Sample records for sensitive detection systems

  1. Development of a HIV-1 Virus Detection System Based on Nanotechnology.

    PubMed

    Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo

    2015-04-27

    Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.

  2. Nucleic acid detection system and method for detecting influenza

    DOEpatents

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  3. Development of a Sensitive Luciferase-Based Sandwich ELISA System for the Detection of Human Extracellular Matrix 1 Protein.

    PubMed

    Li, Ya; Li, Yanqing; Zhao, Junli; Zheng, Xiaojing; Mao, Qinwen; Xia, Haibin

    2016-12-01

    Enzyme-linked immunosorbent assay (ELISA) has been one of the main methods for detecting an antigen in an aqueous sample for more than four decades. Nowadays, one of the biggest concerns for ELISA is still how to improve the sensitivity of the assay, and the luciferase-luciferin reaction system has been noticed as a new detection method with high sensitivity. In this study, a luciferin-luciferase reaction system was used as the detection method for a sandwich ELISA system. It was shown that this new system led to an increase in the detection sensitivity of at least two times when compared with the traditional horseradish peroxidase (HRP) detection method. Lastly, the serum levels of the human extracellular matrix 1 protein of breast cancer patients were determined by the new system, which were overall similar to the HRP chemiluminescent system. Furthermore, this new luciferase reporter can be implemented into other ELISA systems for the purpose of increasing the assay sensitivity.

  4. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOEpatents

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  5. SiPM electro-optical detection system noise suppression method

    NASA Astrophysics Data System (ADS)

    Bi, Xiangli; Yang, Suhui; Hu, Tao; Song, Yiheng

    2014-11-01

    In this paper, the single photon detection principle of Silicon Photomultipliers (SiPM) device is introduced. The main noise factors that infect the sensitivity of the electro-optical detection system are analyzed, including background light noise, detector dark noise, preamplifier noise and signal light noise etc. The Optical, electrical and thermodynamic methods are used to suppress the SiPM electro-optical detection system noise, which improved the response sensitivity of the detector. Using SiPM optoelectronic detector with a even high sensitivity, together with small field large aperture optical system, high cutoff narrow bandwidth filters, low-noise operational amplifier circuit, the modular design of functional circuit, semiconductor refrigeration technology, greatly improved the sensitivity of optical detection system, reduced system noise and achieved long-range detection of weak laser radiation signal. Theoretical analysis and experimental results show that the proposed methods are reasonable and efficient.

  6. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    PubMed

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  7. Highly-sensitive and large-dynamic diffuse optical tomography system for breast tumor detection

    NASA Astrophysics Data System (ADS)

    Du, Wenwen; Zhang, Limin; Yin, Guoyan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Diffuse optical tomography (DOT) as a new functional imaging has important clinical applications in many aspects such as benign and malignant breast tumor detection, tumor staging and so on. For quantitative detection of breast tumor, a three-wavelength continuous-wave DOT prototype system combined the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique was developed to provide high temporal resolution, high sensitivity, large dynamic detection range and signal-to-noise ratio. Additionally, a CT-analogous scanning mode was proposed to cost-effectively increase the detection data. To evaluate the feasibility of the system, a series of assessments were conducted. The results demonstrate that the system can obtain high linearity, stability and negligible inter-wavelength crosstalk. The preliminary phantom experiments show the absorption coefficient is able to be successfully reconstructed, indicating that the system is one of the ideal platforms for optical breast tumor detection.

  8. Thermo-optical Characterization of Photothermal Optical Phase Shift Detection in Extended-Nano Channels and UV Detection of Biomolecules.

    PubMed

    Shimizu, Hisashi; Miyawaki, Naoya; Asano, Yoshihiro; Mawatari, Kazuma; Kitamori, Takehiko

    2017-06-06

    The expansion of microfluidics research to nanofluidics requires absolutely sensitive and universal detection methods. Photothermal detection, which utilizes optical absorption and nonradiative relaxation, is promising for the sensitive detection of nonlabeled biomolecules in nanofluidic channels. We have previously developed a photothermal optical phase shift (POPS) detection method to detect nonfluorescent molecules sensitively, while a rapid decrease of the sensitivity in nanochannels and the introduction of an ultraviolet (UV) excitation system were issues to be addressed. In the present study, our primary aim is to characterize the POPS signal in terms of the thermo-optical properties and quantitatively evaluate the causes for the decrease in sensitivity. The UV excitation system is then introduced into the POPS detector to realize the sensitive detection of nonlabeled biomolecules. The UV-POPS detection system is designed and constructed from scratch based on a symmetric microscope. The results of simulations and experiments reveal that the sensitivity decreases due to a reduction of the detection volume, dissipation of the heat, and cancellation of the changes in the refractive indices. Finally, determination of the concentration of a nonlabeled protein (bovine serum albumin) is performed in a very thin 900 nm deep nanochannel. As a result, the limit of detection (LOD) is 2.3 μM (600 molecules in the 440 attoliter detection volume), which is as low as that previously obtained for our visible POPS detector. UV-POPS detection is thus expected be a powerful technique for the study of biomolecules, including DNAs and proteins confined in nanofluidic channels.

  9. Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen.

    PubMed

    Liu, Fangming; Zhang, Honglian; Wu, Zhenhua; Dong, Haidao; Zhou, Lin; Yang, Dawei; Ge, Yuqing; Jia, Chunping; Liu, Huiying; Jin, Qinghui; Zhao, Jianlong; Zhang, Qiqing; Mao, Hongju

    2016-12-01

    Carcinoembryonic antigen (CEA) is an important biomarker in cancer diagnosis. Here, we present an efficient, selective lateral-flow immunoassay (LFIA) based on magnetic nanoparticles (MNPs) for in situ sensitive and accurate point-of-care detection of CEA. Signal amplification mechanism involved linking of detection MNPs with signal MNPs through biotin-modified single-stranded DNA (ssDNA) and streptavidin. To verify the effectiveness of this modified LFIA system, the sensitivity and specificity were evaluated. Sensitivity evaluation showed a broad detection range of 0.25-1000ng/ml for CEA protein by the modified LFIA, and the limit of detection (LOD) of the modified LFIA was 0.25ng/ml, thus producing significant increase in detection threshold compared with the traditional LFIA. The modified LFIA could selectively recognize CEA in presence of several interfering proteins. In addition, this newly developed assay was applied for quantitative detection of CEA in human serum specimens collected from 10 randomly selected patients. The modified LFIA system detected minimum 0.27ng/ml of CEA concentration in serum samples. The results were consistent with the clinical data obtained using commercial electrochemiluminescence immunoassay (ECLIA) (p<0.01). In conclusion, the MNPs based LFIA system not only demonstrated enhanced signal to noise ratio, it also detected CEA with higher sensitivity and selectivity, and thus has great potential to be commercially applied as a sensitive tumor marker filtration system. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  11. Evaluation of 5 different labeled polymer immunohistochemical detection systems.

    PubMed

    Skaland, Ivar; Nordhus, Marit; Gudlaugsson, Einar; Klos, Jan; Kjellevold, Kjell H; Janssen, Emiel A M; Baak, Jan P A

    2010-01-01

    Immunohistochemical staining is important for diagnosis and therapeutic decision making but the results may vary when different detection systems are used. To analyze this, 5 different labeled polymer immunohistochemical detection systems, REAL EnVision, EnVision Flex, EnVision Flex+ (Dako, Glostrup, Denmark), NovoLink (Novocastra Laboratories Ltd, Newcastle Upon Tyne, UK) and UltraVision ONE (Thermo Fisher Scientific, Fremont, CA) were tested using 12 different, widely used mouse and rabbit primary antibodies, detecting nuclear, cytoplasmic, and membrane antigens. Serial sections of multitissue blocks containing 4% formaldehyde fixed paraffin embedded material were selected for their weak, moderate, and strong staining for each antibody. Specificity and sensitivity were evaluated by subjective scoring and digital image analysis. At optimal primary antibody dilution, digital image analysis showed that EnVision Flex+ was the most sensitive system (P < 0.005), with means of 8.3, 13.4, 20.2, and 41.8 gray scale values stronger staining than REAL EnVision, EnVision Flex, NovoLink, and UltraVision ONE, respectively. NovoLink was the second most sensitive system for mouse antibodies, but showed low sensitivity for rabbit antibodies. Due to low sensitivity, 2 cases with UltraVision ONE and 1 case with NovoLink stained false negatively. None of the detection systems showed any distinct false positivity, but UltraVision ONE and NovoLink consistently showed weak background staining both in negative controls and at optimal primary antibody dilution. We conclude that there are significant differences in sensitivity, specificity, costs, and total assay time in the immunohistochemical detection systems currently in use.

  12. Tunable sensitivity phase detection of transmitted-type dual-channel guided-mode resonance sensor based on phase-shift interferometry.

    PubMed

    Kuo, Wen-Kai; Syu, Siang-He; Lin, Peng-Zhi; Yu, Hsin Her

    2016-02-01

    This paper reports on a transmitted-type dual-channel guided-mode resonance (GMR) sensor system that uses phase-shifting interferometry (PSI) to achieve tunable phase detection sensitivity. Five interference images are captured for the PSI phase calculation within ∼15  s by using a liquid crystal retarder and a USB web camera. The GMR sensor structure is formed by a nanoimprinting process, and the dual-channel sensor device structure for molding is fabricated using a 3D printer. By changing the rotation angle of the analyzer in front of the camera in the PSI system, the sensor detection sensitivity can be tuned. The proposed system may achieve high throughput as well as high sensitivity. The experimental results show that an optimal detection sensitivity of 6.82×10(-4)  RIU can be achieved.

  13. Optical fiber strain sensor for application in intelligent intruder detection systems

    NASA Astrophysics Data System (ADS)

    Stańczyk, Tomasz; Tenderenda, Tadeusz; Szostkiewicz, Lukasz; Bienkowska, Beata; Kunicki, Daniel; Murawski, Michal; Mergo, Pawel; Nasilowski, Tomasz

    2017-10-01

    Nowadays technology allows to create highly effective Intruder Detection Systems (IDS), that are able to detect the presence of an intruder within a defined area. In such systems the best performance can be achieved by combining different detection techniques in one system. One group of devices that can be applied in an IDS, are devices based on Fiber Optic Sensors (FOS). The FOS benefits from numerous advantages of optical fibers like: small size, light weight or high sensitivity. In this work we present a novel Microstructured Optical Fiber (MOF) characterized by increased strain sensitivity dedicated to distributed acoustic sensing for intelligent intruder detection systems. By designing the MOF with large air holes in close proximity to a fiber core, we increased the effective refractive index sensitivity to longitudinal strain. The presented fiber can be easily integrated in a floor system in order to detect any movement in the investigated area. We believe that sensors, based on the presented MOF, due to its numerous advantages, can find application in intelligent IDS.

  14. Dual sensitivity mode system for monitoring processes and sensors

    DOEpatents

    Wilks, Alan D.; Wegerich, Stephan W.; Gross, Kenneth C.

    2000-01-01

    A method and system for analyzing a source of data. The system and method involves initially training a system using a selected data signal, calculating at least two levels of sensitivity using a pattern recognition methodology, activating a first mode of alarm sensitivity to monitor the data source, activating a second mode of alarm sensitivity to monitor the data source and generating a first alarm signal upon the first mode of sensitivity detecting an alarm condition and a second alarm signal upon the second mode of sensitivity detecting an associated alarm condition. The first alarm condition and second alarm condition can be acted upon by an operator and/or analyzed by a specialist or computer program.

  15. Development of a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) system for a highly sensitive detection of enterovirus in the stool samples of acute flaccid paralysis cases.

    PubMed

    Arita, Minetaro; Ling, Hua; Yan, Dongmei; Nishimura, Yorihiro; Yoshida, Hiromu; Wakita, Takaji; Shimizu, Hiroyuki

    2009-12-16

    In the global eradication program for poliomyelitis, the laboratory diagnosis plays a critical role by isolating poliovirus (PV) from the stool samples of acute flaccid paralysis (AFP) cases. In this study, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) system for a rapid and highly sensitive detection of enterovirus including PV to identify stool samples positive for enterovirus including PV. A primer set was designed for RT-LAMP to detect enterovirus preferably those with PV-like 5'NTRs of the viral genome. The sensitivity of RT-LAMP system was evaluated with prototype strains of enterovirus. Detection of enterovirus from stool extracts was examined by using RT-LAMP system. We detected at least 400 copies of the viral genomes of PV(Sabin) strains within 90 min by RT-LAMP with the primer set. This RT-LAMP system showed a preference for Human enterovirus species C (HEV-C) strains including PV, but exhibited less sensitivity to the prototype strains of HEV-A and HEV-B (detection limits of 7,400 to 28,000 copies). Stool extracts, from which PV, HEV-C, or HEV-A was isolated in the cell culture system, were mostly positive by RT-LAMP method (positive rates of 15/16 (= 94%), 13/14 (= 93%), and 4/4 (= 100%), respectively). The positive rate of this RT-LAMP system for stool extracts from which HEV-B was isolated was lower than that of HEV-C (positive rate of 11/21 (= 52%)). In the stool samples, which were negative for enterovirus isolation by the cell culture system, we found that two samples were positive for RT-LAMP (positive rates of 2/38 (= 5.3%)). In these samples, enterovirus 96 was identified by sequence analysis utilizing a seminested PCR system. RT-LAMP system developed in this study showed a high sensitivity comparable to that of the cell culture system for the detection of PV, HEV-A, and HEV-C, but less sensitivity to HEV-B. This RT-LAMP system would be useful for the direct detection of enterovirus from the stool extracts.

  16. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, G.R.

    1997-12-30

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  17. Syndromic surveillance for health information system failures: a feasibility study.

    PubMed

    Ong, Mei-Sing; Magrabi, Farah; Coiera, Enrico

    2013-05-01

    To explore the applicability of a syndromic surveillance method to the early detection of health information technology (HIT) system failures. A syndromic surveillance system was developed to monitor a laboratory information system at a tertiary hospital. Four indices were monitored: (1) total laboratory records being created; (2) total records with missing results; (3) average serum potassium results; and (4) total duplicated tests on a patient. The goal was to detect HIT system failures causing: data loss at the record level; data loss at the field level; erroneous data; and unintended duplication of data. Time-series models of the indices were constructed, and statistical process control charts were used to detect unexpected behaviors. The ability of the models to detect HIT system failures was evaluated using simulated failures, each lasting for 24 h, with error rates ranging from 1% to 35%. In detecting data loss at the record level, the model achieved a sensitivity of 0.26 when the simulated error rate was 1%, while maintaining a specificity of 0.98. Detection performance improved with increasing error rates, achieving a perfect sensitivity when the error rate was 35%. In the detection of missing results, erroneous serum potassium results and unintended repetition of tests, perfect sensitivity was attained when the error rate was as small as 5%. Decreasing the error rate to 1% resulted in a drop in sensitivity to 0.65-0.85. Syndromic surveillance methods can potentially be applied to monitor HIT systems, to facilitate the early detection of failures.

  18. "Smoke": Characterization Of Smoke Particulate For Spacecraft Fire Detection

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Mulholland, George W.; Yang, Jiann; Cleary, Thomas G.; Yuan, Zeng-Guang

    2003-01-01

    The "Smoke" experiment is a flight definition investigation that seeks to increase our understanding of spacecraft fire detection through measurements of particulate size distributions of preignition smokes from typical spacecraft materials. Owing to the catastrophic risk posed by even a very small fire in a spacecraft, the design goal for spacecraft fire detection is to detect the fire as quickly as possible, preferably in the preignition phase before a real flaming fire has developed. Consequently the target smoke for detection is typically not soot (typical of established hydrocarbon fires) but instead, pyrolysis products, and recondensed polymer particles. At the same time, false alarms are extremely costly as the crew and the ground team must respond quickly to every alarm. The U.S. Space Shuttle (STS: Space Transportation System) and the International Space Station (ISS) both use smoke detection as the primary means of fire detection. These two systems were designed in the absence of any data concerning low-gravity smoke particle (and background dust) size distributions. The STS system uses an ionization detector coupled with a sampling pump and the ISS system is a forward light scattering detector operating in the near IR. These two systems have significantly different sensitivities with the ionization detector being most sensitive (on a mass concentration basis) to smaller particulate and the light scattering detector being most sensitive to particulate that is larger than 1 micron. Since any smoke detection system has inherent size sensitivity characteristics, proper design of future smoke detection systems will require an understanding of the background and alarm particle size distributions that can be expected in a space environment.

  19. Development of luminol-N-hydroxyphthalimide chemiluminescence system for highly selective and sensitive detection of superoxide dismutase, uric acid and Co2.

    PubMed

    Saqib, Muhammad; Qi, Liming; Hui, Pan; Nsabimana, Anaclet; Halawa, Mohamed Ibrahim; Zhang, Wei; Xu, Guobao

    2018-01-15

    N-hydroxyphthalimide (NHPI), a well known reagent in organic synthesis and biochemical applications, has been developed as a stable and efficient chemiluminescence coreactant for the first time. It reacts with luminol much faster than N-hydroxysuccinimide, eliminating the need of a prereaction coil used in N-hydroxysuccinimide system. Without using prereaction coil, the chemiluminescence peak intensities of luminol-NHPI system are about 102 and 26 times greater than that of luminol-N-hydroxysuccinimide system and classical luminol-hydrogen peroxide system, respectively. The luminol-NHPI system achieves the highly sensitive detection of luminol (LOD = 70pM) and NHPI (LOD = 910nM). Based on their excellent quenching efficiencies, superoxide dismutase and uric acid are sensitively detected with LODs of 3ng/mL and 10pM, respectively. Co 2+ is also detected a LOD of 30pM by its remarkable enhancing effect. Noteworthily, our method is at least 4 orders of magnitude more sensitive than previously reported uric acid detection methods, and can detect uric acid in human urine and Co 2+ in tap and lake water real samples with excellent recoveries in the range of 96.35-102.70%. This luminol-NHPI system can be an important candidate for biochemical, clinical and environmental analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development of a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) system for a highly sensitive detection of enterovirus in the stool samples of acute flaccid paralysis cases

    PubMed Central

    2009-01-01

    Background In the global eradication program for poliomyelitis, the laboratory diagnosis plays a critical role by isolating poliovirus (PV) from the stool samples of acute flaccid paralysis (AFP) cases. In this study, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) system for a rapid and highly sensitive detection of enterovirus including PV to identify stool samples positive for enterovirus including PV. Methods A primer set was designed for RT-LAMP to detect enterovirus preferably those with PV-like 5'NTRs of the viral genome. The sensitivity of RT-LAMP system was evaluated with prototype strains of enterovirus. Detection of enterovirus from stool extracts was examined by using RT-LAMP system. Results We detected at least 400 copies of the viral genomes of PV(Sabin) strains within 90 min by RT-LAMP with the primer set. This RT-LAMP system showed a preference for Human enterovirus species C (HEV-C) strains including PV, but exhibited less sensitivity to the prototype strains of HEV-A and HEV-B (detection limits of 7,400 to 28,000 copies). Stool extracts, from which PV, HEV-C, or HEV-A was isolated in the cell culture system, were mostly positive by RT-LAMP method (positive rates of 15/16 (= 94%), 13/14 (= 93%), and 4/4 (= 100%), respectively). The positive rate of this RT-LAMP system for stool extracts from which HEV-B was isolated was lower than that of HEV-C (positive rate of 11/21 (= 52%)). In the stool samples, which were negative for enterovirus isolation by the cell culture system, we found that two samples were positive for RT-LAMP (positive rates of 2/38 (= 5.3%)). In these samples, enterovirus 96 was identified by sequence analysis utilizing a seminested PCR system. Conclusions RT-LAMP system developed in this study showed a high sensitivity comparable to that of the cell culture system for the detection of PV, HEV-A, and HEV-C, but less sensitivity to HEV-B. This RT-LAMP system would be useful for the direct detection of enterovirus from the stool extracts. PMID:20015403

  1. Fiber-Optic Based Compact Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.

    1995-01-01

    A propellant leak detection system based on Raman scattering principles is introduced. The proposed system is flexible and versatile as the result of the use of optical fibers. It is shown that multiple species can be monitored simultaneously. In this paper oxygen, nitrogen, carbon monoxide, and hydrogen are detected and monitored. The current detection sensitivity for both hydrogen and carbon monoxide is 1% partial pressure at ambient conditions. The sensitivity for oxygen and nitrogen is 0.5% partial pressure. The response time to changes in species concentration is three minutes. This system can be used to monitor multiple species at several locations.

  2. Syndromic surveillance for health information system failures: a feasibility study

    PubMed Central

    Ong, Mei-Sing; Magrabi, Farah; Coiera, Enrico

    2013-01-01

    Objective To explore the applicability of a syndromic surveillance method to the early detection of health information technology (HIT) system failures. Methods A syndromic surveillance system was developed to monitor a laboratory information system at a tertiary hospital. Four indices were monitored: (1) total laboratory records being created; (2) total records with missing results; (3) average serum potassium results; and (4) total duplicated tests on a patient. The goal was to detect HIT system failures causing: data loss at the record level; data loss at the field level; erroneous data; and unintended duplication of data. Time-series models of the indices were constructed, and statistical process control charts were used to detect unexpected behaviors. The ability of the models to detect HIT system failures was evaluated using simulated failures, each lasting for 24 h, with error rates ranging from 1% to 35%. Results In detecting data loss at the record level, the model achieved a sensitivity of 0.26 when the simulated error rate was 1%, while maintaining a specificity of 0.98. Detection performance improved with increasing error rates, achieving a perfect sensitivity when the error rate was 35%. In the detection of missing results, erroneous serum potassium results and unintended repetition of tests, perfect sensitivity was attained when the error rate was as small as 5%. Decreasing the error rate to 1% resulted in a drop in sensitivity to 0.65–0.85. Conclusions Syndromic surveillance methods can potentially be applied to monitor HIT systems, to facilitate the early detection of failures. PMID:23184193

  3. Time-resolved measurements in diffuse reflectance: effects of the instrument response function of different detection systems on the depth sensitivity

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Planat-Chrétien, Anne; Berger, Michel; Hervé, Lionel; Dinten, Jean-Marc

    2014-02-01

    We demonstrate the loss of depth sensitivity induced by the instrument response function on reflectance time-resolved diffuse optical tomography through the comparison of 3 detection systems: on one hand a photomultiplier tube (PMT) and a hybrid PMT coupled with a time-correlated single-photon counting card and on the other hand a high rate intensified camera. We experimentally evaluate the depth sensitivity achieved for each detection module with an absorbing inclusion embedded in a turbid medium. The different interfiber distances of 5, 10 and 15 mm are considered. Finally, we determine a maximal depth reached for each detection system by using 3D tomographic reconstructions based on the Mellin-Laplace transform.

  4. Sensitivity of standing radiographs to detect knee arthritis: a systematic review of Level I studies.

    PubMed

    Duncan, Stephen T; Khazzam, Michael S; Burnham, Jeremy M; Spindler, Kurt P; Dunn, Warren R; Wright, Rick W

    2015-02-01

    The purpose of this study was to perform a systematic review of the available literature to define the level of quality evidence for determining the sensitivity and specificity of different radiographic views in detecting knee osteoarthritis and to determine the impact of different grading systems on the ability to detect knee osteoarthritis. A systematic review of the literature was conducted to identify studies that evaluated the standing anteroposterior (AP) and 45° posteroanterior (PA) views for tibiofemoral and patellofemoral arthritis and those comparing the use of the Kellgren-Lawrence versus the joint space narrowing (JSN) radiographic grading systems using arthroscopy as the gold standard. A comprehensive search of PubMed, Scopus, CINAHL, the Cochrane Database, Clinicaltrial.gov, and EMBASE was performed using the keywords "osteoarthritis," "knee," "x-ray," "sensitivity," and "arthroscopy." Six studies were included in the evaluation. The 45° flexion PA view showed a higher sensitivity than the standing AP view for detecting severe arthritis involving either the medial or lateral tibiofemoral compartment. There was no difference in the specificities for the 2 views. The direct comparison of the Kellgren-Lawrence and the JSN radiographic grading systems found no clinical difference between the 2 systems regarding the sensitivities, although the specificity was greater for the JSN system. The ability to detect knee osteoarthritis continues to be difficult without using advanced imaging. However, as an inexpensive screening tool, the 45° flexion PA view is more sensitive than the standing AP view to detect severe tibiofemoral osteoarthritis. When evaluating the radiograph for severe osteoarthritis using either the Kellgren-Lawrence or JSN grading system, there is no clinical difference in the sensitivity between the 2 methods; however, the JSN may be more specific for ruling in severe osteoarthritis in the medial compartment. Level I, systematic review of Level I studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  5. A Smart Detection System Based on Specific Magnetic and Rolling Cycle Amplification Signal-Amplified Dual-Aptamers to Accurately Monitor Minimal Residual Diseases in Patients with T-ALL.

    PubMed

    Li, Xa; Zhou, Bo; Zhao, Zilong; Hu, Zixi; Zhou, Sufang; Yang, Nuo; Huang, Yong; Zhang, Zhenghua; Su, Jing; Lan, Dan; Qin, Xue; Meng, Jinyu; Zheng, Duo; He, Jian; Huang, Xianing; Zhao, Jing; Zhang, Zhiyong; Tan, Weihong; Lu, Xiaoling; Zhao, Yongxiang

    2016-12-01

    It is a major clinical challenge for clinicians how to early find out minimal residual diseases (MRD) of leukemia. Here, we developed a smart detection system for MRD involving magnetic aptamer sgc8 probe (M-sgc8 probe) to capture CEM cells and rolling cycle amplification probe (RCA-sgc8 probe) to initiate RCA, producing a single-stranded tandem repeated copy of the circular template. The DNA products were hybridized with molecular beacon to generate the amplified fluorescence signal. An in vitro model to mimic MRD was established to evaluate the sensitivity of the smart detection system. The smart detection system was used to detect MRD in patients with T-ALL peri-chemotherapy, which could not only specifically captured T-ALL cells, but also significantly amplified fluorescence signals on them. The sensitivity was 1/20,000. These results indicate that the smart detection system with high specificity and sensitivity could more efficiently monitor the progress of T-ALL peri-chemotherapy.

  6. Spread spectrum time-resolved diffuse optical measurement system for enhanced sensitivity in detecting human brain activity

    NASA Astrophysics Data System (ADS)

    Mehta, Kalpesh; Hasnain, Ali; Zhou, Xiaowei; Luo, Jianwen; Penney, Trevor B.; Chen, Nanguang

    2017-04-01

    Diffuse optical spectroscopy (DOS) and imaging methods have been widely applied to noninvasive detection of brain activity. We have designed and implemented a low cost, portable, real-time one-channel time-resolved DOS system for neuroscience studies. Phantom experiments were carried out to test the performance of the system. We further conducted preliminary human experiments and demonstrated that enhanced sensitivity in detecting neural activity in the cortex could be achieved by the use of late arriving photons.

  7. Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems.

    PubMed

    Johnson, Mitchell E; Landers, James P

    2004-11-01

    Laser-induced fluorescence is an extremely sensitive method for detection in chemical separations. In addition, it is well-suited to detection in small volumes, and as such is widely used for capillary electrophoresis and microchip-based separations. This review explores the detailed instrumental conditions required for sub-zeptomole, sub-picomolar detection limits. The key to achieving the best sensitivity is to use an excitation and emission volume that is matched to the separation system and that, simultaneously, will keep scattering and luminescence background to a minimum. We discuss how this is accomplished with confocal detection, 90 degrees on-capillary detection, and sheath-flow detection. It is shown that each of these methods have their advantages and disadvantages, but that all can be used to produce extremely sensitive detectors for capillary- or microchip-based separations. Analysis of these capabilities allows prediction of the optimal means of achieving ultrasensitive detection on microchips.

  8. [Diagnostic advantages of the test system "DS-EIA-HBsAg-0.01" for detection of HBV surface antigen].

    PubMed

    Egorova, N I; Pyrenkova, I Iu; Igolkina, S N; Sharipova, I N; Puzyrev, V F; Obriadina, A P; Burkov, A N; Kornienko, N V; Fields, H A; Korovkin, A S; Shalunova, N V; Bektemirov, T A; Kuznetsov, K V; Koshcheeva, N A; Ulanova, T I

    2009-01-01

    The new highly sensitive test system "DS-EIA-HBsAg-0.01" (Priority Certificate No. 2006129019 of August 10, 2006) in detecting hepatitis B surface antigen (HBsAg) was assessed. The sensitivity of the test was estimated using the federal standards sample HBsAg 42-28-311-06, panels' samples Boston Biomedica Inc. (West Bridgewater, Mass, USA) and ZeptoMetrix Corp. (Buffalo, NY, USA). The findings have indicated that "DS-EIA-HBsAg-0.01" is equally effective in detecting different subtypes of HBsAg during a seroconversion period earlier than alternative assays. Along with its high analytical and diagnostic sensitivity, the system shows a high diagnostic specificity.

  9. The design of high precision temperature control system for InGaAs short-wave infrared detector

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-yun; Hu, Yadong; Ni, Chen; Huang, Lin; Zhang, Aiwen; Sun, Xiao-bing; Hong, Jin

    2018-02-01

    The InGaAs Short-wave infrared detector is a temperature-sensitive device. Accurate temperature control can effectively reduce the background signal and improve detection accuracy, detection sensitivity, and the SNR of the detection system. Firstly, the relationship between temperature and detection background, NEP is analyzed, the principle of TEC and formula between cooling power, cooling current and hot-cold interface temperature difference are introduced. Then, the high precision constant current drive circuit based on triode voltage control current, and an incremental algorithm model based on deviation tracking compensation and PID control are proposed, which effectively suppresses the temperature overshoot, overcomes the temperature inertia, and has strong robustness. Finally, the detector and temperature control system are tested. Results show that: the lower of detector temperature, the smaller the temperature fluctuation, the higher the detection accuracy and the detection sensitivity. The temperature control system achieves the high temperature control with the temperature control rate is 7 8°C/min and the temperature fluctuation is better than +/-0. 04°C.

  10. Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources.

    PubMed

    Klumpp, John; Brandl, Alexander

    2015-03-01

    A particle counting and detection system is proposed that searches for elevated count rates in multiple energy regions simultaneously. The system analyzes time-interval data (e.g., time between counts), as this was shown to be a more sensitive technique for detecting low count rate sources compared to analyzing counts per unit interval (Luo et al. 2013). Two distinct versions of the detection system are developed. The first is intended for situations in which the sample is fixed and can be measured for an unlimited amount of time. The second version is intended to detect sources that are physically moving relative to the detector, such as a truck moving past a fixed roadside detector or a waste storage facility under an airplane. In both cases, the detection system is expected to be active indefinitely; i.e., it is an online detection system. Both versions of the multi-energy detection systems are compared to their respective gross count rate detection systems in terms of Type I and Type II error rates and sensitivity.

  11. Chemical and explosive detections using photo-acoustic effect and quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Choa, Fow-Sen

    2013-12-01

    Photoacoustic (PA) effect is a sensitive spectroscopic technique for chemical sensing. In recent years, with the development of quantum cascade lasers (QCLs), significant progress has been achieved for PA sensing applications. Using high-power, tunable mid-IR QCLs as laser sources, PA chemical sensor systems have demonstrated parts-pertrillion- level detection sensitivity. Many of these high sensitivity measurements were demonstrated locally in PA cells. Recently, we have demonstrated standoff PA detection of isopropanol vapor for more than 41 feet distance using a quantum cascade laser and a microphone with acoustic reflectors. We also further demonstrated solid phase TNT detections at a standoff distance of 8 feet. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. Standoff detection of gas samples with calibrated concentration of 2.3 ppm was achieved at a detection distance of more than 2 feet. An extended detection distance up to 14 feet was observed for a higher gas concentration of 13.9 ppm. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated that the signal and noise spectra of the 4 microphone/4 reflector system with a combined SNR of 12.48 dB. For the 16-microphone and one reflector case, an SNR of 17.82 was achieved. These successful chemical sensing demonstrations will likely create new demands for widely tunable QCLs with ultralow threshold (for local fire-alarm size detection systems) and high-power (for standoff detection systems) performances.

  12. Modified general primer PCR system for sensitive detection of multiple types of oncogenic human papillomavirus.

    PubMed

    Söderlund-Strand, Anna; Carlson, Joyce; Dillner, Joakim

    2009-03-01

    Human papillomavirus (HPV) infection is a necessary cause of cervical cancer and cervical dysplasia. Accurate and sensitive genotyping of multiple oncogenic HPVs is essential for a multitude of both clinical and research uses. We developed a modified general primer (MGP) PCR system with five forward and five reverse consensus primers. The MGP system was compared to the classical HPV general primer system GP5+/6+ using a proficiency panel with HPV plasmid dilutions as well as cervical samples from 592 women with low-grade cytological abnormalities. The reference method (GP5+/6+) had the desirable high sensitivity (five copies/PCR) for five oncogenic HPV types (HPV type 16 [HPV-16], HPV-18, HPV-56, HPV-59, and HPV-66). The MGP system was able to detect all 14 oncogenic HPV types at five copies/PCR. In the clinical samples, the MGP system detected a significantly higher proportion of women with more than two concomitant HPV infections than did the GP5+/6+ system (102/592 women compared to 42/592 women). MGP detected a significantly greater number of infections with HPV-16, -18, -31, -33, -35, -39, -42, -43, -45, -51, -52, -56, -58, and -70 than did GP5+/6+. In summary, the MGP system primers allow a more sensitive amplification of most of the HPV types that are established as oncogenic and had an improved ability to detect multiple concomitant HPV infections.

  13. Sensitivity enhancement of fluorescence detection in CE by coupling and conducting excitation light with tapered optical fiber.

    PubMed

    Yang, Xiupei; Huo, Feng; Yuan, Hongyan; Zhang, Bo; Xiao, Dan; Choi, Martin M F

    2011-01-01

    This paper reports the enhancement of sensitivity of detection for in-column fiber optic-induced fluorescence detection system in CE by tapered optical fiber (TOF). Two types of optical fiber, TOF and conventional cylindrical optical fiber (COF), were employed to construct the CE (TOF-CE and COF-CE) and were compared for sensitivity to riboflavin (RF). The fluorescence intensities from a RF sample with excitation light sources and fibers at various coupling angles were investigated. The fluorescence signal from TOF-CE was ca. ten times that of COF-CE. In addition, the detection performance of four excitation light source-fiber configurations including Laser-TOF, Laser-COF, LED-TOF, and LED-COF were compared. The LODs for RF were 0.21, 0.82, 0.80, and 7.5 nM, respectively, for the four excitation light source-fiber configurations. The results demonstrate that the sensitivity obtained by LED-TOF is close to that of Laser-COF. Both Laser-TOF and LED-TOF can greatly improve the sensitivity of detection in CE. TOF has the major attribute of collecting and focusing the excitation light intensity. Thus, the sensitivity obtained by LED-TOF without focusing lens is just same as that of LED-COF with a focusing lens. This demonstrates that the CE system can be further simplified by eliminating the focusing lens for excitation light. LED-TOF-CE and LED-COF-CE system were applied to the separation and determination of RF in real sample (green tea), respectively. The tapered fiber optic-induced fluorescence detection system in CE is an ideal tool for trace analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Diagnostic Accuracy of the FIGO and the 5-Tier Fetal Heart Rate Classification Systems in the Detection of Neonatal Acidemia.

    PubMed

    Martí Gamboa, Sabina; Giménez, Olga Redrado; Mancho, Jara Pascual; Moros, María Lapresta; Sada, Julia Ruiz; Mateo, Sergio Castan

    2017-04-01

    Objective  The objective of this study was to determine ability to detect neonatal acidemia and interobserver agreement with the FIGO 3-tier and 5-tier fetal heart rate (FHR) classification systems. Design  This was a case-control study. Setting  This study was set at the University Medical Center. Population  A total of 202 FHR tracings of 102 women who delivered an acidemic fetus (umbilical arterial cord gas pH ≤ 7.10 and BE < - 8) and 100 who delivered a nonacidemic fetus (umbilical arterial cord gas pH > 7.10) were assessed. A subanalysis was performed for those fetuses who suffered severe metabolic acidemia (pH ≤ 7.0 and BE < - 12). Methods  Two reviewers blind to clinical and outcome data classified tracings according to the new 3-tier system proposed by the FIGO and the 5-tier system proposed by Parer and Ikeda. Main Outcome Measures  Sensitivity and specificity for detecting neonatal acidemia and interobserver agreement in classifying FHR tracings into categories of both systems were studied. Results  The 3-tier system showed a greater sensitivity and lower specificity to detect neonatal acidemia (43.6% sensitivity, 82.5% specificity) and severe metabolic acidemia (71.4% sensitivity, 74.0% specificity) compared with the 5-tier system (36.3% sensitivity, 88% specificity and 61.9% sensitivity, 80.1% specificity, respectively). Both systems were compared by area under the receiver-operating characteristic curve, with comparable predictive ability for detecting neonatal acidemia (FIGO-area under the curve [AUC]: 0.63 [95% confidence interval [CI]: 0.57-0.68] and Parer-AUC: 0.62 [95% CI: 0.56-0.67]). Interobserver agreement was moderate for both systems, but performance at each specific category showed a better agreement for the 5-tier system identifying a pathological tracing (orange or red, κ: 0.625 vs. pathological category, κ: 0.538). Conclusion  Both systems presented a comparable ability to predict neonatal acidemia, although the 5-tier system showed a better interobserver agreement identifying pathological tracings. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Colleges Fight Fire With Electronics.

    ERIC Educational Resources Information Center

    College & University Business, 1968

    1968-01-01

    Description of various electronic fire detection and alarm systems is presented. Explanation of detective systems includes--(1) fixed-temperature and rate-of-rise heat sensitive devices, (2) smoke detective devices, (3) ionization systems, and (4) infrared and ultraviolet radiation devices. Each system type is evaluated in terms of operation,…

  16. A fully battery-powered inexpensive spectrophotometric system for high-sensitivity point-of-care analysis on a microfluidic chip

    PubMed Central

    Dou, Maowei; Lopez, Juan; Rios, Misael; Garcia, Oscar; Xiao, Chuan; Eastman, Michael

    2016-01-01

    A cost-effective battery-powered spectrophotometric system (BASS) was developed for quantitative point-of-care (POC) analysis on a microfluidic chip. By using methylene blue as a model analyte, we first compared the performance of the BASS with a commercial spectrophotometric system, and further applied the BASS for loop-mediated isothermal amplification (LAMP) detection and subsequent quantitative nucleic acid analysis which exhibited a comparable limit of detection to that of Nanodrop. Compared to the commercial spectrophotometric system, our spectrophotometric system is lower-cost, consumes less reagents, and has a higher detection sensitivity. Most importantly, it does not rely on external power supplies. All these features make our spectrophotometric system highly suitable for a variety of POC analyses, such as field detection. PMID:27143408

  17. Quantum cascade laser-based sensor system for nitric oxide detection

    NASA Astrophysics Data System (ADS)

    Tittel, Frank K.; Allred, James J.; Cao, Yingchun; Sanchez, Nancy P.; Ren, Wei; Jiang, Wenzhe; Jiang, Dongfang; Griffin, Robert J.

    2015-01-01

    Sensitive detection of nitric oxide (NO) at ppbv concentration levels has an important impact in diverse fields of applications including environmental monitoring, industrial process control and medical diagnostics. For example, NO can be used as a biomarker of asthma and inflammatory lung diseases such as chronic obstructive pulmonary disease. Trace gas sensor systems capable of high sensitivity require the targeting of strong rotational-vibrational bands in the mid-IR spectral range. These bands are accessible using state-of-the-art high heat load (HHL) packaged, continuous wave (CW), distributed feedback (DFB) quantum cascade lasers (QCLs). Quartz-enhanced photoacoustic spectroscopy (QEPAS) permits the design of fast, sensitive, selective, and compact sensor systems. A QEPAS sensor was developed employing a room-temperature CW DFB-QCL emitting at 5.26 μm with an optical excitation power of 60 mW. High sensitivity is achieved by targeting a NO absorption line at 1900.08 cm-1 free of interference by H2O and CO2. The minimum detection limit of the sensor is 7.5 and 1 ppbv of NO with 1and 100 second averaging time respectively . The sensitivity of the sensor system is sufficient for detecting NO in exhaled human breath, with typical concentration levels ranging from 24.0 ppbv to 54.0 ppbv.

  18. [Analysis and experimental verification of sensitivity and SNR of laser warning receiver].

    PubMed

    Zhang, Ji-Long; Wang, Ming; Tian, Er-Ming; Li, Xiao; Wang, Zhi-Bin; Zhang, Yue

    2009-01-01

    In order to countermeasure increasingly serious threat from hostile laser in modern war, it is urgent to do research on laser warning technology and system, and the sensitivity and signal to noise ratio (SNR) are two important performance parameters in laser warning system. In the present paper, based on the signal statistical detection theory, a method for calculation of the sensitivity and SNR in coherent detection laser warning receiver (LWR) has been proposed. Firstly, the probabilities of the laser signal and receiver noise were analyzed. Secondly, based on the threshold detection theory and Neyman-Pearson criteria, the signal current equation was established by introducing detection probability factor and false alarm rate factor, then, the mathematical expressions of sensitivity and SNR were deduced. Finally, by using method, the sensitivity and SNR of the sinusoidal grating laser warning receiver developed by our group were analyzed, and the theoretic calculation and experimental results indicate that the SNR analysis method is feasible, and can be used in performance analysis of LWR.

  19. Thermal background noise limitations

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1982-01-01

    Modern detection systems are increasingly limited in sensitivity by the background thermal photons which enter the receiving system. Expressions for the fluctuations of detected thermal radiation are derived. Incoherent and heterodyne detection processes are considered. References to the subject of photon detection statistics are given.

  20. Multi-capillary based optical sensors for highly sensitive protein detection

    NASA Astrophysics Data System (ADS)

    Okuyama, Yasuhira; Katagiri, Takashi; Matsuura, Yuji

    2017-04-01

    A fluorescence measuring method based on glass multi-capillary for detecting trace amounts of proteins is proposed. It promises enhancement of sensitivity due to effects of the adsorption area expansion and the longitudinal excitation. The sensitivity behavior of this method was investigated by using biotin-streptavidin binding. According to experimental examinations, it was found that the sensitivity was improved by a factor of 70 from common glass wells. We also confirmed our measuring system could detect 1 pg/mL of streptavidin. These results suggest that multi-capillary has a potential as a high-sensitive biosensor.

  1. Sensitivity Comparison of Vapor Trace Detection of Explosives Based on Chemo-Mechanical Sensing with Optical Detection and Capacitive Sensing with Electronic Detection

    PubMed Central

    Strle, Drago; Štefane, Bogdan; Zupanič, Erik; Trifkovič, Mario; Maček, Marijan; Jakša, Gregor; Kvasič, Ivan; Muševič, Igor

    2014-01-01

    The article offers a comparison of the sensitivities for vapour trace detection of Trinitrotoluene (TNT) explosives of two different sensor systems: a chemo-mechanical sensor based on chemically modified Atomic Force Microscope (AFM) cantilevers based on Micro Electro Mechanical System (MEMS) technology with optical detection (CMO), and a miniature system based on capacitive detection of chemically functionalized planar capacitors with interdigitated electrodes with a comb-like structure with electronic detection (CE). In both cases (either CMO or CE), the sensor surfaces are chemically functionalized with a layer of APhS (trimethoxyphenylsilane) molecules, which give the strongest sensor response for TNT. The construction and calibration of a vapour generator is also presented. The measurements of the sensor response to TNT are performed under equal conditions for both systems, and the results show that CE system with ultrasensitive electronics is far superior to optical detection using MEMS. Using CMO system, we can detect 300 molecules of TNT in 10+12 molecules of N2 carrier gas, whereas the CE system can detect three molecules of TNT in 10+12 molecules of carrier N2. PMID:24977388

  2. Comparison of culture and biochemical tests with PCR for detection of Brachyspira hyodysenteriae and Brachyspira pilosicoli.

    PubMed

    Råsbäck, T; Fellström, C; Gunnarsson, A; Aspán, A

    2006-08-01

    Traditional culture and biochemical tests (CBT) were compared with PCR for sensitivity and detection of Brachyspira hyodysenteriae and Brachyspira pilosicoli in seeded faeces and clinical samples from diarrhoeic pigs. A duplex PCR system was developed based on primers detecting the tlyA-gene of B. hyodysenteriae and the 16S rRNA-gene of B. pilosicoli. Sensitivities for the PCR system were determined on seeded faeces, using DNA that had been recovered from primary cultures or extracted directly from faeces. Compared to CBT, PCR applied to DNA extracted directly from faeces lowered the sensitivity by a factor of 1000 to 10,000. B. hyodysenteriae and B. pilosicoli detection was compared for CBT and PCR using 200 clinical samples. CBT detected more B. hyodysenteriae isolates in the clinical samples than PCR, but fewer B. pilosicoli positive samples. An atypical strongly haemolytic isolate was detected only by CBT.

  3. Navigation surgery for intraoperative sentinel lymph node detection using Indocyanine green (ICG) fluorescence real-time imaging in breast cancer.

    PubMed

    Toh, U; Iwakuma, N; Mishima, M; Okabe, M; Nakagawa, S; Akagi, Y

    2015-09-01

    A new sensitive fluorescence imaging system was developed for the real-time identification of sentinel lymph nodes (SLNs) in patients with early breast cancer. The purpose of this study was to evaluate the utility of a color charge-coupled device camera system for the intraoperative detection of SLNs and to determine its clinical efficacy and sensitivity in patients with operable breast cancer. We assessed a total of 168 patients diagnosed with or suspected of having early-stage breast cancer without metastasis in SLNs. The intraoperative detection of SLNs was performed using the conventional Indigo Carmine dye (indigotindisulfonate sodium) technique combined with a new Indocyanine green (ICG) imaging system (HyperEye Medical System: HEMS, MIZUHO IKAKOGYO, Japan) to map SLNs, in which the lymphatic vessels and SLNs were visualized transcutaneously with illuminating ICG fluorescence. Between January 2012 and May 2013, SLNs were successfully identified in all 168 patients (detection rate: 100%). By histopathology, the sensitivity was 93.8% for the detection of the metastatic involvement of SLNs (15 of 16 nodal-positive patients). After a median follow-up of 30.5 months, none of the patients presented with axillary recurrence. These results suggest that the HEMS imaging system is a feasible and effective method for the detection of SLNs in breast cancer. Furthermore, the HEMS device permitted the transcutaneous visualization of lymphatic vessels under light conditions, thus facilitating the identification and detection of SLNs without affecting the surgical procedure, together with a high sensitivity and specificity.

  4. Evaluation of a novel chemical sensor system to detect clinical mastitis in bovine milk.

    PubMed

    Mottram, Toby; Rudnitskaya, Alisa; Legin, Andrey; Fitzpatrick, Julie L; Eckersall, P David

    2007-05-15

    Automatic detection of clinical mastitis is an essential part of high performance and robotic milking. Currently available technology (conductivity monitoring) is unable to achieve acceptable specificity or sensitivity of detection of clinical mastitis or other clinical diseases. Arrays of sensors with high cross-sensitivity have been successfully applied for recognition and quantitative analysis of other multicomponent liquids. An experiment was conducted to determine whether a multisensor system ("electronic tongue") based on an array of chemical sensors and suitable data processing could be used to discriminate between milk secretions from infected and healthy glands. Measurements were made with a multisensor system of milk samples from two different farms in two experiments. A total of 67 samples of milk from both mastitic and healthy glands were in two sets. It was demonstrated that the multisensor system could distinguish between control and clinically mastitic milk samples (p=0.05). The sensitivity and specificity of the sensor system (93 and 96% correspondingly) showed an improvement over conductivity (56 and 82% correspondingly). The multisensor system offers a novel method of improving mastitis detection.

  5. Evaluation of a Broad-Spectrum Partially Automated Adverse Event Surveillance System: A Potential Tool for Patient Safety Improvement in Hospitals With Limited Resources.

    PubMed

    Saikali, Melody; Tanios, Alain; Saab, Antoine

    2017-11-21

    The aim of the study was to evaluate the sensitivity and resource efficiency of a partially automated adverse event (AE) surveillance system for routine patient safety efforts in hospitals with limited resources. Twenty-eight automated triggers from the hospital information system's clinical and administrative databases identified cases that were then filtered by exclusion criteria per trigger and then reviewed by an interdisciplinary team. The system, developed and implemented using in-house resources, was applied for 45 days of surveillance, for all hospital inpatient admissions (N = 1107). Each trigger was evaluated for its positive predictive value (PPV). Furthermore, the sensitivity of the surveillance system (overall and by AE category) was estimated relative to incidence ranges in the literature. The surveillance system identified a total of 123 AEs among 283 reviewed medical records, yielding an overall PPV of 52%. The tool showed variable levels of sensitivity across and within AE categories when compared with the literature, with a relatively low overall sensitivity estimated between 21% and 44%. Adverse events were detected in 23 of the 36 AE categories defined by an established harm classification system. Furthermore, none of the detected AEs were voluntarily reported. The surveillance system showed variable sensitivity levels across a broad range of AE categories with an acceptable PPV, overcoming certain limitations associated with other harm detection methods. The number of cases captured was substantial, and none had been previously detected or voluntarily reported. For hospitals with limited resources, this methodology provides valuable safety information from which interventions for quality improvement can be formulated.

  6. Reliability of high- and low-field magnetic resonance imaging systems for detection of cartilage and bone lesions in the equine cadaver fetlock.

    PubMed

    Smith, M A; Dyson, S J; Murray, R C

    2012-11-01

    To determine the reliability of 2 magnetic resonance imaging (MRI) systems for detection of cartilage and bone lesions of the equine fetlock. To test the hypotheses that lesions in cartilage, subchondral and trabecular bone of the equine fetlock verified using histopathology can be detected on high- and low-field MR images with a low incidence of false positive or negative results; that low-field images are less reliable than high-field images for detection of cartilage lesions; and that combining results of interpretation from different pulse sequences increases detection of cartilage lesions. High- and low-field MRI was performed on 19 limbs from horses identified with fetlock lameness prior to euthanasia. Grading systems were used to score cartilage, subchondral and trabecular bone on MR images and histopathology. Sensitivity and specificity were calculated for images. High-field T2*-weighted gradient echo (T2*W-GRE) and low-field T2-weighted fast spin echo (T2W-FSE) images had high sensitivity but low specificity for detection of cartilage lesions. All pulse sequences had high sensitivity and low-moderate specificity for detection of subchondral bone lesions and moderate sensitivity and moderate-high specificity for detection of trabecular bone lesions (histopathology as gold standard). For detection of lesions of trabecular bone low-field T2*W-GRE images had higher sensitivity and specificity than T2W-FSE images. There is high likelihood of false positive results using high- or low-field MRI for detection of cartilage lesions and moderate-high likelihood of false positive results for detection of subchondral bone lesions compared with histopathology. Combining results of interpretation from different pulse sequences did not increase detection of cartilage lesions. MRI interpretation of trabecular bone was more reliable than cartilage or subchondral bone in both MR systems. Independent interpretation of a variety of pulse sequences may maximise detection of cartilage and bone lesions in the fetlock. Clinicians should be aware of potential false positive and negative results. © 2012 EVJ Ltd.

  7. A rapid and simple method of detection of Blepharisma japonicum using PCR and immobilisation on FTA paper

    PubMed Central

    Hide, Geoff; Hughes, Jacqueline M; McNuff, Robert

    2003-01-01

    Background The rapid expansion in the availability of genome and DNA sequence information has opened up new possibilities for the development of methods for detecting free-living protozoa in environmental samples. The protozoan Blepharisma japonicum was used to investigate a rapid and simple detection system based on polymerase chain reaction amplification (PCR) from organisms immobilised on FTA paper. Results Using primers designed from the α-tubulin genes of Blepharisma, specific and sensitive detection to the equivalent of a single Blepharisma cell could be achieved. Similar detection levels were found using water samples, containing Blepharisma, which were dried onto Whatman FTA paper. Conclusion This system has potential as a sensitive convenient detection system for Blepharisma and could be applied to other protozoan organisms. PMID:14516472

  8. Sensitivity of the Dengue Surveillance System in Brazil for Detecting Hospitalized Cases

    PubMed Central

    2016-01-01

    We evaluated the sensitivity of the dengue surveillance system in detecting hospitalized cases in ten capital cities in Brazil from 2008 to 2013 using a probabilistic record linkage of two independent information systems hospitalization (SIH-SUS) adopted as the gold standard and surveillance (SINAN). Sensitivity was defined as the proportion of cases reported to the surveillance system amid the suspected hospitalized cases registered in SIH-SUS. Of the 48,174 hospitalizations registered in SIH-SUS, 24,469 (50.7%) were reported and registered in SINAN, indicating an overall sensitivity of 50.8% (95%CI 50.3–51.2). The observed sensitivity for each of the municipalities included in the study ranged from 22.0% to 99.1%. The combination of the two data sources identified 71,161 hospitalizations, an increase of 97.0% over SINAN itself. Our results allowed establishing the proportion of underreported dengue hospitalizations in the public health system in Brazil, highlighting the use of probabilistic record linkage as a valuable tool for evaluating surveillance systems. PMID:27192405

  9. New PCR diagnostic systems for the detection and quantification of porcine cytomegalovirus (PCMV).

    PubMed

    Morozov, Vladimir A; Morozov, Alexey V; Denner, Joachim

    2016-05-01

    Pigs are frequently infected with porcine cytomegalovirus (PCMV). Infected adult animals may not present with symptoms of disease, and the virus remains latent. However, the virus may be transmitted to human recipients receiving pig transplants. Recently, it was shown that pig-to-non-human-primate xenotransplantations showed 2 to 3 times lower transplant survival when the donor pig was infected with PCMV. Therefore, highly sensitive methods are required to select virus-free pigs and to examine xenotransplants. Seven previously established PCR detection systems targeting the DNA polymerase gene of PCMV were examined by comparison of thermodynamic parameters of oligonucleotides, and new diagnostic nested PCR and real-time PCR systems with improved parameters and high sensitivity were established. The detection limit of conventional PCR was estimated to be 15 copies, and that of the nested PCR was 5 copies. The sensitivity of the real-time PCR with a TaqMan probe was two copies. An equal efficiency of the newly established detection systems was shown by parallel testing of DNA from sera and blood of six pigs, identifying the same animals as PCMV infected. These new diagnostic PCR systems will improve the detection of PCMV and therefore increase the safety of porcine xenotransplants.

  10. Dual Electrophoresis Detection System for Rapid and Sensitive Immunoassays with Nanoparticle Signal Amplification

    NASA Astrophysics Data System (ADS)

    Zhang, Fangfang; Ma, Junjie; Watanabe, Junji; Tang, Jinlong; Liu, Huiyu; Shen, Heyun

    2017-02-01

    An electrophoretic technique was combined with an enzyme-linked immunosorbent assay (ELISA) system to achieve a rapid and sensitive immunoassay. A cellulose acetate filter modified with polyelectrolyte multilayer (PEM) was used as a solid substrate for three-dimensional antigen-antibody reactions. A dual electrophoresis process was used to induce directional migration and local condensation of antigens and antibodies at the solid substrate, avoiding the long diffusion times associated with antigen-antibody reactions in conventional ELISAs. The electrophoretic forces drove two steps in the ELISA process, namely the adsorption of antigen, and secondary antibody-labelled polystyrene nanoparticles (NP-Ab). The total time needed for dual electrophoresis-driven detection was just 4 min, nearly 2 h faster than a conventional ELISA system. Moreover, the rapid NP-Ab electrophoresis system simultaneously achieved amplification of the specific signal and a reduction in noise, leading to a more sensitive NP-Ab immunoassay with a limit of detection (LOD) of 130 fM, and wide range of detectable concentrations from 0.13 to 130 pM. These results suggest that the combination of dual electrophoresis detection and NP-Ab signal amplification has great potential for future immunoassay systems.

  11. Antigen retrieval, blocking, detection and visualisation systems in immunohistochemistry: a review and practical evaluation of tyramide and rolling circle amplification systems.

    PubMed

    Warford, Anthony; Akbar, Hameed; Riberio, Deise

    2014-11-01

    To achieve specificity and sensitivity using immunohistochemistry it is necessary to combine the application of validated primary antibodies with optimised pre-treatment, detection and visualisation steps. The influence of these surrounding procedures is reviewed. A practical evaluation of tyramide signal amplification and rolling circle amplification detection methods is provided in which formalin fixed paraffin embedded sections of adenocarcinomas of breast, colon and lung together with squamous metaplasia of lung were immunostained with CD20 and CK19 primary antibodies. The results indicate that the detection systems are of comparable sensitivity and specificity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Accuracy of the VITEK 2 System To Detect Glycopeptide Resistance in Enterococci

    PubMed Central

    van den Braak, Nicole; Goessens, Wil; van Belkum, Alex; Verbrugh, Henri A.; Endtz, Hubert P.

    2001-01-01

    We evaluated the accuracy of the VITEK 2 fully automated system to detect and identify glycopeptide-resistant enterococci (GRE) compared to a reference agar dilution method. The sensitivity of vancomycin susceptibility testing with VITEK 2 for the detection of vanA, vanB, and vanC1 strains was 100%. The sensitivity of vancomycin susceptibility testing of vanC2 strains was 77%. The sensitivity of teicoplanin susceptibility testing of vanA strains was 90%. Of 80 vanC enterococci, 78 (98%) were correctly identified by VITEK 2 as Enterococcus gallinarum/Enterococcus casseliflavus. Since the identification and susceptibility data are produced within 3 and 8 h, respectively, VITEK 2 appears a fast and reliable method for detection of GRE in microbiology laboratories. PMID:11136798

  13. An ultra-small, multi-point, and multi-color photo-detection system with high sensitivity and high dynamic range.

    PubMed

    Anazawa, Takashi; Yamazaki, Motohiro

    2017-12-05

    Although multi-point, multi-color fluorescence-detection systems are widely used in various sciences, they would find wider applications if they are miniaturized. Accordingly, an ultra-small, four-emission-point and four-color fluorescence-detection system was developed. Its size (space between emission points and a detection plane) is 15 × 10 × 12 mm, which is three-orders-of-magnitude smaller than that of a conventional system. Fluorescence from four emission points with an interval of 1 mm on the same plane was respectively collimated by four lenses and split into four color fluxes by four dichroic mirrors. Then, a total of sixteen parallel color fluxes were directly input into an image sensor and simultaneously detected. The emission-point plane and the detection plane (the image-sensor surface) were parallel and separated by a distance of only 12 mm. The developed system was applied to four-capillary array electrophoresis and successfully achieved Sanger DNA sequencing. Moreover, compared with a conventional system, the developed system had equivalent high fluorescence-detection sensitivity (lower detection limit of 17 pM dROX) and 1.6-orders-of-magnitude higher dynamic range (4.3 orders of magnitude).

  14. Advances in Anthrax Detection: Overview of Bioprobes and Biosensors.

    PubMed

    Kim, Joungmok; Gedi, Vinayakumar; Lee, Sang-Choon; Cho, Jun-Haeng; Moon, Ji-Young; Yoon, Moon-Young

    2015-06-01

    Anthrax is an infectious disease caused by Bacillus anthracis. Although anthrax commonly affects domestic and wild animals, it causes a rare but lethal infection in humans. A variety of techniques have been introduced and evaluated to detect anthrax using cultures, polymerase chain reaction, and immunoassays to address the potential threat of anthrax being used as a bioweapon. The high-potential harm of anthrax in bioterrorism requires sensitive and specific detection systems that are rapid, field-ready, and real-time monitoring. Here, we provide a systematic overview of anthrax detection probes with their potential applications in various ultra-sensitive diagnostic systems.

  15. Trends in Flow-based Biosensing Systems for Pesticide Assessment

    PubMed Central

    Prieto-Simón, Beatriz; Campàs, Mònica; Andreescu, Silvana; Marty, Jean-Louis

    2006-01-01

    This review gives a survey on the state of the art of pesticide detection using flow-based biosensing systems for sample screening. Although immunosensor systems have been proposed as powerful pesticide monitoring tools, this review is mainly focused on enzyme-based biosensors, as they are the most commonly employed when using a flow system. Among the different detection methods able to be integrated into flow-injection analysis (FIA) systems, the electrochemical ones will be treated in more detail, due to their high sensitivity, simple sample pretreatment, easy operational procedures and real-time detection. During the last decade, new trends have been emerging in order to increase the enzyme stability, the sensitivity and selectivity of the measurements, and to lower the detection limits. These approaches are based on (i) the design of novel matrices for enzyme immobilisation, (ii) new manifold configurations of the FIA system, sometimes including miniaturisation or lab-on-chip protocols thanks to micromachining technology, (iii) the use of cholinesterase enzymes either from various commercial sources or genetically modified with the aim of being more sensitive, (iv) the incorporation of other highly specific enzymes, such as organophosphate hydrolase (OPH) or parathion hydrolase (PH) and (v) the combination of different electrochemical methods of detection. This article discusses these novel strategies and their advantages and limitations.

  16. Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching.

    PubMed

    Ertaş, Gökhan; Gülçür, H Ozcan; Osman, Onur; Uçan, Osman N; Tunaci, Mehtap; Dursun, Memduh

    2008-01-01

    A novel fully automated system is introduced to facilitate lesion detection in dynamic contrast-enhanced, magnetic resonance mammography (DCE-MRM). The system extracts breast regions from pre-contrast images using a cellular neural network, generates normalized maximum intensity-time ratio (nMITR) maps and performs 3D template matching with three layers of 12x12 cells to detect lesions. A breast is considered to be properly segmented when relative overlap >0.85 and misclassification rate <0.10. Sensitivity, false-positive rate per slice and per lesion are used to assess detection performance. The system was tested with a dataset of 2064 breast MR images (344slicesx6 acquisitions over time) from 19 women containing 39 marked lesions. Ninety-seven percent of the breasts were segmented properly and all the lesions were detected correctly (detection sensitivity=100%), however, there were some false-positive detections (31%/lesion, 10%/slice).

  17. Automatic multimodal detection for long-term seizure documentation in epilepsy.

    PubMed

    Fürbass, F; Kampusch, S; Kaniusas, E; Koren, J; Pirker, S; Hopfengärtner, R; Stefan, H; Kluge, T; Baumgartner, C

    2017-08-01

    This study investigated sensitivity and false detection rate of a multimodal automatic seizure detection algorithm and the applicability to reduced electrode montages for long-term seizure documentation in epilepsy patients. An automatic seizure detection algorithm based on EEG, EMG, and ECG signals was developed. EEG/ECG recordings of 92 patients from two epilepsy monitoring units including 494 seizures were used to assess detection performance. EMG data were extracted by bandpass filtering of EEG signals. Sensitivity and false detection rate were evaluated for each signal modality and for reduced electrode montages. All focal seizures evolving to bilateral tonic-clonic (BTCS, n=50) and 89% of focal seizures (FS, n=139) were detected. Average sensitivity in temporal lobe epilepsy (TLE) patients was 94% and 74% in extratemporal lobe epilepsy (XTLE) patients. Overall detection sensitivity was 86%. Average false detection rate was 12.8 false detections in 24h (FD/24h) for TLE and 22 FD/24h in XTLE patients. Utilization of 8 frontal and temporal electrodes reduced average sensitivity from 86% to 81%. Our automatic multimodal seizure detection algorithm shows high sensitivity with full and reduced electrode montages. Evaluation of different signal modalities and electrode montages paces the way for semi-automatic seizure documentation systems. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Assessing the mandatory bovine abortion notification system in France using unilist capture-recapture approach.

