira, Paulo; Junior, Adilson Teixeira; Angioletto, Elidio; Bernardin, Adriano Michael

    2014-10-01

    The use of clays for therapeutic practice is widespread in almost all regions of the world. In this study the physicochemical and microbiological healing characteristics of a clay from Ocara, Brazil, popularly used for therapeutic uses, were analyzed. The presence of Ca, Mg, Al, Fe, and Si was observed, which initially indicated that the clay had potential for therapeutic use. The average particle size of the clay (26.3 μm) can induce the microcirculation of the skin and the XRD analysis shows that the clay is formed by kaolinite and illite, a swelling clay. During the microbiological evaluation there was the need to sterilize the clay for later incorporation into the pharmaceutical formula. The accelerated stability test at 50°C for 3 months has showed that the pharmaceutical formula remained stable with a shelf life of two years. After the stability test the wound-healing capacity of the formulation in rats was evaluated. It was observed that the treatment made with the formulation containing the Ocara clay showed the best results since the formula allowed greater formation of collagen fibers and consequent regeneration of the deep dermis after seven days of treatment and reepithelialization and continuous formation of granulation tissue at the 14th day. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Coupling Effects of Heat and Moisture on the Saturation Processes of Buffer Material in a Deep Geological Repository

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsing

    2017-04-01

    Clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation behavior of clay barrier, with emphasis on the coupling effects of heat and moisture of buffer material in the near-field of a repository during groundwater intrusion processes. A locally available clay named "Zhisin clay" and a standard bentotine material were adopted in the laboratory program. Water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the buffer material. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. The finite element program ABAQUS was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on Zhisin clay. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. It was found that, due to the variation in suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.

  11. Rheological and thermal properties of polylactide/silicate nanocomposites films.

    PubMed

    Ahmed, Jasim; Varshney, Sunil K; Auras, Rafeal

    2010-03-01

    Polylactide (DL)/polyethylene glycol/silicate nanocomposite blended biodegradable films have been prepared by solvent casting method. Rheological and thermal properties were investigated for both neat amorphous polylactide (PLA-DL form) and blend of montmorillonite (clay) and poly (ethylene glycol) (PEG). Melt rheology of the PLA individually and blends (PLA/clay; PLA/PEG; PLA/PEG/clay) were performed by small amplitude oscillation shear (SAOS) measurement. Individually, PLA showed an improvement in the viscoelastic properties in the temperature range from 180 to 190 degrees C. Incorporation of nanoclay (3% to 9% wt) was attributed by significant improvements in the elastic modulus (G') of PLA/clay blend due to intercalation at higher temperature. Both dynamic modulii of PLA/PEG blend were significantly reduced with addition of 10% PEG. Rheometric measurement could not be conducted while PLA/PEG blends containing 25% PEG. A blend of PLA/PEG/clay (68/23/9) showed liquid-like properties with excellent flexibility. Thermal analysis of different clay loading films indicated that the glass transition temperatures (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) of the blend (PLA/PEG and PLA/PEG/clay) significantly. Both rheological and thermal analysis data supported plasticization and flexibility of the blended films. It is also interesting to study competition between PLA and PEG for the intercalation into the interlayer spacing of the clay. This study indicates that PLA/montmorillonite blend could serve as effective nano-composite for packaging and other applications.

  12. Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Gadikota, G.; Dazas, B.

    2016-12-01

    Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).

  13. Fabrication and Characterization of Flexible Organic Light Emitting Diodes Based on Transparent Flexible Clay Substrates

    NASA Astrophysics Data System (ADS)

    Venkatachalam, Shanmugam; Hayashi, Hiromichi; Ebina, Takeo; Nakamura, Takashi; Nanjo, Hiroshi

    2013-03-01

    In the present work, transparent flexible polymer-doped clay (P-clay) substrates were prepared for flexible organic light emitting diode (OLED) applications. Nanocrystalline indium tin oxide (ITO) thin films were prepared on P-clay substrates by ion-beam sputter deposition method. The structural, optical, and electrical properties of as-prepared ITO/P-clay showed that the as-prepared ITO thin film was amorphous, and the average optical transparency and sheet resistance were around 84% and 56 Ω/square, respectively. The as-prepared ITO/P-clay samples were annealed at 200 and 270 °C for 1 h to improve the optical transparency and electrical conductivity. The average optical transparency was found to be maximum at an annealing temperature of 200 °C. Finally, N,N-bis[(1-naphthyl)-N,N '-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB), tris(8-hydroxyquinoline) aluminum (Alq3) thin films, and aluminum (Al) electrode were prepared on ITO/P-clay substrates by thermal evaporation method. The current density-voltage (J-V) characteristic of Al/NPB/ITO/P-clay showed linear Ohmic behaviour. In contrast, J-V characteristic of Al/Alq3/NPB/ITO/P-clay showed non-linear Schottky behaviour. Finally, a very flexible OLED was successfully fabricated on newly fabricated transparent flexible P-clay substrates. The electroluminescence study showed that the emission intensity of light from the flexible OLED device gradually increased with increasing applied voltage.

  14. Influence of Clay Content, Mineralogy and Fabric On Radar Frequency Response of Aquifer Materials

    NASA Astrophysics Data System (ADS)

    West, L. J.; Handley, K.

    High frequency electromagnetic methods such as ground penetrating radar (GPR) and time domain reflectometry (TDR) are widely employed to measure water saturation in the vadose zone and water filled porosity in the saturated zone. However, previous work has shown that radar frequency dielectric properties are strongly influenced by clay as well as by water content. They have also shown that that the dielectric response of clay minerals is strongly frequency dependent, and that even a small proportion of clay such as that present in many sandstone aquifers can have a large effect at typi- cal GPR frequencies (around 100MHz). Hence accurate water content/porosity deter- mination requires clay type and content to be taken into account. Reported here are dielectric measurements on clay-sand mixtures, aimed at investigating the influence of clay mineralogy, particle shape, and the geometrical arrangement of the mixture constituents on GPR and TDR response. Dielectric permittivity (at 50-1000MHz) was measured for mixtures of Ottawa Sand and various clay minerals or clay size quartz rock flour, using a specially constructed dielectric cell. Both homogeneous and layered mixtures were tested. The influence of pore water salinity, clay type, and particle arrangement on the dielectric response is interpreted in terms of dielectric dispersion mechanisms. The appropriateness of var- ious dielectric mixing rules such as the Complex Refractive Index Method (CRIM) for determination of water content or porosity from field GPR and TDR data are dis- cussed.

  15. Recent advances in clay mineral-containing nanocomposite hydrogels.

    PubMed

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  16. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia)

    NASA Astrophysics Data System (ADS)

    Trabelsi, Wafa; Tlili, Ali

    2017-05-01

    This study concerns the purification of Tunisian phosphoric acid produced by the Tunisian Chemical Group (TCG), using raw and activated clays materials from Southern Tunisia. The Gafsa basin clays samples (Jebel Hamadi (JHM); Jebel Stah (JS) and the El Hamma sample (Jebel Aïdoudi (JAD)) were activated with 3 M, HCl solution. Phosphoric acid purification was performed on raw and activated clays. Mineralogical characterisation was carried out using the X-ray powder diffraction method and infrared absorption spectroscopy. Textural changes between raw and activated clays were identified using SEM observations and specific surface analysis. Jebel Hamadi clays were almost dominated by smectite associated with kaolinite and illite traces, while Jebel Stah and Jebel Aïdoudi clays were composed of the association of smectite, illite and kaolinite. It is worth noting that the position of the smectite (001) reflection increased after the acidic activation in all studied samples, indicating the relaxation of the smectite structure along the c-axis. This was corroborated by the increasing specific surface area of the clay particles with the activation process. The specific surface area was close to 50 m2/g and 200 m2/g, for raw and activated materials, respectively. The maximum phosphoric acid purification was obtained by using activated clays with 3 N HCl for 4 h. This performance correlated with the maximum of the external specific surface area which generated strong acid sites. Furthermore, the best results of phosphoric acids purification from TCG were obtained at a specific consumption equivalent to 30 Kg of clay/ton of P2O5. These results showed that the best phosphoric acid purification was yielded by Jebel Aïdoudi clay. In all cases, the highest organic carbon reduction rates in the phosphoric acid after filtration were obtained at 90°C.

  18. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    PubMed Central

    Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen

    2010-01-01

    Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  19. Evaluation of the release of dioxins and PCBs during kiln-firing of ball clay.

    PubMed

    Broadwater, Kendra; Meeker, John D; Luksemburg, William; Maier, Martha; Garabrant, David; Demond, Avery; Franzblau, Alfred

    2014-01-01

    Ball clay is known to be naturally contaminated with high levels of polychlorinated di-benzo-p-dioxins (PCDDs). This study evaluated the potential for PCDD, polychlorinated dibenzofuran (PCDF) and polychlorinated biphenyl (PCB) release during the kiln firing of ball clay in an art studio. Toxic equivalence (TEQ) were calculated using World Health Organization (WHO) 2005 toxic equivalence factors (TEF) and congener concentrations. Ten bags of commercial ball clay were found to have an average TEQ of 1,370 nanograms/kilogram (ng kg(-1)) dry weight (dw), almost exclusively due to PCDDs (99.98% of TEQ). After firing, none of the 29 dioxin-like analytes was measured above the limits of detection (LOD) in the clay samples. Air samples were taken during firings using both low-flow and high-flow air samplers. Few low-flow air samples contained measurable levels of dioxin congeners above the LOD. The mean TEQ in the high volume air samples ranged from 0.07 pg m(-3) to 0.21 pg m(-3) when firing ball clay, and was 0.11 pg m(-3) when no clay was fired. These concentrations are within the range measured in typical residences and well-controlled industrial settings. The congener profiles in the high-flow air samples differed from the unfired clay; the air samples had a considerable contribution to the TEQ from PCDFs and PCBs. Given that the TEQs of all air samples were very low and the profiles differed from the unfired clay, it is likely that the PCDDs in dry ball clay were destroyed during kiln firing. These results suggest that inhalation of volatilized dioxins during kiln firing of dry ball clay is an unlikely source of exposure for vocational and art ceramicists. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane

    NASA Astrophysics Data System (ADS)

    Darmawan, A.; Widiarsih

    2018-04-01

    The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.

  1. Overview of the evolution of clay mineralogy in the Gulf of Mexico: implications for regional climate and drainage history of the Mississippi and Brazos-Trinity Rivers

    NASA Astrophysics Data System (ADS)

    Adatte, T.; John, C. M.; Flemings, P. B.; Behrmann, J.

    2005-12-01

    In this paper we present the overview and preliminary results of the analysis of clay minerals in two mini basins drilled during IODP Expedition 308. The goal of our project is to explore the vertical and temporal trends in clay mineralogy in the Ursa Basin and the Brazos-Trinity basin #4. The Brazos-Trinity basin was the sink for sands and clays carried by the Brazos and Trinity Rivers, while the Ursa basin was the sink for sediments carried by the Mississippi river. Reconstructing clay minerals (phyllosilicates <2μm in size) accumulations at these locations could thus potentially yield information on changes in the transport and the source of the siliclastic material transported in the course of the Pleistocene by these three rivers. Moreover, because the type of clay formed in soils through weathering processes largely depend on temperature and amount of precipitation, the dataset generated could provide clues on past climate changes. Some of the mechanisms that are hypothesized to play a major role in controlling clay accumulation in the basins investigated are reworking of clays on the American continent (controlled at the time-scale investigated here by changes in precipitation) and turbidity current deposition (controlled mainly by sea-level changes and thus glacio-eustasy). Finally, a major focusing point of Expedition 308 was sediment physical properties in an overpressured basin. Because each clay mineral specie has a specific average grain sizes, physical properties and cation exchange capacity, the clay mineral composition of the sediment investigated here (dominated by clay-sized particles) may partly control how these sediments react to changes in pressure and temperature. Thus, clay mineral data could contribute to our understanding of the physical properties of the sediments in overpressured basins, and collaborations with geotechnical scientist are planned.

  2. [Mechanism of tritium persistence in porous media like clay minerals].

    PubMed

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  3. Application of Local Adsorbant From Southeast Sulawesi Clay Immobilized Saccharomyces Cerevisiae Bread’s Yeast Biomass for Adsorption Of Mn(Ii) Metal Ion

    NASA Astrophysics Data System (ADS)

    R, Halimahtussaddiyah; Mashuni; Budiarni

    2017-05-01

    Southeast Sulawesi has a great stock of clay. It is probably to use as a source of adsorbent. The adsorbent capacity of clay can be largered with teratment using bread’s yeast as biomass. At this research, study of analysis adsorption of Mn(II) metal ion on clay immobilized Saccharomyces cerevisiae bread’s yeast biomass adsorbent has been conducted. The aims of this research were to determine the effects of contact time, pH and concentration of Mn(II) metal ion and to determine the adsorption capacity of clay immobilized S. cerevisiae biomass for adsorbtion of Mn(II) metal ion. Activated clay was synthesized by reaction of clay with KMnO4, H2SO4 and HCl. S. cerevisiae biomass was result by bread’s yeast mashed. Immobilization of S. cerevisiae biomass into clay was done by mixing of ratio of S. cerevisiae bread’s yeast biomass and clay equal to 1:3 (mass of biomassa : mass of clay). The adsorption capacity was determined by using Freundlich and Langmuir adsorption isoterms. The results of FTIR spectrums showed that the functional groups of clay immobilized S. cerevisiae biomass were Si-OH (wave number 1643 cm-1), Si-O-Si (wave number 1033 cm-1), N-H (wave number 2337 cm-1), O-H (wave number 3441cm-1), and C-H (wave number 2931 cm-1). The result of adsorption capacity from Mn(II) metal ion of contact time optimum 120 minutes, pH optimun at 7 and concentration optimum 50 mg/L were 1,816 mg/g; 0,509 mg/g and 2,624mg/g respectively. The adsorption capacity of Mn(II) metal ion with ratio 1:3 (biomass : clay) was 0,1045 mg/g. Type of isothermal adsorption followed the Freunlich adsorption.

  4. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    PubMed

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  5. Melt-state rheology, solid-state mechanical properties and microstructure of polymer-clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Somwangthanaroj, Anongnat

    Polymer/clay nanocomposites have the potential usefulness in industrial applications such as automotive and packaging due to their strong, light-weight and inexpensive properties. However, to respond to needs of various applications it is crucial to understand the crystallization and rheological properties of these materials. Our initial hypothesis was that the processing conditions such as shear rate, shear strain and temperature affect the crystallization kinetics of intercalated polypropylene nanocomposites. Another hypothesis was that the compatibilizer, PP-MA, affects the role of the nucleating agent, sodium benzoate. The final hypothesis was that the rheological properties of nanocomposites depend on the degree of clay dispersion. By means of time-resolved small-angle light scattering, we were able to demonstrate that clay enhances the crystallization kinetics in nanocomposites and its result differs significantly from that of pure polypropylene. Characteristic crystallization times are extracted from the time evolution of integral measures of the angularly dependent parallel polarized and cross polarized light scattering intensity. Flow acceleration of crystallization kinetics has been observed for the polymer nanocomposites at applied strain rates for which flow has only modest effect on polypropylene crystallization. Furthermore, we were able to conclude that the addition of the nucleating agent sodium benzoate in the presence of polypropylene grafted maleic anhydride is not effective in accelerating crystallization. The rheological properties of two types of polypropylene/clay nanocomposites, with different degrees of clay dispersion have been measured in both linear and non-linear viscoelastic regime. In the linear viscoelastic regime, the storage and loss modulus of nanocomposites increases when clay loading increases. The storage and loss modulus of unsonicated nanocomposites are higher than the sonicated ones because the ultrasonic processing alters the structure of clay and polymer blend in sonicated nanocomposite. Non-linear rheology addresses the possible structure of particulate domains of clays in polymers. From this research, we demonstrated the possible effect of clay and compatibilizer on the crystallization kinetics and the effect of structure of clay and polymer matrix on rheological properties. To understand how clay enhances the mechanical properties, we still need to investigate where the clay actually resides and how the polymer crystallite forms.

  6. Glowing clay: Real time tracing using a suite of novel clay based fluorescent tracers

    NASA Astrophysics Data System (ADS)

    Hardy, Robert; Quinton, John; Pates, Jackie; Coogan, Mike

    2015-04-01

    Clay is one of the most mobile fractions of soil due to its small particle size. It is also known to sorb many chemicals, such as nutrients (notably phosphorus), agrochemicals and heavy metals. The movement of clay is therefore linked with the transport and fate of these substances. A novel fluorescent clay tracing suite has been produced, together with an imaging technique. This suite consists of qualitative clay tracers, using rhodamine based fluorophores, and quantitative clay tracers, using metal based fluorophores. Efforts have also been made to allow integration of commercially available tracers, which are silt and sand sized. The clay tracers exploit the high affinity that montmorillonite has for Rhodamine B and Ru(bpy)3. This allows for an extremely thin layer of the fluorophore to be sorbed onto the clay's surface, in much that same way as materials in the natural environment will bind to clay. The tracer that is produced retains key chemical and physical properties of clay, such as size, shape and density. The retention of these micro-properties results in the retention of macro-properties, such as tendency to aggregate and cracking on drying. Imaging techniques have been developed to analyse these tracers. The imaging system uses diffused laser light to excite the tracer and a modified DSLR camera to image the soil surface. The images have been compiled into a time lapse video showing the movement of clay over the course of a rainfall event. This is the first time that the quantitative movement of clay has been recorded over a soil surface in real time. 4D data can be extracted from the images allowing the spatial location and intensity of tracer to be monitored over time, with mm precision and on the timescale of seconds. As the system can also work with a commercial tracer it is possible to investigate the movement of particles of almost any size and over a range of scales from soil box to hillside. This allows users to access this technique without the need to produce the tracer themselves.

  7. A record of reversed polarity carries by the iron sulphide greigite in British early Pleistocene sediments

    NASA Astrophysics Data System (ADS)

    Hallam, D. F.; Maher, B. A.

    1994-01-01

    Palaeomagnetic measurements were made on samples extracted from a short sequence of early Pleistocene estuarine clays, now exposed in a sea cliff near Sheringham on the north Norfolk coast, UK. On the basis of earlier palynological work, these clays had been ascribed a Pastonian (late Tiglian) age. The clays show marked changes in colour, from reddish-brown at the top of the unit, to blue-grey in the middle, and grey-brown at the base. The palaeomagnetic data vary in close association with these colour changes. The top and basal brown clays show scattered normal directions of low intensity, while the middle blue clays show strongly clustered reversed directions, of much higher intensities. Some samples taken from the boundary between the middle blue clays and upper red clays show upon demagnetisation a normal overprint on a stable reversed polarity. Using high-gradient magnetic extraction, magnetic concentrates have been obtained from the strongly magnetic middle blue clays. The presence of iron sulphide minerals in these concentrates was identified using energy-dispersive X-ray analysis during scanning electron microscopy. More specifically, X-ray diffraction identifies greigite as the only detectable ferrimagnetic mineral in the magnetic concentrates. Rock magnetic measurements show clear qualitative differences in the magnetic mineralogies of the three clay subunits, but absolute identification of the magnetic mineralogy of the weakly magnetic upper and basal brown clays has not yet been possible. We interpret the sequence as a primary reversed polarity record. This record is carried by the iron sulphide greigate as a chemical remanence acquired during `syn'-depositional reduction of iron via the decomposition of organic material in these anoxic tidal clays. Subsequently, the upper and basl subunits of the clay have been oxidised by permeation of groundwater from the adjacent coarse-grained sediments. Most of the griegite in the oxidised margins of the clay has been altered as a result, to a new, less efficient magnetic recording material which thus carries a later, scattered, low-intensity, normal overprint.

  8. Multidecadal persistence of organic matter in soils: insights from spatially resolved investigations at the submicrometer scale

    NASA Astrophysics Data System (ADS)

    Lutfalla, Suzanne; Barré, Pierre; Bernard, Sylvain; Le Guillou, Corentin; Alléon, Julien; Chenu, Claire

    2016-04-01

    Better understanding the mechanisms responsible for the pluri-decadal persistence of carbon in soils requires well constraining the dynamics, the distribution and the chemical nature of both the soil organic carbon (SOC) and the associated mineral phases. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here, benefiting from the unique opportunity offered by an INRA long term bare fallow (LTBF) experiment having started in 1928 in Versailles (France), we report the in-situ characterization of SOC dynamics in four clay fractions of this silty loam soil (total clays [TC, <2μm], coarse clays [CC, 0.2-2μm], intermediate clays [IC, 0.05-0.2μm] and fine clays [FC, 0-0.05μm]). The IC and FC fractions only contain smectite and illite/smectite mixed-layered clay minerals while the CC fraction also contains illite and kaolinite. In the absence of any carbon input, the plant-free LTBF clay fractions from Versailles progressively lost SOC during the first 50 years of the experiment, until they reached a seemingly stable concentration. Of note, the investigated clay fractions did not lose the same amount of SOC and do not exhibit the same final carbon concentrations. The decrease of the organic C:N ratios with LTBF duration corresponds to a progressive enrichment in N-rich SOC for all fractions which can be attributed to microbial material. Even though the speciation of SOC appears to only slightly evolve with LTBF duration, an enrichment in carboxyl and carbonyl groups is revealed by bulk-scale C-NEXAFS data for SOC from all clay fractions. In addition, STXM-based NEXAFS investigations at the submicrometer scale reveal three types of SOC-clay assemblages in addition to clay-free SOC and organic-free clays. While SOC appears mostly adsorbed onto clay surfaces within the IC and FC fractions, other protection mechanisms occur within the CC fraction. Altogether, the present study suggests that smectite have more efficient protection capabilities than those of illite and kaolinite.

  9. Microbe-Clay Mineral Reactions and Characterization Techniques

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhang, G.; Ji, S.; Jaisi, D.; Kim, J.

    2008-12-01

    Clays and clay minerals are ubiquitous in soils, sediments, and sedimentary rocks. They play an important role in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. The changes in the oxidation state of the structural iron in clay minerals, in part, control their physical and chemical properties in natural environments, such as clay particle flocculation, dispersion, swelling, hydraulic conductivity, surface area, cation and anion exchange capacity, and reactivity towards organic and inorganic contaminants. The structural ferric iron [Fe(III)] in clay minerals can be reduced either chemically or biologically. Many different chemical reductants have been tried, but the most commonly used agent is dithionite. Biological reductants are bacteria, including dissimilatory iron reducing prokaryotes (DIRP) and sulfate-reducing bacteria (SRB). A wide variety of DIRP have been used to reduce ferric iron in clay minerals, including mesophilic, thermophilic, and hyperthermophilic prokaryotes. Multiple clay minerals have been used for microbial reduction studies, including smectite, nontronite (iron-rich smectite variety), illite, illite/smectite, chlorite, and their various mixtures. All these clay minerals are reducible by microorganisms under various conditions with smectite (nontronite) being the most reducible. The reduction extent and rate of ferric iron in clay minerals are measured by wet chemistry, and the reduced clay mineral products are typically characterized with chemical methods, X-ray diffraction, scanning and transmission electron microscopy, Mössbauer spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-vis spectroscopy, and synchrotron-based techniques (such as EXAFS). Microbially reduced smectites (nontronites) have been found to be reactive in reducing a variety of organic and inorganic contaminants. Degradable organic contaminants include pesticides, solvents, explosives, and nitroaromatic and polychlorinated compounds. Inorganic contaminants include Cr(VI), U(VI), and Tc(VII). Despite significant efforts, our understanding of mechanisms of chemical and microbial reduction of ferric iron in clay minerals is still limited. While some studies have presented evidence for a solid-state reduction mechanism, others argue that the clay mineral structure dissolves when the extent of reduction is higher (greater than 30 percent). The electron transfer process is also dependent on the reducing agent. While chemical reduction of ferric iron appears to occur at the basal surfaces, bacteria appear to attack clay minerals at the edges.

  10. Effects of simulated clay gouges on the sliding behavior of Tennessee sandston

    NASA Astrophysics Data System (ADS)

    Shimamoto, Toshihiko; Logan, John M.

    1981-06-01

    The effects of simulated fault gouge on the sliding behavior of Tennessee sandstone are studied experimentally with special reference to the stabilizing effect of clay minerals mixed into the gouge. About 30 specimens with gouge composed of pure clays, of homogeneously mixed clay and anhydrite, or of layered clay and anhydrite, along a 35° precut are deformed dry in a triaxial apparatus at a confining pressure of 100 MPa, with a shortening rate of about 5 · 10 -4/sec, and at room temperature. Pure clay gouges exhibit only stable sliding, and the ultimate frictional strength is very low for bentonite (mont-morillonite), intermediate for chlorite and illite, and considerably higher for kaolinite. Anhydrite gouge shows violent stick-slip at 100 MPa confining pressure. When this mineral is mixed homogeneously with clays, the frictional coefficient of the mixed gouge, determined at its ultimate frictional strength, decreases monotonically with an increase in the clay content. The sliding mode changes from stick-slip to stable sliding when the frictional coefficient of the mixed clay-anhydrite gouge is lowered down below 90-95% of the coefficient of anhydrite gouge. The stabilizing effect of clay in mixed gouge is closely related to the ultimate frictional strength of pure clays; that is, the effect is conspicuous only for a mineral with low frictional strength. Only 15-20% of bentonite suppresses the violent stick-slip of anhydrite gouge. In contrast, violent stick-slip occurs even if the gouge contains as much as 75% of kaolinite. The behavior of illite and chlorite is intermediate between that of kaolinite and bentonite. Bentonite—anhydrite two-layer gouge exhibits stable sliding even when the bentonite content is only 5%. Thus, the presence of a thin, clay-rich layer in a fault zone stabilizes the behavior much more effectively than do the clay minerals mixed homogeneously with the gouge. This result brings out the mechanical significance of internal structures of a fault zone in understanding the effects of intrafault materials on the fault motion. Based on the present experimental results incorporated with some other experimental data, it is argued that although the stabilizing effect of montmorillonite and vermiculite is indeed remarkable at room temperature, the effect should be much less pronounced at elevated temperatures, due perhaps to the dewatering of the clays. In most geological environments where shallow earthquakes occur, the stabilizing effect of clays is probably not so conspicuous as to completely suppress the unstable motion of a fault.

  11. Effects of clay on toxin binding capacity, ruminal fermentation, diet digestibility, and growth of steers fed high-concentrate diets.

    PubMed

    Antonelo, D S; Lancaster, N A; Melnichenko, S; Muegge, C R; Schoonmaker, J P

    2017-10-01

    Three experiments were conducted to determine the effect of increasing concentrations of a smectite clay on toxin binding capacity, ruminal fermentation, diet digestibility, and growth of feedlot cattle. In Exp. 1, 72 Angus × Simmental steers were blocked by BW (395 ± 9.9 kg) and randomly allotted to 3 treatments (4 pens/treatment and 6 steers/pen) to determine the effects of increasing amounts of clay (0, 1, or 2%) on performance. The clay was top-dressed on an 80% concentrate diet at a rate of 0, 113, or 226 g/steer daily to achieve the 0, 1, and 2% treatments, respectively. Steers were slaughtered at a target BW of 606 kg. In Exp. 2, 6 steers (596 ± 22.2 kg initial BW) were randomly allotted to the same 3 treatments in a replicated 3 × 3 Latin square design (21-d periods) to determine the effects of increasing amounts of clay on ruminal pH, VFA, and nutrient digestibility. In Exp. 3, 150 mg of clay was incubated in 10 mL of rumen fluid with 3 incremental concentrations (6 replicates per concentration) of aflatoxin B (AFB) or ergotamine tartate (ET) to determine binding capacity. During the first 33-d period, there was a quadratic effect of clay on ADG ( < 0.01) and G:F ( < 0.01), increasing from 0 to 1% clay and then decreasing from 1 to 2% clay. However, during the second 30-d period, clay linearly decreased ADG and G:F ( ≤ 0.03) and overall ADG, DMI, and G:F were not impacted ( ≥ 0.46). Clay linearly decreased marbling score ( = 0.05). Hepatic enzyme activity did not differ among treatments on d 0 or at slaughter ( ≥ 0.15). Clay linearly decreased ruminal lactate and propionate, linearly increased formate and the acetate:propionate ratio ( ≤ 0.04), and tended ( = 0.07) to linearly increase butyrate. Clay tended to linearly increase ( = 0.06) OM and CP apparent digestibility. Ruminal pH, urine pH, and other digestibility measures did not differ among treatments ( ≥ 0.15). Clay was able to effectively bind AFB and ET at concentrations above the normal physiological range (52 and 520 μg/mL), but proportional adsorption was decreased to 35.5 and 91.1% at 5,200 μg/mL ( < 0.01) for AFB and ET, respectively. In conclusion, clay effectively binds ruminal toxins, decreases ruminal lactate, and improves performance only during adaptation to a high-concentrate feedlot diet.

  12. Spatially resolved nanoscale observations of soil carbon multidecadal persistence

    NASA Astrophysics Data System (ADS)

    Lutfalla, S.; Chenu, C.; Bernard, S.; Le Guillou, C.; Barré, P.

    2015-12-01

    Assessing how mineral surfaces, especially at small scale, can protect soil organic carbon (SOC) from biodegradation is crucial. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here we used the unique opportunity offered by long term bare fallows (BF) to study in situ C dynamics in several fine fractions of a silty loam soil. With no vegetation i.e. no external input of fresh C, the plant-free soil of the Versailles 42 Plots (INRA, France) has been progressively enriched in persistent SOC during the 80 years of BF. Contrasted mineral phases of the clay size fraction were isolated by size fractionation on samples from 5 different dates (0, 10, 22, 52, and 79 years after the beginning of the BF, four field replicates per date). Four fractions were studied: total clays (< 2 μm), and three sub fractions in the clay (fine clay: 0 - 0.05 μm, intermediate clay: 0.05 - 0.2 μm, and coarse clay: 0.2 - 2 μm). X-ray diffraction analyses showed contrasted mineralogies in the fine and intermediate clay (smectite and mixed layered illite/smectite) as opposed to the coarse clay (smectite, illite, kaolinite and mixed layered I/S). We performed CHN elemental analysis and synchrotron based spectroscopy and microscopy (NEXAFS bulk and STXM at the carbon K edge of 280 eV, CLS Saskatoon, Canada) to study the dynamics, the distribution and the chemical speciation of the SOC in these fractions. The quantity of C appears to be stabilized after 50 years of BF, even though the dynamics are different for the three clay fractions. Indeed, coarse and intermediate clays have the same final C content but coarse clays lose more C. Fine clay experiences the highest C losses and displays the highest final C content suggesting that fine clays contained more labile C and more persistent C. In all fractions, C:N ratios are really low (below 8) and are decreasing with time, evidencing the dominant presence of microbial SOC. STXM-NEXAFS data shows that, in the fine and intermediate clay fractions, during the first 50 years of BF all mineral particles are associated with SOC. On the contrary, in the coarse clays, SOC displays more diversity: the chemical signature is more diverse and mineral particles not associated with SOC appear more quickly.

  13. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite particles are dispersed, and the suspension is stabilized supported by our SEM observations. In alkaline water, kaolinite reveals a lower degree of consolidation. While, alkaline water has no measurable effect on illite and chlorite surface properties due to the absence of modifications in charge. Illite and chlorite form with other clasts clusters or aggregate structures in suspension when the particle interactions are dominated by attractive energies were formed. The aggregate structure plays a major part in the flow behavior of clay suspensions. Flocs will immobilize the suspending medium, and give rise to increasing viscosity and yield strength of the suspension. S. Hage, A. Hubert-Ferrari, L. Lamair, U. Avşar, M. El Ouahabi, M. Van Daele, F. Boulvain, M.A. Bahri, A. Seret, Al. Plenevaux. Flow dynamics at the origin of thin sandy clay-rich lacustrine turbidites: Examples from Lake Hazar, Turkey, submitted to Sedimentology, in revision.

  14. Soil Materials and Health: An new experience for teaching

    NASA Astrophysics Data System (ADS)

    Del Hoyo Martínez, Carmen

    2014-05-01

    Cationic clays are very extended compounds on the earth surface so they constitute the main component of soils and sedimentary rocks. Due to their presence and special properties that they have, mankind has used them with therapeutic aims from Prehistory, not being rare to find references to this subject in works of classic authors. During the Renaissance and with the appearance of the first Pharmacopeia, its use was regulated to a certain extent. The scientific development reached during the XXth century has allowed to understand and to study the reasons of the useful and peculiar properties of clays, directly related to their colloidal size and crystalline structure. These properties are translated in a high specific surface area, optimal rheological properties and/or excellent sorptive capacity; everything makes cationic clays very useful for a wide range of applications. In the field of health, cationic clays are used in Pharmaceutical Technology and Dermopharmacy as ideal excipients and substances of suitable biological activity due to their chemical inertness and low or null toxicity for the patient (Carretero, 2002; Lopez Galindo et al., 2005; Choy et al., 2007; del Hoyo, 2007). Cationic clays can be used in a wide range of applications in health. However, it must be also considered that the risk exposure to cationic clays may cause several diseases, as it has been seen above. Cationic clays have been used as excipients and active principles in the pharmaceutical industry. The last tendencies are their use in geomedicine, as much to come up as to treat diseases. One stands out his presence in spas and aesthetic medicine. Development of new pharmaceutical formulations is observed, based on cationic clays, for cancer therapy. It has to emphasize the importance in the synthesis of biosensors with cationic clays. Cationic clays can be considered a group of promising materials in the development of new health applications. The study of the use of the cationic clays in the field of the health is a source to develop numerous studies of cases in the teaching of different subjects related to the geoscience and a new opportunity to connect the learning with the reality. References -Carretero, MI 2002. Clay Minerals and Their Beneficial Effects upon Human Health. A review. Appl. Clay Sci. 21, pp. 155-163. -Choy, J.H., Choi, S.J., Oh, J.M., Park, T. 2007. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 36 pp. 122-132. -Del Hoyo, C. 2007. Layered double hydroxides and human health: An overview. Appl. Clay Sci. 36, pp. 103-121. -Lopez-Galindo, A., Viseras Iborra, C. & Cerezo Gonzalez, P. 2005. Arcillas y salud. In: Conferencias de la XIX Reunion de la Sociedad Espanola de Arcillas. Rives, Ed., pp. 15-18.

  15. The PETM in the mid-Atlantic Coastal Plain: A widespread record of unique climate signatures in shallow-shelf Marlboro Clay

    NASA Astrophysics Data System (ADS)

    Powars, D. S.; Edwards, L. E.; Kopp, R. E.; Self-Trail, J.; Schultz, A.

    2009-12-01

    Abrupt sedimentary changes mark the Paleocene-Eocene Thermal Maximum (PETM) in the mid-Atlantic Coastal Plain. Across the tectonic downwarp known as the Salisbury Embayment (southeastern Virginia to central New Jersey), kaolinite-rich clay (the Marlboro Clay) abruptly replaces glauconite-rich quartz sand, silt, and illite-smectite clay of the late Paleocene. Dozens of cored boreholes obtained by the USGS and other Federal and State agencies, together with geophysical logs from more than 100 boreholes, allow us to document the widespread distribution and depositional, biostratigraphic, paleoecologic, taphonomic, and tectonic characteristics of the Marlboro Clay. In Maryland and Virginia, the Marlboro Clay is a silvery-gray to pale-red plastic clay and locally includes thin laminations and thicker beds of silt, concretions, pyrite nodules, and rare shell fragments (in downdip cores). The clay is unconformity bounded with highly burrowed contacts. The lower contact is locally so bioturbated that it has been reported as gradational. The upper contact in Virginia has glauconite-rich, sand-filled burrows from the overlying Nanjemoy Formation (lower Eocene) that penetrate as much as 8.5 m down into the Marlboro Clay (total thickness only 9 m). Biostratigraphically, the Marlboro Clay is placed in calcareous nannofossil Zone NP9 (and NP10 in downdip cores) and includes the PETM marker dinocyst species Apectodinium augustum (in downdip cores). In New Jersey, a similar clay deposit is described from the subsurface; and based on consistency in lithology, biostratigraphy, stratigraphic position, isotopic composition and its magnetic properties, we apply the name Marlboro Clay to this unique clay unit throughout the Salisbury Embayment. Structure-contour and isopach maps of the present configuration of the Marlboro Clay reveal a widespread deposit with localized truncation or thinning. Tectonic folding and faulting along the inner Coastal Plain and along the James River structural zone produced syn- and post-depositional erosional thinning on uplifted sides of faults and thickening in downdropped areas. The Chesapeake Bay Impact Structure (CBIS) removed the Marlboro Clay across a large area of southeastern Virginia. Faults and folds associated with the CBIS appear to deform the clay in an outer-fracture-zone that extends up to 25-km outside the crater’s outer rim. The Marlboro Clay thickens and is slightly finer-grained in the deeper part of the Marlboro basin in where structure contours on the top-of-basement generally mimic the tectonic downwarp. The apparent deepest (>200 m below sea level) and thickest (>14 m) part of the Marlboro depositional basin appears to extend from just south of the mouth of the Potomac River northward to the lower Choptank River valley, Maryland, then turns sharply northeastward to beneath the central part of Delaware Bay. The Marlboro Clay of the mid-Atlantic United States thus provides a widespread deposit that in its regional and tectonic setting records, in its unusual sedimentary properties, the severe regional environmental changes associated with global climate change during the PETM.

  16. Effects of clay after a grain challenge on milk composition and on ruminal, blood, and fecal pH in Holstein cows.

    PubMed

    Sulzberger, S A; Kalebich, C C; Melnichenko, S; Cardoso, F C

    2016-10-01

    Oral supplementation of clay has been reported to function as buffer in dairy cows. However, its effects on rumen, blood, and fecal pH have varied among studies. Our objective was to determine the effects of 3 concentrations of dietary clay supplementation after a grain challenge. Ten multiparous rumen-cannulated Holstein cows [body weight (mean ± standard deviation)=648±12kg] with 142±130 (60 to 502) days in milk were assigned to 1 of 5 treatments in a replicated 5×5 Latin square design balanced to measure carryover effects. Periods (21d) were divided into an adaptation phase (d 1 to 18, with regular total mixed ration fed ad libitum) and a measurement phase (d 19 to 21). Feed was restricted on d 18 to 75% of the average of the total mixed ration fed from d 15 to 17 (dry matter basis), and on d 19 cows received a grain challenge. The challenge consisted of 20% finely ground wheat administered into the rumen via a rumen cannula, based on the average dry matter intake obtained on d 15 to 17. Treatments were POS (no clay plus a grain challenge), 3different concentrations of clay (0.5, 1, or 2% of dietary dry matter intake), and control (C; no clay and no grain challenge). Statistical analysis was performed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Contrasts 1 (POS vs. C) and 2 (POS vs. the average of 0.5, 1, or 2%) were compared, along with linear and quadratic treatment effects. Rumen, fecal, and blood pH, along with blood metabolites, were measured at 0, 4, 8, 12, 16, 20, 24, 36, and 48h relative to the grain challenge. Cows fed POS had lower rumen pH [(mean ± standard error) 6.03±0.06] than cows fed C (6.20±0.06). Cow fed POS had lower fecal pH (6.14±0.04) than cows fed C (6.38±0.04). We observed a linear treatment effect for rumen pH and fecal pH. Fecal pH (6.22±0.04) was higher for cows fed clay (contrast 2) then for cows fed POS (6.14±0.04). We also observed a treatment difference (contrast 2) for negative incremental area under the curve, pH below 5.6 × h/d, (0.5% clay=7.93±0.83, 1% clay=8.56±0.83, and 2% clay=7.79±0.83) compared with POS (11.0±0.83). Cows fed clay tended to have higher milk yield (0.5% clay=28.8±3.4kg, 1% clay=30.2±3.4kg, and 2% clay=29.1±3.4kg, contrast 2), and had higher 3.5% fat-corrected milk (0.5% clay=29.9±3.5kg, 1% clay=34.1±3.5kg, and 2% clay=33.1±3.4kg), and higher energy-corrected milk (0.5% clay=29.1±3.3kg, 1% clay=32.8±3.4kg, and 2% clay=31.6±3.3kg) than cows fed POS (27.7±3.4kg, 28.0±3.4kg, 27.7±3.3kg, respectively). In conclusion, cows fed clay had higher rumen pH, energy-corrected milk, fat-corrected milk, and a trend for milk yield than cows fed POS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Clay Cuffman: A Cool, Calm, Relaxed Guy

    ERIC Educational Resources Information Center

    Booth, Gina

    2010-01-01

    This article describes Clay Cuffman, a simple clay-sculpture project that requires two or three sessions, and works for students from the upper-elementary level through high school. It takes about 1.5 pounds of clay per student--about the size of a small grapefruit. The Cuffman project is a great way for upper-elementary through high-school…

  18. Preparation and Characterization of Natural Rubber/Organophilic Clay Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gonzales-Fernandes, M.; Esper, F. J.; Silva-Valenzuela, M. G.; Martín-Cortés, G. R.; Valenzuela-Diaz, F. R.; Wiebeck, H.

    Natural rubber/organophilic clay nanocomposites were prepared and characterized. A brown bentonite from Paraiba's State, Brazil was modified with a sodium salt and treated with quaternary ammonium salt hexadecyltrimethyl ammonium chloride. The clay in its natural state, after cation exchange with sodium and after organophilization was characterized by XRD, IR, SEM, thermal analysis. Nanocomposite samples were prepared containing 10 resin percent of organophilic clay. The vulcanized samples were analyzed by XRD, SEM. The nanocomposites obtained showed improvement in their mechanical properties in comparison with samples without clay.

  19. Behavior of adsorbed Poly-A onto sodium montmorillonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino-Aquino, Nayeli; Negrón-Mendoza, Alicia, E-mail: negron@nucleares.unam.mx

    2015-07-23

    The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, David J.; Leyva, Argentina A.

    The invention provides methods for making clay/wax nanocomposites and coatings and films of same with improved chemical resistance and gas barrier properties. The invention further provides methods for making and using emulsions of such clay/wax nanocomposites. Typically, an organophillic clay is combined with a wax or wax/polymer blend such that the cohesion energy of the clay matches that of the wax or wax/polymer blend. Suitable organophilic clays include mica and phyllosilicates that have been surface-treated with edge or edge and surface modifying agents. The resulting nanocomposites have applications as industrial coatings and in protective packaging.

  1. Influence of nanosize clay platelets on the mechanical properties of glass fiber reinforced polyester composites.

    PubMed

    Jawahar, P; Balasubramanian, M

    2006-12-01

    Glass fiber reinforced polyester composite and hybrid nanoclay-fiber reinforced composites were prepared by hand lay-up process. The mechanical behavior of these materials and the changes as a result of the incorporation of both nanosize clay and glass fibers were investigated. Composites were prepared with a glass fibre content of 25 vol%. The proportion of the nanosize clay platelets was varied from 0.5 to 2.5 vol%. Hybrid clay-fiber reinforced polyester composite posses better tensile, flexural, impact, and barrier properties. Hybrid clay-fiber reinforced polyester composites also posses better shear strength, storage modulus, and glass transition temperature. The optimum properties were found to be with the hybrid laminates containing 1.5 vol% nanosize clay.

  2. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin.

    PubMed

    Yang, Liping; Phua, Si Lei; Teo, Jun Kai Herman; Toh, Cher Ling; Lau, Soo Khim; Ma, Jan; Lu, Xuehong

    2011-08-01

    A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.

  3. Experimental validation of Swy-2 clay standard's PHREEQC model

    NASA Astrophysics Data System (ADS)

    Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György

    2017-04-01

    One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast reactions under the studied conditions and increased reactivity in presence of scCO2. A model sensitivity analysis has pointed out that the continuously changing solution composition results cannot be described by the change of the uncertain reactive surface area of mineral phases in the model and still several orders of magnitude different ion-concentrations are predicted. However, by considering the clay standard's cation exchange capacity divided proportionally among interlayer cations of Na-montmorillonite, the measured variation can be described on an order of magnitude level. It is furthermore indicated that not only the interlayer cations take part in this process but a minor proportion of other, structural ions as well, differently in the reference and scCO2 environments. Experimental methodological aspects of the work, such as solution sampling, solid sample post-experimental treatment, solution and solid sample analysis sensitivity, expected experimental by-products etc. are also to be addressed.

  4. Late Eocene clay boron-derived paleosalinity in the Qaidam Basin and its implications for regional tectonics and climate

    NASA Astrophysics Data System (ADS)

    Ye, Chengcheng; Yang, Yibo; Fang, Xiaomin; Zhang, Weilin

    2016-12-01

    The Qaidam Basin, located on the northeastern Tibetan Plateau and containing Cenozoic sediments with a maximum thickness of 12,000 m, is an ideal place to study the phased uplift of the NE Tibetan Plateau and regional climate change. The estimation of the paleosalinity of sedimentary environments not only helps to evaluate the evolution of lakes in this region but offers insights into contemporaneous climate change. We present detailed geochemical and mineralogical investigations from the lacustrine interval of the Hongliugou section in the northern Qaidam Basin to reconstruct salinity fluctuations in the paleolake during the late Eocene era ( 42.0-35.5 Ma). The clay mineral assemblages mainly contain smectite, illite, chlorite, kaolinite and irregular illite/smectite mixed layers. Clay boron-derived paleosalinity estimates (equivalent boron content, Couch's paleosalimeter and B/Ga ratios) along with other proxies sensitive to salinity changes (e.g., Rb/K ratios and ostracod assemblages) collectively indicate an overall brackish sedimentary environment with a higher-salinity period at approximately 40.0-39.2 Ma. This higher-salinity period indicates a more arid environment and is probably related to global cooling. However, the global cooling in late Eocene cannot explain the overall stable long-term salinity pattern, implying that other factors exist. We propose that the migration of the Yiliping depression depocenter in the northern Qaidam and increased orographic rainfall induced by late Eocene tectonic activity at the northern margin of the basin might have partly offset the increase in salinity driven by global cooling.

  5. Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: binary and ternary mixtures of quartz, illite, and montmorillonite

    USGS Publications Warehouse

    Tembe, Sheryl; Lockner, David A.; Wong, Teng-Fong

    2010-01-01

    We investigated the frictional sliding behavior of simulated quartz-clay gouges under stress conditions relevant to seismogenic depths. Conventional triaxial compression tests were conducted at 40 MPa effective normal stress on saturated saw cut samples containing binary and ternary mixtures of quartz, montmorillonite, and illite. In all cases, frictional strengths of mixtures fall between the end-members of pure quartz (strongest) and clay (weakest). The overall trend was a decrease in strength with increasing clay content. In the illite/quartz mixture the trend was nearly linear, while in the montmorillonite mixtures a sigmoidal trend with three strength regimes was noted. Microstructural observations were performed on the deformed samples to characterize the geometric attributes of shear localization within the gouge layers. Two micromechanical models were used to analyze the critical clay fractions for the two-regime transitions on the basis of clay porosity and packing of the quartz grains. The transition from regime 1 (high strength) to 2 (intermediate strength) is associated with the shift from a stress-supporting framework of quartz grains to a clay matrix embedded with disperse quartz grains, manifested by the development of P-foliation and reduction in Riedel shear angle. The transition from regime 2 (intermediate strength) to 3 (low strength) is attributed to the development of shear localization in the clay matrix, occurring only when the neighboring layers of quartz grains are separated by a critical clay thickness. Our mixture data relating strength degradation to clay content agree well with strengths of natural shear zone materials obtained from scientific deep drilling projects.

  6. Experimental study of clay-hydrocarbon interactions relevant to the biodegradation of the Deepwater Horizon oil from the Gulf of Mexico.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2016-11-01

    Adding clay to marine oil pollution represents a promising approach to enhance bacterial hydrocarbon degradation in nutrient poor waters. In this study, three types of regionally available clays (Ca-bentonite, Fuller's Earth and kaolin) were tested to stimulate the biodegradation of source and weathered oil collected from the Deepwater Horizon spill. The weathered oil showed little biodegradation prior to experimentation and was extensively degraded by bacteria in the laboratory in a similar way as the alkane-rich source oil. For both oils, the addition of natural clay-flakes showed minor enhancement of oil biodegradation compared to the non-clay bearing control, but the clay-oil films did limit evaporation. Only alkanes of a molecular weight (MW) > 420 showed significant reduction by enhanced biodegradation following natural clay treatment. In contrast, all fertilized clay flakes showed major bacterial degradation of the oil, with a 6-10 times reduction in alkane content, and an up to 8 fold increase in the rate of O2 consumption. Compared to the control, such treatment showed particular reduction of longer chained alkanes (MW > 226). The application of natural and fertilized clay flakes also showed selective reduction of PAHs, mainly in the MW range of 200-300, but without significant change in the toxicity indices measured. These results imply that a large variety of clays may be used to boost oil biodegradation by aiding attachment of fertilizing nutrients to the oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation

    PubMed

    Hussain; Dem&idot;rc&idot;; özbayoğlu

    1996-12-25

    There is a growing trend of characterizing coal and coal wastes in order to study the effect of clays present in them during coal washing. Coarse wastes from the Zonguldak Coal Washery, Turkey, were characterized and found to contain kaolinite, illite, and chlorite. These three clays, obtained in almost pure form from various locations in Turkey, have been subjected to X-ray diffraction (XRD) analysis to assess their purity and zeta potential measurements in order to evaluate their properties in terms of their surface charge and point of zero charge (pzc) values. It was found from XRD data that these clays were almost pure and their electrokinetic potential should therefore be representative of their colloidal behavior. All three clay minerals were negatively charged over the range from pH 2.5 to 11. Chlorite and illite have pzc at pH 3 and pH 2.5, respectively, whereas kaolinite has no pzc. The effect of these clays in Zonguldak coal, wastes, and black waters on coal flotation was studied by floating artificial mixtures of Zonguldak clean coal (4.5% ash) and individual clay. The flotation tests on coal/individual clay revealed that each clay influences coal flotation differently according to its type and amount. Illite had the worst effect on coal floated, followed by chlorite and kaolinite. The loss of yield in coal was found to be 18% for kaolinite, 20% for chlorite, and 28% for illite, indicating the worst effect of illite and least for kaolinite during coal flotation.

  8. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  9. Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution.

    PubMed

    Azzam, Eid M S; Eshaq, Gh; Rabie, A M; Bakr, A A; Abd-Elaal, Ali A; El Metwally, A E; Tawfik, Salah M

    2016-08-01

    In the present study, chitosan assembled on gold and silver nanoparticles were prepared and characterized by UV-vis, TEM, EDX and DLS techniques. The nanocomposites chitosan (Ch)/clay, chitosan (Ch)/AgNPs/clay and chitosan (Ch)/AuNPs/clay were prepared by solution mixing method and characterized by FTIR, XRD, and SEM techniques. The adsorption of copper(II) ions onto the prepared hybrid composites from an aqueous solution using batch adsorption was examined. The results showed that benefiting from the surface property of clay, the abundant amino and hydroxyl functional groups of chitosan, the adsorbent provides adequate and versatile adsorption for the Cu(II) ions under investigation. The batch adsorption experiments showed that the adsorption of the Cu(II) is considerably dependent on pH of milieu, the amount of adsorbent, and contact time. Batch adsorption studies revealed that the adsorption capacity of Cu(II) increased with increase in initial concentration and contact time with optimum pH in the range around neutral. The maximum uptake of Cu(II) ions by (Ch)/AgNPs/clay composite was found to be 181.5mg/g. The adsorption efficiency of Cu(II) ions by prepared (Ch)/AgNPs/clay and (Ch)/AuNPs/clay is bigger than that the individual chitosan (Ch)/clay composite which clarifies the role of metal nanoparticles in enhancement the adsorption characters. The study suggests that the (Ch)/AgNPs/clay hybrid composite is a promising nano-adsorbent for the removal of Cu(II) ions from aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Interactions Between Suspended Kaolinite Deposition and Hyporheic Exchange Flux Under Losing and Gaining Flow Conditions

    NASA Astrophysics Data System (ADS)

    Fox, Aryeh; Packman, Aaron I.; Boano, Fulvio; Phillips, Colin B.; Arnon, Shai

    2018-05-01

    Fine particle deposition and streambed clogging affect many ecological and biogeochemical processes, but little is known about the effects of groundwater flow into and out of rivers on clogging. We evaluated the effects of losing and gaining flow on the deposition of suspended kaolinite clay particles in a sand streambed and the resulting changes in rates and patterns of hyporheic exchange flux (HEF). Observations of clay deposition from the water column, clay accumulation in the streambed sediments, and water exchange with the bed demonstrated that clay deposition in the bed substantially reduced both HEF and the size of the hyporheic zone. Clay deposition and HEF were strongly coupled, leading to rapid clogging in areas of water and clay influx into the bed. Local clogging diverted exchanged water laterally, producing clay deposit layers that reduced vertical hyporheic flow and favored horizontal flow. Under gaining conditions, HEF was spatially constrained by upwelling water, which focused clay deposition in a small region on the upstream side of each bed form. Because the area of inflow into the bed was smallest under gaining conditions, local clogging required less clay mass under gaining conditions than neutral or losing conditions. These results indicate that losing and gaining flow conditions need to be considered in assessments of hyporheic exchange, fine particle dynamics in streams, and streambed clogging and restoration.

  11. Do scaly clays control seismicity on faulted shale rocks?

    NASA Astrophysics Data System (ADS)

    Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie

    2018-04-01

    One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.