    PubMed

    Bronner, Anne; Hénaux, Viviane; Vergne, Timothée; Vinard, Jean-Luc; Morignat, Eric; Hendrikx, Pascal; Calavas, Didier; Gay, Emilie

    2013-01-01

    The mandatory bovine abortion notification system in France aims to detect as soon as possible any resurgence of bovine brucellosis. However, under-reporting seems to be a major limitation of this system. We used a unilist capture-recapture approach to assess the sensitivity, i.e. the proportion of farmers who reported at least one abortion among those who detected such events, and representativeness of the system during 2006-2011. We implemented a zero-inflated Poisson model to estimate the proportion of farmers who detected at least one abortion, and among them, the proportion of farmers not reporting. We also applied a hurdle model to evaluate the effect of factors influencing the notification process. We found that the overall surveillance sensitivity was about 34%, and was higher in beef than dairy cattle farms. The observed increase in the proportion of notifying farmers from 2007 to 2009 resulted from an increase in the surveillance sensitivity in 2007/2008 and an increase in the proportion of farmers who detected at least one abortion in 2008/2009. These patterns suggest a raise in farmers' awareness in 2007/2008 when the Bluetongue Virus (BTV) was detected in France, followed by an increase in the number of abortions in 2008/2009 as BTV spread across the country. Our study indicated a lack of sensitivity of the mandatory bovine abortion notification system, raising concerns about the ability to detect brucellosis outbreaks early. With the increasing need to survey the zoonotic Rift Valley Fever and Q fever diseases that may also cause bovine abortions, our approach is of primary interest for animal health stakeholders to develop information programs to increase abortion notifications. Our framework combining hurdle and ZIP models may also be applied to estimate the completeness of other clinical surveillance systems.

  19. Assessing the Mandatory Bovine Abortion Notification System in France Using Unilist Capture-Recapture Approach

    PubMed Central

    Bronner, Anne; Hénaux, Viviane; Vergne, Timothée; Vinard, Jean-Luc; Morignat, Eric; Hendrikx, Pascal; Calavas, Didier; Gay, Emilie

    2013-01-01

    The mandatory bovine abortion notification system in France aims to detect as soon as possible any resurgence of bovine brucellosis. However, under-reporting seems to be a major limitation of this system. We used a unilist capture-recapture approach to assess the sensitivity, i.e. the proportion of farmers who reported at least one abortion among those who detected such events, and representativeness of the system during 2006–2011. We implemented a zero-inflated Poisson model to estimate the proportion of farmers who detected at least one abortion, and among them, the proportion of farmers not reporting. We also applied a hurdle model to evaluate the effect of factors influencing the notification process. We found that the overall surveillance sensitivity was about 34%, and was higher in beef than dairy cattle farms. The observed increase in the proportion of notifying farmers from 2007 to 2009 resulted from an increase in the surveillance sensitivity in 2007/2008 and an increase in the proportion of farmers who detected at least one abortion in 2008/2009. These patterns suggest a raise in farmers’ awareness in 2007/2008 when the Bluetongue Virus (BTV) was detected in France, followed by an increase in the number of abortions in 2008/2009 as BTV spread across the country. Our study indicated a lack of sensitivity of the mandatory bovine abortion notification system, raising concerns about the ability to detect brucellosis outbreaks early. With the increasing need to survey the zoonotic Rift Valley Fever and Q fever diseases that may also cause bovine abortions, our approach is of primary interest for animal health stakeholders to develop information programs to increase abortion notifications. Our framework combining hurdle and ZIP models may also be applied to estimate the completeness of other clinical surveillance systems. PMID:23691004

  20. CMOS-MEMS Chemiresistive and Chemicapacitive Chemical Sensor System

    NASA Astrophysics Data System (ADS)

    Lazarus, Nathan S.

    Integrating chemical sensors with testing electronics is a powerful technique with the potential to lower power and cost and allow for lower system limits of detection. This thesis explores the possibility of creating an integrated sensor system intended to be embedded within respirator cartridges to notify the user that hazardous chemicals will soon leak into the face mask. For a chemical sensor designer, this application is particularly challenging due to the need for a very sensitive and cheap sensor that will be exposed to widely varying environmental conditions during use. An octanethiol-coated gold nanoparticle chemiresistor to detect industrial solvents is developed, focusing on characterizing the environmental stability and limits of detection of the sensor. Since the chemiresistor was found to be highly sensitive to water vapor, a series of highly sensitive humidity sensor topologies were developed, with sensitivities several times previous integrated capacitive humidity sensors achieved. Circuit techniques were then explored to reduce the humidity sensor limits of detection, including the analysis of noise, charge injection, jitter and clock feedthrough in a charge-based capacitance measurement (CBCM) circuit and the design of a low noise Colpitts LC oscillator. The characterization of high resistance gold nanoclusters for capacitive chemical sensing was also performed. In the final section, a preconcentrator, a heater element intended to release a brief concentrated pulse of analate, was developed and tested for the purposes of lowering the system limit of detection.

  1. A fast and high-sensitive dual-wavelength diffuse optical tomography system using digital lock-in photon-counting technique

    NASA Astrophysics Data System (ADS)

    Chen, Weiting; Yi, Xi; Zhao, Huijuan; Gao, Feng

    2014-09-01

    We presented a novel dual-wavelength diffuse optical imaging system which can perform 2-D or 3-D imaging fast and high-sensitively for monitoring the dynamic change of optical parameters. A newly proposed lock-in photon-counting detection method was adopted for week optical signal collection, which brought in excellent property as well as simplified geometry. Fundamental principles of the lock-in photon-counting detection were elaborately demonstrated, and the feasibility was strictly verified by the linearity experiment. Systemic performance of the prototype set up was experimentally accessed, including stray light rejection and inherent interference. Results showed that the system possessed superior anti-interference capability (under 0.58% in darkroom) compared with traditional photon-counting detection, and the crosstalk between two wavelengths was lower than 2.28%. For comprehensive assessment, 2-D phantom experiments towards relatively large dimension model (diameter of 4cm) were conducted. Different absorption targets were imaged to investigate detection sensitivity. Reconstruction image under all conditions was exciting, with a desirable SNR. Study on image quality v.s. integration time put forward a new method for accessing higher SNR with the sacrifice of measuring speed. In summary, the newly developed system showed great potential in promoting detection sensitivity as well as measuring speed. This will make substantial progress in dynamically tracking the blood concentration distribution in many clinical areas, such as small animal disease modeling, human brain activity research and thick tissues (for example, breast) diagnosis.

  2. Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Cheng, Rui; Wang, Xiang; Xue, Teng; Liu, Yuan; Nel, Andre; Huang, Yu; Duan, Xiangfeng

    2013-07-01

    Real-time monitoring of nitric oxide concentrations is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems and immune responses. Here we report a new design of nitric oxide sensors based on hemin-functionalized graphene field-effect transistors. With its single atom thickness and the highest carrier mobility among all materials, graphene holds the promise for unprecedented sensitivity for molecular sensing. The non-covalent functionalization through π-π stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with a sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems.

  3. Enhancing Time-Series Detection Algorithms for Automated Biosurveillance

    PubMed Central

    Burkom, Howard; Xing, Jian; English, Roseanne; Bloom, Steven; Cox, Kenneth; Pavlin, Julie A.

    2009-01-01

    BioSense is a US national system that uses data from health information systems for automated disease surveillance. We studied 4 time-series algorithm modifications designed to improve sensitivity for detecting artificially added data. To test these modified algorithms, we used reports of daily syndrome visits from 308 Department of Defense (DoD) facilities and 340 hospital emergency departments (EDs). At a constant alert rate of 1%, sensitivity was improved for both datasets by using a minimum standard deviation (SD) of 1.0, a 14–28 day baseline duration for calculating mean and SD, and an adjustment for total clinic visits as a surrogate denominator. Stratifying baseline days into weekdays versus weekends to account for day-of-week effects increased sensitivity for the DoD data but not for the ED data. These enhanced methods may increase sensitivity without increasing the alert rate and may improve the ability to detect outbreaks by using automated surveillance system data. PMID:19331728

  4. Sensitivity of the ViroSeq HIV-1 Genotyping System for Detection of the K103N Resistance Mutation in HIV-1 Subtypes A, C, and D

    PubMed Central

    Church, Jessica D.; Jones, Dana; Flys, Tamara; Hoover, Donald; Marlowe, Natalia; Chen, Shu; Shi, Chanjuan; Eshleman, James R.; Guay, Laura A.; Jackson, J. Brooks; Kumwenda, Newton; Taha, Taha E.; Eshleman, Susan H.

    2006-01-01

    The US Food and Drug Administration-cleared ViroSeq HIV-1 Genotyping System (ViroSeq) and other population sequencing-based human immunodeficiency virus type 1 (HIV-1) genotyping methods detect antiretroviral drug resistance mutations present in the major viral population of a test sample. These assays also detect some mutations in viral variants that are present as mixtures. We compared detection of the K103N nevirapine resistance mutation using ViroSeq and a sensitive, quantitative point mutation assay, LigAmp. The LigAmp assay measured the percentage of K103N-containing variants in the viral population (percentage of K103N). We analyzed 305 samples with HIV-1 subtypes A, C, and D collected from African women after nevirapine administration. ViroSeq detected K103N in 100% of samples with >20% K103N, 77.8% of samples with 10 to 20% K103N, 71.4% of samples with 5 to 10% K103N, and 16.9% of samples with 1 to 5% K103N. The sensitivity of ViroSeq for detection of K103N was similar for subtypes A, C, and D. These data indicate that the ViroSeq system reliably detects the K103N mutation at levels above 20% and frequently detects the mutation at lower levels. Further studies are needed to compare the sensitivity of different assays for detection of HIV-1 drug resistance mutations and to determine the clinical relevance of HIV-1 minority variants. PMID:16931582

  5. Short non-coding RNAs as bacteria species identifiers detected by surface plasmon resonance enhanced common path interferometry

    NASA Astrophysics Data System (ADS)

    Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Khattatov, Boris; Plam, Mikhail; Gardner, Patrick; Hall, John

    2008-04-01

    Small non-coding RNA sequences have recently been discovered as unique identifiers of certain bacterial species, raising the possibility that they can be used as highly specific Biowarfare Agent detection markers in automated field deployable integrated detection systems. Because they are present in high abundance they could allow genomic based bacterial species identification without the need for pre-assay amplification. Further, a direct detection method would obviate the need for chemical labeling, enabling a rapid, efficient, high sensitivity mechanism for bacterial detection. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a potentially market disruptive, high sensitivity dual technology that allows real-time direct multiplex measurement of biomolecule interactions, including small molecules, nucleic acids, proteins, and microbes. SPR-CPI measures differences in phase shift of reflected S and P polarized light under Total Internal Reflection (TIR) conditions at a surface, caused by changes in refractive index induced by biomolecular interactions within the evanescent field at the TIR interface. The measurement is performed on a microarray of discrete 2-dimensional areas functionalized with biomolecule capture reagents, allowing simultaneous measurement of up to 100 separate analytes. The optical beam encompasses the entire microarray, allowing a solid state detector system with no scanning requirement. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes from each microarray feature, and is automatically processed and displayed graphically or delivered to a decision making algorithm, enabling a fully automatic detection system capable of rapid detection and quantification of small nucleic acids at extremely sensitive levels. Proof-of-concept experiments on model systems and cell culture samples have demonstrated utility of the system, and efforts are in progress for full development and deployment of the device. The technology has broad applicability as a universal detection platform for BWA detection, medical diagnostics, and drug discovery research, and represents a new class of instrumentation as a rapid, high sensitivity, label-free methodology.

  6. 40 CFR 63.7833 - How do I demonstrate continuous compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... baghouse equipped with a bag leak detection system, operating and maintaining each bag leak detection... requirements. If you increase or decrease the sensitivity of the bag leak detection system beyond the limits... event of a bag leak detection system alarm or when the hourly average opacity exceeded 5 percent, the...

  7. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system.

    PubMed

    Wang, Dian-Bing; Tian, Bo; Zhang, Zhi-Ping; Deng, Jiao-Yu; Cui, Zong-Qiang; Yang, Rui-Fu; Wang, Xu-Ying; Wei, Hong-Ping; Zhang, Xian-En

    2013-04-15

    There is an urgent need for convenient, sensitive, and specific methods to detect the spores of Bacillus anthracis, the causative agent of anthrax, because of the bioterrorism threat posed by this bacterium. In this study, we firstly develop a super-paramagnetic lateral-flow immunological detection system for B. anthracis spores. This system involves the use of a portable magnetic assay reader, super-paramagnetic iron oxide particles, lateral-flow strips and two different monoclonal antibodies directed against B. anthracis spores. This detection system specifically recognises as few as 400 pure B. anthracis spores in 30 min. This system has a linear range of 4×10³-10⁶ CFU ml⁻¹ and reproducible detection limits of 200 spores mg⁻¹ milk powder and 130 spores mg⁻¹ soil for simulated samples. In addition, this approach shows no obvious cross-reaction with other related Bacillus spores, even at high concentrations, and has no significant dependence on the duration of the storage of the immunological strips. Therefore, this super-paramagnetic lateral-flow immunological detection system is a promising tool for the rapid and sensitive detection of Bacillus anthracis spores under field conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Evaluation of Epidemic Intelligence Systems Integrated in the Early Alerting and Reporting Project for the Detection of A/H5N1 Influenza Events

    PubMed Central

    Barboza, Philippe; Vaillant, Laetitia; Mawudeku, Abla; Nelson, Noele P.; Hartley, David M.; Madoff, Lawrence C.; Linge, Jens P.; Collier, Nigel; Brownstein, John S.; Yangarber, Roman; Astagneau, Pascal; on behalf of the Early Alerting, Reporting Project of the Global Health Security Initiative

    2013-01-01

    The objective of Web-based expert epidemic intelligence systems is to detect health threats. The Global Health Security Initiative (GHSI) Early Alerting and Reporting (EAR) project was launched to assess the feasibility and opportunity for pooling epidemic intelligence data from seven expert systems. EAR participants completed a qualitative survey to document epidemic intelligence strategies and to assess perceptions regarding the systems performance. Timeliness and sensitivity were rated highly illustrating the value of the systems for epidemic intelligence. Weaknesses identified included representativeness, completeness and flexibility. These findings were corroborated by the quantitative analysis performed on signals potentially related to influenza A/H5N1 events occurring in March 2010. For the six systems for which this information was available, the detection rate ranged from 31% to 38%, and increased to 72% when considering the virtual combined system. The effective positive predictive values ranged from 3% to 24% and F1-scores ranged from 6% to 27%. System sensitivity ranged from 38% to 72%. An average difference of 23% was observed between the sensitivities calculated for human cases and epizootics, underlining the difficulties in developing an efficient algorithm for a single pathology. However, the sensitivity increased to 93% when the virtual combined system was considered, clearly illustrating complementarities between individual systems. The average delay between the detection of A/H5N1 events by the systems and their official reporting by WHO or OIE was 10.2 days (95% CI: 6.7–13.8). This work illustrates the diversity in implemented epidemic intelligence activities, differences in system's designs, and the potential added values and opportunities for synergy between systems, between users and between systems and users. PMID:23472077

  9. Evaluation of epidemic intelligence systems integrated in the early alerting and reporting project for the detection of A/H5N1 influenza events.

    PubMed

    Barboza, Philippe; Vaillant, Laetitia; Mawudeku, Abla; Nelson, Noele P; Hartley, David M; Madoff, Lawrence C; Linge, Jens P; Collier, Nigel; Brownstein, John S; Yangarber, Roman; Astagneau, Pascal

    2013-01-01

    The objective of Web-based expert epidemic intelligence systems is to detect health threats. The Global Health Security Initiative (GHSI) Early Alerting and Reporting (EAR) project was launched to assess the feasibility and opportunity for pooling epidemic intelligence data from seven expert systems. EAR participants completed a qualitative survey to document epidemic intelligence strategies and to assess perceptions regarding the systems performance. Timeliness and sensitivity were rated highly illustrating the value of the systems for epidemic intelligence. Weaknesses identified included representativeness, completeness and flexibility. These findings were corroborated by the quantitative analysis performed on signals potentially related to influenza A/H5N1 events occurring in March 2010. For the six systems for which this information was available, the detection rate ranged from 31% to 38%, and increased to 72% when considering the virtual combined system. The effective positive predictive values ranged from 3% to 24% and F1-scores ranged from 6% to 27%. System sensitivity ranged from 38% to 72%. An average difference of 23% was observed between the sensitivities calculated for human cases and epizootics, underlining the difficulties in developing an efficient algorithm for a single pathology. However, the sensitivity increased to 93% when the virtual combined system was considered, clearly illustrating complementarities between individual systems. The average delay between the detection of A/H5N1 events by the systems and their official reporting by WHO or OIE was 10.2 days (95% CI: 6.7-13.8). This work illustrates the diversity in implemented epidemic intelligence activities, differences in system's designs, and the potential added values and opportunities for synergy between systems, between users and between systems and users.

  10. A highly sensitive peptide substrate for detecting two Aß-degrading enzymes: neprilysin and insulin-degrading enzyme.

    PubMed

    Chen, Po-Ting; Liao, Tai-Yan; Hu, Chaur-Jong; Wu, Shu-Ting; Wang, Steven S-S; Chen, Rita P-Y

    2010-06-30

    Neprilysin has been singled out as the most promising candidate for use in the degradation of Abeta as a therapy for Alzheimer's disease. In this study, a quenched fluorogenic peptide substrate containing the first seven residues of the Abeta peptide plus a C-terminal Cysteine residue was synthesized to detect neprilysin activity. A fluorophore was attached to the C-terminal Cysteine and its fluorescence was quenched by a quencher linked to the N-terminus of the peptide. When this peptide substrate was degraded by an endopeptidase, fluorescence was produced and proved to be a sensitive detection system for endopeptidase activity. Our results showed that this assay system was extremely sensitive to neprilysin and insulin-degrading enzyme, but insensitive, or much less sensitive, to other Abeta-degrading enzymes. As low as 0.1 nM of neprilysin and 0.2 nM of insulin-degrading enzyme can be detected. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Highly sensitive protein detection by biospecific AFM-based fishing with pulsed electrical stimulation.

    PubMed

    Pleshakova, Tatyana O; Malsagova, Kristina A; Kaysheva, Anna L; Kopylov, Arthur T; Tatur, Vadim Yu; Ziborov, Vadim S; Kanashenko, Sergey L; Galiullin, Rafael A; Ivanov, Yuri D

    2017-08-01

    We report here the highly sensitive detection of protein in solution at concentrations from 10 -15 to 10 -18 m using the combination of atomic force microscopy (AFM) and mass spectrometry. Biospecific detection of biotinylated bovine serum albumin was carried out by fishing out the protein onto the surface of AFM chips with immobilized avidin, which determined the specificity of the analysis. Electrical stimulation was applied to enhance the fishing efficiency. A high sensitivity of detection was achieved by application of nanosecond electric pulses to highly oriented pyrolytic graphite placed under the AFM chip. A peristaltic pump-based flow system, which is widely used in routine bioanalytical assays, was employed throughout the analysis. These results hold promise for the development of highly sensitive protein detection methods using nanosensor devices.

  12. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.

    PubMed

    Le, Binh Huy; Seo, Young Jun

    2018-01-25

    We have developed a gold nanoparticle (AuNP)-based CTG repeat probing system displaying high quenching capability and combined it with isothermal amplification for the detection of miRNA 146a. This method of using a AuNP-based CTG repeat probing system with isothermal amplification allowed the highly sensitive (14 aM) and selective detection of miRNA 146a. A AuNP-based CTG repeat probing system having a hairpin structure and a dT F fluorophore exhibited highly efficient quenching because the CTG repeat-based stable hairpin structure imposed a close distance between the AuNP and the dT F residue. A small amount of miRNA 146a induced multiple copies of the CAG repeat sequence during rolling circle amplification; the AuNP-based CTG repeat probing system then bound to the complementary multiple-copy CAG repeat sequence, thereby inducing a structural change from a hairpin to a linear structure with amplified fluorescence. This AuNP-based CTG probing system combined with isothermal amplification could also discriminate target miRNA 146a from one- and two-base-mismatched miRNAs (ORN 1 and ORN 2, respectively). This simple AuNP-based CTG probing system, combined with isothermal amplification to induce a highly sensitive change in fluorescence, allows the detection of miRNA 146a with high sensitivity (14 aM) and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evaluation of clinical sensitivity and specificity of hepatitis B virus (HBV), hepatitis C virus, and human immunodeficiency Virus-1 by cobas MPX: Detection of occult HBV infection in an HBV-endemic area.

    PubMed

    Ha, Jihye; Park, Younhee; Kim, Hyon-Suk

    2017-11-01

    Transfusion-transmitted infectious diseases remain a major concern for blood safety, particularly with hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV). Nucleic acid testing (NAT) in donor screening shortens the serologically negative window period and reduces virus transmission. The cobas MPX (Roche Molecular Systems, Inc., Branchburg, New Jersey) is a recently developed multiplex qualitative PCR system that enables the simultaneous detection of HBV, HCV, and HIV with improved sensitivity and throughput using cobas 6800 and 8800 instruments. The aim of this study was to conduct an evaluation of the clinical sensitivity and specificity of cobas MPX detection of HBV, HCV, and HIV in clinical specimens. Among samples referred for HBV, HCV, and HIV-1 quantification at Severance Hospital, Yonsei University College of Medicine, positive samples were selected to evaluate sensitivity. A total of 843 samples was tested using both cobas MPX and COBAS AmpliPrep/COBAS TaqMan Tests for HBV, HCV, and HIV-1 using the cobas 8800 system and a COBAS TaqMan 96 analyzer, respectively. Samples that showed discrepancies were confirmed by nested PCR. The cobas MPX achieved excellent sensitivity and specificity for the detection of HBV, HCV, and HIV-1 in clinical samples. We found that the lower limit of detection (LOD) of blood screening by NAT actually improves clinical sensitivity, and occult HBV infection prevalence among healthy employees of the hospital was rather high. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  15. Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery

    PubMed Central

    Jermyn, Michael; Gosselin, Yoann; Valdes, Pablo A.; Sibai, Mira; Kolste, Kolbein; Mercier, Jeanne; Angulo, Leticia; Roberts, David W.; Paulsen, Keith D.; Petrecca, Kevin; Daigle, Olivier; Wilson, Brian C.; Leblond, Frederic

    2015-01-01

    In glioma surgery, Protoporphyrin IX (PpIX) fluorescence may identify residual tumor that could be resected while minimizing damage to normal brain. We demonstrate that improved sensitivity for wide-field spectroscopic fluorescence imaging is achieved with minimal disruption to the neurosurgical workflow using an electron-multiplying charge-coupled device (EMCCD) relative to a state-of-the-art CMOS system. In phantom experiments the EMCCD system can detect at least two orders-of-magnitude lower PpIX. Ex vivo tissue imaging on a rat glioma model demonstrates improved fluorescence contrast compared with neurosurgical fluorescence microscope technology, and the fluorescence detection is confirmed with measurements from a clinically-validated spectroscopic probe. Greater PpIX sensitivity in wide-field fluorescence imaging may improve the residual tumor detection during surgery with consequent impact on survival. PMID:26713218

  16. 46 CFR 111.05-25 - Ungrounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-25 Ungrounded systems. Each ungrounded system must be provided with a suitably sensitive ground detection system located at the... 46 Shipping 4 2010-10-01 2010-10-01 false Ungrounded systems. 111.05-25 Section 111.05-25 Shipping...

  17. Reflective measurement of water concentration using millimeter wave illumination

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren

    2011-04-01

    THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.

  18. Methods and systems for remote detection of gases

    DOEpatents

    Johnson, Timothy J.

    2007-11-27

    Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.

  19. Methods and systems for remote detection of gases

    DOEpatents

    Johnson, Timothy J

    2012-09-18

    Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.

  20. N-Hydroxysuccinimide as an effective chemiluminescence coreactant for highly selective and sensitive detection.

    PubMed

    Saqib, Muhammad; Li, Suping; Gao, Wenyue; Majeed, Saadat; Qi, Liming; Liu, Zhongyuan; Xu, Guobao

    2016-12-01

    The development of novel coreactants for chemiluminescence is very important to improve performance and widen its applications without using any other catalyst. N-Hydroxysuccinimide (NHS), a highly popular amine-reactive, activating, or protecting reagent in biochemical applications and organic synthesis, has been explored as an efficient and stable chemiluminescence coreactant for the first time. The chemiluminescence intensity of the newly developed luminol-NHS system is about 22 times higher than that of the traditional luminol-H 2 O 2 system. Chemiluminescence of this system is dramatically enhanced by Co 2+ . This new chemiluminescence system is then applied for the highly selective and ultrasensitive detection of Co 2+ with limit of detection (0.01 nM) better than those of several conventional analytical methods. This system also enables the efficient detection of luminol (LOD = 7 pM) and NHS (LOD = 3.0 μM) with excellent sensitivity. This chemiluminescence method was then also utilized to detect Co 2+ in tap water and blue silica gel with excellent recoveries in the range 99.20-103.07 %. This novel chemiluminescence system has several advantages, including simple, cost-effective, highly sensitive, selective, and wide linear range. We expect that this chemiluminescence system will be a promising candidate for chemical and biological sensing. Graphical Abstract Comparison of CL peak intensities of classical luminol-H 2 O 2 CL system and newly developed luminol-NHS CL system.

  1. High-performance computer aided detection system for polyp detection in CT colonography with fluid and fecal tagging

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Wang, Shijun; Kabadi, Suraj; Summers, Ronald M.

    2009-02-01

    CT colonography (CTC) is a feasible and minimally invasive method for the detection of colorectal polyps and cancer screening. Computer-aided detection (CAD) of polyps has improved consistency and sensitivity of virtual colonoscopy interpretation and reduced interpretation burden. A CAD system typically consists of four stages: (1) image preprocessing including colon segmentation; (2) initial detection generation; (3) feature selection; and (4) detection classification. In our experience, three existing problems limit the performance of our current CAD system. First, highdensity orally administered contrast agents in fecal-tagging CTC have scatter effects on neighboring tissues. The scattering manifests itself as an artificial elevation in the observed CT attenuation values of the neighboring tissues. This pseudo-enhancement phenomenon presents a problem for the application of computer-aided polyp detection, especially when polyps are submerged in the contrast agents. Second, general kernel approach for surface curvature computation in the second stage of our CAD system could yield erroneous results for thin structures such as small (6-9 mm) polyps and for touching structures such as polyps that lie on haustral folds. Those erroneous curvatures will reduce the sensitivity of polyp detection. The third problem is that more than 150 features are selected from each polyp candidate in the third stage of our CAD system. These high dimensional features make it difficult to learn a good decision boundary for detection classification and reduce the accuracy of predictions. Therefore, an improved CAD system for polyp detection in CTC data is proposed by introducing three new techniques. First, a scale-based scatter correction algorithm is applied to reduce pseudo-enhancement effects in the image pre-processing stage. Second, a cubic spline interpolation method is utilized to accurately estimate curvatures for initial detection generation. Third, a new dimensionality reduction classifier, diffusion map and local linear embedding (DMLLE), is developed for classification and false positives (FP) reduction. Performance of the improved CAD system is evaluated and compared with our existing CAD system (without applying those techniques) using CT scans of 1186 patients. These scans are divided into a training set and a test set. The sensitivity of the improved CAD system increased 18% on training data at a rate of 5 FPs per patient and 15% on test data at a rate of 5 FPs per patient. Our results indicated that the improved CAD system achieved significantly better performance on medium-sized colonic adenomas with higher sensitivity and lower FP rate in CTC.

  2. Amylin Detection with a Miniature Optical-Fiber Based Sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhaowen; Ann, Matsko; Hughes, Adam; Reeves, Mark

    We present results of a biosensor based on shifts in the localized surface plasmon resonance of gold nanoparticles self-assembled on the end of an optical fiber. This system allows for detection of protein expression in low sensing volumes and for scanning in cell cultures and tissue samples. Positive and negative controls were done using biotin/avidin and the BSA/Anti-BSA system. These demonstrate that detection is specific and sensitive to nanomolar levels. Sensing of amylin, an important protein for pancreatic function, was performed with polyclonal and monoclonal antibodies. The measured data demonstrates the difference in sensitivity to the two types of antibodies, and titration experiments establish the sensitivity of the sensor. Further experiments demonstrate that the sensor can be regenerated and then reused.

  3. Combating Terrorism: 2005 TSWG Review

    DTIC Science & Technology

    2005-01-01

    will have a greater capacity and will be more compact than existing kits. Advanced Hybrid Chemical Detection System Existing sensor systems to...detect chemical agents are either very expensive or provide limited sensitivity and response. Avir, LLC designed and built a hybrid detection system for... hybrid system at an equally low cost. The system has undergone live-agent testing and environmental testing. Extended field-testing in select buildings

  4. Lens-free imaging of magnetic particles in DNA assays.

    PubMed

    Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen

    2013-11-07

    We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.

  5. High contrast sensitivity for visually guided flight control in bumblebees.

    PubMed

    Chakravarthi, Aravin; Kelber, Almut; Baird, Emily; Dacke, Marie

    2017-12-01

    Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg -1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.

  6. Advances in developing rapid, reliable and portable detection systems for alcohol.

    PubMed

    Thungon, Phurpa Dema; Kakoti, Ankana; Ngashangva, Lightson; Goswami, Pranab

    2017-11-15

    Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay

    NASA Astrophysics Data System (ADS)

    He, Qinghua; Li, Dongmei; He, Yonghong; Guan, Tian; Zhang, Yilong; Shen, Zhiyuan; Chen, Xuejing; Liu, Siyu; Lu, Bangrong; Ji, Yanhong

    2017-09-01

    A laser-induced breakdown spectroscopy and fluorescence spectroscopy-coupled optical system is reported to demodulate digitally encoded suspension array in fluoroimmunoassay. It takes advantage of the plasma emissions of assembled elemental materials to digitally decode the suspension array, providing a more stable and accurate recognition to target biomolecules. By separating the decoding procedure of suspension array and adsorption quantity calculation of biomolecules into two independent channels, the cross talk between decoding and label signals in traditional methods had been successfully avoided, which promoted the accuracy of both processes and realized more sensitive quantitative detection of target biomolecules. We carried a multiplexed detection of several types of anti-IgG to verify the quantitative analysis performance of the system. A limit of detection of 1.48×10-10 M was achieved, demonstrating the detection sensitivity of the optical demodulation system.

  8. A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular DNA by the application of a droplet digital polymerase chain reaction amplification system.

    PubMed

    Mu, Di; Yan, Liang; Tang, Hui; Liao, Yong

    2015-10-01

    To develop a sensitive and accurate assay system for the quantification of covalently closed circular HBV DNA (cccDNA) for future clinical monitoring of cccDNA fluctuation during antiviral therapy in the liver of infected patients. A droplet digital PCR (ddPCR)-based assay system detected template DNA input at the single copy level (or ~10(-5) pg of plasmid HBV DNA) by using serially diluted plasmid HBV DNA samples. Compared with the conventional quantitative PCR assay in the detection of cccDNA, which required at least 50 ng of template DNA input, a parallel experiment applying a ddPCR system demonstrates that the lowest detection limit of cccDNA from HepG2.215 cellular DNA samples is around 1 ng, which is equivalent to 0.54 ± 0.94 copies of cccDNA. In addition, we demonstrated that the addition of cccDNA-safe exonuclease and utilization of cccDNA-specific primers in the ddPCR assay system significantly improved the detection accuracy of HBV cccDNA from HepG2.215 cellular DNA samples. The ddPCR-based cccDNA detection system is a sensitive and accurate assay for the quantification of cccDNA in HBV-transfected HepG2.215 cellular DNA samples and may represent an important method for future application in monitoring cccDNA fluctuation during antiviral therapy.

  9. Radionuclide Methods and Instrumentation for Breast Cancer Detection and Diagnosis

    PubMed Central

    Surti, Suleman

    2013-01-01

    Breast cancer mammography is a well-acknowledged technique for patient screening due to its high sensitivity. However, in addition to its low specificity the sensitivity of mammography is limited when imaging patients with dense breasts. Radionuclide imaging techniques, such as coincidence photon-based positron emission tomography and single photon emission computed tomography or scintimammography, can play a role in assisting screening of such patients. Radionuclide techniques can also be useful in assessing treatment response of patients with breast cancer to therapy, and staging of patients to diagnose the disease extent. However, the performance of these imaging modalities is generally limited because of the poor spatial resolution and sensitivity of the commercially available multipurpose imaging systems. Here, we describe some of the dedicated imaging systems (positron emission mammography [PEM] and breast-specific gamma imaging [BSGI]) that have been developed both commercially and in research laboratories for radionuclide imaging of breast cancer. Clinical studies with dedicated PEM scanners show improved sensitivity to detecting cancer in patients when using PEM in conjunction with additional imaging modalities, such as magnetic resonance imaging or mammography or both, as well as improved disease staging that can have an effect on surgical planning. High-resolution BSGI systems are more widely available commercially and several clinical studies have shown very high sensitivity and specificity in detecting cancer in high-risk patients. Further development of dedicated PEM and BSGI systems is ongoing, promising further expansion of radionuclide imaging techniques in the realm of breast cancer detection and treatment. PMID:23725989

  10. Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device.

    PubMed

    You, David J; Geshell, Kenneth J; Yoon, Jeong-Yeol

    2011-10-15

    Direct and sensitive detection of foodborne pathogens from fresh produce samples was accomplished using a handheld lab-on-a-chip device, requiring little to no sample processing and enrichment steps for a near-real-time detection and truly field-deployable device. The detection of Escherichia coli K12 and O157:H7 in iceberg lettuce was achieved utilizing optimized Mie light scatter parameters with a latex particle immunoagglutination assay. The system exhibited good sensitivity, with a limit of detection of 10 CFU mL(-1) and an assay time of <6 min. Minimal pretreatment with no detrimental effects on assay sensitivity and reproducibility was accomplished with a simple and cost-effective KimWipes filter and disposable syringe. Mie simulations were used to determine the optimal parameters (particle size d, wavelength λ, and scatter angle θ) for the assay that maximize light scatter intensity of agglutinated latex microparticles and minimize light scatter intensity of the tissue fragments of iceberg lettuce, which were experimentally validated. This introduces a powerful method for detecting foodborne pathogens in fresh produce and other potential sample matrices. The integration of a multi-channel microfluidic chip allowed for differential detection of the agglutinated particles in the presence of the antigen, revealing a true field-deployable detection system with decreased assay time and improved robustness over comparable benchtop systems. Additionally, two sample preparation methods were evaluated through simulated field studies based on overall sensitivity, protocol complexity, and assay time. Preparation of the plant tissue sample by grinding resulted in a two-fold improvement in scatter intensity over washing, accompanied with a significant increase in assay time: ∼5 min (grinding) versus ∼1 min (washing). Specificity studies demonstrated binding of E. coli O157:H7 EDL933 to only O157:H7 antibody conjugated particles, with no cross-reactivity to K12. This suggests the adaptability of the system for use with a wide variety of pathogens, and the potential to detect in a variety of biological matrices with little to no sample pretreatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A sensitive and innovative detection method for rapid C-reactive proteins analysis based on a micro-fluxgate sensor system

    PubMed Central

    Yang, Zhen; Zhi, Shaotao; Feng, Zhu; Lei, Chong; Zhou, Yong

    2018-01-01

    A sensitive and innovative assay system based on a micro-MEMS-fluxgate sensor and immunomagnetic beads-labels was developed for the rapid analysis of C-reactive proteins (CRP). The fluxgate sensor presented in this study was fabricated through standard micro-electro-mechanical system technology. A multi-loop magnetic core made of Fe-based amorphous ribbon was employed as the sensing element, and 3-D solenoid copper coils were used to control the sensing core. Antibody-conjugated immunomagnetic microbeads were strategically utilized as signal tags to label the CRP via the specific conjugation of CRP to polyclonal CRP antibodies. Separate Au film substrates were applied as immunoplatforms to immobilize CRP-beads labels through classical sandwich assays. Detection and quantification of the CRP at different concentrations were implemented by detecting the stray field of CRP labeled magnetic beads using the newly-developed micro-fluxgate sensor. The resulting system exhibited the required sensitivity, stability, reproducibility, and selectivity. A detection limit as low as 0.002 μg/mL CRP with a linearity range from 0.002 μg/mL to 10 μg/mL was achieved, and this suggested that the proposed biosystem possesses high sensitivity. In addition to the extremely low detection limit, the proposed method can be easily manipulated and possesses a quick response time. The response time of our sensor was less than 5 s, and the entire detection period for CRP analysis can be completed in less than 30 min using the current method. Given the detection performance and other advantages such as miniaturization, excellent stability and specificity, the proposed biosensor can be considered as a potential candidate for the rapid analysis of CRP, especially for point-of-care platforms. PMID:29601593

  12. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor

    NASA Astrophysics Data System (ADS)

    Ha, Na-Reum; Jung, In-Pil; La, Im-Joung; Jung, Ho-Sup; Yoon, Moon-Young

    2017-01-01

    Overuse of antibiotics has caused serious problems, such as appearance of super bacteria, whose accumulation in the human body through the food chain is a concern. Kanamycin is a common antibiotic used to treat diverse infections; however, residual kanamycin can cause many side effects in humans. Thus, development of an ultra-sensitive, precise, and simple detection system for residual kanamycin in food products is urgently needed for food safety. In this study, we identified kanamycin-binding aptamers via a new screening method, and truncated variants were analyzed for optimization of the minimal sequence required for target binding. We found various aptamers with high binding affinity from 34.7 to 669 nanomolar Kdapp values with good specificity against kanamycin. Furthermore, we developed a reduced graphene oxide (RGO)-based fluorescent aptasensor for kanamycin detection. In this system, kanamycin was detected at a concentration as low as 1 pM (582.6 fg/mL). In addition, this method could detect kanamycin accurately in kanamycin-spiked blood serum and milk samples. Consequently, this simple, rapid, and sensitive kanamycin detection system with newly structural and functional analysis aptamer exhibits outstanding detection compared to previous methods and provides a new possibility for point of care testing and food safety.

  13. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect

    PubMed Central

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-01-01

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips. PMID:29883387

  14. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect.

    PubMed

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-05-21

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips.

  15. Simplified HCC-ART score for highly sensitive detection of small-sized and early-stage hepatocellular carcinoma in the widely used Okuda, CLIP, and BCLC staging systems.

    PubMed

    Attallah, Abdelfattah M; Omran, Mohamed M; Attallah, Ahmed A; Abdelrazek, Mohamed A; Farid, Khaled; El-Dosoky, Ibrahim

    2017-04-01

    Small-sized HCC can be effectively cured by surgery with good clinical outcomes. A highly sensitive HCC α-fetoprotein routine test (HCC-ART) for HCC diagnosis as well as a simplied form of the HCC-ART were reported in the British Journal of Cancer. Here, we verified and studied the applicability of the HCC-ART to the detection of early-stage HCC. 341 cirrhotic patients and 318 HCC patients were included in this study. For each, the HCC-ART score was calculated, and then the sensitivity, specificity, and results of an ROC curve analysis were compared between the HCC-ART and AFP when these biomarkers were used to detect small-sized HCC. Different HCC-ART cutoffs were set for the detection of different tumor sizes. The HCC-ART (AUC = 0.871, 70% sensitivity, 97% specificity) and the simplified HCC-ART (AUC = 0.934, 82% sensitivity, 100% specificity) were found to have high predictive power when attempting to separate cirrhotic patients from those with small-sized HCC. The simplified HCC-ART score was superior to AFP for determining stages according to the early Okuda (0.950 AUC, 84% sensitivity, 99% specificity), CLIP (0.945 AUC, 84% sensitivity, 99% specificity), and BCLC (1.000 AUC, 100% sensitivity, 99% specificity) staging systems. The simplified HCC-ART score was more strongly correlated than AFP and other staging systems with HCC tumor size (P < 0.0001; r = 0.8). The HCC-ART is superior to AFP for diagnosing early-stage HCC. Due to its advantages of minimal variability and a wide continuous scale for assessing HCC severity, the simplified HCC-ART has the potential to be more widely used than the original HCC-ART.

  16. A sensitive and stable confocal Fabry-Pérot interferometer for surface ultrasonic vibration detection

    NASA Astrophysics Data System (ADS)

    Ding, Hong-sheng; Tong, Li-ge; Chen, Geng-hua

    2001-08-01

    A new confocal Fabry-Pérot interferometer (CFPI) has been constructed. By using both of the conjugate rays, the sensitivity of the system was doubled. Moreover, the negative feedback control loop of a single-chip microcomputer (MCS-51) was applied to stabilize the working point at an optimum position. The system has been used in detecting the piezoelectric ultrasonic vibration on the surface of an aluminium sample.

  17. Rapid and Sensitive Detection of Norovirus Genomes in Oysters by a Two-Step Isothermal Amplification Assay System Combining Nucleic Acid Sequence-Based Amplification and Reverse Transcription-Loop-Mediated Isothermal Amplification Assays▿

    PubMed Central

    Fukuda, Shinji; Sasaki, Yukie; Seno, Masato

    2008-01-01

    We developed a two-step isothermal amplification assay system, which achieved the detection of norovirus (NoV) genomes in oysters with a sensitivity similar to that of reverse transcription-seminested PCR. The time taken for the amplification of NoV genomes from RNA extracts was shortened to about 3 h. PMID:18456857

  18. An Nd3+-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite

    NASA Astrophysics Data System (ADS)

    Zou, Xianmei; Liu, Yi; Zhu, Xingjun; Chen, Min; Yao, Liming; Feng, Wei; Li, Fuyou

    2015-02-01

    Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in vivo. The excitation laser efficiently reduced the heating effect, compared to the commonly used 980 nm laser for upconversion systems.Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in vivo. The excitation laser efficiently reduced the heating effect, compared to the commonly used 980 nm laser for upconversion systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06407k

  19. Predictive models of lameness in dairy cows achieve high sensitivity and specificity with force measurements in three dimensions.

    PubMed

    Dunthorn, Jason; Dyer, Robert M; Neerchal, Nagaraj K; McHenry, Jonathan S; Rajkondawar, Parimal G; Steingraber, Gary; Tasch, Uri

    2015-11-01

    Lameness remains a significant cause of production losses, a growing welfare concern and may be a greater economic burden than clinical mastitis . A growing need for accurate, continuous automated detection systems continues because US prevalence of lameness is 12.5% while individual herds may experience prevalence's of 27.8-50.8%. To that end the first force-plate system restricted to the vertical dimension identified lame cows with 85% specificity and 52% sensitivity. These results lead to the hypothesis that addition of transverse and longitudinal dimensions could improve sensitivity of lameness detection. To address the hypothesis we upgraded the original force plate system to measure ground reaction forces (GRFs) across three directions. GRFs and locomotion scores were generated from randomly selected cows and logistic regression was used to develop a model that characterised relationships of locomotion scores to the GRFs. This preliminary study showed 76 variables across 3 dimensions produced a model with greater than 90% sensitivity, specificity, and area under the receiver operating curve (AUC). The result was a marked improvement on the 52% sensitivity, and 85% specificity previously observed with the 1 dimensional model or the 45% sensitivities reported with visual observations. Validation of model accuracy continues with the goal to finalise accurate automated methods of lameness detection.

  20. Following butter flavour deterioration with an acoustic wave sensor.

    PubMed

    Gaspar, Cláudia R B S; Gomes, M Teresa S R

    2012-09-15

    Off-flavours develop naturally in butter and the process is accelerated by heat. An acoustic wave sensor was used to detect the aroma compounds evolved from heated butter and the results have shown that registered marked changes were coincident to odour changes detected by sensory analysis. The flavour compounds have also been analysed by GC/MS for identification. The response of the sensor was fully characterized in terms of the sensitivity to each of the identified compounds, and sensitivities of the system SPME/sensor were compared with the sensitivities of the system SPME/GC/MS. It was found that the sensor analytical system was more sensitive to methylketones than to fatty acids. The SPME/GC/MS system also showed the highest sensitivity to 2-heptanone, followed by 2-nonanone, but third place was occupied by undecanone and butanoic acid, to which the sensor showed moderate sensitivity. 2-heptanone was found to be an appropriate model compound to follow odour changes till the 500 h, and the lower sensitivity of the sensor to butanoic acid showed to be a positive characteristic, as saturation was prevented, and other more subtle changes in the flavour could be perceived. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Development of Temperature Sensitive Paints for the Detection of Small Temperature Differences

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M.; Upchurch, Billy T.; Sealey, Bradley S.; Leighty, Bradley D.; Burkett, Cecil G., Jr.; Jalali, Amir

    1997-01-01

    Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions.

  2. Computer aided detection of surgical retained foreign object for prevention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjiiski, Lubomir, E-mail: lhadjisk@umich.edu; Marentis, Theodore C.; Rondon, Lucas

    2015-03-15

    Purpose: Surgical retained foreign objects (RFOs) have significant morbidity and mortality. They are associated with approximately $1.5 × 10{sup 9} annually in preventable medical costs. The detection accuracy of radiographs for RFOs is a mediocre 59%. The authors address the RFO problem with two complementary technologies: a three-dimensional (3D) gossypiboma micro tag, the μTag that improves the visibility of RFOs on radiographs, and a computer aided detection (CAD) system that detects the μTag. It is desirable for the CAD system to operate in a high specificity mode in the operating room (OR) and function as a first reader for themore » surgeon. This allows for fast point of care results and seamless workflow integration. The CAD system can also operate in a high sensitivity mode as a second reader for the radiologist to ensure the highest possible detection accuracy. Methods: The 3D geometry of the μTag produces a similar two dimensional (2D) depiction on radiographs regardless of its orientation in the human body and ensures accurate detection by a radiologist and the CAD. The authors created a data set of 1800 cadaver images with the 3D μTag and other common man-made surgical objects positioned randomly. A total of 1061 cadaver images contained a single μTag and the remaining 739 were without μTag. A radiologist marked the location of the μTag using an in-house developed graphical user interface. The data set was partitioned into three independent subsets: a training set, a validation set, and a test set, consisting of 540, 560, and 700 images, respectively. A CAD system with modules that included preprocessing μTag enhancement, labeling, segmentation, feature analysis, classification, and detection was developed. The CAD system was developed using the training and the validation sets. Results: On the training set, the CAD achieved 81.5% sensitivity with 0.014 false positives (FPs) per image in a high specificity mode for the surgeons in the OR and 96.1% sensitivity with 0.81 FPs per image in a high sensitivity mode for the radiologists. On the independent test set, the CAD achieved 79.5% sensitivity with 0.003 FPs per image in a high specificity mode for the surgeons and 90.2% sensitivity with 0.23 FPs per image in a high sensitivity mode for the radiologists. Conclusions: To the best of the authors’ knowledge, this is the first time a 3D μTag is used to produce a recognizable, substantially similar 2D projection on radiographs regardless of orientation in space. It is the first time a CAD system is used to search for man-made objects over anatomic background. The CAD system for the μTags achieved reasonable performance in both the high specificity and the high sensitivity modes.« less

  3. Instrument performance of a radon measuring system with the alpha-track detection technique.

    PubMed

    Tokonami, S; Zhuo, W; Ryuo, H; Yonehara, H; Yamada, Y; Shimo, M

    2003-01-01

    An instrument performance test has been carried out for a radon measuring system made in Hungary. The system measures radon using the alpha-track detection technique. It consists of three parts: the passive detector, the etching unit and the evaluation unit. A CR-39 detector is used as the radiation detector. Alpha-track reading and data analysis are carried out after chemical etching. The following subjects were examined in the present study: (1) radon sensitivity, (2) performance of etching and evaluation processes and (3) thoron sensitivity. The radon sensitivity of 6.9 x 10(-4) mm(-2) (Bq m(-3) d)(-1) was acceptable for practical application. The thoron sensitivity was estimated to be as low as 3.3 x 10(-5) mm(-2) (Bq m(-3) d)(-1) from the experimental study.

  4. Low cost automated whole smear microscopy screening system for detection of acid fast bacilli.

    PubMed

    Law, Yan Nei; Jian, Hanbin; Lo, Norman W S; Ip, Margaret; Chan, Mia Mei Yuk; Kam, Kai Man; Wu, Xiaohua

    2018-01-01

    In countries with high tuberculosis (TB) burden, there is urgent need for rapid, large-scale screening to detect smear-positive patients. We developed a computer-aided whole smear screening system that focuses in real-time, captures images and provides diagnostic grading, for both bright-field and fluorescence microscopy for detection of acid-fast-bacilli (AFB) from respiratory specimens. To evaluate the performance of dual-mode screening system in AFB diagnostic algorithms on concentrated smears with auramine O (AO) staining, as well as direct smears with AO and Ziehl-Neelsen (ZN) staining, using mycobacterial culture results as gold standard. Adult patient sputum samples requesting for M. tuberculosis cultures were divided into three batches for staining: direct AO-stained, direct ZN-stained and concentrated smears AO-stained. All slides were graded by an experienced microscopist, in parallel with the automated whole smear screening system. Sensitivity and specificity of a TB diagnostic algorithm in using the screening system alone, and in combination with a microscopist, were evaluated. Of 488 direct AO-stained smears, 228 were culture positive. These yielded a sensitivity of 81.6% and specificity of 74.2%. Of 334 direct smears with ZN staining, 142 were culture positive, which gave a sensitivity of 70.4% and specificity of 76.6%. Of 505 concentrated smears with AO staining, 250 were culture positive, giving a sensitivity of 86.4% and specificity of 71.0%. To further improve performance, machine grading was confirmed by manual smear grading when the number of AFBs detected fell within an uncertainty range. These combined results gave significant improvement in specificity (AO-direct:85.4%; ZN-direct:85.4%; AO-concentrated:92.5%) and slight improvement in sensitivity while requiring only limited manual workload. Our system achieved high sensitivity without substantially compromising specificity when compared to culture results. Significant improvement in specificity was obtained when uncertain results were confirmed by manual smear grading. This approach had potential to substantially reduce workload of microscopists in high burden countries.

  5. Artificial-neural-network-based failure detection and isolation

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar; Gharsalli, Imed; Alouani, Ali T.

    1998-03-01

    This paper presents the design of a systematic failure detection and isolation system that uses the concept of failure sensitive variables (FSV) and artificial neural networks (ANN). The proposed approach was applied to tube leak detection in a utility boiler system. Results of the experimental testing are presented in the paper.

  6. Detection of aflatoxin B₁ with immunochromatographic test strips: Enhanced signal sensitivity using gold nanoflowers.

    PubMed

    Ji, Yanwei; Ren, Meiling; Li, Yanping; Huang, Zhibing; Shu, Mei; Yang, Hongwei; Xiong, Yonghua; Xu, Yang

    2015-09-01

    Immunochromatographic test strips (ICTS) are commonly limited to higher concentrations of analytes. This limitation stems from the relatively low sensitivity of conventional gold nanospheres (AuNSs with a diameter of 20 nm) to emit detectable brightness values. The larger multi-branched gold nanoflowers (AuNFs) with a higher optical brightness as well as good colloidal stability exhibit significant improvements over conventional AuNSs for enhanced sensitivity of ICTS. In this study, blue AuNFs with an average diameter of 75±5 nm were synthetized and employed as a signal amplification probe for ultrasensitive and quantitative detection of aflatoxin B1 (AFB1) in rice. A portable optical strip reader was used to record the optical densities of test and control lines of the strip. Under the optimal conditions, the AuNF based ICTS system accurately detected AFB1 linearly and dynamically over the range of 0.5-25 pg/mL with a half maximal inhibitory concentration at 4.17 pg/mL. The inhibitory concentration was achieved 10 times lower than that of the traditional AuNS based ICTS systems (41.25 pg/mL). The limit of detection for AFB1 in rice extract was achieved at 0.32 pg/mL. In summary, AuNFs are a novel probe that exhibited excellent sensitivity in the ICTS system and could be used for ultrasensitive detection of other analytes in food safety monitoring, and even medical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Use of a sensitive EnVision +-based detection system for Western blotting: avoidance of streptavidin binding to endogenous biotin and biotin-containing proteins in kidney and other tissues.

    PubMed

    Banks, Rosamonde E; Craven, Rachel A; Harnden, Patricia A; Selby, Peter J

    2003-04-01

    Western blotting remains a central technique in confirming identities of proteins, their quantitation and analysis of various isoforms. The biotin-avidin/streptavidin system is often used as an amplification step to increase sensitivity but in some tissues such as kidney, "nonspecific" interactions may be a problem due to high levels of endogenous biotin-containing proteins. The EnVision system, developed for immunohistochemical applications, relies on binding of a polymeric conjugate consisting of up to 100 peroxidase molecules and 20 secondary antibody molecules linked directly to an activated dextran backbone, to the primary antibody. This study demonstrates that it is also a viable and sensitive alternative detection system in Western blotting applications.

  8. Detection and quantification of intraperitoneal fluid using electrical impedance tomography.

    PubMed

    Sadleir, R J; Fox, R A

    2001-04-01

    A prototype electrical impedance tomography system was evaluated prior to its use for the detection of intraperitoneal bleeding, with the assistance of patients undergoing continuous ambulatory peritoneal dialysis (CAPD). The system was sensitive enough to detect small amounts of dialysis fluid appearing in subtractive images over short time periods. Uniform sensitivity to blood appearing anywhere within the abdominal cavity was produced using a post-reconstructive filter that corrected for changes in apparent resistivity of anomalies with their radial position. The image parameter used as an indication of fluid quantity, the resistivity index, varied approximately linearly with the quantity of fluid added. A test of the system's response to the introduction of conductive fluid out of the electrode plane (when a blood-equivalent fluid was added to the stomach) found that the sensitivity of the system was about half that observed in the electrode plane. Breathing artifacts were found to upset quantitative monitoring of intraperitoneal bleeding, but only on time scales short compared with the fluid administration rate. Longer term breathing changes, such as those due to variations in the functional residual capacity of the lungs, should ultimately limit the sensitivity over long time periods.

  9. The system of high accuracy UV spectral radiation system

    NASA Astrophysics Data System (ADS)

    Lin, Guan-yu; Yu, Lei; Xu, Dian; Cao, Dian-sheng; Yu, Yu-Xiang

    2016-10-01

    UV spectral radiation detecting and visible observation telescope is designed by the coaxial optical. In order to decrease due to the incident light polarization effect, and improve the detection precision, polarizer need to be used in the light path. Four pieces of quartz of high Precision UV radiation depolarizer retarder stack together is placed in front of Seya namioka dispersion unit. The coherent detection principle of modulation of light signal and the reference signal multiplied processing, increase the phase sensitive detector can be adjustment function, ensure the UV spectral radiation detection stability. A lock-in amplifier is used in the electrical system to advance the accuracy of measurement. To ensure the precision measurement detected, the phase-sensitive detector function can be adjustable. the output value is not more than 10mV before each measurement, so it can be ensured that the stability of the measured radiation spectrum is less than 1 percent.

  10. Detection of early caries by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  11. Extending Raman's reach: enabling applications via greater sensitivity and speed

    NASA Astrophysics Data System (ADS)

    Creasey, David; Sullivan, Mike; Paul, Chris; Rathmell, Cicely

    2018-02-01

    Over the last decade, miniature fiber optic spectrometers have greatly expanded the ability of Raman spectroscopy to tackle practical applications in the field, from mobile pharmaceutical ID to hazardous material assessment in remote locations. There remains a gap, however, between the typical diode array spectrometer and their more sensitive benchtop analogs. High sensitivity, cooled Raman spectrometers have the potential to narrow that gap by providing greater sensitivity, better SNR, and faster measurement times. In this paper, we'll look at the key factors in the design of high sensitivity miniature Raman spectrometers and their associated accessories, as well as the key metric for direct comparison of these systems - limit of detection. With the availability of our high sensitivity Raman systems operating at wavelengths from the UV to NIR, many applications are now becoming practical in the field, from trace level detection to analysis of complex biological samples.

  12. Multispectral photoacoustic tomography for detection of small tumors inside biological tissues

    NASA Astrophysics Data System (ADS)

    Hirasawa, Takeshi; Okawa, Shinpei; Tsujita, Kazuhiro; Kushibiki, Toshihiro; Fujita, Masanori; Urano, Yasuteru; Ishihara, Miya

    2018-02-01

    Visualization of small tumors inside biological tissue is important in cancer treatment because that promotes accurate surgical resection and enables therapeutic effect monitoring. For sensitive detection of tumor, we have been developing photoacoustic (PA) imaging technique to visualize tumor-specific contrast agents, and have already succeeded to image a subcutaneous tumor of a mouse using the contrast agents. To image tumors inside biological tissues, extension of imaging depth and improvement of sensitivity were required. In this study, to extend imaging depth, we developed a PA tomography (PAT) system that can image entire cross section of mice. To improve sensitivity, we discussed the use of the P(VDF-TrFE) linear array acoustic sensor that can detect PA signals with wide ranges of frequencies. Because PA signals produced from low absorbance optical absorbers shifts to low frequency, we hypothesized that the detection of low frequency PA signals improves sensitivity to low absorbance optical absorbers. We developed a PAT system with both a PZT linear array acoustic sensor and the P(VDF-TrFE) sensor, and performed experiment using tissue-mimicking phantoms to evaluate lower detection limits of absorbance. As a result, PAT images calculated from low frequency components of PA signals detected by the P(VDF-TrFE) sensor could visualize optical absorbers with lower absorbance.

  13. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Wingo, J.; Devkota, J.; Mai, T. T. T.; Nguyen, X. P.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Vietnam Academy of Science and Technology Collaboration; University of South Florida Team

    2014-03-01

    A precise detection of low concentrations of biomolecules attached to magnetic nanoparticles in complex biological systems is a challenging task and requires biosensors with improved sensitivity. Here, we present a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to Fe3O4 nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the functionalized Fe3O4 nanoparticles. A high capacity of the MX-based biosensor in quantitative analysis of the nanoparticles was achieved in the range of 0 - 50 ng/ml, beyond which the detection sensitivity (η) remained unchanged. The η of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems. This work was supported by was supported by the Florida Cluster for Advanced Smart Sensor Technologies, USAMRMC (Grant # W81XWH-07-1-0708), and the NSF-funded REU program at the USF.

  14. DETECTION OR WARNING SYSTEM

    DOEpatents

    Tillman, J E

    1953-10-20

    This patent application describes a sensitive detection or protective system capable of giving an alarm or warning upon the entrance or intrusion of any body into a defined area or zone protected by a radiation field of suitable direction or extent.

  15. Immunoblotting assays for keratan sulfate.

    PubMed

    Yoon, Jung Hae; Brooks, Randolph; Halper, Jaroslava

    2002-07-15

    The detection of microquantities of glycosaminoglycans (GAGs) in biological samples has been hampered by the lack of sensitive methods. In this paper we describe the modification and development of three sensitive assays capable of detecting nanogram quantities of GAGs in biological samples. The first assay detects total GAGs. It is a modified Alcian blue dye precipitation assay in which the dye binds to the negatively charged GAGs in CsCl-fractionated extracts from chicken tendons. This assay compares favorably with the widely used uronic acid assay in terms of its sensitivity and ability to detect all classes of GAGs, including keratan sulfate (KS). Two other assays, dot-blotting and immunoblotting, detect KS in complex mixtures and can be easily adapted for the detection of other GAGs. Both take advantage of binding of carboxyl and sulfate groups of GAGs to trivalent neodymium. In dot-blotting, samples were directly blotted onto nitrocellulose membrane soaked in Nd(2)(SO(4))(3) buffer, and KS was detected with the monoclonal anti-KS 5-D-4 antibody and an avidin-biotin complex detection system. In immunoblotting, the samples were first separated in 28% polyacrylamide gels, transferred onto a Nd(2)(SO(4))(3)-soaked nitrocellulose membrane using a phosphate buffer system, and stained and developed using the same protocol as in dot-blotting. Whereas dot-blotting allows the use of very low quantities of samples because of its high sensitivity (lower detection limit was 5 ng), immunoblotting provides more specificity.

  16. Highly sensitive lidar with a thumb-sized sensor-head built using an optical fiber preamplifier

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Ichikawa, Tadashi; Matsubara, Hiroyuki; Mao, Xueon; Maeda, Mitsutoshi; Nagashima, Chie; Kagami, Manabu

    2011-06-01

    We developed a LIDAR system with a sensor head as small as 22 cc, in spite of the inclusion of a scanning mechanism. This LIDAR system not only has a small body, but is also highly sensitive. Our LIDAR system is based on time-of-flight measurements, and it incorporates an optical fiber. The main feature of our system is the utilization of optical amplifiers for both the transmitter and the receiver, and the optical amplifiers enabled us to exceed the detection limit of thermal noise. In conventional LIDAR systems the detection limit is determined by thermal noise, because the avalanche photo-diodes (APD) and trans-impedance amplifiers (TIA) that they use detect the received signals directly. In the case of our LIDAR system, received signal is amplified by an optical fiber amplifier in front of the photo diode and the TIA. Therefore, our LIDAR system can boost the signal level before the weak incoming signal is depleted by thermal noise. There are conditions under which the noise figure for the combination of an optical fiber amplifier and a photo diode is superior to the noise figure for an avalanche photo diode. We optimized the gain of the optical fiber amplifier and TIA in our LIDAR system such that it is capable of detecting a single photon. As a result, the detection limit of our LIDAR system is determined by shot noise. This small and highly sensitive measurement technology shows great potential for use in LIDAR with an optical preamplifier.

  17. Combining Whispering-Gallery Mode Optical Biosensors with Microfluidics for Real-Time Detection of Protein Secretion from Living Cells in Complex Media.

    PubMed

    Chen, Ying-Jen; Schoeler, Ulrike; Huang, Chung-Hsuan Benjamin; Vollmer, Frank

    2018-05-01

    The noninvasive monitoring of protein secretion of cells responding to drug treatment is an effective and essential tool in latest drug development and for cytotoxicity assays. In this work, a surface functionalization method is demonstrated for specific detection of protein released from cells and a platform that integrates highly sensitive optical devices, called whispering-gallery mode biosensors, with precise microfluidics control to achieve label-free and real-time detection. Cell biomarker release is measured in real time and with nanomolar sensitivity. The surface functionalization method allows for antibodies to be immobilized on the surface for specific detection, while the microfluidics system enables detection in a continuous flow with a negligible compromise between sensitivity and flow control over stabilization and mixing. Cytochrome c detection is used to illustrate the merits of the system. Jurkat cells are treated with the toxin staurosporine to trigger cell apoptosis and cytochrome c released into the cell culture medium is monitored via the newly invented optical microfluidic platform. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polydimethylsiloxane microfluidic chemiluminescence immunodevice with the signal amplification strategy for sensitive detection of human immunoglobin G.