  12. Quantifying widespread aqueous surface weathering on Mars: The plateaus south of Coprates Chasma

    NASA Astrophysics Data System (ADS)

    Loizeau, D.; Quantin-Nataf, C.; Carter, J.; Flahaut, J.; Thollot, P.; Lozac'h, L.; Millot, C.

    2018-03-01

    Pedogenesis has been previously proposed on the plateaus around Coprates Chasma, Valles Marineris to explain the presence of widespread clay sequences with Al-clays and possible hydrated silica over Fe/Mg-clays on the surface of the plateaus (Le Deit et al., 2012; Carter et al., 2015). We use previous observations together with new MRO targeted observations and DEMs to constrain the extent and thickness of the plateau clay unit: the Al-clay unit is less than 3 m thick, likely ∼1 m, while the Fe/Mg-clays underneath are few tens of meters thick. We also refine the age of alteration by retrieving crater retention ages of the altered plateau and of later deposits: the observed clay sequence was created by surface pedogenesis between model ages of 4.1 Ga and 3.75 Ga. Using a leaching model from Zolotov and Mironenko (2016), we estimate the quantity of atmospheric precipitations needed to create such a clay sequence, that strongly depends on the chemistry of the precipitating fluid. A few hundreds of meters of cumulated precipitations of highly acidic fluids could explain the observed clay sequence, consistent with estimates based on late Noachian valley erosion for example (Rosenberg and Head, 2015). We show finally that the maximum quantity of sulfates potentially formed during this surface weathering event can only contribute minimally to the volume of sulfates deposited in Valles Marineris.

  13. Effects of organoclay to miscibility, mechanical and thermal properties of poly(lactic acid) and propylene-ethylene copolymer blends

    NASA Astrophysics Data System (ADS)

    Wacharawichanant, S.; Ounyai, C.; Rassamee, P.

    2017-07-01

    The effects of propylene-ethylene copolymer (PEC or PEC3300) and clay surface modified with 25-30 wt% of trimethylstearyl ammonium (Clay-TSA) on morphology, thermal and mechanical properties of poly(lactic acid) (PLA) were investigated. The morphology analysis showed PLA/PEC3300 blends clearly demonstrated a two-phase separation of dispersed phase and the matrix phase and the addition of Clay-TSA could improve the miscibility of PLA and PEC3300 blends due to the decreased of the domain sizes of dispersed PEC3300 phase in the polymer matrix. From X-ray diffraction analysis showed the intercalation of PLA chains inside the Clay-TSA and this result implied that Clay-TSA platelets acted as an effective compatibilizer. The tensile properties showed the strain at break of PLA was improved after adding PEC3300 while Young’s modulus, tensile strength and storage modulus decreased. The addition of Clay-TSA could improve Young’s modulus of PLA/PEC3300 blends. The addition of Clay-TSA 7 phr showed the maximum of Young’s modulus of PLA/PEC3300/Clay-TSA composites. The thermal properties found that the addition of PEC3300 and Clay-TSA did not change significantly on the glass transition temperature and melting point temperature of PLA. The percent of crystallinity of PLA decreased with increasing PEC content. The thermal stability of PLA improved after adding PEC3300.

  14. Effects of leachate concentration on the integrity of solidified clay liners.

    PubMed

    Xue, Qiang; Zhang, Qian

    2014-03-01

    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  15. Effect of the solvent on the size of clay nanoparticles in solution as determined using an ultraviolet-visible (UV-Vis) spectroscopy methodology.

    PubMed

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-06-01

    Ultraviolet-visible (UV-Vis) spectroscopy methodology was developed and utilized for the in situ nanoscale measurement of the size of mineral clay agglomerates in various liquid suspensions. The clays studied were organomodified and unmodified montmorillonite clays (I.44p, Cloisite 93a, and PGN). The methodology was compared and validated against dynamic light scattering (DLS) analysis. The method was able to measure clay agglomerates in solvents in situations where DLS analysis was unsuccessful due to the shapes, polydispersity, and high aspect ratios of the clay particles and the complexity of the aggregates, or dispersion medium. The measured clay agglomerates in suspension were found to be in the nanometer range in the more compatible solvents, and their sizes correlated with the Hansen solubility parameter space distance between the clay modifiers and the solvents. Mass detection limits for size determination were in the range from 1 to 9 mg/L. The methodology thus provides simple, rapid, and inexpensive characterization of clays or particles in the nano- or microsize range in low concentrations in various liquid media, including complex mixtures or highly viscous fluids that are difficult to analyze with DLS. In addition, by combining UV-VIS spectroscopy with DLS it was possible to discern flocculation behavior in liquids, which otherwise could result in false size measurements by DLS alone.

  16. Growth and Seed Production of Sawtooth Oak (Quercus acutissima) 22 Years After Direct Seeding

    Treesearch

    J.C.G. Goelz; D.W. Carlson

    1997-01-01

    Sawtooth oak (Quercus acutissima Carruth.) was direct seeded at two locations, one with a poorly drained clay soil and the other with a well-drained silty clay loam. For comparison, Nuttall oak (Q. nuttallii Palmer) was direct seeded on the poorly drained clay soil. On the well-drained silty clay loam, sawtooth oak was 18 ft...

  17. Compressibility characteristics of Sabak Bernam Marine Clay

    NASA Astrophysics Data System (ADS)

    Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.

    2018-04-01

    This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.

  18. Temperature dependence of soil water potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, A.M.O.; Yong, R.N.; Cheung, S.C.H.

    1992-12-01

    To understand the process of coupled heat and water transport, the relationship between temperature and soil water potential must be known. Two clays, Avonlea bentonite and Lake Agassiz clay, are being considered as the clay-based sealing materials for the Canadian nuclear fuel waste disposal vault. Avonlea bentonite is distinguished from Lake Agassiz clay by its high sealing potential in water. A series of experiments was performed in which the two clays were mixed with equal amounts of sand and were compacted to a dry density of 1.67 Mg/m[sup 3] under various moisture contents and temperatures. A psychrometer was placed withinmore » the compacted clay-sand to measure the soil water potential based on the electromotive force measured by the psychrometer. The results indicate that the soil water potential at a particular temperature is higher for both clay-sand mixtures than predicted by the change in the surface tension of water; this effect is much more prominent in the Avonlea bentonite and at low moisture contents. The paper presents empirical equations relating the soil water potential with the moisture content and temperature of the two clay-sand mixtures. 24 refs., 8 figs., 2 tabs.« less

  19. Comprehensive review of geosynthetic clay liner and compacted clay liner

    NASA Astrophysics Data System (ADS)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  20. Thermal Transmittance of Porous Hollow Clay Brick by Guarded Hot Box Method

    NASA Astrophysics Data System (ADS)

    Kim, Joonsoo

    2018-03-01

    The thermal property of a porous hollow clay brick was determined by measuring the thermal transmittance of the wall made of porous hollow clay bricks. Prior to the production of porous hollow clay bricks, nonporous and porous tiny clay bricks were prepared to determine the physico-mechanical properties by modifying the amount of wood flour and firing temperature. The bricks were produced by uniaxial pressing and then fired in an electric furnace. Their physico-mechanical properties were measured by water absorption, apparent porosity, bulk density, and compressive strength. The porous tiny clay bricks were produced with three types of wood flour: coarse wood flour (1-0.36 mm), medium-sized wood flour (0.36-0.15 mm), and fine wood flour (< 0.08 mm). The thermal transmittance of porous hollow clay bricks was determined through the guarded hot box method, which measures the wall made of porous hollow clay bricks and nonporous cement bricks. The two walls had a thermal transmittance of 1.42 and 2.72 W\\cdot m^{-2}\\cdot K^{-1}, respectively. The difference in thermal transmittance was due to the pores created with fine wood flour (< 0.08 mm) as a pore-forming agent.

  1. [Study on the kinetics of organo-clay removing red tide organisms].

    PubMed

    Wu, Ping; Yu, Zhi-ming

    2007-07-01

    The kinetics of red tide organisms (Heterosigma akashiwo and Scrippsiella trochoidea) coagulation with clays modified by dialkyl-polyoxyethenyl quaternary ammonium compound (DPQAC) was studied using spectrophotometer and fluorometry, and the effects of different kinds and concentrations of clays, the second component DPQAC added in clays and pH on the coagulation rate were examined. When using spectrophotometer, the coagulation kinetics of red tide organism coagulation with organo-clays is well fit for the bimolecular reaction model; while using fluorometry, it is fit for the hyperbola model much better. Moreover, the results also prove that using fluorometry can avoid the great change of permeance efficiency caused by clays' sedimentation when using spectrophotometer, which has availably avoided the influence of clays' sedimentation and reflected the essential of algal coagulation and sedimentation well and truly. The results of two studying methods show that the coagulation rate is more rapid in the system of kaolin than in that of bentonite; increasing the concentration of clays and DPQAC and increasing pH all can accelerate coagulation, and among those increasing the concentration of DPQAC is the most efficient way of increasing the removal efficiency and coagulation rate.

  2. Electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clays. Role in U and Hg(II) transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, Michelle

    2016-08-31

    During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations usingmore » a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.« less

  3. Controlling effective aspect ratio and packing of clay with pH for improved gas barrier in nanobrick wall thin films.

    PubMed

    Hagen, David A; Saucier, Lauren; Grunlan, Jaime C

    2014-12-24

    Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.

  4. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    PubMed Central

    Nuhiji, Betime; Attard, Darren; Thorogood, Gordon; Hanley, Tracey; Magniez, Kevin; Bungur, Jenny; Fox, Bronwyn

    2013-01-01

    The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%. PMID:28811457

  5. Preliminary report on the clay mineralogy of the Upper Devonian Shales in the southern and middle Appalachian Basin

    USGS Publications Warehouse

    Hosterman, John W.; Loferski, Patricia J.

    1978-01-01

    The distribution of kaolinite in parts of the Devonian shale section is the most significant finding of this work. These shales are composed predominately of 2M illite and illitic mixed-layer clay with minor amounts of chlorite and kaolinite. Preliminary data indicate that kaolinite, the only allogenic clay mineral, is present in successively older beds of the Ohio Shale from south to north in the southern and middle parts of the Appalachian basin. This trend in the distribution of kaolinite shows a paleocurrent direction to the southwest. Three well-known methods of preparing the clay fraction for X-ray diffraction analysis were tested and evaluated. Kaolinite was not identified in two of the methods because of layering due to differing settling rates of the clay minerals. It is suggested that if one of the two settling methods of sample preparation is used, the clay film be thin enough for the X-ray beam to penetrate the entire thickness of clay.

  6. Biodegradation of crude oil saturated fraction supported on clays.

    PubMed

    Ugochukwu, Uzochukwu C; Jones, Martin D; Head, Ian M; Manning, David A C; Fialips, Claire I

    2014-02-01

    The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays' ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the 'vicinity' of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation.

  7. Analysis of Oligonucleotide DNA Binding and Sedimentation Properties of Montmorillonite Clay Using Ultraviolet Light Spectroscopy

    PubMed Central

    Beall, Gary W.; Sowersby, Drew S.; Roberts, Rachel D.; Robson, Michael H.; Lewis, L. Kevin

    2009-01-01

    Smectite clays such as montmorillonite form complexes with a variety of biomolecules, including the nucleic acids DNA and RNA. Most previous studies of DNA adsorption onto clay have relied upon spectrophotometric analysis after separation of free nucleic acids from bound complexes by centrifugation. In the current work we demonstrate that such studies produce a consistent error due to (a) incomplete sedimentation of montmorillonite and (b) strong absorbance of the remaining clay at 260 nm. Clay sedimentation efficiency was strongly dependent upon cation concentration (Na+ or Mg2+) and on the level of dispersion of the original suspension. An improved clay:DNA adsorption assay was developed and utilized to assess the impact of metal counterions on binding of single-stranded DNA to montmorillonite. X-ray diffraction demonstrated, for the first time, formation of intercalated structures consistent with orientation of the DNA strands parallel to the clay surface. Observed gallery spacings were found to closely match values calculated utilizing atomistic modeling techniques. PMID:19061334

  8. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  9. Soil clay content underlies prion infection odds

    USGS Publications Warehouse

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  10. Surface Properties and Permeability of Poly(Vinylidene Fluoride)-Clays (PVDF/Clays) Composite Membranes

    NASA Astrophysics Data System (ADS)

    Pramono, E.; Ahdiat, M.; Simamora, A.; Pratiwi, W.; Radiman, C. L.; Wahyuningrum, D.

    2017-07-01

    Surface properties are important factors that determine the performance of ultrafiltration membranes. This study aimed to investigate the effects of clay addition on the surface properties and membrane permeability of PVDF (poly-vinylidene fluoride) membranes. Three types of clay with different particle size were used in this study, namely montmorillonite-MMT, bentonite-BNT and cloisite 15A-CLS. The PVDF-clay composite membranes were prepared by phase inversion method using PEG as additive. The hydrophobicity of membrane surface was characterized by contact angle. The membrane permeability was determined by dead- end ultrafiltration with a trans-membrane pressure of 2 bars. In contact angle measurement, water contact angle of composite membranes is higher than PVDF membrane. The addition of clays decreased water flux but increased of Dextran rejection. The PVDF-BNT composite membranes reach highest Dextran rejection value of about 93%. The type and particle size of clay affected the hydrophobicity of membrane surface and determined the resulting membrane structure as well as the membrane performance.

  11. Effects of clay on fat necrosis and carcass characteristics in Japanese Black steers.

    PubMed

    Oka, Akio; Iwamoto, Eiji; Tatsuda, Ken

    2015-10-01

    Twenty 10-month-old Japanese Black steers were used to evaluate the effects of clay on fat necrosis and carcass characteristics. Ten steers (Clay group) were fed the clay (50 g/day) during 10-30 months of age. The other 10 steers (Control group) were not fed it. There was no significant difference in body weight or average daily gain between the two groups (P > 0.05). The occurrence of fat necrotic mass in the Clay group (30%) was lower (P < 0.05) than that in the Control group (90%) at slaughter. The size of necrotic masses in the Clay group was smaller (P < 0.05) than that in the Control group. There was no significant difference in the marbling score, beef color, Longissimus muscle area or subcutaneous fat thickness between the two groups. These results suggest that the clay prevented the occurrence of fat necrosis and did not affect the carcass characteristics in Japanese Black steers. © 2015 Japanese Society of Animal Science.

  12. Native, acidic pre-treated and composite clay efficiency for the adsorption of dicationic dye in aqueous medium.

    PubMed

    Ehsan, Asma; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima

    2017-02-01

    Environmental applications of composites have attracted the interests of researchers due to their excellent adsorption efficiency for pollutants. Native, HCl pre-treated clay and MnFe 2 O 4 /clay composite were investigated as an adsorbent for removal of methyl green from aqueous solution. The adsorption behaviors of dye onto native, HCl pre-treated and composite clays were studied as a function of contact time, adsorbent dose, pH, initial dye concentration and temperature. Maximum dye adsorption of 44 mg/g was achieved at pH of 8, contact time 40 min, adsorbent dose 0.20 g/L and initial dye concentration of 125 mg/L using clay composite. The Langmuir isotherm and pseudo-second-order kinetic model best explained the methyl green dye adsorption onto clay adsorbents. Thermodynamic parameters revealed the endothermic and spontaneous adsorption nature of dye. From results, it is concluded that clay has potential for adsorbing methyl green and can be used for the removal of dyes from industrial effluents.

  13. New polyelectrolyte complex from pectin/chitosan and montmorillonite clay.

    PubMed

    da Costa, Marcia Parente Melo; de Mello Ferreira, Ivana Lourenço; de Macedo Cruz, Mauricio Tavares

    2016-08-01

    A new nanocomposite hydrogel was prepared by forming a crosslinked hybrid polymer network based on chitosan and pectin in the presence of montmorillonite clay. The influence of clay concentration (0.5 and 2% wt) as well as polymer ratios (1:1, 1:2 and 2:1) was investigated carefully. The samples were characterized by different techniques: transmission and scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, swelling degree and compression test. Most samples presented swelling degree above 1000%, which permits characterizing them as superabsorbent material. Images obtained by transmission electron microscopy showed the presence of clay nanoparticles into hydrogel. The hydrogels' morphological properties were evaluated by scanning electron microscope in high and low-vacuum. The micrographs showed that the samples presented porous. The incorporation of clay produced hydrogels with differentiated morphology. Thermogravimetric analysis results revealed that the incorporation of clay in the samples provided greater thermal stability to the hydrogels. The compression resistance also increased with addition of clay. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Interphase vs confinement in starch-clay bionanocomposites.

    PubMed

    Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis

    2015-03-06

    Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A quantification model for the structure of clay materials.

    PubMed

    Tang, Liansheng; Sang, Haitao; Chen, Haokun; Sun, Yinlei; Zhang, Longjian

    2016-07-04

    In this paper, the quantification for clay structure is explicitly explained, and the approach and goals of quantification are also discussed. The authors consider that the purpose of the quantification for clay structure is to determine some parameters that can be used to quantitatively characterize the impact of clay structure on the macro-mechanical behaviour. According to the system theory and the law of energy conservation, a quantification model for the structure characteristics of clay materials is established and three quantitative parameters (i.e., deformation structure potential, strength structure potential and comprehensive structure potential) are proposed. And the corresponding tests are conducted. The experimental results show that these quantitative parameters can accurately reflect the influence of clay structure on the deformation behaviour, strength behaviour and the relative magnitude of structural influence on the above two quantitative parameters, respectively. These quantitative parameters have explicit mechanical meanings, and can be used to characterize the structural influences of clay on its mechanical behaviour.

  16. Controlling harmful algae blooms using aluminum-modified clay.

    PubMed

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Impact of Exposure to Pressure of 50 MPa on the Specific Surface Area of Clay

    NASA Astrophysics Data System (ADS)

    Koszela-Marek, Ewa

    2017-12-01

    The paper presents results of laboratory tests conducted to determine the impact of pressure of 50 MPa on specific surface area of clay. These tests were carried out in an original, high-pressure test stand. The specific surface area of clay extracted directly from an open pit mine was compared with the specific surface area of the same clay subjected to the pressure of 50 MPa in a high-pressure chamber. The study found that the specific surface area of the clay subjected to the pressure of 50 MPa increased distinctly by over 35 %. The increase in specific surface can be a result of changes in the microstructure of clay particles and microstructural alteration in the soil skeleton, caused by the pressure.

  18. Multifaceted role of clay minerals in pharmaceuticals

    PubMed Central

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelling capacity, reactivity to acids and inconsiderable toxicity. Of course, these are highly cost effectual. This special report on clay minerals provides a bird's eye view of the chemical composition and structure of these minerals and their influence on the release properties of active medicinal agents. Endeavor has been made to rope in myriad applications depicting the wide acceptability of these clay minerals. PMID:28031881

  19. Performance of Kaolin Clay on the Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  20. Single clay sheets inside electrospun polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  1. Deformation mechanisms and resealing of damage zones in experimentally deformed cemented and un-cemented clay-rich geomaterials, at low bulk strain

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Urai, Janos L.; Schuck, Bernhardt; Hoehne, Nadine; Oelker, Anne; Bésuelle, Pierre; Viggiani, Gioacchino; Schmatz, Joyce; Klaver, Jop

    2017-04-01

    A microphysics-based understanding of mechanical and fluid flow properties in clay-rich geomaterials is required for extrapolating better constitutive equations beyond the laboratory's time scales, so that predictions over the long term can be made less uncertain. In this contribution, we present microstructural investigations of rocks specimens sheared in triaxial compression at low bulk strain, by using the combination of broad-ion-beam (BIB) milling and scanning electron microscopy (SEM) to infer deformation mechanisms based on microstructures imaged at sub-micron resolution. Two end-member clay-rich geomaterials from European Underground Laboratories (URL) were analysed: (i) the poorly cemented Boom Clay sediment (BC from URL at Mol/Dessel, Belgium; confining pressure [CP] = 0.375 & 1.5 MPa) and (ii) the Callovo-Oxfordian claystone (COx from the URL at Bure, France; CP = 2 & 10 MPa). Although as a first approximation the inelastic bahvior of cemented and uncemented clay-rich geomaterials can be described by similar pressure-dependent hardening plasticity models, deformed samples in this contribution show very contrasting micro-scale behaviour: microstructures reveal brittle-ductile transitional behaviour in BC, whereas deformation in COx is dominantly cataclastic. In Boom Clay, at meso-scale, shear bands exhibit characteristics that are typical of uncemented small-grained clay-rich materials deformed at high shear strains, consisting of anastomosing shears interpreted as Y- and B-shears, which bound the passively deformed microlithons. At micro- down to nano-scale, the strong shape preferential orientation of clay aggregates in the anastomosing shears is interpreted to be responsible of the shear weakness. More over, the reworking of clay aggregates during deformation contributes to the collapsing of porosity in the shear band. Ductile deformation mechanisms represented by grain-rotation, grain-sliding, bending and granular flow mechanisms are strongly involved for the development of the shear band. At the same time, evidence for dilatancy at low confining pressure indicates that deformation involves also brittle deformation. Our observations strongly suggest that the deformation mostly localizes in those regions of the specimen, where the original grain sizes are smaller. In COx, microstructures show evidence for dominantly cataclastic deformation involving intergranular - transgranular - and - intragranular micro fracturing, grain rotation and clay particle bending mechanisms, down to nm- scale. Micro fracturing of the original fabric results in fragments at a range of scales, which are reworked into a clay-rich cataclastic gouge during frictional flow. Intergranular and minor intragranular micro fracturing occur in regions of non localized deformation, whereas transgranular micro fracturing occurs at regions of localized deformation. These processes are accompanied by dilatancy, but also by progressive decrease of porosity and pore size in the gouge with the non-clay particles embedded in reworked clay. The mechanism of this compaction during shearing is interpreted to be a combination of cataclasis of the cemented clay matrix, and shear-induced rearrangement of clay particles around the fragments of non-clay particles.

  2. Rheology of Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels

    NASA Astrophysics Data System (ADS)

    Lombardi, Jack; Xu, Di; Bhatnagar, Divya; Gersappe, Dilip; Sokolov, Jonathan; Rafailovich, Miriam

    2015-03-01

    The stiffness of PNIPA Gels has been reported could be significant improved by gelation with clay fillers. Here we conducted systematic rheology study of synthesized PNIPA-Clay Composites at different clay concentration, in a range from fluid to strong gel, where G'' dominant changed to G' dominant. Molecular dynamics simulation was employed to analyze the structure of composites and corresponding mechanical changes with increased clays. Where we found viscoelastic behavior become significant only 1.5 times above percolation threshold. The yield stress extrapolated from our rheology results shows good fitting to modified Mooney's theory of suspension viscosity.

  3. RADIOACTIVE CONCENTRATOR AND RADIATION SOURCE

    DOEpatents

    Hatch, L.P.

    1959-12-29

    A method is presented for forming a permeable ion exchange bed using Montmorillonite clay to absorb and adsorb radioactive ions from liquid radioactive wastes. A paste is formed of clay, water, and a material that fomns with clay a stable aggregate in the presence of water. The mixture is extruded into a volume of water to form clay rods. The rods may then be used to remove radioactive cations from liquid waste solutions. After use, the rods are removed from the solution and heated to a temperature of 750 to 1000 deg C to fix the ratioactive cations in the clay.

  4. Incorporation of tramadol drug into Li-fluorohectorite clay: A preliminary study of a medical nanofluid

    NASA Astrophysics Data System (ADS)

    Valdés, L.; Hernández, D.; de Ménorval, L. Ch.; Pérez, I.; Altshuler, E.; Fossum, J. O.; Rivera, A.

    2016-07-01

    During the last years, clays have been increasingly explored as hosts for drugs. In the present paper, we have been able to host the non-steroidal anti-inflammatory drug, Tramadol, into the clay Li-fluorohectorite (Li-Fh). We preliminary evaluate its incorporation by means of UV spectroscopy and X ray diffraction. Our results indicate that the clay hosts the drug molecule in its interlayer space. We suggest a set of parameters to guarantee an efficient incorporation process. Future studies will concentrate on the release of the drug from the clay nanofluid.

  5. Mineralogical control of soil organic carbon persistence at the multidecadal time scale

    NASA Astrophysics Data System (ADS)

    Lutfalla, Suzanne; Barré, Pierre; Bernard, Sylvain; Le Guillou, Corentin; Chenu, Claire

    2015-04-01

    One of the current challenges in understanding the long term persistence of organic carbon in soils is to assess how mineral surfaces, especially at small scale, can stabilize soil organic carbon (SOC). The question we address in this work is whether different mineral species stabilize different types of SOC. Here we used the unique opportunity offered by long term bare fallows to study in situ C dynamics in several fine fractions of a silty loam soil. Indeed, with no vegetation i.e. no external input of fresh C, the plant-free soil of the Versailles 42 Plots (INRA, France) has been progressively enriched in persistent SOC during the 80 years of bare fallow. To separate mineral phases of the clay size fraction we performed a size fractionation on samples taken from 4 different plots at 5 different dates (0, 10, 22, 52, and 79 years after the beginning of the BF) and analyzed the SOC in the different fractions thus obtained. First, the clay fraction (< 2 µm) was isolated by wet sieving and centrifugation in water. Then, the clay fraction was further separated into 3 size fractions by centrifugation: fine clay (< 0.05 µm), intermediate clay (0.05 - 0.2 µm), and coarse clay (0.2 - 2 µm). X-ray diffraction was used to determine the mineralogy of the phases and we found that the coarse clay fraction on the one hand and fine and intermediate clay fractions on the other hand exhibited contrasted mineralogies. Fine and intermediate clay fractions contained almost exclusively smectite and mixed-layered illite/smectite minerals whereas coarse clays contained also discrete illite and kaolinite on top of smectite and illite/smectite. We carried out CHN elemental analysis to study the C and nitrogen dynamics with time in the different fractions. And synchrotron based spectroscopy and microscopy (NEXAFS bulk and STXM at the carbon K edge of 280 eV, CLS Saskatoon, Canada) was used to get information on the distribution and the chemical speciation of the SOC in fractions with contrasted mineralogies. Data analysis is still ongoing and full results will be presented at EGU. First results show that the dynamics and quality of the SOC differ in the different clay fractions. SOC decay was greater in coarse clays compared to intermediate clays, SOC in the coarse clay fraction displaying more diversity than in the other fractions. SOC persistence at the multidecadal timescale also seems to be mineral dependent: smectite being more efficient at protecting carbon compared to illite.

  6. Phosphates in some Missouri refractory clays

    USGS Publications Warehouse

    Halley, Robert B.; Foord, Eugene E.; Keller, David J.; Keller, Walter D.

    1997-01-01

    This paper describes in detail phosphate minerals occurring in refractory clays of Missouri and their effect on the refractory degree of the clays. The minerals identified include carbonate-fluorapatite (francolite), crandallite, goyazite, wavellite, variscite and strengite. It is emphasized that these phosphates occur only in local isolated concentrations, and not generally in Missouri refractory clays.The Missouri fireclay region comprises 2 districts, northern and southern, separated by the Missouri River. In this region, clay constitutes a major part of the Lower Pennsylvanian Cheltenham Formation. The original Cheltenham mud was an argillic residue derived from leaching and dissolution of pre-Pennsylvanian carbonates. The mud accumulated on a karstic erosion surface truncating the pre-Cheltenham rocks. Fireclays of the northern district consist mainly of poorly ordered kaolinite, with variable but minor amounts of illite, chlorite and fine-grained detrital quartz. Clays of the southern district were subjected to extreme leaching that produced well-ordered kaolinite flint clays. Local desilication formed pockets of diaspore, or more commonly, kaolinite, with oolite-like nubs or burls of diaspore (“burley”" clay).The phosphate-bearing materials have been studied by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectral analysis (SEM-EDS) and chemical analysis. Calcian goyazite was identified in a sample of diaspore, and francolite in a sample of flint clay. A veinlet of wavellite occurs in flint clay at one locality, and a veinlet of variscite-strengite at another locality.The Missouri flint-clay-hosted francolite could not have formed in the same manner as marine francolite. The evidence suggests that the Cheltenham francolite precipitated from ion complexes in pore water, nearly simultaneously with crystallization of kaolinite flint clay from an alumina-silica gel. Calcian goyazite is an early diagenetic addition to its diaspore host. The wavellite and variscite-strengite veinlets are secondary, precipitated from ion complexes in ground water percolating along cracks in the flint clay. The flint clay host of the variscite-strengite veinlet contains strontian crandallite. All of the phosphates contain significant amounts of strontium. The source of P, Ca and Sr was the marine carbonates. Dissolution of these carbonates produced the argillic residue that became the primordial Cheltenham paludal mud, which ultimately altered to fireclay.Preliminary firing tests show that the presence of phosphates lowers fusion temperature. However, it is not clear whether poor refractoriness is due to the presence of phosphates, per se, or to Ca, Sr and other alkaline elements present in the phosphates.

  7. Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture

    NASA Astrophysics Data System (ADS)

    Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor

    2016-11-01

    Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by using 9% BS only. From the experimental results, it is shown that BS, in the form of SH85, admixed with rubber chips could significantly improve the strength of marine clay soils.

  8. Fundamental investigations of clay/polymer nanocomposites and applications in co-extruded microlayered systems

    NASA Astrophysics Data System (ADS)

    Decker, Jeremy John

    The second and fourth generations of hydroxylated dendritic polyesters (HBP2, HBP4) were combined with unmodified sodium montmorillonite clay (Na +MMT) in water to generate a broad range of polymer clay nanocomposites from 0 to 100% wt/wt Na+MMT. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate intercalation states of the clay galleries. It was shown that interlayer spacings were independent of generation number and changed over the composition range from 0.5 nm to 3.5 nm in 0.5 nm increments that corresponded to a flattened HBP conformation within the clay tactoids. The HBP4/Na+MMT systems were investigated to study the vitrified Rigid Amorphous Fraction (RAF) induced by the clay surfaces. Differential Scanning Calorimetry (DSC) showed changes in heat capacity, Delta Cp, at Tg, that decreased with clay content, until completely suppressed at 80 wt% Na+MMT due to confinement. RAF was quantified from these changes in heat capacity and verified by the analysis of orthopositronium lifetime temperature scans utilizing positron annihilation lifetime spectroscopy (PALS): verifying the glassy nature of the RAF at elevated temperatures. Mathematical relationships allowed for correlation of the interlayer spacings with DeltaC p. RAF formation correlated to intercalated HBP4, and external surfaces of the clay tactoids. The interdiffusion of a polymer pair in microlayers was exploited to increase the concentration of nanoclay particles. When microlayers of a nanocomposite composed of organically modified montmorillonite (M2(HT)2 ) inside maleic anhydride grafted linear low-density polyethylene (LLDPE-g-MA) and low-density polyethylene (LDPE) were taken into the melt, the greater mobility of the linear LLDPE-g-MA chains compared to the branched LDPE chains caused shrinkage of the nanocomposite microlayers, concentrating the M 2(HT)2 contained within. Analysis of the clay morphology within these layers demonstrated an increase in clay particle lengths and aspect ratios, which was attributed to the growth of skewed aggregates during concentration. The melt induced clay concentration and increased clay particle dimensions caused significant decreases in the permeability of the nanocomposite microlayers and reduced the overall permeability of the multilayered films. Morphology and transport behavior of these microlayered films were compared to a series of bulk nanocomposites using a second LLDPE-g-MA containing M 2(HT)2 with varying clay content.

  9. The effect of clay on the dissolution of nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Lemmens, K.

    2001-09-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher than the silica concentrations in equilibrium with the glass surface ( C ∗Si, saturation) that are found in absence of clay. Nevertheless, the glass dissolution proceeds at relatively high rate. C ∗Si, saturation seems to be increased by the presence of clay. To understand this, more knowledge is necessary concerning the fate of the released silica and the silica speciation in solution.

  10. Effect of soil properties on Hydraulic characteristics under subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Fan, Wangtao; Li, Gang

    2018-02-01

    Subsurface drip irrigation (SDI) is a technique that has a high potential in application because of its high efficiency in water-saving. The hydraulic characteristics of SDI sub-unit pipe network can be affected by soil physical properties as the emitters are buried in soils. The related research, however, is not fully explored. The laboratory tests were carried out in the present study to determine the effects of hydraulic factors including operating pressure, initial soil water content, and bulk density on flow rate and its sensitivity to each hydraulic factor for two types of SDI emitters (PLASSIM emitter and Heping emitter). For this purpose, three soils with contrasting textures (i.e., light sand, silt loam, and light clay) were repacked with two soil bulk density (1.25 and1.40 g cm-3) with two initial soil water content (12% and 18%) in plexiglass columns with 40 cm in diameter and 40 cm in height. Drip emitters were buried at depth of 20 cm to measure the flow rates under seven operating pressures (60, 100, 150, 200, 250, 300, and 370 kPa). We found that the operating pressure was the dominating factor of flow rate of the SDI emitter, and flow rate increased with the increase of operating pressure. The initial soil water content and bulk density also affected the flow rate, and their effects were the most notable in the light sand soil. The sensitivity of flow rate to each hydraulic factor was dependent on soil texture, and followed a descending order of light sand>silt loam>light clay for both types of emitters. Further, the sensitivity of flow rate to each hydraulic factor decreased with the increase of operating pressure, initial soil water content, and bulk density. This study may be used to guide the soil specific-design of SDI emitters for optimal water use and management.

  11. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, six companies mined fire clay in Missouri, Ohio and South Carolina. Production was estimate to be 300 kt with a value of $8.3 million. Missouri was the leading producer state followed by Ohio and South Carolina. For the third consecutive year, sales and use of fire clays have been relatively unchanged. For the next few years, sales of fire clay is forecasted to remain around 300 kt/a.

  12. Study of Usage Areas of Clay Samples of Asphaltite Quarries in Sirnak, Turkey

    NASA Astrophysics Data System (ADS)

    Bilgin, Oyku

    2017-12-01

    The asphaltite of Sirnak, Turkey are in the form of 12 veins and their total reserves are anticipated to be approximately 200 million tons in a field of 25.000 hectares. The asphaltites at the Sirnak region are in the form of fault and crack fillings and take place together with clay minerals at their side rock. The main raw materials used in the production of cement are limestone, clay and marn known as sedimentary rocks. Limestone for CaO and clay minerals for SiO2, Al2O3, and Fe2O3, which are the main compounds of clinker production, are the main raw materials. Other materials containing these four oxides like marn are also used as cement raw material. Conformity levels of the raw materials to be used in cement production vary according to their chemical compounds. The rocks to be used as clay mineral are evaluated by taking the rate of silicate and alumina into consideration. The soils suitable for brick-tile productions are named as sandy clay. Their difference from the ceramic clays is that they are richer in terms of iron, silica and carbonate. These soils are also known under the names such as clay, arid, alluvium, silt, loam and argil. Inside these soils, minerals such as quartz, montmorillonite, kaolinite, calcite, limonite, hidromika, sericite, illite, and chlorite are available. Some parts of the soils consist of clays in amorphous structure. Limestone parts, gypsums, organic substances and bulky rock residuals spoil the quality. The soils suitable for brick production may not be suitable for tile production. In this case, their sandy soils should be mixed up with the clays with fine granule structure which is high in plasticity. During asphaltite mining in Sirnak region, clays forming side rock are gathered at dump sites. In this study; SQX analyses of the clay samples taken from Avgamasya, Seridahli and Segürük asphaltite veins run in Sirnak region are carried out and their usage areas are searched.

  13. Monte Carlo simulations of GeoPET experiments: 3D images of tracer distributions (18F, 124I and 58Co) in Opalinus clay, anhydrite and quartz

    NASA Astrophysics Data System (ADS)

    Zakhnini, Abdelhamid; Kulenkampff, Johannes; Sauerzapf, Sophie; Pietrzyk, Uwe; Lippmann-Pipke, Johanna

    2013-08-01

    Understanding conservative fluid flow and reactive tracer transport in soils and rock formations requires quantitative transport visualization methods in 3D+t. After a decade of research and development we established the GeoPET as a non-destructive method with unrivalled sensitivity and selectivity, with due spatial and temporal resolution by applying Positron Emission Tomography (PET), a nuclear medicine imaging method, to dense rock material. Requirements for reaching the physical limit of image resolution of nearly 1 mm are (a) a high-resolution PET-camera, like our ClearPET scanner (Raytest), and (b) appropriate correction methods for scatter and attenuation of 511 keV—photons in the dense geological material. The latter are by far more significant in dense geological material than in human and small animal body tissue (water). Here we present data from Monte Carlo simulations (MCS) reflecting selected GeoPET experiments. The MCS consider all involved nuclear physical processes of the measurement with the ClearPET-system and allow us to quantify the sensitivity of the method and the scatter fractions in geological media as function of material (quartz, Opalinus clay and anhydrite compared to water), PET isotope (18F, 58Co and 124I), and geometric system parameters. The synthetic data sets obtained by MCS are the basis for detailed performance assessment studies allowing for image quality improvements. A scatter correction method is applied exemplarily by subtracting projections of simulated scattered coincidences from experimental data sets prior to image reconstruction with an iterative reconstruction process.

  14. Changes in labile soil organic matter fractions following land use change from monocropping to poplar-based agroforestry systems in a semiarid region of Northeast China.

    PubMed

    Mao, Rong; Zeng, De-Hui; Li, Lu-Jun; Hu, Ya-Lin

    2012-11-01

    Labile fractions of soil organic matter (SOM) respond rapidly to land management practices and can be used as a sensitive indicator of changes in SOM. However, there is little information about the effect of agroforestry practices on labile SOM fractions in semiarid regions of China. In order to test the effects of land use change from monocropping to agroforestry systems on labile SOM fractions, we investigated soil microbial biomass C (MBC) and N, particulate organic matter C (POMC) and N (POMN), as well as total organic C (TOC) and total N (TN) in the 0- to 15-cm and the 15- to 30-cm layers in 4-year-old poplar-based agroforestry systems and adjoining monocropping systems with two different soil textures (sandy loam and sandy clay loam) in a semiarid region of Northeast China. Our results showed that poplar-based agroforestry practices affected soil MBC, POMC, and POMN, albeit there was no significant difference in TOC and TN. Agroforestry practices increased MBC, POMC, and POMN in sandy clay loam soils. However, in sandy loam soils, agroforestry practices only increased MBC and even decreased POMC and POMN at the 0- to 15-cm layer. Our results suggest that labile SOM fractions respond sensitively to poplar-based agroforestry practices and can provide early information about the changes in SOM in semiarid regions of Northeast China and highlight that the effects of agroforestry practices on labile SOM fractions vary with soil texture.

  15. Application of the Aquifer Impact Model to support decisions at a CO 2 sequestration site: Modeling and Analysis: Application of the Aquifer Impact Model to support decisions at a CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, Diana Holford; Locke II, Randall A.; Keating, Elizabeth

    The National Risk Assessment Partnership (NRAP) has developed a suite of tools to assess and manage risk at CO2 sequestration sites (1). The NRAP tool suite includes the Aquifer Impact Model (AIM), based on reduced order models developed using site-specific data from two aquifers (alluvium and carbonate). The models accept aquifer parameters as a range of variable inputs so they may have more broad applicability. Guidelines have been developed for determining the aquifer types for which the ROMs should be applicable. This paper considers the applicability of the aquifer models in AIM to predicting the impact of CO2 or Brinemore » leakage were it to occur at the Illinois Basin Decatur Project (IBDP). Based on the results of the sensitivity analysis, the hydraulic parameters and leakage source term magnitude are more sensitive than clay fraction or cation exchange capacity. Sand permeability was the only hydraulic parameter measured at the IBDP site. More information on the other hydraulic parameters, such as sand fraction and sand/clay correlation lengths, could reduce uncertainty in risk estimates. Some non-adjustable parameters, such as the initial pH and TDS and the pH no-impact threshold, are significantly different for the ROM than for the observations at the IBDP site. The reduced order model could be made more useful to a wider range of sites if the initial conditions and no-impact threshold values were adjustable parameters.« less

  16. Clay Chemistry's Influence on the Average Carbon Content and Particle Size at the Ninety-Six Historical Site, South Carolina

    NASA Astrophysics Data System (ADS)

    Lintz, L.; Werts, S. P.

    2014-12-01

    The Ninety-Six National Historic Site is located in Greenwood County, SC. Recent geologic mapping of this area has revealed differences in soil properties over short distances within the park. We studied the chemistry of the clay minerals found within the soils to see if there was a correlation between the amounts of soil organic carbon contained in the soil and particle size in individual soil horizons. Three different vegetation areas, including an old field, a deciduous forest, and a pine forest were selected to see what influence vegetation type had on the clay chemistry and carbon levels as well. Four samples containing the O, A, and B horizons were taken from each location and we studied the carbon and nitrogen content using an elemental analyzer, particle size using a Laser Diffraction Particle Size Analyzer, and clay mineralogy with powder X-ray diffraction of each soil sample. Samples from the old field and pine forest gave an overall negative correlation between carbon content and clay percentage, which is against the normal trend for Southern Piedmont Ultisols. The deciduous forest samples gave no correlation at all between its carbon content and clay percentage. Together, all three locations show the same negative relationship, while once separated into vegetation type and A and B horizons it shows even more abnormal relationships of negative while several show no correlation (R2= 0.007403- 0.56268). Using powder XRD, we ran clay samples from each A and B horizon for the clay mineralogy. All three vegetation areas had the same results of containing quartz, kaolinite, and Fe oxides, therefore, clay chemistry is not a reason behind the abnormal trend of a negative correlation between average carbon content and clay percentage. Considering that all three locations have the same climate, topography, and parent material of metagranite, it could be reasonable to assume these results are a factor of environmental and biological influences rather than clay type.

  17. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2015-02-15

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of magnitude greater than the DLVO potential energy. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study.

    PubMed

    Piri, Somayeh; Zanjani, Zahra Alikhani; Piri, Farideh; Zamani, Abbasali; Yaftian, Mohamadreza; Davari, Mehdi

    2016-01-01

    Nowadays significant attention is to nanocomposite compounds in water cleaning. In this article the synthesis and characterization of conductive polyaniline/clay (PANI/clay) as a hybrid nanocomposite with extended chain conformation and its application for water purification are presented. Clay samples were obtained from the central plain of Abhar region, Abhar, Zanjan Province, Iran. Clay was dried and sieved before used as adsorbent. The conductive polyaniline was inflicted into the layers of clay to fabricate a hybrid material. The structural properties of the fabricated nanocomposite are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The elimination process of Pb(II) and Cd(II) ions from synthetics aqueous phase on the surface of PANI/clay as adsorbent were evaluated in batch experiments. Flame atomic absorption instrument spectrophotometer was used for determination of the studied ions concentration. Consequence change of the pH and initial metal amount in aqueous solution, the procedure time and the used adsorbent dose as the effective parameters on the removal efficiency was investigated. Surface characterization was exhibited that the clay layers were flaked in the hybrid nanocomposite. The results show that what happen when a nanocomposite polyaniline chain is inserted between the clay layers. The adsorption of ions confirmed a pH dependency procedure and a maximum removal value was seen at pH 5.0. The adsorption isotherm and the kinetics of the adsorption processes were described by Temkin model and pseudo-second-order equation. Time of procedure, pH and initial ion amount have a severe effect on adsorption efficiency of PANI/clay. By using suggested synthesise method, nano-composite as the adsorbent simply will be prepared. The prepared PANI/clay showed excellent adsorption capability for decontamination of Pb ions from contaminated water. Both of suggested synthesise and removal methods are affordable techniques.

  19. An Evidence-Based Review on Medicinal Value of Clays in Traditional Persian Medicine.

    PubMed

    Hosseinkhani, Ayda; Montaseri, Hashem; Hosamo, Ammar; Zarshenas, Mohammad Mehdi

    2017-01-01

    The use of earths and clays for medical purposes dates back to antiquity. In recent years, there has been an increasing interest in researches on traditional remedies in the hope of discovering new drug. Iran is an ancient country with a medical backbone acquired from the experiences of ancient Persian scholars, who had made a great contribution to the development of the medical sciences. Many medical and pharmaceutical books by early Persian scientists still exist and may have the potential of leading researchers to new drug discoveries. Owing to the emergence of new and antimicrobial-resistant infections, present-day medicine has recently begun focusing on medicinal earths and clays especially as mineral antimicrobials. The current study is, therefore, aimed at gathering information regarding medicinal clays in traditional Persian medicine (TPM). Five main Persian materia medica with the key word 'tin' (clay) and current databases such as PubMed, Scopus, ScienceDirect, and Google Scholar were searched by key words 'white, green, red, maroon, violet, black, grey and pink clays' and 'pharmacological effects'. Twenty three clays were found in Persian manuscripts. Although their mineralogical compositions are unknown, different pharmacological properties have been attributed to these mineral medicaments. Clay's properties were widely used in medieval times for the treatment of infections to poisoning. They were also used in compound formulations, possibly for their pharmaceutical formulation modifying effects. Modern scientific proofs have also been found in many of the medicinal clays reported in Persian manuscripts. Although many of the reported clays are still unknown, their characterization may lead to new medicinal developments. Novel analytical methods available today make it possible to elucidate the chemical compositions of these minerals as parameters responsible for their medicinal effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    PubMed Central

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  1. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba

    2015-05-01

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Aflatoxin toxicity reduction in feed by enhanced binding to surface-modified clay additives.

    PubMed

    Jaynes, William F; Zartman, Richard E

    2011-06-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (K(d) = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (K(d) = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (K(d) = 13,800) and carnitine (K(d) = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (K(d) = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (K(d) = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (K(d) = 1340) or the untreated montmorillonite (K(d) = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity.

  3. Toluene, Methanol and Benzaldehyde Removal from Gas Streams by Adsorption onto Natural Clay and Faujasite-Y type Zeolite.

    PubMed

    Zaitan, Hicham; Mohamed, Elham F; Valdés, Héctor; Nawdali, Mostafa; Rafqah, Salah; Manero, Marie Hélène

    2016-12-01

    A great number of pollution problems come as a result of the emission of Volatile Organic Compounds (VOCs) into the environment and their control becomes a serious challenge for the global chemical industry. Adsorption is a widely used technique for the removal of VOCs due to its high efficiency, low cost, and convenient operation. In this study, the feasibility to use a locally available clay, as adsorbent material to control VOCs emissions is evaluated. Natural clay is characterised by different physical-chemical methods and adsorptive interaction features between VOCs and natural clay are identified. Toluene (T), methanol (M) and benzaldehyde (B) are used here as representatives of three different kinds of VOCs. Adsorption isotherms onto natural clay and faujasite-Y type zeolite (Fau Y) are obtained at room temperature. According to Langmuir model data, maximum adsorption capacities (qm) of Fez natural clay and zeolite toward methanol (M), toluene (T) and benzaldehyde (B) at 300 K are 8, 0.89 and 3.1 mmol g-1, and 15, 1.91 and 13.9 mmol g-1 respectively. In addition, the effect of temperature on the adsorption of toluene onto natural clay is evaluated in the range from 300 to 323K. An increase on temperature reduces the adsorption capacity of natural clay toward toluene, indicating that an exothermic physical adsorption process takes place. The enthalpy of adsorption of toluene onto Fez natural clay was found to be -54 kJ mol-1. A preliminary cost analysis shows that natural clay could be used as an alternative low cost adsorbent in the control of VOCs from contaminated gas streams with a cost of US$ 0.02 kg-1 compared to Fau Y zeolite with US$ 10 kg-1.

  4. Rheological properties of purified illite clays in glycerol/water suspensions

    NASA Astrophysics Data System (ADS)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction < 2 μm and glycerol/water suspensions were investigated. Carbonates were removed by dissolution in hydrochloric and citric acids and other non-clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  5. Clay-starch combination for micropollutants removal from wastewater treatment plant effluent.

    PubMed

    Mohd Amin, M F; Heijman, S G J; Rietveld, L C

    2016-01-01

    In this study, a new, more effective and cost-effective treatment alternative is investigated for the removal of pharmaceuticals from wastewater treatment plant effluent (WWTP-eff). The potential of combining clay with biodegradable polymeric flocculants is further highlighted. Flocculation is viewed as the best method to get the optimum outcome from clay. In addition, flocculation with cationic starch increases the biodegradability and cost of the treatment. Clay is naturally abundantly available and relatively inexpensive compared to conventional adsorbents. Experimental studies were carried out with existing naturally occurring pharmaceutical concentrations found and measured in WWTP-eff with atrazine spiking for comparison between the demineralised water and WWTP-eff matrix. Around 70% of the total measured pharmaceutical compounds were removable by the clay-starch combination. The effect of clay with and without starch addition was also highlighted.

  6. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  7. Hydroxyapatite clay for gap filling and adequate bone ingrowth.

    PubMed

    Maruyama, M; Terayama, K; Ito, M; Takei, T; Kitagawa, E

    1995-03-01

    In uncemented total hip arthroplasty, a complete filling of the gap between femoral prosthesis and the host bone is difficult and defects would remain, because the anatomy of the reamed intramedullary canal cannot fit the prosthesis. Therefore, it seems practical to fill the gap with a clay containing hydroxyapatite (HA), which has an osteoconductive character. The clay (HA clay) is made by mixing HA granules (size 0.1 mm or more) having a homogeneous pore distribution and a porosity of 35-48 vol%, and a viscous substance such as a saline solution of sodium alginate (SSSA). In the first experiment, the ratio of HA granules and sodium alginate in SSSA is set for the same handling properties of HA clay and polymethylmethacrylate bone cement (standard viscosity) before hardening. As a result, the ratio is set for 55 wt% of HA in the clay and 12.5 wt% of sodium alginate in SSSA (i.e., HA:sodium alginate:saline solution = 9.8:1:7). In the second study, the gap between the femoral stem and bone model is completely filled with HA clay. However, the gap is not filled only with HA granules or HA granules mixed with saline solution. In the third animal experiment, using an unloaded model, histology shows that HA clay has an osteoconductive property bridging the gap between the implant and the cortical bone without any adverse reaction. HA clay is considered a useful biomaterial to fill the gap with adequate bone ingrowth.

  8. Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films.

    PubMed

    Ahmed, Jasim; Varshney, Sunil K; Auras, Rafael; Hwang, Sung W

    2010-10-01

    The melt rheology and thermal properties of polylactide (PLA)-based nanocomposite films that were prepared by solvent casting method with L-PLA, polyethylene glycol (PEG), and montmorillonite clay were studied. The neat PLA showed predominantly solid-like behavior (G' > G″) and the complex viscosity (η*) decreased systematically as the temperature increased from 184 to 196 °C. The elastic modulus (G') of PLA/clay blend showed a significant improvement in the magnitude in the melt, while clay concentration was at 6% wt or higher. At similar condition, PEG dramatically reduced dynamic modulii and complex viscosity of PLA/PEG blend as function of concentration. A nanocomposite blend of PLA/PEG/clay (74/20/6) when compared to the neat polymer and PLA/PEG blend exhibited intermediate values of elastic modulus (G') and complex viscosity (η*) with excellent flexibility. Thermal analysis of different clay loading blends indicated that the melting temperature (T(m)) and glass transition temperature (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) and the T(m) of the blends (PLA/PEG and PLA/PEG/clay) significantly, however, crystallinity increased in the similar condition. The transmission electron microscopy (TEM) image of nanocomposite films indicated good compatibility between PLA and PEG, whereas clay was not thoroughly distributed in the PLA matrix and remained as clusters. The percent crystallinity obtained by X-ray was significantly higher than that of differential scanning calorimeter (DSC) data for PLA.

  9. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  10. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  11. Shear Strength of Remoulding Clay Samples Using Different Methods of Moulding

    NASA Astrophysics Data System (ADS)

    Norhaliza, W.; Ismail, B.; Azhar, A. T. S.; Nurul, N. J.

    2016-07-01

    Shear strength for clay soil was required to determine the soil stability. Clay was known as a soil with complex natural formations and very difficult to obtain undisturbed samples at the site. The aim of this paper was to determine the unconfined shear strength of remoulded clay on different methods in moulding samples which were proctor compaction, hand operated soil compacter and miniature mould methods. All the samples were remoulded with the same optimum moisture content (OMC) and density that were 18% and 1880 kg/m3 respectively. The unconfined shear strength results of remoulding clay soils for proctor compaction method was 289.56kPa with the strain 4.8%, hand operated method was 261.66kPa with the strain 4.4% and miniature mould method was 247.52kPa with the strain 3.9%. Based on the proctor compaction method, the reduction percentage of unconfined shear strength of remoulded clay soil of hand operated method was 9.66%, and for miniature mould method was 14.52%. Thus, because there was no significant difference of reduction percentage of unconfined shear strength between three different methods, so it can be concluded that remoulding clay by hand operated method and miniature mould method were accepted and suggested to perform remoulding clay samples by other future researcher. However for comparison, the hand operated method was more suitable to form remoulded clay sample in term of easiness, saving time and less energy for unconfined shear strength determination purposes.

  12. High Temperature Thermosetting Polyimide Nanocomposites Prepared with Reduced Charge Organoclay

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Liang, Margaret I.