    PubMed

    Li, Huifang; Zhao, Mei; Liu, Wei; Chu, Weiru; Guo, Yumei

    2016-01-15

    A polydimethylsiloxane (PDMS) microfluidic chemiluminescence (CL) immunodevice for sensitive detection of human immunoglobin G (IgG) with the signal amplification strategy was developed in this work. The immunodevice was prepared by covalently immobilizing capture antibodies (Abs) on the silanized microchannel of microfluidic chip. Gold nanoparticles (AuNPs) functionalized with a high molar ratio of horseradish peroxidase (HRP) were used as an Ab label for signal amplification. Using a sandwich immunoassay, the multi-HRP conjugated AuNPs can catalyze the luminol-H2O2 CL system to achieve the high sensitivity. In addition, the double spiral flow-channel was adopted here, which can still contribute to the high sensitivity. Based on signal amplification strategy, the performance of human IgG tests revealed a lower detection limit (DL) of 0.03ng/mL and showed an increase of 7.4-fold in detection sensitivity compared to a commercial Ab-HRP conjugation. This microfluidic immunodevice can provide an alternative approach for sensitive detection of human IgG in the field of clinic diagnostic and therapeutic. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    PubMed Central

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  20. Evaluation of the DIRAMIC system for detection of urinary tract infections and for Escherichia coli identification.

    PubMed

    Travieso Ruiz, Fernando; Roura Carmona, Gloria; Romay Penabad, Cheyla; Contreras Alarcón, Rolando

    2004-01-01

    The use of the DIRAMIC system for the detection of urinary tract infections (UTI) and the possibility to identify Escherichia coli in the same culture media was evaluated. The results from DIRAMIC detection system were compared to counts of colony forming units per milliliter (CFU/ml) of urine inoculated in CLED Medium; 884 urine specimens were processed taking > or =10(4) CFU/ml as criteria of positive urine culture counts. For E. coli identification, substrates for the determination of beta-glucuronidase and tryptophanase were incorporated to the culture medium and named DETID-Ec. Outputs were compared to those from API RAPIDEC-ur strips. The DIRAMIC system can detect UTI, with a sensitivity and specificity of 82.25 and 94.49%, respectively. It was possible to identify E. coli during detection with 87.50% of sensitivity and 95.96% of specificity. The small volumes of culture medium used in the DIRAMIC system as well as the short times for the detection make the system a rapid and economical method for screening UTI. Furthermore, by using DETID-Ec culture medium the time and the number of biochemical tests necessary for the E. coli identification are lowered.

  1. An automated quantitative DNA image cytometry system detects abnormal cells in cervical cytology with high sensitivity.

    PubMed

    Wong, O G; Ho, M W; Tsun, O K; Ng, A K; Tsui, E Y; Chow, J N; Ip, P P; Cheung, A N

    2018-03-26

    To evaluate the performance of an automated DNA-image-cytometry system as a tool to detect cervical carcinoma. Of 384 liquid-based cervical cytology samples with available biopsy follow-up were analyzed by both the Imager System and a high-risk HPV test (Cobas). The sensitivity and specificity of Imager System for detecting biopsy proven high-grade squamous intraepithelial lesion (HSIL, cervical intraepithelial neoplasia [CIN]2-3) and carcinoma were 89.58% and 56.25%, respectively, compared to 97.22% and 23.33% of HPV test but additional HPV 16/18 genotyping increased the specificity to 69.58%. The sensitivity and specificity of the Imager System for predicting HSIL+ (CIN2-3+) lesions among atypical squamous cells of undetermined significance samples were 80.00% and 70.53%, respectively, compared to 100% and 11.58% of HPV test whilst the HPV 16/18 genotyping increased the specificity to 77.89%. Among atypical squamous cells-cannot exclude HSIL, the sensitivity and specificity of Imager System for predicting HSIL+ (CIN2-3+) lesions upon follow up were 82.86% and 33.33%%, respectively, compared to 97.14% and 4.76% of HPV test and the HPV 16/18 genotyping increased the specificity to 19.05%. Among low-grade squamous intraepithelial lesion cases, the sensitivity and specificity of the Imager System for predicting HSIL+ (CIN2-3+) lesions were 66.67% and 35.71%%, respectively, compared to 66.67% and 29.76% of HPV test while HPV 16/18 genotyping increased the specificity to 79.76%. The overall results of imager and high-risk HPV test agreed in 69.43% (268) of all samples. The automated imager system and HPV 16/18 genotyping can enhance the specificity of detecting HSIL+ (CIN2-3+) lesions. © 2018 John Wiley & Sons Ltd.

  2. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection.

    PubMed

    Ji, Daizong; Liu, Lei; Li, Shuang; Chen, Chen; Lu, Yanli; Wu, Jiajia; Liu, Qingjun

    2017-12-15

    Smartphone-based electrochemical devices have such advantages as the low price, miniaturization, and obtaining the real-time data. As a popular electrochemical method, cyclic voltammetry (CV) has shown its great practicability for quantitative detection and electrodes modification. In this study, a smartphone-based CV system with a simple method of electrode modification was constructed to perform electrochemical detections. The system was composed of these main portions: modified electrodes, portable electrochemical detector and smartphone. Among them, the detector was comprised of an energy transformation module applying the stimuli signals, and a low-cost potentiostat module for CV measurements with a Bluetooth module for transmitting data and commands. With an Application (App), the smartphone was used as the controller and displayer of the system. Through controlling of different scan rates, the smartphone-based system could perform CV detections for redox couples with test errors less than 3.8% compared to that of commercial electrochemical workstation. Also, the reduced graphene oxide (rGO) and sensitive substance could be modified by the system on the screen printed electrodes for detections. As a demonstration, 3-amino phenylboronic acid (APBA) was used as the sensitive substance to fabricate a glucose sensor. Finally, the experimental data of the system were shown the linear, sensitive, and specific responses to glucose at different doses, even in blood serum as low as about 0.026mM with 3δ/slope calculation. Thus, the system could show great potentials of detection and modification of electrodes in various fields, such as public health, water monitoring, and food quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  4. Ultrafast, sensitive and large-volume on-chip real-time PCR for the molecular diagnosis of bacterial and viral infections.

    PubMed

    Houssin, Timothée; Cramer, Jérémy; Grojsman, Rébecca; Bellahsene, Lyes; Colas, Guillaume; Moulet, Hélène; Minnella, Walter; Pannetier, Christophe; Leberre, Maël; Plecis, Adrien; Chen, Yong

    2016-04-21

    To control future infectious disease outbreaks, like the 2014 Ebola epidemic, it is necessary to develop ultrafast molecular assays enabling rapid and sensitive diagnoses. To that end, several ultrafast real-time PCR systems have been previously developed, but they present issues that hinder their wide adoption, notably regarding their sensitivity and detection volume. An ultrafast, sensitive and large-volume real-time PCR system based on microfluidic thermalization is presented herein. The method is based on the circulation of pre-heated liquids in a microfluidic chip that thermalize the PCR chamber by diffusion and ultrafast flow switches. The system can achieve up to 30 real-time PCR cycles in around 2 minutes, which makes it the fastest PCR thermalization system for regular sample volume to the best of our knowledge. After biochemical optimization, anthrax and Ebola simulating agents could be respectively detected by a real-time PCR in 7 minutes and a reverse transcription real-time PCR in 7.5 minutes. These detections are respectively 6.4 and 7.2 times faster than with an off-the-shelf apparatus, while conserving real-time PCR sample volume, efficiency, selectivity and sensitivity. The high-speed thermalization also enabled us to perform sharp melting curve analyses in only 20 s and to discriminate amplicons of different lengths by rapid real-time PCR. This real-time PCR microfluidic thermalization system is cost-effective, versatile and can be then further developed for point-of-care, multiplexed, ultrafast and highly sensitive molecular diagnoses of bacterial and viral diseases.

  5. Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ruihua; Li, Haitao; Kong, Weiqian

    2013-07-15

    Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright bluemore » photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.« less

  6. Indoor air quality inspection and analysis system based on gas sensor array

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  7. Spray Inlet Proton Transfer Reaction Mass Spectrometry (SI-PTR-MS) for Rapid and Sensitive Online Monitoring of Benzene in Water.

    PubMed

    Zou, Xue; Kang, Meng; Li, Aiyue; Shen, Chengyin; Chu, Yannan

    2016-03-15

    Rapid and sensitive monitoring of benzene in water is very important to the health of people and for environmental protection. A novel and online detection method of spray inlet proton transfer reaction mass spectrometry (SI-PTR-MS) was introduced for rapid and sensitive monitoring of trace benzene in water. A spraying extraction system was coupled with the self-developed PTR-MS. The benzene was extracted from the water sample in the spraying extraction system and continuously detected with PTR-MS. The flow of carrier gas and salt concentration in water were optimized to be 50 sccm and 20% (w/v), respectively. The response time and the limit of detection of the SI-PTR-MS for detection of benzene in water were 55 s and 0.14 μg/L at 10 s integration time, respectively. The repeatability of the SI-PTR-MS was evaluated, and the relative standard deviation of five replicate determinations was 4.3%. The SI-PTR-MS system was employed for monitoring benzene in different water matrices, such as tap water, lake water, and wastewater. The results indicated that the online SI-PTR-MS can be used for rapid and sensitive monitoring of trace benzene in water.

  8. Towards an integrated optofluidic system for highly sensitive detection of antibiotics in seawater incorporating bimodal waveguide photonic biosensors and complex, active microfluidics

    NASA Astrophysics Data System (ADS)

    Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.

    2016-12-01

    We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.

  9. Sensors and Clinical Mastitis—The Quest for the Perfect Alert

    PubMed Central

    Hogeveen, Henk; Kamphuis, Claudia; Steeneveld, Wilma; Mollenhorst, Herman

    2010-01-01

    When cows on dairy farms are milked with an automatic milking system or in high capacity milking parlors, clinical mastitis (CM) cannot be adequately detected without sensors. The objective of this paper is to describe the performance demands of sensor systems to detect CM and evaluats the current performance of these sensor systems. Several detection models based on different sensors were studied in the past. When evaluating these models, three factors are important: performance (in terms of sensitivity and specificity), the time window and the similarity of the study data with real farm data. A CM detection system should offer at least a sensitivity of 80% and a specificity of 99%. The time window should not be longer than 48 hours and study circumstances should be as similar to practical farm circumstances as possible. The study design should comprise more than one farm for data collection. Since 1992, 16 peer-reviewed papers have been published with a description and evaluation of CM detection models. There is a large variation in the use of sensors and algorithms. All this makes these results not very comparable. There is a also large difference in performance between the detection models and also a large variation in time windows used and little similarity between study data. Therefore, it is difficult to compare the overall performance of the different CM detection models. The sensitivity and specificity found in the different studies could, for a large part, be explained in differences in the used time window. None of the described studies satisfied the demands for CM detection models. PMID:22163637

  10. Sensors and clinical mastitis--the quest for the perfect alert.

    PubMed

    Hogeveen, Henk; Kamphuis, Claudia; Steeneveld, Wilma; Mollenhorst, Herman

    2010-01-01

    When cows on dairy farms are milked with an automatic milking system or in high capacity milking parlors, clinical mastitis (CM) cannot be adequately detected without sensors. The objective of this paper is to describe the performance demands of sensor systems to detect CM and evaluats the current performance of these sensor systems. Several detection models based on different sensors were studied in the past. When evaluating these models, three factors are important: performance (in terms of sensitivity and specificity), the time window and the similarity of the study data with real farm data. A CM detection system should offer at least a sensitivity of 80% and a specificity of 99%. The time window should not be longer than 48 hours and study circumstances should be as similar to practical farm circumstances as possible. The study design should comprise more than one farm for data collection. Since 1992, 16 peer-reviewed papers have been published with a description and evaluation of CM detection models. There is a large variation in the use of sensors and algorithms. All this makes these results not very comparable. There is a also large difference in performance between the detection models and also a large variation in time windows used and little similarity between study data. Therefore, it is difficult to compare the overall performance of the different CM detection models. The sensitivity and specificity found in the different studies could, for a large part, be explained in differences in the used time window. None of the described studies satisfied the demands for CM detection models.

  11. A compact imaging spectroscopic system for biomolecular detections on plasmonic chips.

    PubMed

    Lo, Shu-Cheng; Lin, En-Hung; Wei, Pei-Kuen; Tsai, Wan-Shao

    2016-10-17

    In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.

  12. Real-time distributed fiber optic sensor for security systems: Performance, event classification and nuisance mitigation

    NASA Astrophysics Data System (ADS)

    Mahmoud, Seedahmed S.; Visagathilagar, Yuvaraja; Katsifolis, Jim

    2012-09-01

    The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100 mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.

  13. Whole-animal imaging of bacterial infection using endoscopic excitation of β-lactamase (BlaC)-specific fluorogenic probe

    NASA Astrophysics Data System (ADS)

    Nooshabadi, Fatemeh; Yang, Hee-Jeong; Cheng, Yunfeng; Xie, Hexin; Rao, Jianghong; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2016-03-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the most frequent causes of death worldwide. The slow growth rate of Mtb limits progress toward understanding tuberculosis including diagnosis of infections and evaluating therapeutic efficacy. Development of near-infrared (NIR) β-lactamase (BlaC)-specific fluorogenic substrate has made a significant breakthrough in the whole-animal imaging to detect Mtb infection. The reporter enzyme fluorescence (REF) system using a BlaC-specific fluorogenic substrate has improved the detection sensitivity in whole-animal optical imaging down to ~104 colony forming units (CFU) of bacteria, about 100-fold improvement over recombinant strains. However, improvement of detection sensitivity is strongly needed for clinical diagnosis of early stage infection at greater tissue depth. In order to improve detection sensitivity, we have integrated a fiber-based microendoscpe into a whole-animal imaging system to transmit the excitation light from the fiber bundle to the fluorescent target directly and measure fluorescent level using BlaC-specific REF substrate in the mouse lung. REF substrate, CNIR800, was delivered via aerosol route to the pulmonary infected mice with M. bovis BCG strain at 24 hours post-infection and groups of mice were imaged at 1-4 hours post-administration of the substrate using the integrated imaging system. In this study we evaluated the kinetics of CNIR800 substrate using REF technology using the integrated imaging system. Integration of these technologies has great promise for improved detection sensitivity allowing pre-clinical imaging for evaluation of new therapeutic agents.

  14. Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor

    NASA Astrophysics Data System (ADS)

    Shojaei, Taha Roodbar; Salleh, Mohamad Amran Mohd; Sijam, Kamaruzaman; Rahim, Raha Abdul; Mohsenifar, Afshin; Safarnejad, Reza; Tabatabaei, Meisam

    2016-12-01

    Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8.5. The designed system showed higher sensitivity and specificity over enzyme linked immunosorbent assay (ELISA) with a limit of detection of 0.13 μg mL- 1 and 93% and 94% sensitivity and specificity, respectively. As designed sensor is rapid, sensitive, specific and efficient in detecting CTV, this could be envisioned for diagnostic applications, surveillance and plant certification program.

  15. Detection of coupling delay: A problem not yet solved

    NASA Astrophysics Data System (ADS)

    Coufal, David; Jakubík, Jozef; Jajcay, Nikola; Hlinka, Jaroslav; Krakovská, Anna; Paluš, Milan

    2017-08-01

    Nonparametric detection of coupling delay in unidirectionally and bidirectionally coupled nonlinear dynamical systems is examined. Both continuous and discrete-time systems are considered. Two methods of detection are assessed—the method based on conditional mutual information—the CMI method (also known as the transfer entropy method) and the method of convergent cross mapping—the CCM method. Computer simulations show that neither method is generally reliable in the detection of coupling delays. For continuous-time chaotic systems, the CMI method appears to be more sensitive and applicable in a broader range of coupling parameters than the CCM method. In the case of tested discrete-time dynamical systems, the CCM method has been found to be more sensitive, while the CMI method required much stronger coupling strength in order to bring correct results. However, when studied systems contain a strong oscillatory component in their dynamics, results of both methods become ambiguous. The presented study suggests that results of the tested algorithms should be interpreted with utmost care and the nonparametric detection of coupling delay, in general, is a problem not yet solved.

  16. EVALUATING THE SENSITIVITY OF RADIONUCLIDE DETECTORS FOR CONDUCTING A MARITIME ON-BOARD SEARCH USING MONTE CARLO SIMULATION IMPLEMENTED IN AVERT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S; Dave Dunn, D

    The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation implemented in AVERT{reg_sign}. AVERT{reg_sign}, short for the Automated Vulnerability Evaluation for Risk of Terrorism, is personal computer based vulnerability assessment software developed by the ARES Corporation. The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation. The detectors, a RadPack and also a Personal Radiation Detector (PRD), were chosen from the class of Human Portable Radiation Detection Systems (HPRDS). Human Portable Radiationmore » Detection Systems (HPRDS) serve multiple purposes. In the maritime environment, there is a need to detect, localize, characterize, and identify radiological/nuclear (RN) material or weapons. The RadPack is a commercially available broad-area search device used for gamma and also for neutron detection. The PRD is chiefly used as a personal radiation protection device. It is also used to detect contraband radionuclides and to localize radionuclide sources. Neither device has the capacity to characterize or identify radionuclides. The principal aim of this study was to investigate the sensitivity of both the RadPack and the PRD while being used under controlled conditions in a simulated maritime environment for detecting hidden RN contraband. The detection distance varies by the source strength and the shielding present. The characterization parameters of the source are not indicated in this report so the results summarized are relative. The Monte Carlo simulation results indicate the probability of detection of the RN source at certain distances from the detector which is a function of transverse speed and instrument sensitivity for the specified RN source.« less

  17. Sensitivity of cell-based biosensors to environmental variables.

    PubMed

    Gilchrist, Kristin H; Giovangrandi, Laurent; Whittington, R Hollis; Kovacs, Gregory T A

    2005-01-15

    Electrically active living cells cultured on extracellular electrode arrays are utilized to detect biologically active agents. Because cells are highly sensitive to environmental conditions, environmental fluctuations can elicit cellular responses that contribute to the noise in a cell-based biosensor system. Therefore, the characterization and control of environmental factors such as temperature, pH, and osmolarity is critical in such a system. The cell-based biosensor platform described here utilizes the measurement of action potentials from cardiac cells cultured on electrode arrays. A recirculating fluid flow system is presented for use in dose-response experiments that regulates temperature within +/-0.2 degrees C, pH to within +/-0.05 units, and allows no significant change in osmolarity. Using this system, the relationship between the sensor output parameters and environmental variation was quantified. Under typical experimental conditions, beat rate varied approximately 10% per degree change in temperature or per 0.1 unit change in pH. Similar relationships were measured for action potential amplitude, duration, and conduction velocity. For the specific flow system used in this work, the measured environmental sensitivity resulted in an overall beat rate variation of +/-4.7% and an overall amplitude variation of +/-3.3%. The magnitude of the noise due to environmental sensitivity has a large impact on the detection capability of the cell-based system. The significant responses to temperature, pH, and osmolarity have important implications for the use of living cells in detection systems and should be considered in the design and evaluation of such systems.

  18. Fluorescence detection system for microfluidic droplets

    NASA Astrophysics Data System (ADS)

    Chen, Binyu; Han, Xiaoming; Su, Zhen; Liu, Quanjun

    2018-05-01

    In microfluidic detection technology, because of the universality of optical methods in laboratory, optical detection is an attractive solution for microfluidic chip laboratory equipment. In addition, the equipment with high stability and low cost can be realized by integrating appropriate optical detection technology on the chip. This paper reports a detection system for microfluidic droplets. Photomultiplier tubes (PMT) is used as a detection device to improve the sensitivity of detection. This system improves the signal to noise ratio by software filtering and spatial filter. The fluorescence intensity is proportional to the concentration of the fluorescence and intensity of the laser. The fluorescence micro droplets of different concentrations can be distinguished by this system.

  19. Molecular and clinical analyses of Helicobacter pylori colonization in inflamed dental pulp.

    PubMed

    Nomura, Ryota; Ogaya, Yuko; Matayoshi, Saaya; Morita, Yumiko; Nakano, Kazuhiko

    2018-04-16

    Recently, dental pulp has been considered a possible source of infection of Helicobacter pylori (H. pylori) in children. We previously developed a novel PCR system for H. pylori detection with high specificity and sensitivity using primer sets constructed based on the complete genome information for 48 H. pylori strains. This PCR system showed high sensitivity with a detection limit of 1-10 cells when serial dilutions of H. pylori genomic DNA were used as templates. However, the detection limit was lower (10 2 -10 3 cells) when H. pylori bacterial DNA was detected from inflamed pulp specimens. Thus, we further refined the system using a nested PCR method, which was much more sensitive than the previous single PCR method. In addition, we examined the distribution and virulence of H. pylori in inflamed pulp tissue. Nested PCR system was constructed using primer sets designed from the complete genome information of 48 H. pylori strains. The detection limit of the nested PCR system was 1-10 cells using both H. pylori genomic DNA and bacterial DNA isolated from inflamed pulp specimens. Next, distribution of H. pylori was examined using 131 inflamed pulp specimens with the nested PCR system. In addition, association between the detection of H. pylori and clinical information regarding endodontic-infected teeth were investigated. Furthermore, adhesion property of H. pylori strains to human dental fibroblast cells was examined. H. pylori was present in 38.9% of inflamed pulp specimens using the nested PCR system. H. pylori was shown to be predominantly detected in primary teeth rather than permanent teeth. In addition, samplings of the inflamed pulp were performed twice from the same teeth at 1- or 2-week intervals, which revealed that H. pylori was detected in most specimens in both samplings. Furthermore, H. pylori strains showed adhesion property to human dental fibroblast cells. Our results suggest that H. pylori colonizes inflamed pulp in approximately 40% of all cases through adhesion to human dental fibroblast cells.

  20. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to bemore » developed for better classification and categorization of defects in real-time.« less

  1. Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Milos Manic

    The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, thismore » paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.« less

  2. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review

    PubMed Central

    Schmitt, Katrin; Oehse, Kerstin; Sulz, Gerd; Hoffmann, Christian

    2008-01-01

    Evanescent field sensors based on waveguide surfaces play an important role where high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitable material for thin-film waveguides due to its high refractive index and low attenuation. Many label-free biosensor systems such as grating couplers and interferometric sensors as well as fluorescence-based systems benefit from this waveguide material leading to extremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides already took the step into commercialization. This report reviews the various detection systems in terms of limit of detection, the applications, and the suitable surface chemistry. PMID:27879731

  3. A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine

    NASA Astrophysics Data System (ADS)

    Li, Hao; Yang, Manman; Liu, Juan; Zhang, Yalin; Yang, Yanmei; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-07-01

    The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules.The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03316k

  4. A Versatile PDMS/Paper Hybrid Microfluidic Platform for Sensitive Infectious Disease Diagnosis

    PubMed Central

    2015-01-01

    Bacterial meningitis is a serious health concern worldwide. Given that meningitis can be fatal and many meningitis cases occurred in high-poverty areas, a simple, low-cost, highly sensitive method is in great need for immediate and early diagnosis of meningitis. Herein, we report a versatile and cost-effective polydimethylsiloxane (PDMS)/paper hybrid microfluidic device integrated with loop-mediated isothermal amplification (LAMP) for the rapid, sensitive, and instrument-free detection of the main meningitis-causing bacteria, Neisseria meningitidis (N. meningitidis). The introduction of paper into the microfluidic device for LAMP reactions enables stable test results over a much longer period of time than a paper-free microfluidic system. This hybrid system also offers versatile functions, by providing not only on-site qualitative diagnostic analysis (i.e., a yes or no answer), but also confirmatory testing and quantitative analysis in laboratory settings. The limit of detection of N. meningitidis is about 3 copies per LAMP zone within 45 min, close to single-bacterium detection sensitivity. In addition, we have achieved simple pathogenic microorganism detection without a laborious sample preparation process and without the use of centrifuges. This low-cost hybrid microfluidic system provides a simple and highly sensitive approach for fast instrument-free diagnosis of N. meningitidis in resource-limited settings. This versatile PDMS/paper microfluidic platform has great potential for the point of care (POC) diagnosis of a wide range of infectious diseases, especially for developing nations. PMID:25019330

  5. Olfactory dysfunction affects thresholds to trigeminal chemosensory sensations.

    PubMed

    Frasnelli, J; Schuster, B; Hummel, T

    2010-01-14

    Next to olfaction and gustation, the trigeminal system represents a third chemosensory system. These senses are interconnected; a loss of olfactory function also leads to a reduced sensitivity in the trigeminal chemosensory system. However, most studies so far focused on comparing trigeminal sensitivity to suprathreshold stimuli; much less data is available with regard to trigeminal sensitivity in the perithreshold range. Therefore we assessed detection thresholds for CO(2), a relatively pure trigeminal stimulus in controls and in patients with olfactory dysfunction (OD). We could show that OD patients exhibit higher detection thresholds than controls. In addition, we were able to explore the effects of different etiologies of smell loss on trigeminal detection thresholds. We could show that in younger subjects, patients suffering from olfactory loss due to head trauma are more severely impaired with regard to their trigeminal sensitivity than patients with isolated congenital anosmia. In older patients, we could not observe any differences between different etiologies, probably due to the well known age-related decrease of trigeminal sensitivity. Furthermore we could show that a betterment of the OD was accompanied by decreased thresholds. This was most evident in patients with postviral OD. In conclusion, factors such as age, olfactory status and etiology of olfactory disorder can affect responsiveness to perithreshold trigeminal chemosensory stimuli. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Uniform apparent contrast noise: A picture of the noise of the visual contrast detection system

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J., Jr.; Watson, A. B.

    1984-01-01

    A picture which is a sample of random contrast noise is generated. The noise amplitude spectrum in each region of the picture is inversely proportional to spatial frequency contrast sensitivity for that region, assuming the observer fixates the center of the picture and is the appropriate distance from it. In this case, the picture appears to have approximately the same contrast everywhere. To the extent that contrast detection thresholds are determined by visual system noise, this picture can be regarded as a picture of the noise of that system. There is evidence that, at different eccentricities, contrast sensitivity functions differ only by a magnification factor. The picture was generated by filtering a sample of white noise with a filter whose frequency response is inversely proportional to foveal contrast sensitivity. It was then stretched by a space-varying magnification function. The picture summmarizes a noise linear model of detection and discrimination of contrast signals by referring the model noise to the input picture domain.

  7. Highly hydrogen-sensitive thermal desorption spectroscopy system for quantitative analysis of low hydrogen concentration (˜1 × 1016 atoms/cm3) in thin-film samples

    NASA Astrophysics Data System (ADS)

    Hanna, Taku; Hiramatsu, Hidenori; Sakaguchi, Isao; Hosono, Hideo

    2017-05-01

    We developed a highly hydrogen-sensitive thermal desorption spectroscopy (HHS-TDS) system to detect and quantitatively analyze low hydrogen concentrations in thin films. The system was connected to an in situ sample-transfer chamber system, manipulators, and an rf magnetron sputtering thin-film deposition chamber under an ultra-high-vacuum (UHV) atmosphere of ˜10-8 Pa. The following key requirements were proposed in developing the HHS-TDS: (i) a low hydrogen residual partial pressure, (ii) a low hydrogen exhaust velocity, and (iii) minimization of hydrogen thermal desorption except from the bulk region of the thin films. To satisfy these requirements, appropriate materials and components were selected, and the system was constructed to extract the maximum performance from each component. Consequently, ˜2000 times higher sensitivity to hydrogen than that of a commercially available UHV-TDS system was achieved using H+-implanted Si samples. Quantitative analysis of an amorphous oxide semiconductor InGaZnO4 thin film (1 cm × 1 cm × 1 μm thickness, hydrogen concentration of 4.5 × 1017 atoms/cm3) was demonstrated using the HHS-TDS system. This concentration level cannot be detected using UHV-TDS or secondary ion mass spectroscopy (SIMS) systems. The hydrogen detection limit of the HHS-TDS system was estimated to be ˜1 × 1016 atoms/cm3, which implies ˜2 orders of magnitude higher sensitivity than that of SIMS and resonance nuclear reaction systems (˜1018 atoms/cm3).

  8. Improvement of highly sensitive lidar with a thumb-sized sensor-head built using an optical fiber preamplifier

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Ichikawa, Tadashi; Matsubara, Hiroyuki; Mao, Xueon; Maeda, Mitsutoshi; Nagashima, Chie; Kagami, Manabu

    2012-06-01

    We have developed a LIDAR system with a sensor head which, although it includes a scanning mechanism, is less than 20 cc in size. The system is not only small, but is also highly sensitive. Our LIDAR system is based on time-of-flight measurements, and incorporates an optical fiber. The main feature of our system is the utilization of optical amplifiers for both the transmitter and the receiver, and the optical amplifiers enable us to exceed the detection limit set by thermal noise. In conventional LIDAR systems the detection limit is determined by the thermal noise, because the avalanche photo-diodes (APD) and trans-impedance amplifiers (TIA) that they use detect the received signals directly. In the case of our LIDAR system, the received signal is amplified by an optical fiber amplifier before reaching the photo diode and the TIA. Therefore, our LIDAR system boosts the signal level before the weak incoming signal is depleted by thermal noise. There are conditions under which the noise figure for the combination of an optical fiber amplifier and a photo diode is superior to the noise figure for an avalanche photo diode. We optimized the gains of the optical fiber amplifier and the TIA in our LIDAR system such that it would be capable of detecting a single photon. As a result, the detection limit of our system is determined by shot noise. We have previously demonstrated optical pre-amplified LIDAR with a perfect co-axial optical system[1]. For this we used a variable optical attenuator to remove internal reflection from the transmission and receiving lenses. However, the optical attenuator had an insertion loss of 6dB which reduced the sensitivity of the LIDAR. We re-designed the optical system such that it was semi-co-axial and removed the variable optical attenuator. As a result, we succeeded in scanning up to a range of 80 m. This small and highly sensitive measurement technology shows great potential for use in LIDAR.

  9. Use of diaminofluoresceins to detect and measure nitric oxide in low level generating human immune cells.

    PubMed

    Tiscornia, Adriana; Cairoli, Ernesto; Marquez, Maria; Denicola, Ana; Pritsch, Otto; Cayota, Alfonso

    2009-03-15

    Nitric oxide ((*)NO) has been implicated in multiple physiological and pathological immune processes. Different methods have been developed to detect and quantify (*)NO, where one of the principal difficulties are the accurately detection in cellular system with low levels of (*)NO production. The choice of the (*)NO detection method to be used depends on the characteristics of the experimental system and the levels of (*)NO production which depend on either the organism source of samples or the experimental conditions. Recently, high sensitive methods to detect and image (*)NO have been reported using 4,5-diaminofluorescein-based fluorescent probes (DAF) and its derivate 4,5-diaminofluorescein diacetate (DAF-2 DA). This work was aimed to adapt and optimize the use of DAF probes to detect and quantify the (*)NO production in systems of high, moderate and low out-put production, especially in human PBMC and their subpopulations. Here, we report an original experimental design which is useful to detect and estimate (*)NO fluxes in human PBMC and their subpopulations with high specificity and sensitivity.

  10. Highly sensitive detection of quantal dopamine secretion from pheochromocytoma cells using neural microelectrode array electrodeposited with polypyrrole graphene.

    PubMed

    Wang, Li; Xu, Huiren; Song, Yilin; Luo, Jinping; Wei, Wenjing; Xu, Shengwei; Cai, Xinxia

    2015-04-15

    For the measurement of events of dopamine (DA) release as well as the coordinating neurotransmission in the nerve system, a neural microelectrode array (nMEA) electrodeposited directionally with polypyrrole graphene (PG) nanocomposites was fabricated. The deposited graphene significantly increased the surface area of working electrode, which led to the nMEA (with diameter of 20 μm) with excellent selectivity and sensitivity to DA. Furthermore, PG film modification exhibited low detection limit (4 nM, S/N = 3.21), high sensitivity, and good linearity in the presence of ascorbic acid (e.g., 13933.12 μA mM(-1) cm(-2) in the range of 0.8-10 μM). In particular, the nMEA combined with the patch-clamp system was used to detect quantized DA release from pheochromocytoma cells under 100 mM K(+) stimulation. The nMEA that integrates 60 microelectrodes is novel for detecting a large number of samples simultaneously, which has potential for neural communication research.

  11. Detecting continuous gravitational waves with superfluid 4He

    NASA Astrophysics Data System (ADS)

    Singh, S.; De Lorenzo, L. A.; Pikovski, I.; Schwab, K. C.

    2017-07-01

    Direct detection of gravitational waves is opening a new window onto our universe. Here, we study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically coupled to a superconducting microwave cavity. This narrowband detection scheme can operate at very high Q-factors, while the resonant frequency is tunable through pressurization of the helium in the 0.1-1.5 kHz range. The detector can therefore be tuned to a variety of astrophysical sources and can remain sensitive to a particular source over a long period of time. For thermal noise limited sensitivity, we find that strain fields on the order of h˜ {10}-23/\\sqrt{{Hz}} are detectable. Measuring such strains is possible by implementing state of the art microwave transducer technology. We show that the proposed system can compete with interferometric detectors and potentially surpass the gravitational strain limits set by them for certain pulsar sources within a few months of integration time.

  12. Three Methods for Estimating the Middle-Ear Muscle Reflex (MEMR) Using Otoacoustic Emission (OAE) Measurement Systems

    DTIC Science & Technology

    2014-10-01

    sensitive MEMR measurement using the OAE and MOCR measurement modules in the Mimosa Acoustics HeariD system. All three methods can sensitively detect...three related methods for making this sensitive MEMR measurement using the OAE and MOCR measurement modules in the Mimosa Acoustics HearID system...without buying additional equipment or software. The purpose of this report is to document the methodology we have used since 2007 with Mimosa Acoustics

  13. Application of photostable quantum dots for indirect immunofluorescent detection of specific bacterial serotypes on small marine animals

    NASA Astrophysics Data System (ADS)

    Decho, Alan W.; Beckman, Erin M.; Chandler, G. Thomas; Kawaguchi, Tomohiro

    2008-06-01

    An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae.

  14. The detection of organophosphonates by polymer films on a surface acoustic wave device and a micromirror fiber optic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.C.; Ricco, A.J.; Butler, M.A.

    There is a need for sensitive detection of organophosphonates by, inexpensive, portable instruments. Two kinds of chemical sensors, based on surface acoustic wave (SAW) devices and fiber optic micromirrors, show promise for such sensing systems. Chemically sensitive coatings are required for detection and data for thin films of the polymer polysiloxane are reported for both kinds of physical transducers. Both kinds of sensor are shown to be capable of detecting concentrations of diisopropylmethylphosphonate (DIMP) down to 1 ppM.

  15. A citizen science approach to optimising computer aided detection (CAD) in mammography

    NASA Astrophysics Data System (ADS)

    Ionescu, Georgia V.; Harkness, Elaine F.; Hulleman, Johan; Astley, Susan M.

    2018-03-01

    Computer aided detection (CAD) systems assist medical experts during image interpretation. In mammography, CAD systems prompt suspicious regions which help medical experts to detect early signs of cancer. This is a challenging task and prompts may appear in regions that are actually normal, whilst genuine cancers may be missed. The effect prompting has on readers performance is not fully known. In order to explore the effects of prompting errors, we have created an online game (Bat Hunt), designed for non-experts, that mirrors mammographic CAD. This allows us to explore a wider parameter space. Users are required to detect bats in images of flocks of birds, with image difficulty matched to the proportions of screening mammograms in different BI-RADS density categories. Twelve prompted conditions were investigated, along with unprompted detection. On average, players achieved a sensitivity of 0.33 for unprompted detection, and sensitivities of 0.75, 0.83, and 0.92 respectively for 70%, 80%, and 90% of targets prompted, regardless of CAD specificity. False prompts distract players from finding unprompted targets if they appear in the same image. Player performance decreases when the number of false prompts increases, and increases proportionally with prompting sensitivity. Median lowest d' was for unprompted condition (1.08) and the highest for sensitivity 90% and 0.5 false prompts per image (d'=4.48).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    Highlights: • We developed a high-sensitive frequency transmission electric-field (FTE) system. • The output signal was highly enhanced by applying voltage to a metal layer on SiN. • The spatial resolution of new FTE method is 41 nm. • New FTE system enables observation of the intact bacteria and virus in water. - Abstract: The high-resolution structural analysis of biological specimens by scanning electron microscopy (SEM) presents several advantages. Until now, wet bacterial specimens have been examined using atmospheric sample holders. However, images of unstained specimens in water using these holders exhibit very poor contrast and heavy radiation damage. Recently,more » we developed the frequency transmission electric-field (FTE) method, which facilitates the SEM observation of biological specimens in water without radiation damage. However, the signal detection system presents low sensitivity. Therefore, a high EB current is required to generate clear images, and thus reducing spatial resolution and inducing thermal damage to the samples. Here a high-sensitivity detection system is developed for the FTE method, which enhances the output signal amplitude by hundredfold. The detection signal was highly enhanced when voltage was applied to the metal layer on silicon nitride thin film. This enhancement reduced the EB current and improved the spatial resolution as well as the signal-to-noise ratio. The spatial resolution of a high-sensitive FTE system is 41 nm, which is considerably higher than previous FTE system. New FTE system can easily be utilised to examine various unstained biological specimens in water, such as living bacteria and viruses.« less

  17. Portable Analytical Systems for On-Site Diagnosis of Exposure to Pesticides and Nerve Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuehe; Wang, Jun; Liu, Guodong

    In this chapter, we summarize recent work in our laboratory on the development of sensitive portable analytical systems for use in on-site detection of exposure to organophosphate (OP) pesticides and chemical nerve agents. These systems are based on various nanomaterials functioning as transducers; recognition agents or labels and various elelectrochemical/immunoassay techniques. The studied nanomaterials included functionalized carbon nanotubes (CNT), zirconia nanoparticles (NPs) and quantum dots (QDs). Three biomarkers e.g. the free OPs, metabolites of OPs and protein-OP adducts in biological matrices have been employed for biomonitoring of OP exposure with our developed system. It has been found that the nanomaterial-basedmore » portable analytical systems have high sensitivity for the detection of the biomarkers, which suggest that these technologies offer great promise for the rapid and on-site detection and evaluation of OP exposure.« less

  18. Design, optimisation and preliminary validation of a human specific loop-mediated amplification assay for the rapid detection of human DNA at forensic crime scenes.

    PubMed

    Hird, H J; Brown, M K

    2017-11-01

    The identification of samples at a crime scene which require forensic DNA typing has been the focus of recent research interest. We propose a simple, but sensitive analysis system which can be deployed at a crime scene to identify crime scene stains as human or non-human. The proposed system uses the isothermal amplification of DNA in a rapid assay format, which returns results in as little as 30min from sampling. The assay system runs on the Genie II device, a proven in-field detection system which could be deployed at a crime scene. The results presented here demonstrate that the system was sufficiently specific and sensitive and was able to detect the presence of human blood, semen and saliva on mock forensic samples. Copyright © 2017. Published by Elsevier B.V.

  19. Evaluation of a near-infrared-type contrast medium extravasation detection system using a swine model.

    PubMed

    Ishihara, Toshihiro; Kobayashi, Tatsushi; Ikeno, Naoya; Hayashi, Takayuki; Sakakibara, Masahiro; Niki, Noboru; Satake, Mitsuo; Moriyama, Noriyuki

    2014-01-01

    To refine the development and evaluate the near-infrared (NIR) extravasation detection system and its ability to detect extravasation during a contrast-enhanced computed tomography (CT) examination. The NIR extravasation detection system projects the NIR light through the surface of the human skin then, using its sensory system, will monitor the changes in the amount of NIR that reflected, which varies based on absorption properties.Seven female pigs were used to evaluate the contrast media extravasation detection system, using a 20-gauge intravenous catheter, when injected at a rate of 1 mL/s into 4 different locations just under the skin in the thigh section. Using 3-dimensional CT images, we evaluated the extravasations between time and volume, depth and volume, and finally depth and time to detect. We confirmed that the NIR light, 950-nm wavelength, used by the extravasation detection system is well absorbed by contrast media, making changes easy to detect. The average time to detect an extravasation was 2.05 seconds at a depth of 2.0 mm below the skin with a volume of 1.3 mL, 2.57 seconds at a depth between 2.1 and 5 mm below the skin and a volume of 3.47 mL, 10.5 seconds for depths greater than 5.1 mm and a volume of 11.1 mL. The detection accuracy was significantly deteriorated when the depth exceeded 5.0 mm (Tukey-Kramer, P < 0.05) CONCLUSIONS: The extravasation system detection system that is using NIR has a high level of detection sensitivity. The sensitivity enables the system to detect extravasation at depths less than 2 mm with a volume of 1.5 mL and at depths less than 5 mm with a volume of 3.5 mL. The extravasation detection system could be suitable for use during examinations.

  20. Capillary moving-boundary isotachophoresis with electrospray ionization mass-spectrometric detection and hydrogen ion used as essential terminator: Methodology for sensitive analysis of hydroxyderivatives of s-triazine herbicides in waters.

    PubMed

    Malá, Zdena; Gebauer, Petr

    2017-10-06

    Capillary isotachophoresis (ITP) is an electrophoretic technique offering high sensitivity due to permanent stacking of the migrating analytes. Its combination with electrospray-ionization mass-spectrometric (ESI-MS) detection is limited by the narrow spectrum of ESI-compatible components but can be compensated by experienced system architecture. This work describes a methodology for sensitive analysis of hydroxyderivatives of s-triazine herbicides, based on implementation of the concepts of moving-boundary isotachophoresis and of H + as essential terminating component into cationic ITP with ESI-MS detection. Theoretical description of such kind of system is given and equations for zone-related boundary mobilities are derived, resulting in a much more general definition of the effective mobility of the terminating H + zone than used so far. Explicit equations allowing direct calculation for selected simple systems are derived. The presented theory allows prediction of stacking properties of particular systems and easy selection of suitable electrolyte setups. A simple ESI-compatible system composed of acetic acid and ammonium with H + and ammonium as a mixed terminator was selected for the analysis of 2-hydroxyatrazine and 2-hydroxyterbutylazine, degradation products of s-triazine herbicides. The proposed method was tested with direct injection without any sample pretreatment and provided excellent linearity and high sensitivity with limits of detection below 100ng/L (0.5nM). Example analyses of unspiked and spiked drinking and river water are shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sensitivity-Enhanced CMOS Phase Luminometry System Using Xerogel-Based Sensors.

    PubMed

    Lei Yao; Khan, R; Chodavarapu, V P; Tripathi, V S; Bright, F V

    2009-10-01

    We present the design and implementation of a phase luminometry sensor system with improved and tunable detection sensitivity achieved using a complementary metal-oxide semiconductor (CMOS) integrated circuit. We use sol-gel derived xerogel thin films as an immobilization media to house oxygen (O2) responsive luminescent molecules. The sensor operates on the principal of phase luminometry wherein a sinusoidal modulation signal is used to excite the luminophores encapsulated in the porous xerogel films and the corresponding phase shift of the emission signals is monitored. The phase shift is directly related to excited state lifetimes of the luminophores which in turn are related to the concentration of the target analyte species present in the vicinity of the luminophores. The CMOS IC, which consists of a 16 times 16 high-gain phototransistor array, current-to-voltage converter, amplifier and tunable phase shift detector, consumes an average power of 14 mW with 5-V power supply operating at a 38-kHz modulation frequency. The output of the IC is a dc voltage that corresponds to the detected luminescence phase shift with respect to the excitation signal. As a prototype, we demonstrate an oxygen sensor system by encapsulating the luminophore tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) within the xerogel matrices. The sensor system showed a fast response on the order of few seconds and we obtained a detection sensitivity of 118 mV per 1% change in O2 concentration. The system demonstrates a novel concept to tune and improve the detection sensitivity for specific concentrations of the target analyte in many biomedical monitoring applications.

  2. An intraoperative spectroscopic imaging system for quantification of Protoporphyrin IX during glioma surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Angulo-Rodríguez, Leticia M.; Laurence, Audrey; Jermyn, Michael; Sheehy, Guillaume; Sibai, Mira; Petrecca, Kevin; Roberts, David W.; Paulsen, Keith D.; Wilson, Brian C.; Leblond, Frédéric

    2016-03-01

    Cancer tissue often remains after brain tumor resection due to the inability to detect the full extent of cancer during surgery, particularly near tumor boundaries. Commercial systems are available for intra-operative real-time aminolevulenic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence imaging. These are standard white-light neurosurgical microscopes adapted with optical components for fluorescence excitation and detection. However, these instruments lack sensitivity and specificity, which limits the ability to detect low levels of PpIX and distinguish it from tissue auto-fluorescence. Current systems also cannot provide repeatable and un-biased quantitative fluorophore concentration values because of the unknown and highly variable light attenuation by tissue. We present a highly sensitive spectroscopic fluorescence imaging system that is seamlessly integrated onto a neurosurgical microscope. Hardware and software were developed to achieve through-microscope spatially-modulated illumination for 3D profilometry and to use this information to extract tissue optical properties to correct for the effects of tissue light attenuation. This gives pixel-by-pixel quantified fluorescence values and improves detection of low PpIX concentrations. This is achieved using a high-sensitivity Electron Multiplying Charge Coupled Device (EMCCD) with a Liquid Crystal Tunable Filter (LCTF) whereby spectral bands are acquired sequentially; and a snapshot camera system with simultaneous acquisition of all bands is used for profilometry and optical property recovery. Sensitivity and specificity to PpIX is demonstrated using brain tissue phantoms and intraoperative human data acquired in an on-going clinical study using PpIX fluorescence to guide glioma resection.

  3. Piezoresistive microcantilever based lab-on-a-chip system for detection of macronutrients in the soil

    NASA Astrophysics Data System (ADS)

    Patkar, Rajul S.; Ashwin, Mamta; Rao, V. Ramgopal

    2017-12-01

    Monitoring of soil nutrients is very important in precision agriculture. In this paper, we have demonstrated a micro electro mechanical system based lab-on-a-chip system for detection of various soil macronutrients which are available in ionic form K+, NO3-, and H2PO4-. These sensors are highly sensitive piezoresistive silicon microcantilevers coated with a polymer matrix containing methyltridodecylammonium nitrate ionophore/ nitrate ionophore VI for nitrate sensing, 18-crown-6 ether for potassium sensing and Tributyltin chloride for phosphate detection. A complete lab-on-a-chip system integrating a highly sensitive current excited Wheatstone's bridge based portable electronic setup along with arrays of microcantilever devices mounted on a printed circuit board with a liquid flow cell for on the site experimentation for soil test has been demonstrated.

  4. Detection of anti-nuclear antibody by immunofluorescence assay and enzyme immunoassay in childhood systemic lupus erythematosus: experience from Bangladesh.

    PubMed

    Dipti, Tanjeem Rabika; Azam, Mohammad Shaiful; Sattar, Mohammad Humayun; Rahman, Shahana Akhter

    2012-02-01

    Systemic lupus erythematosus (SLE) is a multisystem, chronic but often episodic, autoimmune disease that is characterized by the presence of antinuclear antibodies (ANA). The criteria set by American College of Rheumatology are widely used for diagnosis of SLE. Elevation of ANA titer is the most sensitive of the ACR criteria. There are different methods for detection of ANA. Indirect immunofluorescence (ANA-IFA) and enzyme immunoassay (ANA-EIA) are commonly used methods. The sensitivity of ANA-IFA using HEp-2 cell substrate is 90-100% in systemic rheumatic diseases. In Bangladesh most of the laboratories use ANA-EIA for detection of ANA. As the sensitivity of ANA-EIA is lower than ANA-IFA it might be that we are missing many cases of ANA positivity in childhood SLE cases. To detect ANA by immunofluorescence assay using HEp-2 cell substrate and enzyme immunoassay in childhood SLE and to compare the diagnostic performance of these methods. This is a cross-sectional analytical study. A total of 40 patients were enrolled. Among them 20 were childhood SLE cases. Another 20 patients of childhood rheumatic diseases other than SLE were taken as the disease control group. In childhood SLE cases, 100% were ANA-positive by IFA and 55% were ANA positive by EIA. The sensitivity of ANA-IFA was 100%. In contrast, sensitivity of ANA-EIA was 55%.   ANA-IFA is superior to ANA-EIA for detection of ANA in childhood SLE patients. ANA-IFA should be the primary screening test for children with clinical features suggestive of SLE. © 2011 The Authors. International Journal of Rheumatic Diseases © 2011 Asia Pacific League of Associations for Rheumatology and Blackwell Publishing Asia Pty Ltd.

  5. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the findings suggest that auditory temporal processing deficits, such as impairments in gap-in-noise detection, could arise from reduced brain sensitivity to sound offsets alone. PMID:26865621

  6. Quantum sensing of weak radio-frequency signals by pulsed Mollow absorption spectroscopy.

    PubMed

    Joas, T; Waeber, A M; Braunbeck, G; Reinhard, F

    2017-10-17

    Quantum sensors-qubits sensitive to external fields-have become powerful detectors for various small acoustic and electromagnetic fields. A major key to their success have been dynamical decoupling protocols which enhance sensitivity to weak oscillating (AC) signals. Currently, those methods are limited to signal frequencies below a few MHz. Here we harness a quantum-optical effect, the Mollow triplet splitting of a strongly driven two-level system, to overcome this limitation. We microscopically understand this effect as a pulsed dynamical decoupling protocol and find that it enables sensitive detection of fields close to the driven transition. Employing a nitrogen-vacancy center, we detect GHz microwave fields with a signal strength (Rabi frequency) below the current detection limit, which is set by the center's spectral linewidth [Formula: see text]. Pushing detection sensitivity to the much lower 1/T 2 limit, this scheme could enable various applications, most prominently coherent coupling to single phonons and microwave photons.Dynamical decoupling protocols can enhance the sensitivity of quantum sensors but this is limited to signal frequencies below a few MHz. Here, Joas et al. use the Mollow triplet splitting in a nitrogen-vacancy centre to overcome this limitation, enabling sensitive detection of signals in the GHz range.

  7. An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need.

    PubMed

    Wilkes, Rebecca P; Lee, Pei-Yu A; Tsai, Yun-Long; Tsai, Chuan-Fu; Chang, Hsiu-Hui; Chang, Hsiao-Fen G; Wang, Hwa-Tang T

    2015-08-01

    Canine parvovirus type 2 (CPV-2), including subtypes 2a, 2b and 2c, causes an acute enteric disease in both domestic and wild animals. Rapid and sensitive diagnosis aids effective disease management at points of need (PON). A commercially available, field-deployable and user-friendly system, designed with insulated isothermal PCR (iiPCR) technology, displays excellent sensitivity and specificity for nucleic acid detection. An iiPCR method was developed for on-site detection of all circulating CPV-2 strains. Limit of detection was determined using plasmid DNA. CPV-2a, 2b and 2c strains, a feline panleukopenia virus (FPV) strain, and nine canine pathogens were tested to evaluate assay specificity. Reaction sensitivity and performance were compared with an in-house real-time PCR using serial dilutions of a CPV-2b strain and 100 canine fecal clinical samples collected from 2010 to 2014, respectively. The 95% limit of detection of the iiPCR method was 13 copies of standard DNA and detection limits for CPV-2b DNA were equivalent for iiPCR and real-time PCR. The iiPCR reaction detected CPV-2a, 2b and 2c and FPV. Non-targeted pathogens were not detected. Test results of real-time PCR and iiPCR from 99 fecal samples agreed with each other, while one real-time PCR-positive sample tested negative by iiPCR. Therefore, excellent agreement (k = 0.98) with sensitivity of 98.41% and specificity of 100% in detecting CPV-2 in feces was found between the two methods. In conclusion, the iiPCR system has potential to serve as a useful tool for rapid and accurate PON, molecular detection of CPV-2. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis.

    PubMed

    Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte

    2012-01-01

    Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.

  9. Peripheral detection and resolution with mid-/long-wavelength and short-wavelength sensitive cone systems.

    PubMed

    Zhu, Hai-Feng; Zele, Andrew J; Suheimat, Marwan; Lambert, Andrew J; Atchison, David A

    2016-08-01

    This study compared neural resolution and detection limits of the human mid-/long-wavelength and short-wavelength cone systems with anatomical estimates of photoreceptor and retinal ganglion cell spacings and sizes. Detection and resolution limits were measured from central fixation out to 35° eccentricity across the horizontal visual field using a modified Lotmar interferometer. The mid-/long-wavelength cone system was studied using a green (550 nm) test stimulus to which S-cones have low sensitivity. To bias resolution and detection to the short-wavelength cone system, a blue (450 nm) test stimulus was presented against a bright yellow background that desensitized the M- and L-cones. Participants were three trichromatic males with normal visual functions. With green stimuli, resolution showed a steep central-peripheral gradient that was similar between participants, whereas the detection gradient was shallower and patterns were different between participants. Detection and resolution with blue stimuli were poorer than for green stimuli. The detection of blue stimuli was superior to resolution across the horizontal visual field and the patterns were different between participants. The mid-/long-wavelength cone system's resolution is limited by midget ganglion cell spacing and its detection is limited by the size of the M- and L-cone photoreceptors, consistent with previous observations. We found that no such simple relationships occur for the short-wavelength cone system between resolution and the bistratified ganglion cell spacing, nor between detection and the S-cone photoreceptor sizes.

  10. Automated detection of diabetic retinopathy on digital fundus images.

    PubMed

    Sinthanayothin, C; Boyce, J F; Williamson, T H; Cook, H L; Mensah, E; Lal, S; Usher, D

    2002-02-01

    The aim was to develop an automated screening system to analyse digital colour retinal images for important features of non-proliferative diabetic retinopathy (NPDR). High performance pre-processing of the colour images was performed. Previously described automated image analysis systems were used to detect major landmarks of the retinal image (optic disc, blood vessels and fovea). Recursive region growing segmentation algorithms combined with the use of a new technique, termed a 'Moat Operator', were used to automatically detect features of NPDR. These features included haemorrhages and microaneurysms (HMA), which were treated as one group, and hard exudates as another group. Sensitivity and specificity data were calculated by comparison with an experienced fundoscopist. The algorithm for exudate recognition was applied to 30 retinal images of which 21 contained exudates and nine were without pathology. The sensitivity and specificity for exudate detection were 88.5% and 99.7%, respectively, when compared with the ophthalmologist. HMA were present in 14 retinal images. The algorithm achieved a sensitivity of 77.5% and specificity of 88.7% for detection of HMA. Fully automated computer algorithms were able to detect hard exudates and HMA. This paper presents encouraging results in automatic identification of important features of NPDR.

  11. Sensitivity of the terrestrial planet finder

    NASA Technical Reports Server (NTRS)

    Beichman, Charles

    1998-01-01

    A key long-term goal of NASA's Origins program is the detection and characterization of habitable planets orbiting stars within the solar neighborhood. A cold, space-borne interferometer operating in the mid-infrared with a approx. 75 m baseline can null the light of a parent star and detect the million-times fainter radiation from an Earth-like planet located in the "habitable zone" around stars as far as 15 pc away. Such an interferometer, designated the Terrestrial Planet Finder (TPF) by NASA, could even detect atmospheric signatures of species such as CO2, O3, and H2O indicative of either the possibility or presence of primitive life. This talk highlights some of the sensitivity issues affecting the detectability of terrestrial planets. Sensitivity calculations show that a system consisting of 2 m apertures operating at 5 AU or 4 m apertures operating at 1 AU can detect terrestrial planets in reasonable integration times for levels of exo-zodiacal emission up to 10 times that seen in our solar system (hereafter denoted as 10xSS). Additionally, simulations show that confusion noise from structures in the exo-zodiacal cloud should not impede planet detection until the exo-zodiacal emission reaches the 10xSS level.

  12. Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Feng, Na; Shi, Deshi; Liu, Bang

    2016-03-01

    The qualitative and quantitative declaration of food ingredients is important to consumers, especially for genetically modified food as it experiences a rapid increase in sales. In this study, we designed an accurate and rapid detection system using colloidal gold immunochromatographic strip assay (GICA) methods to detect genetically modified cow milk. First, we prepared 2 monoclonal antibodies for human α-lactalbumin (α-LA) and measured their antibody titers; the one with the higher titer was used for further experiments. Then, we found the optimal pH value and protein amount of GICA for detection of pure milk samples. The developed strips successfully detected genetically modified cow milk and non-modified cow milk. To determine the sensitivity of GICA, a quantitative ELISA system was used to determine the exact amount of α-LA, and then genetically modified milk was diluted at different rates to test the sensitivity of GICA; the sensitivity was 10 μg/mL. Our results demonstrated that the applied method was effective to detect human α-LA in cow milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Recent approaches in sensitive enantioseparations by CE.

    PubMed

    Sánchez-Hernández, Laura; Castro-Puyana, María; Marina, María Luisa; Crego, Antonio L

    2012-01-01

    The latest strategies and instrumental improvements for enhancing the detection sensitivity in chiral analysis by CE are reviewed in this work. Following the previous reviews by García-Ruiz et al. (Electrophoresis 2006, 27, 195-212) and Sánchez-Hernández et al. (Electrophoresis 2008, 29, 237-251; Electrophoresis 2010, 31, 28-43), this review includes those papers that were published during the period from June 2009 to May 2011. These works describe the use of offline and online sample treatment techniques, online sample preconcentration techniques based on electrophoretic principles, and alternative detection systems to UV-Vis to increase the detection sensitivity. The application of the above-mentioned strategies, either alone or combined, to improve the sensitivity in the enantiomeric analysis of a broad range of samples, such as pharmaceutical, biological, food and environmental samples, enables to decrease the limits of detection up to 10⁻¹² M. The use of microchips to achieve sensitive chiral separations is also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Six rapid tests for direct detection of Clostridium difficile and its toxins in fecal samples compared with the fibroblast cytotoxicity assay.

    PubMed

    Turgeon, David K; Novicki, Thomas J; Quick, John; Carlson, LaDonna; Miller, Pat; Ulness, Bruce; Cent, Anne; Ashley, Rhoda; Larson, Ann; Coyle, Marie; Limaye, Ajit P; Cookson, Brad T; Fritsche, Thomas R

    2003-02-01

    Clostridium difficile is one of the most frequent causes of nosocomial gastrointestinal disease. Risk factors include prior antibiotic therapy, bowel surgery, and the immunocompromised state. Direct fecal analysis for C. difficile toxin B by tissue culture cytotoxin B assay (CBA), while only 60 to 85% sensitive overall, is a common laboratory method. We have used 1,003 consecutive, nonduplicate fecal samples to compare six commercially available immunoassays (IA) for C. difficile detection with CBA: Prima System Clostridium difficile Tox A and VIDAS Clostridium difficile Tox A II, which detect C. difficile toxin A; Premier Cytoclone A/B and Techlab Clostridium difficile Tox A/B, which detect toxins A and B; and ImmunoCard Clostridium difficile and Triage Micro C. difficile panels, which detect toxin A and a species-specific antigen. For all tests, Triage antigen was most sensitive (89.1%; negative predictive value [NPV] = 98.7%) while ImmunoCard was most specific (99.7%; positive predictive value [PPV] = 95.0%). For toxin tests only, Prima System had the highest sensitivity (82.2%; NPV = 98.0%) while ImmunoCard had the highest specificity (99.7%; PPV = 95.0%). Hematopoietic stem cell transplant (HSCT) patients contributed 44.7% of all samples tested, and no significant differences in sensitivity or specificity were noted between HSCT and non-HSCT patients. IAs, while not as sensitive as direct fecal CBA, produce reasonable predictive values, especially when both antigen and toxin are detected. They also offer significant advantages over CBA in terms of turnaround time and ease of use.

  15. Protein detection system

    DOEpatents

    Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  16. Research on the detection system of liquid concentration base on birefringence light transmission method

    NASA Astrophysics Data System (ADS)

    Li, Tianze; Zhang, Xia; Hou, Luan; Jiang, Chuan

    2010-10-01

    The characteristics of the beam transmitting in the optical fiber and the liquid medium are analyzed in this paper. On this basis, a new type of semiconductor optical position sensitive detector is used for a receiving device, a light transmission method of birefringence is presented,and a set of opto-electrical detection system which is applied to detect liquid concentration is designed. The system is mainly composed of semiconductor lasers,optical systems, Psd signal conditioning circuit, Single-chip System, A/D conversion circuit and display circuit. Through theoretical analysis and experimental simulations, the accuracy of this system has been verified. Some main factors affecting the test results are analyzed detailedly in this paper. The experiments show that the temperature drift and the light intensity have a very small impact on this system. The system has some advantages, such as the simple structure, high sensitivity, good stability, fast response time, high degree of automation, and so on. It also can achieve the real-time detection of liquid concentration conveniently and accurately. The system can be widely applied in chemical, food, pharmacy and many other industries. It has broad prospects of application.

  17. Biosensors and their applications in detection of organophosphorus pesticides in the environment.

    PubMed

    Hassani, Shokoufeh; Momtaz, Saeideh; Vakhshiteh, Faezeh; Maghsoudi, Armin Salek; Ganjali, Mohammad Reza; Norouzi, Parviz; Abdollahi, Mohammad

    2017-01-01

    This review discusses the past and recent advancements of biosensors focusing on detection of organophosphorus pesticides (OPs) due to their exceptional use during the last decades. Apart from agricultural benefits, OPs also impose adverse toxicological effects on animal and human population. Conventional approaches such as chromatographic techniques used for pesticide detection are associated with several limitations. A biosensor technology is unique due to the detection sensitivity, selectivity, remarkable performance capabilities, simplicity and on-site operation, fabrication and incorporation with nanomaterials. This study also provided specifications of the most OPs biosensors reported until today based on their transducer system. In addition, we highlighted the application of advanced complementary materials and analysis techniques in OPs detection systems. The availability of these new materials associated with new sensing techniques has led to introduction of easy-to-use analytical tools of high sensitivity and specificity in the design and construction of OPs biosensors. In this review, we elaborated the achievements in sensing systems concerning innovative nanomaterials and analytical techniques with emphasis on OPs.

  18. Multimodal imaging system for dental caries detection

    NASA Astrophysics Data System (ADS)

    Liang, Rongguang; Wong, Victor; Marcus, Michael; Burns, Peter; McLaughlin, Paul

    2007-02-01

    Dental caries is a disease in which minerals of the tooth are dissolved by surrounding bacterial plaques. A caries process present for some time may result in a caries lesion. However, if it is detected early enough, the dentist and dental professionals can implement measures to reverse and control caries. Several optical, nonionized methods have been investigated and used to detect dental caries in early stages. However, there is not a method that can singly detect the caries process with both high sensitivity and high specificity. In this paper, we present a multimodal imaging system that combines visible reflectance, fluorescence, and Optical Coherence Tomography (OCT) imaging. This imaging system is designed to obtain one or more two-dimensional images of the tooth (reflectance and fluorescence images) and a three-dimensional OCT image providing depth and size information of the caries. The combination of two- and three-dimensional images of the tooth has the potential for highly sensitive and specific detection of dental caries.

  19. SU-E-T-249: Determining the Sensitivity of Beam Profile Parameters for Detecting Energy Changes in Flattening Filter-Free Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, K; Yaddanapudi, S; Mutic, S

    2015-06-15

    Purpose: To identify the beam profile parameters that can be used to detect energy changes in a flattening filter-free photon beams. Methods: Flattening filter-free beam profiles (inline, crossline, and diagonals) were measured for multiple field sizes (25×25cm and 10×10cm) at 6MV on a clinical system (Truebeam, Varian Medical Systems Palo Alto CA). Profiles were acquired for baseline energy and detuned beams by changing the bending magnet current (BMC), above and below baseline. The following profile parameters were measured: flatness (off-axis ratio at 80% of field size), symmetry, uniformity, slope, and the off-axis ratio (OAR) at several off-axis distances. Tolerance valuesmore » were determined from repeated measurements. Each parameter was evaluated for sensitivity to the induced beam changes, and the minimum detectable BMC change was calculated for each parameter by calculating the change in BMC that would Result in a change in the parameter above the measurement tolerance. Results: Tolerance values for the parameters were-Flatness≤0.1%; Symmetry≤0.4%; Uniformity≤0.01%; Slope≤ 0.001%/mm. The measurements made with a field size of 25cm and a depth of d=1.5cm showed the greatest sensitivity to bending magnet current variations. Uniformity had the highest sensitivity, able to detect a change in BMC of BMC=0.02A. The OARs and slope were sensitive to the magnitude and direction of BMC change. The sensitivity in the flatness parameter was BMC=0.04A; slope was sensitive to BMC=0.05A. The sensitivity decreased for OARs measured closer to central axis-BMC(8cm)=0.23A; BMC(5cm)=0.47A; BMC(2cm)=1.35A. Symmetry was not sensitive to changes in BMC. Conclusion: These tests allow for better QA of FFF beams by setting tolerance levels to beam parameter baseline values which reflect variations in machine calibration. Uniformity is most sensitive to BMC changes, while OARs provide information about magnitude and direction of miscalibration. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.« less

  20. Sensitive Detection of Francisella tularensis Directly from Whole Blood by Use of the GeneXpert System.

    PubMed

    Banada, Padmapriya P; Deshpande, Srinidhi; Chakravorty, Soumitesh; Russo, Riccardo; Occi, James; Meister, Gabriel; Jones, Kelly J; Gelhaus, Carl H; Valderas, Michelle W; Jones, Martin; Connell, Nancy; Alland, David

    2017-01-01

    Francisella tularensis is a potential bioterrorism agent that is highly infectious at very low doses. Diagnosis of tularemia by blood culture and nucleic acid-based diagnostic tests is insufficiently sensitive. Here, we demonstrate a highly sensitive F. tularensis assay that incorporates sample processing and detection into a single cartridge suitable for point-of-care detection. The assay limit of detection (LOD) and dynamic range were determined in a filter-based cartridge run on the GeneXpert system. F. tularensis DNA in buffer or CFU of F. tularensis was spiked into human or macaque blood. To simulate detection in human disease, the assay was tested on blood drawn from macaques infected with F. tularensis Schu S4 at daily intervals. Assay detection was compared to that with a conventional quantitative PCR (qPCR) assay and blood culture. The assay LOD was 0.1 genome equivalents (GE) per reaction and 10 CFU/ml F. tularensis in both human and macaque blood. In infected macaques, the assay detected F. tularensis on days 1 to 4 postinfection in 21%, 17%, 60%, and 83% of macaques, respectively, compared to conventional qPCR positivity rates of 0%, 0%, 30%, and 100% and CFU detection of blood culture at 0%, 0%, 0%, and 10% positive, respectively. Assay specificity was 100%. The new cartridge-based assay can rapidly detect F. tularensis in bloodstream infections directly in whole blood at the early stages of infection with a sensitivity that is superior to that of other methods. The simplicity of the automated testing procedures may make this test suitable for rapid point-of-care detection. Copyright © 2016 American Society for Microbiology.

  1. Variation in detection among passive infrared triggered-cameras used in wildlife research

    USGS Publications Warehouse

    Damm, Philip E.; Grand, James B.; Barnett, Steven W.

    2010-01-01

    Precise and accurate estimates of demographics such as age structure, productivity, and density are necessary in determining habitat and harvest management strategies for wildlife populations. Surveys using automated cameras are becoming an increasingly popular tool for estimating these parameters. However, most camera studies fail to incorporate detection probabilities, leading to parameter underestimation. The objective of this study was to determine the sources of heterogeneity in detection for trail cameras that incorporate a passive infrared (PIR) triggering system sensitive to heat and motion. Images were collected at four baited sites within the Conecuh National Forest, Alabama, using three cameras at each site operating continuously over the same seven-day period. Detection was estimated for four groups of animals based on taxonomic group and body size. Our hypotheses of detection considered variation among bait sites and cameras. The best model (w=0.99) estimated different rates of detection for each camera in addition to different detection rates for four animal groupings. Factors that explain this variability might include poor manufacturing tolerances, variation in PIR sensitivity, animal behavior, and species-specific infrared radiation. Population surveys using trail cameras with PIR systems must incorporate detection rates for individual cameras. Incorporating time-lapse triggering systems into survey designs should eliminate issues associated with PIR systems.

  2. Development of a highly sensitive immunochromatographic detection kit for H5 influenza virus hemagglutinin using silver amplification.

    PubMed

    Wada, Atsuhiko; Sakoda, Yoshihiro; Oyamada, Takayoshi; Kida, Hiroshi

    2011-12-01

    H5N1, a highly pathogenic avian influenza virus (HPAIV), has become a serious epizootic threat to the poultry population in Asia. In addition, significant numbers of human cases of HPAIV infection have been reported to date. To prevent the spread of HPAIV among humans and to allow for timely medical intervention, a rapid and high sensitive method is needed to detect and subtype the causative HPAIVs. In the present study, a silver amplification technique used in photographic development was combined with immunochromatography technologies and a highly sensitive and rapid diagnostic test to detect the hemagglutinin of H5 influenza viruses was developed. The sensitivity of the test kit was increased 500 times by silver amplification. The sensitivity of the method was more than 10 times higher than those of conventional rapid influenza diagnostic tests, which detect viral nucleoproteins. The diagnostic system developed in the present study can therefore provide rapid and highly sensitive results and will be useful for diagnosis of H5 HPAIV infection in humans and animals. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Decision support system for the detection and grading of hard exudates from color fundus photographs

    NASA Astrophysics Data System (ADS)

    Jaafar, Hussain F.; Nandi, Asoke K.; Al-Nuaimy, Waleed

    2011-11-01

    Diabetic retinopathy is a major cause of blindness, and its earliest signs include damage to the blood vessels and the formation of lesions in the retina. Automated detection and grading of hard exudates from the color fundus image is a critical step in the automated screening system for diabetic retinopathy. We propose novel methods for the detection and grading of hard exudates and the main retinal structures. For exudate detection, a novel approach based on coarse-to-fine strategy and a new image-splitting method are proposed with overall sensitivity of 93.2% and positive predictive value of 83.7% at the pixel level. The average sensitivity of the blood vessel detection is 85%, and the success rate of fovea localization is 100%. For exudate grading, a polar fovea coordinate system is adopted in accordance with medical criteria. Because of its competitive performance and ability to deal efficiently with images of variable quality, the proposed technique offers promising and efficient performance as part of an automated screening system for diabetic retinopathy.

  4. An analytical model for the detection of levitated nanoparticles in optomechanics

    NASA Astrophysics Data System (ADS)

    Rahman, A. T. M. Anishur; Frangeskou, A. C.; Barker, P. F.; Morley, G. W.

    2018-02-01

    Interferometric position detection of levitated particles is crucial for the centre-of-mass (CM) motion cooling and manipulation of levitated particles. In combination with balanced detection and feedback cooling, this system has provided picometer scale position sensitivity, zeptonewton force detection, and sub-millikelvin CM temperatures. In this article, we develop an analytical model of this detection system and compare its performance with experimental results allowing us to explain the presence of spurious frequencies in the spectra.

  5. Highly sensitive detection of human papillomavirus type 16 DNA using time-resolved fluorescence microscopy and long lifetime probes

    NASA Astrophysics Data System (ADS)

    Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian

    1995-04-01

    We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using fluorescence in situ hybridization image is useful for the diagnosis of many other type of diseases, the system we have developed should find numerous applications for the diagnosis of disease states.

  6. Imaging of tumor hypermetabolism with near-infrared fluorescence contrast agents

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Zheng, Gang; Zhang, Zhihong; Blessington, Dana; Intes, Xavier; Achilefu, Samuel I.; Chance, Britton

    2004-08-01

    We have developed a high sensitivity near-infrared (NIR) optical imaging system for non-invasive cancer detection through molecular labeled fluorescent contrast agents. Near-infrared (NIR) imaging can probe tissue deeply thus possess the potential for non-invasively detection of breast or lymph node cancer. Recent developments in molecular beacons can selectively label various pre-cancer/cancer signatures and provide high tumor to background contrast. To increase the sensitivity in detecting fluorescent photons and the accuracy of localization, phase cancellation (in- and anti-phase) device is employed. This frequency-domain system utilizes the interference-like pattern of diffuse photon density wave to achieve high detection sensitivity and localization accuracy for the fluorescent heterogeneity embedded inside the scattering media. The opto-electronic system consists of the laser sources, fiber optics, interference filter to select the fluorescent photons and the high sensitivity photon detector (photomultiplier tube). The source-detector pair scans the tissue surface in multiple directions and the two-dimensional localization image can be obtained using goniometric reconstruction. In vivo measurements with tumor-bearing mouse model using the novel Cypate-mono-2-deoxy-glucose (Cypate-2-D-Glucosamide) fluorescent contrast agent, which targets the enhanced tumor glycolysis, demonstrated the feasibility on detection of 2 cm deep subsurface tumor in the tissue-like medium, with a localization accuracy within 2 ~ 3 mm. This instrument has the potential for tumor diagnosis and imaging, and the accuracy of the localization suggests that this system could help to guide the clinical fine-needle biopsy. This portable device would be complementary to X-ray mammogram and provide add-on information on early diagnosis and localization of early breast tumor.

  7. Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000 (trademark)

    DTIC Science & Technology

    2012-09-30

    be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES  Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection.  Assemble the system

  8. Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000(TM)

    DTIC Science & Technology

    2011-09-30

    be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES  Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection.  Assemble the system

  9. Damage Detection Sensitivity of a Vehicle-based Bridge Health Monitoring System

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ayaho; Yabe, Akito; Lúcio, Válter J. G.

    2017-05-01

    As one solution to the problem for condition assessment of existing short and medium span (10-30m) reinforced/prestressed concrete bridges, a new monitoring method using a public bus as part of a public transit system (called “Bus monitoring system”) was proposed, along with safety indices, namely, “characteristic deflection”, which is relatively free from the influence of dynamic disturbances due to such factors as the roughness of the road surface, and a structural anomaly parameter. In this study, to evaluate the practicality of the newly developed bus monitoring system, it has been field-tested over a period of about four years by using an in-service fixed-route bus operating on a bus route in the city of Ube, Yamaguchi Prefecture, Japan. In here, although there are some useful monitoring methods for short and medium span bridges based on the qualitative or quantitative information, the sensitivity of damage detection was newly discussed for safety assessment based on long term health monitoring data. The verification results thus obtained are also described in this paper, and also evaluates the sensitivity of the “characteristic deflection”, which is a bridge (health) condition indicator used by the bus monitoring system, in damage detection. Sensitivity of “characteristic deflection” is verified by introducing artificial damage into a bridge that has ended its service life and is awaiting removal. Furthermore, the sensitivity of “characteristic deflection” is verified by 3D FEM analysis.

  10. Development and Validation of a P-35S, T-nos, T-35S and P-FMV Tetraplex Real-time PCR Screening Method to Detect Regulatory Genes of Genetically Modified Organisms in Food.

    PubMed

    Eugster, Albert; Murmann, Petra; Kaenzig, Andre; Breitenmoser, Alda

    2014-10-01

    In routine analysis screening methods based on real-time PCR (polymerase chain reaction) are most commonly used for the detection of genetically modified (GM) plant material in food and feed. Screening tests are based on sequences frequently used for GM development, allowing the detection of a large number of GMOs (genetically modified organisms). Here, we describe the development and validation of a tetraplex real-time PCR screening assay comprising detection systems for the regulatory genes Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens nos terminator, Cauliflower Mosaic Virus 35S terminator and Figwort Mosaic Virus 34S promoter. Three of the four primer and probe combinations have already been published elsewhere, whereas primers and probe for the 35S terminator have been developed in-house. Adjustment of primer and probe concentrations revealed a high PCR sensitivity with insignificant physical cross-talk between the four detection channels. The sensitivity of each PCR-system is sufficient to detect a GMO concentration as low as 0.05% of the containing respective element. The specificity of the described tetraplex is high when tested on DNA from GM maize, soy, rapeseed and tomato. We also demonstrate the robustness of the system by inter-laboratory tests. In conclusion, this method provides a sensitive and reliable screening procedure for the detection of the most frequently used regulatory elements present in GM crops either authorised or unauthorised for food.

  11. Photooxidation of 3-substituted pyrroles:  a postcolumn reaction detection system for singlet molecular oxygen in HPLC.

    PubMed

    Denham, K; Milofsky, R E

    1998-10-01

    A postcolumn photochemical reaction detection scheme, based on the reaction of 3-substituted pyrroles with singlet molecular oxygen ((1)O(2)), has been developed. The method is selective and sensitive for the determination of a class of organic compounds called (1)O(2)-sensitizers and is readily coupled to HPLC. Following separation by HPLC, analytes ((1)O(2)-sensitizers) are excited by a Hg pen-ray lamp. Analytes that are efficient (1)O(2)-sensitizers promote ground-state O(2) ((3)Σ(g)(-)) to an excited state ((1)Σ(g)(+) or (1)Δ(g)), which reacts rapidly with tert-butyl-3,4,5-trimethylpyrrolecarboxylate (BTMPC) or N-benzyl-3-methoxypyrrole-2-tert-carboxylate (BMPC), which is added to the mobile phase. Detection is based on the loss of pyrrole (BTMPC or BMPC). The reaction is catalytic in nature since one analyte molecule may absorb light many times, producing large amounts of (1)O(2). Detection limits for several (1)O(2)-sensitizers were improved by 1-2 orders of magnitude over optimized UV-absorbance detection. This paper discusses the optimization of the reaction conditions for this photochemical reaction detection scheme and its application to the detection of PCBs, nitrogen heterocycles, nitro and chloro aromatics, and other substituted aromatic compounds.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihailescu, Lucian

    This disclosure provides systems, methods, and apparatus related to ion beam therapy. In one aspect, a system includes a position sensitive detector and a collimator. The position sensitive detector configured to detect gamma rays generated by an ion beam interacting with a target. The collimator is positioned between the target and the position sensitive detector. The collimator includes a plurality of knife-edge slits, with a first knife-edge slit intersecting with a second knife-edge slit.

  13. Optofluidic platforms based on surface-enhanced Raman scattering.

    PubMed

    Lim, Chaesung; Hong, Jongin; Chung, Bong Geun; deMello, Andrew J; Choo, Jaebum

    2010-05-01

    We report recent progress in the development of surface-enhanced Raman scattering (SERS)-based optofluidic platforms for the fast and sensitive detection of chemical and biological analytes. In the current context, a SERS-based optofluidic platform is defined as an integrated analytical device composed of a microfluidic element and a sensitive Raman spectrometer. Optofluidic devices for SERS detection normally involve nanocolloid-based microfluidic systems or metal nanostructure-embedded microfluidic systems. In the current review, recent advances in both approaches are surveyed and assessed. Additionally, integrated real-time sensing systems that combine portable Raman spectrometers with microfluidic devices are also reviewed. Such real-time sensing systems have significant utility in environmental monitoring, forensic science and homeland defense applications.

  14. Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance

    NASA Technical Reports Server (NTRS)

    Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.

    2016-01-01

    Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.

  15. Sensitivity and specificity of a new automated system for the detection of hepatitis B virus, hepatitis C virus, and human immunodeficiency virus nucleic acid in blood and plasma donations.

    PubMed

    Galel, Susan A; Simon, Toby L; Williamson, Phillip C; AuBuchon, James P; Waxman, Dan A; Erickson, Yasuko; Bertuzis, Rasa; Duncan, John R; Malhotra, Khushbeer; Vaks, Jeffrey; Huynh, Nancy; Pate, Lisa Lee

    2018-03-01

    Use of nucleic acid testing (NAT) in donor infectious disease screening improves transfusion safety. Advances in NAT technology include improvements in assay sensitivity and system automation, and real-time viral target discrimination in multiplex assays. This article describes the sensitivity and specificity of cobas MPX, a multiplex assay for detection of human immunodeficiency virus (HIV)-1 Group M, HIV-2 and HIV-1 Group O RNA, HCV RNA, and HBV DNA, for use on the cobas 6800/8800 Systems. The specificity of cobas MPX was evaluated in samples from donors of blood and source plasma in the United States. Analytic sensitivity was determined with reference standards. Infectious window periods (WPs) before NAT detectability were calculated for current donor screening assays. The specificity of cobas MPX was 99.946% (99.883%-99.980%) in 11,203 blood donor samples tested individually (IDT), 100% (99.994%-100%) in 63,012 donor samples tested in pools of 6, and 99.994% (99.988%-99.998%) in 108,306 source plasma donations tested in pools of 96. Seven HCV NAT-yield donations and one seronegative occult HBV infection were detected. Ninety-five percent and 50% detection limits in plasma (IU/mL) were 25.7 and 3.8 for HIV-1M, 7.0 and 1.3 for HCV, and 1.4 and 0.3 for HBV. The HBV WP was 1 to 4 days shorter than other donor screening assays by IDT. cobas MPX demonstrated high specificity in blood and source plasma donations tested individually and in pools. High sensitivity, in particular for HBV, shortens the WP and may enhance detection of occult HBV. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  16. Polystyrene Oxygen Optodes Doped with Ir(III) and Pd(II) meso-Tetrakis(pentafluorophenyl)porphyrin Using an LED-Based High-Sensitivity Phosphorimeter.

    PubMed

    Filho, Alexandre F De Moraes; Gewehr, Pedro M; Maia, Joaquim M; Jakubiak, Douglas R

    2018-06-15

    This paper presents a gaseous oxygen detection system based on time-resolved phosphorimetry (time-domain), which is used to investigate O2 optical transducers. The primary sensing elements were formed by incorporating iridium(III) and palladium(II) meso -tetrakis(pentafluorophenyl)porphyrin complexes (IrTFPP-CO-Cl and PdTFPP) in polystyrene (PS) solid matrices. Probe excitation was obtained using a violet light-emitting diode (LED) (low power), and the resulting phosphorescence was detected by a high-sensitivity compact photomultiplier tube. The detection system performance and the preparation of the transducers are presented along with their optical properties, phosphorescence lifetimes, calibration curves and photostability. The developed lifetime measuring system showed a good signal-to-noise ratio, and reliable results were obtained from the optodes, even when exposed to moderate levels of O2. The new IrTFPP-CO-Cl membranes exhibited room temperature phosphorescence and moderate sensitivity: <τ0>/<τ21%> ratio of ≈6. A typically high degree of dynamic phosphorescence quenching was observed for the traditional indicator PdTFPP: <τ0>/<τ21%> ratio of ≈36. Pulsed-source time-resolved phosphorimetry combined with a high-sensitivity photodetector can offer potential advantages such as: (i) major dynamic range, (ii) extended temporal resolution (Δτ/Δ[O2]) and (iii) high operational stability. IrTFPP-CO-Cl immobilized in polystyrene is a promising alternative for O2 detection, offering adequate photostability and potentially mid-range sensitivity over Pt(II) and Pd(II) metalloporphyrins.

  17. Evaluation of three automated nucleic acid extraction systems for identification of respiratory viruses in clinical specimens by multiplex real-time PCR.

    PubMed

    Kim, Yoonjung; Han, Mi-Soon; Kim, Juwon; Kwon, Aerin; Lee, Kyung-A

    2014-01-01

    A total of 84 nasopharyngeal swab specimens were collected from 84 patients. Viral nucleic acid was extracted by three automated extraction systems: QIAcube (Qiagen, Germany), EZ1 Advanced XL (Qiagen), and MICROLAB Nimbus IVD (Hamilton, USA). Fourteen RNA viruses and two DNA viruses were detected using the Anyplex II RV16 Detection kit (Seegene, Republic of Korea). The EZ1 Advanced XL system demonstrated the best analytical sensitivity for all the three viral strains. The nucleic acids extracted by EZ1 Advanced XL showed higher positive rates for virus detection than the others. Meanwhile, the MICROLAB Nimbus IVD system was comprised of fully automated steps from nucleic extraction to PCR setup function that could reduce human errors. For the nucleic acids recovered from nasopharyngeal swab specimens, the QIAcube system showed the fewest false negative results and the best concordance rate, and it may be more suitable for detecting various viruses including RNA and DNA virus strains. Each system showed different sensitivity and specificity for detection of certain viral pathogens and demonstrated different characteristics such as turnaround time and sample capacity. Therefore, these factors should be considered when new nucleic acid extraction systems are introduced to the laboratory.

  18. High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Measuring the high frequency acoustic vibrations represents the fundamental interest in revealing the intrinsic dynamic characteristic of board range of systems, such as the growth of the fetus, blood flow in human palms, and vibrations of carbon nanotube. However, the acoustic wave detection capability is limited by the detection bandwidth and sensitivity of the commonly used piezoelectric based ultrasound detectors. To overcome these limitations, this thesis focuses on exploring the optical demodulation method for highly sensitive detection of broadband acoustic vibration. First, a transparent optical ultrasonic detector has been developed using micro-ring resonator (MRR) made of soft polymeric materials. It outperforms the traditional piezoelectric detectors with broader detection bandwidth, miniaturized size and wide angular sensitivity. Its ease of integration into photoacoustic microscopy system has resulted in the great improvement of the imaging resolution. A theoretic framework has been developed to establish the quantitative understanding of its unique distance and angular dependent detection characteristics and was subsequently validated experimentally. The developed theoretic framework provides a guideline to fully accounts for the trade-offs between axial and lateral resolution, working distance, and the field of view in developing optimal imaging performance for a wide range of biological and clinical applications. MRR-based ultrasonic detector is further integrated into confocal fluorescence microscopy to realize the simultaneous imaging of fluorescence and optical absorption of retinal pigment epithelium, achieving multi-contrast imaging at sub-cellular level. The needs to resolve the fine details of the biological specimen with the resolution beyond the diffraction limit further motivate the development of optical demodulated ultrasonic detection method based on near-field scanning optical microscopy (NSOM). The nano-focusing probe was developed for adiabatic focusing of surface plasmon polaritons to the probe apex with high energy efficiency and the suppression of the background noise was accomplished through the implementation of the harmonic demodulation technique. Collectively, this system is capable of delivering intense near-field illumination source while effectively suppressing the background signal due to the far-field scattering and thus, allows for quantitative mapping of local evanescent field with enhanced contrast and improved resolutions. The performance of the developed NSOM system has been validated through the experimental measurements of the surface plasmon polariton mode. This new NSOM system enables optical demodulated ultrasound detection at nanoscale spatial resolution. Using it to detect the ultrasound signal within the acoustic near-field has led to the successful experimental demonstration of the sub-surface photoacoustic imaging of buried objects with sub-diffraction-limited resolution and high sensitivity. Such a new ultrasound detection method holds promising potential for super-resolution ultrasound imaging.

  19. Low-cost compact MEMS scanning ladar system for robotic applications

    NASA Astrophysics Data System (ADS)

    Moss, Robert; Yuan, Ping; Bai, Xiaogang; Quesada, Emilio; Sudharsanan, Rengarajan; Stann, Barry L.; Dammann, John F.; Giza, Mark M.; Lawler, William B.

    2012-06-01

    Future robots and autonomous vehicles require compact low-cost Laser Detection and Ranging (LADAR) systems for autonomous navigation. Army Research Laboratory (ARL) had recently demonstrated a brass-board short-range eye-safe MEMS scanning LADAR system for robotic applications. Boeing Spectrolab is doing a tech-transfer (CRADA) of this system and has built a compact MEMS scanning LADAR system with additional improvements in receiver sensitivity, laser system, and data processing system. Improved system sensitivity, low-cost, miniaturization, and low power consumption are the main goals for the commercialization of this LADAR system. The receiver sensitivity has been improved by 2x using large-area InGaAs PIN detectors with low-noise amplifiers. The FPGA code has been updated to extend the range to 50 meters and detect up to 3 targets per pixel. Range accuracy has been improved through the implementation of an optical T-Zero input line. A compact commercially available erbium fiber laser operating at 1550 nm wavelength is used as a transmitter, thus reducing the size of the LADAR system considerably from the ARL brassboard system. The computer interface has been consolidated to allow image data and configuration data (configuration settings and system status) to pass through a single Ethernet port. In this presentation we will discuss the system architecture and future improvements to receiver sensitivity using avalanche photodiodes.

  20. Rapid detection of pandemic influenza in the presence of seasonal influenza

    PubMed Central

    2010-01-01

    Background Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method that uses historical syndromic influenza data from the existing surveillance system 'SERVIS' (Scottish Enhanced Respiratory Virus Infection Surveillance) for influenza-like illness (ILI) in Scotland. Methods We develop an algorithm based on the weekly case ratio (WCR) of reported ILI cases to generate an alarm for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint probability distribution of the country-level WCR and the number of health boards showing synchronous increases in reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS ILI cases are used for testing detection performances of the three methods with a real pandemic data. Results We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg Cusum) and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection specificity of 95%, our method is 100% sensitive and has median detection time (MDT) of 4 weeks while the Mov-Avg Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99% specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks. For a two-fold decrease in the case reporting rate (0.5%) and 99% specificity, the WCR and threshold methods, respectively, have MDT of 5 and 6 weeks with both having sensitivity close to 100% while the Mov-Avg Cusum method can only manage sensitivity of 77% with MDT of 6 weeks. However, the WCR and Mov-Avg Cusum methods outperform the ILI threshold method by 1 week in retrospective detection of the 2009 pandemic in Scotland. Conclusions While computationally and statistically simple to implement, the WCR algorithm is capable of raising alarms, rapidly and sensitively, for influenza pandemics against a background of seasonal influenza. Although the algorithm was developed using the SERVIS data, it has the capacity to be used at other geographic scales and for different disease systems where buying some early extra time is critical. PMID:21106071

  1. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Sennett, Charlene A.; Giger, Maryellen L.

    2014-01-15

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V{sup ®} ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patientsmore » (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation.« less

  2. Electrochemical aptasensor for detecting tetracycline in milk

    NASA Astrophysics Data System (ADS)

    Hanh Le, Thi; Phuc Pham, Van; Huyen La, Thi; Binh Phan, Thi; Huan Le, Quang

    2016-03-01

    A rapid, simple and sensitive biosensor system for tetracycline detection is very important in food safety. In this paper we developed a label-free aptasensor for electrochemical detection of tetracycline. According to the electrochemical impendence spectroscopy (EIS) analysis, there was a linear relationship between the concentration of tetracycline and the electron transfer resistance from 10 to 3000 ng ml-1 of the tetracycline concentration. The detection limit was 10 ng ml-1 in 15 min detection duration. The prepared aptasensor showed a good reproducibility with an acceptable stability in tetracycline detection. The recoveries of tetracycline in spiked milk samples were in the range of 88.1%-94.2%. The aptasensor has sensitivity 98% and specificity of 100%.

  3. Structural Damage Detection Using Virtual Passive Controllers

    NASA Technical Reports Server (NTRS)

    Lew, Jiann-Shiun; Juang, Jer-Nan

    2001-01-01

    This paper presents novel approaches for structural damage detection which uses the virtual passive controllers attached to structures, where passive controllers are energy dissipative devices and thus guarantee the closed-loop stability. The use of the identified parameters of various closed-loop systems can solve the problem that reliable identified parameters, such as natural frequencies of the open-loop system may not provide enough information for damage detection. Only a small number of sensors are required for the proposed approaches. The identified natural frequencies, which are generally much less sensitive to noise and more reliable than the identified natural frequencies, are used for damage detection. Two damage detection techniques are presented. One technique is based on the structures with direct output feedback controllers while the other technique uses the second-order dynamic feedback controllers. A least-squares technique, which is based on the sensitivity of natural frequencies to damage variables, is used for accurately identifying the damage variables.

  4. A feasibility study of automatic lung nodule detection in chest digital tomosynthesis with machine learning based on support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung

    2017-03-01

    The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.

  5. Synthesizing Neurophysiology, Genetics, Behaviour and Learning to Produce Whole-Insect Programmable Sensors to Detect Volatile Chemicals.

    USDA-ARS?s Scientific Manuscript database

    Most insects have evolved highly sensitive olfactory systems which respond to odors in their environment. The extremely sensitive nature of the insect olfaction system is enhanced by the ability to learn to associate external stimuli with resources, such as food, hosts, and mates. There have been a ...

  6. An ultrasensitive alloyed near-infrared quinternary quantum dot-molecular beacon nanodiagnostic bioprobe for influenza virus RNA.

    PubMed

    Adegoke, Oluwasesan; Kato, Tatsuya; Park, Enoch Y

    2016-06-15

    Conventional techniques used to diagnose influenza virus face several challenges, such as low sensitivity, slow detection, false positive results and misinterpreted data. Hence, diagnostic probes that can offer robust detection qualities, such as high sensitivity, rapid detection, elimination of false positive data, and specificity for influenza virus, are urgently needed. The near-infrared (NIR) range is an attractive spectral window due to low photon absorption by biological tissues, hence well-constructed fluorescent biosensors that emit within the NIR window can offer an improved limit of detection (LOD). Here, we demonstrate the use of a newly synthesized NIR quinternary alloyed CdZnSeTeS quantum dots (QDs) as an ultrasensitive fluorescence reporter in a conjugated molecular beacon (MB) assay to detect extremely low concentrations of influenza virus H1N1 RNA. Under optimum conditions, two different strains of influenza virus H1N1 RNA were detected based on fluorescence enhancement signal transduction. We successfully discriminated between two different strains of influenza virus H1N1 RNA based on the number of complementary nucleotide base pairs of the MB to the target RNA sequence. The merits of our bioprobe system are rapid detection, high sensitivity (detects H1N1 viral RNA down to 2 copies/mL), specificity and versatility (detects H1N1 viral RNA in human serum). For comparison, a conventional CdSe/ZnS-MB probe could not detect the extremely low concentrations of H1N1 viral RNA detected by our NIR alloyed CdZnSeTeS-MB probe. Our bioprobe detection system produced a LOD as low as ~1 copy/mL and is more sensitive than conventional molecular tests and rapid influenza detection tests (RIDTS) probes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Chemical-Sensing Cables Detect Potential Threats

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Intelligent Optical Systems Inc. (IOS) completed Phase I and II Small Business Innovation Research (SBIR) contracts with NASA's Langley Research Center to develop moisture- and pH-sensitive sensors to detect corrosion or pre-corrosive conditions, warning of potentially dangerous conditions before significant structural damage occurs. This new type of sensor uses a specially manufactured optical fiber whose entire length is chemically sensitive, changing color in response to contact with its target, and demonstrated to detect potentially corrosive moisture incursions to within 2 cm. After completing the work with NASA, the company received a Defense Advanced Research Projects Agency (DARPA) Phase III SBIR to develop the sensors further for detecting chemical warfare agents, for which they proved just as successful. The company then worked with the U.S. Department of Defense (DoD) to fine tune the sensors for detecting potential threats, such as toxic industrial compounds and nerve agents. In addition to the work with government agencies, Intelligent Optical Systems has sold the chemically sensitive fiber optic cables to major automotive and aerospace companies, who are finding a variety of uses for the devices. Marketed under the brand name Distributed Intrinsic Chemical Agent Sensing and Transmission (DICAST), these unique continuous-cable fiber optic chemical sensors can serve in a variety of applications: Corrosive-condition monitoring, aiding experimentation with nontraditional power sources, as an economical means of detecting chemical release in large facilities, as an inexpensive "alarm" systems to alert the user to a change in the chemical environment anywhere along the cable, or in distance-resolved optical time domain reflectometry systems to provide detailed profiles of chemical concentration versus length.

  8. A facile approach to construct versatile signal amplification system for bacterial detection.

    PubMed

    Qi, Peng; Zhang, Dun; Wan, Yi; Lv, Dandan

    2014-01-01

    In this work, a facile approach to design versatile signal amplification system for bacterial detection has been presented. Bio-recognition elements and signaling molecules can be immobilized on the surface of Fe₃O₄@MnO₂ nanomaterials with the help of bioinspired polydopamine (PDA). Fe₃O₄@MnO₂ nanoplates were chosen as carrier for bio-recognizing and signaling molecules because this kind of nanomaterial was superparamagnetic and the existence of MnO₂ could enhance the polymerization of dopamine due to its strong oxidative ability. This nanocomposite system was versatile because PDA around Fe₃O₄@MnO₂ nanoplates provided a stable and convenient platform for immobilization of biological and chemical materials, and various kinds of bio-recognizing and signaling molecules could be immobilized by reaction with pendant amino groups of dopamine to meet different detection requirements. Since a substantial amount of signaling molecules were immobilized on the surface of the nanocomposites, so the sensitivity of detection would be improved when the prepared nanocomposites were selectively conjugated with target pathogen. In the experimental section, a sandwich-type electrochemical biosensor was developed to verify the amplified bacterial detection sensitivity. Concanavalin A (conA) and ferrocene (Fc) were chosen as bio-recognition elements and signaling molecules for detection of Desulforibrio caledoiensis, respectively. The conA and Fc modified nanocomposites were conjugated on electrode by the selective recognition between conA and target bacteria, and the bacterial population was obtained by quantification of the electrochemical signal of Fc moieties. The experimental results showed that the detection sensitivity for D. caledoiensis was improved by taking advantage of this signal amplification system. © 2013 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenfang; Du, Jinjin; Wen, Ruijuan

    We have investigated the transmission spectra of a Fabry-Perot interferometer (FPI) with squeezed vacuum state injection and non-Gaussian detection, including photon number resolving detection and parity detection. In order to show the suitability of the system, parallel studies were made of the performance of two other light sources: coherent state of light and Fock state of light either with classical mean intensity detection or with non-Gaussian detection. This shows that by using the squeezed vacuum state and non-Gaussian detection simultaneously, the resolution of the FPI can go far beyond the cavity standard bandwidth limit based on the current techniques. Themore » sensitivity of the scheme has also been explored and it shows that the minimum detectable sensitivity is better than that of the other schemes.« less

  10. Diode laser detection of greenhouse gases in the near-infrared region by wavelength modulation spectroscopy: pressure dependence of the detection sensitivity.

    PubMed

    Asakawa, Takashi; Kanno, Nozomu; Tonokura, Kenichi

    2010-01-01

    We have investigated the pressure dependence of the detection sensitivity of CO(2), N(2)O and CH(4) using wavelength modulation spectroscopy (WMS) with distributed feed-back diode lasers in the near infrared region. The spectral line shapes and the background noise of the second harmonics (2f) detection of the WMS were analyzed theoretically. We determined the optimum pressure conditions in the detection of CO(2), N(2)O and CH(4), by taking into consideration the background noise in the WMS. At the optimum total pressure for the detection of CO(2), N(2)O and CH(4), the limits of detection in the present system were determined.

  11. Design and application of an array extended blackbody

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-zhou; Fan, Xiao-li; Lei, Hao; Zhou, Zhi-yuan

    2018-02-01

    An array extended blackbody is designed to quantitatively measure and evaluate the performance of infrared imaging systems. The theory, structure, control software and application of blackbody are introduced. The parameters of infrared imaging systems such as the maximum detectable range, detection sensitivity, spatial resolution and temperature resolution can be measured.

  12. A K(+)-mediated G-quadruplex formation enhancement fluorescence polarization system based on quantum dots for detection of Hg2+ and biothiols.

    PubMed

    Zhang, Juanni; Tian, Jianniao; He, Yanlong; Zhao, Yanchun; Zhao, Shulin

    2014-02-25

    A fluorescence polarization homogenous system based on CdTe/CdS QDs that employed a K(+)-mediated G-quadruplex as an enhancer was identified for sensitive and selective detection of Hg(2+) and biothiols in complex samples.

  13. Record of hospitalizations for ambulatory care sensitive conditions: validation of the hospital information system.

    PubMed

    Rehem, Tania Cristina Morais Santa Barbara; de Oliveira, Maria Regina Fernandes; Ciosak, Suely Itsuko; Egry, Emiko Yoshikawa

    2013-01-01

    To estimate the sensitivity, specificity and positive and negative predictive values of the Unified Health System's Hospital Information System for the appropriate recording of hospitalizations for ambulatory care-sensitive conditions. The hospital information system records for conditions which are sensitive to ambulatory care, and for those which are not, were considered for analysis, taking the medical records as the gold standard. Through simple random sampling, a sample of 816 medical records was defined and selected by means of a list of random numbers using the Statistical Package for Social Sciences. The sensitivity was 81.89%, specificity was 95.19%, the positive predictive value was 77.61% and the negative predictive value was 96.27%. In the study setting, the Hospital Information System (SIH) was more specific than sensitive, with nearly 20% of care sensitive conditions not detected. There are no validation studies in Brazil of the Hospital Information System records for the hospitalizations which are sensitive to primary health care. These results are relevant when one considers that this system is one of the bases for assessment of the effectiveness of primary health care.

  14. Non-destructive Testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    NASA Technical Reports Server (NTRS)

    Lu, D. F.; Fan, Chang-Xin; Ruan, J. Z.; Han, S. G.; Wong, K. W.; Sun, G. F.

    1995-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A nondestructive testing (NDT) device using high temperature SQUID's and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUID's. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  15. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Factors influencing performance of internet-based biosurveillance systems used in epidemic intelligence for early detection of infectious diseases outbreaks.

    PubMed

    Barboza, Philippe; Vaillant, Laetitia; Le Strat, Yann; Hartley, David M; Nelson, Noele P; Mawudeku, Abla; Madoff, Lawrence C; Linge, Jens P; Collier, Nigel; Brownstein, John S; Astagneau, Pascal

    2014-01-01

    Internet-based biosurveillance systems have been developed to detect health threats using information available on the Internet, but system performance has not been assessed relative to end-user needs and perspectives. Infectious disease events from the French Institute for Public Health Surveillance (InVS) weekly international epidemiological bulletin published in 2010 were used to construct the gold-standard official dataset. Data from six biosurveillance systems were used to detect raw signals (infectious disease events from informal Internet sources): Argus, BioCaster, GPHIN, HealthMap, MedISys and ProMED-mail. Crude detection rates (C-DR), crude sensitivity rates (C-Se) and intrinsic sensitivity rates (I-Se) were calculated from multivariable regressions to evaluate the systems' performance (events detected compared to the gold-standard) 472 raw signals (Internet disease reports) related to the 86 events included in the gold-standard data set were retrieved from the six systems. 84 events were detected before their publication in the gold-standard. The type of sources utilised by the systems varied significantly (p<0001). I-Se varied significantly from 43% to 71% (p=0001) whereas other indicators were similar (C-DR: p=020; C-Se, p=013). I-Se was significantly associated with individual systems, types of system, languages, regions of occurrence, and types of infectious disease. Conversely, no statistical difference of C-DR was observed after adjustment for other variables. Although differences could result from a biosurveillance system's conceptual design, findings suggest that the combined expertise amongst systems enhances early detection performance for detection of infectious diseases. While all systems showed similar early detection performance, systems including human moderation were found to have a 53% higher I-Se (p=00001) after adjustment for other variables. Overall, the use of moderation, sources, languages, regions of occurrence, and types of cases were found to influence system performance.

  17. Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold

    PubMed Central

    Bruno, John G.

    2014-01-01

    Preliminary studies aimed at improving the sensitivity of foodborne pathogen detection via lateral flow (LF) test strips by use of high affinity DNA aptamers for capture and reporter functions when coupled to red-emitting quantum dots (Qdot 655) are reported. A variety of DNA aptamers developed against Escherichia coli, Listeria monocytogenes, and Salmonella enterica were paired in capture and reporter combinations to determine which yielded the strongest detection of their cognate bacteria using a colloidal gold screening system. Several promising sandwich combinations were identified for each of the three bacterial LF strip systems. The best E. coli aptamer-LF system was further studied and yielded a visible limit of detection (LOD) of ~3,000 E. coli 8739 and ~6,000 E. coli O157:H7 in buffer. These LODs were reduced to ~300–600 bacterial cells per test respectively by switching to a Qdot 655 aptamer-LF system. Novel aspects of these assays such as the use of high levels of detergents to avoid quantum dot agglutination and enhance migration in analytical membranes, identification of optimal analytical membrane types, UV-immobilization of capture aptamers, and novel dual biotin/digoxigenin-end labeled aptamer streptavidin-colloidal gold or -Qdot 655 conjugates plus anti-digoxigenin antibody control lines are also discussed. In general, this work provides proof-of-principle for highly sensitive aptamer-Qdot LF strip assays for rapid foodborne pathogen detection. PMID:25437803

  18. ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection.

    PubMed

    Sun, Steven; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham

    2010-08-21

    A miniature 96 sample ELISA-lab-on-a-chip (ELISA-LOC) was designed, fabricated, and tested for immunological detection of Staphylococcal Enterotoxin B (SEB). The chip integrates a simple microfluidics system into a miniature ninety-six sample plate, allowing the user to carry out an immunological assay without a laboratory. Assay reagents are delivered into the assay plate without the need for separate devices commonly used in immunoassays. The ELISA-LOC was constructed using Laminated Object Manufacturing (LOM) technology to assemble six layers with an acrylic (poly(methyl methacrylate) (PMMA)) core and five polycarbonate layers micromachined by a CO(2) laser. The ELISA-LOC has three main functional elements: reagent loading fluidics, assay and detection wells, and reagent removal fluidics, a simple "surface tension" valve used to control the flow. To enhance assay sensitivity and to perform the assay without a lab, ELISA-LOC detection combines several biosensing elements: (1) carbon nanotube (CNT) technology to enhance primary antibody immobilization, (2) sensitive ECL (electrochemiluminescence) detection, and (3) a charge-coupled device (CCD) detector for measuring the light signal generated by ECL. Using a sandwich ELISA assay, the system detected SEB at concentrations as low as 0.1 ng ml(-1), which is similar to the reported sensitivity of conventional ELISA. The fluidics system can be operated by a syringe and does not require power for operation. This simple point-of-care (POC) system is useful for carrying out various immunological assays and other complex medical assays without a laboratory.

  19. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    NASA Astrophysics Data System (ADS)

    Starkenburg, Daken J.; Johns, Paul M.; Baciak, James E.; Nino, Juan C.; Xue, Jiangeng

    2017-12-01

    Developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced from an X-ray generator, SubPc:C60, AlPcCl:C70, and P3HT:PC61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.18 μGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy-1 cm-2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.

  20. Comparison of Non-Culture-Based Methods for Detection of Systemic Fungal Infections, with an Emphasis on Invasive Candida Infections

    PubMed Central

    White, P. Lewis; Archer, Alice E.; Barnes, Rosemary A.

    2005-01-01

    The accepted limitations associated with classic culture techniques for the diagnosis of invasive fungal infections have lead to the emergence of many non-culture-based methods. With superior sensitivities and quicker turnaround times, non-culture-based methods may aid the diagnosis of invasive fungal infections. In this review of the diagnostic service, we assessed the performances of two antigen detection techniques (enzyme-linked immunosorbent assay [ELISA] and latex agglutination) with a molecular method for the detection of invasive Candida infection and invasive aspergillosis. The specificities for all three assays were high (≥97%), although the Candida PCR method had enhanced sensitivity over both ELISA and latex agglutination with values of 95%, 75%, and 25%, respectively. However, calculating significant sensitivity values for the Aspergillus detection methods was not feasible due to a low number of proven/probable cases. Despite enhanced sensitivity, the PCR method failed to detect nucleic acid in a probable case of invasive Candida infection that was detected by ELISA. In conclusion, both PCR and ELISA techniques should be used in unison to aid the detection of invasive fungal infections. PMID:15872239

  1. Automatic quadrature control and measuring system. [using optical coupling circuitry

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F. (Inventor)

    1974-01-01

    A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.

  2. Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum.

    PubMed

    Ma, Guo-Ming; Zhao, Shu-Jing; Jiang, Jun; Song, Hong-Tu; Li, Cheng-Rong; Luo, Ying-Ting; Wu, Hao

    2017-11-02

    Dissolved gas analysis (DGA) is widely used in monitoring and diagnosing of power transformer, since the insulation material in the power transformer decomposes gases under abnormal operation condition. Among the gases, acetylene, as a symbol of low energy spark discharge and high energy electrical faults (arc discharge) of power transformer, is an important monitoring parameter. The current gas detection method used by the online DGA equipment suffers from problems such as cross sensitivity, electromagnetic compatibility and reliability. In this paper, an optical gas detection system based on TDLAS technology is proposed to detect acetylene dissolved in transformer oil. We selected a 1530.370 nm laser in the near infrared wavelength range to correspond to the absorption peak of acetylene, while using the wavelength modulation strategy and Herriott cell to improve the detection precision. Results show that the limit of detection reaches 0.49 ppm. The detection system responds quickly to changes of gas concentration and is easily to maintenance while has no electromagnetic interference, cross-sensitivity, or carrier gas. In addition, a complete detection process of the system takes only 8 minutes, implying a practical prospect of online monitoring technology.

  3. SQUID sensor application for small metallic particle detection

    NASA Astrophysics Data System (ADS)

    Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi

    2009-04-01

    High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods.

  4. Sensitivity to synchronicity of biological motion in normal and amblyopic vision

    PubMed Central

    Luu, Jennifer Y.; Levi, Dennis M.

    2017-01-01

    Amblyopia is a developmental disorder of spatial vision that results from abnormal early visual experience usually due to the presence of strabismus, anisometropia, or both strabismus and anisometropia. Amblyopia results in a range of visual deficits that cannot be corrected by optics because the deficits reflect neural abnormalities. Biological motion refers to the motion patterns of living organisms, and is normally displayed as points of lights positioned at the major joints of the body. In this experiment, our goal was twofold. We wished to examine whether the human visual system in people with amblyopia retained the higher-level processing capabilities to extract visual information from the synchronized actions of others, therefore retaining the ability to detect biological motion. Specifically, we wanted to determine if the synchronized interaction of two agents performing a dancing routine allowed the amblyopic observer to use the actions of one agent to predict the expected actions of a second agent. We also wished to establish whether synchronicity sensitivity (detection of synchronized versus desynchronized interactions) is impaired in amblyopic observers relative to normal observers. The two aims are differentiated in that the first aim looks at whether synchronized actions result in improved expected action predictions while the second aim quantitatively compares synchronicity sensitivity, or the ratio of desynchronized to synchronized detection sensitivities, to determine if there is a difference between normal and amblyopic observers. Our results show that the ability to detect biological motion requires more samples in both eyes of amblyopes than in normal control observers. The increased sample threshold is not the result of low-level losses but may reflect losses in feature integration due to undersampling in the amblyopic visual system. However, like normal observers, amblyopes are more sensitive to synchronized versus desynchronized interactions, indicating that higher-level processing of biological motion remains intact. We also found no impairment in synchronicity sensitivity in the amblyopic visual system relative to the normal visual system. Since there is no impairment in synchronicity sensitivity in either the nonamblyopic or amblyopic eye of amblyopes, our results suggest that the higher order processing of biological motion is intact. PMID:23474301

  5. Detection of Helicobacter pylori DNA in inflamed dental pulp specimens from Japanese children and adolescents.

    PubMed

    Ogaya, Yuko; Nomura, Ryota; Watanabe, Yoshiyuki; Nakano, Kazuhiko

    2015-01-01

    The oral cavity has been implicated as a source of Helicobacter pylori infection in childhood. Various PCR methods have been used to detect H. pylori DNA in oral specimens with various detection rates reported. Such disparity in detection rates complicates the estimation of the true infection rate of H. pylori in the oral cavity. In the present study, we constructed a novel PCR system for H. pylori detection and used it to analyse oral specimens. Firstly, the nucleotide alignments of genes commonly used for H. pylori detection were compared using the complete genome information for 48 strains registered in the GenBank database. Candidate primer sets with an estimated amplification size of approximately 300-400 bp were selected, and the specificity and sensitivity of the detection system using each primer set were evaluated. Five sets of primers targeting ureA were considered appropriate, of which a single primer set was chosen for inclusion in the PCR system. The sensitivity of the system was considered appropriate and its detection limit established as one to ten cells per reaction. The novel PCR system was used to examine H. pylori distribution in oral specimens (40 inflamed pulp tissues, 40 saliva samples) collected from Japanese children, adolescents and young adults. PCR analysis revealed that the detection rate of H. pylori in inflamed pulp was 15 %, whereas no positive reaction was found in any of the saliva specimens. Taken together, our novel PCR system was found to be reliable for detecting H. pylori. The results obtained showed that H. pylori was detected in inflamed pulp but not saliva specimens, indicating that an infected root canal may be a reservoir for H. pylori. © 2015 The Authors.

  6. Reducing false positives of microcalcification detection systems by removal of breast arterial calcifications.

    PubMed

    Mordang, Jan-Jurre; Gubern-Mérida, Albert; den Heeten, Gerard; Karssemeijer, Nico

    2016-04-01

    In the past decades, computer-aided detection (CADe) systems have been developed to aid screening radiologists in the detection of malignant microcalcifications. These systems are useful to avoid perceptual oversights and can increase the radiologists' detection rate. However, due to the high number of false positives marked by these CADe systems, they are not yet suitable as an independent reader. Breast arterial calcifications (BACs) are one of the most frequent false positives marked by CADe systems. In this study, a method is proposed for the elimination of BACs as positive findings. Removal of these false positives will increase the performance of the CADe system in finding malignant microcalcifications. A multistage method is proposed for the removal of BAC findings. The first stage consists of a microcalcification candidate selection, segmentation and grouping of the microcalcifications, and classification to remove obvious false positives. In the second stage, a case-based selection is applied where cases are selected which contain BACs. In the final stage, BACs are removed from the selected cases. The BACs removal stage consists of a GentleBoost classifier trained on microcalcification features describing their shape, topology, and texture. Additionally, novel features are introduced to discriminate BACs from other positive findings. The CADe system was evaluated with and without BACs removal. Here, both systems were applied on a validation set containing 1088 cases of which 95 cases contained malignant microcalcifications. After bootstrapping, free-response receiver operating characteristics and receiver operating characteristics analyses were carried out. Performance between the two systems was compared at 0.98 and 0.95 specificity. At a specificity of 0.98, the sensitivity increased from 37% to 52% and the sensitivity increased from 62% up to 76% at a specificity of 0.95. Partial areas under the curve in the specificity range of 0.8-1.0 were significantly different between the system without BACs removal and the system with BACs removal, 0.129 ± 0.009 versus 0.144 ± 0.008 (p<0.05), respectively. Additionally, the sensitivity at one false positive per 50 cases and one false positive per 25 cases increased as well, 37% versus 51% (p<0.05) and 58% versus 67% (p<0.05) sensitivity, respectively. Additionally, the CADe system with BACs removal reduces the number of false positives per case by 29% on average. The same sensitivity at one false positive per 50 cases in the CADe system without BACs removal can be achieved at one false positive per 80 cases in the CADe system with BACs removal. By using dedicated algorithms to detect and remove breast arterial calcifications, the performance of CADe systems can be improved, in particular, at false positive rates representative for operating points used in screening.

  7. Evaluation of Porous Silicon Oxide on Silicon Microcantilevers for Sensitive Detection of Gaseous HF.

    PubMed

    Wallace, Ryan A; Sepaniak, Michael J; Lavrik, Nickolay V; Datskos, Panos G

    2017-06-06

    Sensitive detection of harmful chemicals in industrial applications is pertinent to safety. In this work, we demonstrate the use of a sensitive silicon microcantilever (MC) system with a porous silicon oxide layer deposited on the active side of the MCs that have been mechanically manipulated to increase sensitivity. Included is the evaluation of porous silicon oxide present on different geometries of MCs and exposed to varying concentrations of hydrogen fluoride in humid air. Profilometry and the signal generated by the stress-induced porous silicon oxide (PSO) coating and bending of the MC were used as methods of evaluation.

  8. Evaluation of Porous Silicon Oxide on Silicon Microcantilevers for Sensitive Detection of Gaseous HF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Ryan A.; Sepaniak, Michael J.; Lavrik, Nickolay V.

    Sensitive detection of harmful chemicals in industrial applications is pertinent to safety. In this paper, we demonstrate the use of a sensitive silicon microcantilever (MC) system with a porous silicon oxide layer deposited on the active side of the MCs that have been mechanically manipulated to increase sensitivity. Included is the evaluation of porous silicon oxide present on different geometries of MCs and exposed to varying concentrations of hydrogen fluoride in humid air. Finally, profilometry and the signal generated by the stress-induced porous silicon oxide (PSO) coating and bending of the MC were used as methods of evaluation.

  9. Evaluation of Porous Silicon Oxide on Silicon Microcantilevers for Sensitive Detection of Gaseous HF

    DOE PAGES

    Wallace, Ryan A.; Sepaniak, Michael J.; Lavrik, Nickolay V.; ...

    2017-05-10

    Sensitive detection of harmful chemicals in industrial applications is pertinent to safety. In this paper, we demonstrate the use of a sensitive silicon microcantilever (MC) system with a porous silicon oxide layer deposited on the active side of the MCs that have been mechanically manipulated to increase sensitivity. Included is the evaluation of porous silicon oxide present on different geometries of MCs and exposed to varying concentrations of hydrogen fluoride in humid air. Finally, profilometry and the signal generated by the stress-induced porous silicon oxide (PSO) coating and bending of the MC were used as methods of evaluation.

  10. Research of the absorbance detection and fluorescence detection for multifunctional nutrition analyzer

    NASA Astrophysics Data System (ADS)

    Ni, Zhengyuan; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda

    2017-10-01

    The research of the multifunctional analyzer which integrates absorbance detection, fluorescence detection, time-resolved fluorescence detection, biochemical luminescence detection methods, can make efficient detection and analysis for a variety of human body nutrients. This article focuses on the absorbance detection and fluorescence detection system. The two systems are modular in design and controlled by embedded system, to achieve automatic measurement according to user settings. In the optical path design, the application of confocal design can improve the optical signal acquisition capability, and reduce the interference. A photon counter is used for detection, and a high performance counter module is designed to measure the output of photon counter. In the experiment, we use neutral density filters and potassium dichromate solution to test the absorbance detection system, and use fluorescein isothiocyanate FITC for fluorescence detection system performance test. The experimental results show that the absorbance detection system has a detection range of 0 4OD, and has good linearity in the detection range, while the fluorescence detection system has a high sensitivity of 1pmol/L concentration.

  11. Automatic Detection of Diabetic Retinopathy and Age-Related Macular Degeneration in Digital Fundus Images

    PubMed Central

    Barriga, E. Simon; Murray, Victor; Nemeth, Sheila; Crammer, Robert; Bauman, Wendall; Zamora, Gilberto; Pattichis, Marios S.; Soliz, Peter

    2011-01-01

    Purpose. To describe and evaluate the performance of an algorithm that automatically classifies images with pathologic features commonly found in diabetic retinopathy (DR) and age-related macular degeneration (AMD). Methods. Retinal digital photographs (N = 2247) of three fields of view (FOV) were obtained of the eyes of 822 patients at two centers: The Retina Institute of South Texas (RIST, San Antonio, TX) and The University of Texas Health Science Center San Antonio (UTHSCSA). Ground truth was provided for the presence of pathologic conditions, including microaneurysms, hemorrhages, exudates, neovascularization in the optic disc and elsewhere, drusen, abnormal pigmentation, and geographic atrophy. The algorithm was used to report on the presence or absence of disease. A detection threshold was applied to obtain different values of sensitivity and specificity with respect to ground truth and to construct a receiver operating characteristic (ROC) curve. Results. The system achieved an average area under the ROC curve (AUC) of 0.89 for detection of DR and of 0.92 for detection of sight-threatening DR (STDR). With a fixed specificity of 0.50, the system's sensitivity ranged from 0.92 for all DR cases to 1.00 for clinically significant macular edema (CSME). Conclusions. A computer-aided algorithm was trained to detect different types of pathologic retinal conditions. The cases of hard exudates within 1 disc diameter (DD) of the fovea (surrogate for CSME) were detected with very high accuracy (sensitivity = 1, specificity = 0.50), whereas mild nonproliferative DR was the most challenging condition (sensitivity= 0.92, specificity = 0.50). The algorithm was also tested on images with signs of AMD, achieving a performance of AUC of 0.84 (sensitivity = 0.94, specificity = 0.50). PMID:21666234

  12. Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images.

    PubMed

    Agurto, Carla; Barriga, E Simon; Murray, Victor; Nemeth, Sheila; Crammer, Robert; Bauman, Wendall; Zamora, Gilberto; Pattichis, Marios S; Soliz, Peter

    2011-07-29

    To describe and evaluate the performance of an algorithm that automatically classifies images with pathologic features commonly found in diabetic retinopathy (DR) and age-related macular degeneration (AMD). Retinal digital photographs (N = 2247) of three fields of view (FOV) were obtained of the eyes of 822 patients at two centers: The Retina Institute of South Texas (RIST, San Antonio, TX) and The University of Texas Health Science Center San Antonio (UTHSCSA). Ground truth was provided for the presence of pathologic conditions, including microaneurysms, hemorrhages, exudates, neovascularization in the optic disc and elsewhere, drusen, abnormal pigmentation, and geographic atrophy. The algorithm was used to report on the presence or absence of disease. A detection threshold was applied to obtain different values of sensitivity and specificity with respect to ground truth and to construct a receiver operating characteristic (ROC) curve. The system achieved an average area under the ROC curve (AUC) of 0.89 for detection of DR and of 0.92 for detection of sight-threatening DR (STDR). With a fixed specificity of 0.50, the system's sensitivity ranged from 0.92 for all DR cases to 1.00 for clinically significant macular edema (CSME). A computer-aided algorithm was trained to detect different types of pathologic retinal conditions. The cases of hard exudates within 1 disc diameter (DD) of the fovea (surrogate for CSME) were detected with very high accuracy (sensitivity = 1, specificity = 0.50), whereas mild nonproliferative DR was the most challenging condition (sensitivity = 0.92, specificity = 0.50). The algorithm was also tested on images with signs of AMD, achieving a performance of AUC of 0.84 (sensitivity = 0.94, specificity = 0.50).

  13. A SQUID-based metal detector—comparison to coil and x-ray systems

    NASA Astrophysics Data System (ADS)

    Bick, M.; Sullivan, P.; Tilbrook, D. L.; Du, J.; Gnanarajan, S.; Leslie, K. E.; Foley, C. P.

    2005-03-01

    The presence of foreign metal bodies and fragments in foodstuff and pharmaceutical products is of major concern to producers. Further, hidden metal objects can pose threats to security. In particular, stainless steel is difficult to detect by conventional coil metal detectors due to its low conductivity. We have employed an HTS SQUID magnetometer for the detection of stainless steel particles which is based on the measurement of the remanent magnetization of the particle. Our aim was to determine the detection limits of HTS SQUID-based remote magnetometry, especially for food inspection purposes, and to make a comparison of this technique to commonly used eddy current coil and x-ray inspection systems. We show that the SQUID system's sensitivity to stainless steel fragments is significantly higher than that of coil systems if the samples are magnetized in a 100 mT magnetic field prior to detection. Further, it has a higher sensitivity than x-ray systems, depending on the density distribution of the product under inspection. A 0.6 mg piece of grade-316 stainless steel (a fragment of a hypodermic needle 0.5 mm long and 0.65 mm diameter) represents the detection limit of our system with a 150 × 150 mm2 inspection orifice.

  14. Smartphone-Based Dual-Modality Imaging System for Quantitative Detection of Color or Fluorescent Lateral Flow Immunochromatographic Strips

    NASA Astrophysics Data System (ADS)

    Hou, Yafei; Wang, Kan; Xiao, Kun; Qin, Weijian; Lu, Wenting; Tao, Wei; Cui, Daxiang

    2017-04-01

    Nowadays, lateral flow immunochromatographic assays are increasingly popular as a diagnostic tool for point-of-care (POC) test based on their simplicity, specificity, and sensitivity. Hence, quantitative detection and pluralistic popular application are urgently needed in medical examination. In this study, a smartphone-based dual-modality imaging system was developed for quantitative detection of color or fluorescent lateral flow test strips, which can be operated anywhere at any time. In this system, the white and ultra-violet (UV) light of optical device was designed, which was tunable with different strips, and the Sobel operator algorithm was used in the software, which could enhance the identification ability to recognize the test area from the background boundary information. Moreover, this technology based on extraction of the components from RGB format (red, green, and blue) of color strips or only red format of the fluorescent strips can obviously improve the high-signal intensity and sensitivity. Fifty samples were used to evaluate the accuracy of this system, and the ideal detection limit was calculated separately from detection of human chorionic gonadotropin (HCG) and carcinoembryonic antigen (CEA). The results indicated that smartphone-controlled dual-modality imaging system could provide various POC diagnoses, which becomes a potential technology for developing the next-generation of portable system in the near future.

  15. Investigation of detection limits for diffuse optical tomography systems: II. Analysis of slab and cup geometry for breast imaging.

    PubMed

    Ziegler, Ronny; Brendel, Bernhard; Rinneberg, Herbert; Nielsen, Tim

    2009-01-21

    Using a statistical (chi-square) test on simulated data and a realistic noise model derived from the system's hardware we study the performance of diffuse optical tomography systems for fluorescence imaging. We compare the predicted smallest size of detectable lesions at various positions in slab and cup geometry and model how detection sensitivity depends on breast compression and lesion fluorescence contrast. Our investigation shows that lesion detection is limited by relative noise in slab geometry and by absolute noise in cup geometry.

  16. Sensitive Detection and Identification of Isovanillin Aerosol Particles at the pg/cm3 Mass Concentration Level using Raman Spectroscopy

    DTIC Science & Technology

    2017-04-24

    Spectroscopy * R. L. Aggarwal1, S. Di Cecca, L. W. Farrar, Shabshelowitz, A...Public Release A compact Raman spectroscopy system with high sensitivity to chemical aerosols has been developed. This system has been used to...this represents the lowest chemical aerosol concentration and signal integration period product ever reported for a Raman spectroscopy system.

  17. A New Diagnostic system for Ultra Sensitive and Specific Detection and Quantitation of “Candidatus Liberibacter asiaticus”, the Bacterium Associated with Citrus Huanglongbing

    USDA-ARS?s Scientific Manuscript database

    In this study, an ultra sensitive and quantitative diagnostic system for “Candidatus Liberibacter asiaticus” was developed. This system adapts a nested PCR and Taq-Man PCR in a single closed tube. The procedure involves two steps of PCR using the species specific outer and inner primer pairs. Differ...