    2005-01-01

    The naturally occurring sodium and calcium cations found in bentonite clay galleries were exchanged with lithium cations. Following the cation exchange, a series of reduced charge clays were prepared by heat treatment of the lithium bentonite at 130 C, 150 C, or 170 C. Inductively coupled plasma (ICP) analysis showed that heating the lithium clay at elevated temperatures reduced its cation exchange capacity. Ion exchange of heat-treated clays with either a protonated alkyl amine or a protonated aromatic diamine resulted in decreasing amounts of the organic modifier incorporated into the lithium clay. The level of silicate dispersion in a thermosetting polyimide matrix was dependent upon the temperature of Li-clay heat treatment as well as the organic modification. In general, clays treated at 150 C or 170 C, and exchanged with protonated octadcylamine or protonated 2,2'-dimethlybenzidine (DMBZ) showed a higher degree of dispersion than clays treated at 130 C, or exchanged with protonated dodecylamine. Dynamic mechanical analysis showed little change in the storage modulus or T(sub g) of the nanocomposites compared to the base resin. However, long term isothermal aging of the samples showed a significant decrease in the resin oxidative weight loss. Nanocomposite samples aged in air for 1000 hours at 288 C showed of to a decrease in weight loss compared to that of the base resin. This again was dependent on the temperature at which the Li-clay was heated and the choice of organic modification.

  13. ON THE GEOCHEMISTRY OF NIOBIUM AND TANTALUM IN CLAYS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachadzhanov, D.N.

    1963-10-01

    With the aid of the spectral method with a preliminary enrichment in tannin, the niobium and tantalum content was determined in some humid and arid clays of the Russian platform. The investigated samples were composed of 354 specimens. The average content of niobium in humid clays is 0.0020%, of tantalum 0.00024% (the Nb/Ta ratio is 8.4) and in arid clays is respectively the content of niobium 0.00133% and the content of tantalum 0.00009% (the Nb/Ta ratio is 14.8). The average value of the content of niobium content for all studied clays is 0.00183% and of the tantalum content 0.00020%, themore » Nb/Ta ratio being 9.1. In clays an interconnection of niobium with tantalum, as well as with aluminium, titanium, zirconium, and hafnium was observed. However, on the background of this connection some separation of the named elements is noted. A tendency for the Nb/Ta ratio shift from the region of matter removal towards the center of the marine basin was observed. The study of niobium and tantalum distribution over different clay fractions showed that one part of elements is connected with zircon and titanium minerals in aleuosand fraction (0.1-- 0.01 mm). Another, approximately similar part is contained in the proper clay fraction (<0. 01 mm), the tantalum somewhat more concentrating in the aleurosand fraction and niobium in the clay fraction. (P.C.H.)« less

  14. Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications.

    PubMed

    Akkari, Marwa; Aranda, Pilar; Ben Haj Amara, Abdessalem; Ruiz-Hitzky, Eduardo

    2016-01-01

    In this study, ZnO/SiO 2 -clay heterostructures were successfully synthesized by a facile two-step process applied to two types of clays: montmorillonite layered silicate and sepiolite microfibrous clay mineral. In the first step, intermediate silica-organoclay hybrid heterostructures were prepared following a colloidal route based on the controlled hydrolysis of tetramethoxysilane in the presence of the starting organoclay. Later on, pre-formed ZnO nanoparticles (NP) dispersed in 2-propanol were incorporated under ultrasound irradiation to the silica-organoclay hybrid heterostructures dispersed in 2-propanol, and finally, the resulting solids were calcinated to eliminate the organic matter and to produce ZnO nanoparticles (NP) homogeneously assembled to the clay-SiO 2 framework. In the case of montmorillonite the resulting materials were identified as delaminated clays of ZnO/SiO 2 -clay composition, whereas for sepiolite, the resulting heterostructure is constituted by the assembling of ZnO NP to the sepiolite-silica substrate only affecting the external surface of the clay. The structural and morphological features of the prepared heterostructures were characterized by diverse physico-chemical techniques (such as XRD, FTIR, TEM, FE-SEM). The efficiency of these new porous ZnO/SiO 2 -clay heterostructures as potential photocatalysts in the degradation of organic dyes and the removal of pharmaceutical drugs in water solution was tested using methylene blue and ibuprofen compounds, respectively, as model of pollutants.

  15. Clays and clay minerals in Bikaner: Sources, environment pollution and management

    NASA Astrophysics Data System (ADS)

    Gayatri, Sharma; Anu, Sharma

    2016-05-01

    Environmental pollution can also be caused by minerals which include natural as well as human activities. Rapid urbanization, consumerist life style, anthropogenic deeds are increasing environmental pollution day by day. Fluctuation in our ecosystem or polluted environment leads to many diseases and shows adverse effects on living organisms. The main aim of this paper is to highlight the environmental pollution from clays and clay minerals and their mitigation..

  16. Process for the preparation of organoclays

    DOEpatents

    Chaiko, David J.

    2003-01-01

    A method for preparing organoclays from smectites for use as rheological control agents and in the preparation of nanocomposites. Typically, the clay is dispersed in water, and a substantially monomolecular layer of a water soluble polymer is applied to the surfaces of the clay. A surfactant is also applied to the clay to modify the surface hydrophilic/hydrophobic balance of the clay, and the organoclay is separated out for subsequent use.

  17. Effect of addition of different nano-clays on the fumed silica-polyethylene glycol based shear-thickening fluids

    NASA Astrophysics Data System (ADS)

    Singh, Mansi; Mehta, Rajeev; Verma, Sanjeev K.; Biswas, Ipsita

    2018-01-01

    A comparative study of the rheology of shear thickening suspensions of 20% fumed silica in polyethylene glycol (PEG200) with different nano clays as additives has been done. The nano-clays used are montmorillonite (MMT), Closite15A, Kaolin and Halloysite clay. The objective was to study the effect of relatively cost-effective clays as a partial substitute of silica. Specifically, the effect of type, concentration, temperature and frequency were considered. The results indicate that the shear thickening properties of Closite15A as additive in temperature ranges of 25 °C-45 °C performs the best and Halloysite performs best at higher (55 °C) and lower temperatures (5, 15 °C). The elasticity effects in dynamic experiments were markedly enhanced by Halloysite clay addition. Addition of MMT, however, led to insignificant enhancement in critical viscosity in steady-state as well as dynamic state-rheology. Interestingly, shear thickening fluid (STF) with all clay except MMT was stable after storing for more than a month. These findings indicate that the introduction of nano-clay as additives is a promising and cost effective method for enhancing the STF behavior which can be utilized in high impact resistant (about 3000% strain and 300 rad s-1 frequency) applications.

  18. Clay-Alcohol-Water Dispersions: Anomalous Viscosity Changes Due to Network Formation of Clay Nanosheets Induced by Alcohol Clustering.

    PubMed

    Kimura, Yuji; Haraguchi, Kazutoshi

    2017-05-16

    Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.

  19. Primordial clays on Mars formed beneath a steam or supercritical atmosphere.

    PubMed

    Cannon, Kevin M; Parman, Stephen W; Mustard, John F

    2017-12-06

    On Mars, clay minerals are widespread in terrains that date back to the Noachian period (4.1 billion to 3.7 billion years ago). It is thought that the Martian basaltic crust reacted with liquid water during this time to form hydrated clay minerals. Here we propose, however, that a substantial proportion of these clays was formed when Mars' primary crust reacted with a dense steam or supercritical atmosphere of water and carbon dioxide that was outgassed during magma ocean cooling. We present experimental evidence that shows rapid clay formation under conditions that would have been present at the base of such an atmosphere and also deeper in the porous crust. Furthermore, we explore the fate of a primordial clay-rich layer with the help of a parameterized crustal evolution model; we find that the primordial clay is locally disrupted by impacts and buried by impact-ejected material and by erupted volcanic material, but that it survives as a mostly coherent layer at depth, with limited surface exposures. These exposures are similar to those observed in remotely sensed orbital data from Mars. Our results can explain the present distribution of many clays on Mars, and the anomalously low density of the Martian crust in comparison with expectations.

  20. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes.

    PubMed

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D

    2014-07-28

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.

  1. Removal of diphenhydramine from water by swelling clay minerals.

    PubMed

    Li, Zhaohui; Chang, Po-Hsiang; Jiang, Wei-Teh; Jean, Jiin-Shuh; Hong, Hanlie; Liao, Libing

    2011-08-01

    Frequent detection of pharmaceuticals in surface water and wastewater attracted renewed attention on studying interactions between pharmaceuticals and sludge or biosolids generated from wastewater treatment. Less attention was focused on studying interactions between pharmaceuticals and clay minerals, important soil and sediment components. This research targeted on investigating interactions between diphenhydramine (DPH), an important antihistamine drug, and a montmorillonite, a swelling clay, in aqueous solution. Stoichiometric desorption of exchangeable cations accompanying DPH adsorption confirmed that cation exchange was the most important mechanism of DPH uptake by the swelling clay. When the solution pH was below the pK(a) of DPH, its adsorption on the swelling clay was less affected by pH. Increasing solution pH above the pK(a) value resulted in a decrease in DPH adsorption by the clay. An increase in d(001) spacing at a high DPH loading level suggested interlayer adsorption, thus, intercalation of DPH. The results from this study showed that swelling clays are a good environmental sink for weak acidic drugs like DPH. In addition, the large cation exchange capacity and surface area make the clay a good candidate to remove cationic pharmaceuticals from the effluent of wastewater treatment facilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes

    PubMed Central

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D.

    2014-01-01

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments. PMID:25068404

  3. Smectite clays in Mars soil: evidence for their presence and role in Viking biology experimental results.

    PubMed

    Banin, A; Rishpon, J

    1979-12-01

    Various chemical, physical and geological observations indicate that smectite clays are probably the major components of the Martian soil. Satisfactory ground-based chemical simulation of the Viking biology experimental results was obtained with the smectite clays nontronite and montmorillonite when they contained iron and hydrogen as adsorbed ions. Radioactive gas was released from the medium solution used in the Viking Labeled Release (LR) experiment when interacted with the clays, at rates and quantities similar to those measured by Viking on Mars. Heating of the active clay (mixed with soluble salts) to 160 degrees C in CO2 atmosphere reduced the decomposition activity considerably, again, as was observed on Mars. The decomposition reaction in LR experiment is postulated to be iron-catalyzed formate decomposition on the clay surface. The main features of the Viking Pyrolytic Release (PR) experiment were also simulated recently (Hubbard, 1979) which the iron clays, including a relatively low '1st peak' and significant '2nd peak'. The accumulated observations on various Martian soil properties and the results of simulation experiments, thus indicate that smectite clays are major and active components of the Martian soil. It now appears that many of the results of the Viking biology experiments can be explained on the basis of their surface activity in catalysis and adsorption.

  4. Synthesis of hectorite-TiO2 and kaolinite-TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Destaillats, Hugo; Kibanova, D.; Trejo, M.

    2008-03-01

    We studied the synthesis and photocatalytic activity of small-sized TiO{sub 2} supported on hectorite and kaolinite. Deposition of TiO{sub 2} on the clay mineral surface was conducted by using a sol-gel method with titanium isopropoxide as precursor. Anatase TiO{sub 2} particles formation was achieved by hydrothermal treatment at 180 C. Material characterization was conducted using XRD, SEM, XPS, ICP-OES, BET and porosimetry analysis. Efficiency in synthesizing clay-TiO{sub 2} composites depended strongly on the clay mineral structure. Incorporation of anatase in hectorite, an expandable clay mineral, was found to be very significant (> 36 wt.% Ti) and to be followed bymore » important structural changes at the clay mineral surface. Instead, no major structural modifications of the clay were observed for kaolinite-TiO{sub 2}, as compared with the untreated material. Photocatalytic performance of clay-TiO{sub 2} composites was evaluated with ATR-FTIR following the oxidation of adsorbed toluene and d-limonene, two model air pollutants. In either case, the photocatalytic removal efficiency of these hydrophobic substrates by the synthesized clay-TiO{sub 2} composites was comparable to that observed using pure commercial TiO{sub 2} (Degussa P25).« less

  5. Anatomical knowledge gain through a clay-modeling exercise compared to live and video observations.

    PubMed

    Kooloos, Jan G M; Schepens-Franke, Annelieke N; Bergman, Esther M; Donders, Rogier A R T; Vorstenbosch, Marc A T M

    2014-01-01

    Clay modeling is increasingly used as a teaching method other than dissection. The haptic experience during clay modeling is supposed to correspond to the learning effect of manipulations during exercises in the dissection room involving tissues and organs. We questioned this assumption in two pretest-post-test experiments. In these experiments, the learning effects of clay modeling were compared to either live observations (Experiment I) or video observations (Experiment II) of the clay-modeling exercise. The effects of learning were measured with multiple choice questions, extended matching questions, and recognition of structures on illustrations of cross-sections. Analysis of covariance with pretest scores as the covariate was used to elaborate the results. Experiment I showed a significantly higher post-test score for the observers, whereas Experiment II showed a significantly higher post-test score for the clay modelers. This study shows that (1) students who perform clay-modeling exercises show less gain in anatomical knowledge than students who attentively observe the same exercise being carried out and (2) performing a clay-modeling exercise is better in anatomical knowledge gain compared to the study of a video of the recorded exercise. The most important learning effect seems to be the engagement in the exercise, focusing attention and stimulating time on task. © 2014 American Association of Anatomists.

  6. Primordial clays on Mars formed beneath a steam or supercritical atmosphere

    NASA Astrophysics Data System (ADS)

    Cannon, Kevin M.; Parman, Stephen W.; Mustard, John F.

    2017-12-01

    On Mars, clay minerals are widespread in terrains that date back to the Noachian period (4.1 billion to 3.7 billion years ago). It is thought that the Martian basaltic crust reacted with liquid water during this time to form hydrated clay minerals. Here we propose, however, that a substantial proportion of these clays was formed when Mars’ primary crust reacted with a dense steam or supercritical atmosphere of water and carbon dioxide that was outgassed during magma ocean cooling. We present experimental evidence that shows rapid clay formation under conditions that would have been present at the base of such an atmosphere and also deeper in the porous crust. Furthermore, we explore the fate of a primordial clay-rich layer with the help of a parameterized crustal evolution model; we find that the primordial clay is locally disrupted by impacts and buried by impact-ejected material and by erupted volcanic material, but that it survives as a mostly coherent layer at depth, with limited surface exposures. These exposures are similar to those observed in remotely sensed orbital data from Mars. Our results can explain the present distribution of many clays on Mars, and the anomalously low density of the Martian crust in comparison with expectations.

  7. Investigation of Stabilised Batu Pahat Soft Soil Pertaining on its CBR and Permeability Properties for Road Construction

    NASA Astrophysics Data System (ADS)

    Mohd Idrus, M. M.; Singh, J. S. M.; Musbah, A. L. A.; Wijeyesekera, D. C.

    2016-07-01

    Soil stabilization by adding materials such as cement, lime and bitumen is one of the effective methods for improving the geotechnical properties of soils [11] Nano-particle is one of the newest additives and many studies about using nano-particle in soil improvement has been done but it was given less attention when soft clay soils stabilization is concerned. To evaluate the strength characteristics of stabilized Batu Pahat soft clay, laboratory investigation on early strength gained by the stabilized soil must be conducted to formulate a suitable and economical mix design [10]. To achieve such purpose, the study examined the effect of NanoClay on the California Bearing Ratio and the Permeability of soft clay. The results gained shows that the Nano-Clay is able to increase the strength of the soft clay [9]. The California Bearing Ratio of the soil is increase significantly where the results for the highest percentage of admixture is 14.4% while the permeability of the soil decreases significantly with increasing Nano-Clay whereby the results of the highest percentage of admixture is 2.0187x10-11 m/s. After doing this research, it is proven that Nano-clay can contribute towards better soil stabilization and enhance the quality of soil as subgrade and foundation at large.

  8. In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay.

    PubMed

    Ou, Jieyong; Li, Hong; Yan, Zengguang; Zhou, Youya; Bai, Liping; Zhang, Chaoyan; Wang, Xuedong; Chen, Guikui

    2018-03-15

    Clay minerals have been proposed as amendments for remediating metal-contaminated soils owing to their abundant reserves, high performance, simplicity of use and low cost. Two novel clay minerals, Maifan stone and illite/smectite clay, were examined in the in situ immobilisation of soil metals. The application of 0.5% Maifan stone or illite/smectite clay to field soils significantly decreased the fractions of diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Ni, Cr, Zn, Cu and Pb. Furthermore, reductions of 35.4% and 7.0% in the DTPA-extractable fraction of Cd were obtained with the Maifan stone and illite/smectite clay treatments, respectively, which also significantly reduced the uptake of Cd, Ni, Cr, Zn, Cu and Pb in the edible parts of Brassica rapa subspecies pekinensis, Brassica campestris and Spinacia oleracea. Quantitatively, the Maifan stone treatment reduced the metal uptake in B. rapa ssp. Pekinensis, B. campestris and S. oleracea from 11.6% to 62.2%, 4.6% to 41.8% and 11.3% to 58.2%, respectively, whereas illite/smectite clay produced reductions of 8.5% to 62.8% and 4.2% to 37.6% in the metal uptake in B. rapa ssp. Pekinensis and B. campestris, respectively. Therefore, both Maifan stone and illite/smectite clay are promising amendments for contaminated soil remediation.

  9. The Effect of Art Therapy with Clay on Hopelessness Levels Among Neurology Patients.

    PubMed

    Akhan, Latife Utas; Kurtuncu, Meltem; Celik, Sevim

    This study was performed to determine the effect of art therapy with clay on hopelessness levels of patients under treatment in departments of neurology. The study was of one group, pre- and posttest design. This study was performed on patients who were hospitalized in the neurology departments of a university and a state hospital between February and May 2012 in Turkey. The sample for the study comprised 50 neurology patients with diagnoses of epilepsy (17 patients) and stroke (33 patients). The patients in the study were asked to create objects of clay of any shape they desired. Data for the research were collected with a sociodemographic data form and by using the Beck Hopelessness Scale (BHS). While BHS scores of neurology patients before clay therapy were found higher compared to the scores after therapy with clay, there was also a statistically significant difference. After clay therapy, BHS scores were lower in women, in married patients, in patients who suffered from a stroke, people who had chronic disease, people without psychological illness, and in the case of children. The study showed that clay therapy had an impact on the hopelessness levels of neurology patients. Art therapy with clay may be used for rehabilitation purposes in neurology patients, both in the hospital and at home after discharge.

  10. Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials.

    PubMed

    Naik, Sajo P; Scholin, Jonathon; Ching, San; Chi, Fang; Herpfer, Marc

    2018-01-10

    This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.

  11. Morphology and Structure of Amino-fatty Acid Intercalated Montmorillonite

    NASA Astrophysics Data System (ADS)

    Reyes, Larry; Sumera, Florentino

    2015-04-01

    Natural clays and its modified forms have been studied for their wide range of applications, including polymer-layered silicate, catalysts and adsorbents. For nanocomposite production, montmorillonite (MMT) clays are often modified with organic surfactants to favor its intermixing with the polymer matrix. In the present study, Na+-montmorillonite (Na+-MMT) was subjected to organo-modification with a protonated 12-aminolauric acid (12-ALA). The amount of amino fatty acid surfactants loaded was 25, 50, 100 and 200% the cation exchange capacity (CEC) of Na+-MMT (25CEC-AMMT, 50CEC-AMMT, 100CEC-AMMT and 200CEC-AMMT). Fatty acid-derived surfactants are an attractive resource of intercalating agents for clays due to their renewability and abundance. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to determine the occurrence of intercalation of 12-ALA and their molecular structure in the clay's silicates. XRD analysis revealed that the interlayer spacing between the alumino-silicate layers increased from 1.25 nm to 1.82 nm with increasing ALA content. The amino fatty acid chains were considered to be in a flat monolayer structure at low surfactant loading, and a bilayered to a pseudotrilayered structure at high surfactant loading. On the other hand, FTIR revealed that the alkyl chains adopt a gauche conformation, indicating their disordered state based on their CH2symmetric and asymmetric vibrations. Thermogravimetric analyses (TGA) allows the determination of the moisture and organic content in clays. Here, TGA revealed that the surfactant in the clay was thermally stable, with Td ranging from 353° C to 417° C. The difference in the melting behavior of the pristine amino fatty acids and confined fatty acids in the interlayer galleries of the clay were evaluated by Differential Scanning Calorimerty (DSC). The melting temperatures (Tm) of the amino fatty acid in the clay were initially found to be higher than those of the free amino fatty acid, but decreased with increasing surfactant loading. This suggested that the amino fatty acid may be tethered to the clay structure via ionic interaction and/or ion-dipole attraction. Significant changes in the clay morphology, particle size and surface charge were observed after organo-modification. Scanning electron microscopy (SEM) revealed that the organo-clays have a disordered and flaky morphology, while the unmodified MMT appeared to be dispersed spherical grains. The effective (Z) diameter of Na+-MMT was found to be ~520 nm, but increased up to ~937 nm upon intercalation of 12-ALA. The zeta potential (ξ) of the clay materials, on the other hand, ranged from -33 mV for undmodified MMT to -16 mv (200CEC-AMMT clay). The possible occupational hazards of working with nanoclays should also be explored. Presently, the MTT-dye reduction assay was performed to determine cell viability of mouse monocyte-macrophages (J774A.1) after direct exposure to the clays. The cytotoxicity of the clays exhibited a chemistry and dose dependent response, with unmodified Na+-MMT as the most cytotoxic while the organo-clays exhibited low toxicity. These results demonstrated the successful intercalation of the surfactant for the production of organophilic clay materials for a wide range of applications.

  12. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents themore » distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.« less

  13. Thermophysical and mechanical characterization of clay bricks reinforced by alfa or straw fibers

    NASA Astrophysics Data System (ADS)

    Elhamdouni, Y.; Khabbazi, A.; Benayad, C.; Mounir, S.; Dadi, A.

    2017-03-01

    This work is part of the valuation of local materials such as clay (earth), alfa fiber and straw fiber. The goal is to use these materials as bricks in rural construction. These materials are abundant, natural, and renewable. The objective of this work is to study the thermal and mechanical behavior of a new material by mixing clay (chosen as the binder) with different mass percentages of alfa fiber (0.5%, 1%, 2%, 3%, 4%), and to compare these results with those of materials often used in the construction of individual houses in rural Morocco (clay + straw). The results obtained prove to us that using straw fibers can reduce the thermal conductivity compared to alfa fiber, which allows to have energy savings of 2% to 7%. By against, alfa fibers can improve the mechanical behavior of clay-based materials when compared to the clay + straw material (an increase of 8% to 17% in the tractive resistance by bending and 6% to 18% for compression resistance). These results also specify the optimal usage conditions of these fibers (alfa and straw) in the clay bricks.

  14. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies

    PubMed Central

    Ito, Akihiko; Wagai, Rota

    2017-01-01

    Clay-size minerals play important roles in terrestrial biogeochemistry and atmospheric physics, but their data have been only partially compiled at global scale. We present a global dataset of clay-size minerals in the topsoil and subsoil at different spatial resolutions. The data of soil clay and its mineralogical composition were gathered through a literature survey and aggregated by soil orders of the Soil Taxonomy for each of the ten groups: gibbsite, kaolinite, illite/mica, smectite, vermiculite, chlorite, iron oxide, quartz, non-crystalline, and others. Using a global soil map, a global dataset of soil clay-size mineral distribution was developed at resolutions of 2' to 2° grid cells. The data uncertainty associated with data variability and assumption was evaluated using a Monte Carlo method, and validity of the clay-size mineral distribution obtained in this study was examined by comparing with other datasets. The global soil clay data offer spatially explicit studies on terrestrial biogeochemical cycles, dust emission to the atmosphere, and other interdisciplinary earth sciences. PMID:28829435

  15. Comparison of tetrachloromethane sorption to an alkylammonium-clay and an alkyldiammonium-clay

    USGS Publications Warehouse

    Smith, J.A.; Jaffe, P.R.

    1991-01-01

    The interlamellar space of Wyoming bentonite (clay) was modified by exchanging either decyltrimethyl-ammonium (DTMA) or decyltrimethyldiammonium (DTMDA) cations for inorganic ions, and tetrachloromethane sorption to the resulting two organoclays from water was studied at 10, 20, and 35??C. Only one end of the 10-carbon alkyl chain of the DTMA cation is attached to the silica surface of the clay mineral, and tetrachloromethane sorption of DTMA-clay is characterized by isotherm linearity, noncompetitive sorption, weak solute uptake, and a relatively low heat of sorption. Both ends of the 10-carbon chain of the DTMDA cation are attached to the silica surface of the clay mineral, and tetrachloromethane sorption to DTMDA-clay is characterized by nonlinear isotherms, competitive sorption, strong solute uptake, and a relatively high, exothermic heat of sorption that varies as a function of the mass of tetrachloromethane sorbed. Therefore, the attachment of both ends of the alkyl chain to the interlamellar mineral surface appears to change the sorption mechanism from a partition-dominated process to an adsorption-dominated process. ?? 1991 American Chemical Society.

  16. The location and extent of exfoliation of clay on the fracture mechanisms in nylon 66-based ternary nanocomposites.

    PubMed

    Dasari, Aravind; Yu, Zhong-Zhen; Mai, Yiu-Wing; Yang, Mingshu

    2008-04-01

    The primary focus of this work is to elucidate the location and extent of exfoliation of clay on fracture (under both static and dynamic loading conditions) of melt-compounded nylon 66/clay/SEBS-g-MA ternary nanocomposites fabricated by different blending sequences. Distinct microstructures are obtained depending on the blending protocol employed. The state of exfoliation and dispersion of clay in nylon 66 matrix and SEBS-g-MA phase are quantified and the presence of clay in rubber is shown to have a negative effect on the toughness of the nanocomposites. The level of toughness enhancement of ternary nanocomposites depends on the blending protocol and the capability of different fillers to activate the plastic deformation mechanisms in the matrix. These mechanisms include: cavitation of SEBS-g-MA phase, stretching of voided matrix material, interfacial debonding of SEBS-g-MA particles, debonding of intercalated clay embedded inside the SEBS-g-MA phase, and delamination of intercalated clay platelets. Based on these results, new insights and approaches for the processing of better toughened polymer ternary nanocomposites are discussed.

  17. Preparation and Characterization of a Superparamagnetic Polymer Nanocomposite

    NASA Astrophysics Data System (ADS)

    Brenner, N.; Isseroff, R.; Rafailovich, M.; Rudomen, G.; Gambino, R.; Liang, S. S.; Sunil, D.; Si, M.; Collazo, L.; Pernodet, N.; Fang, X.

    2006-03-01

    Fe(CO)5 decomposition produced ferro- and superparamagnetic polymer nanocomposites. Fe(CO)5 and Cloisite 20A clay were combined in a closed vial for 12 hours, then opened to air for 2 hours. Mössbauer analysis indicated formation of Fe2O3 on clay; mass analysis indicated 12% Fe in clay. A Brabender mixed Fe2O3/clays with PMMA and EVA at ratios by mass of 9:4:36 and 1:1:4 respectively (Fe(CO)5:clay:polymer). TEM displayed Fe2O3 nanoparticles, 3.3 ^+ 0.8 nm in diameter, adsorbed on exfoliated clay platelet surfaces in polymer matrices. VSM data indicated superparamagnetism with moments of 510.3 emu/g(Fe2O3) (PMMA) and 8.46 emu/g(Fe2O3) (EVA). DMA showed 37% decreased dynamic modulus (EVA) and 11% (PMMA) due to Fe2O3. TGA indicated PMMA stability to 400^oC (9.3% mass residual) and EVA to 435^oC (11% mass residual). Cell adhesion tests showed Fe2O3/clay enhanced proliferation, promising applications in bone implants.