  18. Factors Influencing Performance of Internet-Based Biosurveillance Systems Used in Epidemic Intelligence for Early Detection of Infectious Diseases Outbreaks

    PubMed Central

    Barboza, Philippe; Vaillant, Laetitia; Le Strat, Yann; Hartley, David M.; Nelson, Noele P.; Mawudeku, Abla; Madoff, Lawrence C.; Linge, Jens P.; Collier, Nigel; Brownstein, John S.; Astagneau, Pascal

    2014-01-01

    Background Internet-based biosurveillance systems have been developed to detect health threats using information available on the Internet, but system performance has not been assessed relative to end-user needs and perspectives. Method and Findings Infectious disease events from the French Institute for Public Health Surveillance (InVS) weekly international epidemiological bulletin published in 2010 were used to construct the gold-standard official dataset. Data from six biosurveillance systems were used to detect raw signals (infectious disease events from informal Internet sources): Argus, BioCaster, GPHIN, HealthMap, MedISys and ProMED-mail. Crude detection rates (C-DR), crude sensitivity rates (C-Se) and intrinsic sensitivity rates (I-Se) were calculated from multivariable regressions to evaluate the systems’ performance (events detected compared to the gold-standard) 472 raw signals (Internet disease reports) related to the 86 events included in the gold-standard data set were retrieved from the six systems. 84 events were detected before their publication in the gold-standard. The type of sources utilised by the systems varied significantly (p<0001). I-Se varied significantly from 43% to 71% (p = 0001) whereas other indicators were similar (C-DR: p = 020; C-Se, p = 013). I-Se was significantly associated with individual systems, types of system, languages, regions of occurrence, and types of infectious disease. Conversely, no statistical difference of C-DR was observed after adjustment for other variables. Conclusion Although differences could result from a biosurveillance system's conceptual design, findings suggest that the combined expertise amongst systems enhances early detection performance for detection of infectious diseases. While all systems showed similar early detection performance, systems including human moderation were found to have a 53% higher I-Se (p = 00001) after adjustment for other variables. Overall, the use of moderation, sources, languages, regions of occurrence, and types of cases were found to influence system performance. PMID:24599062

  19. Evaluation of three fully automated immunoassay systems for detection of IgA anti-beta 2-glycoprotein I antibodies.

    PubMed

    Pérez, D; Martínez-Flores, J A; Serrano, M; Lora, D; Paz-Artal, E; Morales, J M; Serrano, A

    2016-10-01

    In recent years, we have been witnessing increased clinical interest in the determination of IgA anti-beta 2-glycoprotein I (aB2GPI) antibodies as well as increased demand for this test. Some ELISA-based diagnostic systems for IgA aB2GPI antibodies detection are suboptimal to detect it. The aim of our study was to determine whether the diagnostic yield of modern detection systems based on automatic platforms to measure IgA aB2GPI is equivalent to that of the well-optimized ELISA-based assays. In total, 130 patients were analyzed for IgA aB2GPI by three fully automated immunoassays using an ELISA-based assay as reference. The three systems were also analyzed for IgG aB2GPI with 58 patients. System 1 was able to detect IgA aB2GPI with good sensitivity and kappa index (99% and 0.72, respectively). The other two systems had also poor sensitivity (20% and 15%) and kappa index (0.10 and 0.07), respectively. On the other hand, kappa index for IgG aB2GPI was >0.89 in the three systems. Some analytical methods to detect IgA aB2GPI are suboptimal as well as some ELISA-based diagnostic systems. It is important that the scientific community work to standardize analytical methods to determine IgA aB2GPI antibodies. © 2016 John Wiley & Sons Ltd.

  20. A highly sensitive and selective fluorescent sensor for detection of sulfide anion based on the steric hindrance effect

    NASA Astrophysics Data System (ADS)

    Chen, Guanfan; Tang, Mengzhuo; Fu, Xiufang; Cheng, Fenmin; Zou, Xianghua; Wang, Jingpei; Zeng, Rongjin

    2018-01-01

    Sulfide anions are not only generated as a byproduct from industrial processes but also as a crucial kind of element in biological systems. Therefore, fluorescent probes for detecting sulfide anion with sensitive and selective characters are highly popular. In this study, we report a highly sensitive and selective fluorescent sensor M1 for detection of sulfide anion based on the steric hindrance effect, where the recognition unit, dinitrobenzenesulfonate ester group is linked to aromatic ortho-position in the porphyrin, and correspondingly the fluorescence of fluorescein is efficiently quenched. Compared with the sensors with recognition unit linked to the other aromatic positions, the fluorescent sensor M1 has a lower fluorescence background. Furthermore, the corresponding fluorescence responses (F/F0) of M1 for mercapto amino-acid GSH, Hcy and Cys, were all far lower than the relative fluorescence ratio F/F0 values for S2-. It means that M1 is sensitive and selective to detection of S2-, and has an anti-disturbance ability to the biologically-relevant thiols, GSH, Hcy and Cys, and has the prospect of application in the exact detection of sulfide anions in living organisms. This approach offers some useful insights for realizing sensitive and selective fluorescent turn-on sensing in the detection assays for other analytes.

  1. Highly sensitive LIDAR with a thumb-sized sensor-head built using an optical fiber preamplifier (3)

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Ichikawa, Tadashi; Matsubara, Hiroyuki; Kagami, Manabu

    2013-05-01

    We have developed a LIDAR system with a sensor head which, although it includes a scanning mechanism, is less than 20 cc in size. The system is not only small, but is also highly sensitive. Our LIDAR system is based on time-of-flight measurements, and incorporates an optical fiber. The main feature of our system is the utilization of optical amplifiers for both the transmitter and the receiver, and the optical amplifiers enable us to exceed the detection limit set by thermal noise. In conventional LIDAR systems the detection limit is determined by the thermal noise, because the avalanche photo-diodes (APD) and trans-impedance amplifiers (TIA) that they use detect the received signals directly. In the case of our LIDAR system, the received signal is amplified by an optical fiber amplifier before reaching the photo diode and the TIA. Therefore, our LIDAR system boosts the signal level before the weak incoming signal is depleted by thermal noise. There are conditions under which the noise figure for the combination of an optical fiber amplifier and a photo diode is superior to the noise figure for an avalanche photo diode. We optimized the gains of the optical fiber amplifier and the TIA in our LIDAR system such that it would be capable of detecting a single photon. As a result, the detection limit of our system is determined by shot noise. We have previously demonstrated scanning up to a range of 80 m with this LIDAR system with a 2 mm diameter of receiving lens. We improved the optical amplifier and the peak output power of LIDAR was over 10KW. We redesigned the sensor-head and improved coupling efficiency. As a result, we succeeded in scanning over a range of 100 m. This small and highly sensitive measurement technology shows great potential for use in LIDAR.

  2. Amperometric Enzyme-based Gas Sensor for Formaldehyde: Impact of Possible Interferences

    PubMed Central

    Achmann, Sabine; Hämmerle, Martin; Moos, Ralf

    2008-01-01

    In this work, cross-sensitivities and environmental influences on the sensitivity and the functionality of an enzyme-based amperometric sensor system for the direct detection of formaldehyde from the gas phase are studied. The sensor shows a linear response curve for formaldehyde in the tested range (0 - 15 vppm) with a sensitivity of 1.9 μA/ppm and a detection limit of about 130 ppb. Cross-sensitivities by environmental gases like CO2, CO, NO, H2, and vapors of organic solvents like methanol and ethanol are evaluated as well as temperature and humidity influences on the sensor system. The sensor showed neither significant signal to CO, H2, methanol or ethanol nor to variations in the humidity of the test gas. As expected, temperature variations had the biggest influence on the sensor sensitivity with variations in the sensor signal of up to 10 % of the signal for 5 vppm CH2O in the range of 25 - 30 °C. PMID:27879770

  3. Induction-detection electron spin resonance with spin sensitivity of a few tens of spins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artzi, Yaron; Twig, Ygal; Blank, Aharon

    2015-02-23

    Electron spin resonance (ESR) is a spectroscopic method that addresses electrons in paramagnetic materials directly through their spin properties. ESR has many applications, ranging from semiconductor characterization to structural biology and even quantum computing. Although it is very powerful and informative, ESR traditionally suffers from low sensitivity, requiring many millions of spins to get a measureable signal with commercial systems using the Faraday induction-detection principle. In view of this disadvantage, significant efforts were made recently to develop alternative detection schemes based, for example, on force, optical, or electrical detection of spins, all of which can reach single electron spin sensitivity.more » This sensitivity, however, comes at the price of limited applicability and usefulness with regard to real scientific and technological issues facing modern ESR which are currently dealt with conventional induction-detection ESR on a daily basis. Here, we present the most sensitive experimental induction-detection ESR setup and results ever recorded that can detect the signal from just a few tens of spins. They were achieved thanks to the development of an ultra-miniature micrometer-sized microwave resonator that was operated at ∼34 GHz at cryogenic temperatures in conjunction with a unique cryogenically cooled low noise amplifier. The test sample used was isotopically enriched phosphorus-doped silicon, which is of significant relevance to spin-based quantum computing. The sensitivity was experimentally verified with the aid of a unique high-resolution ESR imaging approach. These results represent a paradigm shift with respect to the capabilities and possible applications of induction-detection-based ESR spectroscopy and imaging.« less

  4. A novel bioelectronic tongue in vivo for highly sensitive bitterness detection with brain-machine interface.

    PubMed

    Qin, Zhen; Zhang, Bin; Hu, Liang; Zhuang, Liujing; Hu, Ning; Wang, Ping

    2016-04-15

    Animals' gustatory system has been widely acknowledged as one of the most sensitive chemosensing systems, especially for its ability to detect bitterness. Since bitterness usually symbolizes inedibility, the potential to use rodent's gustatory system is investigated to detect bitter compounds. In this work, the extracellular potentials of a group of neurons are recorded by chronically coupling microelectrode array to rat's gustatory cortex with brain-machine interface (BMI) technology. Local field potentials (LFPs), which represent the electrophysiological activity of neural networks, are chosen as target signals due to stable response patterns across trials and are further divided into different oscillations. As a result, different taste qualities yield quality-specific LFPs in time domain which suggests the selectivity of this in vivo bioelectronic tongue. Meanwhile, more quantitative study in frequency domain indicates that the post-stimulation power of beta and low gamma oscillations shows dependence with concentrations of denatonium benzoate, a prototypical bitter compound, and the limit of detection is deduced to be 0.076 μM, which is two orders lower than previous in vitro bioelectronic tongues and conventional electronic tongues. According to the results, this in vivo bioelectronic tongue in combination with BMI presents a promising method in highly sensitive bitterness detection and is supposed to provide new platform in measuring bitterness degree. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Sennett, Charlene A.; Giger, Maryellen L.

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V{sup ®} ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patientsmore » (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation.« less

  6. Research of the chemiluminescence detection apparatus for nutrients

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyi; Wang, Yu; Ni, Xuxiang; Yan, Huimin

    2016-10-01

    The multifunctional nutrition analyzer, which integrates four detection functions, can make fast, accurate, quantitative analysis for a variety of nutrients. In this article we focus on researching the luminescence detection system. Compared with other means, luminescence detection needs no excitation light, and the detection sensitivity is improved due to the reduction of the background light. The apparatus consists of an displacement platform, a microporous plate, a combination of an aspheric lens and a plano-convex lens, an optical fiber and a photon counter connected with a computer. A theoretical light intensity formula is established as a reference and a comparison of the experimental data. In the experiment we applies ATP detection reagent as the experimental reagent, whose magnitudes of concentration are from 10-6 mol/L to 10-12 mol/L. The sensitivity of the apparatus could reach a magnitude of concentration of 0.1nmol/L, and it is estimated to be further improved by at least two magnitudes in theory with the system and the reagent optimized.

  7. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    PubMed

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  8. Chapter 5: Modulation Excitation Spectroscopy with Phase-Sensitive Detection for Surface Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulda, Sarah; Richards, Ryan M.

    Advancements in in situ spectroscopic techniques have led to significant progress being made in elucidating heterogeneous reaction mechanisms. The potential of these progressive methods is often limited only by the complexity of the system and noise in the data. Short-lived intermediates can be challenging, if not impossible, to identify with conventional spectra analysis means. Often equally difficult is separating signals that arise from active and inactive species. Modulation excitation spectroscopy combined with phase-sensitive detection analysis is a powerful tool for removing noise from the data while simultaneously revealing the underlying kinetics of the reaction. A stimulus is applied at amore » constant frequency to the reaction system, for example, a reactant cycled with an inert phase. Through mathematical manipulation of the data, any signal contributing to the overall spectra but not oscillating with the same frequency as the stimulus will be dampened or removed. With phase-sensitive detection, signals oscillating with the stimulus frequency but with various lag times are amplified providing valuable kinetic information. In this chapter, some examples are provided from the literature that have successfully used modulation excitation spectroscopy with phase-sensitive detection to uncover previously unobserved reaction intermediates and kinetics. Examples from a broad range of spectroscopic methods are included to provide perspective to the reader.« less

  9. The technology on noise reduction of the APD detection circuit

    NASA Astrophysics Data System (ADS)

    Wu, Xue-ying; Zheng, Yong-chao; Cui, Jian-yong

    2013-09-01

    The laser pulse detection is widely used in the field of laser range finders, laser communications, laser radar, laser Identification Friend or Foe, et al, for the laser pulse detection has the advantage of high accuracy, high sensitivity and strong anti-interference. The avalanche photodiodes (APD) has the advantage of high quantum efficiency, high response speed and huge gain. The APD is particularly suitable for weak signal detection. The technology that APD acts as the photodetector for weak signal reception and amplification is widely used in laser pulse detection. The APD will convert the laser signal to weak electrical signal. The weak signal is amplified, processed and exported by the circuit. In the circuit design, the optimal signal detection is one key point in photoelectric detection system. The issue discusses how to reduce the noise of the photoelectric signal detection circuit and how to improve the signal-to-noise ratio, related analysis and practice included. The essay analyzes the mathematical model of the signal-to-noise ratio for photoelectric conversion and the noise of the APD photoelectric detection system. By analysis the bandwidth of the detection system is determined, and the circuit devices are selected that match the APD. In the circuit design separated devices with low noise are combined with integrated operational amplifier for the purpose of noise reduction. The methods can effectively suppress the noise, and improve the detection sensitivity.

  10. High Sensitivity SPECT for Small Animals and Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Gregory S.

    Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in thin objects such as mice, small plants, and well plates used for in vitro experiments.

  11. Improved thermal neutron activation sensor for detection of bulk explosives

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Faust, Anthony A.; Andrews, H. Robert; Clifford, Edward T. H.; Mosquera, Cristian M.

    2012-06-01

    Defence R&D Canada - Suffield and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives since 1994. First generation sensors, employing an isotopic source and NaI(Tl) gamma ray detectors, were deployed by Canadian Forces in 2002 as confirmation sensors on the ILDS teleoperated, vehicle-mounted, multi-sensor anti-tank landmine detection systems. The first generation TNA could detect anti-tank mines buried 10 cm or less in no more than a minute, but deeper mines and those significantly displaced horizontally required considerably longer times. Mines as deep as 30 cm could be detected with long counting times (1000 s). The second generation TNA detector is being developed with a number of improvements aimed at increasing sensitivity and facilitating ease of operation. Among these are an electronic neutron generator to increase sensitivity for deeper and horizontally displaced explosives; LaBr3(Ce) scintillators, to improve time response and energy resolution; improved thermal and electronic stability; improved sensor head geometry to minimize spatial response nonuniformity; and more robust data processing. This improved sensitivity can translate to either decreased counting times, decreased minimum detectable explosive quantities, increased maximum sensor-to-target displacement, or a trade off among all three. Experiments to characterize the performance of the latest generation TNA in detecting buried landmines and IEDs hidden in culverts were conducted during 2011. This paper describes the second generation system. The experimental setup and methodology are detailed and preliminary comparisons between the performance of first and second generation systems are presented.

  12. Evaluation of an enzyme immunoassay system for measuring herpes simplex virus (HSV) type 1-specific and HSV type 2-specific IgG antibodies.

    PubMed

    Prince, H E; Ernst, C E; Hogrefe, W R

    2000-01-01

    MRL Diagnostics has developed a dual enzyme immunoassay (EIA) system that employs the recombinant Herpes Simplex Virus (HSV) type-specific glycoproteins G1 (HSV1) and G2 (HSV2) to detect HSV type-specific IgG antibodies. This system was evaluated using 155 consecutive sera previously tested in a conventional dual EIA system (Zeus) that employs multiple HSV1 and HSV2 proteins to detect type-common as well as type-specific antibodies. Sera were also analyzed by Western blot to determine the true HSV type-specific IgG reactivity pattern. Of 110 sera giving concordant reactivity patterns in the MRL and Zeus EIA systems, 108 (98%) also displayed concordant Western blot patterns; two sera gave false positive HSV2 reactivity in both EIA systems. Of 45 sera giving discordant MRL and Zeus EIA reactivity patterns, 41 (91%) displayed a Western blot reactivity pattern that matched the MRL reactivity pattern. Both the HSV1 IgG component and the HSV2 IgG component of the MRL EIA system were 100% sensitive and > 95% specific. In contrast, the Zeus HSV1 IgG EIA was 98% sensitive and 79% specific, and the Zeus HSV2 IgG EIA was 85% sensitive and 79% specific. An analysis of the distribution of index values in the MRL EIA system showed that low-positive values (1.0-3.0) were rare, but, when detected, often represented false positive results; only 11 MRL low-positive results were observed, but all 6 MRL false positive results were found within this low-positive subgroup. These findings show that the MRL dual EIA system effectively detects HSV type-specific IgG antibodies. Copyright 2000 Wiley-Liss, Inc.

  13. Enzymatic amplification of a flow-injected thermometric enzyme-linked immunoassay for human insulin.

    PubMed

    Mecklenburg, M; Lindbladh, C; Li, H; Mosbach, K; Danielsson, B

    1993-08-01

    A flow-injected thermometric enzyme linked immunoassay for human insulin which employs the lactate dehydrogenase/lactate oxidase (LDH/LOD) substrate recycling system for signal amplification is described. The system is composed of two columns, an immunosorbent column containing immobilized anti-insulin antibodies for sensing and a recycling column containing immobilized LDH/LOD/Catalase for detection. The effect of flow rates, conjugate concentrations, and chromatographic support material upon the sensitivity of the assay are investigated. The assay has a detection limit of 0.025 microgram/ml and a linear range from 0.05 to 2 micrograms/ml. This corresponds to a 10-fold increase in sensitivity over the unamplified system. A recombinant human insulin-proinsulin conjugate was also tested. The results show that enzymatic amplification can be employed to increase the sensitivity and reproducibility of flow injection assay-based biosensors. The implications of these results upon on-line analysis are discussed.

  14. Self-templated fabrication of FeMnO3 nanoparticle-filled polypyrrole nanotubes for peroxidase mimicking with a synergistic effect and their sensitive colorimetric detection of glutathione.

    PubMed

    Chi, Maoqiang; Chen, Sihui; Zhong, Mengxiao; Wang, Ce; Lu, Xiaofeng

    2018-06-05

    A self-templated approach has been developed for the preparation of FeMnO3 nanoparticles filled in the hollow core of polypyrrole (PPy) nanotubes by an in situ polymerization process accompanied by the etching of FeMnO3 nanofibers. The prepared FeMnO3@PPy nanotubes exhibited a superior peroxidase-like activity. The catalytic reaction system has been used for the sensitive colorimetric detection of glutathione with a low detection limit and good selectivity.

  15. A comparison of discrimination learning in touchscreen and 2-choice swim tank using an allelic series of Huntington's disease mice.

    PubMed

    Glynn, Dervila; Skillings, Elizabeth A; Morton, A Jennifer

    2016-05-30

    Progressive cognitive impairments are a major, debilitating symptom of neurodegenerative disorders such as Alzheimer's disease (AD) and Huntington's disease (HD). Developing treatments to slow or prevent cognitive decline is a key challenge for these fields. Unfortunately, preclinical therapeutic testing has not kept pace with molecular advances, and the methods for systematic cognitive testing in mice remain largely unchanged. Although higher throughput semi-automated systems exist, the lack of a 'positive control' (i.e. a drug or treatment that works) makes it challenging to test their sensitivity and predict usefulness for preclinical drug testing. We used an allelic series of transgenic HD mice to test the sensitivity and flexibility of two cognitive testing systems; a semi-automated touchscreen system and a traditional water-based task, the 2-choice swim tank. We found significant differences in performance of HD mice with different CAG repeats, with timing and severity of deficits dependent on CAG repeat length. We also found deficits in long-term memory retention that have not been reported previously. Both systems were useful for detecting deficits, and were sensitive enough to detect small changes (10-20%) in cognitive performance. While the touchscreen system is more sensitive and can identify deficits up to 10 weeks earlier than the 2-choice swim tank, both tests detected similar patterns of deficit progression in HD mice, regardless of CAG repeat length. Thus, although it has its limitations, the 2-choice swim tank remains a simple, cheap and accessible system for assessing cognitive function. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Investigation of the sensitivity of a cross-polarized light visualization system to detect subclinical erythema and dryness in women with vulvovaginitis.

    PubMed

    Farage, Miranda A; Singh, Mukul; Ledger, William J

    2009-07-01

    An enhanced visualization technique using polarized light (Syris v600 enhanced visualization system; Syris Scientific LLC, Gray, ME) detects surface and subsurface ( approximately 1 mm depth) inflammation. We sought to compare the Syris v600 system with unaided visual inspection and colposcopy of the female genitalia. Erythema and dryness of the vulva, introitus, vagina, and cervix were visualized and scored by each method in patients with and without vulvitis. Subsurface visualization was more sensitive in detecting genital erythema and dryness at all sites whether or not symptoms were present. Subsurface inflammation of the introitus, vagina, and cervix only was detected uniquely in women with vulvar vestibulitis syndrome (VVS). A subset of women presenting with VVS exhibited subclinical inflammation of the vulva vestibule and vagina (designated VVS/lichen sclerosus subgroup). Enhanced visualization of the genital epithelial subsurface with cross-polarized light may assist in diagnosing subclinical inflammation in vulvar conditions heretofore characterized as sensory syndromes.

  17. Micro Cantilever Movement Detection with an Amorphous Silicon Array of Position Sensitive Detectors

    PubMed Central

    Contreras, Javier; Costa, Daniel; Pereira, Sonia; Fortunato, Elvira; Martins, Rodrigo; Wierzbicki, Rafal; Heerlein, Holger; Ferreira, Isabel

    2010-01-01

    The movement of a micro cantilever was detected via a self constructed portable data acquisition prototype system which integrates a linear array of 32 1D amorphous silicon position sensitive detectors (PSD). The system was mounted on a microscope using a metal structure platform and the movement of the 30 μm wide by 400 μm long cantilever was tracked by analyzing the signals acquired by the 32 sensor array electronic readout system and the relevant data algorithm. The obtained results show a linear behavior of the photocurrent relating X and Y movement, with a non-linearity of about 3%, a spatial resolution of less than 2 μm along the lateral dimension of the sensor as well as of less than 3 μm along the perpendicular dimension of the sensor, when detecting just the micro-cantilever, and a spatial resolution of less than 1 μm when detecting the holding structure. PMID:22163648

  18. Soft Stethoscope for Detecting Asthma Wheeze in Young Children

    PubMed Central

    Yu, Chun; Tsai, Tzu-Hsiu; Huang, Shi-Ing; Lin, Chii-Wann

    2013-01-01

    Asthma is a chronic disease that is commonly suffered by children. Asthmatic children have a lower quality of life than other children. Physicians and pediatricians recommend that parents record the frequency of attacks and their symptoms to help manage their children's asthma. However, the lack of a convenient device for monitoring the asthmatic condition leads to the difficulties in managing it, especially when it is suffered by young children. This work develops a wheeze detection system for use at home. A small and soft stethoscope was used to collect the respiratory sound. The wheeze detection algorithm was the Adaptive Respiratory Spectrum Correlation Coefficient (RSACC) algorithm, which has the advantages of high sensitivity/specificity and a low computational requirement. Fifty-nine sound files from eight young children (one to seven years old) were collected in the emergency room and analyzed. The results revealed that the system provided 88% sensitivity and 94% specificity in wheeze detection. In conclusion, this small soft stethoscope can be easily used on young children. A noisy environment does not affect the effectiveness of the system in detecting wheeze. Hence, the system can be used at home by parents who wish to evaluate and manage the asthmatic condition of their children. PMID:23744030

  19. Soft stethoscope for detecting asthma wheeze in young children.

    PubMed

    Yu, Chun; Tsai, Tzu-Hsiu; Huang, Shi-Ing; Lin, Chii-Wann

    2013-06-06

    Asthma is a chronic disease that is commonly suffered by children. Asthmatic children have a lower quality of life than other children. Physicians and pediatricians recommend that parents record the frequency of attacks and their symptoms to help manage their children's asthma. However, the lack of a convenient device for monitoring the asthmatic condition leads to the difficulties in managing it, especially when it is suffered by young children. This work develops a wheeze detection system for use at home. A small and soft stethoscope was used to collect the respiratory sound. The wheeze detection algorithm was the Adaptive Respiratory Spectrum Correlation Coefficient (RSACC) algorithm, which has the advantages of high sensitivity/specificity and a low computational requirement. Fifty-nine sound files from eight young children (one to seven years old) were collected in the emergency room and analyzed. The results revealed that the system provided 88% sensitivity and 94% specificity in wheeze detection. In conclusion, this small soft stethoscope can be easily used on young children. A noisy environment does not affect the effectiveness of the system in detecting wheeze. Hence, the system can be used at home by parents who wish to evaluate and manage the asthmatic condition of their children.

  20. Estimating the sensitivity of passive surveillance for HPAI H5N1 in Bayelsa state, Nigeria.

    PubMed

    Ojimelukwe, Agatha E; Prakarnkamanant, Apisit; Rushton, Jonathan

    2016-07-01

    This study identified characteristics of poultry farming with a focus on practices that affect the detection of HPAI; and estimated the system sensitivity of passive surveillance for HPAI H5N1 in commercial and backyard chicken farms in Bayelsa-State, Nigeria. Field studies were carried out in Yenegoa and Ogbia local government areas in Bayelsa state. Willingness to report HPAI was highest in commercial poultry farms (13/13) than in Backyard farms (8/13). Poor means of dead bird disposal was common to both commercial and backyard farms. Administering some form of treatment to sick birds without prior consultation with a professional was higher in backyard farms (8/13) than in commercial farms (4/13). Consumption of sick birds was reported in 4/13 backyard farms and sale of dead birds was recorded in one commercial farm. The sensitivity of passive surveillance for HPAI was assessed using scenario tree modelling. A scenario tree model was developed and applied to estimate the sensitivity, i.e. the probability of detecting one or more infected chicken farms in Bayelsa state at different levels of disease prevalence. The model showed a median sensitivity of 100%, 67% and 23% for detecting HPAI by passive surveillance at a disease prevalence of 0.1%, a minimum of 10 and 3 infected poultry farms respectively. Passive surveillance system sensitivity at a design prevalence of 10 infected farms is increasable up to 86% when the disease detection in backyard chicken farms is enhanced. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. On the Binding Stress-Enhanced Sensitivity of (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO3) 0.35 (PMN-PT) Piezoelectric Plate Sensor (PEPS)

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO 3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) showed enhanced sensitivity in chemical and biological sensing applications which has been attributed to binding-induced crystalline orientation switching in the PMN-PT layer. However, so far there has been no direct demonstration of PEPS crystalline orientation switching upon target-analyte binding. Using biotin and streptavidin binding as a model detection system and by direct X-Ray diffraction observations after analyte binding we have unambiguously demonstrated that switching of the crystalline orientations of the PMN-PT layer indeed occurred. In addition, we have shown that PEPS sensitivity enhancement increased with an increasing transverse electromechanical coupling constant, -k31, of the PMN-PT layer--which is known to correlate with the crystalline orientation switching capability--by increasing the grain size of the PMN-PT layer or by applying a DC bias electric field. Finally, unprecedented high sensitivity of PEPS with high -k31, (i.e., -k31 > 0.3) were illustrated by the aM (10-18 M) sensitivity of in situ DNA hybridization detection without amplification and by the 100 fg/ml (10-13 g/ml) sensitivity of rapid, in situ protein detection in biological fluids such as troponin I detection in serum for early sign of myocardial infarction (heart attack), Her2 detection in serum for cancer treatment and monitoring, Tn antigen and anti-Tn antibody detection in serum for early cancer detection, and Toxins detection in stool for Clostridium difficile infection detection.

  2. Detection of IL-6 by magnetic nanoparticles grown with the assistance of mid-infrared lighting.

    PubMed

    Jiang, Xiufeng; Zhang, Ye; Miao, Xiaofei; Li, Zenghui; Bao, Zengtao; Wang, Tong

    2013-01-01

    Nanomedical systems have attracted considerable attention primarily due to suitability in applications for specific cell selection through biomolecular targeting and rare cell detection enhancement in a diverse, multicellular population. In the present study, magnetic nanoparticles were prepared for use in high accuracy cell sensing. Magnetic nanoparticle growth was assisted by mid-infrared lighting. By this mechanism, a narrow window, estimated to be 2%, was achieved for the dimension distribution of grown nanoparticles. Combined with silicon nanowire (SiNW) transistors, a sensor with ultra high sensitivity for the detection of specific potential low abundance biomarkers has been achieved, which has been specifically used to detect interleukin-6 (IL-6) at extremely low concentrations. A novel biosensor with high sensitivity has been fabricated and utilized in the detection of IL-6 at 75 fM to 50 pM. The system consists of an SiNW transistor and magnetic nanoparticles with even dimension distribution. The novel sensor system is suitable for quantifying IL-6 at low concentrations in protein samples.

  3. Stable and general-purpose chemiluminescent detection system for horseradish peroxidase employing a thiazole compound enhancer and some additives.

    PubMed

    Iwata, R; Ito, H; Hayashi, T; Sekine, Y; Koyama, N; Yamaki, M

    1995-10-10

    A stable and highly sensitive chemiluminescent detection system for horseradish peroxidase (HRP)/luminol/hydrogen peroxide using a newly designed thiazole compound enhancer has been established. Some additives for the chemiluminescent reaction were explored to overcome some defects of the reaction such as rapid decay and high background of light emission. Recrystallization of luminol and the addition of several detergents into the reacting solution were effective to increase specific light emissions. The addition of skim milk into the reacting solution reduced the background. Consequently, skim milk combined with a detergent increased the signal to noise ratio about 20 times compared with the reactions in the absence of both additives. The optimal concentration of enhancer and the addition of egg albumin stabilized the emission. In the new method, 6x 10(-18) mol of HRP was detectable. This would be the most sensitive enhanced chemiluminescent detection system for HRP. Furthermore, we could detect picogram per milliliter (10(-17) mol) concentrations of a trace component in biological materials such as endothelin-1 by employing this reaction.

  4. Rapid detection of Escherichia coli O157:H7 using tunneling magnetoresistance biosensor

    NASA Astrophysics Data System (ADS)

    Wu, Yuanzhao; Liu, Yiwei; Zhan, Qingfeng; Liu, J. Ping; Li, Run-Wei

    2017-05-01

    A rapid method for the sensitive detection of bacteria using magnetic immunoassay, which are measured with a tunneling magnetoresistance (TMR) sensor, is described. For the measurement of Escherichia coli O157:H7 (E. coli O157:H7) bacteria, the target was labeled by magnetic beads through magnetic immunoassay. The magnetic beads produce a weak magnetic fringe field when external field is applied, thus induce the magnetoresistance change of TMR sensor. A detection limit of 100 CFU/mL E. coli O157:H7 bacteria in 5 hours was obtained. With its high sensitive and rapid detection scheme based on the TMR biosensor, the detection system is an excellent candidate suitable and promising for food safety and biomedical detection.

  5. Progress in proton-detected solid-state NMR (SSNMR): Super-fast 2D SSNMR collection for nano-mole-scale proteins

    NASA Astrophysics Data System (ADS)

    Ishii, Yoshitaka; Wickramasinghe, Ayesha; Matsuda, Isamu; Endo, Yuki; Ishii, Yuji; Nishiyama, Yusuke; Nemoto, Takahiro; Kamihara, Takayuki

    2018-01-01

    Proton-detected solid-state NMR (SSNMR) spectroscopy has attracted much attention due to its excellent sensitivity and effectiveness in the analysis of trace amounts of amyloid proteins and other important biological systems. In this perspective article, we present the recent sensitivity limit of 1H-detected SSNMR using "ultra-fast" magic-angle spinning (MAS) at a spinning rate (νR) of 80-100 kHz. It was demonstrated that the high sensitivity of 1H-detected SSNMR at νR of 100 kHz and fast recycling using the paramagnetic-assisted condensed data collection (PACC) approach permitted "super-fast" collection of 1H-detected 2D protein SSNMR. A 1H-detected 2D 1H-15N correlation SSNMR spectrum for ∼27 nmol of a uniformly 13C- and 15N-labeled GB1 protein sample in microcrystalline form was acquired in only 9 s with 50% non-uniform sampling and short recycle delays of 100 ms. Additional data suggests that it is now feasible to detect as little as 1 nmol of the protein in 5.9 h by 1H-detected 2D 1H-15N SSNMR at a nominal signal-to-noise ratio of five. The demonstrated sensitivity is comparable to that of modern solution protein NMR. Moreover, this article summarizes the influence of ultra-fast MAS and 1H-detection on the spectral resolution and sensitivity of protein SSNMR. Recent progress in signal assignment and structural elucidation by 1H-detected protein SSNMR is outlined with both theoretical and experimental aspects.

  6. [Evaluation of the usefulness of various PCR method variations and nucleic acid hybridization for CMV infection in immunosuppressed patients].

    PubMed

    Siennicka, J; Trzcińska, A; Litwińska, B; Durlik, M; Seferyńska, I; Pałynyczko, G; Kańtoch, M

    2000-01-01

    In diagnosis of CMV infection various laboratory methods are used. The methods based on detection of viral nucleic acids have been introduced routinely in many laboratories. The aim of this study was to compare nucleic acid hybridisation method and various variants of PCR methods with respect to their ability to detect CMV DNA. The studied material comprised 60 blood samples from 19 patients including 13 renal transplant recipients and 6 with acute leukaemia. The samples were subjected to hybridisation (Murex Hybrid Capture System CMV DNA) and PCR carried out in 3 variants: with one pair of primers (single PCR), nested PCR and Digene SHARP System with detection of PCR product using a genetic probe in ELISA system. The sensitivity of the variants ranged from 10(0) particles of viral DNA in nested PCR to 10(2) in single PCR. The producer claimed the sensitivity of the hybridisation test to be 3 x 10(5) and it seems to be sufficient for detection of CMV infection. The obtained results show that sensitivity of hybridisation was comparable to that of single PCR and the possibility of obtaining quantitative results makes it superior, on efficacy of antiviral therapy, especially in monitoring CMV infection in immunossuppressed patients and in following the efficacy of antiviral treatment.

  7. Transformation of personal computers and mobile phones into genetic diagnostic systems.

    PubMed

    Walker, Faye M; Ahmad, Kareem M; Eisenstein, Michael; Soh, H Tom

    2014-09-16

    Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone--devices that have become readily accessible in developing countries--into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite.

  8. Transformation of Personal Computers and Mobile Phones into Genetic Diagnostic Systems

    PubMed Central

    2014-01-01

    Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone—devices that have become readily accessible in developing countries—into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite. PMID:25223929

  9. A self-mixing based ring-type fiber-optic acoustic sensor

    NASA Astrophysics Data System (ADS)

    Wang, Lutang; Wu, Chunxu; Fang, Nian

    2014-07-01

    A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.

  10. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  11. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-08-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.

  12. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology

    PubMed Central

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-01-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring. PMID:23982222

  13. Determination of chlorinated hydrocarbons in water using highly sensitive mid-infrared sensor technology.

    PubMed

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-01-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.

  14. Figure of merit for direct-detection optical channels

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.

    1992-01-01

    The capacity and sensitivity of a direct-detection optical channel are calculated and compared to those of a white Gaussian noise channel. Unlike Gaussian channels in which the receiver performance can be characterized using the noise temperature, the performance of the direct-detection channel depends on both signal and background noise, as well as the ratio of peak to average signal power. Because of the signal-power dependence of the optical channel, actual performance of the channel can be evaluated only by considering both transmit and receive ends of the systems. Given the background noise power and the modulation bandwidth, however, the theoretically optimum receiver sensitivity can be calculated. This optimum receiver sensitivity can be used to define the equivalent receiver noise temperature and calculate the corresponding G/T product. It should be pointed out, however, that the receiver sensitivity is a function of signal power, and care must be taken to avoid deriving erroneous projections of the direct-detection channel performance.

  15. An optical MEMS accelerometer fabricated using double-sided deep reactive ion etching on silicon-on-insulator wafer

    NASA Astrophysics Data System (ADS)

    Teo, Adrian J. T.; Li, Holden; Tan, Say Hwa; Yoon, Yong-Jin

    2017-06-01

    Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G-1, and a highest recorded sensitivity of 44.1 mV G-1. A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices.

  16. Multicolour probes for sequence-specific DNA detection based on graphene oxide.

    PubMed

    Zhu, Qing; Xiang, Dongshan; Zhang, Cuiling; Ji, Xinghu; He, Zhike

    2013-09-21

    The bifunctionality of graphene oxide (GO) which can highly adsorb single-stranded DNA (ssDNA) and effectively quench the emission of organic dyes is reasonably utilized in a multiplexed DNA detection system, achieving sensitive and selective detection of HIV, VV and EV, respectively.

  17. Development of a pan-Simbu real-time reverse transcriptase PCR for the detection of Simbu serogroup viruses and comparison with SBV diagnostic PCR systems.

    PubMed

    Fischer, Melina; Schirrmeier, Horst; Wernike, Kerstin; Wegelt, Anne; Beer, Martin; Hoffmann, Bernd

    2013-11-05

    Schmallenberg virus (SBV), a novel orthobunyavirus of the Simbu serogroup, was first identified in October 2011 in dairy cattle in Germany, where it caused fever, diarrhea and a drop in milk yield. Since then, SBV additionally has been detected in adult sheep and goats. Although symptoms of acute infection were not observed, infection during a vulnerable phase of pregnancy caused congenital malformations and stillbirths. In view of the current situation and the possible emergence of further Simbu serogroup members, a pan-Simbu real-time reverse transcriptase (RT) PCR system for the reliable detection of Simbu serogroup viruses should be developed. In this study a pan-Simbu real-time RT-PCR system was established and compared to several SBV real-time RT-PCR assays. All PCR-systems were tested using a panel of different Simbu serogroup viruses as well as several field samples from diseased cattle, sheep and goats originating from all over Germany. Several pan-Simbu real-time RT-PCR products were sequenced via Sanger sequencing. Furthermore, in silico analyses were performed to investigate suitability for the detection of further orthobunyaviruses. All tested members of the Simbu serogroup (n = 14) as well as most of the field samples were successfully detected by the pan-Simbu real-time RT-PCR system. The comparison of this intercalating dye assay with different TaqMan probe-based assays developed for SBV diagnostics confirmed the functionality of the pan-Simbu assay for screening purposes. However, the SBV-TaqMan-assay SBV-S3 delivered the highest analytical sensitivity of less than ten copies per reaction for duplex systems including an internal control. In addition, for confirmation of SBV-genome detection the highly specific SBV-M1 assay was established. The pan-Simbu real-time RT-PCR system was able to detect all tested members of the Simbu serogroup, most of the SBV field samples as well as three tested Bunyamwera serogroup viruses with a suitable sensitivity. According to in silico analyses, this system seems to be able to detect a broad orthobunyavirus spectrum. As an additional feature of the pan-Simbu real-time RT-PCR system, subsequent species classification via sequencing is feasible. Regarding SBV diagnostics, the performance of the S-segment targeting SBV-S3 assay was superior with respect to the analytical sensitivity.

  18. Magnetic Sensors with Picotesla Magnetic Field Sensitivity at Room Temperature

    DTIC Science & Technology

    2008-06-01

    such small fields require cryogenic cooling such as SQUID sensors, require sophisticated detection systems such as atomic magnetometers and fluxgate ... magnetometers , or have large size and poor low frequency performance such as coil systems. [3-7] The minimum detectable field (the field noise times...Kingdon, "Development of a Combined EMI/ Magnetometer Sensor for UXO Detection," Proc. Symposium on the Applications of Geophysics to Environmental and

  19. Infrared detection based on localized modification of Morpho butterfly wings.

    PubMed

    Zhang, Fangyu; Shen, Qingchen; Shi, Xindong; Li, Shipu; Wang, Wanlin; Luo, Zhen; He, Gufeng; Zhang, Peng; Tao, Peng; Song, Chengyi; Zhang, Wang; Zhang, Di; Deng, Tao; Shang, Wen

    2015-02-01

    Inspired by butterflies an advanced detection and sensing system is developed. The hierarchical nanoarchitecture of Morpho butterfly wings is shown to facilitate the selective modification of such a structure, which results in a sensitive infrared response. These findings offer a new path both for detecting infrared photons and for generating nanostructured bimaterial systems for high-performance sensing platforms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Measuring atmospheric visibility cavity attenuated phase shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    In the paper, an accurate and sensitive cavity attenuated phase shift spectroscopy (CAPS) system was used to monitor the atmospheric visibility coefficient in urban areas. The CAPS system, which detects the atmospheric visibility within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector and a lock in amplifier. The performance of the CAPS system was evaluated by measuring of the stability and response of the system. The minima ( 0.06 Mm-1) in the Allan plots show the optimum average time( 80s) for optimum detection performance of the CAPS system. The 2L/min flow rate, the CAPS system rise and fall response time is about 15 s, so as to realize the fast measurement of visibility. By comparing the forward scatter visibility meter measurement results, the CAPS system measurement results are verified reliably, and have high precision measurement. These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for atmospheric visibility detection.

  1. Characterization of System Status Signals for Multivariate Time Series Discretization Based on Frequency and Amplitude Variation

    PubMed Central

    2018-01-01

    Many fault detection methods have been proposed for monitoring the health of various industrial systems. Characterizing the monitored signals is a prerequisite for selecting an appropriate detection method. However, fault detection methods tend to be decided with user’s subjective knowledge or their familiarity with the method, rather than following a predefined selection rule. This study investigates the performance sensitivity of two detection methods, with respect to status signal characteristics of given systems: abrupt variance, characteristic indicator, discernable frequency, and discernable index. Relation between key characteristics indicators from four different real-world systems and the performance of two fault detection methods using pattern recognition are evaluated. PMID:29316731

  2. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.

    PubMed

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-12-21

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  3. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection †

    PubMed Central

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-01-01

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate. PMID:26703612

  4. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  5. Validation of a Commercial Insulated Isothermal PCR-based POCKIT Test for Rapid and Easy Detection of White Spot Syndrome Virus Infection in Litopenaeus vannamei

    PubMed Central

    Tsai, Yun-Long; Wang, Han-Ching; Lo, Chu-Fang; Tang-Nelson, Kathy; Lightner, Donald; Ou, Bor-Rung; Hour, Ai-Ling; Tsai, Chuan-Fu; Yen, Cheng-Chi; Chang, Hsiao-Fen Grace; Teng, Ping-Hua; Lee, Pei-Yu

    2014-01-01

    Timely pond-side detection of white spot syndrome virus (WSSV) plays a critical role in the implementation of bio-security measures to help minimize economic losses caused by white spot syndrome disease, an important threat to shrimp aquaculture industry worldwide. A portable device, namely POCKIT™, became available recently to complete fluorescent probe-based insulated isothermal PCR (iiPCR), and automatic data detection and interpretation within one hour. Taking advantage of this platform, the IQ Plus™ WSSV Kit with POCKIT system was established to allow simple and easy WSSV detection for on-site users. The assay was first evaluated for its analytical sensitivity and specificity performance. The 95% limit of detection (LOD) of the assay was 17 copies of WSSV genomic DNA per reaction (95% confidence interval [CI], 13 to 24 copies per reaction). The established assay has detection sensitivity similar to that of OIE-registered IQ2000™ WSSV Detection and Protection System with serial dilutions of WSSV-positive Litopenaeus vannamei DNA. No cross-reaction signals were generated from infectious hypodermal and haematopoietic necrosis virus (IHHNV), monodon baculovirus (MBV), and hepatopancreatic parvovirus (HPV) positive samples. Accuracy analysis using700 L. vannamei of known WSSV infection status shows that the established assayhassensitivity93.5% (95% CI: 90.61–95.56%) and specificity 97% (95% CI: 94.31–98.50%). Furthermore, no discrepancy was found between the two assays when 100 random L. vannamei samples were tested in parallel. Finally, excellent correlation was observed among test results of three batches of reagents with 64 samples analyzed in three different laboratories. Working in a portable device, IQ Plus™ WSSV Kit with POCKIT system allows reliable, sensitive and specific on-site detection of WSSV in L. vannamei. PMID:24625894

  6. A dual-mode generalized likelihood ratio approach to self-reorganizing digital flight control system design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Analytic techniques have been developed for detecting and identifying abrupt changes in dynamic systems. The GLR technique monitors the output of the Kalman filter and searches for the time that the failure occured, thus allowing it to be sensitive to new data and consequently increasing the chances for fast system recovery following detection of a failure. All failure detections are based on functional redundancy. Performance tests of the F-8 aircraft flight control system and computerized modelling of the technique are presented.

  7. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  8. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Devkota, J.; Wingo, J.; Mai, T. T. T.; Nguyen, X. P.; Huong, N. T.; Mukherjee, P.; Srikanth, H.; Phan, M. H.

    2014-05-01

    We report on a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with a nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to superparamagnetic (Fe3O4) nanoparticles. Fe3O4 nanoparticles (mean size, ˜10 nm) were first coated with Alginate, and Curcumin was then tagged to the nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the Fe3O4 nanoparticles to which Curcumin was tagged. A high capacity of the MX-based biosensor in quantitative analysis of Curcumin-loaded Fe3O4 nanoparticles was achieved in the range of 0-50 ng/ml, beyond which the detection sensitivity of the sensor remained unchanged. The detection sensitivity of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems.

  9. Validation of a newly developed hexaplex real-time PCR assay for screening for presence of GMOs in food, feed and seed.

    PubMed

    Bahrdt, C; Krech, A B; Wurz, A; Wulff, D

    2010-03-01

    For years, an increasing number and diversity of genetically modified plants has been grown on a commercial scale. The need for detection and identification of these genetically modified organisms (GMOs) calls for broad and at the same time flexible high throughput testing methods. Here we describe the development and validation of a hexaplex real-time polymerase chain reaction (PCR) screening assay covering more than 100 approved GMOs containing at least one of the GMO targets of the assay. The assay comprises detection systems for Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens NOS terminator, Figwort Mosaic Virus 34S promoter and two construct-specific sequences present in novel genetically modified soybean and maize that lack common screening elements. Additionally a detection system for an internal positive control (IPC) indicating the presence or absence of PCR inhibiting substances was included. The six real-time PCR systems were allocated to five detection channels showing no significant crosstalk between the detection channels. As part of an extensive validation, a limit of detection (LOD(abs)) < or = ten target copies was proven in hexaplex format. A sensitivity < or = ten target copies of each GMO detection system was still shown in highly asymmetric target situations in the presence of 1,000 copies of all other GMO targets of each detection channel. Furthermore, the applicability to a broad sample spectrum and reliable indication of inhibition by the IPC system was demonstrated. The presented hexaplex assay offers sensitive and reliable detection of GMOs in processed and unprocessed food, feed and seed samples with high efficiency.

  10. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDTmore » device will have a significant impact on metal corrosion or crack detection technology.« less

  11. MEMS cantilever sensor for THz photoacoustic chemical sensing and pectroscopy

    NASA Astrophysics Data System (ADS)

    Glauvitz, Nathan E.

    Sensitive Microelectromechanical System (MEMS) cantilever designs were modeled, fabricated, and tested to measure the photoacoustic (PA) response of gasses to terahertz (THz) radiation. Surface and bulk micromachining technologies were employed to create the extremely sensitive devices that could detect very small changes in pressure. Fabricated devices were then tested in a custom made THz PA vacuum test chamber where the cantilever deflections caused by the photoacoustic effect were measured with a laser interferometer and iris beam clipped methods. The sensitive cantilever designs achieved a normalized noise equivalent absorption coefficient of 2.83x10-10 cm-1 W Hz-½ using a 25 microW radiation source power and a 1 s sampling time. Traditional gas phase molecular spectroscopy absorption cells are large and bulky. The outcome of this research resulted was a photoacoustic detection method that was virtually independent of the absorption path-length, which allowed the chamber dimensions to be greatly reduced, leading to the possibility of a compact, portable chemical detection and spectroscopy system

  12. A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices.

    PubMed

    Kirschbaum, Stefanie E K; Baeumner, Antje J

    2015-05-01

    The concept and realization of microfluidic total analysis systems (microTAS) have revolutionized the analytical process by integrating the whole breadth of analytical techniques into miniaturized systems. Paramount for efficient and competitive microTAS are integrated detection strategies, which lead to low limits of detection while reducing the sample volume. The concept of electrochemiluminescence (ECL) has been intriguing ever since its introduction based on Ru(bpy)3 (2+) by Tokel and Bard [1] (J Am Chem Soc 1853:2862-2863, 1972), especially because of its immense sensitivity, nonexistent auto-luminescent background signal, and simplicity in experimental design. Therefore, integrating ECL detection into microTAS is a logical consequence to achieve simple, yet highly sensitive, sensors. However, published microanalytical devices employing ECL detection focus in general on traditional ECL chemistry and have yet to take advantage of advances made in standard bench-top ECL strategies. This review will therefore focus on the most recent advancements in microfluidic ECL approaches, but also evaluate the potential impact of bench-top ECL research progress that would further improve performance and lower limits of detection of micro analytical ECL systems, ensuring their desirability as detection principle for microTAS applications.

  13. Integrated Magneto-Chemical Sensor For On-Site Food Allergen Detection.

    PubMed

    Lin, Hsing-Ying; Huang, Chen-Han; Park, Jongmin; Pathania, Divya; Castro, Cesar M; Fasano, Alessio; Weissleder, Ralph; Lee, Hakho

    2017-10-24

    Adverse food reactions, including food allergies, food sensitivities, and autoimmune reaction (e.g., celiac disease) affect 5-15% of the population and remain a considerable public health problem requiring stringent food avoidance and epinephrine availability for emergency events. Avoiding problematic foods is practically difficult, given current reliance on prepared foods and out-of-home meals. In response, we developed a portable, point-of-use detection technology, termed integrated exogenous antigen testing (iEAT). The system consists of a disposable antigen extraction device coupled with an electronic keychain reader for rapid sensing and communication. We optimized the prototype iEAT system to detect five major food antigens in peanuts, hazelnuts, wheat, milk, and eggs. Antigen extraction and detection with iEAT requires <10 min and achieves high-detection sensitivities (e.g., 0.1 mg/kg for gluten, lower than regulatory limits of 20 mg/kg). When testing under restaurant conditions, we were able to detect hidden food antigens such as gluten within "gluten-free" food items. The small size and rapid, simple testing of the iEAT system should help not only consumers but also other key stakeholders such as clinicians, food industries, and regulators to enhance food safety.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hentschke, Clemens M., E-mail: clemens.hentschke@gmail.com; Tönnies, Klaus D.; Beuing, Oliver

    Purpose: The early detection of cerebral aneurysms plays a major role in preventing subarachnoid hemorrhage. The authors present a system to automatically detect cerebral aneurysms in multimodal 3D angiographic data sets. The authors’ system is parametrizable for contrast-enhanced magnetic resonance angiography (CE-MRA), time-of-flight magnetic resonance angiography (TOF-MRA), and computed tomography angiography (CTA). Methods: Initial volumes of interest are found by applying a multiscale sphere-enhancing filter. Several features are combined in a linear discriminant function (LDF) to distinguish between true aneurysms and false positives. The features include shape information, spatial information, and probability information. The LDF can either be parametrized bymore » domain experts or automatically by training. Vessel segmentation is avoided as it could heavily influence the detection algorithm. Results: The authors tested their method with 151 clinical angiographic data sets containing 112 aneurysms. The authors reach a sensitivity of 95% with CE-MRA data sets at an average false positive rate per data set (FP{sub DS}) of 8.2. For TOF-MRA, we achieve 95% sensitivity at 11.3 FP{sub DS}. For CTA, we reach a sensitivity of 95% at 22.8 FP{sub DS}. For all modalities, the expert parametrization led to similar or better results than the trained parametrization eliminating the need for training. 93% of aneurysms that were smaller than 5 mm were found. The authors also showed that their algorithm is capable of detecting aneurysms that were previously overlooked by radiologists. Conclusions: The authors present an automatic system to detect cerebral aneurysms in multimodal angiographic data sets. The system proved as a suitable computer-aided detection tool to help radiologists find cerebral aneurysms.« less

  15. Air Monitoring for Hazardous Gas Detection

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Griffin, Timothy P.; Adams, Frederick W.; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Follistein, Duke W.

    2004-01-01

    The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response times and detection limits. A Table lists common gases monitored for aerospace applications. The first five gases, hydrogen, helium, nitrogen, oxygen, and argon are historically the focus of the HGDL.

  16. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples.

    PubMed

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-03-18

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems.

  17. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples

    PubMed Central

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems. PMID:26999129

  18. TH-AB-202-02: Real-Time Verification and Error Detection for MLC Tracking Deliveries Using An Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Zwan, B; Central Coast Cancer Centre, Gosford, NSW; Colvill, E

    2016-06-15

    Purpose: The added complexity of the real-time adaptive multi-leaf collimator (MLC) tracking increases the likelihood of undetected MLC delivery errors. In this work we develop and test a system for real-time delivery verification and error detection for MLC tracking radiotherapy using an electronic portal imaging device (EPID). Methods: The delivery verification system relies on acquisition and real-time analysis of transit EPID image frames acquired at 8.41 fps. In-house software was developed to extract the MLC positions from each image frame. Three comparison metrics were used to verify the MLC positions in real-time: (1) field size, (2) field location and, (3)more » field shape. The delivery verification system was tested for 8 VMAT MLC tracking deliveries (4 prostate and 4 lung) where real patient target motion was reproduced using a Hexamotion motion stage and a Calypso system. Sensitivity and detection delay was quantified for various types of MLC and system errors. Results: For both the prostate and lung test deliveries the MLC-defined field size was measured with an accuracy of 1.25 cm{sup 2} (1 SD). The field location was measured with an accuracy of 0.6 mm and 0.8 mm (1 SD) for lung and prostate respectively. Field location errors (i.e. tracking in wrong direction) with a magnitude of 3 mm were detected within 0.4 s of occurrence in the X direction and 0.8 s in the Y direction. Systematic MLC gap errors were detected as small as 3 mm. The method was not found to be sensitive to random MLC errors and individual MLC calibration errors up to 5 mm. Conclusion: EPID imaging may be used for independent real-time verification of MLC trajectories during MLC tracking deliveries. Thresholds have been determined for error detection and the system has been shown to be sensitive to a range of delivery errors.« less

  19. Detection of telomerase on upconversion nanoparticle modified cellulose paper.

    PubMed

    Wang, Faming; Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2015-07-25

    Herein we report a convenient and sensitive method for the detection of telomerase activity based on upconversion nanoparticle (UCNP) modified cellulose paper. Compared with many solution-phase systems, this paper chip is more stable and easily stores the test results. What's more, the low background fluorescence of the UCNPs increases the sensitivity of this method, and the low telomerase levels in different cell lines can clearly be discriminated by the naked eye.

  20. Hybrid electro-optical nanosystem for neurons investigation

    NASA Astrophysics Data System (ADS)

    Miu, Mihaela; Kleps, Irina; Craciunoiu, Florea; Simion, Monica; Bragaru, Adina; Ignat, Teodora

    2010-11-01

    The scope of this paper is development of a new laboratory-on-a-chip (LOC) device for biomedical studies consisting of a microfluidic system coupled to microelectronic/optical transducers with nanometric features, commonly called biosensors. The proposed device is a hybrid system with sensing element on silicon (Si) chip and microfluidic system on polydimethylsiloxane (PDMS) substrates, taking into accounts their particular advantages. Different types of nanoelectrode arrays, positioned in the reactor, have been investigated as sensitive elements for electrical detection and the recording of neuron extracellular electric activity has been monitorized in parallel with whole-cell patch-clamp membrane current. Moreover, using an additional porosification process the sensing element became efficient for optical detection also. The preliminary test results demonstrate the functionality of the proposed design and also the fabrication technology, the devices bringing advantages in terms enhancement of sensitivity in both optoelectronic detection schemes.

  1. Recent approaches for enhancing sensitivity in enantioseparations by CE.

    PubMed

    Sánchez-Hernández, Laura; García-Ruiz, Carmen; Luisa Marina, María; Luis Crego, Antonio

    2010-01-01

    This article reviews the latest methodological and instrumental improvements for enhancing sensitivity in chiral analysis by CE. The review covers literature from March 2007 until May 2009, that is, the works published after the appearance of the latest review article on the same topic by Sánchez-Hernández et al. [Electrophoresis 2008, 29, 237-251]. Off-line and on-line sample treatment techniques, on-line sample preconcentration strategies based on electrophoretic and chromatographic principles, and alternative detection systems to the widely employed UV/Vis detection in CE are the most relevant approaches discussed for improving sensitivity. Microchip technologies are also included since they can open up great possibilities to achieve sensitive and fast enantiomeric separations.

  2. Syndromic Surveillance Using Veterinary Laboratory Data: Algorithm Combination and Customization of Alerts

    PubMed Central

    Dórea, Fernanda C.; McEwen, Beverly J.; McNab, W. Bruce; Sanchez, Javier; Revie, Crawford W.

    2013-01-01

    Background Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. Methods This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. Results The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. Conclusion The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes. PMID:24349216

  3. Syndromic surveillance using veterinary laboratory data: algorithm combination and customization of alerts.

    PubMed

    Dórea, Fernanda C; McEwen, Beverly J; McNab, W Bruce; Sanchez, Javier; Revie, Crawford W

    2013-01-01

    Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes.

  4. A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes.

    PubMed

    Lian, Wenjing; Liu, Shuang; Wang, Lei; Liu, Hongyun

    2015-11-15

    A new strategy for the sensitive detection of kanamycin (KA) and other antibiotics based on molecularly imprinted polymer (MIP) and bioelectrocatalysis was developed in the present study. The KA-polypyrrole MIP films were electropolymerized on the surface of pyrolytic graphite (PG) electrodes, with pyrrole (PY) serving as the monomer and KA as the template. Because KA is electro-inactive, electroactive K3[Fe(CN)6] was used as the probe in the cyclic voltammetric (CV) measurements. The difference of the CV reduction peaks of K3[Fe(CN)6] at electrodes between the MIP films after KA removal and KA-rebinding MIP films could thus be used to determine KA quantitatively. When horseradish peroxidase (HRP) and H2O2 were added into the testing solution, the detection sensitivity of the system was greatly amplified because the electrochemical reduction of H2O2 could be catalyzed by HRP and mediated by K3[Fe(CN)6]. With the bioelectrocatalysis amplification, the limit of detection (LOD) for KA fell as low as 28 nM, approximately two orders of magnitude lower than that for the MIP films in the absence of enzymatic catalysis. The strategy demonstrated the generality. Not only KA but also other antibiotics, such as oxytetracycline (OTC), could be determined by this method. More significantly, in addition to the K3[Fe(CN)6]-HRP-H2O2 system, other bioelectrocatalysis systems, such as Fc(COOH)2-GOD-glucose (Fc(COOH)2=ferrocenedicarboxylic acid, GOD=glucose oxidase), could also be used to amplify the CV signal and realize the sensitive detection of KA for the MIP film system, thereby illustrating the great potential and prospects of the strategy. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Application of thermoluminescence for detection of cascade shower 1: Hardware and software of reader system

    NASA Technical Reports Server (NTRS)

    Akashi, M.; Kawaguchi, S.; Watanabe, Z.; Misaki, A.; Niwa, M.; Okamoto, Y.; Fujinaga, T.; Ichimura, M.; Shibata, T.; Dake, S.

    1985-01-01

    A reader system for the detection of cascade showers via luminescence induced by heating sensitive material (BaSO4:Eu) is developed. The reader system is composed of following six instruments: (1) heater, (2) light guide, (3) image intensifier, (4) CCD camera, (5) image processor, (6) microcomputer. The efficiency of these apparatuses and software application for image analysis is reported.

  6. Assessing the sensitivity of bovine tuberculosis surveillance in Canada's cattle population, 2009-2013.

    PubMed

    El Allaki, Farouk; Harrington, Noel; Howden, Krista

    2016-11-01

    The objectives of this study were (1) to estimate the annual sensitivity of Canada's bTB surveillance system and its three system components (slaughter surveillance, export testing and disease investigation) using a scenario tree modelling approach, and (2) to identify key model parameters that influence the estimates of the surveillance system sensitivity (SSSe). To achieve these objectives, we designed stochastic scenario tree models for three surveillance system components included in the analysis. Demographic data, slaughter data, export testing data, and disease investigation data from 2009 to 2013 were extracted for input into the scenario trees. Sensitivity analysis was conducted to identify key influential parameters on SSSe estimates. The median annual SSSe estimates generated from the study were very high, ranging from 0.95 (95% probability interval [PI]: 0.88-0.98) to 0.97 (95% PI: 0.93-0.99). Median annual sensitivity estimates for the slaughter surveillance component ranged from 0.95 (95% PI: 0.88-0.98) to 0.97 (95% PI: 0.93-0.99). This shows that slaughter surveillance to be the major contributor to overall surveillance system sensitivity with a high probability to detect M. bovis infection if present at a prevalence of 0.00028% or greater during the study period. The export testing and disease investigation components had extremely low component sensitivity estimates-the maximum median sensitivity estimates were 0.02 (95% PI: 0.014-0.023) and 0.0061 (95% PI: 0.0056-0.0066) respectively. The three most influential input parameters on the model's output (SSSe) were the probability of a granuloma being detected at slaughter inspection, the probability of a granuloma being present in older animals (≥12 months of age), and the probability of a granuloma sample being submitted to the laboratory. Additional studies are required to reduce the levels of uncertainty and variability associated with these three parameters influencing the surveillance system sensitivity. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  7. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dongshan; Zhai, Kun; Xiang, Wenjun; Wang, Lianzhi

    2014-11-01

    A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fluorescent probes for "off-on" highly sensitive detection of Hg²⁺ and L-cysteine based on nitrogen-doped carbon dots.

    PubMed

    Zhang, Yi; Cui, Peipei; Zhang, Feng; Feng, Xiaoting; Wang, Yaling; Yang, Yongzhen; Liu, Xuguang

    2016-05-15

    Fluorescent nitrogen-doped carbon dots (NCDs) were synthesized by a facile, and low-cost one-step hydrothermal strategy using citric acid as carbon source and ammonia solution as nitrogen source for the first time. The obtained NCDs show stable blue fluorescence with a high quantum yield of 35.4%, along with the fluorescence lifetime of ca. 6.75 ns. Most importantly, Hg(2+) can completely quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg(2+) complex. Static fluorescence quenching towards Hg(2+) is proved by the Stern-Volmer equation, ultraviolet-visible absorption spectra, temperature dependent quenching and fluorescence lifetime measurements. Subsequently, the fluorescence of the NCDs-Hg(2+) system is completely recovered with the addition L-cysteine (L-Cys) owing to the dissociation of NCDs-Hg(2+) complex to form a more stable Hg(2+)-L-Cys complex by Hg(2+)-S bonding. Therefore, such NCDs can be used as an effective fluorescent "turn-off" probe for rapid, rather highly selective and sensitive detection of Hg(2+), with a limit of detection (LOD) as low as 1.48 nM and a linear detection range of 0-10 μM. Interestingly, NCDs-Hg(2+) system can be conveniently employed as a fluorescent "turn-on" sensor for highly selective and sensitive detection of L-Cys with a low LOD of 0.79 nM and a wide linear detection range of 0-50 μM. Further, the sensitivity of NCDs to Hg(2+) is preserved in tap water with a LOD of 1.65 nM and a linear detection range of 0-10 μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Performance of a high-sensitivity dedicated cardiac SPECT scanner for striatal uptake quantification in the brain based on analysis of projection data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Mi-Ae; Moore, Stephen C.; McQuaid, Sarah J.

    Purpose: The authors have previously reported the advantages of high-sensitivity single-photon emission computed tomography (SPECT) systems for imaging structures located deep inside the brain. DaTscan (Isoflupane I-123) is a dopamine transporter (DaT) imaging agent that has shown potential for early detection of Parkinson disease (PD), as well as for monitoring progression of the disease. Realizing the full potential of DaTscan requires efficient estimation of striatal uptake from SPECT images. They have evaluated two SPECT systems, a conventional dual-head gamma camera with low-energy high-resolution collimators (conventional) and a dedicated high-sensitivity multidetector cardiac imaging system (dedicated) for imaging tasks related to PD.more » Methods: Cramer-Rao bounds (CRB) on precision of estimates of striatal and background activity concentrations were calculated from high-count, separate acquisitions of the compartments (right striata, left striata, background) of a striatal phantom. CRB on striatal and background activity concentration were calculated from essentially noise-free projection datasets, synthesized by scaling and summing the compartment projection datasets, for a range of total detected counts. They also calculated variances of estimates of specific-to-nonspecific binding ratios (BR) and asymmetry indices from these values using propagation of error analysis, as well as the precision of measuring changes in BR on the order of the average annual decline in early PD. Results: Under typical clinical conditions, the conventional camera detected 2 M counts while the dedicated camera detected 12 M counts. Assuming a normal BR of 5, the standard deviation of BR estimates was 0.042 and 0.021 for the conventional and dedicated system, respectively. For an 8% decrease to BR = 4.6, the signal-to-noise ratio were 6.8 (conventional) and 13.3 (dedicated); for a 5% decrease, they were 4.2 (conventional) and 8.3 (dedicated). Conclusions: This implies that PD can be detected earlier with the dedicated system than with the conventional system; therefore, earlier identification of PD progression should be possible with the high-sensitivity dedicated SPECT camera.« less

  10. SERS-based pesticide detection by using nanofinger sensors

    NASA Astrophysics Data System (ADS)

    Kim, Ansoon; Barcelo, Steven J.; Li, Zhiyong

    2015-01-01

    Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.

  11. Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain

    NASA Astrophysics Data System (ADS)

    Li, Dongmei; Guan, Tian; Liu, Fang; Yang, Anping; He, Yonghong; He, Qinghua; Shen, Zhiyuan; Xin, Meiguo

    2018-05-01

    A transmission optical rotation detection scheme based on a weak measurement was proposed for the chirality detection of enantiomers. In this transmission weak measurement system in the frequency domain, the optical activity of the chiral liquid sample was estimated with the central wavelength shift, by modifying the preselected polarization state with the optical rotation (OR). The central wavelength shift of output spectra is sensitive to the OR angle but immune to the interference of the refractive index change caused by measuring circumstances. Two isomers of chiral amino acid acquired opposite responses with this system, and a resolution of 2.17 × 10-9 mol/ml for Proline detection could be obtained. Such a resolution is about 2 orders of magnitude higher than that of common methods, which shows a high sensitivity. This proposed weak measurement scenario suggested an approach to polarimetry and provided a way to accurately assess molecular chirality.

  12. An Escherichia coli Expression Assay and Screen for Human Immunodeficiency Virus Protease Variants with Decreased Susceptibility to Indinavir

    PubMed Central

    Melnick, Laurence; Yang, Shiow-Shong; Rossi, Rick; Zepp, Charlie; Heefner, Donald

    1998-01-01

    We have developed a recombinant Escherichia coli screening system for the rapid detection and identification of amino acid substitutions in the human immunodeficiency virus (HIV) protease associated with decreased susceptibility to the protease inhibitor indinavir (MK-639; Merck & Co.). The assay depends upon the correct processing of a segment of the HIV-1 HXB2 gag-pol polyprotein followed by detection of HIV reverse transcriptase activity by a highly sensitive, colorimetric enzyme-linked immunosorbent assay. The highly sensitive system detects the contributions of single substitutions such as I84V, L90M, and L63P. The combination of single substitutions further decreases the sensitivity to indinavir. We constructed a library of HIV protease variant genes containing dispersed mutations and, using the E. coli recombinant system, screened for mutants with decreased indinavir sensitivity. The discovered HIV protease variants contain amino acid substitutions commonly associated with indinavir resistance in clinical isolates, including the substitutions L90M, L63P, I64V, V82A, L24I, and I54T. One substitution, W6R, is also frequently found by the screen and has not been reported elsewhere. Of a total of 12,000 isolates that were screened, 12 protease variants with decreased sensitivity to indinavir were found. The L63P substitution, which is also associated with indinavir resistance, increases the stability of the isolated protease relative to that of the native HXB2 protease. The rapidity, sensitivity, and accuracy of this screen also make it useful for screening for novel inhibitors. We have found the approach described here to be useful for the detection of amino acid substitutions in HIV protease that have been associated with drug resistance as well as for the screening of novel compounds for inhibitory activity. PMID:9835523

  13. Effect of Metal Artifacts on Detection of Vertical Root Fractures Using Two Cone Beam Computed Tomography Systems.

    PubMed

    Safi, Yaser; Aghdasi, Mohammad Mehdi; Ezoddini-Ardakani, Fatemeh; Beiraghi, Samira; Vasegh, Zahra

    2015-01-01

    Vertical root fracture (VRF) is common in endodontically treated teeth. Conventional and digital radiographies have limitations for detection of VRFs. Cone-beam computed tomography (CBCT) offers greater detection accuracy of VRFs in comparison with conventional radiography. This study compared the effects of metal artifacts on detection of VRFs by using two CBCT systems. Eighty extracted premolars were selected and sectioned at the level of the cemento enamel junction (CEJ). After preparation, root canals were filled with gutta-percha. Subsequently, two thirds of the root fillings were removed for post space preparation and a custom-made post was cemented into each canal. The teeth were randomly divided into two groups (n=40). In the test group, root fracture was created with Instron universal testing machine. The control teeth remained intact. CBCT scans of all teeth were obtained with either New Tom VGI or Soredex Scanora 3D. Three observers analyzed the images for detection of VRF. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for VRF detection and percentage of probable cases were calculated for each imaging system and compared using non-parametric tests considering the non-normal distribution of data. The inter-observer reproducibility was calculated using the weighted kappa coefficient. There were no statistically significant differences in sensitivity, specificity, PPV and NPV between the two CBCT systems. The effect of metal artifacts on VRF detection was not significantly different between the two CBCT systems.

  14. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkenburg, Daken J.; Johns, Paul M.; Baciak, James E.

    Here, developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced frommore » an X-ray generator, SubPc:C 60, AlPcCl:C 70, and P3HT:PC 61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.28 µGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy -1 cm -2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.« less

  15. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    DOE PAGES

    Starkenburg, Daken J.; Johns, Paul M.; Baciak, James E.; ...

    2017-12-14

    Developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced from anmore » X-ray generator, SubPc:C60, AlPcCl:C70, and P3HT:PC61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.28 µGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy-1 cm-2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.« less

  16. H2O2-sensitive quantum dots for the label-free detection of glucose.

    PubMed

    Hu, Mei; Tian, Jing; Lu, Hao-Ting; Weng, Li-Xing; Wang, Lian-Hui

    2010-08-15

    A novel label-free detection system based on CdTe/CdS quantum dots (QDs) was designed for the direct measurement of glucose. Herein we demonstrated that the photoluminescence (PL) of CdTe/CdS QDs was sensitive to hydrogen peroxide (H(2)O(2)). With d-glucose as a substrate, H(2)O(2) that intensively quenched the QDs PL can be produced via the catalysis of glucose oxidase (GOx). Experimental results showed that the decrease of the QDs PL was proportional to the concentration of glucose within the range of 1.8 microM to 1mM with the detection limit of 1.8 microM under the optimized experimental conditions. In addition, the QD-based label-free glucose sensing platform was adapted to 96-well plates for fluorescent assay, enhancing the capabilities and conveniences of this detection platform. An excellent response to the concentrations of glucose was found within the range of 2-30 mM. Glucose in blood and urine samples was effectively detected via this strategy. The comparison with commercialized glucose meter indicated that this proposed glucose assay system is not only simple, sensitive, but also reliable and suitable for practical application. The high sensitivity, versatility, portability, high-throughput and low cost of this glucose sensor implied its potential in point-of-care clinical diagnose of diabetes and other fields. Copyright 2010 Elsevier B.V. All rights reserved.

  17. High-sensitivity detection of breast tumors in vivo by use of a pH-sensitive near-infrared fluorescence probe

    NASA Astrophysics Data System (ADS)

    Mathejczyk, Julia Eva; Pauli, Jutta; Dullin, Christian; Resch-Genger, Ute; Alves, Frauke; Napp, Joanna

    2012-07-01

    We investigated the potential of the pH-sensitive dye, CypHer5E, conjugated to Herceptin (pH-Her) for the sensitive detection of breast tumors in mice using noninvasive time-domain near-infrared fluorescence imaging and different methods of data analysis. First, the fluorescence properties of pH-Her were analyzed as function of pH and/or dye-to-protein ratio, and binding specificity was confirmed in cell-based assays. Subsequently, the performance of pH-Her in nude mice bearing orthotopic HER2-positive (KPL-4) and HER2-negative (MDA-MB-231) breast carcinoma xenografts was compared to that of an always-on fluorescent conjugate Alexa Fluor 647-Herceptin (Alexa-Her). Subtraction of autofluorescence and lifetime (LT)-gated image analyses were performed for background fluorescence suppression. In mice bearing HER2-positive tumors, autofluorescence subtraction together with the selective fluorescence enhancement of pH-Her solely in the tumor's acidic environment provided high contrast-to-noise ratios (CNRs). This led to an improved sensitivity of tumor detection compared to Alexa-Her. In contrast, LT-gated imaging using LTs determined in model systems did not improve tumor-detection sensitivity in vivo for either probe. In conclusion, pH-Her is suitable for sensitive in vivo monitoring of HER2-expressing breast tumors with imaging in the intensity domain and represents a promising tool for detection of weak fluorescent signals deriving from small tumors or metastases.

  18. Differential Sensitivity Between a Virtual Reality Balance Module and Clinically Used Concussion Balance Modalities.

    PubMed

    Teel, Elizabeth F; Gay, Michael R; Arnett, Peter A; Slobounov, Semyon M

    2016-03-01

    Balance assessments are part of the recommended clinical concussion evaluation, along with computerized neuropsychological testing and self-reported symptoms checklists. New technology has allowed for the creation of virtual reality (VR) balance assessments to be used in concussion care, but there is little information on the sensitivity and specificity of these evaluations. The purpose of this study is to establish the sensitivity and specificity of a VR balance module for detecting lingering balance deficits clinical concussion care. Retrospective case-control study. Institutional research laboratory. Normal controls (n = 94) and concussed participants (n = 27). All participants completed a VR balance assessment paradigm. Concussed participants were diagnosed by a Certified Athletic Trainer or physician (with 48 hours postinjury) and tested in the laboratory between 7 and 10 days postinjury. Receiver operating characteristic curves were performed to establish the VR module's sensitivity and specificity for detecting lingering balance deficits. Final balance score. For the VR balance module, a cutoff score of 8.25 was established to maximize sensitivity at 85.7% and specificity at 87.8%. The VR balance module has high sensitivity and specificity for detecting subacute balance deficits after concussive injury. The VR balance has a high subacute sensitivity and specificity as a stand-alone balance assessment tool and may detect ongoing balance deficits not readily detectable by the Balance Error Scoring System or Sensory Organization Test. Virtual reality balance modules may be a beneficial addition to the current clinical concussion diagnostic battery.

  19. A simple but highly efficient multi-formyl phenol-amine system for fluorescence detection of peroxide explosive vapour.

    PubMed

    Xu, Wei; Fu, Yanyan; Gao, Yixun; Yao, Junjun; Fan, Tianchi; Zhu, Defeng; He, Qingguo; Cao, Huimin; Cheng, Jiangong

    2015-07-11

    A simple, highly stable, sensitive and selective fluorescent system for peroxide explosives was developed via an aromatic aldehyde oxidation reaction. The high efficiency arises from its higher HOMO level and multiple H-bonding. The sensitivity is obtained to be 0.1 ppt for H2O2 and 0.2 ppb for TATP.

  20. An Alternative Time Metric to Modified Tau for Unmanned Aircraft System Detect And Avoid

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G.; Bageshwar, Vibhor L.; Euteneuer, Eric A.

    2017-01-01

    A new horizontal time metric, Time to Protected Zone, is proposed for use in the Detect and Avoid (DAA) Systems equipped by unmanned aircraft systems (UAS). This time metric has three advantages over the currently adopted time metric, modified tau: it corresponds to a physical event, it is linear with time, and it can be directly used to prioritize intruding aircraft. The protected zone defines an area around the UAS that can be a function of each intruding aircraft's surveillance measurement errors. Even with its advantages, the Time to Protected Zone depends explicitly on encounter geometry and may be more sensitive to surveillance sensor errors than modified tau. To quantify its sensitivity, simulation of 972 encounters using realistic sensor models and a proprietary fusion tracker is performed. Two sensitivity metrics, the probability of time reversal and the average absolute time error, are computed for both the Time to Protected Zone and modified tau. Results show that the sensitivity of the Time to Protected Zone is comparable to that of modified tau if the dimensions of the protected zone are adequately defined.

  1. A self-assembled fluorescent organic nanoprobe and its application for sulfite detection in food samples and living systems.

    PubMed

    Gao, Tang; Cao, Xiaozheng; Ge, Peng; Dong, Jie; Yang, Shuqi; Xu, Huan; Wu, Yong; Gao, Feng; Zeng, Wenbin

    2017-05-23

    Sulfur dioxide (SO 2 ) is a widely distributed air pollutant, and humans can easily be exposed to sulfite by inhaling SO 2 , thus inducing respiratory responses and diseases. Hence, to develop a rapid, sensitive and selective method for detection of sulfites is of great importance. Herein, we designed and synthesized a novel tetraphenyl imidazole compound TIBM with aggregation-induced emission enhancement (AIEE). TIBM can self-assemble into well-organized nanoparticles and is reported as an excellent probe for detection of sulfite with high selectivity and sensitivity. The nanoprobe performed very well for the detection of sulfite with an ultrafast detection time (15 s) and an ultralow detection limit (7.4 nM), which is superior to most of the reported probes. Moreover, the nanoprobe was successfully used to detect sulfite in food samples with a favorable accuracy. In addition, we developed paper-based devices for point-of-care detection of sulfite with naked eyes. Furthermore, due to its high water solubility, cell membrane permeability and good biocompatibility, the nanoproboe was further applied to detect sulfite in living systems. This study may offer some helpful insights for designing other AIE-based fluorescent nanosensors for various analytes.

  2. Highly labeled methylene blue-ds DNA silica nanoparticles for signal enhancement of immunoassays: application to the sensitive detection of bacteria in human platelet concentrates.

    PubMed

    Bonnet, Romaric; Farre, Carole; Valera, Lionel; Vossier, Ludivine; Léon, Fanny; Dagland, Typhaine; Pouzet, Agnès; Jaffrézic-Renault, Nicole; Fareh, Jeannette; Fournier-Wirth, Chantal; Chaix, Carole

    2018-05-15

    A nanoparticle-based electrochemical sandwich immunoassay was developed for bacteria detection in platelet concentrates. For the assay, magnetic beads were functionalized with antibodies to allow the specific capture of bacteria from the complex matrix, and innovative methylene blue-DNA/nanoparticle assemblies provided the electrochemical response for amplified detection. This nanoparticular system was designed as a temperature-sensitive nano-tool for electrochemical detection. First, oligonucleotide-functionalized nanoparticles were obtained by direct synthesis of the DNA strands on the nanoparticle surface using an automated oligonucleotide synthesizer. Densely packed DNA coverage was thus obtained. Then, DNA duplexes were constructed on the NP surface with a complementary strand bearing a 3 methylene blue tag. This strategy ultimately produced highly functionalized nanoparticles with electrochemical markers. These assemblies enabled amplification of the electrochemical signal, resulting in a very good sensitivity. A proof-of-concept was carried out for E. coli detection in human platelet concentrates. Bacterial contamination of this complex biological matrix is the highest residual infectious risk in blood transfusion. The development of a rapid assay that could reach 10-102 CFU mL-1 sensitivity is a great challenge. The nanoparticle-based electrochemical sandwich immunoassay carried out on a boron doped diamond electrode proved to be sensitive for E. coli detection in human platelets. Two antibody pairs were used to develop either a generic assay against certain Gram negative strains or a specific assay for E. coli. The methylene blue-DNA/nanoparticles amplify sensitivity ×1000 compared with the assay run without NPs for electrochemical detection. A limit of detection of 10 CFU mL-1 in a biological matrix was achieved for E. coli using the highly specific antibody pair.

  3. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection.

    PubMed

    Li, Shuang; Liu, Jinglong; Lu, Yanli; Zhu, Long; Li, Candong; Hu, Lijiang; Li, Jun; Jiang, Jing; Low, Szeshin; Liu, Qingjun

    2018-06-01

    Localized surface plasmon resonance (LSPR) induced charge separation were concentrated on the metal nanoparticles surface, which made it sensitive to the surface refractive index changes during optical sensing. Similarly, electrochemical detection was based on the electron transformation on the electrode surface. Herein, we fabricated a nanochip by decorating a nanocone-array substrate with gold nanoparticles and silver nanoparticles for dynamic electro-optical spectroscopy. Mercaptophenyl boronic acid (MPBA) was immobilized firmly on the nanochip by the metal-S bond for sensitive sialic acid sensing. Owing to the high stability of gold nanoparticles and the high sensitivity of silver nanoparticles, the nanochip showed good performance in LSPR detection with rich and high responses. Besides, the nanochip also showed sensitive electrical signals during electrochemical detection due to the excitation of the energetic charges from the nanoparticles surface to the reaction system. The dynamic electro-optical spectroscopy was based on a unique combination of LSPR and linear sweep voltammetry (LSV). On the one hand, electrochemical signals activated the electrons on the nanochip to promote the propagation and resonance of surface plasmon. On the other hand, LSPR concentrated the electrons on the nanochip surface, which made the electrons easily driven to enhance the current in electrochemical detection. Results showed that mutual promotion of electrochemical-LSPR on nanochip covered a linear dynamic range from 0.05 mM to 5 mM on selective sialic acid detection with a low detection limit of 17 μM. The synchronous amplification of the electro-optical response during electrochemical-LSPR, opened up a new perspective for efficient and sensitive biochemical detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Mapping dominant negative mutation for triforine sensitivity in lettuce and its use as a selectable marker for detecting hybrids.

    USDA-ARS?s Scientific Manuscript database

    Some lettuce cultivars are highly sensitive to triforine, an inhibitor of sterol biosynthesis found in some commercial systemic fungicides. First symptoms of a sensitive reaction are usually observed within 24 to 48 hours after treatment and include severe wilting, necrosis and rapid plant death. We...

  5. Multiple-channel detection of cellular activities by ion-sensitive transistors

    NASA Astrophysics Data System (ADS)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  6. Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-10-28

    Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

  7. A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase.

    PubMed

    Xiang, Mei-Hao; Liu, Jin-Wen; Li, Na; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-02-28

    Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L(-1) with a low detection limit of 0.08 U L(-1), which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications.

  8. Nanoplatforms for Detection, Remediation and Protection Against Chem-Bio Warfare

    NASA Astrophysics Data System (ADS)

    Denkbaş, E. B.; Bayram, C.; Kavaz, D.; Çirak, T.; Demirbilek, M.

    Chemical and biological substances have been used as warfare agents by terrorists by varying degree of sophistication. It is critical that these agents be detected in real-time with high level of sensitively, specificity, and accuracy. Many different types of techniques and systems have been developed to detect these agents. But there are some limitations in these conventional techniques and systems. Limitations include the collection, handling and sampling procedures, detection limits, sample transfer, expensive equipment, personnel training, and detection materials. Due to the unique properties such as quantum effect, very high surface/volume ratio, enhanced surface reactivity, conductivity, electrical and magnetic properties of the nanomaterials offer great opportunity to develop very fast, sensitive, accurate and cost effective detection techniques and systems to detect chemical and biological (chem.-bio) warfare agents. Furthermore, surface modification of the materials is very easy and effective way to get functional or smart surfaces to be used as nano-biosensor platform. In that respect many different types of nanomaterials have been developed and used for the detection, remediation and protection, such as gold and silver nanoparticles, quantum dots, Nano chips and arrays, fluorescent polymeric and magnetic nanoparticles, fiber optic and cantilever based nanobiosensors, nanofibrillar nanostructures etc. This study summarizes preparation and characterization of nanotechnology based approaches for the detection of and remediation and protection against chem.-bio warfare agents.

  9. NORAD's PARCS small satellite tests (1976 and 1978)

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1985-01-01

    NORAD sponsored small satellite tests in 1976 and 1978. The purpose of the tests was to use their more sensitive radar to determine the number of Earth orbiting objects which are not part of the official catalogue. Both tests used the PARCS radar. The characteristics of this radar are given. The detection capability of NORAD's operational system is estimated and compared to the PARC's radar sensitivity during these tests. The tests only slightly improved the detection capability, and the largest improvements were at the lowest and highest regions of its sensitivity range. The major conclusion of the test is that 17.7% of the objects detected were uncorrelated (i.e., not in the official catalogue). However, perhaps most significant is the altitutde and size distribution of detected objects are illustrated. The 1978 results are also summarized. This test concluded that at least 7% of the objects detected were not in the official catalogue. Another 6% of the detected objects were not tracked well enough to determine their status. Again, a large percentage of the detected objects at lower altitudes were not in the catalogue.

  10. NORAD's PARCS small satellite tests (1976 and 1978)

    NASA Astrophysics Data System (ADS)

    Kessler, D. J.

    1985-03-01

    NORAD sponsored small satellite tests in 1976 and 1978. The purpose of the tests was to use their more sensitive radar to determine the number of Earth orbiting objects which are not part of the official catalogue. Both tests used the PARCS radar. The characteristics of this radar are given. The detection capability of NORAD's operational system is estimated and compared to the PARC's radar sensitivity during these tests. The tests only slightly improved the detection capability, and the largest improvements were at the lowest and highest regions of its sensitivity range. The major conclusion of the test is that 17.7% of the objects detected were uncorrelated (i.e., not in the official catalogue). However, perhaps most significant is the altitutde and size distribution of detected objects are illustrated. The 1978 results are also summarized. This test concluded that at least 7% of the objects detected were not in the official catalogue. Another 6% of the detected objects were not tracked well enough to determine their status. Again, a large percentage of the detected objects at lower altitudes were not in the catalogue.

  11. Comparison of Near-Infrared Imaging Camera Systems for Intracranial Tumor Detection.

    PubMed

    Cho, Steve S; Zeh, Ryan; Pierce, John T; Salinas, Ryan; Singhal, Sunil; Lee, John Y K

    2018-04-01

    Distinguishing neoplasm from normal brain parenchyma intraoperatively is critical for the neurosurgeon. 5-Aminolevulinic acid (5-ALA) has been shown to improve gross total resection and progression-free survival but has limited availability in the USA. Near-infrared (NIR) fluorescence has advantages over visible light fluorescence with greater tissue penetration and reduced background fluorescence. In order to prepare for the increasing number of NIR fluorophores that may be used in molecular imaging trials, we chose to compare a state-of-the-art, neurosurgical microscope (System 1) to one of the commercially available NIR visualization platforms (System 2). Serial dilutions of indocyanine green (ICG) were imaged with both systems in the same environment. Each system's sensitivity and dynamic range for NIR fluorescence were documented and analyzed. In addition, brain tumors from six patients were imaged with both systems and analyzed. In vitro, System 2 demonstrated greater ICG sensitivity and detection range (System 1 1.5-251 μg/l versus System 2 0.99-503 μg/l). Similarly, in vivo, System 2 demonstrated signal-to-background ratio (SBR) of 2.6 ± 0.63 before dura opening, 5.0 ± 1.7 after dura opening, and 6.1 ± 1.9 after tumor exposure. In contrast, System 1 could not easily detect ICG fluorescence prior to dura opening with SBR of 1.2 ± 0.15. After the dura was reflected, SBR increased to 1.4 ± 0.19 and upon exposure of the tumor SBR increased to 1.8 ± 0.26. Dedicated NIR imaging platforms can outperform conventional microscopes in intraoperative NIR detection. Future microscopes with improved NIR detection capabilities could enhance the use of NIR fluorescence to detect neoplasm and improve patient outcome.

  12. Rapid quantification of color vision: the cone contrast test.

    PubMed

    Rabin, Jeff; Gooch, John; Ivan, Douglas

    2011-02-09

    To describe the design, specificity, and sensitivity of the cone contrast test (CCT), a computer-based, cone-specific (L, M, S) contrast sensitivity test for diagnosing type and severity of color vision deficiency (CVD). The CCT presents a randomized series of colored letters visible only to L, M or S cones in decreasing steps of cone contrast to determine L, M, and S letter-recognition thresholds. Sensitivity and specificity were determined by retrospective comparison of CCT scores to anomaloscope and pseudoisochromatic plate (PIP) results in 1446 applicants for pilot training. CVD was detected in 49 (3.4%) of 1446 applicants with hereditary red-green (protan or deutan) CVD detected in 47 (3.5%) of 1359 men and blue-yellow (tritan) in 2 of 1446. In agreement with the anomaloscope, the CCT showed 100% sensitivity for detection and categorization of CVD (40 deutan, 7 protan, 2 tritan). PIP testing showed lower sensitivity (80% detected; 20% missed) due in part to the applicant's prior experience and/or pretest preparation. CCT specificity for confirming normal color vision was 100% for L and M cone tests and 99.8% for S cones. The CCT has sensitivity and specificity comparable to anomaloscope testing and exceeds PIP sensitivity in practiced observers. The CCT provides a rapid (6 minutes), clinically expedient, measure of color vision for quantifying normal color performance, diagnosing type and severity of hereditary deficiency, and detection of acquired sensitivity loss due to ocular, neurologic, and/or systemic disease, as well as injury and physiological stressors, such as altitude and fatigue.

  13. Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy

    NASA Astrophysics Data System (ADS)

    Andersson, Mats; Persson, Linda; Svensson, Tomas; Svanberg, Sune

    2007-11-01

    We present a flexible and compact, digital, lock-in detection system and its use in high-resolution tunable diode laser spectroscopy. The system involves coherent sampling, and is based on the synchronization of two data acquisition cards running on a single standard computer. A software-controlled arbitrary waveform generator is used for laser modulation, and a four-channel analog/digital board records detector signals. Gas spectroscopy is performed in the wavelength modulation regime. The coherently detected signal is averaged a selected number of times before it is stored or analyzed by software-based, lock-in techniques. Multiple harmonics of the modulation signal (1f, 2f, 3f, 4f, etc.) are available in each single data set. The sensitivity is of the order of 10-5, being limited by interference fringes in the measurement setup. The capabilities of the system are demonstrated by measurements of molecular oxygen in ambient air, as well as dispersed gas in scattering materials, such as plants and human tissue.

  14. Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy.

    PubMed

    Andersson, Mats; Persson, Linda; Svensson, Tomas; Svanberg, Sune

    2007-11-01

    We present a flexible and compact, digital, lock-in detection system and its use in high-resolution tunable diode laser spectroscopy. The system involves coherent sampling, and is based on the synchronization of two data acquisition cards running on a single standard computer. A software-controlled arbitrary waveform generator is used for laser modulation, and a four-channel analog/digital board records detector signals. Gas spectroscopy is performed in the wavelength modulation regime. The coherently detected signal is averaged a selected number of times before it is stored or analyzed by software-based, lock-in techniques. Multiple harmonics of the modulation signal (1f, 2f, 3f, 4f, etc.) are available in each single data set. The sensitivity is of the order of 10(-5), being limited by interference fringes in the measurement setup. The capabilities of the system are demonstrated by measurements of molecular oxygen in ambient air, as well as dispersed gas in scattering materials, such as plants and human tissue.

  15. CMOS direct time interval measurement of long-lived luminescence lifetimes.

    PubMed

    Yao, Lei; Yung, Ka Yi; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-01-01

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) Direct Time Interval Measurement (DTIM) Integrated Circuit (IC) to detect the decay (fall) time of the luminescence emission when analyte-sensitive luminophores are excited with an optical pulse. The CMOS DTIM IC includes 14 × 14 phototransistor array, transimpedance amplifier, regulated gain amplifier, fall time detector, and time-to-digital convertor. We examined the DTIM system to measure the emission lifetime of oxygen-sensitive luminophores tris(4,7-diphenyl-1, 10-phenanthroline) ruthenium(II) ([Ru(dpp)(3)](2+)) encapsulated in sol-gel derived xerogel thin-films. The DTIM system fabricated using TSMC 0.35 μm process functions to detect lifetimes from 4 μs to 14.4 μs but can be tuned to detect longer lifetimes. The system provides 8-bit digital output proportional to lifetimes and consumes 4.5 mW of power with 3.3 V DC supply. The CMOS system provides a useful platform for the development of reliable, robust, and miniaturized optical chemical sensors.

  16. New method for monitoring nitric oxide in vivo using microdialysis sampling and chemiluminescence reaction

    NASA Astrophysics Data System (ADS)

    Yao, Dachun; Evmiridis, Nick P.; Zhou, Yikai; Xu, Shunqing; Zhou, Huarong

    2001-09-01

    A new method employing a combination of micro dialysis sampling and chemiluminescence reaction was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve a very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. We have established that this system is sensitive enough to detect variations in NO production in difference physiological state. The system can detect NO in the linear range of 5nM-1(mu) M, with a detection limit of 1nM, and real NO concentrations in our experimental animals were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors, NO interference were investigated carefully in different physiological situations.

  17. Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels.

    PubMed

    Zhang, Nan; Li, Kaiwei; Cui, Ying; Wu, Zhifang; Shum, Perry Ping; Auguste, Jean-Louis; Dinh, Xuan Quyen; Humbert, Georges; Wei, Lei

    2018-02-13

    All-in-fiber optofluidics is an analytical tool that provides enhanced sensing performance with simplified analyzing system design. Currently, its advance is limited either by complicated liquid manipulation and light injection configuration or by low sensitivity resulting from inadequate light-matter interaction. In this work, we design and fabricate a side-channel photonic crystal fiber (SC-PCF) and exploit its versatile sensing capabilities in in-line optofluidic configurations. The built-in microfluidic channel of the SC-PCF enables strong light-matter interaction and easy lateral access of liquid samples in these analytical systems. In addition, the sensing performance of the SC-PCF is demonstrated with methylene blue for absorptive molecular detection and with human cardiac troponin T protein by utilizing a Sagnac interferometry configuration for ultra-sensitive and specific biomolecular specimen detection. Owing to the features of great flexibility and compactness, high-sensitivity to the analyte variation, and efficient liquid manipulation/replacement, the demonstrated SC-PCF offers a generic solution to be adapted to various fiber-waveguide sensors to detect a wide range of analytes in real time, especially for applications from environmental monitoring to biological diagnosis.

  18. Double closed-loop control of integrated optical resonance gyroscope with mean-square exponential stability.

    PubMed

    Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang

    2018-01-22

    A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.

  19. Use of Monoclonal Antibodies in the Sensitive Detection and Neutralization of Botulinum Neurotoxin Serotype B.

    PubMed

    Cheng, Luisa W; Henderson, Thomas D; Lam, Tina I; Stanker, Larry H

    2015-11-27

    Botulinum neurotoxins (BoNT) are some of nature's most potent toxins. Due to potential food contamination, and bioterrorism concerns, the development of detection reagents, therapeutics and countermeasures are of urgent interest. Recently, we have developed a sensitive electrochemiluminescent (ECL) immunoassay for BoNT/B, using monoclonal antibodies (mAbs) MCS6-27 and anti-BoNT/B rabbit polyclonal antibodies as the capture and detector. The ECL assay detected as little as 1 pg/mL BoNT/B in the buffer matrix, surpassing the detection sensitivities of the gold standard mouse bioassays. The ECL assay also allowed detection of BoNT/B in sera matrices of up to 100% sera with negligible matrix effects. This highly-sensitive assay allowed the determination of the biological half-lives of BoNT/B holotoxin in vivo. We further tested the toxin neutralization potential of our monoclonal antibodies using the mouse systemic and oral intoxication models. A combination of mAbs protected mice in both pre- and post-exposure models to lethal doses of BoNT/B. MAbs were capable of increasing survival of animals when administered even 10 h post-intoxication in an oral model, suggesting a likely time for BoNT/B complexes to reach the blood stream. More sensitive detection assays and treatments against BoNT intoxication will greatly enhance efforts to combat botulism.

  20. Use of Monoclonal Antibodies in the Sensitive Detection and Neutralization of Botulinum Neurotoxin Serotype B

    PubMed Central

    Cheng, Luisa W.; Henderson, Thomas D.; Lam, Tina I.; Stanker, Larry H.

    2015-01-01

    Botulinum neurotoxins (BoNT) are some of nature’s most potent toxins. Due to potential food contamination, and bioterrorism concerns, the development of detection reagents, therapeutics and countermeasures are of urgent interest. Recently, we have developed a sensitive electrochemiluminescent (ECL) immunoassay for BoNT/B, using monoclonal antibodies (mAbs) MCS6-27 and anti-BoNT/B rabbit polyclonal antibodies as the capture and detector. The ECL assay detected as little as 1 pg/mL BoNT/B in the buffer matrix, surpassing the detection sensitivities of the gold standard mouse bioassays. The ECL assay also allowed detection of BoNT/B in sera matrices of up to 100% sera with negligible matrix effects. This highly-sensitive assay allowed the determination of the biological half-lives of BoNT/B holotoxin in vivo. We further tested the toxin neutralization potential of our monoclonal antibodies using the mouse systemic and oral intoxication models. A combination of mAbs protected mice in both pre- and post-exposure models to lethal doses of BoNT/B. MAbs were capable of increasing survival of animals when administered even 10 h post-intoxication in an oral model, suggesting a likely time for BoNT/B complexes to reach the blood stream. More sensitive detection assays and treatments against BoNT intoxication will greatly enhance efforts to combat botulism. PMID:26633496

  1. Alternatives for Laboratory Measurement of Aerosol Samples from the International Monitoring System of the CTBT

    NASA Astrophysics Data System (ADS)

    Miley, H.; Forrester, J. B.; Greenwood, L. R.; Keillor, M. E.; Eslinger, P. W.; Regmi, R.; Biegalski, S.; Erikson, L. E.

    2013-12-01

    The aerosol samples taken from the CTBT International Monitoring Systems stations are measured in the field with a minimum detectable concentration (MDC) of ~30 microBq/m3 of Ba-140. This is sufficient to detect far less than 1 kt of aerosol fission products in the atmosphere when the station is in the plume from such an event. Recent thinking about minimizing the potential source region (PSR) from a detection has led to a desire for a multi-station or multi-time period detection. These would be connected through the concept of ';event formation', analogous to event formation in seismic event study. However, to form such events, samples from the nearest neighbors of the detection would require re-analysis with a more sensitive laboratory to gain a substantially lower MDC, and potentially find radionuclide concentrations undetected by the station. The authors will present recent laboratory work with air filters showing various cost effective means for enhancing laboratory sensitivity.

  2. Detecting continuous gravitational waves with superfluid helium

    NASA Astrophysics Data System (ADS)

    Singh, Swati; de Lorenzo, Laura; Pikovski, Igor; Schwab, Keith

    2017-04-01

    We study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically coupled to a superconducting microwave cavity. This narrowband detection scheme can operate at very high Q-factors, while the resonant frequency is tunable through pressurization of the helium in the 0.1-1.5 kHz range. The detector can therefore be tuned to a variety of astrophysical sources and can remain sensitive to a particular source over a long period of time. For reasonable experimental parameters, we find that strain fields on the order of h 10-23 /√{ Hz} are detectable. We show that the proposed system can significantly improve the limits on gravitational wave strain from nearby pulsars within a few months of integration time.

  3. One step preparation and electrochemical analysis of IQS, a cell-cell communication signal in the nosocomial pathogen Pseudomonas aeruginosa.

    PubMed

    Shang, Fengjun; Muimhneacháin, Eoin Ó; Jerry Reen, F; Buzid, Alyah; O'Gara, Fergal; Luong, John H T; Glennon, Jeremy D; McGlacken, Gerard P

    2014-10-01

    Pseudomonas aeruginosa uses a hierarchical cell-cell communication system consisting of a number of regulatory elements to coordinate the expression of bacterial virulence genes. Sensitive detection of quorum sensing (QS) molecules has the potential for early identification of P. aeruginosa facilitating early medical intervention. A recently isolated cell-cell communication molecule, a thiazole termed IQS, can bypass the las QS system of P. aeruginosa under times of stress, activating a subset of QS-controlled genes. This compound offers a new target for pathogen detection and has been prepared in a one step protocol. A simple electrochemical strategy was employed for its sensitive detection using boron-doped diamond and glassy carbon electrodes by cyclic voltammetry and amperometry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of image quality on calcification detection in digital mammography

    PubMed Central

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-01-01

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC (AFROC) area decreased from 0.84 to 0.63 and the ROC area decreased from 0.91 to 0.79 (p < 0.0001). This corresponded to a 30% drop in lesion sensitivity at a NLF equal to 0.1. Detection was also sensitive to the dose used. There was no significant difference in detection between the two image processing algorithms used (p > 0.05). It was additionally found that lower threshold gold thickness from CDMAM analysis implied better cluster detection. The measured threshold gold thickness passed the acceptable limit set in the EU standards for all image qualities except half dose CR. However, calcification detection varied significantly between image qualities. This suggests that the current EU guidelines may need revising. Conclusions: Microcalcification detection was found to be sensitive to detector and dose used. Standard measurements of image quality were a good predictor of microcalcification cluster detection. PMID:22755704

  5. Effect of image quality on calcification detection in digital mammography.

    PubMed

    Warren, Lucy M; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M; Wallis, Matthew G; Chakraborty, Dev P; Dance, David R; Bosmans, Hilde; Young, Kenneth C

    2012-06-01

    This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC (AFROC) area decreased from 0.84 to 0.63 and the ROC area decreased from 0.91 to 0.79 (p < 0.0001). This corresponded to a 30% drop in lesion sensitivity at a NLF equal to 0.1. Detection was also sensitive to the dose used. There was no significant difference in detection between the two image processing algorithms used (p > 0.05). It was additionally found that lower threshold gold thickness from CDMAM analysis implied better cluster detection. The measured threshold gold thickness passed the acceptable limit set in the EU standards for all image qualities except half dose CR. However, calcification detection varied significantly between image qualities. This suggests that the current EU guidelines may need revising. Microcalcification detection was found to be sensitive to detector and dose used. Standard measurements of image quality were a good predictor of microcalcification cluster detection. © 2012 American Association of Physicists in Medicine.

  6. Sensitive detection of Escherichia coli O157:H7 based on cascade signal amplification in ELISA.

    PubMed

    Shan, Shan; Liu, Daofeng; Guo, Qi; Wu, Songsong; Chen, Rui; Luo, Kai; Hu, Liming; Xiong, Yonghua; Lai, Weihua

    2016-09-01

    In this study, cascade signal amplification in ELISA involving double-antibody sandwich ELISA and indirectly competitive ELISA was established to sensitively detect Escherichia coli O157:H7. In the double-antibody sandwich ELISA, a complex was formed comprising anti-E. coli O157:H7 polyclonal antibody, E. coli O157:H7, biotinylated anti-E. coli O157:H7 monoclonal antibody, streptavidin, and biotinylated β-lactamase. Penicillin solution was then added into the ELISA well and hydrolyzed by β-lactamase. Afterward, the penicillin solution was transferred to indirectly competitive ELISA. The concentration of penicillin can be sensitively detected in indirectly competitive ELISA. In the cascade signal amplification system, increasing the amount of added E. coli O157:H7 resulted in more β-lactamase and less penicillin. The detection sensitivity of E. coli O157:H7, which was 20cfu/mL with the cascade signal amplification in ELISA, was 1,000-fold higher than that of traditional ELISA. Furthermore, the novel method can be used to detect E. coli O157:H7 in milk (2cfu/g). Therefore, this new signaling strategy will facilitate analyses of highly sensitive foodborne pathogens. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. 46 CFR 120.378 - Ungrounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Distribution Systems § 120.378 Ungrounded systems. Each ungrounded system must be provided with a suitably sensitive ground detection system, located at the respective switchboard, that provides continuous... 46 Shipping 4 2010-10-01 2010-10-01 false Ungrounded systems. 120.378 Section 120.378 Shipping...

  8. 46 CFR 120.378 - Ungrounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ungrounded systems. 120.378 Section 120.378 Shipping... and Distribution Systems § 120.378 Ungrounded systems. Each ungrounded system must be provided with a suitably sensitive ground detection system, located at the respective switchboard, that provides continuous...

  9. 46 CFR 120.378 - Ungrounded systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ungrounded systems. 120.378 Section 120.378 Shipping... and Distribution Systems § 120.378 Ungrounded systems. Each ungrounded system must be provided with a suitably sensitive ground detection system, located at the respective switchboard, that provides continuous...

  10. 46 CFR 183.378 - Ungrounded systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ungrounded systems. 183.378 Section 183.378 Shipping...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.378 Ungrounded systems. Each ungrounded system must be provided with a suitably sensitive ground detection system located at the respective...

  11. 46 CFR 120.378 - Ungrounded systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ungrounded systems. 120.378 Section 120.378 Shipping... and Distribution Systems § 120.378 Ungrounded systems. Each ungrounded system must be provided with a suitably sensitive ground detection system, located at the respective switchboard, that provides continuous...

  12. 46 CFR 183.378 - Ungrounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ungrounded systems. 183.378 Section 183.378 Shipping...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.378 Ungrounded systems. Each ungrounded system must be provided with a suitably sensitive ground detection system located at the respective...

  13. Carbon nanotube-based labels for highly sensitive colorimetric and aggregation-based visual detection of nucleic acids

    NASA Astrophysics Data System (ADS)

    Lee, Ai Cheng; Ye, Jian-Shan; Ngin Tan, Swee; Poenar, Daniel P.; Sheu, Fwu-Shan; Kiat Heng, Chew; Meng Lim, Tit

    2007-11-01

    A novel carbon nanotube (CNT) derived label capable of dramatic signal amplification of nucleic acid detection and direct visual detection of target hybridization has been developed. Highly sensitive colorimetric detection of human acute lymphocytic leukemia (ALL) related oncogene sequences amplified by the novel CNT-based label was demonstrated. Atomic force microscope (AFM) images confirmed that a monolayer of horseradish peroxidase and detection probe molecules was immobilized along the carboxylated CNT carrier. The resulting CNT labels significantly enhanced the nucleic acid assay sensitivity by at least 1000 times compared to that of conventional labels used in enzyme-linked oligosorbent assay (ELOSA). An excellent detection limit of 1 × 10-12 M (60 × 10-18 mol in 60 µl) and a four-order wide dynamic range of target concentration were achieved. Hybridizations using these labels were coupled to a concentration-dependent formation of visible dark aggregates. Targets can thus be detected simply with visual inspection, eliminating the need for expensive and sophisticated detection systems. The approach holds promise for ultrasensitive and low cost visual inspection and colorimetric nucleic acid detection in point-of-care and early disease diagnostic application.

  14. Controlled biological and biomimetic systems for landmine detection.

    PubMed

    Habib, Maki K

    2007-08-30

    Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions.

  15. Reducing false positives of microcalcification detection systems by removal of breast arterial calcifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mordang, Jan-Jurre, E-mail: Jan-Jurre.Mordang@radboudumc.nl; Gubern-Mérida, Albert; Karssemeijer, Nico

    Purpose: In the past decades, computer-aided detection (CADe) systems have been developed to aid screening radiologists in the detection of malignant microcalcifications. These systems are useful to avoid perceptual oversights and can increase the radiologists’ detection rate. However, due to the high number of false positives marked by these CADe systems, they are not yet suitable as an independent reader. Breast arterial calcifications (BACs) are one of the most frequent false positives marked by CADe systems. In this study, a method is proposed for the elimination of BACs as positive findings. Removal of these false positives will increase the performancemore » of the CADe system in finding malignant microcalcifications. Methods: A multistage method is proposed for the removal of BAC findings. The first stage consists of a microcalcification candidate selection, segmentation and grouping of the microcalcifications, and classification to remove obvious false positives. In the second stage, a case-based selection is applied where cases are selected which contain BACs. In the final stage, BACs are removed from the selected cases. The BACs removal stage consists of a GentleBoost classifier trained on microcalcification features describing their shape, topology, and texture. Additionally, novel features are introduced to discriminate BACs from other positive findings. Results: The CADe system was evaluated with and without BACs removal. Here, both systems were applied on a validation set containing 1088 cases of which 95 cases contained malignant microcalcifications. After bootstrapping, free-response receiver operating characteristics and receiver operating characteristics analyses were carried out. Performance between the two systems was compared at 0.98 and 0.95 specificity. At a specificity of 0.98, the sensitivity increased from 37% to 52% and the sensitivity increased from 62% up to 76% at a specificity of 0.95. Partial areas under the curve in the specificity range of 0.8–1.0 were significantly different between the system without BACs removal and the system with BACs removal, 0.129 ± 0.009 versus 0.144 ± 0.008 (p<0.05), respectively. Additionally, the sensitivity at one false positive per 50 cases and one false positive per 25 cases increased as well, 37% versus 51% (p<0.05) and 58% versus 67% (p<0.05) sensitivity, respectively. Additionally, the CADe system with BACs removal reduces the number of false positives per case by 29% on average. The same sensitivity at one false positive per 50 cases in the CADe system without BACs removal can be achieved at one false positive per 80 cases in the CADe system with BACs removal. Conclusions: By using dedicated algorithms to detect and remove breast arterial calcifications, the performance of CADe systems can be improved, in particular, at false positive rates representative for operating points used in screening.« less

  16. Multiplexed detection of anthrax-related toxin genes.

    PubMed

    Moser, Michael J; Christensen, Deanna R; Norwood, David; Prudent, James R

    2006-02-01

    Simultaneous analysis of three targets in three colors on any real-time polymerase chain reaction (PCR) instrument would increase the flexibility of real-time PCR. For the detection of Bacillus strains that can cause inhalation anthrax-related illness, this ability would be valuable because two plasmids confer virulence, and internal positive controls are needed to monitor the testing in cases lacking target-specific signals. Using a real-time PCR platform called MultiCode-RTx, multiple assays were developed that specifically monitor the presence of Bacillus anthracis-specific virulence plasmid-associated genes. In particular for use on LightCycler-1, two triplex RTx systems demonstrated high sensitivity with limits of detection nearing single-copy levels for both plasmids. Specificity was established using a combination of Ct values and correct amplicon melting temperatures. All reactions were further verified by detection of an internal positive control. For these two triplex RTx assays, the analytical detection limit was one to nine plasmid copy equivalents, 100% analytical specificity with a 95% confidence interval (CI) of 9%, and 100% analytical sensitivity with a CI of 2%. Although further testing using clinical or environmental samples will be required to assess diagnostic sensitivity and specificity, the RTx platform achieves similar results to those of probe-based real-time systems.

  17. Magnetic-field sensing with quantum error detection under the effect of energy relaxation

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuichiro; Benjamin, Simon

    2017-03-01

    A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction (QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly, we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over a single qubit in the same conditions.

  18. Enhanced Reverse Transcription-PCR Assay for Detection of Norovirus Genogroup I

    PubMed Central

    Dreier, Jens; Störmer, Melanie; Mäde, Dietrich; Burkhardt, Sabine; Kleesiek, Knut

    2006-01-01

    We have developed a one-tube reverse transcription (RT)-PCR method using the real-time TaqMan PCR system for the detection of norovirus genogroup I (NV GGI). By introduction of a novel probe based on locked nucleic acid technology, we enhanced the sensitivity of the assay compared to those of conventional TaqMan probes. The sensitivity of the NV GGI RT-PCR was determined by probit analysis with defined RNA standards and quantified norovirus isolates to 711 copies/ml (95% detection limit). In order to detect PCR inhibition, we included a heterologous internal control (IC) system based on phage MS2. This internally controlled RT-PCR was tested on different real-time PCR platforms, LightCycler, Rotorgene, Mastercycler EP realplex, and ABI Prism. Compared to the assay without an IC, the duplex RT-PCR exhibited no reduction in sensitivity in clinical samples. In combination with an established NV GGII real-time RT-PCR, we used the novel assay in a routine assay for diagnosis of clinical and food-borne norovirus infection. We applied this novel assay to analyze outbreaks of nonbacterial acute gastroenteritis. Norovirus of GGI was detected in these outbreaks. Sequence and similarity plot analysis of open reading frame 1 (ORF1) and ORF2 showed two genotypes, GGI/2 and GGI/4, in semiclosed communities. PMID:16891482

  19. Unannounced Meals in the Artificial Pancreas: Detection Using Continuous Glucose Monitoring

    PubMed Central

    Herrero, Pau; Bondia, Jorge

    2018-01-01

    The artificial pancreas (AP) system is designed to regulate blood glucose in subjects with type 1 diabetes using a continuous glucose monitor informed controller that adjusts insulin infusion via an insulin pump. However, current AP developments are mainly hybrid closed-loop systems that include feed-forward actions triggered by the announcement of meals or exercise. The first step to fully closing the loop in the AP requires removing meal announcement, which is currently the most effective way to alleviate postprandial hyperglycemia due to the delay in insulin action. Here, a novel approach to meal detection in the AP is presented using a sliding window and computing the normalized cross-covariance between measured glucose and the forward difference of a disturbance term, estimated from an augmented minimal model using an Unscented Kalman Filter. Three different tunings were applied to the same meal detection algorithm: (1) a high sensitivity tuning, (2) a trade-off tuning that has a high amount of meals detected and a low amount of false positives (FP), and (3) a low FP tuning. For the three tunings sensitivities 99 ± 2%, 93 ± 5%, and 47 ± 12% were achieved, respectively. A sensitivity analysis was also performed and found that higher carbohydrate quantities and faster rates of glucose appearance result in favorable meal detection outcomes. PMID:29547553

  20. A MEMS torsion magnetic sensor with reflective blazed grating integration

    NASA Astrophysics Data System (ADS)

    Long, Liang; Zhong, Shaolong

    2016-07-01

    A novel magnetic sensor based on a permanent magnet and blazed grating is presented in this paper. The magnetic field is detected by measuring the diffracted wavelength of the blazed grating which is changed by the torsion motion of a torsion sensitive micro-electromechanical system (MEMS) structure with a permanent magnet attached. A V-shape grating structure is obtained by wet etching on a (1 0 0) SOI substrate. When the magnet is magnetized in different directions, the in-plane or out-of-plane magnetic field is detected by a sensor. The MEMS magnetic sensor with a permanent magnet is fabricated after analytical design and bulk micromachining processes. The magnetic-sensing capability of the sensor is tested by fiber-optic detection system. The result shows the sensitivities of the in-plane and out-of-plane magnetic fields are 3.6 pm μT-1 and 5.7 pm μT-1, respectively. Due to utilization of the permanent magnet and fiber-optic detection, the sensor shows excellent capability of covering the high-resolution detection of low-frequency signals. In addition, the sensitive direction of the magnetic sensor can be easily switched by varying the magnetized direction of the permanent magnet, which offers a simple way to achieve tri-axis magnetic sensor application.

  1. A microsensor for the detection of a single pathogenic bacterium using magnetotactic bacteria-based bio-carriers: simulations and preliminary experiments.

    PubMed

    Denomme, Ryan C; Lu, Zhao; Martel, Sylvain

    2007-01-01

    The proposed Magnetotactic Bacteria (MTB) based bio-carrier has the potential to greatly improve pathogenic bacteria detection time, specificity, and sensitivity. Microbeads are attached to the MTB and are modified with a coating of an antibody or phage that is specific to the target pathogenic bacteria. Using magnetic fields, the modified MTB are swept through a solution and the target bacteria present become attached to the microbeads (due to the coating). Then, the MTB are brought to the detection region and the number of pathogenic bacteria is determined. The high swimming speed and controllability of the MTB make this method ideal for the fast detection of small concentrations of specific bacteria. This paper focuses on an impedimetric detection system that will be used to identify if a target bacterium is attached to the microbead. The proposed detection system measures changes in electrical impedance as objects (MTB, microbeads, and pathogenic bacteria) pass through a set of microelectrodes embedded in a microfluidic device. FEM simulation is used to acquire the optimized parameters for the design of such a system. Specifically, factors such as electrode/detection channel geometry, object size and position, which have direct effects on the detection sensitivity for a single bacterium or microparticle, are investigated. Polymer microbeads and the MTB system with an E. coli bacterium are considered to investigate their impedance variations. Furthermore, preliminary experimental data using a microfabricated microfluidic device connected to an impedance analyzer are presented.

  2. Moiré deflectometry-based position detection for optical tweezers.

    PubMed

    Khorshad, Ali Akbar; Reihani, S Nader S; Tavassoly, Mohammad Taghi

    2017-09-01

    Optical tweezers have proven to be indispensable tools for pico-Newton range force spectroscopy. A quadrant photodiode (QPD) positioned at the back focal plane of an optical tweezers' condenser is commonly used for locating the trapped object. In this Letter, for the first time, to the best of our knowledge, we introduce a moiré pattern-based detection method for optical tweezers. We show, both theoretically and experimentally, that this detection method could provide considerably better position sensitivity compared to the commonly used detection systems. For instance, position sensitivity for a trapped 2.17 μm polystyrene bead is shown to be 71% better than the commonly used QPD-based detection method. Our theoretical and experimental results are in good agreement.

  3. Development of a combined ultrasound and electrical impedance imaging system for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Wan, Yuqing

    Approximately 240,890 men were diagnosed with prostate cancer and 33,720 men were expected to die from it in the year of 2011 in the United States. Unfortunately, the current clinical diagnostic methods (e.g. prostate-specific antigen (PSA), digital rectal examination, ultrasound guided biopsy) used for detecting and staging prostate cancer are limited. It has been shown that cancerous prostate tissue has significantly different electrical properties when compared to benign tissues. Based on these electrical property findings, a transrectal electrical impedance tomography (TREIT) system is proposed as a novel prostate imaging modality. An ultrasound probe is incorporated with TREIT to achieve anatomic information of the prostate and guide electrical property reconstruction. Without the guidance of the ultrasound, the TREIT system can easily discern high contrast inclusions of 1 cm in diameter at distances centered at two times the radius of the TREIT probe away from the probe surface. Furthermore, we have demonstrated that our system is able to detect low contrast inclusions. With the guidance of the ultrasound, our system is capable of detecting a plastic inclusion embedded in a gelatin phantom, indicating the potential to detect cancer. In addition, the results of preliminary in vivo clinical trials using the imaging system are also presented in the thesis. After collecting data for a total 66 patients, we demonstrated that the in vivo conductivity of cancerous tissue is significantly greater than that of benign tissue (p=0.0015 at 400 Hz) and the conductivity of BPH tissue is significantly lower than that of normal tissue (p=0.0009 at 400 Hz). Additionally at 25.6 kHz, the dual-modal imaging system is able to differentiate cancerous tissue from benign tissue with sensitivity of 0.6012 and specificity of 0.5498, normal tissue from BPH tissue with sensitivity of 0.6085 and specificity of 0.5813 and differentiate cancerous tissue from BPH tissue with sensitivity of 0.6510 and specificity of 0.6539, respectively. This research demonstrated the potential and feasibility of detecting the prostate cancer by measuring electrical properties. We hope to incorporate needle electrodes to improve the system performance in the future.

  4. Dual-Reactable Fluorescent Probes for Highly Selective and Sensitive Detection of Biological H2 S.

    PubMed

    Wei, Chao; Wang, Runyu; Zhang, Changyu; Xu, Guoce; Li, Yanyan; Zhang, Qiang-Zhe; Li, Lu-Yuan; Yi, Long; Xi, Zhen

    2016-05-06

    Hydrogen sulfide (H2 S) is an important endogenous signaling molecule with a variety of biological functions. Development of fluorescent probes for highly selective and sensitive detection of H2 S is necessary. We show here that dual-reactable fluorescent H2 S probes could react with higher selectivity than single-reactable probes. One of the dual-reactable probes gives more than 4000-fold turn-on response when reacting with H2 S, the largest response among fluorescent H2 S probes reported thus far. In addition, the probe could be used for high-throughput enzymatic assays and for the detection of Cys-induced H2 S in cells and in zebrafish. These dual-reactable probes hold potential for highly selective and sensitive detection of H2 S in biological systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Detection of anti-Yta antibodies using a sensitive and specific enzyme-linked immunosorbent assay.

    PubMed

    Geen, J; Hullin, D A; Hogg, S I

    1999-01-01

    A specific, sensitive and semi-quantitative enzyme-linked immunosorbent assay (ELISA) is described to detect anti-Yta antibodies in human serum. Recombinant acetylcholinesterase (AChE E.C.3.1.1.7) was employed as the coating antigen in the microtitre plate and horseradish peroxidase (HRP)-conjugated specific antibody (IgG) was used as the secondary antibody. The method developed showed excellent sensitivity, detecting a titre > 1 in 600,000 (3.5 ng/mL mouse IgG protein) for mouse monoclonal (mMAb) anti-AChE antibody. No cross-reaction was seen with other common blood group antibodies, confirming the specificity of the method. The recombinant antigen's AChE phenotype was confirmed as Yta, as no reaction was detected with anti-Ytb-positive sera. The ELISA method correlated closely with the established serological grading system used routinely in blood transfusion laboratories.

  6. Systems and methods for detecting neutrons

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-08-09

    Systems and methods for detecting neutrons. One or more neutron-sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material, such as polystyrene. The nano-sized particles can be compounded into the extruded plastic material with at least one dopant that permits the plastic material to scintillate. One or more plastic light collectors can be associated with a neutron-sensitive scintillator, such that the plastic light collector includes a central hole thereof. A wavelength-shifting fiber can then be located within the hole. The wavelength shifting (WLS) fiber absorbs scintillation light having a wavelength thereof and re-emits the light at a longer wavelength.

  7. Systems and methods for detecting x-rays

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  8. A three-wavelength multi-channel brain functional imager based on digital lock-in photon-counting technique

    NASA Astrophysics Data System (ADS)

    Ding, Xuemei; Wang, Bingyuan; Liu, Dongyuan; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng

    2018-02-01

    During the past two decades there has been a dramatic rise in the use of functional near-infrared spectroscopy (fNIRS) as a neuroimaging technique in cognitive neuroscience research. Diffuse optical tomography (DOT) and optical topography (OT) can be employed as the optical imaging techniques for brain activity investigation. However, most current imagers with analogue detection are limited by sensitivity and dynamic range. Although photon-counting detection can significantly improve detection sensitivity, the intrinsic nature of sequential excitations reduces temporal resolution. To improve temporal resolution, sensitivity and dynamic range, we develop a multi-channel continuous-wave (CW) system for brain functional imaging based on a novel lock-in photon-counting technique. The system consists of 60 Light-emitting device (LED) sources at three wavelengths of 660nm, 780nm and 830nm, which are modulated by current-stabilized square-wave signals at different frequencies, and 12 photomultiplier tubes (PMT) based on lock-in photon-counting technique. This design combines the ultra-high sensitivity of the photon-counting technique with the parallelism of the digital lock-in technique. We can therefore acquire the diffused light intensity for all the source-detector pairs (SD-pairs) in parallel. The performance assessments of the system are conducted using phantom experiments, and demonstrate its excellent measurement linearity, negligible inter-channel crosstalk, strong noise robustness and high temporal resolution.

  9. A Novel Method for Proximity Detection of Moving Targets Using a Large-Scale Planar Capacitive Sensor System

    PubMed Central

    Ye, Yong; Deng, Jiahao; Shen, Sanmin; Hou, Zhuo; Liu, Yuting

    2016-01-01

    A novel method for proximity detection of moving targets (with high dielectric constants) using a large-scale (the size of each sensor is 31 cm × 19 cm) planar capacitive sensor system (PCSS) is proposed. The capacitive variation with distance is derived, and a pair of electrodes in a planar capacitive sensor unit (PCSU) with a spiral shape is found to have better performance on sensitivity distribution homogeneity and dynamic range than three other shapes (comb shape, rectangular shape, and circular shape). A driving excitation circuit with a Clapp oscillator is proposed, and a capacitance measuring circuit with sensitivity of 0.21 Vp−p/pF is designed. The results of static experiments and dynamic experiments demonstrate that the voltage curves of static experiments are similar to those of dynamic experiments; therefore, the static data can be used to simulate the dynamic curves. The dynamic range of proximity detection for three projectiles is up to 60 cm, and the results of the following static experiments show that the PCSU with four neighboring units has the highest sensitivity (the sensitivities of other units are at least 4% lower); when the attack angle decreases, the intensity of sensor signal increases. This proposed method leads to the design of a feasible moving target detector with simple structure and low cost, which can be applied in the interception system. PMID:27196905

  10. Molecular breast imaging using a dedicated high-performance instrument

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael K.; Wagenaar, Douglas; Hruska, Carrie B.; Phillips, Stephen; Caravaglia, Gina; Rhodes, Deborah

    2006-08-01

    In women with radiographically dense breasts, the sensitivity of mammography is less than 50%. With the increase in the percent of women with dense breasts, it is important to look at alternative screening techniques for this population. This article reviews the strengths and weaknesses of current imaging techniques and focuses on recent developments in semiconductor-based gamma camera systems that offer significant improvements in image quality over that achievable with single-crystal sodium iodide systems. We have developed a technique known as Molecular Breast Imaging (MBI) using small field of view Cadmium Zinc Telluride (CZT) gamma cameras that permits the breast to be imaged in a similar manner to mammography, using light pain-free compression. Computer simulations and experimental studies have shown that use of low-energy high sensitivity collimation coupled with the excellent energy resolution and intrinsic spatial resolution of CZT detectors provides optimum image quality for the detection of small breast lesions. Preliminary clinical studies with a prototype dual-detector system have demonstrated that Molecular Breast Imaging has a sensitivity of ~90% for the detection of breast tumors less than 10 mm in diameter. By comparison, conventional scintimammography only achieves a sensitivity of 50% in the detection of lesions < 10 mm. Because Molecular Breast Imaging is not affected by breast density, this technique may offer an important adjunct to mammography in the evaluation of women with dense breast parenchyma.