  18. Effect of Layer Charge on CO2 and H2O Intercalations in Swelling Clays.

    PubMed

    Rao, Qi; Leng, Yongsheng

    2016-11-08

    The effect of layer charge on the intercalation of supercritical carbon dioxide (scCO 2 )-H 2 O mixture in Na-montmorillonite clay interlayers under T = 323 K and P = 90 bar geologic sequestration conditions has been further investigated. This effect includes the charge amount and its location (within either octahedral or tetrahedral layers due to isomorphic substitutions). Two clay models with different layer charges are used in this study. Simulation results show that the increase of charge amount shifts the monolayer-to-bilayer (1W-to-2W) hydration transition toward the lower relative humidity (RH), increasing water sorption at the expense of reducing the overall sorption amount of CO 2 in the clay interlayer. However, the combination of the influence of charge amount and charge location leads to insignificant changes in equilibrium basal spacings of the high- and low-charge clays. Molecular dynamics simulations show that the CO 2 dimers, which are frequently seen in low-charge clay interlayers, vanish in high-charge clay interlayers even at low RH of 30%.

  19. What Makes a Natural Clay Antibacterial?

    PubMed Central

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (<200 nm), illite-smectite and reduced iron phases. The role of clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758

  20. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-A review.

    PubMed

    Moraes, Jemima Daniela Dias; Bertolino, Silvana Raquel Alina; Cuffini, Silvia Lucia; Ducart, Diego Fernando; Bretzke, Pedro Eriberto; Leonardi, Gislaine Ricci

    2017-12-20

    Clay minerals are layered materials with a number of peculiar properties, which find many relevant applications in various industries. Since they are easily found everywhere, they are particularly attractive due to their economic viability. In the cosmetic industry, clay minerals are often used as excipients to stabilize emulsions or suspensions and to modify the rheological behavior of these systems. They also play an important role as adsorbents or absorbents, not only in cosmetics but also in other industries, such as pharmaceuticals. This reviewer believes that since this manuscript is presented as covering topical applications that include pharmaceuticals, some types of clay minerals should be considered as a potential material to be used as drug delivery systems. We review several applications of clay minerals to dermocosmetic products, relating them to the underlying properties of these materials and exemplifying with a number of clay minerals available in the market. We also discuss the use of clay minerals in topically-applied products for therapeutic purposes, specially for skin treatment and protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Semianalytical solutions for transport in aquifer and fractured clay matrix system

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2015-09-01

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of semianalytical solutions is derived based on specific initial and boundary conditions as well as various source functions. The analytical model solutions are evaluated by numerical Laplace inverse transformation and analytical Fourier inverse transformation. The model solutions can be used to study the fate and transport in a three-dimensional spatial domain in which a nonaqueous phase liquid exists as a pool atop a fractured low-permeability clay layer. The nonaqueous phase liquid gradually dissolves into the groundwater flowing past the pool, while simultaneously diffusing into the fractured clay formation below the aquifer. Mass transfer of the contaminant into the clay formation is demonstrated to be significantly enhanced by the existence of the fractures, even though the volume of fractures is relatively small compared to the volume of the clay matrix. The model solution is a useful tool in assessing contaminant attenuation processes in a confined aquifer underlain by a fractured clay formation.

  2. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis

    NASA Astrophysics Data System (ADS)

    Kennedy, Martin John; Löhr, Stefan Carlos; Fraser, Samuel Alex; Baruch, Elizabeth Teresa

    2014-02-01

    The burial of marine sourced organic carbon (OC) in continental margin sediments is most commonly linked to oceanographic regulation of bottom-water oxygenation (anoxia) and/or biological productivity. Here we show an additional influence in the Devonian Woodford Shale, in which OC occurs as nanometer intercalations with specific phyllosilicate minerals (mixed-layer illite/smectite) that we term organo-mineral nanocomposites. High resolution transmission electron microscopic (HRTEM) images provide direct evidence of this nano-scale relationship. While discrete micron-scale organic particles, such as Tasmanites algal cysts, are present in some lamina, a strong relation between total organic carbon (TOC) and mineral surface area (MSA) over a range of 15% TOC indicate that the dominant association of organic carbon is with mineral surfaces and not as discrete pelagic grains, consistent with HRTEM images of nanocomposites. Where periods of oxygenation are indicated by bioturbation, this relationship is modified by a shift to lower OC loading on mineral surfaces and reduced MSA variability likely resulting from biological mixing and homogenization of the sediment, oxidative burn down of OC and/or stripping of OC from minerals in animal guts. The TOC-MSA relationship extends across a range of burial depths and thermal maturities into the oil window and persists through partial illitization. Where illitization occurs, the loss of mineral surface area associated with the collapse of smectite interlayer space results in a systematic increase in TOC:MSA and reorganization of organic carbon and clays into nano-scale aggregates. While the Woodford Shale is representative of black shale deposits commonly thought to record heightened marine productivity and/or anoxia, our results point to the importance of high surface area clay minerals for OC enrichment. Given that the vast majority of these clay minerals are formed in soils before being transported to continental margin settings, their mineralogy and attendant preservative potential is primarily a function of continental climate and provenance making these deposits a sensitive recorder of land as well as oceanographic change.

  3. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2003-01-01

    Part of the 2002 industrial minerals review. The production, consumption, and price of shale and common clay in the U.S. during 2002 are discussed. The impact of EPA regulations on brick and structural clay product manufacturers is also outlined.

  4. Creep and Sliding in Clay Slopes: Mutual Effects of Interlayer Swelling and Ice Jacking.

    DTIC Science & Technology

    1983-04-24

    calcite and feldspar constituents. Therefore a swelling clay with low diagenetic lithification (matrix forming) e fects. Therefore, the clay shows...were determined quantitatively (Tab. 2). The CEC depends mainly on the montmorillonite content and shows values up to 86 meq/lOOg, which Indicates...high montmorillonite clays. First freezing tests have been performed within a freezer. After freezing, three typical zones within the samples can be

  5. Fracture behavior of polypropylene/clay nanocomposites.

    PubMed

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  6. 86. Photocopied August 1978. CLAY RAMMING EQUIPMENT IN OPERATION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. Photocopied August 1978. CLAY RAMMING EQUIPMENT IN OPERATION IN THE POWER HOUSE IN 1910. A PILE OF CLAY USED TO FILL THE WASHED-OUT AREAS BENEATH THE FOUNDATIONS IS SHOWN IN THE CENTER OF THE ILLUSTRATION BESIDE THE FILLER PIPE. THE WEIGHT USED TO FORCE THE CLAY DOWN UNDER THE FOUNDATIONS IS SHOWN PRESSING ON THE PLUNGER PIPE. (542) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  7. Program and Abstracts for Clay Minerals Society 28th Annual Meeting

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.

  8. In Situ Immobilization of Heavy-Metal Contaminated Soil

    DTIC Science & Technology

    1988-06-01

    Scavenging DH 524 Molecules DH 565 DH 566 Natural Materials Clays Slurry BEN 125 Bentonite 325 Bentonite HPM 20 Microfine Bentonite Attasorb LVM Satintone...HPM 20 Microfine Bentonite are sodium- montmorillonite clays of different particle sizes and purities. Na- montmorillonite clay is a three-layered...a powder of 325 Mesh and has a purity of 90 percent. - -PM 20 Microfine Bentonite (Reference 24). This is a microfine clay having a purity of 99.75

  9. Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests.

    PubMed

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  10. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa.

    PubMed

    Toulkeridis, T; Goldstein, S L; Clauer, N; Kroner, A; Lowe, D R

    1994-03-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.

  11. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa

    NASA Technical Reports Server (NTRS)

    Toulkeridis, T.; Goldstein, S. L.; Clauer, N.; Kroner, A.; Lowe, D. R.

    1994-01-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.

  12. Organic/Inorganic Hybrid Polymer/Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.

    2003-01-01

    A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.

  13. Studies on adsorption capacity of clay-Sargassum sp biosorbent for Cr (VI) removal in wastewater from electroplating industry

    NASA Astrophysics Data System (ADS)

    Aprianti, Tine; Aprilyanti, Selvia; Apriani, Rachmawati; Sisnayati

    2017-11-01

    Various raw biosorbents have been studied for pollutant treatment of heavy metals contained in wastewater. In this study, clay and brown seaweed, Sargassum sp, are used for hexavalent chromium [Cr (VI)] biosorption. The adsorption capacity is adequately improved by combining clay and Sargassum sp as the adsorbent agent. Ion exchange of metal ions has shown strong coordination cross-linkage due to organic functional hydroxyl groups (OH-) contained in brown seaweed that provide sites to capture and bind the metal ions. Clay is known as an inexpensive adsorbent due to its wide availability besides its large specific surface area. Combining clay and Sargassum sp as biosorbent resulting better adsorption, the adsorption capacity reaches most favorable results of 99.39% at Sargassum: clay ratio of 40:60 on contact time 10 h. This study has proven that composit biosorbent used has succeeded in reducing hexavalent chromium pollutant in wastewater.

  14. Polyolefin nanocomposites

    DOEpatents

    Chaiko, David J.

    2007-01-02

    The present invention relates to methods for the preparation of clay/polymer nanocomposites. The methods include combining an organophilic clay and a polymer to form a nanocomposite, wherein the organophilic clay and the polymer each have a peak recrystallization temperature, and wherein the organophilic clay peak recrystallization temperature sufficiently matches the polymer peak recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer. Such nanocomposites exhibit 2, 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen, carbon dioxide, or both compared to the polymer. The invention also provides a method of preparing a nanocomposite that includes combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.

  15. Clays as possible catalysts for peptide formation in the prebiotic era

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1976-01-01

    From the point of view of prebiotic synthesis, clays might have performed functions of concentration, catalysis, and protection of molecules. The degrees of polymerization obtained, when amino acid adenylates are added to montmorillonite suspensions in water, are much higher than those obtained by polymerization in the absence of such a clay. In addition, they are of a discrete spectrum, usually multiples of 6 or 7, and reach values of up to 40 mers. In the absence of clay a continuous spectrum of degrees of polymerization is obtained, and usually up to 4-6 mers only. Copolymerization in the absence of clays yields mostly random copolymers, in their presence mostly block copolymers are obtained. Optical density measurements show that after adsorption has taken place on the clay, stacking of its layers occurs. Polymerization starts only after these stacked layers have been formed

  16. Pore characteristics and their emergent effect on water adsorption and transport in clays using small-angle neutron scattering with contrast variation

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2013-12-01

    In nuclear waste management, clays are canonical materials in the construction of engineered barriers. They are also naturally occurring reactive minerals which play an important role in retention and colloidal facilitated reactive transport in subsurface systems. Knowledge of total and accessible porosity in clays is crucial in determining fluids transport behavior in clays. It will provide fundamental insight on the performance efficiency of specific clays as a barrier material and their role in regulating radionuclide transport in subsurface environments. The aim of the present work is to experimentally investigate the change in pore characteristics of clays as function of moisture content, and to determine their pore character in relation to their water retention capacity. Recent developments in small-angle neutron scattering (SANS) techniques allow quantitative measurement of pore morphology and size distribution of various materials in their pristine state under various sample environments (exposure to solution, high temperature, and so on). Furthermore, due to dramatic different neutron scattering properties of hydrogen and deuterium, one can readily use contrast variation, which is the isotopic labeling with various ratios of H and D (e.g. mixture of H2O/D2O) to highlight or suppress features of the sample. This is particularly useful in the study of complex pore system such as clays. In this study, we have characterized the pore structures for a number of clays including clay minerals and field samples which are relevant to high-level waste systems under various sample environments (e.g., humidity, temperature and pressure) using SANS. Our results suggest that different clays show unique pore features under various sample environments. To distinguish between accessible/non-accessible pores and the nature of pore filling (e.g. the quantity of H2O adsorbed by clays, and the distribution of H2O in relation to pore character) to water, clays were exposed for various periods to a specific humidity (e.g., relative humidity: RH=100%, RH=75%). The humidity is controlled by using saturated aqueous solutions, consisting of specific H2O/D2O mixtures. Our results have shown distinct variations in water adsorption and moisture diffusivity among clays. Our results allow us to obtain on the pore scale porosity changes due to water movement in clays. As emergent transport property, nano- to micro-scale structural characterization is crucial in providing insights into pore-scale transport processes, which are pertinent to upscale continuum model development involving flow and transport at low water content, flow and phase behavior under confinement, and low-permeability media.

  17. Speciation of uranium in surface-modified, hydrothermally treated, (UO{sub 2}){sup 2+}-exchanged smectite clays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.

    1997-08-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS datamore » from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.« less

  18. Experimental study of Human Adenoviruses interactions with clays

    NASA Astrophysics Data System (ADS)

    Bellou, Maria; Syngouna, Vasiliki; Paparrodopoulos, Spyros; Vantarakis, Apostolos; Chrysikopoulos, Constantinos

    2014-05-01

    Clays are used to establish low permeability liners in landfills, sewage lagoons, water retention ponds, golf course ponds, and hazardous waste sites. Human adenoviruses (HAdVs) are waterborne viruses which have been used as viral indicators of fecal pollution. The objective of this study was to investigate the survival of HAdV in static and dynamic clay systems. The clays used as a model were crystalline aluminosilicates: kaolinite and bentonite. The adsorption and survival of HAdVs onto these clays were characterized at two different controlled temperatures (4 and 25o C) under static and dynamic batch conditions. Control tubes, in the absence of clay, were used to monitor virus inactivation due to factors other than adsorption to clays (e.g. inactivation or sorption onto the tubes walls). For both static and dynamic batch experiments, samples were collected for a maximum period of seven days. This seven day time - period was determined to be sufficient for the virus-clay systems to reach equilibrium. To infer the presence of infectious HAdV particles, all samples were treated with Dnase and the extraction of viral nucleid acid was performed using a commercial viral RNA kit. All samples were analyzed by Real - Time PCR which was used to quantify viral particles in clays. Samples were also tested for virus infectivity by A549 cell cultures. Exposure time intervals in the range of seven days (0.50-144 hours) resulted in a load reduction of 0.74 to 2.96 logs for kaolinite and a reduction of 0.89 to 2.92 for bentonite. Furthermore, virus survival was higher onto bentonite than kaolinite (p

  19. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    PubMed

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  20. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  1. Nanomechanical modeling of interfaces of polyvinyl alcohol (PVA)/clay nanocomposite

    NASA Astrophysics Data System (ADS)

    Paliwal, Bhasker; Lawrimore, William B.; Chandler, Mei Q.; Horstemeyer, Mark F.

    2017-05-01

    We study interfacial debonding of several representative structures of polyvinyl alcohol (PVA)/pyrophillite-clay systems - both gallery-interface (polymer/clay interface in the interlayer region containing polymer between clay layers stacked parallel to each other) and matrix-interphase (polymer/clay interphase-region when individual clay layers are well separated and dispersed in the polymer matrix) - using molecular dynamics simulations, while explicitly accounting for shearing/sliding (i.e. Mode-II) deformation mode. Ten nanocomposite geometries (five 2-D periodic structures for tension and five 1-D periodic structures for shearing) were constructed to quantify the structure-property relations by varying the number density of polymer chains, length of polymer chains and model dimensions related to the interface deformation. The results were subsequently mapped into a cohesive traction-separation law, including evaluation of peak traction and work of separation that are used to characterise the interface load transfer for larger length scale micromechanical models. Results suggest that under a crack nucleation opening mode (i.e. Mode-I), the matrix-interphase exhibits noticeably greater strength and a greater work of separation compared to the gallery-interface; however, they were similar under the shearing/sliding mode of deformation. When compared to shearing/sliding, the tensile peak opening mode stresses were considerably greater but the displacement at the peak stress, the displacement at the final failure and the work of separation were considerably lower. Results also suggest that PVA/clay nanocomposites with higher degree of exfoliation compared with nanocomposites with higher clay-intercalation can potentially display higher strength under tension-dominated loading for a given clay volume fraction.

  2. Geophysical characterization of areas prone to quick-clay landslides using radio-magnetotelluric and seismic methods

    NASA Astrophysics Data System (ADS)

    Wang, Shunguo; Malehmir, Alireza; Bastani, Mehrdad

    2016-05-01

    Landslides attributed to quick clays have not only considerable influences on surface geomorphology, they have caused delays in transportation systems, environmental problems and human fatalities, especially in Scandinavia and North America. If the subsurface distributions of quick clays are known, potential damages can be mitigated and the triggers of landslides can better be studied and understood. For this purpose, new radio-magnetotelluric (RMT) and seismic data were acquired in an area near the Göta River in southwest Sweden that contains quick clays and associated landslides. High-resolution data along 4 new lines, in total 3.8 km long, were acquired and merged with earlier acquired data from the site. Velocity and resistivity models derived from first breaks and RMT data were used to delineate subsurface geology, in particular the bedrock surface and coarse-grained materials that overlay the bedrock. The latter often are found underlying quick clays at the site. Comparably high-resistivity and sometimes high-velocity regions within marine clays are attributed to a combination of leached salt from marine clays or potential quick clays and coarse-grained materials. The resistivity and tomographic velocity models suggest a much larger role of the coarse-grained materials at the site than previously thought, but they also suggest two different scenarios for triggering quick-clay landslides at the site. These scenarios are related to the erosion of the riverbank, increased pore-pressure and surface topography when close to the river and human activity when away from the river and where bowl-shaped bedrock surrounds the sediments.

  3. New research on the origin of mottled clay in Quaternary basins in the coastal area of south China

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chen, Zhen; Gao, Quanzhou; Chen, Guoneng

    2018-06-01

    Last Glacial Maximum (LGM) mottled clay occurs widely in Late Quaternary basins in south China coastal areas. Current research attributes its origin to exposure weathering of Late Pleistocene marine/fluvial deposits during the LGM. However, field data suggest that this is not the case as there is no gradual transition in lithology, grain size, structure and material composition among these layers. Instead, the mottled clay possesses sedimentary characteristics of exotic dust. In this study, three typical drill cores in the Pearl River Delta were studied using grain size analysis, diffuse reflection spectroscopy (DRS) and geochemical analysis to ascertain the clay's sedimentary characteristics and origin. Grain size distribution patterns and parameters of the mottled clay were similar to those of a typical loess, indicating aeolian origin. In DRS curves, the peak height of hematite > goethite, indicating that the mottled clay had not experienced strong hydration and constitutes a continental product. This conforms to a typical loess but differs from the underlying marine/fluvial deposits. The chemical composition of the mottled clay was homogeneous in the vertical and planar directions. Upper continental crust (UCC) normalized curves of major and trace elements of the mottled clay were close to the average UCC and were consistent with typical aeolian deposits. The spatial and temporal distribution characteristics and relationship with the underlying layer suggest that the mottled clay was a loess-like deposit during the LGM and its mottled structure originated from strong modification of oxidation during the postglacial period after homogeneous dust had accumulated.

  4. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    PubMed Central

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  5. A dispersed fringe sensor prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Frostig, Danielle; McLeod, Brian A.; Kopon, Derek

    2017-01-01

    The Giant Magellan Telescope (GMT) will employ seven 8.4m primary mirror segments and seven 1m secondary mirror segments to achieve the diffraction limit of a 25.4m aperture. One challenge of the GMT is keeping the seven pairs of mirror segments in phase. We present a conceptual opto mechanical design for a prototype dispersed fringe sensor. The prototype, which operates at J-band and incorporates an infrared avalanche photodiode array, will be deployed on the Magellan Clay Telescope to verify the sensitivity and accuracy of the planned GMT phasing sensor.

  6. INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS

    EPA Science Inventory

    Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...

  7. 40 CFR 81.342 - South Dakota.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... County Butte County Campbell County Charles Mix County Clark County Clay County Codington County Corson... County Brule County Buffalo County Butte County Campbell County Charles Mix County Clark County Clay... Charles Mix County Unclassifiable/Attainment Clark County Unclassifiable/Attainment Clay County...

  8. 40 CFR 81.342 - South Dakota.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... County Butte County Campbell County Charles Mix County Clark County Clay County Codington County Corson... County Brule County Buffalo County Butte County Campbell County Charles Mix County Clark County Clay... Charles Mix County Unclassifiable/Attainment Clark County Unclassifiable/Attainment Clay County...

  9. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    NASA Astrophysics Data System (ADS)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the Tween-coated silver nanoparticles showed high stability in both single and binary systems. There were no significant differences in early stage aggregation kinetics observed inthe Na-clay-nanoparticle or Ca-clay-nanoparticle systems, which suggested that the CCC values of the single Na- or Ca-clay suspensions depend only on the electrolyte concentration, not the original cations on the clay surface. These results provide a basic idea for understanding the heteroaggregation of different silver nanoparticles and clays, which can be utilized in further study of fate and transport of engineered nanoparticles in natural aqueous system.

  10. The influence of shale depositional fabric on the kinetics of hydrocarbon generation through control of mineral surface contact area on clay catalysis

    NASA Astrophysics Data System (ADS)

    Rahman, Habibur M.; Kennedy, Martin; Löhr, Stefan; Dewhurst, David N.; Sherwood, Neil; Yang, Shengyu; Horsfield, Brian

    2018-01-01

    Accurately assessing the temperature and hence the depth and timing of hydrocarbon generation is a critical step in the characterization of a petroleum system. Clay catalysis is a potentially significant modifier of hydrocarbon generation temperature, but experimental studies of clay catalysis show inconsistent or contradictory results. This study tests the hypothesis that source rock fabric itself is an influence on clay mineral catalysis as it controls the extent to which organic matter and clay minerals are physically associated. Two endmember clay-organic fabrics distinguish the source rocks studied: (1) a particulate fabric where organic matter is present as discrete, >5 μm particles and (2) a nanocomposite fabric in which amorphous organic matter is associated with clay mineral surfaces at sub-micron scale. High-resolution electron imaging and bulk geochemical characterisation confirm that samples of the Miocene Monterey Formation (California) are representative of the nanocomposite source rock endmember, whereas samples from the Permian Stuart Range Formation (South Australia) represent the particulate source rock endmember. Kinetic experiments are performed on paired whole rock and kerogen isolate samples from these two formations using open system, non-isothermal pyrolysis at three different heating rates (0.7, 2 and 5 K/min) to determine the effects of the different shale fabrics on hydrocarbon generation kinetics. Extrapolation to a modelled geological heating rate shows a 20 °C reduction in the onset temperature of hydrocarbon generation in Monterey Formation whole rock samples relative to paired kerogen isolates. This result is consistent with the Monterey Formations's nanocomposite fabric where clay catalysis can proceed because reactive clay minerals are intimately associated with organic matter. By contrast, there is no significant difference in the modelled hydrocarbon generation temperature of paired whole rock and kerogen isolates from the Stuart Range Formation. This is consistent with its particulate fabric, where relatively large, discrete organic particles have limited contact with the mineral matrix and the clay minerals are mainly diagenetic and physically segregated within pores. While heating rate may have a control on mineral matrix effects, this result shows that the extent to which organic matter and clay minerals are physically associated could have a significant effect on the timing of hydrocarbon generation, and is a function of the depositional environment and detrital vs diagenetic origin of clay minerals in source rocks.

  11. Nonlinear Propagation of Sound in Recently Settled Flocculated Sediments

    NASA Astrophysics Data System (ADS)

    Reed, A. H.; Sanders, W. M.

    2016-12-01

    Cohesive sediments undergo changes in a whirlwind. Dumped out of the river and into the estuary, they get bathed in salty water and subject to turbulent motion. During this sequence of events, the clay particles form clay aggregates of larger size with higher settling rates than the clay particles. Once the flocs have settled, cohesive sediments may form a sediment deposit of mud. Our interest is in the factors that control the development of soundspeed within these muds. This paper addresses organic matter influences on floc aggregation and settling rates. In laboratory studies, organic matter type differed in mixtures with either bentonite or kaolinite clays. The organic matter types used were guar gum, a net positive biopolymer, and xanthan gum, a net negative biopolymer derived from bacterial exudates, similar to those commonly found in estuaries. These biopolymers were dissolved into low salinity water (0-10 ppt). The biopolymer mixture was degassed and during the degassing process, either bentonite or kaolinite clay was added to the vessel. Surprisingly, different settling rates occurred in the clay-biopolymer mixtures. The settling rates of the clay-guar mixtures was more rapid (1-2 days) than the settling rate for the clay-xanthan mixtures. While clay-guar consolidated further, clay-xanthan maintained consistency for more than 2 weeks with density slowly increasing during that period. Compressional soundspeed (Vp) measurements were made with depth through the vessel using 0.5 mHz piezoelectric transducers. It was found that Vp in water was similar to that of the clay-xanthan. Vp was the same in the upper 6 cm of mud as it was in the overlying water and Vp decreased to become slower with increasing depth. Compressional wave velocity (Vp) also changed slightly with the guar complexes below the sediment water interface to the depth of the vessel. Vp was slightly slower in the mud than in the water column. Vp of the water was 1480-1495 m/s whereas Vp within the clay-biopolymer was below the minimum Vp in the water column. This slight decrease in Vp with depth is consistent for that of naturally occurring surficial mud deposits. This work suggests that organic matter type can play a critical role in the rate of consolidation within a mud deposit, which has implications for mud strength development and transport potential.

  12. Microstructures and deformation mechanisms in Opalinus Clay: insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH)

    NASA Astrophysics Data System (ADS)

    Laurich, Ben; Urai, Janos L.; Nussbaum, Christophe

    2017-01-01

    The Main Fault in the shaly facies of Opalinus Clay is a small reverse fault formed in slightly overconsolidated claystone at around 1 km depth. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite and celestite veins, scaly clay and clay gouge. Scaly clay occurs in up to 1.5 m wide lenses, providing hand specimens for this study. We mapped the scaly clay fabric at 1 m-10 nm scale, examining scaly clay for the first time using broad-ion beam polishing combined with scanning electron microscopy (BIB-SEM). Results show a network of thin shear zones and microveins, separating angular to lensoid microlithons between 10 cm and 10 µm in diameter, with slickensided surfaces. Our results show that microlithons are only weakly deformed and that strain is accumulated by fragmentation of microlithons by newly formed shear zones, by shearing in the micron-thick zones and by rearrangement of the microlithons.The scaly clay aggregates can be easily disintegrated into individual microlithons because of the very low tensile strength of the thin shear zones. Analyses of the microlithon size by sieving indicate a power-law distribution model with exponents just above 2. From this, we estimate that only 1 vol % of the scaly clay aggregate is in the shear zones.After a literature review of the hypotheses for scaly clay generation, we present a new model to explain the progressive formation of a self-similar network of anastomosing thin shear zones in a fault relay. The relay provides the necessary boundary conditions for macroscopically continuous deformation. Localization of strain in thin shear zones which are locally dilatant, and precipitation of calcite veins in dilatant shear fractures, evolve into complex microscale re-partitioning of shear, forming new shear zones while the microlithons remain much less deformed internally and the volume proportion of the µm-thick shear zones slowly increases. Grain-scale deformation mechanisms are microfracturing, boudinage and rotation of mica grains, pressure solution of carbonate fossils and pore collapse during ductile flow of the clay matrix. This study provides a microphysical basis to relate microstructures to macroscopic observations of strength and permeability of the Main Fault, and extrapolating fault properties in long-term deformation.