  11. Cryogen-free heterodyne-enhanced mid-infrared Faraday rotation spectrometer

    PubMed Central

    Wang, Yin; Nikodem, Michal; Wysocki, Gerard

    2013-01-01

    A new detection method for Faraday rotation spectra of paramagnetic molecular species is presented. Near shot-noise limited performance in the mid-infrared is demonstrated using a heterodyne enhanced Faraday rotation spectroscopy (H-FRS) system without any cryogenic cooling. Theoretical analysis is performed to estimate the ultimate sensitivity to polarization rotation for both heterodyne and conventional FRS. Sensing of nitric oxide (NO) has been performed with an H-FRS system based on thermoelectrically cooled 5.24 μm quantum cascade laser (QCL) and a mercury-cadmium-telluride photodetector. The QCL relative intensity noise that dominates at low frequencies is largely avoided by performing the heterodyne detection in radio frequency range. H-FRS exhibits a total noise level of only 3.7 times the fundamental shot noise. The achieved sensitivity to polarization rotation of 1.8 × 10−8 rad/Hz1/2 is only 5.6 times higher than the ultimate theoretical sensitivity limit estimated for this system. The path- and bandwidth-normalized NO detection limit of 3.1 ppbv-m/Hz1/2 was achieved using the R(17/2) transition of NO at 1906.73 cm−1. PMID:23388967

  12. The whispering gallery mode biosensor: label-free detection from virus to single protein

    NASA Astrophysics Data System (ADS)

    Holler, S.; Dantham, V. R.; Keng, D.; Kolchenko, V.; Arnold, S.; Mulroe, Brigid; Paspaley-Grbavac, M.

    2014-08-01

    The whispering gallery mode (WGM) biosensor is a micro-optical platform capable of sensitive label-free detection of biological particles. Described by the reactive sensing principle (RSP), this analytic formulation quantifies the response of the system to the adsorption of bioparticles. Guided by the RSP, the WGM biosensor enabling from detection of virus (e.g., Human Papillomavirus, HPV) to the ultimate goal of single protein detection. The latter was derived from insights into the RSP, which resulted in the development of a hybrid plasmonic WGM biosensor, which has recently demonstrated detection of individual protein cancer markers. Enhancements from bound gold nanoparticles provide the sensitivity to detect single protein molecules (66 kDa) with good signal-to-noise (S/N > 10), and project that detection of proteins as small as 5 kDa.

  13. Two-view information fusion for improvement of computer-aided detection (CAD) of breast masses on mammograms

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Sahiner, Berkman; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Zhou, Chuan; Ge, Jun; Zhang, Yiheng

    2006-03-01

    We are developing a two-view information fusion method to improve the performance of our CAD system for mass detection. Mass candidates on each mammogram were first detected with our single-view CAD system. Potential object pairs on the two-view mammograms were then identified by using the distance between the object and the nipple. Morphological features, Hessian feature, correlation coefficients between the two paired objects and texture features were used as input to train a similarity classifier that estimated a similarity scores for each pair. Finally, a linear discriminant analysis (LDA) classifier was used to fuse the score from the single-view CAD system and the similarity score. A data set of 475 patients containing 972 mammograms with 475 biopsy-proven masses was used to train and test the CAD system. All cases contained the CC view and the MLO or LM view. We randomly divided the data set into two independent sets of 243 cases and 232 cases. The training and testing were performed using the 2-fold cross validation method. The detection performance of the CAD system was assessed by free response receiver operating characteristic (FROC) analysis. The average test FROC curve was obtained from averaging the FP rates at the same sensitivity along the two corresponding test FROC curves from the 2-fold cross validation. At the case-based sensitivities of 90%, 85% and 80% on the test set, the single-view CAD system achieved an FP rate of 2.0, 1.5, and 1.2 FPs/image, respectively. With the two-view fusion system, the FP rates were reduced to 1.7, 1.3, and 1.0 FPs/image, respectively, at the corresponding sensitivities. The improvement was found to be statistically significant (p<0.05) by the AFROC method. Our results indicate that the two-view fusion scheme can improve the performance of mass detection on mammograms.

  14. An Ultrastable Europium(III)-Organic Framework with the Capacity of Discriminating Fe2+/Fe3+ Ions in Various Solutions.

    PubMed

    Wen, Guo-Xuan; Wu, Ya-Pan; Dong, Wen-Wen; Zhao, Jun; Li, Dong-Sheng; Zhang, Jian

    2016-10-05

    An ultrastable luminescent europium-organic framework, {[Eu(L)(H 2 O) 2 ]·NMP·H 2 O} n (CTGU-2; NMP = N-methyl-2-pyrrolidone), can first detect Fe 2+ /Fe 3+ cations in different medium systems with high selectivity and sensitivity, and it also exhibits high sensitivity for Cr 2 O 7 2- anion and acetone with a wide linear range and a low detection limit.

  15. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    PubMed

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  16. Supersensitive detection and discrimination of enantiomers by dorsal olfactory receptors: evidence for hierarchical odour coding.

    PubMed

    Sato, Takaaki; Kobayakawa, Reiko; Kobayakawa, Ko; Emura, Makoto; Itohara, Shigeyoshi; Kizumi, Miwako; Hamana, Hiroshi; Tsuboi, Akio; Hirono, Junzo

    2015-09-11

    Enantiomeric pairs of mirror-image molecular structures are difficult to resolve by instrumental analyses. The human olfactory system, however, discriminates (-)-wine lactone from its (+)-form rapidly within seconds. To gain insight into receptor coding of enantiomers, we compared behavioural detection and discrimination thresholds of wild-type mice with those of ΔD mice in which all dorsal olfactory receptors are genetically ablated. Surprisingly, wild-type mice displayed an exquisite "supersensitivity" to enantiomeric pairs of wine lactones and carvones. They were capable of supersensitive discrimination of enantiomers, consistent with their high detection sensitivity. In contrast, ΔD mice showed selective major loss of sensitivity to the (+)-enantiomers. The resulting 10(8)-fold differential sensitivity of ΔD mice to (-)- vs. (+)-wine lactone matched that observed in humans. This suggests that humans lack highly sensitive orthologous dorsal receptors for the (+)-enantiomer, similarly to ΔD mice. Moreover, ΔD mice showed >10(10)-fold reductions in enantiomer discrimination sensitivity compared to wild-type mice. ΔD mice detected one or both of the (-)- and (+)-enantiomers over a wide concentration range, but were unable to discriminate them. This "enantiomer odour discrimination paradox" indicates that the most sensitive dorsal receptors play a critical role in hierarchical odour coding for enantiomer identification.

  17. Supersensitive detection and discrimination of enantiomers by dorsal olfactory receptors: evidence for hierarchical odour coding

    PubMed Central

    Sato, Takaaki; Kobayakawa, Reiko; Kobayakawa, Ko; Emura, Makoto; Itohara, Shigeyoshi; Kizumi, Miwako; Hamana, Hiroshi; Tsuboi, Akio; Hirono, Junzo

    2015-01-01

    Enantiomeric pairs of mirror-image molecular structures are difficult to resolve by instrumental analyses. The human olfactory system, however, discriminates (−)-wine lactone from its (+)-form rapidly within seconds. To gain insight into receptor coding of enantiomers, we compared behavioural detection and discrimination thresholds of wild-type mice with those of ΔD mice in which all dorsal olfactory receptors are genetically ablated. Surprisingly, wild-type mice displayed an exquisite “supersensitivity” to enantiomeric pairs of wine lactones and carvones. They were capable of supersensitive discrimination of enantiomers, consistent with their high detection sensitivity. In contrast, ΔD mice showed selective major loss of sensitivity to the (+)-enantiomers. The resulting 108-fold differential sensitivity of ΔD mice to (−)- vs. (+)-wine lactone matched that observed in humans. This suggests that humans lack highly sensitive orthologous dorsal receptors for the (+)-enantiomer, similarly to ΔD mice. Moreover, ΔD mice showed >1010-fold reductions in enantiomer discrimination sensitivity compared to wild-type mice. ΔD mice detected one or both of the (−)- and (+)-enantiomers over a wide concentration range, but were unable to discriminate them. This “enantiomer odour discrimination paradox” indicates that the most sensitive dorsal receptors play a critical role in hierarchical odour coding for enantiomer identification. PMID:26361056

  18. [Computed tomography with computer-assisted detection of pulmonary nodules in dogs and cats].

    PubMed

    Niesterok, C; Piesnack, S; Köhler, C; Ludewig, E; Alef, M; Kiefer, I

    2015-01-01

    The aim of this study was to assess the potential benefit of computer-assisted detection (CAD) of pulmonary nodules in veterinary medicine. Therefore, the CAD rate was compared to the detection rates of two individual examiners in terms of its sensitivity and false-positive findings. We included 51 dogs and 16 cats with pulmonary nodules previously diagnosed by computed tomography. First, the number of nodules ≥ 3 mm was recorded for each patient by two independent examiners. Subsequently, each examiner used the CAD software for automated nodule detection. With the knowledge of the CAD results, a final consensus decision on the number of nodules was achieved. The software used was a commercially available CAD program. The sensitivity of examiner 1 was 89.2%, while that of examiner 2 reached 87.4%. CAD had a sensitivity of 69.4%. With CAD, the sensitivity of examiner 1 increased to 94.7% and that of examiner 2 to 90.8%. The CAD-system, which we used in our study, had a moderate sensitivity of 69.4%. Despite its severe limitations, with a high level of false-positive and false-negative results, CAD increased the examiners' sensitivity. Therefore, its supportive role in diagnostics appears to be evident.

  19. Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level.

    PubMed

    Zhu, Zhi; Zhang, Wenhua; Leng, Xuefei; Zhang, Mingxia; Guan, Zhichao; Lu, Jiangquan; Yang, Chaoyong James

    2012-10-21

    Genetic alternations can serve as highly specific biomarkers to distinguish fatal bacteria or cancer cells from their normal counterparts. However, these mutations normally exist in very rare amount in the presence of a large excess of non-mutated analogs. Taking the notorious pathogen E. coli O157:H7 as the target analyte, we have developed an agarose droplet-based microfluidic ePCR method for highly sensitive, specific and quantitative detection of rare pathogens in the high background of normal bacteria. Massively parallel singleplex and multiplex PCR at the single-cell level in agarose droplets have been successfully established. Moreover, we challenged the system with rare pathogen detection and realized the sensitive and quantitative analysis of a single E. coli O157:H7 cell in the high background of 100,000 excess normal K12 cells. For the first time, we demonstrated rare pathogen detection through agarose droplet microfluidic ePCR. Such a multiplex single-cell agarose droplet amplification method enables ultra-high throughput and multi-parameter genetic analysis of large population of cells at the single-cell level to uncover the stochastic variations in biological systems.

  20. Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.

    PubMed

    Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong

    2013-11-07

    Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.

  1. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  2. Highly sensitive protein detection using a plasmonic field effect transistor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shokri-Kojori, Hossein; Ji, Yiwen; Han, Xu; Paik, Younghun; Braunschweig, Adam; Kim, Sung Jin

    2016-03-01

    Localized surface Plasmon Resonance (LSPR) is a nanoscale phenomenon which presents strong resonance associated with noble metal nanostructures. This plasmon resonance based technology enables highly sensitive detection for chemical and biological applications. Recently, we have developed a plasmon field effect transistor (FET) that enables direct plasmonic-to-electric signal conversion with signal amplification. The plasmon FET consists of back-gated field effect transistor incorporated with gold nanoparticles on top of the FET channel. The gold nanostructures are physically separated from transistor electrodes and can be functionalized for a specific biological application. In this presentation, we report a successful demonstration of a model system to detect Con A proteins using Carbohydrate linkers as a capture molecule. The plasmon FET detected a very low concentration of Con A (0.006 mg/L) while it offers a wide dynamic range of 0.006-50 mg/L. In this demonstration, we used two-color light sources instead of a bulky spectrometer to achieve high sensitivity and wide dynamic range. The details of two-color based differential measurement method will be discussed. This novel protein-based sensor has several advantages such as extremely small size for point-of-care system, multiplexing capability, no need of complex optical geometry.

  3. Detection of HbsAg and hATIII genetically modified goats (Caprahircus) by loop-mediated isothermal amplification.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Zhai, Shanli; Liu, Bang

    2013-11-01

    In this study, sensitive and rapid detection systems were designed using a loop-mediated isothermal amplification (LAMP) method to detect the genetically modified goats. A set of 4 primers were designed for each exogenous nucleic acids HBsAg and hATIII. The DNA samples were first amplified with the outer and inner primers and released a single-stranded DNA,of which both ends were stem-loop structure. Then one inner primer hybridized with the loop, and initiated displacement synthesis in less than 1 h. The result could be visualized by both agarose gel electrophoresis and unaided eyes directly after adding SYBR GREEN 1. The detection limit of LAMP was ten copies of target molecules, indicating that LAMP was tenfold more sensitive than the classical PCR. Furthermore, all the samples of genetically modified goats were tested positively by LAMP, and the results demonstrated that the LAMP was a rapid and sensitive method for detecting the genetically modified organism.

  4. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging.

    PubMed

    D'Hollander, Antoine; Mathieu, Evelien; Jans, Hilde; Vande Velde, Greetje; Stakenborg, Tim; Van Dorpe, Pol; Himmelreich, Uwe; Lagae, Liesbet

    2016-01-01

    The need for sensitive imaging techniques to detect tumor cells is an important issue in cancer diagnosis and therapy. Surface-enhanced Raman scattering (SERS), realized by chemisorption of compounds suitable for Raman spectroscopy onto gold nanoparticles, is a new method for detecting a tumor. As a proof of concept, we studied the use of biocompatible gold nanostars as sensitive SERS contrast agents targeting an ovarian cancer cell line (SKOV3). Due to a high intracellular uptake of gold nanostars after 6 hours of exposure, they could be detected and located with SERS. Using these nanostars for passive targeting after systemic injection in a xenograft mouse model, a detectable signal was measured in the tumor and liver in vivo. These signals were confirmed by ex vivo SERS measurements and darkfield microscopy. In this study, we established SERS nanostars as a highly sensitive contrast agent for tumor detection, which opens the potential for their use as a theranostic agent against cancer.

  5. Visible Contrast Energy Metrics for Detection and Discrimination

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert; Watson, Andrew

    2013-01-01

    Contrast energy was proposed by Watson, Robson, & Barlow as a useful metric for representing luminance contrast target stimuli because it represents the detectability of the stimulus in photon noise for an ideal observer. Like the eye, the ear is a complex transducer system, but relatively simple sound level meters are used to characterize sounds. These meters provide a range of frequency sensitivity functions and integration times depending on the intended use. We propose here the use of a range of contrast energy measures with different spatial frequency contrast sensitivity weightings, eccentricity sensitivity weightings, and temporal integration times. When detection threshold are plotting using such measures, the results show what the eye sees best when these variables are taken into account in a standard way. The suggested weighting functions revise the Standard Spatial Observer for luminance contrast detection and extend it into the near periphery. Under the assumption that the detection is limited only by internal noise, discrimination performance can be predicted by metrics based on the visible energy of the difference images

  6. Rapid and Sensitive Enumeration of Viable Diluted Cells of Members of the Family Enterobacteriaceae in Freshwater and Drinking Water

    PubMed Central

    Baudart, Julia; Coallier, Josée; Laurent, Patrick; Prévost, Michèle

    2002-01-01

    Water quality assessment involves the specific, sensitive, and rapid detection of bacterial indicators and pathogens in water samples, including viable but nonculturable (VBNC) cells. This work evaluates the specificity and sensitivity of a new method which combines a fluorescent in situ hybridization (FISH) approach with a physiological assay (direct viable count [DVC]) for the direct enumeration, at the single-cell level, of highly diluted viable cells of members of the family Enterobacteriaceae in freshwater and drinking water after membrane filtration. The approach (DVC-FISH) uses a new direct detection device, the laser scanning cytometer (Scan RDI). Combining the DVC-FISH method on a membrane with Scan RDI detection makes it possible to detect as few as one targeted cell in approximately 108 nontargeted cells spread over the membrane. The ability of this new approach to detect and enumerate VBNC enterobacterial cells in freshwater and drinking water distribution systems was investigated and is discussed. PMID:12324357

  7. Design and evaluation of a failure detection and isolation algorithm for restructurable control systems

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.; Hsu, John Y.

    1986-01-01

    The use of a decentralized approach to failure detection and isolation for use in restructurable control systems is examined. This work has produced: (1) A method for evaluating fundamental limits to FDI performance; (2) Application using flight recorded data; (3) A working control element FDI system with maximal sensitivity to critical control element failures; (4) Extensive testing on realistic simulations; and (5) A detailed design methodology involving parameter optimization (with respect to model uncertainties) and sensitivity analyses. This project has concentrated on detection and isolation of generic control element failures since these failures frequently lead to emergency conditions and since knowledge of remaining control authority is essential for control system redesign. The failures are generic in the sense that no temporal failure signature information was assumed. Thus, various forms of functional failures are treated in a unified fashion. Such a treatment results in a robust FDI system (i.e., one that covers all failure modes) but sacrifices some performance when detailed failure signature information is known, useful, and employed properly. It was assumed throughout that all sensors are validated (i.e., contain only in-spec errors) and that only the first failure of a single control element needs to be detected and isolated. The FDI system which has been developed will handle a class of multiple failures.

  8. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay.

    PubMed

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-08-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research high-sensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time-resolved detection of lanthanide fluorescence based on the time constants of the system and analyze the background and noise sources in a heterogeneous fluoroimmunoassay. We determine the limiting factors and their impact on the measurement performance. The suggested model can be generally applied to fluoroimmunoassays employing the dry-cup concept.

  9. Fiber optic distributed chemical sensor for the real time detection of hydrocarbon fuel leaks

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sunjian

    2015-09-01

    With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable hydrocarbon fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySense™) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySense™ system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, storage tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.

  10. Endoscopic spectral-domain polarization-sensitive optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Chen, Xiaodong; Hu, Zhiqiang; Li, Qiao; Yu, Daoyin

    2008-02-01

    In this paper, we introduced a fiber-based endoscopic Spectral-domain Polarization-sensitive OCT (SD-PS-OCT) experimental scheme for detecting the internal organ disease, which is based on low-coherence interferometer and two spectrometers. The SD-PS-OCT has the advantages of both Spectral-domain OCT (SD-OCT) and Polarization-sensitive OCT (PS-OCT). It is able to get the real-time image of reflectivity and birefringence distribution of tissue at the same time. The usage of SD-PS-OCT in endoscopic diagnosing system provides it the possibility to detect the internal organ disease. Since SD-PS-OCT can image the pathological changes of biological tissue below surface (1-3mm) with high resolution (1-15μm), it is able to help diagnosing early diseases of internal organs, which makes it a biomedical technology with bright future.

  11. Automatic detection of ECG cable interchange by analyzing both morphology and interlead relations.

    PubMed

    Han, Chengzong; Gregg, Richard E; Feild, Dirk Q; Babaeizadeh, Saeed

    2014-01-01

    ECG cable interchange can generate erroneous diagnoses. For algorithms detecting ECG cable interchange, high specificity is required to maintain a low total false positive rate because the prevalence of interchange is low. In this study, we propose and evaluate an improved algorithm for automatic detection and classification of ECG cable interchange. The algorithm was developed by using both ECG morphology information and redundancy information. ECG morphology features included QRS-T and P-wave amplitude, frontal axis and clockwise vector loop rotation. The redundancy features were derived based on the EASI™ lead system transformation. The classification was implemented using linear support vector machine. The development database came from multiple sources including both normal subjects and cardiac patients. An independent database was used to test the algorithm performance. Common cable interchanges were simulated by swapping either limb cables or precordial cables. For the whole validation database, the overall sensitivity and specificity for detecting precordial cable interchange were 56.5% and 99.9%, and the sensitivity and specificity for detecting limb cable interchange (excluding left arm-left leg interchange) were 93.8% and 99.9%. Defining precordial cable interchange or limb cable interchange as a single positive event, the total false positive rate was 0.7%. When the algorithm was designed for higher sensitivity, the sensitivity for detecting precordial cable interchange increased to 74.6% and the total false positive rate increased to 2.7%, while the sensitivity for detecting limb cable interchange was maintained at 93.8%. The low total false positive rate was maintained at 0.6% for the more abnormal subset of the validation database including only hypertrophy and infarction patients. The proposed algorithm can detect and classify ECG cable interchanges with high specificity and low total false positive rate, at the cost of decreased sensitivity for certain precordial cable interchanges. The algorithm could also be configured for higher sensitivity for different applications where a lower specificity can be tolerated. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Development of a High Throughput Assay for Rapid and Accurate 10-Plex Detection of Citrus Pathogens

    USDA-ARS?s Scientific Manuscript database

    The need to reliably detect and identify multiple plant pathogens simultaneously, especially in woody perennial hosts, has led to development of new molecular diagnostic approaches. In this study, a Luminex-based system was developed that provided a robust and sensitive test for simultaneous detect...

  13. Tracking serum antibody response to viral antigens with arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Mace, Charles R.; Rose, Robert C.; Miller, Benjamin L.

    2009-02-01

    Arrayed Imaging Reflectometry, or "AIR", is a new label-free technique for detecting proteins that relies on bindinginduced changes in the response of an antireflective coating on the surface of a silicon ship. Because the technique provides high sensitivity, excellent dynamic range, and readily integrates with standard silicon wafer processing technology, it is an exceptionally attractive platform on which to build systems for detecting proteins in complex solutions. In our early research, we used AIR chips bearing secreted receptor proteins from enteropathogenic E. coli to develop sensors for this pathogen. Recently, we have been exploring an alternative strategy: Rather than detecting the pathogen directly, can one immobilize antigens from a pathogen, and employ AIR to detect antibody responses to those antigens? Such a strategy would provide enhanced sensitivity for pathogen detection (as the immune system essentially amplifies the "signal" caused by the presence of an organism to which it responds), and would also potentially prove useful in the process of vaccine development. We describe herein preliminary results in the application of such a strategy to the detection of antibodies to human papillomavirus (HPV).

  14. Biogenic unmodified gold nanoparticles for selective and quantitative detection of cerium using UV-vis spectroscopy and photon correlation spectroscopy (DLS).

    PubMed

    Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K

    2015-06-15

    The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Electrochemical detection for microscale analytical systems: a review.

    PubMed

    Wang, Joseph

    2002-02-11

    As the field of chip-based microscale systems continues its rapid growth, there are urgent needs for developing compatible detection modes. Electrochemistry detection offers considerable promise for such microfluidic systems, with features that include remarkable sensitivity, inherent miniaturization and portability, independence of optical path length or sample turbidity, low cost, low-power requirements and high compatibility with advanced micromachining and microfabrication technologies. This paper highlights recent advances, directions and key strategies in controlled-potential electrochemical detectors for miniaturized analytical systems. Subjects covered include the design and integration of the electrochemical detection system, its requirements and operational principles, common electrode materials, derivatization reactions, electrical-field decouplers, typical applications and future prospects. It is expected that electrochemical detection will become a powerful tool for microscale analytical systems and will facilitate the creation of truly portable (and possibly disposable) devices.

  16. [THE DEVELOPMENT OF IMMUNE ENZYME AND IMMUNE CHROMATOGRAPHIC MONOCLONAL TEST-SYSTEM FOR DETECTING TULAREMIA AGENT].

    PubMed

    Eremkin, A V; Elagin, G D; Petchenkin, D V; Fomenkov, O O; Bogatcheva, N V; Kitmanov, A A; Kuklina, G V; Tikhvinskaya, O V

    2016-03-01

    The immune enzyme and immunochromatographic test-systems for detecting tularemia agent were developed on the basis of selected set of monoclonal antibodies having immunochemical activity to antigens Francisella tularensis. The evaluation of sensitivity and specificity of developed test-systems demonstrated that samples provided detection of strains of F. tularensis in concentration from 5.0 x 105 mkxcm-3 to 1.0 x 106 mkxcm-3 and gave no false positive results in analysis of heterologous microorganisms in concentration of 1.0 x 108 mkxcm-3.

  17. Quantum sensing with arbitrary frequency resolution

    NASA Astrophysics Data System (ADS)

    Boss, J. M.; Cujia, K. S.; Zopes, J.; Degen, C. L.

    2017-05-01

    Quantum sensing takes advantage of well-controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe and limited only by the stability of an external synchronization clock. Our concept makes use of quantum lock-in detection to continuously probe a signal of interest. Using the electronic spin of a single nitrogen-vacancy center in diamond, we demonstrate detection of oscillating magnetic fields with a frequency resolution of 70 microhertz over a megahertz bandwidth. The continuous sampling further guarantees an enhanced sensitivity, reaching a signal-to-noise ratio in excess of 104 for a 170-nanotesla test signal measured during a 1-hour interval. Our technique has applications in magnetic resonance spectroscopy, quantum simulation, and sensitive signal detection.

  18. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe.

    PubMed

    Liu, Jia-Ming; Lin, Li-ping; Wang, Xin-Xing; Lin, Shao-Qin; Cai, Wen-Lian; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-06-07

    Based on the ability of lysine (Lys) to enhance the fluorescence intensity of bovine serum albumin modified-carbon dots (CDs-BSA) to decrease surface defects and quench fluorescence of the CDs-BSA-Lys system in the presence of Cu(2+) under conditions of phosphate buffer (PBS, pH = 5.0) at 45 °C for 10 min, a sensitive Lys enhancing CDs-BSA fluorescent probe was designed. The environment-friendly, simple, rapid, selective and sensitive fluorescent probe has been utilized to detect Cu(2+) in hair and tap water samples and it achieved consistent results with those obtained by inductively coupled plasma mass spectroscopy (ICP-MS). The mechanism of the proposed assay for the detection of Cu(2+) is discussed.

  19. A contrast-sensitive channelized-Hotelling observer to predict human performance in a detection task using lumpy backgrounds and Gaussian signals

    NASA Astrophysics Data System (ADS)

    Park, Subok; Badano, Aldo; Gallas, Brandon D.; Myers, Kyle J.

    2007-03-01

    Previously, a non-prewhitening matched filter (NPWMF) incorporating a model for the contrast sensitivity of the human visual system was introduced for modeling human performance in detection tasks with different viewing angles and white-noise backgrounds by Badano et al. But NPWMF observers do not perform well detection tasks involving complex backgrounds since they do not account for random backgrounds. A channelized-Hotelling observer (CHO) using difference-of-Gaussians (DOG) channels has been shown to track human performance well in detection tasks using lumpy backgrounds. In this work, a CHO with DOG channels, incorporating the model of the human contrast sensitivity, was developed similarly. We call this new observer a contrast-sensitive CHO (CS-CHO). The Barten model was the basis of our human contrast sensitivity model. A scalar was multiplied to the Barten model and varied to control the thresholding effect of the contrast sensitivity on luminance-valued images and hence the performance-prediction ability of the CS-CHO. The performance of the CS-CHO was compared to the average human performance from the psychophysical study by Park et al., where the task was to detect a known Gaussian signal in non-Gaussian distributed lumpy backgrounds. Six different signal-intensity values were used in this study. We chose the free parameter of our model to match the mean human performance in the detection experiment at the strongest signal intensity. Then we compared the model to the human at five different signal-intensity values in order to see if the performance of the CS-CHO matched human performance. Our results indicate that the CS-CHO with the chosen scalar for the contrast sensitivity predicts human performance closely as a function of signal intensity.

  20. Aspects of the Application of Cavity Enhanced Spectroscopy to Nitrogen Oxides Detection

    PubMed Central

    Wojtas, Jacek; Mikolajczyk, Janusz; Bielecki, Zbigniew

    2013-01-01

    This article presents design issues of high-sensitive laser absorption spectroscopy systems for nitrogen oxides (NOx) detection. Examples of our systems and their investigation results are also described. The constructed systems use one of the most sensitive methods, cavity enhanced absorption spectroscopy (CEAS). They operate at different wavelength ranges using a blue—violet laser diode (410 nm) as well as quantum cascade lasers (5.27 μm and 4.53 μm). Each of them is configured as a one or two channel measurement device using, e.g., time division multiplexing and averaging. During the testing procedure, the main performance features such as detection limits and measurements uncertainties have been determined. The obtained results are 1 ppb NO2, 75 ppb NO and 45 ppb N2O. For all systems, the uncertainty of concentration measurements does not exceed a value of 13%. Some experiments with explosives are also discussed. A setup equipped with a concentrator of explosives vapours was used. The detection method is based either on the reaction of the sensors to the nitrogen oxides directly emitted by the explosives or on the reaction to the nitrogen oxides produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX and HMX a detection limit better than 1 ng has been achieved. PMID:23752566

  1. Development of a computer-aided detection system for lung cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Suzuki, Hideo; Inaoka, Noriko; Takabatake, Hirotsugu; Mori, Masaki; Sasaoka, Soichi; Natori, Hiroshi; Suzuki, Akira

    1992-06-01

    This paper describes a modified system for automatic detection of lung nodules by means of chest x ray image processing techniques. The objective of the system is to help radiologists to improve their accuracy in cancer detection. It is known from retrospective studies of chest x- ray images that radiologists fail to detect about 30 percent of lung cancer cases. A computerized method for detecting lung nodules would be very useful for decreasing the proportion of such oversights. Our proposed system consists of five sub-systems, for image input, lung region determination, nodule detection, rule-based false-positive elimination, and statistical false-positive elimination. In an experiment with the modified system, using 30 lung cancer cases and 78 normal control cases, we obtained figures of 73.3 percent and 89.7 percent for the sensitivity and specificity of the system, respectively. The system has been developed to run on the IBM* PS/55* and IBM RISC System/6000* (RS/6000), and we give the processing time for each platform.

  2. [Application of transcription mediated amplification and real-time reverse transcription polymerase chain reaction in detection of human immunodeficiency virus RNA].

    PubMed

    Wu, Daxian; Tao, Shuhui; Liu, Shuiping; Zhou, Jiebin; Tan, Deming; Hou, Zhouhua

    2017-07-28

    To observe the sensitivity of transcription mediated amplification (TMA), and to compare its performance with real-time reverse transcription polymerase chain reaction (real-time RT-PCR) in detecting human immunodeficiency virus RNA (HIV RNA).
 Methods: TMA system was established with TaqMan probes, specific primers, moloney murine leukemia virus (MMLV) reverse transcriptase, T7 RNA polymerase, and reaction substrates. The sensitivity of TMA was evaluated by amplifying a group of 10-fold diluted HIV RNA standards which were transcribed in vitro. A total of 60 plasma of HIV infected patients were measured by TMA and Cobas Amplicor HIV-1 Monitor test to observe the positive rate. The correlation and concordance of the above two technologies were investigated by linear regression and Bland-Altman analysis.
 Results: TMA system was established successfully and HIV RNA transcribed standards at concentration of equal or more than 10 copies/mL could be detected by TMA technology. Among 60 samples of plasma from HIV infected patients, 46 were positively detected and 12 were negatively amplified by both TMA and Cobas reagents; 2 samples were positively tested by Cobas reagent but negatively tested by TMA system. The concordance rate of the two methods was 97.1% and the difference of positive detection rate between the two methods was not statistically significant (P>0.05). Linear regression was used for 46 samples which were positively detected by both TMA and Cobas reagents and showed an excellent correlation between the two reagents (r=0.997, P<0.001). Bland-Altma analysis revealed that the mean different value of HIV RNA levels for denary logarithm was 0.02. Forty-four samples were included in 95% of credibility interval of concordance.
 Conclusion: TMA system has the potential of high sensitivity. TMA and real-time RT-PCR keep an excellent correlation and consistency in detecting HIV RNA.

  3. Diagnostic accuracy and applicability of a PCR system for the detection of Schistosoma mansoni DNA in human urine samples from an endemic area.

    PubMed

    Enk, Martin Johannes; Oliveira e Silva, Guilherme; Rodrigues, Nilton Barnabé

    2012-01-01

    Schistosomiasis caused by Schistosoma mansoni, one of the most neglected human parasitoses in Latin America and Africa, is routinely confirmed by microscopic visualization of eggs in stool. The main limitation of this diagnostic approach is its lack of sensitivity in detecting individual low worm burdens and consequently data on infection rates in low transmission settings are little reliable. According to the scientific literature, PCR assays are characterized by high sensitivity and specificity in detecting parasite DNA in biological samples. A simple and cost effective extraction method for DNA of Schistosoma mansoni from urine samples in combination with a conventional PCR assay was developed and applied in an endemic area. This urine based PCR system was tested for diagnostic accuracy among a population of a small village in an endemic area, comparing it to a reference test composed of three different parasitological techniques. The diagnostic parameters revealed a sensitivity of 100%, a specificity of 91.20%, positive and negative predictive values of 86.25% and 100%, respectively, and a test accuracy of 94.33%. Further statistical analysis showed a k index of 0.8806, indicating an excellent agreement between the reference test and the PCR system. Data obtained from the mouse model indicate the infection can be detected one week after cercariae penetration, opening a new perspective for early detection and patient management during this stage of the disease. The data indicate that this innovative PCR system provides a simple to handle and robust diagnostic tool for the detection of S. mansoni DNA from urine samples and a promising approach to overcome the diagnostic obstacles in low transmission settings. Furthermore the principals of this molecular technique, based on the examination of human urine samples may be useful for the diagnosis of other neglected tropical diseases that can be detected by trans-renal DNA.

  4. Detecting Lyme disease using antibody-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dailey, Jennifer; Lerner, Mitchell; Goldsmith, Brett; Brisson, Dustin; Johnson, A. T. Charlie

    2011-03-01

    We combine antibodies for Lyme flagellar protein with carbon nanotube transistors to create an electronic sensor capable of definitive detection of Lyme disease. Over 35,000 cases of Lyme disease are reported in the United States each year, of which more than 23 percent are originally misdiagnosed. Rational design of the coupling of the biological system to the electronic system gives us a flexible sensor platform which we can apply to several biological systems. By coupling these antibodies to carbon nanotubes in particular, we allow for fast, sensitive, highly selective, electronic detection. Unlike antibody or biomarker detection, bacterial protein detection leads to positive identification of both early and late stage bacterial infections, and is easily expandable to environmental monitoring.

  5. Fault detection in mechanical systems with friction phenomena: an online neural approximation approach.

    PubMed

    Papadimitropoulos, Adam; Rovithakis, George A; Parisini, Thomas

    2007-07-01

    In this paper, the problem of fault detection in mechanical systems performing linear motion, under the action of friction phenomena is addressed. The friction effects are modeled through the dynamic LuGre model. The proposed architecture is built upon an online neural network (NN) approximator, which requires only system's position and velocity. The friction internal state is not assumed to be available for measurement. The neural fault detection methodology is analyzed with respect to its robustness and sensitivity properties. Rigorous fault detectability conditions and upper bounds for the detection time are also derived. Extensive simulation results showing the effectiveness of the proposed methodology are provided, including a real case study on an industrial actuator.

  6. Artificial Intelligence Methods Applied to Parameter Detection of Atrial Fibrillation

    NASA Astrophysics Data System (ADS)

    Arotaritei, D.; Rotariu, C.

    2015-09-01

    In this paper we present a novel method to develop an atrial fibrillation (AF) based on statistical descriptors and hybrid neuro-fuzzy and crisp system. The inference of system produce rules of type if-then-else that care extracted to construct a binary decision system: normal of atrial fibrillation. We use TPR (Turning Point Ratio), SE (Shannon Entropy) and RMSSD (Root Mean Square of Successive Differences) along with a new descriptor, Teager- Kaiser energy, in order to improve the accuracy of detection. The descriptors are calculated over a sliding window that produce very large number of vectors (massive dataset) used by classifier. The length of window is a crisp descriptor meanwhile the rest of descriptors are interval-valued type. The parameters of hybrid system are adapted using Genetic Algorithm (GA) algorithm with fitness single objective target: highest values for sensibility and sensitivity. The rules are extracted and they are part of the decision system. The proposed method was tested using the Physionet MIT-BIH Atrial Fibrillation Database and the experimental results revealed a good accuracy of AF detection in terms of sensitivity and specificity (above 90%).

  7. Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques.

    PubMed

    Lee, Seung-Ro; Rahman, M M; Sawada, Kazuaki; Ishida, Makoto

    2009-03-15

    A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (<3s), and very good reproducibility. A very lower detection limit of about 0.01 mM was observed from the proposed sensor. Under optimum conditions, the proposed CTTPS outstripped the performance of the widely used ISFET penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.

  8. Sensor fusion to enable next generation low cost Night Vision systems

    NASA Astrophysics Data System (ADS)

    Schweiger, R.; Franz, S.; Löhlein, O.; Ritter, W.; Källhammer, J.-E.; Franks, J.; Krekels, T.

    2010-04-01

    The next generation of automotive Night Vision Enhancement systems offers automatic pedestrian recognition with a performance beyond current Night Vision systems at a lower cost. This will allow high market penetration, covering the luxury as well as compact car segments. Improved performance can be achieved by fusing a Far Infrared (FIR) sensor with a Near Infrared (NIR) sensor. However, fusing with today's FIR systems will be too costly to get a high market penetration. The main cost drivers of the FIR system are its resolution and its sensitivity. Sensor cost is largely determined by sensor die size. Fewer and smaller pixels will reduce die size but also resolution and sensitivity. Sensitivity limits are mainly determined by inclement weather performance. Sensitivity requirements should be matched to the possibilities of low cost FIR optics, especially implications of molding of highly complex optical surfaces. As a FIR sensor specified for fusion can have lower resolution as well as lower sensitivity, fusing FIR and NIR can solve performance and cost problems. To allow compensation of FIR-sensor degradation on the pedestrian detection capabilities, a fusion approach called MultiSensorBoosting is presented that produces a classifier holding highly discriminative sub-pixel features from both sensors at once. The algorithm is applied on data with different resolution and on data obtained from cameras with varying optics to incorporate various sensor sensitivities. As it is not feasible to record representative data with all different sensor configurations, transformation routines on existing high resolution data recorded with high sensitivity cameras are investigated in order to determine the effects of lower resolution and lower sensitivity to the overall detection performance. This paper also gives an overview of the first results showing that a reduction of FIR sensor resolution can be compensated using fusion techniques and a reduction of sensitivity can be compensated.

  9. A survey of design methods for failure detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1975-01-01

    A number of methods for detecting abrupt changes (such as failures) in stochastic dynamical systems are surveyed. The class of linear systems is concentrated on but the basic concepts, if not the detailed analyses, carry over to other classes of systems. The methods surveyed range from the design of specific failure-sensitive filters, to the use of statistical tests on filter innovations, to the development of jump process formulations. Tradeoffs in complexity versus performance are discussed.

  10. One-step cross-genogroup multiplex RT-qPCR with an internal control system for the detection of infectious pancreatic necrosis virus (IPNV).

    PubMed

    Hoferer, Marc; Braun, Anne; Skrypski, Julia; Bock, Sabine; Thalheim, Sabine; Sting, Reinhard

    2017-09-01

    Infectious pancreatic necrosis virus (IPNV) causes great losses in fish hatcheries world-wide. The detection of IPNV can be challenging in certain circumstances, particularly due to low viral load and the genetic variability of this RNA virus. For the first time, this project created a quantitative triplex real-time reverse transcription PCR (RT-qPCR), including an endogenous control system, for specific, sensitive and rapid detection of IPNV in routine diagnostics. Multiple sequence alignment of 46 nucleotide sequences of the segment A genome obtained from the NCBI database allowed the design of two RT-qPCR systems covering the IPNV genogroup 1 and genogroups 2-5, respectively. The completed triplex RT-qPCR including a salmonid-specific endogenous control showed high specificity and an analytical sensitivity of 20-40 oligonucleotide copies. Testing of dilution series of virus-loaded cell culture suspensions proved equality of the triplex RT-qPCR with virus detection in cell culture and a higher sensitivity than conventional RT-PCR in field samples. In comparative studies of a total of 77 field samples tested, 51 showed identical positive and 19 identical negative results in cell culture and the triplex RT-qPCR. However, seven other samples yielded positive results in the triplex RT-qPCR, but negative results in cell culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    PubMed

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Kinase detection with gallium nitride based high electron mobility transistors

    PubMed Central

    Makowski, Matthew S.; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-01-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing. PMID:23918992

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into halfmore » of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC (AFROC) area decreased from 0.84 to 0.63 and the ROC area decreased from 0.91 to 0.79 (p < 0.0001). This corresponded to a 30% drop in lesion sensitivity at a NLF equal to 0.1. Detection was also sensitive to the dose used. There was no significant difference in detection between the two image processing algorithms used (p > 0.05). It was additionally found that lower threshold gold thickness from CDMAM analysis implied better cluster detection. The measured threshold gold thickness passed the acceptable limit set in the EU standards for all image qualities except half dose CR. However, calcification detection varied significantly between image qualities. This suggests that the current EU guidelines may need revising. Conclusions: Microcalcification detection was found to be sensitive to detector and dose used. Standard measurements of image quality were a good predictor of microcalcification cluster detection.« less

  14. FTIR gas analysis with improved sensitivity and selectivity for CWA and TIC detection

    NASA Astrophysics Data System (ADS)

    Phillips, Charles M.; Tan, Huwei

    2010-04-01

    This presentation describes the use of an FTIR (Fourier Transform Infrared)-based spectrometer designed to continuously monitor ambient air for the presence of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). The necessity of a reliable system capable of quickly and accurately detecting very low levels of CWAs and TICs while simultaneously retaining a negligible false alarm rate will be explored. Technological advancements in FTIR sensing have reduced noise while increasing selectivity and speed of detection. These novel analyzer design characteristics are discussed in detail and descriptions are provided which show how optical throughput, gas cell form factor, and detector response are optimized. The hardware and algorithms described here will explain why this FTIR system is very effective for the simultaneous detection and speciation of a wide variety of toxic compounds at ppb concentrations. Analytical test data will be reviewed demonstrating the system's sensitivity to and selectivity for specific CWAs and TICs; this will include recent data acquired as part of the DHS ARFCAM (Autonomous Rapid Facility Chemical Agent Monitor) project. These results include analyses of the data from live agent testing for the determination of CWA detection limits, immunity to interferences, detection times, residual noise analysis and false alarm rates. Sensing systems such as this are critical for effective chemical hazard identification which is directly relevant to the CBRNE community.

  15. New applications of CRISPR/Cas9 system on mutant DNA detection.

    PubMed

    Jia, Chenqiang; Huai, Cong; Ding, Jiaqi; Hu, Lingna; Su, Bo; Chen, Hongyan; Lu, Daru

    2018-01-30

    The detection of mutant DNA is critical for precision medicine, but low-frequency DNA mutation is very hard to be determined. CRISPR/Cas9 is a robust tool for in vivo gene editing, and shows the potential for precise in vitro DNA cleavage. Here we developed a DNA mutation detection system based on CRISPR/Cas9 that can detect gene mutation efficiently even in a low-frequency condition. The system of CRISPR/Cas9 cleavage in vitro showed a high accuracy similar to traditional T7 endonuclease I (T7E1) assay in estimating mutant DNA proportion in the condition of normal frequency. The technology was further used for low-frequency mutant DNA detection of EGFR and HBB somatic mutations. To the end, Cas9 was employed to cleave the wild-type (WT) DNA and to enrich the mutant DNA. Using amplified fragment length polymorphism analysis (AFLPA) and Sanger sequencing, we assessed the sensitivity of CRISPR/Cas9 cleavage-based PCR, in which mutations at 1%-10% could be enriched and detected. When combined with blocker PCR, its sensitivity reached up to 0.1%. Our results suggested that this new application of CRISPR/Cas9 system is a robust and potential method for heterogeneous specimens in the clinical diagnosis and treatment management. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Paired emitter-detector diode detection with dual wavelength monitoring for enhanced sensitivity to transition metals in ion chromatography with post-column reaction.

    PubMed

    O' Toole, Martina; Barron, Leon; Shepherd, Roderick; Paull, Brett; Nesterenko, Pavel; Diamond, Dermot

    2009-01-01

    The combination of post-column derivatisation and visible detection are regularly employed in ion chromatography (IC) to detect poorly absorbing species. Although this mode is often highly sensitive, one disadvantage is the increase in repeating baseline artifacts associated with out-of-sync pumping systems. The work presented here will demonstrate the use of a second generation design paired emitter-detector diode (PEDD-II) detection mode offering enhanced sensitivity to transition metals in IC by markedly reducing this problem and also by improving signal noise. First generation designs demonstrated the use of a single integrated PEDD detector cell as a simple, small (15 x 5 mm), highly sensitive, low cost photometric detector for the detection of metals in IC. The basic principle of this detection mode lies in the employment of two linear light emitting diodes (LEDs), one operating in normal mode as a light source and the other in reverse bias serving as a light detector. The second generation PEDD-II design showed increased sensitivity for Mn(II)- and Co(II)-2-(pyridylazo)resorcinol (PAR) complexes as a result of two simultaneously acquiring detection cells--one analytical PEDD cell and one reference PEDD cell. Therefore, the PEDD-II employs two wavelengths whereby one monitors the analyte reaction product and the second monitors a wavelength close to the isosbestic point. The optimum LED wavelength to be used for the analytical cell was investigated to maximise peak response. The fabrication process for both the analytical and reference PEDD cells was validated by determining the reproducibility of detectors within a batch. The reproducibility and sensitivity of the PEDD-II detector was then investigated using signals obtained from both intra- and inter-day chromatograms.

  17. Flow-injection system for automated dissolution testing of isoniazid tablets with chemiluminescence detection.

    PubMed

    Li, B; Zhang, Z; Liu, W

    2001-05-30

    A simple and sensitive flow-injection chemiluminescence (CL) system for automated dissolution testing is described and evaluated for monitoring of dissolution profiles of isoniazid tablets. The undissolved suspended particles in the dissolved solution were eliminated via on-line filter. The novel CL system of KIO(4)-isoniazid was also investigated. The sampling frequency of the system was 120 h(-1). The dissolution profiles of isoniazid fast-release tablets from three sources were determined, which demonstrates the stability, great sensitivity, large dynamic measuring range and robustness of the system.

  18. Radiation imaging apparatus

    DOEpatents

    Anger, Hal O.; Martin, Donn C.; Lampton, Michael L.

    1983-01-01

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.

  19. Chemiluminescence Resonance Energy Transfer-based Detection for Microchip Electrophoresis

    PubMed Central

    Huang, Yong; Shi, Ming; Liu, Rongjun

    2010-01-01

    Since the channels in micro- and nanofluidic devices are extremely small, a sensitive detection is required following microchip electrophoresis (MCE). This work describes a highly sensitive and yet universal detection scheme based on chemiluminescence resonance energy transfer (CRET) for MCE. It was found that an efficient CRET occurred between a luminol donor and a CdTe quantum dot (QD) acceptor in the luminol-NaBrO-QD system, and that it was sensitively suppressed by the presence of certain organic compounds of biological interest including biogenic amines and thiols, amino acids, organic acids, and steroids. These findings allowed developing sensitive MCE-CL assays for the tested compounds. The proposed MCE-CL methods showed desired analytical figures of merit such as a wide concentration range of linear response. Detection limits obtained were ~10−9 M for biogenic amines including dopamine and epinephrine, and ~ 10−8 M for biogenic thiols (e.g. glutathione and acetylcysteine), organic acids (i.e. ascorbic acid and uric acid), estrogens, and native amino acids. These were 10 to 1000 times more sensitive than those of previously reported MCE-based methods with chemiluminescence, electrochemical, or laser induced fluorescence detection for quantifying corresponding compounds. To evaluate the applicability of the present MCE-CL method for analyzing real biological samples, it was used to determine amino acids in individual human red blood cells. Nine amino acids including Lys, Ser, Ala, Glu, Trp, etc. were detected. The contents ranged from 3 to 31 amol /cell. The assay proved to be simple, quick, reproducible, and very sensitive. PMID:20121202

  20. First images of a digital autoradiography system based on a Medipix2 hybrid silicon pixel detector.

    PubMed

    Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo

    2003-06-21

    We present the first images of beta autoradiography obtained with the high-resolution hybrid pixel detector consisting of the Medipix2 single photon counting read-out chip bump-bonded to a 300 microm thick silicon pixel detector. This room temperature system has 256 x 256 square pixels of 55 microm pitch (total sensitive area of 14 x 14 mm2), with a double threshold discriminator and a 13-bit counter in each pixel. It is read out via a dedicated electronic interface and control software, also developed in the framework of the European Medipix2 Collaboration. Digital beta autoradiograms of 14C microscale standard strips (containing separate bands of increasing specific activity in the range 0.0038-32.9 kBq g(-1)) indicate system linearity down to a total background noise of 1.8 x 10(-3) counts mm(-2) s(-1). The minimum detectable activity is estimated to be 0.012 Bq for 36,000 s exposure and 0.023 Bq for 10,800 s exposure. The measured minimum detection threshold is less than 1600 electrons (equivalent to about 6 keV Si). This real-time system for beta autoradiography offers lower pixel pitch and higher sensitive area than the previous Medipix1-based system. It has a 14C sensitivity better than that of micro channel plate based systems, which, however, shows higher spatial resolution and sensitive area.

  1. Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures

    PubMed Central

    Yang, Yaowen; Hu, Yuhang; Lu, Yong

    2008-01-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanical impedance (EMI) technique for structural health monitoring (SHM) has been successfully applied to various engineering systems. However, fundamental research work on the sensitivity of the PZT impedance sensors for damage detection is still in need. In the traditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of the impedance) is used as damage indicator, which is difficult to specify the effect of damage on structural properties. This paper uses the structural mechanical impedance (SMI) extracted from the PZT EM admittance signature as the damage indicator. A comparison study on the sensitivity of the EM admittance and the structural mechanical impedance to the damages in a concrete structure is conducted. Results show that the SMI is more sensitive to the damage than the EM admittance thus a better indicator for damage detection. Furthermore, this paper proposes a dynamic system consisting of a number of single-degree-of-freedom elements with mass, spring and damper components to model the SMI. A genetic algorithm is employed to search for the optimal value of the unknown parameters in the dynamic system. An experiment is carried out on a two-storey concrete frame subjected to base vibrations that simulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the frame structure to acquire PZT EM admittance signatures. The relationship between the damage index and the distance of the PZT sensor from the damage is studied. Consequently, the sensitivity of the PZT sensors is discussed and their sensing region in concrete is derived. PMID:27879711

  2. Detection of cat-eye effect echo based on unit APD

    NASA Astrophysics Data System (ADS)

    Wu, Dong-Sheng; Zhang, Peng; Hu, Wen-Gang; Ying, Jia-Ju; Liu, Jie

    2016-10-01

    The cat-eye effect echo of optical system can be detected based on CCD, but the detection range is limited within several kilometers. In order to achieve long-range even ultra-long-range detection, it ought to select APD as detector because of the high sensitivity of APD. The detection system of cat-eye effect echo based on unit APD is designed in paper. The implementation scheme and key technology of the detection system is presented. The detection performances of the detection system including detection range, detection probability and false alarm probability are modeled. Based on the model, the performances of the detection system are analyzed using typical parameters. The results of numerical calculation show that the echo signal-to-noise ratio is greater than six, the detection probability is greater than 99.9% and the false alarm probability is less tan 0.1% within 20 km detection range. In order to verify the detection effect, we built the experimental platform of detection system according to the design scheme and carry out the field experiments. The experimental results agree well with the results of numerical calculation, which prove that the detection system based on the unit APD is feasible to realize remote detection for cat-eye effect echo.

  3. Self-Referenced Fiber Optic System For Remote Methane Detection

    NASA Astrophysics Data System (ADS)

    Zientkiewicz, Jacek K.

    1989-10-01

    The paper discusses a fiber optic multisensor methane detection system matched to topology and environment of the underground mine. The system involves time domain multiplexed (TDM) methane sensors based on selective absorption of source radiation by atomic/molecular species in the gas sensing heads. A two-wavelength ratiometric approach allows simple self-referencing, cancels out errors arising from other contaminants, and improves the measurement contrast. The laboratory system consists of a high radiance LED source, multimode fiber, optical sensing head, optical bandpass filters, and involves synchronous detection with low noise photodiodes and a lock-in amplifier. Detection sensitivity versus spectral resolution of the optical filters has also been investigated and described. The system performance was evaluated and the results are presented.

  4. Meat authentication: a new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food.

    PubMed

    von Bargen, Christoph; Brockmeyer, Jens; Humpf, Hans-Ulrich

    2014-10-01

    Fraudulent blending of food products with meat from undeclared species is a problem on a global scale, as exemplified by the European horse meat scandal in 2013. Routinely used methods such as ELISA and PCR can suffer from limited sensitivity or specificity when processed food samples are analyzed. In this study, we have developed an optimized method for the detection of horse and pork in different processed food matrices using MRM and MRM(3) detection of species-specific tryptic marker peptides. Identified marker peptides were sufficiently stable to resist thermal processing of different meat products and thus allow the sensitive and specific detection of pork or horse in processed food down to 0.24% in a beef matrix system. In addition, we were able to establish a rapid 2-min extraction protocol for the efficient protein extraction from processed food using high molar urea and thiourea buffers. Together, we present here the specific and sensitive detection of horse and pork meat in different processed food matrices using MRM-based detection of marker peptides. Notably, prefractionation of proteins using 2D-PAGE or off-gel fractionation is not necessary. The presented method is therefore easily applicable in analytical routine laboratories without dedicated proteomics background.

  5. Automatic Detection of Lung and Liver Lesions in 3-D Positron Emission Tomography Images: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Lartizien, Carole; Marache-Francisco, Simon; Prost, Rémy

    2012-02-01

    Positron emission tomography (PET) using fluorine-18 deoxyglucose (18F-FDG) has become an increasingly recommended tool in clinical whole-body oncology imaging for the detection, diagnosis, and follow-up of many cancers. One way to improve the diagnostic utility of PET oncology imaging is to assist physicians facing difficult cases of residual or low-contrast lesions. This study aimed at evaluating different schemes of computer-aided detection (CADe) systems for the guided detection and localization of small and low-contrast lesions in PET. These systems are based on two supervised classifiers, linear discriminant analysis (LDA) and the nonlinear support vector machine (SVM). The image feature sets that serve as input data consisted of the coefficients of an undecimated wavelet transform. An optimization study was conducted to select the best combination of parameters for both the SVM and the LDA. Different false-positive reduction (FPR) methods were evaluated to reduce the number of false-positive detections per image (FPI). This includes the removal of small detected clusters and the combination of the LDA and SVM detection maps. The different CAD schemes were trained and evaluated based on a simulated whole-body PET image database containing 250 abnormal cases with 1230 lesions and 250 normal cases with no lesion. The detection performance was measured on a separate series of 25 testing images with 131 lesions. The combination of the LDA and SVM score maps was shown to produce very encouraging detection performance for both the lung lesions, with 91% sensitivity and 18 FPIs, and the liver lesions, with 94% sensitivity and 10 FPIs. Comparison with human performance indicated that the different CAD schemes significantly outperformed human detection sensitivities, especially regarding the low-contrast lesions.

  6. Detection system of capillary array electrophoresis microchip based on optical fiber

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Bai, Haiming; Yan, Weiping

    2009-11-01

    To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.

  7. Production of anti-digoxigenin antibody HRP conjugate for PCR-ELISA DIG detection system.

    PubMed

    Gill, Pooria; Forouzandeh, Mehdi; Rahbarizadeh, Fatemeh; Ramezani, Reihaneh; Rasaee, Mohammad Javad

    2006-01-01

    There are several methods used to visualize the end product of polymerase chain reactions. One of these methods is an ELISA-based detection system (PCR-ELISA) which is very sensitive and can be used to measure the PCR products quantitatively by a colorimetric method. According to this technique, copies of DNA segments from genomic DNA are amplified by PCR with incorporation of digoxigenin-11-dUTP. Samples are analyzed in a microtiter plate format by alkaline denaturation and are hybridized to biotinylated allele-specific capture probes bound to streptavidin coated plates. Use of the produced anti-digoxigenin antibody horseradish peroxidase conjugate and the substrate 2,2'-azino-di-3-ethylbenzthiazolinsulfonate (ABTS) detected the hybridized DNA. One of the key components in this procedure is the anti-digoxigenin antibody HRP conjugate. Described here is the preparation, purification, and characterization of anti-digoxigenin antibody HRP conjugate for use in the PCR-ELISA DIG detection system. Several biochemical protocols and modifications were applied to increase the sensitivity and specificity of this conjugate for an efficient and cost-effective product.

  8. Aberrant DNA methylation of tumor-related genes in oral rinse: a noninvasive method for detection of oral squamous cell carcinoma.

    PubMed

    Nagata, Satoshi; Hamada, Tomofumi; Yamada, Norishige; Yokoyama, Seiya; Kitamoto, Sho; Kanmura, Yuji; Nomura, Masahiro; Kamikawa, Yoshiaki; Yonezawa, Suguru; Sugihara, Kazumasa

    2012-09-01

    The early detection of oral squamous cell carcinoma (OSCC) is important, and a screening test with high sensitivity and specificity is urgently needed. Therefore, in this study, the authors investigated the methylation status of tumor-related genes with the objective of establishing a noninvasive method for the detection of OSCC. Oral rinse samples were obtained from 34 patients with OSCC and from 24 healthy individuals (controls). The methylation status of 13 genes was determined by using methylation-specific polymerase chain reaction analysis and was quantified using a microchip electrophoresis system. Promoter methylation in each participant was screened by receiver operating characteristic analysis, and the utility of each gene's methylation status, alone and in combination with other genes, was evaluated as a tool for oral cancer detection. Eight of the 13 genes had significantly higher levels of DNA methylation in samples from patients with OSCC than in controls. The genes E-cadherin (ECAD), transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2), retinoic acid receptor beta (RARβ), and O-6 methylguanine DNA methyltransferase (MGMT) had high sensitivity (>75%) and specificity for the detection of oral cancer. OSCC was detected with 100% sensitivity and 87.5% specificity using a combination of ECAD, TMEFF2, RARβ, and MGMT and with 97.1% sensitivity and 91.7% specificity using a combination of ECAD, TMEFF2, and MGMT. The aberrant methylation of a combination of marker genes present in oral rinse samples was used to detect OSCC with >90% sensitivity and specificity. The detection of methylated marker genes from oral rinse samples has great potential for the noninvasive detection of OSCC. Copyright © 2012 American Cancer Society.

  9. [Optimized application of nested PCR method for detection of malaria].

    PubMed

    Yao-Guang, Z; Li, J; Zhen-Yu, W; Li, C

    2017-04-28

    Objective To optimize the application of the nested PCR method for the detection of malaria according to the working practice, so as to improve the efficiency of malaria detection. Methods Premixing solution of PCR, internal primers for further amplification and new designed primers that aimed at two Plasmodium ovale subspecies were employed to optimize the reaction system, reaction condition and specific primers of P . ovale on basis of routine nested PCR. Then the specificity and the sensitivity of the optimized method were analyzed. The positive blood samples and examination samples of malaria were detected by the routine nested PCR and the optimized method simultaneously, and the detection results were compared and analyzed. Results The optimized method showed good specificity, and its sensitivity could reach the pg to fg level. The two methods were used to detect the same positive malarial blood samples simultaneously, the results indicated that the PCR products of the two methods had no significant difference, but the non-specific amplification reduced obviously and the detection rates of P . ovale subspecies improved, as well as the total specificity also increased through the use of the optimized method. The actual detection results of 111 cases of malarial blood samples showed that the sensitivity and specificity of the routine nested PCR were 94.57% and 86.96%, respectively, and those of the optimized method were both 93.48%, and there was no statistically significant difference between the two methods in the sensitivity ( P > 0.05), but there was a statistically significant difference between the two methods in the specificity ( P < 0.05). Conclusion The optimized PCR can improve the specificity without reducing the sensitivity on the basis of the routine nested PCR, it also can save the cost and increase the efficiency of malaria detection as less experiment links.

  10. Infectious pancreatic necrosis: its detection and identification

    USGS Publications Warehouse

    Wolf, K.

    1965-01-01

    Ultimate control of infectious pancreatic necrosis (IPN) in hatcheries depends largely upon learning where the virus occurs. To detect the presence of virus either susceptible fish or susceptible fish cell cultures may be used as test systems. In modern virology, it is generally agreed that cell cultures are more convenient, are usually a much more sensitive test system, and allow more rapid determinations.

  11. Use of near-infrared video recording system for the detection of freeze damaged citrus leaves

    NASA Technical Reports Server (NTRS)

    Escobar, D. E.; Bowen, R. L.; Gausman, H. W.; Cooper, G. (Principal Investigator)

    1982-01-01

    A video recording system with a visible light blocking filter to give sensitivity in the 0.78 m to 1.1 m waveband detected freeze-damaged citrus leaves rapidly. With this technique, the time to analyze images can be decreased from about one day for conventional photography to less than one hour for video recording.

  12. Nanotechnology: a promising method for oral cancer detection and diagnosis.

    PubMed

    Chen, Xiao-Jie; Zhang, Xue-Qiong; Liu, Qi; Zhang, Jing; Zhou, Gang

    2018-06-11

    Oral cancer is a common and aggressive cancer with high morbidity, mortality, and recurrence rate globally. Early detection is of utmost importance for cancer prevention and disease management. Currently, tissue biopsy remains the gold standard for oral cancer diagnosis, but it is invasive, which may cause patient discomfort. The application of traditional noninvasive methods-such as vital staining, exfoliative cytology, and molecular imaging-is limited by insufficient sensitivity and specificity. Thus, there is an urgent need for exploring noninvasive, highly sensitive, and specific diagnostic techniques. Nano detection systems are known as new emerging noninvasive strategies that bring the detection sensitivity of biomarkers to nano-scale. Moreover, compared to current imaging contrast agents, nanoparticles are more biocompatible, easier to synthesize, and able to target specific surface molecules. Nanoparticles generate localized surface plasmon resonances at near-infrared wavelengths, providing higher image contrast and resolution. Therefore, using nano-based techniques can help clinicians to detect and better monitor diseases during different phases of oral malignancy. Here, we review the progress of nanotechnology-based methods in oral cancer detection and diagnosis.

  13. An Automated Detection System for Microaneurysms That Is Effective across Different Racial Groups.

    PubMed

    Saleh, George Michael; Wawrzynski, James; Caputo, Silvestro; Peto, Tunde; Al Turk, Lutfiah Ismail; Wang, Su; Hu, Yin; Da Cruz, Lyndon; Smith, Phil; Tang, Hongying Lilian

    2016-01-01

    Patients without diabetic retinopathy (DR) represent a large proportion of the caseload seen by the DR screening service so reliable recognition of the absence of DR in digital fundus images (DFIs) is a prime focus of automated DR screening research. We investigate the use of a novel automated DR detection algorithm to assess retinal DFIs for absence of DR. A retrospective, masked, and controlled image-based study was undertaken. 17,850 DFIs of patients from six different countries were assessed for DR by the automated system and by human graders. The system's performance was compared across DFIs from the different countries/racial groups. The sensitivities for detection of DR by the automated system were Kenya 92.8%, Botswana 90.1%, Norway 93.5%, Mongolia 91.3%, China 91.9%, and UK 90.1%. The specificities were Kenya 82.7%, Botswana 83.2%, Norway 81.3%, Mongolia 82.5%, China 83.0%, and UK 79%. There was little variability in the calculated sensitivities and specificities across the six different countries involved in the study. These data suggest the possible scalability of an automated DR detection platform that enables rapid identification of patients without DR across a wide range of races.