  13. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2

    NASA Astrophysics Data System (ADS)

    Sulman, Benjamin N.; Phillips, Richard P.; Oishi, A. Christopher; Shevliakova, Elena; Pacala, Stephen W.

    2014-12-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which root-microbe interactions induce SOC losses (through accelerated decomposition or `priming') or indirectly promote SOC gains (via `protection' through interactions with mineral particles). We developed a new SOC model to examine priming and protection responses to rising atmospheric CO2. The model captured disparate SOC responses at two temperate free-air CO2 enrichment (FACE) experiments. We show that stabilization of `new' carbon in protected SOC pools may equal or exceed microbial priming of `old' SOC in ecosystems with readily decomposable litter and high clay content (for example, Oak Ridge). In contrast, carbon losses induced through priming dominate the net SOC response in ecosystems with more resistant litters and lower clay content (for example, Duke). The SOC model was fully integrated into a global terrestrial carbon cycle model to run global simulations of elevated CO2 effects. Although protected carbon provides an important constraint on priming effects, priming nonetheless reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from enhanced ecosystem productivity.

  14. Halloysite clay nanotubes and platinum nanoparticles dispersed in ionic liquid applied in the development of a catecholamine biosensor.

    PubMed

    Brondani, Daniela; Scheeren, Carla Weber; Dupont, Jairton; Vieira, Iolanda Cruz

    2012-08-21

    Halloysite clay nanotubes were used as a support for the immobilization of the enzyme peroxidase from clover sprouts (Trifolium), and employed together with platinum nanoparticles in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Pt-BMI·PF(6)) in the development of a new biosensor for the determination of catecholamines by square-wave voltammetry. Under optimized conditions, the analytical curves showed detection limits of 0.05, 0.06, 0.07, 0.12 μM for dopamine, isoproterenol, dobutamine and epinephrine, respectively. The biosensor demonstrated high sensitivity, good repeatability and reproducibility, and long-term stability (18% decrease in response over 150 days). A recovery study of dopamine in pharmaceutical samples gave values from 97.5 to 101.4%. The proposed biosensor was successfully applied to the determination of dopamine in pharmaceutical samples, with a maximum relative error of ±1.0% in relation to the standard (spectrophotometric) method. The good analytical performance of the proposed method can be attributed to the efficient immobilization of the peroxidase in the nanoclay, and the facilitation of electron transfer between the protein and the electrode surface due to the presence of the Pt nanoparticles and ionic liquid.

  15. Diffusion, sorption, and retardation processes of anions in bentonite and organo-bentonites for multibarrier systems

    NASA Astrophysics Data System (ADS)

    Schampera, Birgit; Dultz, Stefan

    2013-04-01

    The low permeability, high cation exchange capacity (CEC) and plasticity of bentonites favor their use in multibarrier systems of waste deposits [1]. Bentonites have a high CEC but their ability to sorb anions is very low. There is, however, need for retardation of anions and organic pollutants in many applications. Bentonites, modified with certain organic cations, have the capacity to sorb anions and non-polar organic compounds in addition to cations. Investigations on organically modified clays address a wide variety of applications including immobilization of pollutants in contaminated soils, waste water treatment and in situ placement for the protection of ground water [2]. Many experiments on anion and cation sorption of organo-clays were conducted in the batch mode which does not reflect solid-liquid ratios and material densities in barrier systems. Diffusion experiments on compacted clays allow the evaluation of transport processes and sorption of pollutants at conditions relevant for repositories. For organo-clays only few diffusion studies are published e.g. [3] measured the diffusion of tritium and [4] the diffusion of H2O in bentonite and organo-bentonites. The organic cation hexadecylpyridinium (HDPy) was added to Wyoming bentonite (MX-80) in amounts corresponding to 2-400 % of the CEC. The uptake of organic cations was determined by the C-content, XRD and IR-spectroscopy. Wettability was analyzed by the contact angle. Physical, chemical and mineralogical properties of clays were characterized. Diffusion experiments were carried out in situ in a cell attached to the ATR-unit of a FTIR-spectrometer. For H2O-diffusion the compacted organo-clays are saturated first with D2O, afterwards H2O is supplied to the surface at the top of the clay platelet. Anion-diffusion was conducted with NO3--solution instead of H2O only having characteristic IR band positions at 1350 cm-1. Three different concentrations (0.25M, 0.5M and 1M) were used. Additional batch experiments with NO3- will support the understanding of sorption behavior of the anions. All hydrophilic samples have a higher retardation capacity, indicated by diffusion coefficients of 2.44 x 10-11 m/s2 for original bentonite and ˜2.1 x 10-11m/s2 for hydrophilic organo-clays. For hydrophobic organo-clays the H2O diffusion can be higher and is increased at high bulk density (1-1.5 g/m3) up to 2.76 x 10-10m2/s. Experiments with NO3- at bulk density of 1.5 g/m3 reveal that the apparent diffusion coefficients of nitrate are with results up to 5.61 x 1012 m2/s distinctively lower than free diffusion of nitrate in pure water (6.46 x 1010 m2/s at experimental conditions) and nitrate diffusion in natural bentonite (2.63 x 1011 m2/s). The measurements allow the interpretation of the different sorption mechanisms, retardation capacity and diffusion behavior of the analyzed clays at different anion concentrations. Ongoing molecular dynamic simulations will contribute understanding of diffusion processes in organo-clays including the conditions at the interface of the clay minerals and in solution. References: [1] Shackelford, C.D., Moore S.M. (2013) Fickian diffusion of radionuclides for engineered containment barriers: Diffusion coefficients, porosities, and complicating issues. Engineering Geology, 152, 133-147. [2] Rytwo, G., Nir, S., Shuali, U. (2012) Clay and water treatment. Applied Clay Science, 67-68, 117-118. [3] Lorenzetti, R.L., Bartelt-Hunt, S.L., Burns, S.E., Smith, J.A. (2005) Hydraulic conductivities and effective diffusion coefficients of geosynthetic clay liners with organobentonite amendments. Geotextiles and Geomembranes, 23, 385-400. [4] Schampera, B., Dultz, S. (2011) H2O self-diffusion in compacted clays as influenced by surface charge and wettability - obstruction effects of bound H2O layers. Clay and Clay Minerals,59, 42-57.

  16. Scanning electron microscopy of clays and clay minerals

    USGS Publications Warehouse

    Bohor, B.F.; Hughes, R.E.

    1971-01-01

    The scanning electron microscope (SEM) proves to be ideally suited for studying the configuration, texture, and fabric of clay samples. Growth mechanics of crystalline units—interpenetration and interlocking of crystallites, crystal habits, twinning, helical growth, and topotaxis—also are uniquely revealed by the SEM.Authigenic kaolins make up the bulk of the examples because their larger crystallite size, better crystallinity, and open texture make them more suited to examination by the SEM than most other clay mineral types.

  17. Photoinduced charge separation in a colloidal system of exfoliated layered semiconductor controlled by coexisting aluminosilicate clay.

    PubMed

    Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi

    2009-02-05

    We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.

  18. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber.

    PubMed

    Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn

    2016-04-01

    This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of Hygrothermal Aging on the Mechanical Properties of Fluorinated and Nonfluorinated Clay-Epoxy Nanocomposites

    PubMed Central

    Hamim, Salah U.; Singh, Raman P.

    2014-01-01

    Hydrophilic nature of epoxy polymers can lead to both reversible and irreversible/permanent changes in epoxy upon moisture absorption. The permanent changes leading to the degradation of mechanical properties due to combined effect of moisture and elevated temperature on EPON 862, Nanomer I.28E, and Somasif MAE clay-epoxy nanocomposites are investigated in this study. The extent of permanent degradation on fracture and flexural properties due to the hygrothermal aging is determined by drying the epoxy and their clay-epoxy nanocomposites after moisture absorption. Significant permanent damage is observed for fracture toughness and flexural modulus, while the extent of permanent damage is less significant for flexural strength. It is also observed that permanent degradation in Somasif MAE clay-epoxy nanocomposites is higher compared to Nanomer I.28E clay-epoxy nanocomposites. Fourier transform infrared (FTIR) spectroscopy revealed that both clays retained their original chemical structure after the absorption-desorption cycle without undergoing significant changes. Scanning electron microscopy (SEM) images of the fracture surfaces provide evidence that Somasif MAE clay particles offered very little resistance to crack propagation in case of redried specimens when compared to Nanomer I.28E counterpart. The reason for the observed higher extent of permanent degradation in Somasif MAE clay-epoxy system has been attributed to the weakening of the filler-matrix interface. PMID:27379285

  20. Effects of vegetation, a clay cap and environmental variables on 222Rn fluence rate from reclaimed U mill tailings.

    PubMed

    Morris, R C; Fraley, L

    1989-04-01

    We measured 222Rn fluence rate and several environmental variables on two plots with U mill tailings buried beneath 30 cm of overburden and 20 cm of topsoil. An additional 30 cm of clay covered the tailings on one plot and each plot was subdivided into bare soil and vegetated subplots. We used linear correlation, two-way ANOVA and stepwise multiple regression to analyze the effects of the plot characteristics and the environmental variables on 222Rn fluence rate. The most important effect on 222Rn fluence rates from these plots was the combination of a clay cap and a vegetated surface. The mean annual fluence rate from the plot having both of these characteristics (520 +/- 370 mBq m-2 s-1) was over three times that of the vegetated plot without a clay cap (170 +/- 130 mBq m-2 s-1) and 18 times that of the bare plot with a clay cap (29 +/- 13 mBq m-2 s-1). The interaction effect may have been due to the growth of roots in the moist clay and active transport of dissolved 222Rn to the surface in water. This speculation is supported by the observation that on vegetated plots with a clay cap, moisture in the clay enhanced the fluence rate.

  1. Desorption and mobility mechanisms of co-existing polycyclic aromatic hydrocarbons and heavy metals in clays and clay minerals.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Grace, John R

    2018-05-15

    The effects of soil components such as clay minerals and as humic acids, as well as co-existing metals and polycyclic aromatic hydrocarbons, on desorption and mobility are examined. Three types of artificially blended clay and clay mineral mixtures (pure kaolinite, kaolinite + sand and kaolinite + sand + bentonite), each with different humic acid content, were tested for desorption and mobility of acenaphthene, fluorene and fluoranthene by three extracting solutions CaCl 2 (0.01 M) and EDTA (0.01M) with non-ionic surfactants (Tween 80 and Triton X100). Heavy metals (Ni, Pb and Zn) were also studied for desorption and mobility. The influence of co-present metals on simultaneous desorption and mobility of PAHs was investigated as well. The results showed that <10% of metals in the clay mineral mixtures were mobile. Combined EDTA and non-ionic solutions can enhance the desorption and mobility of PAHs to >80% in clay mineral mixtures containing no sand, while in the same soils containing ∼40% sand, the desorption exceeded 90%. Heavy metals, as well as increasing humic acids content in the clay mineral mixtures, decreased the desorption and mobility of PAHs, especially for soils containing no sand, and for fluoranthene compared with fluorene and acenaphthene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  3. Effect of Hygrothermal Aging on the Mechanical Properties of Fluorinated and Nonfluorinated Clay-Epoxy Nanocomposites.

    PubMed

    Hamim, Salah U; Singh, Raman P

    2014-01-01

    Hydrophilic nature of epoxy polymers can lead to both reversible and irreversible/permanent changes in epoxy upon moisture absorption. The permanent changes leading to the degradation of mechanical properties due to combined effect of moisture and elevated temperature on EPON 862, Nanomer I.28E, and Somasif MAE clay-epoxy nanocomposites are investigated in this study. The extent of permanent degradation on fracture and flexural properties due to the hygrothermal aging is determined by drying the epoxy and their clay-epoxy nanocomposites after moisture absorption. Significant permanent damage is observed for fracture toughness and flexural modulus, while the extent of permanent damage is less significant for flexural strength. It is also observed that permanent degradation in Somasif MAE clay-epoxy nanocomposites is higher compared to Nanomer I.28E clay-epoxy nanocomposites. Fourier transform infrared (FTIR) spectroscopy revealed that both clays retained their original chemical structure after the absorption-desorption cycle without undergoing significant changes. Scanning electron microscopy (SEM) images of the fracture surfaces provide evidence that Somasif MAE clay particles offered very little resistance to crack propagation in case of redried specimens when compared to Nanomer I.28E counterpart. The reason for the observed higher extent of permanent degradation in Somasif MAE clay-epoxy system has been attributed to the weakening of the filler-matrix interface.

  4. 2,3,7,8-DIBENZO-P-DIOXINS IN MINED CLAY PRODUCTS ...

    EPA Pesticide Factsheets

    Ball clay was the source of dioxin contamination discovered in selected chickens analyzed as part of a joint U.S. Department of Agriculture/U.S. Environmental Protection Agency national survey of the U.S. poultry supply conducted in 1997. The affected animals, which had been raised in the southern United States, represented approximately 5% of the national poultry production . All of these chickens and other animal food sources (i.e., farm-raised catfish), similarly contaminated, were fed a diet of animal feed containing ball clay as an anti-caking additive. The clay was mined in northwestern Mississippi within a geological formation referred to as the Mississippi Embayment. Individual raw and processed ball clay samples were analyzed for the presence of the 2,3,7,8-PCDDs/PCDFs. The average toxic equivalents (TEQs) for the raw and processed samples were 1513 and 996 ppt dry weight, respectively. Other mined clay-based products used in animal feeds revealed lower TEQs. All of the products exhibited either an absence of detectable concentrations of 2,3,7,8-PCDFs or concentrations 2-3 orders of magnitude lower than the PCDDs. The isomer distribution, specific isomer identification, and congener profile of the PCDDs in the clay were established and compared to known sources of dioxin contamination. Several unique features of this isomer distribution are characteristic of the clays and are distinguishable from those other known sources. These characteristic

  5. Modeling of fixed-bed column studies for the adsorption of cadmium onto novel polymer-clay composite adsorbent.

    PubMed

    Unuabonah, Emmanuel I; Olu-Owolabi, Bamidele I; Fasuyi, Esther I; Adebowale, Kayode O

    2010-07-15

    Kaolinite clay was treated with polyvinyl alcohol to produce a novel water-stable composite called polymer-clay composite adsorbent. The modified adsorbent was found to have a maximum adsorption capacity of 20,400+/-13 mg/L (1236 mg/g) and a maximum adsorption rate constant of approximately = 7.45x10(-3)+/-0.0002 L/(min mg) at 50% breakthrough. Increase in bed height increased both the breakpoint and exhaustion point of the polymer-clay composite adsorbent. The time for the movement of the Mass Transfer Zone (delta) down the column was found to increase with increasing bed height. The presence of preadsorbed electrolyte and regeneration were found to reduce this time. Increased initial Cd(2+) concentration, presence of preadsorbed electrolyte, and regeneration of polymer-clay composite adsorbent reduced the volume of effluent treated. Premodification of polymer-clay composite adsorbent with Ca- and Na-electrolytes reduced the rate of adsorption of Cd(2+) onto polymer-clay composite and lowered the breakthrough time of the adsorbent. Regeneration and re-adsorption studies on the polymer-clay composite adsorbent presented a decrease in the bed volume treated at both the breakpoint and exhaustion points of the regenerated bed. Experimental data were observed to show stronger fits to the Bed Depth Service Time (BDST) model than the Thomas model. 2010 Elsevier B.V. All rights reserved.

  6. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior.

    PubMed

    Garai, Ashesh; Nandi, Arun K

    2008-04-01

    The melt rheology of polyaniline (PANI)-dinonylnaphthalenedisulfonic acid (DNNDSA) gel nanocomposites (GNCs) with organically modified (modified with cetyl trimethylammonium bromide)-montmorillonite (om-MMT) clay has been studied for three different clay concentrations at the temperature range 120-160 degrees C. Field emission scanning electron microscopy (FE-SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and dc-conductivity data (approximately 10(-3) S/cm) indicate that the PANI-DNNDSA melt is in sol state and it is not de-doped at that condition. The WAXS data indicate that in GNC-1 sol clay tactoids are in exfoliated state but in the other sols they are in intercalated state. The zero shear viscosity (eta0), storage modulus (G') and loss modulus (G") increase than that of pure gel in the GNCs. The pure sol and the sols of gel nanocomposites (GNCs) exhibit Newtonian behavior for low shear rate (< 6 x 10(-3) s(-1)) and power law variation for the higher shear rate region. The characteristic time (A) increase with increasing clay concentration and the power law index (n) decreases with increase in clay concentration in the GNCs indicating increased shear thinning for the clay addition. Thus the sols of om-clay nanocomposites of PANI-DNNDSA system are easily processible. The storage modulus (G') of GNC sols are higher than that of pure PANI-DNNDSA sol, GNC1 sol shows a maximum of 733% increase in storage modulus and the percent increase decreases with increase in temperature. Exfoliated nature of clay tactoids has been attributed for the above dramatic increase of G'. The PANI-DNNDSA sol nanocomposites behave as a pseudo-solid at higher frequency where G' and loss modulus (G") show a crossover point in the frequency sweep experiment at a fixed temperature. The crossover frequency decreases with increase in clay concentration and it increases with increase in temperature for GNC sols. The pseudo-solid behavior has been explained from jamming or network formation of clay tactoids under shear. A probable explanation of the two apparently contradictory phenomena of shear thinning versus pseudo-solid behavior of the nanocomposite sols is discussed.

  7. Pyrolysis of attapulgite clay blended with yak dung enhances pasture growth and soil health: Characterization and initial field trials.

    PubMed

    Rafiq, Muhammad Khalid; Joseph, Stephen D; Li, Fei; Bai, Yanfu; Shang, Zhanhuan; Rawal, Aditya; Hook, James M; Munroe, Paul R; Donne, Scott; Taherymoosavi, Sara; Mitchell, David R G; Pace, Ben; Mohammed, Mohanad; Horvat, Joseph; Marjo, Christopher E; Wagner, Avital; Wang, Yanlong; Ye, Jun; Long, Rui-Jun

    2017-12-31

    Recent studies have shown that the pyrolysis of biomass combined with clay can result in both lower cost and increase in plant yields. One of the major sources of nutrients for pasture growth, as well as fuel and building materials in Tibet is yak dung. This paper reports on the initial field testing in a pasture setting in Tibet using yak dung, biochar, and attapulgite clay/yak dung biochars produced at ratios of 10/90 and 50/50 clay to dung. We found that the treatment with attapulgite clay/yak dung (50/50) biochar resulted in the highest pasture yields and grass nutrition quality. We also measured the properties and yields of mixtures of clay/yak dung biochar used in the field trials produced at 400°C and 500°C to help determine a possible optimum final pyrolysis temperature and dung/clay ratio. It was observed that increasing clay content increased carbon stability, overall biochar yield, pore size, carboxyl and ketone/aldehyde functional groups, hematite and ferrous/ferric sulphate/thiosulphate concentration, surface area and magnetic moment. Decreasing clay content resulted in higher pH, CEC, N content and an enhanced ability to accept and donate electrons. The resulting properties were a complex function of both processing temperature and the percentage of clay for the biochars processed at both 400°C and 500°C. It is possible that the increase in yield and nutrient uptake in the field trial is related to the higher concentration of C/O functional groups, higher surface area and pore volume and higher content of Fe/O/S nanoparticles of multiple oxidation state in the 50/50 clay/dung. These properties have been found to significantly increase the abundance of beneficial microorganisms and hence improve the nutrient cycling and availability in soil. Further field trials are required to determine the optimum pyrolysis production conditions and application rate on the abundance of beneficial microorganisms, yields and nutrient quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation

    NASA Astrophysics Data System (ADS)

    Durner, Wolfgang; Iden, Sascha C.; von Unold, Georg

    2017-01-01

    The particle-size distribution (PSD) of a soil expresses the mass fractions of various sizes of mineral particles which constitute the soil material. It is a fundamental soil property, closely related to most physical and chemical soil properties and it affects almost any soil function. The experimental determination of soil texture, i.e., the relative amounts of sand, silt, and clay-sized particles, is done in the laboratory by a combination of sieving (sand) and gravitational sedimentation (silt and clay). In the latter, Stokes' law is applied to derive the particle size from the settling velocity in an aqueous suspension. Traditionally, there are two methodologies for particle-size analysis from sedimentation experiments: the pipette method and the hydrometer method. Both techniques rely on measuring the temporal change of the particle concentration or density of the suspension at a certain depth within the suspension. In this paper, we propose a new method which is based on the pressure in the suspension at a selected depth, which is an integral measure of all particles in suspension above the measuring depth. We derive a mathematical model which predicts the pressure decrease due to settling of particles as function of the PSD. The PSD of the analyzed sample is identified by fitting the simulated time series of pressure to the observed one by inverse modeling using global optimization. The new method yields the PSD in very high resolution and its experimental realization completely avoids any disturbance by the measuring process. A sensitivity analysis of different soil textures demonstrates that the method yields unbiased estimates of the PSD with very small estimation variance and an absolute error in the clay and silt fraction of less than 0.5%.

  9. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation

    NASA Astrophysics Data System (ADS)

    Durner, Wolfgang; Iden, Sascha C.; von Unold, Georg

    2017-04-01

    The particle-size distribution (PSD) of a soil expresses the mass fractions of various sizes of mineral particles which constitute the soil material. It is a fundamental soil property, closely related to most physical and chemical soil properties and it affects almost any soil function. The experimental determination of soil texture, i.e., the relative amounts of sand, silt, and clay-sized particles, is done in the laboratory by a combination of sieving (sand) and gravitational sedimentation (silt and clay). In the latter, Stokes' law is applied to derive the particle size from the settling velocity in an aqueous suspension. Traditionally, there are two methodologies for particle-size analysis from sedimentation experiments: the pipette method and the hydrometer method. Both techniques rely on measuring the temporal change of the particle concentration or density of the suspension at a certain depth within the suspension. In this paper, we propose a new method which is based on the pressure in the suspension at a selected depth, which is an integral measure of all particles in suspension above the measuring depth. We derive a mathematical model which predicts the pressure decrease due to settling of particles as function of the PSD. The PSD of the analyzed sample is identified by fitting the simulated time series of pressure to the observed one by inverse modeling using global optimization. The new method yields the PSD in very high resolution and its experimental realization completely avoids any disturbance by the measuring process. A sensitivity analysis of different soil textures demonstrates that the method yields unbiased estimates of the PSD with very small estimation variance and an absolute error in the clay and silt fraction of less than 0.5%

  10. The different climatic response of pedogenic hematite and ferrimagnetic minerals: Evidence from particle-sized modern soils over the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Gao, Xinbo; Hao, Qingzhen; Wang, Luo; Oldfield, Frank; Bloemendal, Jan; Deng, Chenglong; Song, Yang; Ge, Junyi; Wu, Haibin; Xu, Bing; Li, Fengjiang; Han, Long; Fu, Yu; Guo, Zhengtang

    2018-01-01

    In recent years, increasing interest in loess studies has focused on qualitative and quantitative paleoclimatic reconstruction using the imperfect antiferromagnetic mineral hematite. However, the linkage between the hematite formation and climatic variables remains controversial. Here we present the results of a comprehensive investigation of the magnetic properties and statistical analysis of a suite of clay and silt fractions of modern soil samples from 179 sites across the Chinese Loess Plateau (CLP) and adjacent regions. Our objective was to clarify the relationships between modern climatic variables and pedogenic hematite, as well as pedogenic ferrimagnetic minerals. First-order reversal curve measurements were also conducted on representative particle-sized subsamples from a N-S transect to understand the differences in magnetic mineralogy between the two fractions. Our results show that pipette extraction separates the fine-grained superparamagnetic (SP) and most of the single-domain (SD) magnetic grains into the clay fraction, and that the remaining silt fraction displays the magnetic properties of coarse pseudo-single domain (PSD) or a mixture of multidomain (MD)/PSD and a few SD particles. Only the pedogenic clay fraction shows a strong correlation with climatic variables. The application of redundancy analysis helps to distinguish the climate variables controlling the formation of ferrimagnetic minerals and hematite during pedogenesis. On the CLP, pedogenic ferrimagnetic minerals are sensitive to mean annual precipitation, while pedogenic hematite formation is preferentially dependent on mean annual temperature. The confirmation of the temperature-dependent nature of hematite on the CLP provides a new possibility for quantitatively reconstructing the paleotemperature history of Chinese loess/paleosol sequences.

  11. The Different Climatic Response of Pedogenic Hematite and Ferrimagnetic Minerals: Evidence from Particle-Sized Modern Soils over the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Gao, X.; Hao, Q.; Luo, W.; Oldfield, F.; Bloemendal, J.; Deng, C.; Song, Y.; Ge, J.; Wu, H.; Xu, B.; Li, F.; Han, L.; Fu, Y.; Guo, Z.

    2017-12-01

    In recent years, increasing interest in loess studies has focused on qualitative and quantitative paleoclimatic reconstruction using the imperfect antiferromagnetic mineral hematite. However, the linkage between the hematite formation and climatic variables remains controversial. Here we present the results of a comprehensive investigation of the magnetic properties and statistical analysis of a suite of clay and silt fractions of modern soil samples from 179 sites across the Chinese Loess Plateau (CLP) and adjacent regions. Our objective was to clarify the relationships between modern climatic variables and pedogenic hematite, as well as pedogenic ferrimagnetic minerals. First-order reversal curve measurements were also conducted on representative particle-sized subsamples from a N-S transect to understand the differences in magnetic mineralogy between the two fractions. Our results show that pipette extraction separates the fine-grained superparamagnetic (SP) and most of the single-domain (SD) magnetic grains into the clay fraction, and that the remaining silt fraction displays the magnetic properties of coarse pseudo-single domain (PSD) or a mixture of multidomain (MD)/PSD and a few SD particles. Only the pedogenic clay fraction shows a strong correlation with climatic variables. The application of redundancy analysis helps to distinguish the climate variables controlling the formation of ferrimagnetic minerals and hematite during pedogenesis. On the CLP, pedogenic ferrimagnetic minerals are sensitive to mean annual precipitation, while pedogenic hematite formation is preferentially dependent on mean annual temperature. The confirmation of the temperature-dependent nature of hematite on the CLP provides a new possibility for quantitatively reconstructing the paleotemperature history of Chinese loess/paleosol sequences.