  14. Chemical redox modulated fluorescence of nitrogen-doped graphene quantum dots for probing the activity of alkaline phosphatase.

    PubMed

    Liu, JingJing; Tang, Duosi; Chen, Zhitao; Yan, Xiaomei; Zhong, Zhou; Kang, Longtian; Yao, Jiannian

    2017-08-15

    Alkaline phosphatase (ALP) as an essential enzyme plays an important role in clinical diagnoses and biomedical researches. Hence, the development of convenient and sensitivity assay for monitoring ALP is extremely important. In this work, on the basis of chemical redox strategy to modulate the fluorescence of nitrogen-doped graphene quantum dots (NGQDs), a novel label-free fluorescent sensing system for the detection of alkaline phosphatase (ALP) activity has been developed. The fluorescence of NGQDs is firstly quenched by ultrathin cobalt oxyhydroxide (CoOOH) nanosheets, and then restored by ascorbic acid (AA), which can reduce CoOOH to Co 2+ , thus the ALP can be monitored based on the enzymatic hydrolysis of L-ascorbic acid-2-phosphate (AAP) by ALP to generate AA. Quantitative evaluation of ALP activity in a range from 0.1 to 5U/L with the detection limit of 0.07U/L can be realized in this sensing system. Endowed with high sensitivity and selectivity, the proposed assay is capable of detecting ALP in biological system with satisfactory results. Meanwhile, this sensing system can be easily extended to the detection of various AA-involved analytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Study on warning radius of diffuse reflection laser warning based on fish-eye lens

    NASA Astrophysics Data System (ADS)

    Chen, Bolin; Zhang, Weian

    2013-09-01

    The diffuse reflection type of omni-directional laser warning based on fish-eye lens is becoming more and more important. As one of the key parameters of warning system, the warning radius should be put into investigation emphatically. The paper firstly theoretically analyzes the energy detected by single pixel of FPA detector in the system under complicated environment. Then the least energy detectable by each single pixel of the system is computed in terms of detector sensitivity, system noise, and minimum SNR. Subsequently, by comparison between the energy detected by single pixel and the least detectable energy, the warning radius is deduced from Torrance-Sparrow five-parameter semiempirical statistic model. Finally, a field experiment was developed to validate the computational results. It has been found that the warning radius has a close relationship with BRDF parameters of the irradiated target, propagation distance, angle of incidence, and detector sensitivity, etc. Furthermore, an important fact is shown that the experimental values of warning radius are always less than that of theoretical ones, due to such factors as the optical aberration of fish-eye lens, the transmissivity of narrowband filter, and the packing ratio of detector.

  16. Performance Assessment of the CapitalBio Mycobacterium Identification Array System for Identification of Mycobacteria

    PubMed Central

    Liu, Jingbo; Yan, Zihe; Han, Min; Han, Zhijun; Jin, Lingjie; Zhao, Yanlin

    2012-01-01

    The CapitalBio Mycobacterium identification microarray system is a rapid system for the detection of Mycobacterium tuberculosis. The performance of this system was assessed with 24 reference strains, 486 Mycobacterium tuberculosis clinical isolates, and 40 clinical samples and then compared to the “gold standard” of DNA sequencing. The CapitalBio Mycobacterium identification microarray system showed highly concordant identification results of 100% and 98.4% for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), respectively. The sensitivity and specificity of the CapitalBio Mycobacterium identification array for identification of Mycobacterium tuberculosis isolates were 99.6% and 100%, respectively, for direct detection and identification of clinical samples, and the overall sensitivity was 52.5%. It was 100% for sputum, 16.7% for pleural fluid, and 10% for bronchoalveolar lavage fluid, respectively. The total assay was completed in 6 h, including DNA extraction, PCR, and hybridization. The results of this study confirm the utility of this system for the rapid identification of mycobacteria and suggest that the CapitalBio Mycobacterium identification array is a molecular diagnostic technique with high sensitivity and specificity that has the capacity to quickly identify most mycobacteria. PMID:22090408

  17. Effect of parameters in moving average method for event detection enhancement using phase sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum

    2017-04-01

    We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.

  18. Construction of helper plasmid-mediated dual-display phage for autoantibody screening in serum.

    PubMed

    Rajaram, Kaushik; Vermeeren, Veronique; Somers, Klaartje; Somers, Veerle; Michiels, Luc

    2014-01-01

    M13 filamentous bacteriophage has been used in displaying disease-specific antibodies, biomarkers, and peptides. One of the major drawbacks of using phage in diagnostic assays is the aspecific adsorption of proteins leading to a high background signal and decreasing sensitivity. To deal with this, we developed a genetically pure, exchangeable dual-display phage system in which biomarkers and streptavidin-binding protein (SBP) are displayed at opposite ends of the phage. This approach allows for sample purification, using streptavidin-coated magnetic beads resulting in a higher sensitivity of signal detection assays. Our dual-display cassette system approach also allows for easy exchange of both the anchor protein (SBP) and the displayed biomarker. The presented principle is applied for the detection of antibody reactivity against UH-RA.21 which is a good candidate biomarker for rheumatoid arthritis (RA). The applicability of dual-display phage preparation using a helper plasmid system is demonstrated, and its increased sensitivity in phage ELISA assays using patient serum samples is shown.

  19. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    PubMed

    Bakhori, Noremylia Mohd; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-12

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10-9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  20. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    PubMed

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  1. Remote detection of stress corrosion cracking: Surface composition and crack detection

    NASA Astrophysics Data System (ADS)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  2. [The development and implementation of polymerase chain reaction to detect in real-time operation mode yersinia pestis in field material].

    PubMed

    Afanas'ev, M V; Chipanin, E V; Shestakov, V E; Denisov, A V; Fomina, L A; Ostiak, A S; Balakhonov, S V

    2013-03-01

    The article presents the results of development and practical implementation of system of polymerase chain reaction testing in real-time operation mode to detect agent of plague infield material. In laboratory conditions the system demonstrated good results and hence it was applied in conditions of field laboratory of epidemiologic team during planned epizootologic examination of Gorno-Altaisk hot spot of plague. The sampling consisted of more than 1400 objects. It was demonstrated that high sensitivity and specificity is immanent to proposed system. The adaptation of the system to the real time amplifier "Smart Cycler" (Cephid, USA) having some specific technical characteristics makes it possible to consider the proposed test-system as an effective sensitive and precise instrument for screening studies in the process of regular epizootologic examinations of hot spots of plague.

  3. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  4. Particle detection systems and methods

    DOEpatents

    Morris, Christopher L.; Makela, Mark F.

    2010-05-11

    Techniques, apparatus and systems for detecting particles such as muons and neutrons. In one implementation, a particle detection system employs a plurality of drift cells, which can be for example sealed gas-filled drift tubes, arranged on sides of a volume to be scanned to track incoming and outgoing charged particles, such as cosmic ray-produced muons. The drift cells can include a neutron sensitive medium to enable concurrent counting of neutrons. The system can selectively detect devices or materials, such as iron, lead, gold, uranium, plutonium, and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can concurrently detect any unshielded neutron sources occupying the volume from neutrons emitted therefrom. If necessary, the drift cells can be used to also detect gamma rays. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  5. A bifunctional luminescent Tb(III)-metal-organic framework by a tetracarboxylate ligand for highly selective detection of Fe3+ cation and Cr2O72- anion

    NASA Astrophysics Data System (ADS)

    Yu, Li; Wang, Chao; Hu, Chang-Jiang; Dong, Wen-Wen; Wu, Ya-Pan; Li, Dong-Sheng; Zhao, Jun

    2018-06-01

    Reaction of Tb3+ ions with p-terphenyl-3,3″,5,5″-tetracarboxylic acid (H4ptptc) in a mixed solvent system has afforded a new metal-organic framework formulated as [Tb2(ptptc)1.5(H2O)2]n (1). Compound 1 displays a 3D (5,6,8)-connected framework with fascinating one-dimensional triangle open channels. The luminescence explorations demonstrated that 1 exhibits highly selective and sensitive response to Fe3+ in DMF solution and biological system through luminescence quenching effects. In addition, 1 also shows high detection for the Cr2O72-, making it a promising dual functional materials for detecting Fe3+ cation and Cr2O72- anion with high sensitivity and selectivity.

  6. Development and in-use evaluation of a novel Luminex MicroPlex microsphere-based (TRIOL) assay for simultaneous identification of Mycobacterium tuberculosis and detection of first-line and second-line anti-tuberculous drug resistance in China.

    PubMed

    Yin, Feifei; Chan, Jasper Fuk-Woo; Zhu, Qixuan; Fu, Ruijia; Chen, Jonathan Hon-Kwan; Choi, Garnet Kwan-Yue; Tee, Kah-Meng; Li, Lihua; Qian, Shiuyun; Yam, Wing-Cheong; Lu, Gang; Yuen, Kwok-Yung

    2017-04-01

    Rapid and accurate diagnostic assays with simultaneous microbial identification and drug resistance detection are essential for optimising treatment and control of tuberculosis. We developed a novel multiplex (TRIOL, Tuberculosis-Rifampicin-Isoniazid-Ofloxacin-Luminex) assay using the Luminex xMAP system that simultaneously identifies Mycobacterium tuberculosis and detects resistance to first-line and second-line anti-tuberculous drugs, and compared its performance with that by PCR sequencing, using phenotypic drug susceptibility testing as the gold standard. Identification of M. tuberculosis by the TRIOL assay was highly sensitive (100%) and specific (100%). The overall drug-specific specificities were excellent (100%). The overall sensitivity of the TRIOL assay was lower than that of the PCR-sequencing assays (72.4% vs 82.8%) because of a lower sensitivity of detecting rifampicin resistance (71.4% vs 92.9%). The sensitivity of detecting isoniazid and ofloxacin resistance was as good as the PCR-sequencing assays. Importantly, the TRIOL assay did not miss any mutations that were included in the assay. All of the resistant isolates that were missed had uncommon mutations or unknown resistance mechanisms that were not included in the assay. The TRIOL assay has higher throughput, lower cost and is less labour intensive than the PCR-sequencing assays. The TRIOL assay is advantageous in having the capability to detect resistance to multiple drugs and an open-architecture system that allows addition of more specific primers to detect uncommon mutations. Inclusion of additional primers for the identification of non-tuberculous mycobacteria, spoligotyping and improvement of rifampicin resistance detection would enhance the use of the TRIOL assay in future clinical and epidemiological studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    PubMed Central

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2015-01-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices. PMID:25466541

  8. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    NASA Astrophysics Data System (ADS)

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2014-12-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.

  9. Nanomaterial-Based Biosensors for Detection of Pesticides and Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Lin, Yuehe

    2009-01-01

    In this chapter, we describe nanomaterial-based biosensors for detecting OP pesticides and explosives. CNTs and functionalized silica nanoparticles have been chosen for this study. The biosensors were combined with the flow-injection system, providing great advantages for onsite, real-time, and continuous detection of environmental pollutants such as OPs and TNT. The sensors take advantage of the electrocatalytic properties of CNTs, which makes it feasible to achieve a sensitive electrochemical detection of the products from enzymatic reactions at low potential. This approach uses a large aspect ratio of silica nanoparticles, which can be used as a carrier for loading a large amountmore » of electroactive species, such as poly(guanine), for amplified detection of explosives. These methods offer a new environmental monitoring tool for rapid, inexpensive, and highly sensitive detection of OPs or TNT compounds.« less

  10. Head-to-head comparison of the diagnostic accuracies of BD Veritor™ System RSV and Quidel® Sofia® RSV FIA systems for respiratory syncytial virus (RSV) diagnosis.

    PubMed

    Kanwar, Neena; Hassan, Ferdaus; Nguyen, Ashley; Selvarangan, Rangaraj

    2015-04-01

    Respiratory syncytial virus (RSV) is one of the most common causes of severe lower respiratory tract disease among infants and young children. BD Veritor™ System RSV (BD) and Quidel(®) Sofia(®) RSV FIA (QD) are the new generation lateral flow digital immunoassay (DIA) tests with an instrumented read for the qualitative detection of RSV viral antigens. To compare the diagnostic accuracies of BD and QD for RSV detection using fresh nasopharyngeal aspirates and nasopharyngeal swab specimens collected in universal transport media during 2013-2014 respiratory season. The two DIA tests were performed simultaneously on randomly selected specimens on a weekly basis during the RSV season until 200 fresh remnant specimens were enrolled. Real-time RT-PCR assay results were used to compare and evaluate the performance of both RSV DIA assays. Among 200 specimens tested, RSV real-time RT-PCR assay detected RSV in 104 samples, while QD detected 84 samples and BD detected 74 samples as positive. The overall sensitivity for detection of RSV in comparison to PCR was 71.15% (61.3-79.4) for BD and 80.77% (71.6-87.6) for QD system (P=0.36). The specificity was 100% (95.2-100) for both systems. The work flow analysis revealed that the overall specimen processing time was significantly lower for BD as compared with the QD assay. In comparison with the real-time PCR, the QD system showed a higher sensitivity than that of the BD system, but the difference did not reach statistical significance (P=0.36). Both BD and QD systems were found comparable in terms of specificity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Evaluation of a Multivariate Syndromic Surveillance System for West Nile Virus.

    PubMed

    Faverjon, Céline; Andersson, M Gunnar; Decors, Anouk; Tapprest, Jackie; Tritz, Pierre; Sandoz, Alain; Kutasi, Orsolya; Sala, Carole; Leblond, Agnès

    2016-06-01

    Various methods are currently used for the early detection of West Nile virus (WNV) but their outputs are not quantitative and/or do not take into account all available information. Our study aimed to test a multivariate syndromic surveillance system to evaluate if the sensitivity and the specificity of detection of WNV could be improved. Weekly time series data on nervous syndromes in horses and mortality in both horses and wild birds were used. Baselines were fitted to the three time series and used to simulate 100 years of surveillance data. WNV outbreaks were simulated and inserted into the baselines based on historical data and expert opinion. Univariate and multivariate syndromic surveillance systems were tested to gauge how well they detected the outbreaks; detection was based on an empirical Bayesian approach. The systems' performances were compared using measures of sensitivity, specificity, and area under receiver operating characteristic curve (AUC). When data sources were considered separately (i.e., univariate systems), the best detection performance was obtained using the data set of nervous symptoms in horses compared to those of bird and horse mortality (AUCs equal to 0.80, 0.75, and 0.50, respectively). A multivariate outbreak detection system that used nervous symptoms in horses and bird mortality generated the best performance (AUC = 0.87). The proposed approach is suitable for performing multivariate syndromic surveillance of WNV outbreaks. This is particularly relevant, given that a multivariate surveillance system performed better than a univariate approach. Such a surveillance system could be especially useful in serving as an alert for the possibility of human viral infections. This approach can be also used for other diseases for which multiple sources of evidence are available.

  12. A biolayer interferometry-based assay for rapid and highly sensitive detection of biowarfare agents.

    PubMed

    Mechaly, Adva; Cohen, Hila; Cohen, Ofer; Mazor, Ohad

    2016-08-01

    Biolayer interferometry (BLI) is an optical technique that uses fiber-optic biosensors for label-free real-time monitoring of protein-protein interactions. In this study, we coupled the advantages of the Octet Red BLI system (automation, fluidics-free, and on-line monitoring) with a signal enhancement step and developed a rapid and sensitive immunological-based method for detection of biowarfare agents. As a proof of concept, we chose to demonstrate the efficacy of this novel assay for the detection of agents representing two classes of biothreats, proteinaceous toxins, and bacterial pathogens: ricin, a lethal plant toxin, and the gram-negative bacterium Francisella tularensis, the causative agent of tularemia. The assay setup consisted of biotinylated antibodies immobilized to the biosensor coupled with alkaline phosphatase-labeled antibodies as the detection moiety to create nonsoluble substrate crystals that precipitate on the sensor surface, thereby inducing a significant wavelength interference. It was found that this BLI-based assay enables sensitive detection of these pathogens (detection limits of 10 pg/ml and 1 × 10(4) pfu/ml ricin and F. tularensis, respectively) within a very short time frame (17 min). Owing to its simplicity, this assay can be easily adapted to detect other analytes in general, and biowarfare agents in particular, in a rapid and sensitive manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin

    PubMed Central

    Li, Zhanming; Fu, Yingchun; Fang, Weihuan; Li, Yanbin

    2015-01-01

    Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate) (DTSP) on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL−1, with a linear detection range from 102 to 107 cfu·mL−1 (r2 = 0.98). The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens. PMID:26251911

  14. Salmonella detection in poultry samples. Comparison of two commercial real-time PCR systems with culture methods for the detection of Salmonella spp. in environmental and fecal samples of poultry.

    PubMed

    Sommer, D; Enderlein, D; Antakli, A; Schönenbrücher, H; Slaghuis, J; Redmann, T; Lierz, M

    2012-01-01

    The efficiency of two commercial PCR methods based on real-time technology, the foodproof® Salmonella detection system and the BAX® PCR Assay Salmonella system was compared to standardized culture methods (EN ISO 6579:2002 - Annex D) for the detection of Salmonella spp. in poultry samples. Four sample matrices (feed, dust, boot swabs, feces) obtained directly from poultry flocks, as well as artificially spiked samples of the same matrices, were used. All samples were tested for Salmonella spp. using culture methods first as the gold standard. In addition samples spiked with Salmonella Enteridis were tested to evaluate the sensitivity of both PCR methods. Furthermore all methods were evaluated in an annual ring-trial of the National Salmonella Reference Laboratory of Germany. Salmonella detection in the matrices feed, dust and boot swabs were comparable in both PCR systems whereas the results from feces differed markedly. The quality, especially the freshness, of the fecal samples had an influence on the sensitivity of the real-time PCR and the results of the culture methods. In fresh fecal samples an initial spiking level of 100cfu/25g Salmonella Enteritidis was detected. Two-days-dried fecal samples allowed the detection of 14cfu/25g. Both real- time PCR protocols appear to be suitable for the detection of Salmonella spp. in all four matrices. The foodproof® system detected eight samples more to be positive compared to the BAX® system, but had a potential false positive result in one case. In 7-days-dried samples none of the methods was able to detect Salmonella likely through letal cell damage. In general the advantage of PCR analyses over the culture method is the reduction of working time from 4-5 days to only 2 days. However, especially for the analysis of fecal samples official validation should be conducted according to the requirement of EN ISO6579:2002 - Annex D.

  15. Residual eDNA detection sensitivity assessed by quantitative real-time PCR in a river ecosystem.

    PubMed

    Balasingham, Katherine D; Walter, Ryan P; Heath, Daniel D

    2017-05-01

    Several studies have demonstrated that environmental DNA (eDNA) can be used to detect the presence of aquatic species, days to weeks after the target species has been removed. However, most studies used eDNA analysis in lentic systems (ponds or lakes), or in controlled laboratory experiments. While eDNA degrades rapidly in all aquatic systems, it also undergoes dilution effects and physical destruction in flowing systems, complicating detection in rivers. However, some eDNA (i.e. residual eDNA) can be retained in aquatic systems, even those subject to high flow regimes. Our goal was to determine residual eDNA detection sensitivity using quantitative real-time polymerase chain reaction (qRT-PCR), in a flowing, uncontrolled river after the eDNA source was removed from the system; we repeated the experiment over 2 years. Residual eDNA had the strongest signal strength at the original source site and was detectable there up to 11.5 h after eDNA source removal. Residual eDNA signal strength decreased as sampling distance downstream from the eDNA source site increased, and was no longer detectable at the source site 48 h after the eDNA source water was exhausted in both experiments. This experiment shows that residual eDNA sampled in surface water can be mapped quantitatively using qRT-PCR, which allows a more accurate spatial identification of the target species location in lotic systems, and relative residual eDNA signal strength may allow the determination of the timing of the presence of target species. © 2016 John Wiley & Sons Ltd.

  16. Supersonic molecular beam-hyperthermal surface ionisation coupled with time-of-flight mass spectrometry applied to trace level detection of polynuclear aromatic hydrocarbons in drinking water for reduced sample preparation and analysis time.

    PubMed

    Davis, S C; Makarov, A A; Hughes, J D

    1999-01-01

    Analysis of sub-ppb levels of polynuclear aromatic hydrocarbons (PAHs) in drinking water by high performance liquid chromatography (HPLC) fluorescence detection typically requires large water samples and lengthy extraction procedures. The detection itself, although selective, does not give compound identity confirmation. Benchtop gas chromatography/mass spectrometry (GC/MS) systems operating in the more sensitive selected ion monitoring (SIM) acquisition mode discard spectral information and, when operating in scanning mode, are less sensitive and scan too slowly. The selectivity of hyperthermal surface ionisation (HSI), the high column flow rate capacity of the supersonic molecular beam (SMB) GC/MS interface, and the high acquisition rate of time-of-flight (TOF) mass analysis, are combined here to facilitate a rapid, specific and sensitive technique for the analysis of trace levels of PAHs in water. This work reports the advantages gained by using the GC/HSI-TOF system over the HPLC fluorescence method, and discusses in some detail the nature of the instrumentation used.

  17. Dual signal amplification for highly sensitive electrochemical detection of uropathogens via enzyme-based catalytic target recycling.

    PubMed

    Su, Jiao; Zhang, Haijie; Jiang, Bingying; Zheng, Huzhi; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2011-11-15

    We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment.

    PubMed

    Wang, Han; Liu, Zhongzheng; Kim, Sungman; Koo, Chiwan; Cho, Younghak; Jang, Dong-Young; Kim, Yong-Joe; Han, Arum

    2014-03-07

    Detecting and quantifying extremely low concentrations of oil from the environment have broad applications in oil spill monitoring in ocean and coastal areas as well as in oil leakage monitoring on land. Currently available methods for low-concentration oil detection are bulky or costly with limited sensitivities. Thus they are difficult to be used as portable and field-deployable detectors in the case of oil spills or for monitoring the long-term effects of dispersed oil on marine and coastal ecosystems. Here, we present a low-concentration oil droplet trapping and detection microfluidic system based on the acoustophoresis phenomenon where oil droplets in water having a negative acoustic contrast factor move towards acoustic pressure anti-nodes. By trapping oil droplets from water samples flowing through a microfluidic channel, even very low concentrations of oil droplets can be concentrated to a detectable level for further analyses, which is a significant improvement over currently available oil detection systems. Oil droplets in water were successfully trapped and accumulated in a circular acoustophoretic trapping chamber of the microfluidic device and detected using a custom-built compact fluorescent detector based on the natural fluorescence of the trapped crude oil droplets. After the on-line detection, crude oil droplets released from the trapping chamber were successfully separated into a collection outlet by acoustophoretic force for further off-chip analyses. The developed microfluidic system provides a new way of trapping, detecting, and separating low-concentration crude oil from environmental water samples and holds promise as a low-cost field-deployable oil detector with extremely high sensitivity. The microfluidic system and operation principle are expected to be utilized in a wide range of applications where separating, concentrating, and detecting small particles having a negative acoustic contrast factor are required.

  19. Comparative evaluation of new TaqMan real-time assays for the detection of hepatitis A virus.

    PubMed

    Houde, Alain; Guévremont, Evelyne; Poitras, Elyse; Leblanc, Danielle; Ward, Pierre; Simard, Carole; Trottier, Yvon-Louis

    2007-03-01

    Three novel real-time TaqMan RT-PCR assays targeting the 5'-UTR, the viral protease and the viral polymerase regions of the hepatitis A virus (HAV) were developed, evaluated and compared against a new published 5'-UTR TaqMan assay (JN) and a widely used conventional RT-PCR assay (HAVc). All conventional RT-PCR (HAV, SH-Prot and SH-Poly systems) and TaqMan (SH-Prot, SH-Poly, JN and SH-5U systems) assays evaluated were consistent for the detection of the three different HAV strains (HM-175, HAS-15 and LSH/S) used and reproducible for both RNA duplicates with the exception of two reproducibility discrepancies observed with both 5'-UTR real-time systems (JN and SH-5U). Limits of detection for conventional HAV, SH-Prot and SH-Poly RT-PCR systems were found to be equivalent when tested with serially diluted suspensions of the HM-175 strain. Although the four real-time RT-PCR TaqMan assays evaluated herein produced similar and consistent quantification data down to the level of one genomic equivalent copy with their respectively cloned amplicons, significant and important differences were observed for the detection of HAV genomic RNA. Results showed that the new real-time TaqMan SH-Poly and SH-Prot primer and probe systems were more consistent and sensitive by 5 logs as compared to both 5'-UTR designs (JN and SH-5U) used for the detection of HAV genomic RNA as well as for the detection in cell culture by cytopathic effect. Considering their higher analytical sensitivity, the proposed SH-Poly and SH-Prot amplification systems could therefore represent valuable tools for the detection of HAV in clinical, environmental and food samples.

  20. Novel and Practical Scoring Systems for the Diagnosis of Thyroid Nodules

    PubMed Central

    Wei, Ying; Zhou, Xinrong; Liu, Siyue; Wang, Hong; Liu, Limin; Liu, Renze; Kang, Jinsong; Hong, Kai; Wang, Daowen; Yuan, Gang

    2016-01-01

    Objective The clinical management of patients with thyroid nodules that are biopsied by fine-needle aspiration cytology and yield indeterminate results remains unsettled. The BRAF V600E mutation has dubious diagnostic value due to its low sensitivity. Novel strategies are urgently needed to distinguish thyroid malignancies from thyroid nodules. Design This prospective study included 504 thyroid nodules diagnosed by ultrasonography from 468 patients, and fine-needle aspiration cytology was performed under ultrasound guidance. Cytology and molecular analysis, including BRAF V600E, RET/PTC1 and RET/PTC3, were conducted simultaneously. The cytology, ultrasonography results, and mutational status were gathered and analyzed together. Predictive scoring systems were designed using a combination of diagnostic parameters for ultrasonography, cytology and genetic analysis. The utility of the scoring systems was analyzed and compared to detection using the individual methods alone or combined. Result The sensitivity of scoring systema (ultrasonography, cytology, BRAF V600E, RET/PTC) was nearly identical to that of scoring systemb (ultrasonography, cytology, BRAF V600E); these were 91.0% and 90.2%, respectively. These sensitivities were significantly higher than those obtained using FNAC, genetic analysis and US alone or combined; their sensitivities were 63.9%, 70.7% and 87.2%, respectively. Scoring systemc (ultrasonography, cytology) was slightly inferior to the former two scoring systems but still had relatively high sensitivity and specificity (80.5% and 95.1%, respectively), which were significantly superior to those of single cytology, ultrasonography or genetic analysis. In nodules with uncertainty cytology, scoring systema, scoring systemb and scoring systemc could elevate the malignancy detection rates to 69.7%, 69.7% and 63.6%, respectively. Conclusion These three scoring systems were quick for clinicians to master and could provide quantified information to predict the probability of malignant nodules. Scoring systemb is recommended for improving the detection rate among nodules of uncertain cytology. PMID:27654865

  1. Physical effects of mechanical design parameters on photon sensitivity and spatial resolution performance of a breast-dedicated PET system.

    PubMed

    Spanoudaki, V C; Lau, F W Y; Vandenbroucke, A; Levin, C S

    2010-11-01

    This study aims to address design considerations of a high resolution, high sensitivity positron emission tomography scanner dedicated to breast imaging. The methodology uses a detailed Monte Carlo model of the system structures to obtain a quantitative evaluation of several performance parameters. Special focus was given to the effect of dense mechanical structures designed to provide mechanical robustness and thermal regulation to the minuscule and temperature sensitive detectors. For the energies of interest around the photopeak (450-700 keV energy window), the simulation results predict a 6.5% reduction in the single photon detection efficiency and a 12.5% reduction in the coincidence photon detection efficiency in the case that the mechanical structures are interspersed between the detectors. However for lower energies, a substantial increase in the number of detected events (approximately 14% and 7% for singles at a 100-200 keV energy window and coincidences at a lower energy threshold of 100 keV, respectively) was observed with the presence of these structures due to backscatter. The number of photon events that involve multiple interactions in various crystal elements is also affected by the presence of the structures. For photon events involving multiple interactions among various crystal elements, the coincidence photon sensitivity is reduced by as much as 20% for a point source at the center of the field of view. There is no observable effect on the intrinsic and the reconstructed spatial resolution and spatial resolution uniformity. Mechanical structures can have a considerable effect on system sensitivity, especially for systems processing multi-interaction photon events. This effect, however, does not impact the spatial resolution. Various mechanical structure designs are currently under evaluation in order to achieve optimum trade-off between temperature stability, accurate detector positioning, and minimum influence on system performance.

  2. Physical effects of mechanical design parameters on photon sensitivity and spatial resolution performance of a breast-dedicated PET system

    PubMed Central

    Spanoudaki, V. C.; Lau, F. W. Y.; Vandenbroucke, A.; Levin, C. S.

    2010-01-01

    Purpose: This study aims to address design considerations of a high resolution, high sensitivity positron emission tomography scanner dedicated to breast imaging. Methods: The methodology uses a detailed Monte Carlo model of the system structures to obtain a quantitative evaluation of several performance parameters. Special focus was given to the effect of dense mechanical structures designed to provide mechanical robustness and thermal regulation to the minuscule and temperature sensitive detectors. Results: For the energies of interest around the photopeak (450–700 keV energy window), the simulation results predict a 6.5% reduction in the single photon detection efficiency and a 12.5% reduction in the coincidence photon detection efficiency in the case that the mechanical structures are interspersed between the detectors. However for lower energies, a substantial increase in the number of detected events (approximately 14% and 7% for singles at a 100–200 keV energy window and coincidences at a lower energy threshold of 100 keV, respectively) was observed with the presence of these structures due to backscatter. The number of photon events that involve multiple interactions in various crystal elements is also affected by the presence of the structures. For photon events involving multiple interactions among various crystal elements, the coincidence photon sensitivity is reduced by as much as 20% for a point source at the center of the field of view. There is no observable effect on the intrinsic and the reconstructed spatial resolution and spatial resolution uniformity. Conclusions: Mechanical structures can have a considerable effect on system sensitivity, especially for systems processing multi-interaction photon events. This effect, however, does not impact the spatial resolution. Various mechanical structure designs are currently under evaluation in order to achieve optimum trade-off between temperature stability, accurate detector positioning, and minimum influence on system performance. PMID:21158296

  3. Privileged Detection of Conspecifics: Evidence from Inversion Effects during Continuous Flash Suppression

    ERIC Educational Resources Information Center

    Stein, Timo; Sterzer, Philipp; Peelen, Marius V.

    2012-01-01

    The rapid visual detection of other people in our environment is an important first step in social cognition. Here we provide evidence for selective sensitivity of the human visual system to upright depictions of conspecifics. In a series of seven experiments, we assessed the impact of stimulus inversion on the detection of person silhouettes,…

  4. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1973-01-01

    The successful operation of an airborne laser fluorosensor system is reported that makes it possible to detect and map surface oil, either of natural-seepage or spill origin, on large bodies of water. Preliminary results indicate that the sensitivity of the instrument exceeds that of conventional passive remote sensors currently available for oil spill detection.

  5. A survey of design methods for failure detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1975-01-01

    A number of methods for the detection of abrupt changes (such as failures) in stochastic dynamical systems were surveyed. The class of linear systems were emphasized, but the basic concepts, if not the detailed analyses, carry over to other classes of systems. The methods surveyed range from the design of specific failure-sensitive filters, to the use of statistical tests on filter innovations, to the development of jump process formulations. Tradeoffs in complexity versus performance are discussed.

  6. Evaluation of a National Call Center and a Local Alerts System for Detection of New Cases of Ebola Virus Disease - Guinea, 2014-2015

    DTIC Science & Technology

    2016-03-11

    Control and Prevention Evaluation of a National Call Center and a Local Alerts System for Detection of New Cases of Ebola Virus Disease — Guinea, 2014...principally through the use of a telephone alert system. Community members and health facilities report deaths and suspected Ebola cases to local alert ...sensitivity of the national call center with the local alerts system, the CDC country team performed probabilistic record linkage of the combined

  7. Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy.

    PubMed

    Weiser, H; Vitz, R C; Moos, H W; Weinstein, A

    1976-12-01

    An evacuated high transmission prism spectrograph using a microchannel plate detection system with resistive strip readout was flown behind a precision pointing telescope on a sounding rocket. The construction, preparation, flight performance, and calibration stability of the system are discussed. Despite the adverse environmental conditions associated with sounding rocket flights, the microchannel detector system performed well. Far uv spectra (1160-1750 A) of stellar and planetary objects were obtained; spectral features with fluxes as low as 0.06 photons cm(-2) sec(-1) were detectable. This was achieved by operating the plates at lower than normal gains, using sensitive pulse counting electronics with both upper and lower limit discriminators, and maintaining the spectrograph and detector at a pressure of ~10(-6) Torr until reaching altitude.

  8. A sensor system based on a luminescent protein complex in a biopolymer matrix for detecting small concentrations of hydrogen sulfide in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Sergeev, A. A.; Leonov, A. A.; Kamenev, D. G.; Voznesenskii, S. S.; Kul'chin, Yu. M.

    2017-09-01

    We have studied the properties of luminescent protein complexes based on myoglobin with covalently bound CY3 luminophore, which were incorporated into polysaccharide agarose films, as potential elements sensitive to hydrogen sulfide (H2S) in aqueous solutions. The presence of this analyte changes the absorption spectrum of myoglobin, which influences the efficiency of luminophore excitation while having almost no effect on its emission spectrum. This effect shows that a luminescent sensor system with the optical response determined by analyte-induced changes in the efficiency of luminescence excitation in the sensitive element can be created. For the system studied, the limit of detection of H2S dissolved in water amounted to 100 pM.

  9. Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system.

    PubMed

    Wang, Shang; Li, Jiasong; Manapuram, Ravi Kiran; Menodiado, Floredes M; Ingram, Davis R; Twa, Michael D; Lazar, Alexander J; Lev, Dina C; Pollock, Raphael E; Larin, Kirill V

    2012-12-15

    We report on an optical noncontact method for the detection of soft-tissue tumors based on the measurement of their elasticity. A focused air-puff system is used to excite surface waves (SWs) on soft tissues with transient static pressure. A high-speed phase-sensitive optical coherence tomography system is used to measure the SWs as they propagate from the point of excitation. To evaluate the stiffness of soft tissues, the Young's modulus is quantified based on the group velocity of SWs. Pilot experiments were performed on ex vivo human myxoma and normal fat. Results demonstrate the feasibility of the proposed method to measure elasticity and differentiate soft-tissue tumors from normal tissues.

  10. Spectral and Polarization Sensitivity of the Dipteran Visual System

    PubMed Central

    McCann, Gilbert D.; Arnett, David W.

    1972-01-01

    Spectral and polarization sensitivity measurements were made at several levels (retina, first and third optic ganglion, cervical connective, behavior) of the dipteran visual nervous system. At all levels, it was possible to reveal contributions from the retinular cell subsystem cells 1 to 6 or the retinular cell subsystem cells 7 and 8 or both. Only retinular cells 1 to 6 were directly studied, and all possessed the same spectral sensitivity characterized by two approximately equal sensitivity peaks at 350 and 480 nm. All units of both the sustaining and on-off variety in the first optic ganglion exhibited the same spectral sensitivity as that of retinular cells 1 to 6. It was possible to demonstrate for motion detection and optomotor responses two different spectral sensitivities depending upon the spatial wavelength of the stimulus. For long spatial wavelengths, the spectral sensitivity agreed with retinular cells 1 to 6; however, the spectral sensitivity at short spatial wavelengths was characterized by a single peak at 465 nm reflecting contributions from the (7, 8) subsystem. Although the two subsystems exhibited different spectral sensitivities, the difference was small and no indication of color discrimination mechanisms was observed. Although all retinular cells 1 to 6 exhibited a preferred polarization plane, sustaining and on-off units did not. Likewise, motion detection and optomotor responses were insensitive to the polarization plane for long spatial wavelength stimuli; however, sensitivity to select polarization planes was observed for short spatial wavelengths. PMID:5027759

  11. Biosensors for plant pathogen detection.

    PubMed

    Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2017-07-15

    Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A simple method for the comparison of commercially available ATP hygiene-monitoring systems.

    PubMed

    Colquhoun, K O; Timms, S; Fricker, C R

    1998-04-01

    The purpose of this study was to evaluate a methodology which could easily be used in any test laboratory in a uniform and consistent way for determining the sensitivity and reproducibility of results obtained with three ATP hygiene-monitoring systems. The test protocol discussed here allows such comparison to be made, thereby establishing a method of benchmarking both new systems and developments of existing systems. The sensitivity of the LUMINOMETER K, PocketSwab (Charm Sciences) was found to be between 0.4 and 4.0 nmol of ATP with poor reproducibility at the 40.0 nmol level (CV, 35%). The sensitivity of the IDEXX LIGHTING system and the Biotrace UNILITE Xcel were both between 0.04 and 0.4 nmol with coefficients of variation (CVs) of between 9% at 0.04 nmol and 10% at 0.4 nmol for the IDEXX system and 17% at 0.04 nmol and 21% at 0.4 nmol for the Biotrace system. The three systems were tested with a range of dilutions of different food residues: orange juice, raw milk, and ground beef slurry. All three test systems allowed detection of orange juice and raw milk at dilutions of 1:1,000, although the CV of results from the Charm system (54 and 74% respectively) was poor at this dilution for both residues. The sensitivity of the test systems was poorer for ground beef slurry than it was for orange juice and raw milk. Both the Biotrace and IDEXX systems were able to detect a 1:100 dilution of beef slurry (with CVs of 17 and 10% respectively), whilst at this dilution results from the Charm system had a CV of 55%. It was possible by using the method described in this paper to rank in order of sensitivity and reproducibility the three single-shot ATP hygiene-monitoring systems investigated, with the IDEXX LIGHTNING being the best, followed by the Biotrace UNILITE Xcel, and then the charm LUMINOMETER K, PocketSwab.

  13. Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances

    NASA Astrophysics Data System (ADS)

    Tornga, Shawn R.

    The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as localization capability. Utilizing imaging information will show signal-to-noise gains over spectroscopic algorithms alone.

  14. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    NASA Astrophysics Data System (ADS)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been successfully applied to the detection of cracks emanating from rivet holes in aircraft fuselage panel samples. A compact fiber-optic dual-probe interferometer has also been developed and applied to the above mentioned problem of crack detection. Results agree well with those obtained with a bulk LBU system.

  15. Evaluation of a polymerase chain reaction-based system for detection of Salmonella enteritidis, Escherichia coli O157:H7, Listeria spp., and Listeria monocytogenes on fresh fruits and vegetables.

    PubMed

    Shearer, A E; Strapp, C M; Joerger, R D

    2001-06-01

    A polymerase chain reaction (PCR)-based detection system, BAX, was evaluated for its sensitivity in detecting Salmonella Enteritidis, Escherichia coli O157:H7, Listeria sp., and Listeria monocytogenes on fresh produce. Fifteen different types of produce (alfalfa sprouts, green peppers, parsley, white cabbage, radishes, onions, carrots, mushrooms, leaf lettuce, tomatoes, strawberries, cantaloupe, mango, apples, and oranges) were inoculated, in separate studies, with Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes down to the predicted level of 1 CFU per 25-g sample. Detection by BAX was compared to recovery of the inoculated bacteria by culture methods according to the Food and Drug Administration's (FDA) Bacteriological Analytical Manual (BAM). BAX was essentially as sensitive as the culture-based method in detecting Salmonella Enteritidis and L. monocytogenes and more sensitive than the culture-based method for the detection of E. coli O157:H7 on green pepper, carrot, radish, and sprout samples. Detection of the pathogenic bacteria in samples spiked with a predicted number of less than 10 CFU was possible for most produce samples, but both methods failed to detect L. monocytogenes on carrot samples and one of two mushroom and onion samples spiked with less than 100 CFU. Both BAX and the culture method were also unable to consistently recover low numbers of E. coli O157:H7 from alfalfa sprouts. The PCR method allowed detection of Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes at least 2 days earlier than the conventional culture methods.

  16. Use of Humanized RS-ATL8 Reporter System for Detection of Allergen-Specific IgE Sensitization in Human Food Allergy.

    PubMed

    Ali, Eman Ali; Nakamura, Ryosuke; Falcone, Franco H

    2017-01-01

    Allergen-specific Immunoglobulin E (IgE) determination lies at the heart of diagnosis of sensitization to food and other allergens. In the past few years, reporter systems capable of detecting the presence of allergen-specific IgE have been developed by several labs. These rely on humanized rat basophil leukemia cell lines stably transfected with reporter genes such as firefly luciferase. In this chapter, we describe protocols for the use of the RS-ATL8 cell line (IgE cross-linking-induced luciferase expression; EXiLE) in 96-well and 384-well formats. We also describe optional treatment steps for enveloped virus and complement inactivation.

  17. Multichannel perimetric alterations in systemic lupus erythematosus treated with hydroxychloroquine.

    PubMed

    Piñero, David P; Monllor, Begoña; Camps, Vicente J; de Fez, Dolores

    Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease of unknown etiology with many clinical manifestations. We report the first case of SLE in which visual alterations were evaluated with multichannel perimetry. Some achromatic and color vision alterations may be present in SLE, especially when treated with hydroxychloroquine. The sensitivity losses detected in the chromatic channels in the central zone of the visual field were consistent with the results of the FM 100 Hue color test. Likewise, the multichannel perimetry detected sensitivity losses in the parafoveal area for both chromatic channels, especially for the blue-yellow. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  18. Radiation imaging apparatus

    DOEpatents

    Anger, H.O.; Martin, D.C.; Lampton, M.L.

    1983-07-26

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.

  19. A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal.

    PubMed

    Lu, Li-Min; Zhang, Xiao-Bing; Kong, Rong-Mei; Yang, Bin; Tan, Weihong

    2011-08-03

    Many types of fluorescent sensing systems have been reported for biological small molecules. Particularly, several methods have been developed for the recognition of ATP or NAD(+), but they only show moderate sensitivity, and they cannot discriminate either ATP or NAD(+) from their respective analogues. We have addressed these limitations and report here a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based amplified detection to develop a ligation-triggered DNAzyme cascade, resulting in ultrahigh sensitivity. First, the 8-17 DNAzyme is split into two separate oligonucleotide fragments as the building blocks for the DNA ligation reaction, thereby providing a zero-background signal to improve overall sensitivity. Next, a CAMB strategy is further employed for amplified signal detection achieved through cycling and regenerating the DNAzyme to realize the true enzymatic multiple turnover (one enzyme catalyzes the cleavage of several substrates) of catalytic beacons. This combination of zero-background signal and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of 100 and 50 pM for ATP and NAD(+), respectively, much lower than those of previously reported biosensors. Moreover, by taking advantage of the highly specific biomolecule-dependence of the DNA ligation reaction, the developed DNAzyme cascades show significantly high selectivity toward the target cofactor (ATP or NAD(+)), and the target biological small molecule can be distinguished from its analogues. Therefore, as a new and universal platform for the design of DNA ligation reaction-based sensing systems, this novel ligation-triggered DNAzyme cascade method may find a broad spectrum of applications in both environmental and biomedical fields.

  20. Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Madjarova, Violeta Dimitrova; Yasuno, Yoshiaki; Makita, Shuichi; Hori, Yasuaki; Voeffray, Jean-Baptiste; Itoh, Masahide; Yatagai, Toyohiko; Tamura, Masami; Nanbu, Toshiyuki

    2006-02-01

    Fourier Domain Optical Coherence Tomography (SD-OCT) systems for dental measurements are demonstrated. Two systems have been developed. The first system is fiber based Michelson interferometer with super luminescent diodes at 1310 nm and 100 nm FWHM as a light source. The sensitivity of the system was 106 dB with depth measurement range in air of 2.5 mm. The second systems is a fiber based Mach-Zehnder interferometer with wavelength scanning laser as light source at center wavelength of 1310 nm, wavelength range of 110 nm and scanning rate of 20 KHz. The sensitivity of the system is 112 dB and depth measurement range in air is 6 mm. Both systems can acquire real-time three dimensional (3-D) images in the range of several second. The systems were applied for early caries detection in tooth, for diagnostics of tooth condition after operational tooth treatment, and for diagnostics of the alveolar bone structure. In-vivo measurements were performed on two volunteers. The systems were able to detect discontinuities in tooth and resin filling after tooth treatment. In addition early carries lesion was detected in one of the volunteers. The 3-D profile of the alveolar bone was acquired for first time with non-contact method.

  1. Detection of breast cancer in automated 3D breast ultrasound

    NASA Astrophysics Data System (ADS)

    Tan, Tao; Platel, Bram; Mus, Roel; Karssemeijer, Nico

    2012-03-01

    Automated 3D breast ultrasound (ABUS) is a novel imaging modality, in which motorized scans of the breasts are made with a wide transducer through a membrane under modest compression. The technology has gained high interest and may become widely used in screening of dense breasts, where sensitivity of mammography is poor. ABUS has a high sensitivity for detecting solid breast lesions. However, reading ABUS images is time consuming, and subtle abnormalities may be missed. Therefore, we are developing a computer aided detection (CAD) system to help reduce reading time and errors. In the multi-stage system we propose, segmentations of the breast and nipple are performed, providing landmarks for the detection algorithm. Subsequently, voxel features characterizing coronal spiculation patterns, blobness, contrast, and locations with respect to landmarks are extracted. Using an ensemble of classifiers, a likelihood map indicating potential malignancies is computed. Local maxima in the likelihood map are determined using a local maxima detector and form a set of candidate lesions in each view. These candidates are further processed in a second detection stage, which includes region segmentation, feature extraction and a final classification. Region segmentation is performed using a 3D spiral-scanning dynamic programming method. Region features include descriptors of shape, acoustic behavior and texture. Performance was determined using a 78-patient dataset with 93 images, including 50 malignant lesions. We used 10-fold cross-validation. Using FROC analysis we found that the system obtains a lesion sensitivity of 60% and 70% at 2 and 4 false positives per image respectively.

  2. Detection of Norovirus by BD MAX™, Xpert® Norovirus, and xTAG® Gastrointestinal Pathogen Panel in stool and vomit samples.

    PubMed

    McHugh, Martin P; Guerendiain, Daniel; Hardie, Alison; Kenicer, Juliet; MacKenzie, Laura; Templeton, Kate E

    2018-06-08

    Norovirus is a leading cause of infectious gastroenteritis, characterized by outbreaks of diarrhoea and vomiting in closed settings. Nucleic acid amplification tests allow rapid and sensitive laboratory diagnosis of norovirus, with a number of commercial platforms now available. Evaluate the performance of the Becton Dickinson BD-MAX™System, Cepheid Xpert® Norovirus Assay, and Luminex xTAG® Gastrointestinal Pathogen Panel (GPP) for norovirus detection in stool. Assess the performance of the Xpert® Norovirus Assay and BD-MAX™ in vomit samples. 163 diarrhoeal stool samples were tested on four diagnostic systems (laboratory-defined real time RT-PCR (assigned as gold standard), BD MAX™, Xpert® Norovirus Assay, and xTAG® GPP). A further 70 vomit samples were tested on the Xpert and BD MAX platforms. In stool, sensitivity and specificity of the BD-MAX™ was 96.8% and 100%, for Xpert® Norovirus Assay was 91.9% and 100%, and for xTAG® GPP was 79.0% and 87.1%. In vomit samples positive and negative percent agreement was 95.6% and 92.0%, between the BD-MAX™ and Xpert® Norovirus. The BD-MAX™ System with user defined settings and the Xpert® Norovirus Assay showed acceptable sensitivity and specificity for detection of norovirus from stool and vomit. The xTAG GPP assay was less reliable for norovirus detection but can detect a number of other clinically useful enteropathogens. Clinical laboratories must consider skill mix, budget, and sample throughput to determine the best fit for their service. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Investigation of an optical sensor for small tilt angle detection of a precision linear stage

    NASA Astrophysics Data System (ADS)

    Saito, Yusuke; Arai, Yoshikazu; Gao, Wei

    2010-05-01

    This paper presents evaluation results of the characteristics of the angle sensor based on the laser autocollimation method for small tilt angle detection of a precision linear stage. The sensor consists of a laser diode (LD) as the light source, and a quadrant photodiode (QPD) as the position-sensing detector. A small plane mirror is mounted on the moving table of the stage as a target mirror for the sensor. This optical system has advantages of high sensitivity, fast response speed and the ability for two-axis angle detection. On the other hand, the sensitivity of the sensor is determined by the size of the optical spot focused on the QPD, which is a function of the diameter of the laser beam projected onto the target mirror. Because the diameter is influenced by the divergence of the laser beam, this paper focuses on the relationship between the sensor sensitivity and the moving position of the target mirror (sensor working distance) over the moving stroke of the stage. The main error components that influence the sensor sensitivity are discussed and the optimal conditions of the optical system of the sensor are analyzed. The experimental result about evaluation of the effective working distance is also presented.

  4. Evaluation of sensitivity of TaqMan RT-PCR for rubella virus detection in clinical specimens.

    PubMed

    Okamoto, Kiyoko; Mori, Yoshio; Komagome, Rika; Nagano, Hideki; Miyoshi, Masahiro; Okano, Motohiko; Aoki, Yoko; Ogura, Atsushi; Hotta, Chiemi; Ogawa, Tomoko; Saikusa, Miwako; Kodama, Hiroe; Yasui, Yoshihiro; Minagawa, Hiroko; Kurata, Takako; Kanbayashi, Daiki; Kase, Tetsuo; Murata, Sachiko; Shirabe, Komei; Hamasaki, Mitsuhiro; Kato, Takashi; Otsuki, Noriyuki; Sakata, Masafumi; Komase, Katsuhiro; Takeda, Makoto

    2016-07-01

    An easy and reliable assay for detection of the rubella virus is required to strengthen rubella surveillance. Although a TaqMan RT-PCR assay for detection of the rubella virus has been established in Japan, its utility for diagnostic purposes has not been tested. To allow introduction of the TaqMan RT-PCR into the rubella surveillance system in Japan, the sensitivity of the assay was determined using representative strains for all genotypes and clinical specimens. The detection limits of the method for individual genotypes were examined using viral RNA extracted from 13 representative strains. The assay was also tested at 10 prefectural laboratories in Japan, designated as local reference laboratories for measles and rubella, to allow nationwide application of the assay. The detection limits and amplification efficiencies of the assay were similar among all the representative strains of the 13 genotypes. The TaqMan RT-PCR could detect approximately 90% of throat swab and urine samples taken up to 5days of illness. These samples were determined positive by a highly sensitive nested RT-PCR. The TaqMan RT-PCR could detect at least 10 pfu of rubella virus. Although the sensitivity was somewhat lower than that of the conventional nested RT-PCR, the TaqMan RT-PCR could be more practical to routine tests for rubella laboratory diagnosis and detection in view of the rapid response and reducing risks of contamination. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules.

    PubMed

    Mohamad, Nurhidayatul Asma; Mustafa, Shuhaimi; Khairil Mokhtar, Nur Fadhilah; El Sheikha, Aly Farag

    2018-03-05

    The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared. A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA. The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  6. An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator

    NASA Astrophysics Data System (ADS)

    Asano, Motoki; Ohta, Ryuichi; Yamamoto, Takashi; Okamoto, Hajime; Yamaguchi, Hiroshi

    2018-05-01

    Evanescent coupling between a high-Q silica optical microbottle and a GaAs electromechanical resonator is demonstrated. This coupling offers an opto-electro-mechanical system which possesses both cavity-enhanced optical sensitivity and electrical controllability of the mechanical motion. Cooling and heating of the mechanical mode are demonstrated based on optomechanical detection via the radiation pressure and electromechanical feedback via the piezoelectric effect. This evanescent approach allows for individual design of optical, mechanical, and electrical systems, which could lead to highly sensitive and functionalized opto-electro-mechanical systems.

  7. Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)

    NASA Astrophysics Data System (ADS)

    Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer

    2009-02-01

    Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.

  8. Sensitive determination of sulfonamides in environmental water by capillary electrophoresis coupled with both silvering detection window and in-capillary optical fiber light-emitting diode-induced fluorescence detector.

    PubMed

    Ji, Hongyun; Wu, Yu; Duan, Zhijuan; Yang, Feng; Yuan, Hongyan; Xiao, Dan

    2017-02-01

    A new detector, silvering detection window and in-capillary optical fiber light-emitting diode-induced fluorescence detector (SDW-ICOF-LED-IFD), is introduced for capillary electrophoresis (CE). The strategy of the work was that half surface of the detection window was coated with silver mirror, which could reflect the undetected fluorescence to the photomultiplier tube to be detected, consequently enhancing the detection sensitivity. Sulfonamides (SAs) are important antibiotics that achieved great applications in many fields. However, they pose a serious threat on the environment and human health when they enter into the environment. The SDW-ICOF-LED-IFD-CE system was used to determine fluorescein isothiocyanate (FITC)-labeled sulfadoxine (SDM), sulfaguanidine (SGD) and sulfamonomethoxine sodium (SMM-Na) in environmental water. The detection results obtained by the SDW-ICOF-LED-IFD-CE system were compared to those acquired by the CE with in-capillary optical fiber light-emitting diode-induced fluorescence detection (ICOF-LED-IFD-CE). The limits of detection (LODs) of SDW-ICOF-LED-IFD-CE and ICOF-LED-IFD-CE were 1.0-2.0 nM and 2.5-7.7 nM (S/N = 3), respectively. The intraday (n = 6) and interday (n = 6) precision of migration time and corresponding peak area for both types of CE were all less than 0.86% and 3.68%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 92.5-102.9%. The results indicated that the sensitivity of the SDW-ICOF-LED-IFD-CE system was improved, and that its reproducibility and accuracy were satisfactory. It was successfully applied to analyze SAs in environmental water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Non-contact thermoacoustic detection of embedded targets using airborne-capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Nan, Hao; Boyle, Kevin C.; Apte, Nikhil; Aliroteh, Miaad S.; Bhuyan, Anshuman; Nikoozadeh, Amin; Khuri-Yakub, Butrus T.; Arbabian, Amin

    2015-02-01

    A radio frequency (RF)/ultrasound hybrid imaging system using airborne capacitive micromachined ultrasonic transducers (CMUTs) is proposed for the remote detection of embedded objects in highly dispersive media (e.g., water, soil, and tissue). RF excitation provides permittivity contrast, and ultra-sensitive airborne-ultrasound detection measures thermoacoustic-generated acoustic waves that initiate at the boundaries of the embedded target, go through the medium-air interface, and finally reach the transducer. Vented wideband CMUTs interface to 0.18 μm CMOS low-noise amplifiers to provide displacement detection sensitivity of 1.3 pm at the transducer surface. The carefully designed vented CMUT structure provides a fractional bandwidth of 3.5% utilizing the squeeze-film damping of the air in the cavity.

  10. Performance and sensitivity analysis of the generalized likelihood ratio method for failure detection. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bueno, R. A.

    1977-01-01

    Results of the generalized likelihood ratio (GLR) technique for the detection of failures in aircraft application are presented, and its relationship to the properties of the Kalman-Bucy filter is examined. Under the assumption that the system is perfectly modeled, the detectability and distinguishability of four failure types are investigated by means of analysis and simulations. Detection of failures is found satisfactory, but problems in identifying correctly the mode of a failure may arise. These issues are closely examined as well as the sensitivity of GLR to modeling errors. The advantages and disadvantages of this technique are discussed, and various modifications are suggested to reduce its limitations in performance and computational complexity.

  11. A sensitive, handheld vapor sensor based on microcantilevers

    NASA Astrophysics Data System (ADS)

    Pinnaduwage, L. A.; Hedden, D. L.; Gehl, A.; Boiadjiev, V. I.; Hawk, J. E.; Farahi, R. H.; Thundat, T.; Houser, E. J.; Stepnowski, S.; McGill, R. A.; Deel, L.; Lareau, R. T.

    2004-11-01

    We report the development of a handheld sensor based on piezoresistive microcantilevers that does not depend on optical detection, yet has high detection sensitivity. The sensor is able to detect vapors from the plastic explosives pentaerythritol tetranitrate and hexahydro-1,3,5-triazine at levels below 10 parts per trillion within few seconds of exposure under ambient conditions. A differential measurement technique has yielded a rugged sensor that is unaffected by vibration and is able to function as a "sniffer." The microelectromechanical system sensor design allows for the incorporation of hundreds of microcantilevers with suitable coatings in order to achieve sufficient selectivity in the future, and thus could provide an inexpensive, unique platform for the detection of chemical, biological, and explosive materials.

  12. Antigen detection systems

    USDA-ARS?s Scientific Manuscript database

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissues or other specimens, using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular m...

  13. Functionalized multi-walled carbon nanotube based sensors for distributed methane leak detection

    EPA Science Inventory

    This paper presents a highly sensitive, energy efficient and low-cost distributed methane (CH4) sensor system (DMSS) for continuous monitoring, detection and localization of CH4 leaks in natural gas infrastructure such as transmission and distribution pipelines, wells, and produc...

  14. Advances in on-chip photodetection for applications in miniaturized genetic analysis systems

    NASA Astrophysics Data System (ADS)

    Namasivayam, Vijay; Lin, Rongsheng; Johnson, Brian; Brahmasandra, Sundaresh; Razzacki, Zafar; Burke, David T.; Burns, Mark A.

    2004-01-01

    Microfabrication techniques have become increasingly popular in the development of next generation DNA analysis devices. Improved on-chip fluorescence detection systems may have applications in developing portable hand-held instruments for point-of-care diagnostics. Miniaturization of fluorescence detection involves construction of ultra-sensitive photodetectors that can be integrated onto a fluidic platform combined with the appropriate optical emission filters. We have previously demonstrated integration PIN photodiodes onto a microfabricated electrophoresis channel for separation and detection of DNA fragments. In this work, we present an improved detector structure that uses a PINN+ photodiode with an on-chip interference filter and a robust liquid barrier layer. This new design yields high sensitivity (detection limit of 0.9 ng µl-1 of DNA), low-noise (S/N ~ 100/1) and enhanced quantum efficiencies (>80%) over the entire visible spectrum. Applications of these photodiodes in various areas of DNA analysis such as microreactions (PCR), separations (electrophoresis) and microfluidics (drop sensing) are presented.

  15. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide.

    PubMed

    Yuan, Jipei; Guo, Weiwei; Wang, Erkang

    2008-02-15

    In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching. Using a quantum dots-enzyme system, the detection limits for phenolic compounds and hydrogen peroxide were detected to be approximately 10(-7) mol L(-1). The coupling of efficient quenching of quantum dot photoluminescence by quinone and the effective enzymatic reactions make this a simple and sensitive method for phenolic compound detection and great potential in the development of H2O2 biosensors for various analytes.

  16. Protein detection using biobarcodes.

    PubMed

    Müller, Uwe R

    2006-10-01

    Over the past 50 years the development of assays for the detection of protein analytes has been driven by continuing demands for higher levels of sensitivity and multiplexing. The result has been a progression of sandwich-type immunoassays, starting with simple radioisotopic, colorimetric, or fluorescent labeling systems to include various enzymatic or nanostructure-based signal amplification schemes, with a concomitant sensitivity increase of over 1 million fold. Multiplexing of samples and tests has been enabled by microplate and microarray platforms, respectively, or lately by various molecular barcoding systems. Two different platforms have emerged as the current front-runners by combining a nucleic acid amplification step with the standard two-sided immunoassay. In both, the captured protein analyte is replaced by a multiplicity of oligonucleotides that serve as surrogate targets. One of these platforms employs DNA or RNA polymerases for the amplification step, while detection is by fluorescence. The other is based on gold nanoparticles for both amplification as well as detection. The latter technology, now termed Biobarcode, is completely enzyme-free and offers potentially much higher multiplexing power.

  17. Trace vapor detection of hydrogen peroxide: An effective approach to identification of improvised explosive devices

    NASA Astrophysics Data System (ADS)

    Xu, Miao

    Vapor detection has been proven as one of the practical, noninvasive methods suitable for explosives detection among current explosive detection technologies. Optical methods (especially colorimetric and fluorescence spectral methods) are low in cost, provide simple instrumentation alignment, while still maintaining high sensitivity and selectivity, these factors combined facilitate broad field applications. Trace vapor detection of hydrogen peroxide (H2O2) represents an effective approach to noninvasive detection of peroxide-based explosives, though development of such a sensor system with high reliability and sufficient sensitivity (reactivity) still remains challenging. Three vapor sensor systems for H2O2 were proposed and developed in this study, which exploited specific chemical reaction towards H2O2 to ensure the selectivity, and materials surface engineering to afford efficient air sampling. The combination of these features enables expedient, cost effective, reliable detection of peroxide explosives. First, an expedient colorimetric sensor for H2O2 vapor was developed, which utilized the specific interaction between Ti(oxo) and H2O2 to offer a yellow color development. The Ti(oxo) salt can be blended into a cellulose microfibril network to produce tunable interface that can react with H2O2. The vapor detection limit can reach 400 ppb. To further improve the detection sensitivity, a naphthalimide based fluorescence turn-on sensor was designed and developed. The sensor mechanism was based on H2O2-mediated oxidation of a boronate fluorophore, which is nonfluorescent in ICT band, but becomes strongly fluorescent upon conversion into the phenol state. The detection limit of this sensory material was improved to be below 10 ppb. However, some technical factors such as sensor concentration, local environment, and excitation intensity were found difficult to control to make the sensor system sufficiently reproducible. To solve the problem, we developed a ratiometric fluorescence sensor, which allows for dual-band emission monitoring and thus enhances the detection reliability. Moreover, the significant spectral overlap between the fluorescence of the pristine sensor and the absorption of the reacted state enables effective Foster Resonance Energy Transfer (FRET). This FRET process can significantly enhance the fluorescence sensing efficiency in comparison to the normal single-band sensor system, for which the sensing efficiency is solely determined by the stoichiometric conversion of sensor molecules.

  18. GMR biosensor arrays: a system perspective.

    PubMed

    Hall, D A; Gaster, R S; Lin, T; Osterfeld, S J; Han, S; Murmann, B; Wang, S X

    2010-05-15

    Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1-8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4s). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multiplexing capability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. 2010 Elsevier B.V. All rights reserved.

  19. GMR Biosensor Arrays: A System Perspective

    PubMed Central

    Hall, D. A.; Gaster, R. S.; Lin, T.; Osterfeld, S. J.; Han, S.; Murmann, B.; Wang, S. X.

    2010-01-01

    Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1 – 8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4 seconds). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multipexability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. PMID:20207130

  20. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    PubMed Central

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Wei-Jun; Smith, Richard D.

    2012-01-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications (PTMs), as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed. PMID:22577010

Top