  12. New approach of a transient ICP-MS measurement method for samples with high salinity.

    PubMed

    Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-03-01

    In the near future it is necessary to establish a disposal for high level nuclear waste (HLW) in deep and stable geological formations. In Germany typical host rocks are salt or claystone. Suitable clay formations exist in the south and in the north of Germany. The geochemical conditions of these clay formations show a strong difference. In the northern ionic strengths of the pore water up to 5M are observed. The determination of parameters like K d values during sorption experiments of metal ions like uranium or europium as homologues for trivalent actinides onto clay stones are very important for long term safety analysis. The measurement of the low concentrated, not sorbed analytes commonly takes place by inductively coupled plasma mass spectrometry (ICP-MS). A direct measurement of high saline samples like seawater with more than 1% total dissolved salt content is not possible. Alternatives like sample clean up, preconcentration or strong dilution have more disadvantages than advantages for example more preparation steps or additional and expensive components. With a small modification of the ICP-MS sample introduction system and a home-made reprogramming of the autosampler a transient analysing method was developed which is suitable for measuring metal ions like europium and uranium in high saline sample matrices up to 5M (NaCl). Comparisons at low ionic strength between the default and the transient measurement show the latter performs similarly well to the default measurement. Additionally no time consuming sample clean-up or expensive online dilution or matrix removal systems are necessary and the analysation shows a high sensitivity due to the data processing based on the peak area. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. GPR as a Low Impact Paleontogical Survey Technique

    NASA Astrophysics Data System (ADS)

    Sturdevant, G. C.; Leverence, R.; Stewart, R.

    2013-12-01

    The Deweyville Formation, a Pleistocene fluvial sandstone, is a prolific source of megafaunal fossils from periods of low stand environmental conditions. GPR was employed in an environmentally sensitive area in close proximity to a salt dome in Northwest Harris County, Texas as a method of evaluating the probable paleo-depositional environment and to prospect for potential further site development of two distinct fossiliferous zones. The primary zone of interest is a lag gravel bounded sand responsible for producing a regionally unique fossil assemblage including South American megafauna (Lundelius et al, 2013). The secondary zone of interest contains undisturbed mammoth remains housed in coarse white sand emplaced on top of a clay drape which has been hypothesized to represent an oxbow lake formed by the meandering paleo-Brazos river. With an accurate map of the paleo-channel planning future activity can focus on maximizing fossil recovery and minimizing site impact. Pulse EKKO 250 MHz, 400MHz, and 1GHz system was employed in a prospect area proximal to the secondary site to calibrate and evaluate these systems for their resolution and penetration depth in the modern sediments. The data was processed using EKKO Mapper and EKKO View Deluxe software packages, 3d volumes were produced and sliced. Preliminary results from the 250 MHz demonstrate successful imaging of the sand-clay interface. After these surveys were run a small portion of the site was excavated to confirm the estimated velocities, the observed anomalies, and refine our modeling and interpretation, and improve grid design for further surveys. It was confirmed that the sand-clay interface was easily observable using GPR, however the grid spacing proved to be too wide, leading to artifacts in the 3d volume produced.

  14. Toxicological Impacts of Pharmaceuticals and Personal Care Products on Water Quality: Environmental Fate, Transformation and Health Effects

    NASA Astrophysics Data System (ADS)

    Rubasinghege, G. R. S.; Rijal, H.; Gurung, R.; Maldonado-Torres, S.; Rogelj, S.; Piyasena, M.

    2016-12-01

    The growing medical and personal needs of the human population have escalated release of pharmaceuticals and personal care products (PPCPs) to the nature. The current work investigated abiotic degradation pathways of selected PPCPs in the presence of major mineral components of soil and the acute health effects of degraded PPCPs. Degradation of selected PPCPs (ibuprofen and clofibric acid) was carried out using custom-built glass reactors in batch studies. The secondary products of PPCPs were analyzed and identified using modified HPLC and LC-MS methods. Results from these studies showed that the extent of degradation depends on the type of the clay or mineral oxide, and solar radiation. In the absence of solar radiation (night time chemistry), the dominant reaction mechanism was observed to be the adsorption of PPCPs on to clay particles where surface functional groups and particle size play a key role. In contrast, under solar radiation, PPCPs break down to several fractions in the presence of clay particles. The decay rates were at least 3-fold higher for irradiated samples compared to that of dark conditions. Acute toxicity of selected PPCPs and their degradation products were tested on three microorganisms: gram-positive soil bacteria, Bacillus megaterium; gram-negative marine bacteria, Pseudoaltermonas atlantica; and algae from the Chlorella genus. Growth inhibition was measured using optical density measurements, MTT viability assay, and flow cytometer. The results suggest that the concentrations of primary compounds, Ibuprofen and Clofibric Acid, found in the environment that ranges from μg/L to ng/L are not sufficient to inhibit growth of either three microorganisms. However, selected organisms showed significant differences in sensitivity to degraded products. Results from current work advance our knowledge and understanding in the fields of environmental toxicology, chemistry in aqueous phases, and geochemistry.

  15. Geology of the Wilkes Land Sub-basin and Stability of the East Antarctic Ice Sheet: Insights from rock magnetism at IODP Site U1361

    NASA Astrophysics Data System (ADS)

    Tauxe, L.; Sugisaki, S.; Jimenez-Espejo, F. J.; Cook, C. P.; van de Flierdt, T.; Iwai, M.; Escutia, C.

    2014-12-01

    IODP Expedition 318 drilled Site U1361 on the continental rise offshore of the Wilkes sub-glacial basin. The goal was to reconstruct the stability of the East Antarctic Ice Sheet (EAIS) during Neogene warm periods. Teasing out the paleoenvironmental implications is essential for understanding the evolution of the EAIS. Anisotropy of magnetic susceptibility (AMS) is sensitive to differential compaction and other rock magnetic parameters like isothermal remanence and anhysteretic remanence are very sensitive to changes in the terrestrial source region. In general, highly anisotropic layers correspond with laminated clay-rich units, while more isotropic layers are bioturbated and have less clay. Layers enriched in diatoms are associated with the latter, which also have higher Ba/Al ratios indicating higher productivity. Higher anisotropy layers have lower porosity and moisture contents and have fine grained magnetic mineralogy dominated by magnetic. Higher anisotropy layers are dominated by maghemite, supporting the suggestion by Cook et al. (2013) of different source regions during low and high productivity times. They tied the two facies to the coastal outcrops of the Lower Paleozoic granitic terranes and the Ferrar Large Igneous Province in the more inland Wilkes Subglacial Basin respectively. Here we present evidence for a third geological unit, one eroded at the boundaries between the high and low clay zones with a "hard" (hematite) dominated magnetic mineralogy. This unit likely outcrops in the Wilkes sub-glacial basin and could be hydrothermally altered Beacon sandstone similar to that detected by Craw and Findlay (1984) in Taylor Valley or the equivalent to the Elatina Formation in the Adelaide Geosyncline in Southern Australia (Schmidt and Williams, 2013). Cook, C. P., van de Flierdt, T., Williams, T., Hemming, S. R., Iwai, M., Kobayashi, M., Jimenez-Espejo, F., Escutia, C., Gonzalez, J., Khim, B. K., McKay, R., Passchier, S., Bohaty, S., Riesselman, C. R., Tauxe, L., Sugisaki, S., Lopez Galindo, A., Patterson, M. O., Sangiorgi, F., Pierce, E. L., Brinkhuis, H., and Scientists, I. E., 2013, Nature Geoscience, v. 6, p. 765-769. Craw, D., and Findlay, R. H., 1984, New Zealand Jour. Geol. Geophys., v. 27, p. 465-475. Schmidt, P. W., and Williams, G. E., 2013, Global and Planetary Change, v. 110, p. 289-301.

  16. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  17. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  18. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  19. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  20. 77 FR 47815 - Foreign-Trade Zone 90-Onondaga County, NY Application for Expansion and Reorganization Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... Industrial Park, Steelway Boulevard, Clay. The grantee's proposed service area under the ASF would be...)--Clay Business Park, NYS Route 31 and Caughdenoy Road, Clay, Onondaga County; and, Proposed Site 3 (35...

  1. Implications of Smectite Subduction at the Costa Rican Convergent Margin

    NASA Astrophysics Data System (ADS)

    Cardace, D.; Morris, J. D.; Underwood, M. B.; Spinelli, G.

    2003-12-01

    Legs 205/170 of the Ocean Drilling Program (ODP) drilled a reference section on the incoming plate and sites at the toe of the sedimentary prism at the Costa Rican convergent margin. Complete sediment subduction has been documented, with the prism described by Leg 205/170 shipboard scientists as a paleoslump prism. Despite sediment subduction, Costa Rican arc lava geochemistry shows little sediment signal. Though subduction erosion has been posited as a mechanism for damping the geochemical sediment signal, this abstract addresses whether the clay content and distribution in the subducting pile can (a) play a role in localizing the decollement and (b) impact subduction of sediment to depth. X-ray diffraction (XRD) analyses of bulk sediment, with biogenic silica determinations, have been carried out for samples from the prism, through the decollement, to the underthrust sediments. Clay fractions have been isolated and silica studied for a subset of these samples. XRD peak areas of bulk samples were transformed into relative abundances via matrix singular value decomposition (Fisher and Underwood, 1995, Proc. ODP, Init. Repts., 156: 29-37), and adjusted following silica determination; volcanic ash has been neglected as a sedimentary component. Average relative weight percents of dominant minerals and biogenic silica (bSiO2) for prism toe units (Site 1040) are: P1A (silty clay, 74.8 m thick) 82 wt% clay, 5 wt% quartz, 13 wt% plagioclase, 0 wt% calcite; P1B (silty clay, 296.4 m thick) 82.1 wt% clay, 6.0 wt% quartz, 10.4 wt% plagioclase, 0 wt% calcite, 1.4 wt% bSiO2. Below the decollement, underthrust abundances are: U1A (clayey diatomite, 13.2 m thick) 82.7 wt% clay, 5.2 wt% quartz, 8.9 wt% plagioclase, 0 wt% calcite, 3.2 wt% bSiO2; U1B (clayey diatomite, 38.2 m thick) 80.7 wt% clay, 4.4 wt% quartz, 6.6 wt% plagioclase, 0 wt% calcite, 8.2 wt% bSiO2; U2 (silty claystone, 57.1 m thick) 84.8 wt% clay, 4.5 wt% quartz, 6.8 wt% plagioclase, 0 wt% calcite, 3.9 wt% bSiO2; U3A (siliceous nannofossil chalk, 18.1 m thick) 44.1 wt% clay, 2.0 wt% quartz, 5.6 wt% plagioclase, 31.8 wt% calcite, 16.5 wt% bSiO2; U3B (siliceous nannofossil chalk, 75.55 m thick) 1.9 wt% clay, 0 wt% quartz, 1.1 wt% plagioclase, 92.4 wt% calcite, 4.7 wt% bSiO2; and U3C (siliceous nannofossil chalk, 80.18 m thick) 6.6 wt% clay, 6.1 wt% quartz, 4.6 wt% plagioclase, 74.1 wt% calcite, 8.7 wt% bSiO2. XRD peak areas for clay fractions of prism samples above and in the decollement (Site 1254 ˜Site 1040, 300-370 mbsf) were transformed into relative weight percent data with Biscaye weighting factors. Smectites ranged from 77-93 wt%, illites ranged from 0-4 wt%, and kaolinites/chlorites ranged from 5-20 wt%. The maximum smectite value was obtained in the lower decollement. Bulk mineralogy data for sediments subducting at Costa Rica show that the prism and uppermost underthrust sediments are 80-93 wt% clay sized minerals. Clay mineralogy suggests that the smectite maximum occurs in the lower decollement and decreases dramatically below. Low biogenic silica abundances persist down core, emphasizing the importance of clays to the subducting section at Costa Rica.

  2. Evaluating Weathering of Food Packaging Polyethylene-Nano-clay Composites: Release of Nanoparticles and their Impacts.

    PubMed

    Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E

    2018-01-01

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites toxicity of released nano-clay particles to A594 adenocarcinomic human alveolar basal epithelial cells was observed, which will help with future risk based-formulations of exposure.

  3. Adsorption of lead onto smectite from aqueous solution.

    PubMed

    Mhamdi, M; Galai, H; Mnasri, N; Elaloui, E; Trabelsi-Ayadi, M

    2013-03-01

    The purpose of this research is to study the effect of a new method of adsorption using membrane filtration to determine the maximum amount of lead adsorbed by clay and investigate the behavior of the clay after adsorption of the said metal. Treatment of wastewater contaminated with heavy metals depends on the characteristics of the effluent, the amount of final discharge, the cost of treatment, and the compatibility of the treatment process. The process of adsorption of heavy metals by clays may be a simple, selective, and economically viable alternative to the conventional physical-chemical treatment. This is justified by the importance of the surface developed by this material, the presence of negative charges on the said surface, the possibility of ion exchange taking place, and its wide availability in nature. The removal of lead from wastewater was studied by using the adsorption technique and using clay as the adsorbent. A method was optimized for adsorption through a membrane approaching natural adsorption. This new method is simple, selective, and the lead adsorption time is about 3 days. The various properties of clay were determined. It was observed that the cation exchange capacity of the clay was 56 meq/100 g of hydrated clay for the raw sample and 82 meq/100 g for the purified sample. The total surface area determined by the methylene blue method was equal to 556 and 783 m(2)/g for the raw and purified samples, respectively. The adsorption kinetics depends on several parameters. The Pb(II) clay, obeys the Langmuir, Freundlich, and the Elovich adsorption isotherms with high regression coefficients. The use of this adsorbent notably decreases the cost of treatment. It was concluded that clay shows a strong adsorption capacity on Pb(II), the maximum interaction occurring with purified clay treated at high concentration of lead. It is proposed that this adsorption through a membrane be extended for the treatment of effluents containing other metals.

  4. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf

    USGS Publications Warehouse

    Hein, J.R.; Dowling, J.S.; Schuetze, A.; Lee, H.J.

    2003-01-01

    Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The <2 ??m-size fraction was isolated, Mg-saturated, and glycolated before analysis by X-ray diffraction. Semi-quantitative percentages of smectite, illite, and kaolinite plus chlorite were calculated using peak areas and standard weighting factors. Most fine-grained sediment is supplied to the shelf by rivers during major winter storms, especially during El Nin??o years. The largest sediment fluxes to the region are from the Santa Ynez and Santa Clara Rivers, which drain the Transverse Ranges. The mean clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does indicate some mixing from sources in adjacent provinces.

  5. Paired measurements of K and Mg isotopes and clay authigenesis in marine sediments

    NASA Astrophysics Data System (ADS)

    Santiago Ramos, D. P.; Dunlea, A. G.; Higgins, J. A.

    2016-12-01

    Despite its importance as a major sink for seawater K and Mg, estimates of clay authigenesis in marine sediments remain poorly constrained. Previous work on Mg isotope fractionation during clay formation has revealed a preferential uptake of 26Mg, yielding authigenic clay products with potentially distinct δ26Mg compared to the detrital component. In a similar manner, we aim to quantify the K isotope fractionation during authigenic clay formation and to use paired δ26Mg and δ41K measurements as proxies for the identification and quantification of authigenic clays in shallow and deep marine sedimentary systems. To better understand the behavior of paired Mg and K isotopes during authigenic clay formation in marine sediments, we measured δ26Mg and δ41K values of pore-fluids and sediments from ODP/IODP sites 1052, U1395, U1403 and U1366. We find that while pore-fluid K concentrations at sites 1052, U1395 and U1403 all decline with depth, δ41K profiles differ significantly. These differences might be a result of a complex interplay between clay authigenesis, sedimentation rate, and fractionation of K isotopes during diffusion. Results from 1-D diffusion-advection-reaction models suggest that, in contrast to Mg, diffusion may play an important role in determining the overall K isotope fractionation during clay authigenesis in sites with low-sedimentation rates. Sites with high sedimentation rates may act as close systems where diffusion is negligible. In such cases, K uptake can be modeled as a Rayleigh distillation process and K isotope fractionation can be estimated. Measurements of δ26Mg and δ41K of pore-fluids from site U1395 and bulk sediments from U1366 suggest that paired measurements of these isotopic systems in siliciclastic marine sediments can provide new insights into rates of marine clay authigenesis, a globally important but understudied component of many geochemical cycles.

  6. Mechanism of smectic arrangement of montmorillonite and bentonite clay platelets incorporated in gels of poly(acrylamide) induced by the interaction with cationic surfactants.

    PubMed

    Starodoubtsev, S G; Lavrentyeva, E K; Khokhlov, A R; Allegra, G; Famulari, A; Meille, S V

    2006-01-03

    Structure transitions, induced by the interaction with the cationic surfactant cetylpyridinium chloride in nanocomposite gels of poly(acrylamide) with incorporated suspensions of the two closely related layered clays bentonite and montmorillonite, were studied. Unexpectedly, different behaviors were revealed. X-ray diffraction measurements confirm that, due to the interaction with the surfactant, initially disordered bentonite platelets arrange into highly ordered structures incorporating alternating clay platelets and surfactant bilayers. The formation of these smectic structures also in the cross-linked polymer gels, upon addition of the surfactant, is explained by the existence of preformed, poorly ordered aggregates of the clay platelets in the suspensions before the gel formation. In the case of montmorillonite, smectic ordering of the disordered platelets in the presence of the surfactant is observed only after drying the suspensions and the clay-gel composites. Rheology studies of aqueous suspensions of the two clays, in the absence of both surfactant and gel, evidence a much higher viscosity for bentonite than for montmorillonite, suggesting smaller clay-aggregate size in the latter case. Qualitatively consistent results are obtained from optical micrographs.

  7. Hydro-mechanical properties of the Red Salt Clay (T4) - Relevancy of the minimum stress criterion for barrier integrity

    NASA Astrophysics Data System (ADS)

    Minkley, W.; Popp, T.; Salzer, K.; Gruner, M.; Böttge, V.

    The so-called Red Salt Clay (T4) is deposited as clay-rich clastic sediment at the base of the Aller-series forming a persistent lateral layer of up to 20 m thickness above the lower Zechstein-series. The clay layers may act as a protective shield in the hanging wall of gas storages or underground repositories in salt formations, thus resulting in a multi-barrier system. As a proof of its reliability comprehensive hydro-mechanical investigations were performed on clay samples recovered at different sites in Germany. Most important, rock tightness against various fluids was confirmed in the lab and field-scale. Remarkably, only if the fluid pressure equalises the acting minimal stress (i.e. violence of the “minimum stress criterion”) a significant increase of permeability is observed (“pathway dilatation”) but no macro-frac. However, the material properties from different locations showed a significant variability according to different burial depths. Thus the Red Salt Clay may act as natural analogue, representing the material variability of various indurated clays. In addition, the existing knowledge gained from practical mining activities can be used to evaluate extreme in situ loading conditions.

  8. Clay-sewage sludge co-pyrolysis. A TG-MS and Py-GC study on potential advantages afforded by the presence of clay in the pyrolysis of wastewater sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischia, Marco, E-mail: marco.ischia@ing.unitn.it; Maschio, Roberto Dal; Grigiante, Maurizio

    2011-01-15

    Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC). Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, atmore » temperatures of approx. 450-500 deg. C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis. Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.« less

  9. Determination of trace elements and their concentrations in clay balls: problem of geophagia practice in Ghana.

    PubMed

    Arhin, Emmanuel; Zango, Musah S

    2017-02-01

    Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.

  10. Enhanced sorption of trichloroethene by smectite clay exchanged with Cs+.

    PubMed

    Aggarwal, Vaneet; Li, Hui; Boyd, Stephen A; Teppen, Brian J

    2006-02-01

    Trichloroethene (TCE) is one of the most common pollutants in groundwater, and Cs+ can be a cocontaminant at nuclear facilities. Smectite clays have large surface areas, are common in soils, have high affinities for some organic contaminants, and hence can potentially influence the transport of organic pollutants entering soils and sediments. The exchangeable cations present near smectite clay surfaces can radically influence the sorption of organic pollutants by soil clays. This research was undertaken to determine the effect of Cs+, and other common interlayer cations, such as K+ and Ca2+, on the sorption of TCE by a reference smectite clay saponite. Cs-saturated clay sorbed the most TCE, up to 3500 mg/kg, while Ca-saturated smectite sorbed the least. We hypothesize that the stronger sorption of TCE by the Cs-smectite can be attributed to the lower hydration energy and hence smaller hydrated radius of Cs+, which expands the lateral clay surface domains available for sorption. Also, Cs-smectite interlayers are only one or two water layers thick, which may drive capillary condensation of TCE. Our results implicate enhanced retention of TCE in aquifer materials containing smectites accompanied by Cs+ cocontamination.

  11. Correlation between thermal behavior of clays and their chemical and mineralogical composition: a review

    NASA Astrophysics Data System (ADS)

    Dwi Yanti, Evi; Pratiwi, I.

    2018-02-01

    Clay's abundance has been widely used as industrial raw materials, especially ceramic and tile industries. Utilization of these minerals needs a thermal process for producing ceramic products. Two studies conducted by Septawander et al. and Chin C et al., showed the relationship between thermal behavior of clays and their chemical and mineralogical composition. Clays are characterized by XRD analysis and thermal analysis, ranging from 1100°C to 1200°C room temperature. Specimen of raw materials of clay which is used for the thermal treatment is taken from different geological conditions and formation. In raw material, Quartz is almost present in all samples. Halloysite, montmorillonite, and feldspar are present in Tanjung Morawa raw clay. KC and MC similar kaolinite and illite are present in the samples. The research illustrates the interrelationships of clay minerals and chemical composition with their heat behavior. As the temperature of combustion increases, the sample reduces a significant weight. The minerals which have undergone a transformation phase became mullite, cristobalite or illite and quartz. Under SEM analysis, the microstructures of the samples showed irregularity in shape; changes occurred due the increase of heat.

  12. Expanded clay hot mix study : final report: part I.

    DOT National Transportation Integrated Search

    1969-04-01

    This is part I of a two part final report on expanded clay hot mix to: (1) evaluate the use of various expanded clay bituminous mixtures under high traffic counts, (2) accumulate through experience testing, suitable information on the physical proper...

  13. 77 FR 41973 - Proposed Information Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ...: Corporation for National and Community Service, National Civilian Community Corps; Attention Colleen Clay... to: (202) 606-3459, Attention: Colleen Clay, Assistant Director. (4) Electronically through www... CONTACT: Colleen Clay, (202) 606-7561, or by email at [email protected] . SUPPLEMENTARY INFORMATION: CNCS is...

  14. Investigating the Impacts of Particle Size and Wind Speed on Brownout

    DTIC Science & Technology

    2015-03-26

    mixture of sand, silt, clay , and organic material, classified based on its size and texture. Sand is the largest of the particle materials, with...smallest soil component is clay , with particle sizes less than 0.002 mm. Ultra-fine in texture, clay feels sticky when wet, is extremely cohesive, and does...not allow air to move through it easily. Clay makes a soil dense and is hard as concrete when dry. Loam is a nearly even mixture of sand and silt

  15. Inter-layered clay stacks in Jurassic shales

    NASA Technical Reports Server (NTRS)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  16. Clay-Bacteria Systems and Biofilm Production

    NASA Astrophysics Data System (ADS)

    Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

    2007-12-01

    Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

  17. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    PubMed

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Interpreting habits in a new place: Migrants' descriptions of geophagia during pregnancy.

    PubMed

    Hunter-Adams, Jo

    2016-10-01

    Previous studies of soil eating, or geophagia, among pregnant women in sub-Saharan Africa indicate the practice is widespread. Various explanations have been explored to explain the global phenomenon of soil eating, with the most compelling explanation focused on clay's ability to prevent or treat intestinal infection. The urban South African context for clay eating is not well understood. This paper explores clay consumption amongst pregnant migrants who are nationals of countries where clay consumption may be common. I conducted in-depth interviews with a purposively selected group of Somali, Congolese, and Zimbabwean women (n = 23). Interviews included questions broadly related to maternal and infant nutrition. In addition, I conducted nine focus group discussions (n = 48) with adult Somali, Congolese (DRC), and Zimbabwean men (N = 3) and women (N = 6), segregated by country of origin and gender. This paper focuses specifically on responses related to geophagia. While Somali women did not report consuming clay or charcoal, Congolese and Zimbabwean participants self-reported commonly consuming clay during pregnancy, and at times also when not pregnant. Despite having heard public health messaging that discouraged the practice, participants largely did not describe this consumption in terms of health, but rather in terms of craving and habit. Participants described continued consumption of clay in South Africa, and the only reason for ceasing consumption was in cases of severe constipation. The widespread consumption of clay soil by Congolese and Zimbabwean women during pregnancy may be a mechanism through which identity was reasserted and reproduced in a foreign country. Participants' emphasis on clay consumption seemed related to the absence or expense of other craved foods, and perhaps also to feelings of loss in Cape Town. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.

    PubMed

    Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C

    2015-01-01

    Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.

  20. Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays

    USGS Publications Warehouse

    Chiou, Cary T.; Rutherford, David W.

    1997-01-01

    The effects of exchanged cation and layer charge on the sorption of water and ethylene glycol monoethyl ether (EGME) vapors on montmorillonite have been studied on SAz-1 and SWy-1 source clays, each exchanged respectively with Ca, Na, K, Cs and tetramethylammonium (TMA) cations. The corresponding lattice expansions were also determined, and the corresponding N2 adsorption data were provided for comparison. For clays exchanged with cations of low hydrating powers (such as K, Cs and TMA), water shows a notably lower uptake than does N2 at low relative pressures (P/P0). By contrast, EGME shows higher uptakes than N2 on all exchanged clays at all P/P0. The anomaly for water is attributed to its relatively low attraction for siloxane surfaces of montmorillonite because of its high cohesive energy density. In addition to solvating cations and expanding interlayers, water and EGME vapors condense into small clay pores and interlayer voids created by interlayer expansion. The initial (dry) interlayer separation varies more significantly with cation type than with layer charge; the water-saturated interlayer separation varies more with cation type than the EGME-saturated interlayer separation. Because of the differences in surface adsorption and interlayer expansion for water and EGME, no general correspondence is found between the isotherms of water and EGME on exchanged clays, nor is a simple relation observed between the overall uptake of either vapor and the cation solvating power. The excess interlayer capacities of water and of EGME that result from lattice expansion of the exchanged clays are estimated by correcting for amounts of vapor adsorption on planar clay surfaces and of vapor condensation into intrinsic clay pores. The resulting data follow more closely the relative solvating powers of the exchanged cations.

Top